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Abstract. Agriculture is the largest anthropogenic source of nitrous oxide (N,O), primarily due to nitrogen (N) fertilization.
Understanding how the influence of key drivers and the relative contribution of source processes change throughout the
cropping season is crucial for developing effective strategies to mitigate N,O emissions. In this study, we combined high-
resolution eddy covariance flux measurements and stable isotope analyses over one winter wheat cropping season and the
subsequent summer cover crop season. Two phases, crop establishment and early spring, were identified as critical periods
for N,O emissions, characterized by a mismatch between N supply and plant demand, resulting in surplus soil mineral N and
elevated N>O fluxes under favorable environmental conditions. Gross primary productivity (GPP), used as a proxy for crop
N uptake, suppressed N>O emissions, especially under high soil moisture, highlighting the importance of active vegetation in
mitigating emissions. Source partitioning, based on stable isotopes, revealed denitrification as the dominant process of N>O
production, driven by poor soil drainage and high soil moisture. Over the nine-month winter wheat season, the Tier 1 N,O
emission factor was 1.8%, with cumulative emissions of 5.5 kg N>O-N ha™!, offsetting 70% of the net CO, uptake. Our
findings emphasize the need to better synchronize N supply with crop demand and to adopt agronomic practices that

promote rapid crop establishment to mitigate N,O emissions in cropping systems.

Keywords: arable land; nitrous oxide; winter wheat; cover crop; eddy covariance; stable isotopes; drivers

1 Introduction

Nitrogen (N) is an essential nutrient for crop production, and the use of N fertilizers plays a central role in ensuring global
food security (Erisman et al., 2008; Liang, 2022). However, a large part of the applied N is lost to the environment due to
misalignment between the application (amount and timing) and crop demand (Ladha et al., 2005). Globally, only about 47%
of total fertilizer N input is taken up by crops, with the remainder lost primarily through nitrate (NO3") leaching and ammonia
(NHa) volatilization, contributing to water and air pollution (Lassaletta et al., 2014). Approximately 1% of the applied N
(IPCC, 2019) is emitted as nitrous oxide (N20O), a potent greenhouse gas (GHG) with a 100-year global warming potential
(GWP1q0) of 273 times that of CO; (Forster et al., 2021), and the dominant ozone-depleting substance of the current century
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(Portmann et al., 2012; Ravishankara et al., 2009). Together with carbon dioxide (CO,) and methane (CHa4), N,O represents
one of the three major greenhouse gases contributing to anthropogenic climate forcing, with agricultural soils being a
significant source of all three (Nabuurs et al., 2022). Despite accounting for a relatively minor fraction of N losses, the
climate impact of N>O makes its mitigation a key priority in sustainable agricultural management. Direct N,O emissions
from agricultural N additions represent the largest source of anthropogenic N,O emissions, contributing 56% of global
emissions over the past decade (Tian et al., 2024), with more than half (55%) originating from soils following fertilizer
application. The remaining fraction is attributed to manure excreted on pastures and manure management (Epper et al., 2025;
Tian et al., 2024). In Switzerland, N>O emissions account for approximately 30% of total agricultural GHG emissions
(FOEN, 2025). At both EU and Swiss levels, policies have been introduced to reduce N losses from agriculture and mitigate
associated environmental impacts, such as the EU Nitrates Directive (European Commission, 1991) and Switzerland’s Water
Protection Ordinance (Swiss Federal Council, 1998). However, despite the well-documented climate effects of N>O, binding
measures specifically targeting N,O mitigation are still lacking (Epper et al., 2025). This regulatory gap hinders the
development and implementation of effective mitigation strategies, leaving a major source of agricultural greenhouse gas
emissions largely unaddressed.

N>O in soils is primarily produced through microbial nitrification and denitrification, processes that are regulated by a
complex interplay of dynamic factors, including the availability of N substrates (i.e., NH4" and NOj’), soil moisture,
temperature, pH, and availability of labile carbon (Butterbach-Bahl et al., 2013; Davidson, 1991; Rummel et al., 2025;
Smith, 2017). Agronomic operations such as fertilization and tillage increase N availability and stimulate microbial N,O
production (Chatskikh and Olesen, 2007; Shcherbak et al., 2014). Recent studies also highlight the role of actively growing
vegetation as a dynamic N sink that competes with microbes for N substrates, thereby reducing their availability for N,O
production and mitigating N>O emissions (Feigenwinter et al., 2023; Maier et al., 2022; Timilsina et al., 2024). Accordingly,
the N surplus, defined as the difference between total N inputs and outputs, correlates positively with N>O emissions (Tallec
et al., 2022; Van Groenigen et al., 2010). However, the spatio-temporal heterogeneity of environmental and management-
related drivers, along with the high temporal variability of N>O fluxes, pose major challenges for identifying key drivers of
N2O losses throughout the cropping season. Each phase, from field preparation to post-harvest, is controlled by distinct
processes and their interactions (Smith et al., 1998). While many studies have explored the general relationships between
individual drivers and N,O emissions, to our knowledge, no study has systematically investigated how the relative
importance of these drivers changes over the course of a cropping season. Therefore, our understanding of these temporal
dynamics is still scarce, limiting the development of mitigation strategies because these may only be effective when aligned
with the dominant emission controls at specific stages of the cropping season.

In addition to N,O, croplands exchange substantial amounts of CO, and CHy with the atmosphere, which together determine
their net greenhouse gas (GHG) budget (Carlson et al., 2017; Ciais et al., 2010; Schulze et al., 2009). CO, fluxes reflect the
difference between photosynthetic carbon uptake and ecosystem respiration, whereas CH4 fluxes from agricultural soils

result from concurrent microbial production (i.e., methanogenesis) and oxidation (i.e., methanotrophy) (Le Mer and Roger,
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2001). Quantifying these fluxes alongside N-O is crucial for an integrated assessment of the cropland GHG budget and its
response to environmental and management drivers.

To improve our understanding of the temporal dynamics of N,O emissions and their contribution to the full GHG budget,
continuous and spatially integrated measurements of N,O fluxes are essential. Micrometeorological techniques such as eddy
covariance (EC) enable continuous, high-frequency observations of N>O fluxes, spatially integrating over entire fields
(Feigenwinter et al., 2023; Lognoul et al., 2019; Maier et al., 2022, 2025). When EC-based N>O flux measurements are
combined with concurrent observations of key environmental and management-related drivers, they can provide valuable
insights into the temporal dynamics of N,O emissions and their controls throughout the cropping season. Building on high-
resolution data provided by EC systems, machine learning (ML) algorithms offer powerful tools to model N,O emissions
(Gnisia et al., 2025; Goodrich et al., 2021; Hamrani et al., 2020). These ML models can capture non-linear relationships and
complex interactions among environmental and management-related drivers and often outperform traditional statistical
approaches in predictive accuracy (Philibert et al., 2013; Saha et al., 2021). Furthermore, model explanation techniques such
as SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017) enhance the interpretability of ML models by
quantifying the contribution of individual drivers, offering insights into the temporal evolution of driver importance (Krebs
et al., 2025; Scapucci et al., 2024, 2025).

While ML models can identify which environmental and management variables most influence N,O fluxes, they do not
reveal the underlying microbial production processes. This distinction is important because nitrification and denitrification
respond differently to environmental conditions (Butterbach-Bahl et al., 2013; Davidson, 1991) and management (Buchen et
al., 2018). Distinguishing between these two sources of N,O is essential for developing targeted mitigation strategies and
improving the accuracy of process-based biogeochemical models (Del Grosso et al., 2020). Stable isotope analysis,
particularly of the intramolecular distribution of "N (i.e., site preference, SP), offers a robust approach to identify the
relative contributions of nitrification and denitrification to N>O production (Toyoda and Yoshida, 1999). These microbial
processes generate NoO with distinct isotopic signatures due to differences in enzymatic mechanisms and substrate pools.
Because SP is largely independent of the isotopic composition of precursor substrates, it enables robust source partitioning
under field conditions (Decock and Six, 2013). Combined with N and O stable isotope ratios (§'°N and §'%0, respectively),
SP allows tracing the temporal development of N,O-producing processes (Verhoeven et al., 2019; Yu et al., 2020).

The present study integrates continuous EC measurements, ML-based driver analysis, and stable isotope techniques to
provide a comprehensive assessment of N,O emissions over a winter wheat cropping season and the following short summer
cover crop at a study site with a temperate climate in Europe. Specifically, we aimed to (i) quantify N,O, CO,, and CH4
fluxes and resulting GHG budgets throughout a winter wheat cropping season and the subsequent cover crop season, (ii)
determine the temporal development of environmental and management driver contributions to N.O fluxes, and (iii) identify

the contributions of different microbial N,O-producing processes and their temporal development after a fertilization event.
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2 Material and methods
2.1 Study site

The study site is a cropland field in Oensingen, canton of Solothurn, Switzerland. The site has a mean annual temperature of
10.1 °C and receives an average of 1151 mm of precipitation per year (2004-2023). CO; and water vapor (H2O) fluxes have
been continuously measured at the site by a EC station (CH-Oe2, part of FLUXNET; 47°10'41.5" N, 7°39'54.4" E;
465 m a.s.l.) since December 2003 (Emmel et al., 2018). The field where the station is positioned has an area of 1.55 ha, and
the soil is an Eutric-Stagnic Cambisol with a silty clay soil texture. In the top 25 cm depth, the soil consists of 43% clay,
47% silt, and 10% sand, with 2.8% organic matter (Alaoui and Goetz, 2008). The field is managed according to an integrated
farming label (IP Swiss), and follows the Proof of Ecological Performance (PEP; Swiss Federal Council, 2025). PEP sets
baseline requirements for receiving direct payments, including rules for crop rotation, farm-based fertilizer use, and
measures to protect soil and biodiversity. Over the past 20 years, the crop rotation included various annual crops, with winter
wheat as primary crop. A temporary grassland (grass-clover mixture; STEFFEN 3003M, Samen STEFFEN AG) was
established in 2020 and managed until its final cut in late September 2022, followed by herbicide application (Glyphosate)
and direct-seeding of winter wheat. This study was conducted over one year, from September 2022 to October 2023,
covering the last month of the temporary grassland, the full winter wheat growing season, and the subsequent cover crop
season, a mixture of legumes, grasses, and forbs (Terra-FIT Quattro, Samen STEFFEN AG). Winter wheat (Montalbano,
bred by Agroscope and DSP) was sown on October 6, 2022, and harvested on July 15, 2023, with 5.03 t ha™!' grain yield (dry
matter). The winter wheat received three applications of mineral and organic (dairy slurry) fertilizers between late tillering
and early stem elongation, summing up to 138 kg N ha™' (Table 1). After the harvest, the straw was removed from the field,
and the soil was cultivated for the subsequent sowing of the summer cover crop. The cover crop was mulched in late
September 2023, before the soil was cultivated again to prepare for the sowing of winter barley in early October 2023.

Table 1. Main management activities conducted during the 2022-2023 measurement period at the cropland in Oensingen. Positive
values for nitrogen (N) in/output (kg ha'') indicate inputs to the field, whereas negative values represent N exports. For organic
fertilization, total N is reported, with the NH4*-N fraction shown in parentheses. Due to a sampling issue in 2023, slurry
composition was estimated based on laboratory analysis of a 2024 sample from the same farm. Harvest-related N exports are
reported as mean = 1 standard deviation. Details on commercial products and additional management practices are provided in
Table Al.

Crop Management activity Date N in/output

Grass-clover ~ Harvest 20 September 2022 -40+7
Herbicide application 3 October 2022

Winter wheat Sowing (direct seeding) 6 October 2022 +5.2
Ammonium nitrate application 27 February 2023 +68
Slurry application (dairy) 28 February 2023 +43 (+18)
Ammonium nitrate application 6 April 2023 +27
Harvest (grain and straw) 15 July 2023 -162 £53
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Bare soil Soil cultivation 17 July 2023

Cover crop Sowing 27 July 2023 +1.4
Mulching 25 September 2023

Bare soil Soil cultivation 27 September 2023

2.2 Eddy covariance flux measurements
2.2.1 Setup

The EC setup, situated at the center of the field, consisted of an ultrasonic anemometer (R3-50, Gill Instruments Ltd.,
Lymington, UK) that measured wind speed, and a laser spectrometer that measured N>O and CH4 concentrations at 10 Hz
(GLA351-N20OM1, Los Gatos Research, Mountain View, CA, USA), as well as an enclosed infrared gas analyzer (IRGA)
that measured CO, and H>O concentrations at 20 Hz (LI-7200, LI-COR Biosciences, Lincoln NE, USA). The laser
spectrometer was connected to an external pump (EV-A06, Ebara Technologies, Sacramento, CA, USA) and both were
placed in temperature-controlled boxes. A 7 m long, 7.5 mm diameter unheated polyethylene/aluminum composite tube
(EATON Synflex 1300, Dublin, Ireland) was used to draw air to the laser spectrometer. The measurement height of the sonic
anemometer was 2.17 m above ground, and the inlets of the laser spectrometer and the IRGA were mounted approximately
0.2 m below the sonic anemometer. While CO» and H,O fluxes have been measured continuously since 2003, N,O and CH4
flux measurements were conducted during selected periods between 2018 and 2021 (Maier et al., 2025), followed by

continuous measurements from 30 August 2022 to 5 October 2023 in the present study.

2.2.2 Flux processing

Half-hourly fluxes of CO», H>O (i.e., as latent heat flux (LE)), as well as N,O and CH, fluxes were calculated using the
EddyPro software (version 7.0.9, LI-COR Environmental, Lincoln NE, USA) following established EC flux community
protocols (Aubinet et al., 2012; Nemitz et al., 2018; Pastorello et al., 2020; Sabbatini et al., 2018). Raw high-frequency data
underwent de-spiking and screening, in line with Vickers and Mahrt (1997), and wind components were aligned using a 2D
rotation method (Wilczak et al., 2001). The time lag between the vertical wind component and scalar concentration of N,O
and CH4 was set to a constant value, corresponding to the most frequently occurring lag (1.40 s for N,O and 1.50 s for CHa)
identified through covariance maximization within a broad window (0-5 s) over the entire measurement period. In contrast,
time lags for CO; and LE were determined dynamically through covariance maximization within narrow windows, based on
prior lag distributions identified using a broader window. When no clear covariance peak was detected within the defined
window, a default lag was applied (1.30 s for CO,, 1.45 s for H>O), corresponding to the most frequently identified lag in the
earlier analysis. Spectral corrections addressed high-pass (Moncrieff et al., 2005) and low-pass filtering effects (Fratini et al.,
2012). A correction for instrument separation was applied (Horst and Lenschow, 2009). The flux footprint model by Kljun et

al. (2015) estimated the upwind area contributing to the measured flux.
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2.2.3 Quality assessment and de-spiking

Data quality was assessed using a composite flag (QCO = best quality, QCl = medium quality, QC2 = bad quality),
calculated with the Python library diive (v0.86.0; Hortnagl, 2025). The flag included tests for (1) steady-state and integral
turbulence characteristics (Mauder and Foken, 2004), (2) spectral correction factor (values with spectral correction factor > 4
were excluded), (3) IRGA signal strength, (4) completeness of the averaging interval (if <97% coverage within 30 min,
value was excluded; Sabbatini et al., 2018), and (5) occurrence of spikes and drop-outs in the raw data after the statistical
tests by Vickers and Mahrt (1997). Fluxes with the quality flag 2 (QC2) were excluded from further analyses. Storage terms
(single point measurement) were added to all measured gas fluxes (Aubinet et al., 2001). CO; fluxes are referred to as net
ecosystem exchange of CO, (NEE) from this point onwards. Absolute limits were applied to remove half-hourly fluxes
outside plausible ranges, determined by analyzing typical ranges for highest-quality fluxes (NEE: - 60 to 50 umol m2s7};
LE: -50 to 800 W m; N,O: - 3 to 30 nmol m ™2 s™!; CHy: - 30 to 80 nmol m™2 s7!). Outliers were further removed using two
statistical filters: a Hampel filter applied separately for daytime and nighttime periods, and a rolling z-score method. Finally,
a friction velocity (u,) filter (Papale et al., 2006) was applied to NEE, N>O, and CH4 fluxes to exclude periods with
insufficient turbulence conditions. The threshold was determined using CO; fluxes, and a constant u, threshold of 0.092 m
s! was used for the entire study period. After applying all quality checks, de-spiking, and u, filtering, data coverage for
fluxes over the entire measurement period was 50.8% for NEE, 68.5% for LE, 52.9% for N,O fluxes, and 33.6% for CH,4
fluxes. Only the highest quality N,O fluxes (QCO0, 34.5% data coverage) were used for the driver analysis. Further details on
data quality control procedures and outlier removal methods are available in the project repository (Turco, 2025a). Flux rates

are reported as umol CO, m? s!' for NEE, nmol N>O m? s for N,O flux, and nmol CHy m? s! for CH4 flux, while

cumulative fluxes are reported as g C m? (NEE, CHy) or kg N,O-N ha™! (N2O).

2.2.4 Gap-filling and NEE partitioning

Gap-filling of NoO and CH4 fluxes was performed using the Random Forest (RF) algorithm (Breiman, 2001) as implemented
via the diive Python library (v. 0.86.0), based on the scikit-learn (v1.15) framework. Predictor (i.e., driver) variables were
selected based on their demonstrated predictive performance in previous studies (Feigenwinter et al., 2023; Maier et al.,
2022), including environmental data (and their lagged variants), management information (expressed as time since event),
and timestamp features. Environmental variables comprised soil temperature, precipitation (in absolute terms and time since
occurrence), and soil water content.

For NEE and LE, gap-filling was conducted using the Marginal Distribution Sampling (MDS) method (Reichstein et al.,
2005), implemented in R via the REddyProc package (v. 1.3.2; Wutzler et al., 2018). Input variables for MDS included
global radiation, air temperature, and vapor pressure deficit. NEE was subsequently partitioned into gross primary

production (GPP) and ecosystem respiration (Reco) using the night-time method (Reichstein et al., 2005), also implemented
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in REddyProc (Wutzler et al., 2018). Additional methodological details and code are available in the project repository
(Turco, 2025a).

2.3 Calculating N2O emission factor and GHG budgets

The N>O emission factor (EF) for winter wheat was calculated by dividing the cumulative N,O-N emissions attributable to
fertilization (excluding background fluxes) by the total amount of N from synthetic and organic fertilizers. This calculation
excluded background fluxes and followed the IPCC Tier 1 approach (IPCC, 2019). The background N,O flux was calculated
as the average of gap-filled fluxes, omitting 30-day post-fertilization periods to remove the short-term fertilization
effects. The resulting EF is expressed as the percentage of the applied N that is emitted as N>O-N.

The GHG budgets for CO,, N>,O, and CH4 were calculated separately for the winter wheat and cover crop cropping seasons
(282 and 60 days, respectively), covering the period from sowing to harvest, using gap-filled flux datasets (see Sect. 2.2.4 for
gap-filling procedure). To express fluxes in terms of CO»-equivalents, global warming potential (GWP o) values of 273 for

N>O and 27 for CHy4 were applied, in accordance with current estimates (Forster et al., 2021).

2.4 Meteorological and soil variables

The meteorological variables air temperature and relative humidity (CS215, Campbell Scientific Ltd., Logan UT, USA),
atmospheric pressure (PAA-33X, Keller AG, Switzerland), short- and longwave radiation (CNR4, Kipp & Zonen, Dellft,
Netherlands), photosynthetic photon flux density PPFD (BF5, Delta-T Devices, United Kingdom), and precipitation (heated
tipping bucket rain gauge, Lambrecht meteo GmbH, Germany) were measured continuously at the EC station. Soil water
content and soil temperature were also measured continuously close to the EC station along one soil profile (at 0.05, 0.15,
0.3, and 0.5 m soil depths) using 5STM sensors (Decagon Devices, Inc., Pullman WA, USA). All meteorological
measurements were recorded at one-minute time resolution and, after screening for outliers, averaged to 30-minute values

(precipitation was summed). Water-filled pore space (WFPS; Eq. 1) was calculated for each soil depth as:
WFPS = 55 % 100 M

1-%p

where SWC is the volumetric soil water content (in m* m), BD is the bulk density (in g cm™), with values of 1.16, 1.40, and
1.33 g cm™ for the 0-0.05, 0.15-0.3, and 0.3-0.5 m depth intervals, respectively, obtained from Emmel et al. (2018), and PD
is the particle density, assumed to be 2.65 g cm™ (Danielson and Sutherland 1986).

2.5 Soil chamber measurements and stable isotope analyses

Five opaque static PVC (polyvinyl chloride) chambers, each with a volume of 17.7 L and a surface area of 0.07 m?, were
deployed at five randomly selected locations within a 12 m radius of the EC station (Fig. 1). The chambers were first
deployed on 24 February 2023, before the first fertilization event, and positioned to enclose plants from two adjacent wheat

rows. To ensure that regular field management could continue unhindered, the chambers were removed immediately after
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sampling when management operations were scheduled before the next sampling date and subsequently reinstalled at the
same positions for the following measurements. In total, six sampling campaigns were conducted between 24 February and
17 March 2023, encompassing the period around the first fertilizations (27 and 28 February) and two campaigns later in the
season (31 May and 19 July). The sampling was performed around midday (typically between 11:00 and 13:00 local time) to
minimize diurnal variability in fluxes. For each chamber and time point, two headspace samples were collected: one
immediately after chamber closure (to), and one after a 1-hour enclosure period (teo). Air samples were drawn from the
chamber headspace with a 60-mL syringe. For subsequent N>O concentration analysis, 20 mL of the air sample was injected
into pre-evacuated 12 mL vials. For stable isotope analyses, 180 mL of the air sample was injected into pre-evacuated 110
mL serum crimp vials. During each sampling campaign, a soil sample was collected for each chamber by combining two soil
cores (0-0.1 m depth) taken approximately 0.3 m from the chamber edge. The pooled samples were placed into Schott tubes,
which were immediately sealed with Parafilm, enclosed in plastic bags, and stored in a cooling box before being transferred
to a freezer at —18 °C. Soil water was later extracted from the samples using cryogenic vacuum distillation (Ehleringer and
Osmond, 2000). The stable oxygen isotope ratio (8'0) of the extracted water was then measured using an isotope ratio mass
spectrometer (IRMS; DeltaplusXP, Finnigan MAT, Bremen, Germany) and expressed in the delta notation referenced to the
Vienna Standard Mean Ocean Water (V-SMOW) in %o (Eq. 2) as:

6180 — Rsample -1 (2)

Rreference

where R denotes the ratio of '30/'°0.

N,O gas samples were analyzed for their stable N and oxygen isotope ratios (§'°N*k, §!80, respectively) and site preference
(SP-N,0) using a trace gas preparation unit (Elementar, Manchester, UK) coupled to an IsoPrime100 IRMS (Elementar,
Manchester, UK). Calibration and data correction followed the procedure described in Verhoeven et al. (2019) and in
Gallarotti et al. (2021), including the use of multiple working standards and correction for instrumental drift, span, and
linearity. Site preference (SP) represents the difference between the N isotope ratios at the central (o) and terminal () N
positions of the N>O molecule. Unlike §'SN*k SP-N,O is independent of the initial substrate, making it a more direct
indicator of the N>O production pathway (Toyoda et al., 2002). The isotopic signature of emitted NoO was calculated using
the following two-point mixing equation (Eq. 3):

[N20]e 6%Xe—[N20]56%Xs

z —
K = e 0ls ©)

where [N2O];s and [N>O]c are the NoO mixing ratios [ppb] at to and teo, respectively, measured using a gas chromatograph
equipped with an electron capture detector (456-GC, Scion Instruments, Livingston, WLO, UK), while 8*X; and X, are the
corresponding isotope ratios (%o). A threshold of 30 ppb in N>O concentration increase (A[N2O] = [N2O]. - [N2O]s) was used
to exclude flux estimates for which the change in N>O concentration during the chamber closure was too small to yield
reliable isotopic signatures (Harris et al., 2020b). N>,O fluxes on four of the eight sampling dates, March 1, 3, 6, and 17,

exceeded this threshold and were subsequently included in the analyses.



245

250

255

260

265

270

275

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

To determine the main production pathways of N»O, a dual isotope mapping approach was used, relating i) §'*0-N,O to SP-
N0, and ii) §""N"k-N,O to SP-N,O. The mixing endmembers for nitrification (Ni), bacterial denitrification (bD), nitrifier
denitrification (nD), and fungal denitrification (fD) were chosen according to Yu et al. (2020). The §'*0-N,O endmembers of
bD, nD, and fD were adjusted by the mean 8'30 of soil water to account for the oxygen isotopic signature of the substrate
(Lewicka-Szczebak et al., 2020). Since no measurements of the 3'°N of soil N precursors were available, a 3'°N value of 0%o
was assumed for precursor nitrate and ammonium in the 3N -N,0O vs. SP-N,O map. The contributions of different N.O
production pathways and the residual fraction of unreduced N>O (r) were estimated with the FRAME software,
implementing a Markov Chain Monte Carlo model (Lewicki et al., 2022). The FRAME model was configured using process-
specific mean values and fractionation factors from Yu et al. (2020), and the §'®0-N>O mean values were corrected for §'80-

H,O.

2.6 Vegetation and soil measurements

Leaf area index (LAI), vegetation height, and phenological development stages were monitored throughout the study. From
March to July 2023, measurements were conducted at 2- to 3-week intervals to capture the growth dynamics during the most
active vegetative period of winter wheat, and at key developmental stages before and after this period. LAI and canopy
height were measured at six locations spread 5 m apart along four transects originating from the EC station (Fig. 1). LAI was
measured using a LAI-2000 Plant Canopy Analyzer (LI-COR Biosciences, USA) by taking one above-canopy and six
below-canopy readings for each transect. Under clear sky conditions, measurements were conducted towards the North to
avoid direct sunlight on the lens. Vegetation height was determined by measuring the height of an expanded polystyrene
plate of 0.25 m? dropped on top of the vegetation at each spot (Ammann et al., 2007). Phenological development stages of
winter wheat were identified according to the BBCH-scale (Meier, 2018) for five plants randomly selected in the field.
Aboveground biomass (AGB) was sampled monthly, using a harvest frame with a defined area of 0.1 m?2. Three samples
were randomly collected at each of the four defined field sections (Fig. 1), and entire wheat plants were cut 2 cm above the
ground. The dry weight was determined after drying all plant samples at 60 °C for 48 hours. The dried samples were further
processed by first cutting the biomass into smaller pieces, then a subsample was ground to a fine powder with a ball mill
(MM200, Retsch, Germany). Finally, about 4 mg was weighed into small tin capsules, and carbon (C) and N concentrations
(in %) were determined with a Flash EA 1112 elemental analyzer (Thermo Italy, former CE Instruments, Rhodano, Italy).
During the wheat cropping season, soil samples were collected five times using a machine-assisted soil core sampler. The
soil samples were collected within the same field sections used for AGB sampling, with ten to fifteen soil cores taken at each
section and bulked for each soil depth (0-0.3, 0.3-0.6, and 0.6-0.9 m). Ammonium (NH4") and nitrate (NOj3") were extracted
by an external laboratory using a 0.01 M CaCl, solution at a 1:4 soil-to-solution ratio, following the Swiss reference method
(Buerge, 2020) established by the Federal Agriculture Research Center, Agroscope. Concentrations were photometrically
determined by the same laboratory and reported in mg N per 100 g of dry soil. Soil mineral N (Nmin) was then calculated in

kg N ha! using the same reference method.
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Measurements of plant-available soil N complemented soil sampling from March to September 2023. Three Plant Root
Simulator sets (17.5 cm? surface area each; PRS™, Western Ag, Saskatoon, Canada), each consisting of one anion and one
280 cation exchange resin probe, were buried at 0-0.1 m soil depth. The probes were positioned along the wheat inter-row at the
same five locations used for chamber measurements (Fig. 1). The probes were replaced every two to three weeks, resulting
in seven burial periods. No probes were buried in June due to technical issues, nor in the second half of July due to tillage
and sowing operations. Prior to shipment to Western Ag for analyses, the PRS probes were rinsed with deionized water and
stored at 5°C. Extraction of NH4" and NOs™ with 0.5 mol L' HCI was conducted by pooling all three PRS sets from each
285 location, yielding one value per location and sampling period (in ug N per 17.5 cm? per time of burial). Since all NH4*

measurements were below the detection limit (except for one sample), we excluded NH4*-N from further analyses.

©swisstopo

@ Eddy covariance station

@ Locations of chambers and PRS
Areas of Nmin and biomass sampling
1

/2

B 3

4

A LAI - canopy height

10
[

Figure 1. Experimental setup at the study site in Oensingen during the 2022-2023 measurement period. The red diamond marks
the eddy covariance station; white lines delineate the 50%, 70%, and 90% average footprint areas (based on the Kljun et al., 2015

290  model); blue dots indicate locations of manual chambers and plant root simulator (PRS) probes; colored rectangles show areas for
Nmin and aboveground biomass sampling; triangles denote fixed locations for LAI and canopy height measurements. Orthophoto:
Federal Office of Topography swisstopo.
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2.7 Investigating the temporal development of N2O drivers
2.7.1 XGBoost model

To investigate biotic and abiotic drivers of N,O fluxes, we implemented a regression model based on eXtreme Gradient
Boosting (XGBoost; Chen & Guestrin, 2016), using the xgboost library in Python. The dataset was aggregated into 4-hour
intervals to balance temporal resolution with noise reduction. An initial set of predictors included variables previously
identified as key drivers of N>O fluxes (Butterbach-Bahl et al., 2013; Feigenwinter et al., 2023; Goodrich et al., 2021; Maier
et al., 2022, 2025), namely soil temperature, WFPS (at depths of 0.05, 0.15, and 0.3 m), precipitation, time since key
management events (soil preparation, fertilization, and harvest), and gross primary productivity (GPP). GPP was selected as
the indicator of vegetation performance instead of leaf area index (LAI) and canopy height because of its higher temporal
resolution and its strong correlation with aboveground crop N content observed during the winter wheat season (Fig. Al). To
represent N availability from fertilization, we included the cumulative N applied over the preceding 30 days (kg N ha), a
window length that reflects the typical duration of enhanced soil N availability and N>O emissions following fertilizer
application (Bouwman, 1996). In addition, we derived lagged values, rolling means (sums for precipitation and GPP), and
first-order time derivatives (i.e., rates of change) for environmental variables, calculated over 12-, 24-, and 48-hour intervals.
Recursive feature elimination (Guyon et al., 2002) was applied to systematically identify the most informative predictors
from the initial variable set. The cumulative N applied over the preceding 30 days emerged as the strongest important
predictor of N>O fluxes, followed by time since soil preparation, time since fertilization, and the 48-h (preceding) rolling
mean of WFPS at 0.3 m depth. To minimize multicollinearity while retaining the key biotic and abiotic drivers, we selected
the variable with the highest ranking from each category of predictors. The final set of predictors included: cumulative N
applied over the past 30 days, time since fertilization, time since soil preparation, the 48-h (preceding) rolling mean of WFPS
at 0.3 m depth, the change in WFPS at 0.3 m depth over the preceding 48 h, the 48-h (preceding) rolling mean of soil
temperature at 0.3 m depth, and the cumulative GPP over the preceding 48 h. For WFPS, both its absolute value and short-
term temporal change were retained, as they capture distinct dimensions of soil moisture dynamics. Similarly, both
cumulative applied N and time since fertilization were included, reflecting their complementary roles in describing N
availability and timing of fertilization events.

Following variable selection, model hyperparameters were optimized using 10-fold cross-validation. To account for
temporal autocorrelation and avoid overfitting, while also providing representative coverage of the measurement period, we
employed a custom time-block strategy. This approach involved an 80/20 split between training and validation, with the
validation set comprising randomly selected, non-overlapping time blocks that together represented 20% of the available
data. This splitting strategy was consistently applied throughout the modeling workflow, including during cross-validation
and final model evaluation. Model performance was evaluated using root mean squared error (RMSE), which quantified the
average deviation between predicted and observed values, and the coefficient of determination (R?), calculated both during

cross-validation and for the final model.
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The final XGBoost model used the following hyperparameter values: colsample bytree = 1, gamma = 0, learning_rate =
0.05, max_depth = 10, min_child weight = 2, n_estimators = 100, and subsample = 0.65, and was trained with early
stopping (10 rounds) to prevent overfitting. Cross-validation results showed a R? of 0.60 and a RMSE of 1.1 nmol N,O m? s-
! on the validation set, while the training set showed a R? of 0.98 and a RMSE of 0.29 nmol N>O m™ s™'. The final model,
trained with early stopping (10 rounds) to prevent overfitting, achieved a R? of 0.70 and a RMSE of 1.14 nmol N,O m™ s’!
on the test set (Fig. A2).

2.7.2 SHAP analyses

To interpret model outputs and investigate the temporal dynamics of predictor (i.e., driver) contributions to N,O fluxes, we
applied SHAP (SHapley Additive exPlanations; Lundberg and Lee, 2017), a model-agnostic interpretability framework
based on cooperative game theory. SHAP was implemented using the SHAP Python library in combination with the
XGBoost model trained for N>O flux prediction. Specifically, we used TreeExplainer (Lundberg et al., 2020), a SHAP
implementation optimized for tree-based models such as XGBoost. This method decomposes each model prediction into
additive contributions from individual predictors, quantifying how much each one increases or decreases the prediction
relative to a defined baseline.

In SHAP analysis, the baseline is defined by the expected prediction over a reference dataset that represents typical input
conditions and serves as a reference state for calculating feature contributions (Lundberg et al., 2020; Molnar, 2025). To
construct this dataset, we excluded the 30 days following fertilization or soil preparation to best represent average,
undisturbed environmental conditions. This ensured that SHAP values reflected the influence of the predictor variables in
relation to typical conditions, without being skewed by the absence of recent management events. SHAP values were used to
quantify the absolute contribution of each predictor to the model output. For interpretability, SHAP values were then
normalized by dividing each SHAP value by the sum of all absolute SHAP values for that prediction. This transformation
yielded unitless relative contributions that are independent of prediction magnitude and whose absolute values sum to one
across all predictors at each time step, while preserving the direction of each predictor’s effect. This enabled a time-resolved
assessment of the relative importance of individual predictors.

For interpretation of the SHAP analyses, we grouped related variables by summing their SHAP values to assess the overall
contribution of broad driver categories. Specifically, SHAP values for the cumulative N applied and time since fertilization
were combined to represent the contribution of fertilization-related drivers, labeled as ‘N fertilization’. Likewise, SHAP
values for WFPS and its temporal derivative were aggregated to capture the influence of soil moisture dynamics, referred to
as “WFPS’. For clarity, we refer to ‘time since soil preparation’ as ‘soil disturbance’. From this point onward, we will refer
to predictor variables as 'drivers' in the manuscript.

All statistical analyses were conducted in Python (version 3.9.13) using NumPy (Harris et al., 2020a), pandas (McKinney,
2010), SciPy (Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011). Data visualization was performed with

12



360

365

370

375

380

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021). The Python scripts used for these analyses and visualizations are
available on GitHub and archived on Zenodo (Turco, 2025b).

3. Results
3.1 Environmental conditions and vegetation growth

The cropping season for winter wheat at Oensingen started on 6 October 2022, following a temporary grassland (grass-
clover), which was cut on 20 September 2022 (Table 1). Large precipitation events followed this final cut, totaling 103 mm
in 15 days (Fig. 2a), resulting in increased WFPS values (Fig. 2b). During this period, topsoil temperature (0.05 m depth)
ranged between 12 and 15 °C (Fig. 2c). Throughout the winter wheat growing season, cumulative precipitation amounted to
698 mm. However, rainfall was unevenly distributed, with November to December 2022 and March to April 2023
accounting for 33% and 29% of the total precipitation, respectively (Fig. 2a). A dry spell occurred between late December
2022 and early March 2023, but WFPS in the topsoil remained above 60% (Fig. 2b). In contrast, a second drought period
between mid-May and late June 2023 coincided with warmer conditions and led to a decline in WFPS throughout the soil
profile (20 to 30% in the top 0.3 m). Topsoil temperature ranged between 0.4 and 24.6 °C and showed a typical temporal
course, with lowest values from December 2022 to February 2023 and highest values in July 2023. The development of LAI
during the growing season followed the seasonal weather pattern, remaining low throughout winter and early spring before
increasing steadily from late March 2023 (Fig. 2d). Canopy development peaked in late May, shortly before anthesis (i.e.,
flowering; Table A2) in early June 2023. During June’s dry and warm conditions, canopy desiccation and signs of water
stress became apparent, accompanied by the onset of senescence as seen in the decline of LAI. Crop management started
with two fertilization events early in the season (27-28 February 2023) during late tillering (Table A2), approximately one
week before the onset of rainfall that ended the winter dry spell. The last fertilization event was conducted during the early
stem elongation phase (6 April), following a period of increased temperature. After the harvest of winter wheat in mid-July
2023 (Table 1), the soil was cultivated and a cover crop was sown at the end of July, accompanied by intense rainfall and
declining soil temperature. The summer cover crop season was short and characterized by increasing soil moisture,
particularly in the deeper soil layers (0.3-0.5 m; Fig. 2b), and by gradually decreasing soil temperature (Fig. 2c). The season
ended with mulching and soil cultivation at the end of September (Table 1), after which the soil was left bare until the

sowing of the next crop on 4 October 2023.

13



385

390

395

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

301 (a)

201

101

Precipitation (mm d~1)

WEFPS (%)

Soil T (°C)

— 03m
— 05m

O_
4_

(d) mineral fert
slurry fert

LAl (mZ m~2)

&—
b

0 4 |
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2023

Figure 2. Environmental conditions and vegetation dynamics at the Oensingen cropland from September 2022 to October 2023.
The unshaded area corresponds to the winter wheat cropping season, while the shaded areas indicate the final phase of the
preceding temporary grassland and the cover crop following the winter wheat harvest. (a) Daily precipitation sums; (b) daily
average water-filled pore space (WFPS) at 0.05, 0.15, 0.3, and 0.5 m soil depths; (c) daily average soil temperature (soil T) at the
same depths as WFPS; (d) leaf area index (LAI), with diamonds indicating measured values and the line representing modeled
values obtained using cubic splines. Yellow lines indicate fertilization (fert) events.

3.2 Greenhouse gas fluxes
3.2.1 Net ecosystem CO: exchange (NEE)

During the final regrowth phase of the temporary grassland in October 2022, daily mean NEE fluctuated around zero (-2.2 to
+3.9 umol m? s'; Fig. 3a). After the final grassland cut, NEE became positive, indicating a net release of CO,. Two weeks
later, an herbicide application followed by direct seeding of winter wheat further increased NEE, which reached a daily mean

of +6.1 pmol m? s!. In late October 2022, NEE gradually declined in response to decreasing soil temperature (Fig. 2¢) and

14



400

405

410

415

420

425

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

remained low but positive during the winter months (December - February), reflecting a small net release of CO,. From early
to late March 2023, daily mean NEE decreased from +2.3 to -3.5 umol m™ s, indicating the onset of net CO; uptake.
During peak crop growth in early May, daily mean NEE reached -10.5 pmol m? s”!, and the most negative half-hourly flux
(QCO0) was -48.2 umol m™? s”!. With the onset of crop anthesis at the end of May (Table A2) and the occurrence of dry soil
conditions (Fig. 2b), NEE steadily increased, consistent with reduced photosynthetic CO, uptake, typical of this phenological
phase in winter wheat. A small CO, emission peak, with daily mean NEE reaching up to +3.7 umol m? s’!, occurred in late
June following rewetting after an extended dry period. From July to late August 2023, daily mean NEE remained positive
(+1.9 to +7.7 pmol m? s!), indicating net CO; release during wheat maturation as well as after harvest and subsequent early
cover crop establishment. In late August 2023, NEE was negative again, reflecting net CO, uptake due to the successful
establishment of the cover crop. Directly after mulching of the cover crop and soil cultivation in late September, the field

became a net CO, source again (positive NEE).

3.2.2 Net ecosystem N20 fluxes

Net N>O fluxes showed pronounced temporal variations, with very low fluxes during winter 2022/2023 and highest
emissions during crop establishment and after fertilization events. During the final grassland regrowth phase, daily mean
N>O fluxes were negligible (-0.3 to +0.6 nmol m s™'; Fig. 3a), but increased markedly after winter wheat seeding, reaching a
daily mean of +5.7 nmol m? s on 22 October 2022 (Fig. 3b). This peak occurred after rainfall increased topsoil (0.05 m)
WEFPS from 51 to 62% (Fig. 2b), when soil temperature exceeded 14 °C (Fig. 2¢), and LAI was below 1 m? m? (Fig. 2d).
Throughout winter (December 2022 - February 2023), N»O fluxes remained near zero, with daily means ranging from -0.1 to
+0.9 nmol m? s”!. Following the first fertilization events (27-28 February), providing a total of 111 kg N ha™* (Table 1), NO
fluxes exhibited three distinct peaks in March 2023. The first peak occurred shortly after fertilization, with a daily mean flux
of +6.2 nmol m? s on 2 March 2023, under conditions of topsoil WFPS above 65%, soil temperature below 5 °C, and LAI
still below 1 m? m2. A second peak followed approximately ten days later, reaching a daily mean flux of +13.6 nmol m? s™!
on 12 March and a maximum half-hourly flux (QCO0) of +27.8 nmol m™ s’\. The last peak occurred between 25 and 29

March, reaching a daily mean flux of +4.0 nmol m? s

on 28 March. These second and third peaks were preceded by
precipitation events that raised topsoil WFPS above 80%, with soil temperature ranging from 5 to 10 °C, while LAI
exceeded 1 m> m?2 only during the last peak. Following the final fertilization event on 6 April (27 kg N ha'!; Table 1), net
ecosystem N»O fluxes increased again, with daily mean values reaching +5.1 nmol m2 s™ on 14 April 2023. Although less
pronounced than the March peaks, this emission event likewise followed rainfall that increased WFPS above 80% (Fig. 2b),
but occurred under a more developed canopy, with LAI being nearly double than that during the March peaks (Fig. 2d).
During peak crop growth period, when LAI increased from 2.5 to 4 m?> m? (mid-April to late May; Fig. 2d), daily mean N,O
fluxes remained negligible (-0.4 to +1.4 nmol m s!), despite high WFPS values (above 60% throughout the soil profile) and

increasing soil temperatures. A short-lived emission event occurred after rewetting on 19 June, following a drought in

May/June 2023. Despite WFPS remaining below 40%, daily mean N>O fluxes reached +11.2 nmol m? s! on 20 June, with a
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maximum half-hourly flux (QCO) of +21.6 nmol m™ s, at a time when LAI was already declining following anthesis (Table
A2). In July, during the final stages of wheat maturation and after harvest, daily mean N»O fluxes remained low but positive
(0.0 to +3.1 nmol m?s"). A distinct peak occurred in late July, shortly after the cover crop was sown, with a daily mean
flux of +7.3 nmol m2 s on 30 July. Emissions remained low in August (0.0 to +2.3 nmol m™2 s™') but rose slightly

following mulching of the cover crop and subsequent soil cultivation in late September 2023.

3.2.3 Net ecosystem CH4 fluxes

Net CHas fluxes remained low throughout the measurement period, typically indicating small CH4 emissions, with daily
average fluxes ranging from -7.0 to +28.5 nmol CH4 m™ s™! (Fig. 3c). No consistent temporal patterns were evident, although
slightly elevated fluxes indicating net CH4 release were recorded from mid-October to early November 2022 and in early

January 2023 (Fig. 2).
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Figure 3. Gap-filled greenhouse gas fluxes at the Oensingen cropland measured from September 2022 to October 2023. The
unshaded area corresponds to the winter wheat cropping season, while the shaded areas indicate the final phase of the preceding
temporary grassland and the cover crop following winter harvest. (a) Net ecosystem CO: exchange (NEE), (b) net ecosystem N2O
fluxes, and (c) net ecosystem CHy fluxes. Fluxes were gap-filled using the Marginal Distribution Sampling (MDS) for NEE and
random forest (RF) for N2O and CHs fluxes. Lines represent daily averages of the gap-filled half-hourly fluxes, while the shading
indicates + 1 standard deviation. Vertical lines mark management activities: yellow dashed = mineral fertilization (fert), yellow
solid = slurry fertilization (fert), blue solid = soil cultivation, blue dotted = sowing, blue dashed = harvest, and blue dash-dot =
herbicide application. See Table 1 for details on management activities.

3.3 N2O emission factor and greenhouse gas budgets

During the winter wheat cropping season (282 days), cumulative N>O emissions were 5.5 kg N,O-N ha™! (Table 2), with an

average gap-filled flux of 0.81 nmol m™2 s™!. When scaled to crop yield, this corresponded to 1.1 kg of N>O-N emitted per
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ton of wheat grain (dry matter). A background N>O flux of 0.44 nmol m™2 s! was calculated as the average of gap-filled
fluxes outside the 30-day post-fertilization periods, thereby minimizing the influence of short-term fertilization-induced
peaks. Accounting for this background flux, the N,O cumulative flux due to fertilization-induced emissions amounted to 2.5
kg N>O-N ha™! during the winter wheat cropping season, accounting for approximately 45% of the total N>O emissions.
Based on a total N input from fertilizers of 138 kg N ha! (Table 1), the resulting emission factor (EF) was 1.8%. During the

subsequent 60-day cover crop season, cumulative N>O emissions reached 1.1 kg N>O-N ha™!

, and the average daily sum of
N>O emissions (17.6 g N,O-N ha'! d!) was only slightly lower than that observed during the winter wheat season (19.6 g
N>O-N ha! d).

Throughout the winter wheat cropping season, the ecosystem acted as a net CO; sink, with a cumulative NEE of -89 g CO,-C
m2 (Table 2). However, this climate benefit was largely offset (~ 70%) by concurrent net N>O emissions, while net CHg
emissions remained negligible. In contrast, the cover crop acted as a net CO, source, emitting 108 g CO»-C m™. Net N,O
emissions during this period accounted for approximately 10% of the total GHG budget, while the net CH4 sink was again
negligible. The difference in NEE between the two crops was reflected in their respective GHG budgets: winter wheat
resulted in a net GHG sink of -76 g CO»-equivalents (CO»-eq) m™2, while the cover crop resulted in a net GHG source of 441
g CO,-eq m™. The difference between the two crops was even more striking when comparing their daily sums of CO,-eq,
with winter wheat averaging -0.27 g COx-eq m™ d*' and the cover crop averaging +7.4 g CO»-eq m™ d-!, resulting in a daily

difference of approximately 8 g COz-eq m2 d'! (Table 2).

Table 2. Cumulative greenhouse gas (GHG) fluxes and daily average sums for the winter wheat and the cover crop cropping
seasons (282 and 60 days, respectively), shown separately for the three gases COz, N2O, and CH4, as well as the GHG budget (sum
of all three gases). No C inputs or exports (fertilization, harvest) are included in the flux budget. Negative values indicate net
uptake, while positive values represent net release of CO2, N2O, and CHa to the atmosphere. COz-equivalents (g COz-eq m?) for
N20 and CH4 were calculated using global warming potentials (GWP100) of 273 and 27, respectively, applied to fluxes expressed in
g m?2 (IPCC, 2021).

Winter wheat  Cover crop

(282 days) (60 days)
CO2 Cumulative (g CO2-C m?) -89 +108
Cumulative (g CO2-eq m?) -329 +397
Daily (g CO2-eq m? d*) 117 +6.62
N20 Cumulative (kg N2O-N ha'!) +5.5 +1.1
Cumulative (g CO2-eq m?) +237 +45
Daily (g CO2-eq m? d!) +0.84 +0.76
CH4 Cumulative (g CO2-C m?) +0.45 -0.03
Cumulative (g CO2-eq m?) +16 -1
Daily (g CO2-eq m?2d™") +0.06 -0.02
GHG budget  Cumulative (g CO2-eq m?) -76 +441
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Daily (g CO2-eq m? d™) 027 +7.35

3.4 Drivers of N2O flux dynamics over time
3.4.1 Temporal development of N20O flux driver contributions

We used SHAP to quantify both the magnitude and direction (positive or negative) of each driver’s contribution to net
ecosystem N>O fluxes across all three crops, relative to a reference state (baseline). In our case, the baseline represents the
model’s expected NoO flux under rather undisturbed conditions (avoiding post-fertilization and post-soil management
periods) and was estimated as 0.27 nmol m™ s”! using a subset of the data (see Sect. 2.7.2). This baseline value was lower
than the N>O background flux given above, since we also excluded post-soil management periods. To assess the overall
influence of each driver across the study period, we summed the SHAP values over time, but separately for positive and
negative contributions. This approach avoided cancelling opposing effects and revealed how strongly each driver enhanced
or decreased N>O emissions (Fig. A3). N fertilization and soil disturbance increased the N»>O fluxes (i.e., positive SHAP
values) relative to the baseline. In contrast, soil moisture, soil temperature, and GPP exhibited both positive and negative
SHAP values, reflecting their capacity to either increase or decrease N,O fluxes depending on environmental conditions.
Across the study period (September 2022 - October 2023), N fertilization was the dominant driver increasing N,O fluxes
(37% of all positive contributions), while soil moisture (23%), soil disturbance (16%), GPP (14%), and soil temperature
(10%) also contributed to positive deviations from the baseline flux. Conversely, soil moisture (48% of all negative
contributions), soil temperature (28%), and GPP (24%) showed substantial negative contributions, indicating periods when
these variables reduced N»O fluxes relative to the baseline.

To assess the relative influence of each driver in a time-resolved manner and independently of the absolute magnitude of
predictions, we computed daily averages of normalized SHAP values (see Sect. 2.7.2). These relative driver contributions
revealed distinct temporal patterns across the study period (September 2022 - October 2023; Fig. 4). In September 2022,
during the final grassland regrowth phase, N,O emissions were mainly suppressed by WFPS (negative relative contributions;
Fig. 4), although GPP exerted a positive effect later in the month. At the beginning of October, herbicide application and the
direct seeding of wheat introduced soil disturbance, and N>O fluxes during crop establishment were primarily driven by soil
disturbance and GPP (positive relative contributions; Fig. 4). Throughout winter (November 2022 - February 2023), soil
temperature consistently suppressed N>O emissions (negative relative contributions), while GPP maintained a positive effect.
In spring (March - April 2023), which corresponded to the period of highest observed N»O fluxes (Fig. 4a), emissions were
primarily driven by N fertilization, followed by WFPS. Later in the season, when photosynthetic activity and presumably
plant N demand increased (April), the effect of GPP shifted towards decreasing N,O fluxes. The low N,O emissions
observed from May to mid-June were thus strongly driven by large negative effects of soil temperature, GPP, and WFPS
(Fig. 4b). In contrast, during grain filling and post-harvest (July to mid-August), the SHAP analysis indicated that soil
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temperature and soil disturbance strongly increased N,O emissions, while GPP had a smaller but still positive effect.
Following the establishment of the cover crop in September, the effect of GPP became negative again, coinciding with an
increase in photosynthetic CO; uptake.

To investigate the changing role of GPP in more detail, we focused on the winter wheat period from March 2023 to harvest
(mid-July 2023), thereby limiting potential confounding factors (Fig. 5). In this period, N,O fluxes were negatively related to
GPP, suggesting that high photosynthetic activity (high GPP) was associated with low N>O emissions. This relationship was
modulated by WFPS: the decline in N>O fluxes with increasing GPP was weakest in the driest WFPS class (< 55%) and
became progressively stronger at higher soil moisture, as indicated by increasingly negative regression slopes (R? = 0.28,

0.62, and 0.80; all p < 0.001; Fig. 5).
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Figure 4. Temporal dynamics of N2O fluxes, gross primary productivity (GPP), and relative driver contributions to N20 fluxes at
the Oensingen cropland from September 2022 to October 2023. The unshaded area corresponds to the winter wheat cropping
season, while the shaded areas indicate the final phase of the preceding temporary grassland and the cover crop following winter
harvest. (a) Daily average N20 fluxes (measured, highest quality fluxes only) are shown in black, and daily average GPP in green.
Arrows at the top denote management activities conducted during the winter wheat cropping season. (b) Relative contributions of
individual drivers (i.e., N fertilization, water-filled pore space (WFPS), GPP, soil disturbance, and soil temperature (soil T)) are
expressed as daily averages of normalized SHAP values (see Sect. 2.6.2 for methodological details). The baseline (SHAP = 0)
corresponds to a predicted N2O flux of 0.27 nmol m*? s\ Positive values indicate a driver’s increasing effect on N2O fluxes, while
negative values reflect a decreasing effect. The white line represents the model-predicted N20 flux.

19



530

535

540

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

WFPS < 55%
304 o ¥=-003x+0.63
: R?=0.30, p<0.001
. °
N o 55% < WFPS < 70%
2.54 \Q ® y=—0.04x+1.36
e R2=0.61, p<0.001
N\ @
201 © . WFPS = 70%
Y [¢] e y=-018x+3.42
_ \ ° R?=0.71, p<0.001
= [ ]
B e®oe
= 151 ¢ 9 4 \
o -~ ® °'®
= ‘s,. (2] \ o
+ DTN ) 9 o
o 1.0 -
£ O. @ “\‘\\.. ®
o 3
(o] (Y (9]
0.5 % o @t . @
¢ %o & o8,
30’ 5%
0.0 1 o %o © oo & &
9 °© QEOO © g R,
0% ge o o 0%
~0.51 ° o ©o %
o ° 2
0 10 20 30 40
GPP (pmol m~2)

Figure 5. Relationship between gross primary productivity (GPP; rolling sum over the preceding 48 h) and the measured N2:0
fluxes (QCO only, daily averages) between March and mid-July 2023 in winter wheat. Points are colored by water-filled pore space
classes (WFPS; at 0.3 m soil depth), based on the 48-h rolling mean of WFPS (same window as for GPP). Dashed lines show the
linear regressions for each class, with the corresponding regression statistics given as well.

3.4.2 Soil available nitrogen

To assess soil N availability to roots and microorganisms, we used two complementary approaches: (i) time-integrated
supply of plant-available NO3;-N measured with PRS probes, and (ii) instantaneous mineral N supply (Nmin), derived from
soil-extractable NO3~ and NH4" concentrations in the 0-0.3 m soil layer. N,O fluxes increased significantly with soil mineral
N availability, both for integrated (Fig. 6¢, R? = 0.61; p<0.05) and instantaneous supply (Fig. 6d; R? = 0.77; p<0.05). The
lowest N>O emissions occurred during periods of highest GPP (point 4 in Fig. 6¢; point D in Fig. 6d) or without prior
fertilization events (points A and B in Fig. 6d). In contrast, the highest N,O emissions occurred after fertilization events,
when soil mineral N availability was highest (points 1 and 2 in Fig. 6c; point C in Fig. 6d), with average Nmin values
reaching 74 kg N ha™! ten days after the first fertilization. Between these extremes, intermediate N availability was observed
in December 2022 (point A in Fig. 6d) and in August 2023 during the post-harvest period (points 6 and 7 in Fig. 6¢; point E
in Fig. 6d). While in August the intermediate N availability coincided with higher N,O emissions, this was not the case in

December, when soil temperature at 0.05 m depth ranged between 3 and 5 °C during the sampling week.
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Figure 6. Relationships between nitrogen (N) availability and N20 fluxes. (a) Timeline of burial periods for plant root simulators
(PRS) probes, and (b) of soil mineral N (Nmin) sampling campaigns. Sowing, harvest, and fertilization dates are also provided. (c)
Relationship between cumulative available NO3-N (ug N 17.5 cm, based on PRS probes) and cumulative N20 fluxes over the
corresponding burial period (15 to 21 days). Means and =+ 1 standard deviation are given (n=5). Circle size reflects cumulative
GPP during the same period. Numbers indicate the corresponding period as shown in panel (a). A linear regression is shown as a
dashed red line, together with the coefficient of determination (R?) and corresponding p-value. (d) Relationship between Nmin (0-
0.3 m soil depth) and cumulative N2O fluxes during the week centered on the soil sampling (+ 3.5 days). Means =+ 1 standard
deviation are given (n= 4; except for 1% sampling with no replicates). Circle size reflects cumulative GPP during the same period.
Letters indicate the corresponding period as shown in panel (b). A linear regression is shown as a dashed red line, together with
the coefficient of determination (R?) and corresponding p-value.

3.5 N,O sources using stable isotopes

We used stable oxygen and nitrogen isotopes to identify the microbial processes underlying the measured N,O fluxes. The
8'%0 in N,O ranged between 17.3 and 39.8%o, while the site preference (SP-N>O) ranged from -7.2 to +18.2%o (Fig. 7a). The
dual isotope plots suggested that denitrification and/or nitrifier denitrification were the dominant N,O production pathways
during the three weeks following the fertilization events on 27 and 28 February 2023 (Fig. 7a; Fig. AS5). Moreover, the
observed trend of increasing enrichment of 3'80 and SP-N,O over time (Fig. 7a) suggested isotopic fractionation associated
with the microbial reduction of N>O to N» during denitrification. Results from the FRAME model supported the qualitative
source attribution derived from the isotopic mapping approach and enabled the quantification of the relative contributions of
individual N>O-producing processes. While N>O fluxes slowly decreased over time (Fig. 7b), the contributions of these
processes also changed over time. Bacterial denitrification and nitrifier denitrification together accounted for approximately

90% of N,O production (Fig. 7¢), except on 1 March, when nitrification and/or fungal denitrification contributed up to 20%
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of the total. Moreover, the gradual increase of the reduced N>O fraction over time (Fig. 7¢) indicated a shift toward more

complete denitrification, which coincided with a decrease in N,O fluxes (Fig. 7b).
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Figure 7. Isotopic signature of N20O, N2O flux magnitudes, and their estimated source fractions in March 2023, following
fertilization applied on 27 February (ammonium-nitrate) and 28 February (slurry). (a) Dual isotope plot of §'%0-N20 vs. site
preference (SP-N20). Colored boxes denote endmembers for the N:O mixing (nD: nitrifier denitrification, bD: bacterial
denitrification, Ni: nitrification, fD: fungal denitrification). Endmember values of boxes are derived from Yu et al. (2020) and
adjusted to the values of soil water (5830-H20 = - 9.2%o) at the study site (except for the Ni box). Lines for mixing (black) and N20
reduction to N2 (red) are shown. Individual measurements are shown as circles, with size reflecting flux magnitude and color
indicating location (1 to 5; see Fig. 1). (b) N2O fluxes measured with static chambers (black) and reduced N:O fractions estimated
by the FRAME model (purple). Values represent means + one standard error across measurement locations. (¢) N20O source
fractions estimated by the FRAME model for denitrification & nitrifier denitrification and nitrification & fungal denitrification,
displayed as violin plots, with mean values indicated by diamonds (see text for details).

4. Discussion
4.1 Seasonal changes in N2O fluxes and their drivers

The central aim of this study was to determine when and how different biophysical and management factors influenced N,O
fluxes during a winter wheat cropping season, to uncover seasonal patterns in the contributions of each driver. Two periods
emerged as particularly sensitive to net N,O emissions: crop establishment and early spring. Elevated N>,O emissions during
the establishment phase of winter wheat were primarily driven by soil disturbance and low GPP. Low GPP reflected limited
plant N uptake, while soil disturbance, resulting from herbicide termination of the temporary grassland and direct seeding of

winter wheat, likely stimulated mineralization of soil organic matter and crop residues. This was supported by an increase in
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net ecosystem exchange of CO, (NEE), indicating intensified soil respiration. Furthermore, soil Nyin increased from 8.7 kg N
ha! before crop seeding to 34.6 kg N ha! by early December 2022 (0-0.3 m soil depth; Fig. 6d), indicating elevated N
availability due to low plant N uptake and enhanced N mineralization, consistent with previous observations after herbicide
termination of grassland swards from Buchen et al. (2017) and Helfrich et al. (2020). A similar pattern was also observed
during cover-crop establishment after wheat harvest: although wheat residues had a lower N concentration (%N) than
grassland residues (including clover), elevated soil temperature and mechanical disturbance during post-harvest operations
likely enhanced mineralization of soil organic matter (Grandy and Robertson, 2006). This was supported by an increase in
s0il Npin from 12 kg N ha'! in late May to 27 kg N ha™! in early August (0-0.3 m soil depth; Fig. 6d). Thus, different
management practices leading to no or reduced vegetation performance favor N>O emissions.

The high N>O emissions in early spring were predominantly driven by N fertilization, with WFPS contributing significantly
during peak emission events, while GPP consistently decreased emissions from mid-April onward. The first fertilizer
applications in late February supplied a large N input (111 kg N ha™) during the early crop development stage (tillering) and
coincided with high soil moisture, conditions typical of central European climates (Ruosteenoja et al., 2018). At this stage,
both LAI (Fig. 2d) and photosynthetic CO, assimilation rates (Fig. 4a) were still low, indicating limited plant N uptake
typical of early growth stages in Swiss winter wheat systems (Argento et al., 2022). These conditions resulted in excess N
availability, with soil Nui, reaching 74 kg N ha™! (0-0.3 m soil depth; Fig. 6d), which, in combination with precipitation
events that increased WFPS (Fig. 2b), created optimal conditions for microbial N>O production. By contrast, the final
fertilization in early April 2023 involved a smaller N input (27 kg N ha™) and was timed to coincide with the stem
elongation phase, when plant N demand is typically very high. This is supported by higher LAI (~ 2 m?> m%; Fig. 2d) and
higher GPP (Fig. 4a), indicative of active growth and greater N assimilation. Under these conditions, less mineral N was
likely available for microbial activity, reducing substrate availability for N>O production and resulting in significantly lower
N>O losses.

Over the entire study period, nitrogen (N) fertilization emerged as the dominant positive driver of N>O fluxes (Fig. A3),
consistent with its role as the primary source of reactive nitrogen in croplands (Shcherbak et al., 2014). However, substantial
and temporally dynamic contributions of soil moisture (WFPS), gross primary productivity (GPP), soil temperature, and soil
disturbance highlighted the multifactorial nature of N>O emissions and the need to consider both biophysical and
management drivers, along with their complex interactions. Overall, WFPS exhibited both positive and negative effects, but
consistently emerged as a key driver during peak N,O emission events. GPP, used as a proxy for crop N uptake, showed a
clear negative relationship with N,O fluxes: low GPP was associated with elevated N,O emissions, while sustained
photosynthetic activity decreased emissions (Fig. 5). This supported earlier observations that active crop growth competes
with microbial processes for soil available N, thereby limiting N>O production (Feigenwinter et al., 2023; Maier et al., 2022;
Timilsina et al., 2024). Further evidence was found in the observed decline in soil N availability during periods of high GPP,
particularly in late May (Fig. 6), suggesting efficient crop N uptake. Interestingly, the limiting effect of GPP on N,O fluxes

appeared to be strongly modulated by soil moisture, with larger limitations, i.e., steeper negative slopes observed under
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higher WFPS conditions (Fig. 5). This provided additional evidence that plant N uptake plays a critical role in mitigating

emissions under environmental conditions favorable for N,O production.

4.2 N20 emission factor and greenhouse gas budgets

In this study, an EF of 1.8% was estimated for winter wheat, slightly exceeding the IPCC (2019) default value of 1.6% for
synthetic N fertilizers in wet climates (Table 2). However, in our study, approximately 30% of the applied N was derived
from organic fertilizer applied as slurry, for which the IPCC recommends a lower EF of 0.6%. When accounting for the
mixed N sources, the weighted IPCC default EF for our cropping system is 1.3%, indicating that the observed EF exceeded
this value by 0.5 percentage points. Cumulative N>O emissions during the winter wheat season were 5.5 kg N>O-N ha™!,
substantially exceeding the ranges reported for winter wheat by Garnier et al. (2024) for northern France (0.1 - 2.7 kg N>O-N
ha™") and by Tallec et al. (2022) for southwestern France (0.95 - 2.91 kg N>O-N ha™!), both studies using chamber
measurements, although our N input (138 kg N ha'') was within their input ranges. Yield-scaled N,O emissions in our study
(1.1 kg N2O-N Mg!) were approximately three times higher than the global wheat values reported by Yao et al. (2024)
(0.301 - 0.346 kg N,O-N Mg™!). These discrepancies may partly reflect methodological differences, as global meta-analyses
predominantly compile chamber-based flux measurements, which typically have lower temporal and spatial resolutions than
the continuous EC flux measurements used in our study. High-frequency EC measurements are valuable for capturing short-
lived N>O emission peaks and for integrating the highly dynamic N,O fluxes over a larger spatial area than chamber
measurements. Despite higher equipment costs and computational requirements, EC measurements thus improve the
representativeness and the accuracy of cumulative N>O loss estimates. To our knowledge, this is the first study to report EC-
based N,O fluxes over a complete winter wheat cropping season. Notably, emissions from winter wheat only slightly
exceeded those observed for maize in Switzerland (4.8 kg N,O-N ha™!; Maier et al., 2022), despite a much shorter cropping
season of maize (127 days) compared to that of winter wheat (282 days; about 2.2 times longer). The two crops also clearly
differed in their N use efficiency (NUE), calculated as the ratio between N output to N input, with winter wheat taking up
162 kg N ha™! from an input of 138 kg N ha! (NUE = 117%), whereas maize took up only 56 kg N ha™! from an input of 110
kg N ha! (NUE = 51%). The higher NUE observed for wheat is consistent with findings from Yu et al. (2022) and can be
due to many factors, including crop-specific differences in N use (e.g., related to C3 vs. C4 photosynthetic types), soil N
pools and N dynamics (e.g., mineralization rates), as well as weather conditions, affecting plant growth and N>,O emissions.

The substantial N>O losses significantly affected the total GHG budget of the winter wheat season, with N.O emissions
offsetting 70% of the climate benefit gained from net CO; uptake. The offset was considerably higher than reported by Maier
et al. (2022) for pea and maize in Switzerland (12% and 10%, respectively), and it also exceeds values reported for managed
permanent grasslands in Central Europe, where combined N>,O and CH4 emissions offset about 21% of CO, uptake
(Hortnagl et al., 2018). This large difference is most probably related to the small net CO, sink during the winter wheat
season, as the ecosystem acted as a net CO; source for approximately five months, namely from seeding to mid-March. In

contrast, spring-sown pea and maize did not undergo a winter phase; thus, net CO; release occurred only briefly during their
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respective cropping seasons, overcompensated by fast growth and thus high CO, uptake during the summer months. Since,
to our knowledge, full GHG budgets for winter wheat under temperate conditions are lacking, our study helps to close this
gap by providing a season-long, field-scale budget based on continuous flux measurements.

Despite the absence of fertilizer application, the average N>O flux during the cover crop season was only slightly lower than
that observed during the winter wheat season (0.72 vs. 0.81 nmol m™ s™!, respectively). This unexpectedly small difference
may be explained by the slow crop establishment during the short cover crop season (60 days), resulting in low plant N
uptake, while warm summer temperatures combined with recent soil disturbance from soil preparation enhanced N
mineralization of soil organic matter and residues. Recent studies have shown that bare-soil conditions can promote N,O
emissions due to reduced plant N uptake and enhanced microbial activity (Maier et al., 2025; Shang et al., 2024; Tallec et al.,
2022; Timilsina et al., 2024), which aligns well with our observations. Moreover, daily mean NEE remained positive until
late August (Fig. 3a), indicating that the soil acted as a net CO, source for approximately half of the 60-day cover crop
season. As a result, the cover crop season was characterized by net CO; release, accounting for 90% of the total GHG budget
during this period (Table 2). The remaining 10% was attributed to N>O emissions, as CHs fluxes were negligible.
Nevertheless, the cover crop season was beneficial for the overall GHG budget at the Oensingen cropland site. In 2019, the
soil remained bare after the winter wheat harvest until the sowing of winter barley and no cover crop was sown. As a result,
the post-harvest daily CO»-eq fluxes were approximately double (16 g COz-eq m? d! over bare soil; Maier et al., 2025)
compared to those measured in this study (7.4 g CO-eq m? d! over cover crop). These elevated GHG emissions were
primarily driven by increased CO; emissions, with N>O contributing to a lesser extent. Although management and climatic
conditions differed between the two years, this pronounced difference in GHG budgets highlights the benefit of maintaining
a green cover crop in summer, between two winter crops, to reduce the GHG footprint of crop production. This interpretation
is consistent with findings from Emmel et al. (2018), who showed through modelling that cover crops reduced CO> losses
compared with bare soil at the same site. These results also align with current Swiss policy efforts (Art. 71c DZV, Swiss
Federal Council, 2025), aimed at limiting post-harvest bare-soil periods and promoting continuous soil cover to reduce

erosion, improve soil fertility, and nitrate losses to ground water.

4.3 Temporal dynamics of N2O source processes

The FRAME model by Lewicki et al. (2022) provided a powerful framework for quantifying the relative contributions of
different N,O-producing processes over time. In our study, denitrification and/or nitrifier denitrification were the dominant
sources of N>O production (Fig. 7). Interestingly, nitrification and/or fungal denitrification contributed most strongly
immediately after N fertilization (~20%), but declined rapidly thereafter, indicating that nitrification was only a short-lived
contributor while denitrification remained dominant (Fig. 7). This transient response is consistent with the typical post-
fertilization evolution of mineral N, where NH4" availability peaks and is subsequently depleted as it is oxidized to NOjs
(Pérez et al., 2001). At our site, the overall dominance of denitrification-related pathways likely reflects poor soil drainage

(only 10% sand) and persistently high topsoil (0.05 m) WFPS levels (above 65% during the fertilization in March). Such
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conditions can create anaerobic environments that favor denitrification (Bateman and Baggs, 2005; Davidson, 1991). The
initially low fraction (~0.5) of reduced N»O following fertilization might be related to elevated NO3™ concentrations, resulting
in NO; accumulation and inhibition of the final reduction step of N,O to N, (Blackmer and Bremner, 1978; Senbayram et
al., 2019). Over time, the fraction of reduced N,O increased markedly, reaching high values on 17 March (~0.8), coincident
with topsoil WFPS exceeding 80% and thus favoring complete denitrification. Detailed soil microbial community analyses
would be needed to disentangle these competing N,O production processes, preferentially across different sites and crop

rotations.

4.4 Implications for N2O mitigation in cropland

Our findings reinforce recent studies emphasizing the critical role of vegetation as a N sink in reducing the risk of N,O
emissions from agricultural ecosystems (Feigenwinter et al., 2023; Maier et al., 2022, 2025; Tallec et al., 2022; Timilsina et
al., 2024). Specifically, we identified crop establishment and early spring as two phases particularly prone to high N,O losses
during the winter wheat season. These periods were characterized by a mismatch between N supply and plant demand,
driven by limited crop growth and substantial mineral N inputs from mineralization or early fertilization, resulting in surplus
mineral N in the soil. This excess N, combined with favorable moisture and temperature conditions, created optimal
conditions for microbial N>O production. Stable isotope data further suggested that although denitrification was the
dominant process for N,O production, high mineral N concentrations not only provided the substrates for NoO production
but may also have inhibited the complete reduction of NO3™ to N», thereby increasing the proportion of N lost as N>O instead
of N, (Pan et al., 2022). To address these vulnerabilities, management strategies that promote rapid and sustained crop
growth, such as optimized sowing dates and cultivar choice, are key N,O mitigation strategies during the crop establishment
phase (Tallec et al., 2022; Maier et al., 2025). In early spring, mitigation will depend on better synchronizing fertilizer N
inputs with crop N demand and soil N release. This can be achieved by adjusting both the timing and the amount of N
application (Hoben et al., 2011; Omonode et al., 2017), including split applications, site-specific fertilization planning
(Jordan-Meille et al., 2023), precision fertilization (Diacono et al., 2013), and enhanced-efficiency fertilizers that slow N
release (Akiyama et al., 2010). Finally, site-specific soil conditions should be considered, as they can substantially influence
N2O emission dynamics. At our poorly drained site, elevated soil moisture likely amplified denitrification losses by creating
anaerobic conditions. Improving drainage in such settings may therefore help to mitigate N,O emissions by reducing the

extent and duration of these favorable conditions for denitrification (Bouwman, 1996; Grossel et al., 2016).

5.5 Conclusions

The SHAP-based approach proved to be an effective tool for identifying critical periods for N>O losses and the main drivers
for each period. This provided valuable insights into the temporal dynamics of N>,O emissions during a winter wheat

cropping season and the subsequent summer cover crop. Thanks to its flexibility and data-driven nature, this method could
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be applied to other cropping systems to improve understanding of N>O emission dynamics and inform targeted management.
Crop establishment and early spring emerged as particularly vulnerable phases for N,O losses, largely due to a mismatch
between N supply and plant demand. This mismatch, often driven by slow early crop development or early fertilization, led
to elevated mineral N levels in the soil, which, under favorable moisture and temperature conditions, created hotspots for
microbial N>O production, primarily through denitrification and/or nitrifier denitrification. Gross primary productivity
(GPP), as a proxy for plant N uptake, showed a strong negative relationship with N>O fluxes, emphasizing the role of active
vegetation in limiting emissions. The emission factor (EF) estimated for winter wheat was 1.8%, exceeding IPCC default
values, and cumulative N,O emissions were substantially higher than those previously reported for wheat. These losses
notably offset 70% of the climate benefit from net CO, uptake, highlighting the need for high-resolution N>O flux
measurements over cropland to accurately represent N,O emissions in cropland GHG models at regional and global scales.
Overall, our findings underscore the importance of implementing management strategies that enhance crop growth in the
establishment phase and better align N inputs with plant N demand to reduce N>O emissions and minimize the GHG

footprint of crop production.

Appendix A

Table A1l. Management activities conducted during the 2022-2023 measurement period at the cropland in Oensingen.

Crop Management activity Date

Grass-clover Harvest 20 September 2022
Herbicide application 3 October 2022
(Glyphosate, W-5553 Sintagro)

Winter wheat Sowing (direct seeding) 6 October 2022
Insecticide application 12 October 2022

(Sprinter, Netzmittel, Pixxarro)

Ammonium nitrate application 27 February 2023
(Mg-Ammonsalpeter, Landor)

Slurry application (dairy) 28 February 2023
Herbicide application 22 March 2023
(Concert SX, Derux, Gondor)

Ammonium nitrate application 6 April 2023
(Mg-Ammonsalpeter, Landor)

Harvest (grain and straw) 15 July 2023
Bare soil Soil cultivation (10 cm depth) 17 July 2023
Cover crop Sowing 27 July 2023
Mulching 25 September 2023
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Bare soil Soil cultivation (10 cm depth)

27 September 2023

Table A2. Overview of key phenological stages of winter wheat, showing the observation dates and corresponding BBCH growth

stage numbers during the 2022-23 growing season.

Date BBCH
11 November 2022 13
22 December 2022 21
7 February 2023 22-23
17 March 2023 24-25
4 April 2023 31
5 May 2023 33
19 May 2023 39
31 May 2023 59
19 June 2023 73
28 June 2023 75
11 July 2023 92
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Figure Al. Relationship between cumulative gross primary productivity (GPP) and aboveground crop N content during the wheat
growing season. Means + 1 standard deviation are given (n=12). The dashed red line indicates a linear least-squares regression,
with the coefficient of determination (R?) and respective p-value shown.
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Figure A2. Observed and predicted N20 fluxes at the cropland Oensingen for the test set (20% of total data). The blue circles
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Figure A3. Cumulative positive (red) and negative (blue) SHAP contributions of each driver to predicted N2O fluxes from
September 2022 to October 2023 at the cropland Oensingen. Positive and negative SHAP values were summed up separately, such
that increases and decreases in N2O fluxes are shown independently rather than canceling each other out.
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Figure A4. Temporal dynamics of N20 fluxes, gross primary productivity (GPP), and driver contributions to N2O fluxes at the
Oensingen cropland from September 2022 to October 2023. The unshaded area corresponds to the winter wheat cropping season,
while the shaded areas indicate the final phase of the preceding temporary grassland and the cover crop following winter harvest.
(a) Daily average N2O fluxes (measured, highest quality fluxes only) are shown in black, and daily average GPP in green. Arrows
at the top denote management activities conducted during the winter wheat cropping season. (b) Contributions of individual
drivers (i.e., N fertilization, water-filled pore space (WFPS), GPP, soil disturbance, and soil temperature (soil T)) are expressed as
daily averages of SHAP values (see Sect. 2.6.2 for methodological details). The baseline (SHAP = 0) corresponds to a predicted N2O
flux of 0.27 nmol m s’'. Positive values indicate a driver’s increasing effect on N20 fluxes, while negative values reflect a

decreasing effect.
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Figure AS. Dual isotope plot of §!5SNP"K-N,O vs. site preference (SP). Colored boxes denote N2O mixing endmembers (nD: nitrifier
denitrification, bD: bacterial denitrification, Ni: nitrification, fD: fungal denitrification). Endmember values are derived from (Yu
et al., 2020). Lines for mixing (black) and N20 reduction to Nz (red) are shown. Individual measurements are shown as circles,
with size reflecting flux magnitude and color indicating location (1 to 5; see Fig. 1).

Code availability

The Python scripts used for data analysis and visualization are available on GitHub (fabioturc/n20-wheat-drivers-sources)

and archived on Zenodo (https://doi.org/10.5281/zenodo.18075225). Scripts used to produce the fluxes dataset are available
on GitHub (fabioturc/dataset ch-oe2 2021-23 flux product) and Zenodo (https://doi.org/10.5281/zenodo.17975468).

Data availability

Eddy covariance ecosystem fluxes, meteorological data, and management information are openly available for download in
the ETH Zurich Research Collection (https://doi.org/10.3929/ethz-c-000782868). All analysis data for this study are also
openly available at Zenodo (https://doi.org/10.5281/zenodo.18075225).
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