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Abstract. Agriculture is the largest anthropogenic source of nitrous oxide (N2O), primarily due to nitrogen (N) fertilization. 

Understanding how the influence of key drivers and the relative contribution of source processes change throughout the 

cropping season is crucial for developing effective strategies to mitigate N2O emissions. In this study, we combined high-10 

resolution eddy covariance flux measurements and stable isotope analyses over one winter wheat cropping season and the 

subsequent summer cover crop season. Two phases, crop establishment and early spring, were identified as critical periods 

for N2O emissions, characterized by a mismatch between N supply and plant demand, resulting in surplus soil mineral N and 

elevated N2O fluxes under favorable environmental conditions. Gross primary productivity (GPP), used as a proxy for crop 

N uptake, suppressed N2O emissions, especially under high soil moisture, highlighting the importance of active vegetation in 15 

mitigating emissions. Source partitioning, based on stable isotopes, revealed denitrification as the dominant process of N2O 

production, driven by poor soil drainage and high soil moisture. Over the nine-month winter wheat season, the Tier 1 N2O 

emission factor was 1.8%, with cumulative emissions of 5.5 kg N2O-N ha−1, offsetting 70% of the net CO2 uptake. Our 

findings emphasize the need to better synchronize N supply with crop demand and to adopt agronomic practices that 

promote rapid crop establishment to mitigate N2O emissions in cropping systems. 20 
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1 Introduction 

Nitrogen (N) is an essential nutrient for crop production, and the use of N fertilizers plays a central role in ensuring global 

food security (Erisman et al., 2008; Liang, 2022). However, a large part of the applied N is lost to the environment due to 25 

misalignment between the application (amount and timing) and crop demand (Ladha et al., 2005). Globally, only about 47% 

of total fertilizer N input is taken up by crops, with the remainder lost primarily through nitrate (NO3
-) leaching and ammonia 

(NH3) volatilization, contributing to water and air pollution (Lassaletta et al., 2014). Approximately 1% of the applied N 

(IPCC, 2019) is emitted as nitrous oxide (N2O), a potent greenhouse gas (GHG) with a 100-year global warming potential 

(GWP100) of 273 times that of CO2 (Forster et al., 2021), and the dominant ozone-depleting substance of the current century 30 
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(Portmann et al., 2012; Ravishankara et al., 2009). Together with carbon dioxide (CO2) and methane (CH4), N2O represents 

one of the three major greenhouse gases contributing to anthropogenic climate forcing, with agricultural soils being a 

significant source of all three (Nabuurs et al., 2022). Despite accounting for a relatively minor fraction of N losses, the 

climate impact of N2O makes its mitigation a key priority in sustainable agricultural management. Direct N2O emissions 

from agricultural N additions represent the largest source of anthropogenic N2O emissions, contributing 56% of global 35 

emissions over the past decade (Tian et al., 2024), with more than half (55%) originating from soils following fertilizer 

application. The remaining fraction is attributed to manure excreted on pastures and manure management (Epper et al., 2025; 

Tian et al., 2024). In Switzerland, N2O emissions account for approximately 30% of total agricultural GHG emissions 

(FOEN, 2025). At both EU and Swiss levels, policies have been introduced to reduce N losses from agriculture and mitigate 

associated environmental impacts, such as the EU Nitrates Directive (European Commission, 1991) and Switzerland’s Water 40 

Protection Ordinance (Swiss Federal Council, 1998). However, despite the well-documented climate effects of N2O, binding 

measures specifically targeting N2O mitigation are still lacking (Epper et al., 2025). This regulatory gap hinders the 

development and implementation of effective mitigation strategies, leaving a major source of agricultural greenhouse gas 

emissions largely unaddressed. 

N2O in soils is primarily produced through microbial nitrification and denitrification, processes that are regulated by a 45 

complex interplay of dynamic factors, including the availability of N substrates (i.e., NH4
+ and NO3

-), soil moisture, 

temperature, pH, and availability of labile carbon (Butterbach-Bahl et al., 2013; Davidson, 1991; Rummel et al., 2025; 

Smith, 2017). Agronomic operations such as fertilization and tillage increase N availability and stimulate microbial N2O 

production (Chatskikh and Olesen, 2007; Shcherbak et al., 2014). Recent studies also highlight the role of actively growing 

vegetation as a dynamic N sink that competes with microbes for N substrates, thereby reducing their availability for N2O 50 

production and mitigating N2O emissions (Feigenwinter et al., 2023; Maier et al., 2022; Timilsina et al., 2024). Accordingly, 

the N surplus, defined as the difference between total N inputs and outputs, correlates positively with N2O emissions (Tallec 

et al., 2022; Van Groenigen et al., 2010). However, the spatio-temporal heterogeneity of environmental and management-

related drivers, along with the high temporal variability of N2O fluxes, pose major challenges for identifying key drivers of 

N2O losses throughout the cropping season. Each phase, from field preparation to post-harvest, is controlled by distinct 55 

processes and their interactions (Smith et al., 1998). While many studies have explored the general relationships between 

individual drivers and N2O emissions, to our knowledge, no study has systematically investigated how the relative 

importance of these drivers changes over the course of a cropping season. Therefore, our understanding of these temporal 

dynamics is still scarce, limiting the development of mitigation strategies because these may only be effective when aligned 

with the dominant emission controls at specific stages of the cropping season. 60 

In addition to N2O, croplands exchange substantial amounts of CO2 and CH4 with the atmosphere, which together determine 

their net greenhouse gas (GHG) budget (Carlson et al., 2017; Ciais et al., 2010; Schulze et al., 2009). CO2 fluxes reflect the 

difference between photosynthetic carbon uptake and ecosystem respiration, whereas CH4 fluxes from agricultural soils 

result from concurrent microbial production (i.e., methanogenesis) and oxidation (i.e., methanotrophy) (Le Mer and Roger, 
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2001). Quantifying these fluxes alongside N₂O is crucial for an integrated assessment of the cropland GHG budget and its 65 

response to environmental and management drivers.  

To improve our understanding of the temporal dynamics of N2O emissions and their contribution to the full GHG budget, 

continuous and spatially integrated measurements of N2O fluxes are essential. Micrometeorological techniques such as eddy 

covariance (EC) enable continuous, high-frequency observations of N2O fluxes, spatially integrating over entire fields 

(Feigenwinter et al., 2023; Lognoul et al., 2019; Maier et al., 2022, 2025). When EC-based N2O flux measurements are 70 

combined with concurrent observations of key environmental and management-related drivers, they can provide valuable 

insights into the temporal dynamics of N2O emissions and their controls throughout the cropping season. Building on high-

resolution data provided by EC systems, machine learning (ML) algorithms offer powerful tools to model N2O emissions 

(Gnisia et al., 2025; Goodrich et al., 2021; Hamrani et al., 2020). These ML models can capture non-linear relationships and 

complex interactions among environmental and management-related drivers and often outperform traditional statistical 75 

approaches in predictive accuracy (Philibert et al., 2013; Saha et al., 2021). Furthermore, model explanation techniques such 

as SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017) enhance the interpretability of ML models by 

quantifying the contribution of individual drivers, offering insights into the temporal evolution of driver importance (Krebs 

et al., 2025; Scapucci et al., 2024, 2025). 

While ML models can identify which environmental and management variables most influence N2O fluxes, they do not 80 

reveal the underlying microbial production processes. This distinction is important because nitrification and denitrification 

respond differently to environmental conditions (Butterbach-Bahl et al., 2013; Davidson, 1991) and management (Buchen et 

al., 2018). Distinguishing between these two sources of N2O is essential for developing targeted mitigation strategies and 

improving the accuracy of process-based biogeochemical models (Del Grosso et al., 2020). Stable isotope analysis, 

particularly of the intramolecular distribution of 15N (i.e., site preference, SP), offers a robust approach to identify the 85 

relative contributions of nitrification and denitrification to N2O production (Toyoda and Yoshida, 1999). These microbial 

processes generate N2O with distinct isotopic signatures due to differences in enzymatic mechanisms and substrate pools. 

Because SP is largely independent of the isotopic composition of precursor substrates, it enables robust source partitioning 

under field conditions (Decock and Six, 2013). Combined with N and O stable isotope ratios (δ15N and δ18O, respectively), 

SP allows tracing the temporal development of N2O-producing processes (Verhoeven et al., 2019; Yu et al., 2020). 90 

The present study integrates continuous EC measurements, ML-based driver analysis, and stable isotope techniques to 

provide a comprehensive assessment of N2O emissions over a winter wheat cropping season and the following short summer 

cover crop at a study site with a temperate climate in Europe. Specifically, we aimed to (i) quantify N2O, CO2, and CH4 

fluxes and resulting GHG budgets throughout a winter wheat cropping season and the subsequent cover crop season, (ii) 

determine the temporal development of environmental and management driver contributions to N2O fluxes, and (iii) identify 95 

the contributions of different microbial N2O-producing processes and their temporal development after a fertilization event. 
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2 Material and methods 

2.1 Study site 

The study site is a cropland field in Oensingen, canton of Solothurn, Switzerland. The site has a mean annual temperature of 

10.1 °C and receives an average of 1151 mm of precipitation per year (2004-2023). CO2 and water vapor (H2O) fluxes have 100 

been continuously measured at the site by a EC station (CH-Oe2, part of FLUXNET; 47°10′41.5″ N, 7°39′54.4″ E; 

465 m a.s.l.) since December 2003 (Emmel et al., 2018). The field where the station is positioned has an area of 1.55 ha, and 

the soil is an Eutric-Stagnic Cambisol with a silty clay soil texture. In the top 25 cm depth, the soil consists of 43% clay, 

47% silt, and 10% sand, with 2.8% organic matter (Alaoui and Goetz, 2008). The field is managed according to an integrated 

farming label (IP Swiss), and follows the Proof of Ecological Performance (PEP; Swiss Federal Council, 2025). PEP sets 105 

baseline requirements for receiving direct payments, including rules for crop rotation, farm-based fertilizer use, and 

measures to protect soil and biodiversity. Over the past 20 years, the crop rotation included various annual crops, with winter 

wheat as primary crop. A temporary grassland (grass-clover mixture; STEFFEN 3003M, Samen STEFFEN AG) was 

established in 2020 and managed until its final cut in late September 2022, followed by herbicide application (Glyphosate) 

and direct-seeding of winter wheat. This study was conducted over one year, from September 2022 to October 2023, 110 

covering the last month of the temporary grassland, the full winter wheat growing season, and the subsequent cover crop 

season, a mixture of legumes, grasses, and forbs (Terra-FIT Quattro, Samen STEFFEN AG). Winter wheat (Montalbano, 

bred by Agroscope and DSP) was sown on October 6, 2022, and harvested on July 15, 2023, with 5.03 t ha -1 grain yield (dry 

matter). The winter wheat received three applications of mineral and organic (dairy slurry) fertilizers between late tillering 

and early stem elongation, summing up to 138 kg N ha-1 (Table 1). After the harvest, the straw was removed from the field, 115 

and the soil was cultivated for the subsequent sowing of the summer cover crop. The cover crop was mulched in late 

September 2023, before the soil was cultivated again to prepare for the sowing of winter barley in early October 2023. 

Table 1. Main management activities conducted during the 2022-2023 measurement period at the cropland in Oensingen. Positive 

values for nitrogen (N) in/output (kg ha-1) indicate inputs to the field, whereas negative values represent N exports. For organic 

fertilization, total N is reported, with the NH4
+-N fraction shown in parentheses. Due to a sampling issue in 2023, slurry 120 

composition was estimated based on laboratory analysis of a 2024 sample from the same farm. Harvest-related N exports are 

reported as mean ± 1 standard deviation. Details on commercial products and additional management practices are provided in 

Table A1. 

Crop Management activity Date N in/output 

Grass-clover Harvest 20 September 2022 - 40 ± 7 

 Herbicide application  3 October 2022  

Winter wheat Sowing (direct seeding) 6 October 2022 +5.2 

 Ammonium nitrate application 27 February 2023 +68 

 Slurry application (dairy) 28 February 2023 +43 (+18) 

 Ammonium nitrate application 6 April 2023 +27 

 Harvest (grain and straw) 15 July 2023 -162 ± 53 
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Bare soil Soil cultivation 17 July 2023  

Cover crop Sowing 27 July 2023 +1.4 

 Mulching 25 September 2023  

Bare soil Soil cultivation 27 September 2023   

 

2.2 Eddy covariance flux measurements 125 

2.2.1 Setup 

The EC setup, situated at the center of the field, consisted of an ultrasonic anemometer (R3-50, Gill Instruments Ltd., 

Lymington, UK) that measured wind speed, and a laser spectrometer that measured N2O and CH4 concentrations at 10 Hz 

(GLA351-N2OM1, Los Gatos Research, Mountain View, CA, USA), as well as an enclosed infrared gas analyzer (IRGA) 

that measured CO2 and H2O concentrations at 20 Hz (LI-7200, LI-COR Biosciences, Lincoln NE, USA). The laser 130 

spectrometer was connected to an external pump (EV-A06, Ebara Technologies, Sacramento, CA, USA) and both were 

placed in temperature-controlled boxes. A 7 m long, 7.5 mm diameter unheated polyethylene/aluminum composite tube 

(EATON Synflex 1300, Dublin, Ireland) was used to draw air to the laser spectrometer. The measurement height of the sonic 

anemometer was 2.17 m above ground, and the inlets of the laser spectrometer and the IRGA were mounted approximately 

0.2 m below the sonic anemometer. While CO2 and H2O fluxes have been measured continuously since 2003, N2O and CH4 135 

flux measurements were conducted during selected periods between 2018 and 2021 (Maier et al., 2025), followed by 

continuous measurements from 30 August 2022 to 5 October 2023 in the present study. 

2.2.2 Flux processing 

Half-hourly fluxes of CO2, H2O (i.e., as latent heat flux (LE)), as well as N2O and CH4 fluxes were calculated using the 

EddyPro software (version 7.0.9, LI-COR Environmental, Lincoln NE, USA) following established EC flux community 140 

protocols (Aubinet et al., 2012; Nemitz et al., 2018; Pastorello et al., 2020; Sabbatini et al., 2018). Raw high-frequency data 

underwent de-spiking and screening, in line with Vickers and Mahrt (1997), and wind components were aligned using a 2D 

rotation method (Wilczak et al., 2001). The time lag between the vertical wind component and scalar concentration of N2O 

and CH4 was set to a constant value, corresponding to the most frequently occurring lag (1.40 s for N2O and 1.50 s for CH4) 

identified through covariance maximization within a broad window (0-5 s) over the entire measurement period. In contrast, 145 

time lags for CO2 and LE were determined dynamically through covariance maximization within narrow windows, based on 

prior lag distributions identified using a broader window. When no clear covariance peak was detected within the defined 

window, a default lag was applied (1.30 s for CO2, 1.45 s for H2O), corresponding to the most frequently identified lag in the 

earlier analysis. Spectral corrections addressed high-pass (Moncrieff et al., 2005) and low-pass filtering effects (Fratini et al., 

2012). A correction for instrument separation was applied (Horst and Lenschow, 2009). The flux footprint model by Kljun et 150 

al. (2015) estimated the upwind area contributing to the measured flux.  
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2.2.3 Quality assessment and de-spiking 

Data quality was assessed using a composite flag (QC0 = best quality, QC1 = medium quality, QC2 = bad quality), 

calculated with the Python library diive (v0.86.0; Hörtnagl, 2025). The flag included tests for (1) steady-state and integral 

turbulence characteristics (Mauder and Foken, 2004), (2) spectral correction factor (values with spectral correction factor > 4 155 

were excluded), (3) IRGA signal strength, (4) completeness of the averaging interval (if <97% coverage within 30 min, 

value was excluded; Sabbatini et al., 2018), and (5) occurrence of spikes and drop-outs in the raw data after the statistical 

tests by Vickers and Mahrt (1997). Fluxes with the quality flag 2 (QC2) were excluded from further analyses. Storage terms 

(single point measurement) were added to all measured gas fluxes (Aubinet et al., 2001). CO2 fluxes are referred to as net 

ecosystem exchange of CO2 (NEE) from this point onwards. Absolute limits were applied to remove half-hourly fluxes 160 

outside plausible ranges, determined by analyzing typical ranges for highest-quality fluxes (NEE: - 60 to 50 μmol m−2 s−1; 

LE: -50 to 800 W m-2; N2O: - 3 to 30 nmol m−2 s−1; CH4: - 30 to 80 nmol m−2 s−1). Outliers were further removed using two 

statistical filters: a Hampel filter applied separately for daytime and nighttime periods, and a rolling z-score method. Finally, 

a friction velocity (u⁎) filter (Papale et al., 2006) was applied to NEE, N2O, and CH4 fluxes to exclude periods with 

insufficient turbulence conditions. The threshold was determined using CO2 fluxes, and a constant u⁎ threshold of 0.092 m 165 

s−1 was used for the entire study period. After applying all quality checks, de-spiking, and u⁎ filtering, data coverage for 

fluxes over the entire measurement period was 50.8% for NEE, 68.5% for LE, 52.9% for N2O fluxes, and 33.6% for CH4 

fluxes. Only the highest quality N2O fluxes (QC0, 34.5% data coverage) were used for the driver analysis. Further details on 

data quality control procedures and outlier removal methods are available in the project repository (Turco, 2025a). Flux rates 

are reported as µmol CO2 m-2 s-1 for NEE, nmol N2O m-2 s-1 for N2O flux, and nmol CH4 m-2 s-1 for CH4 flux, while 170 

cumulative fluxes are reported as g C m-2 (NEE, CH4) or kg N2O-N ha-1 (N2O). 

2.2.4 Gap-filling and NEE partitioning 

Gap-filling of N2O and CH4 fluxes was performed using the Random Forest (RF) algorithm (Breiman, 2001) as implemented 

via the diive Python library (v. 0.86.0), based on the scikit-learn (v1.15) framework. Predictor (i.e., driver) variables were 

selected based on their demonstrated predictive performance in previous studies (Feigenwinter et al., 2023; Maier et al., 175 

2022), including environmental data (and their lagged variants), management information (expressed as time since event), 

and timestamp features. Environmental variables comprised soil temperature, precipitation (in absolute terms and time since 

occurrence), and soil water content.  

For NEE and LE, gap-filling was conducted using the Marginal Distribution Sampling (MDS) method (Reichstein et al., 

2005), implemented in R via the REddyProc package (v. 1.3.2; Wutzler et al., 2018). Input variables for MDS included 180 

global radiation, air temperature, and vapor pressure deficit. NEE was subsequently partitioned into gross primary 

production (GPP) and ecosystem respiration (Reco) using the night-time method (Reichstein et al., 2005), also implemented 
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in REddyProc (Wutzler et al., 2018). Additional methodological details and code are available in the project repository  

(Turco, 2025a).  

2.3 Calculating N2O emission factor and GHG budgets 185 

The N2O emission factor (EF) for winter wheat was calculated by dividing the cumulative N2O-N emissions attributable to 

fertilization (excluding background fluxes) by the total amount of N from synthetic and organic fertilizers. This calculation 

excluded background fluxes and followed the IPCC Tier 1 approach (IPCC, 2019). The background N2O flux was calculated 

as the average of gap-filled fluxes, omitting 30-day post-fertilization periods to remove the short-term fertilization 

effects. The resulting EF is expressed as the percentage of the applied N that is emitted as N2O-N. 190 

The GHG budgets for CO2, N2O, and CH4 were calculated separately for the winter wheat and cover crop cropping seasons 

(282 and 60 days, respectively), covering the period from sowing to harvest, using gap-filled flux datasets (see Sect. 2.2.4 for 

gap-filling procedure). To express fluxes in terms of CO2-equivalents, global warming potential (GWP100) values of 273 for 

N2O and 27 for CH4 were applied, in accordance with current estimates (Forster et al., 2021).  

2.4 Meteorological and soil variables 195 

The meteorological variables air temperature and relative humidity (CS215, Campbell Scientific Ltd., Logan UT, USA), 

atmospheric pressure (PAA-33X, Keller AG, Switzerland), short- and longwave radiation (CNR4, Kipp & Zonen, Delft, 

Netherlands), photosynthetic photon flux density PPFD (BF5, Delta-T Devices, United Kingdom), and precipitation (heated 

tipping bucket rain gauge, Lambrecht meteo GmbH, Germany) were measured continuously at the EC station. Soil water 

content and soil temperature were also measured continuously close to the EC station along one soil profile (at 0.05, 0.15, 200 

0.3, and 0.5 m soil depths) using 5TM sensors (Decagon Devices, Inc., Pullman WA, USA). All meteorological 

measurements were recorded at one-minute time resolution and, after screening for outliers, averaged to 30-minute values 

(precipitation was summed). Water-filled pore space (WFPS; Eq. 1) was calculated for each soil depth as:  

𝑊𝐹𝑃𝑆 =  
𝑆𝑊𝐶

1− 
𝐵𝐷

𝑃𝐷

∗ 100                                                                  (1) 

where SWC is the volumetric soil water content (in m3 m-3), BD is the bulk density (in g cm-3), with values of 1.16, 1.40, and 205 

1.33  g cm-3 for the 0-0.05, 0.15-0.3, and 0.3-0.5 m depth intervals, respectively, obtained from Emmel et al. (2018), and PD 

is the particle density, assumed to be 2.65 g cm−3 (Danielson and Sutherland 1986). 

2.5 Soil chamber measurements and stable isotope analyses 

Five opaque static PVC (polyvinyl chloride) chambers, each with a volume of 17.7 L and a surface area of 0.07 m2, were 

deployed at five randomly selected locations within a 12 m radius of the EC station (Fig. 1). The chambers were first 210 

deployed on 24 February 2023, before the first fertilization event, and positioned to enclose plants from two adjacent wheat 

rows. To ensure that regular field management could continue unhindered, the chambers were removed immediately after 
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sampling when management operations were scheduled before the next sampling date and subsequently reinstalled at the 

same positions for the following measurements. In total, six sampling campaigns were conducted between 24 February and 

17 March 2023, encompassing the period around the first fertilizations (27 and 28 February) and two campaigns later in the 215 

season (31 May and 19 July). The sampling was performed around midday (typically between 11:00 and 13:00 local time) to 

minimize diurnal variability in fluxes. For each chamber and time point, two headspace samples were collected: one 

immediately after chamber closure (t₀), and one after a 1-hour enclosure period (t₆₀). Air samples were drawn from the 

chamber headspace with a 60-mL syringe. For subsequent N2O concentration analysis, 20 mL of the air sample was injected 

into pre-evacuated 12 mL vials. For stable isotope analyses, 180 mL of the air sample was injected into pre-evacuated 110 220 

mL serum crimp vials. During each sampling campaign, a soil sample was collected for each chamber by combining two soil 

cores (0-0.1 m depth) taken approximately 0.3 m from the chamber edge. The pooled samples were placed into Schott tubes, 

which were immediately sealed with Parafilm, enclosed in plastic bags, and stored in a cooling box before being transferred 

to a freezer at −18 °C. Soil water was later extracted from the samples using cryogenic vacuum distillation (Ehleringer and 

Osmond, 2000). The stable oxygen isotope ratio (δ18O) of the extracted water was then measured using an isotope ratio mass 225 

spectrometer (IRMS; DeltaplusXP, Finnigan MAT, Bremen, Germany) and expressed in the delta notation referenced to the 

Vienna Standard Mean Ocean Water (V-SMOW) in ‰ (Eq. 2) as: 

𝛿18𝑂 =  
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
−  1                                                                                                                                        (2) 

where R denotes the ratio of 18O/16O.  

N2O gas samples were analyzed for their stable N and oxygen isotope ratios (δ15Nbulk, δ18O, respectively) and site preference 230 

(SP-N2O) using a trace gas preparation unit (Elementar, Manchester, UK) coupled to an IsoPrime100 IRMS (Elementar, 

Manchester, UK). Calibration and data correction followed the procedure described in Verhoeven et al. (2019) and in 

Gallarotti et al. (2021), including the use of multiple working standards and correction for instrumental drift, span, and 

linearity. Site preference (SP) represents the difference between the N isotope ratios at the central (α) and terminal (β) N 

positions of the N2O molecule. Unlike δ15Nbulk, SP-N2O is independent of the initial substrate, making it a more direct 235 

indicator of the N2O production pathway (Toyoda et al., 2002). The isotopic signature of emitted N2O was calculated using 

the following two-point mixing equation (Eq. 3): 

𝛿𝑧𝑋 =
[𝑁2𝑂]𝑒⋅𝛿𝑧𝑋𝑒−[𝑁2𝑂]𝑠⋅𝛿𝑧𝑋𝑠

[𝑁2𝑂]𝑒−[𝑁2𝑂]𝑠
                                                                                           (3) 

where [N2O]s and [N2O]e are the N2O mixing ratios [ppb] at t0 and t60, respectively, measured using a gas chromatograph 

equipped with an electron capture detector (456-GC, Scion Instruments, Livingston, WLO, UK), while δZXs and δZXe are the 240 

corresponding isotope ratios (‰). A threshold of 30 ppb in N2O concentration increase (Δ[N2O] = [N2O]e - [N2O]s) was used 

to exclude flux estimates for which the change in N2O concentration during the chamber closure was too small to yield 

reliable isotopic signatures (Harris et al., 2020b). N2O fluxes on four of the eight sampling dates, March 1, 3, 6, and 17, 

exceeded this threshold and were subsequently included in the analyses. 
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To determine the main production pathways of N2O, a dual isotope mapping approach was used, relating i) δ18O-N2O to SP-245 

N2O, and ii) δ15Nbulk-N2O to SP-N2O. The mixing endmembers for nitrification (Ni), bacterial denitrification (bD), nitrifier 

denitrification (nD), and fungal denitrification (fD) were chosen according to Yu et al. (2020). The δ18O-N2O endmembers of 

bD, nD, and fD were adjusted by the mean δ18O of soil water to account for the oxygen isotopic signature of the substrate 

(Lewicka-Szczebak et al., 2020). Since no measurements of the δ15N of soil N precursors were available, a δ15N value of 0‰ 

was assumed for precursor nitrate and ammonium in the δ15Nbulk-N2O vs. SP-N2O map. The contributions of different N₂O 250 

production pathways and the residual fraction of unreduced N2O (r) were estimated with the FRAME software, 

implementing a Markov Chain Monte Carlo model (Lewicki et al., 2022). The FRAME model was configured using process-

specific mean values and fractionation factors from Yu et al. (2020), and the δ18O-N2O mean values were corrected for δ18O-

H2O. 

2.6 Vegetation and soil measurements 255 

Leaf area index (LAI), vegetation height, and phenological development stages were monitored throughout the study. From 

March to July 2023, measurements were conducted at 2- to 3-week intervals to capture the growth dynamics during the most 

active vegetative period of winter wheat, and at key developmental stages before and after this period. LAI and canopy 

height were measured at six locations spread 5 m apart along four transects originating from the EC station (Fig. 1). LAI was 

measured using a LAI-2000 Plant Canopy Analyzer (LI-COR Biosciences, USA) by taking one above-canopy and six 260 

below-canopy readings for each transect. Under clear sky conditions, measurements were conducted towards the North to 

avoid direct sunlight on the lens. Vegetation height was determined by measuring the height of an expanded polystyrene 

plate of 0.25 m2 dropped on top of the vegetation at each spot (Ammann et al., 2007). Phenological development stages of 

winter wheat were identified according to the BBCH-scale (Meier, 2018) for five plants randomly selected in the field. 

Aboveground biomass (AGB) was sampled monthly, using a harvest frame with a defined area of 0.1 m2. Three samples 265 

were randomly collected at each of the four defined field sections (Fig. 1), and entire wheat plants were cut 2 cm above the 

ground. The dry weight was determined after drying all plant samples at 60 °C for 48 hours. The dried samples were further 

processed by first cutting the biomass into smaller pieces, then a subsample was ground to a fine powder with a ball mill 

(MM200, Retsch, Germany). Finally, about 4 mg was weighed into small tin capsules, and carbon (C) and N concentrations 

(in %) were determined with a Flash EA 1112 elemental analyzer (Thermo Italy, former CE Instruments, Rhodano, Italy). 270 

During the wheat cropping season, soil samples were collected five times using a machine-assisted soil core sampler. The 

soil samples were collected within the same field sections used for AGB sampling, with ten to fifteen soil cores taken at each 

section and bulked for each soil depth (0-0.3, 0.3-0.6, and 0.6-0.9 m). Ammonium (NH4
+) and nitrate (NO3

-) were extracted 

by an external laboratory using a 0.01 M CaCl2 solution at a 1:4 soil-to-solution ratio, following the Swiss reference method 

(Buerge, 2020) established by the Federal Agriculture Research Center, Agroscope. Concentrations were photometrically 275 

determined by the same laboratory and reported in mg N per 100 g of dry soil.  Soil mineral N (Nmin) was then calculated in 

kg N ha-1 using the same reference method. 
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Measurements of plant-available soil N complemented soil sampling from March to September 2023. Three Plant Root 

Simulator sets (17.5 cm2 surface area each; PRSTM, Western Ag, Saskatoon, Canada), each consisting of one anion and one 

cation exchange resin probe, were buried at 0-0.1 m soil depth. The probes were positioned along the wheat inter-row at the 280 

same five locations used for chamber measurements (Fig. 1). The probes were replaced every two to three weeks, resulting 

in seven burial periods. No probes were buried in June due to technical issues, nor in the second half of July due to tillage 

and sowing operations. Prior to shipment to Western Ag for analyses, the PRS probes were rinsed with deionized water and 

stored at 5°C. Extraction of NH4
+ and NO3

- with 0.5 mol L-1 HCl was conducted by pooling all three PRS sets from each 

location, yielding one value per location and sampling period (in μg N per 17.5 cm2 per time of burial). Since all NH4
+ 285 

measurements were below the detection limit (except for one sample), we excluded NH4
+-N from further analyses.  

 

Figure 1. Experimental setup at the study site in Oensingen during the 2022-2023 measurement period. The red diamond marks 

the eddy covariance station; white lines delineate the 50%, 70%, and 90% average footprint areas (based on the Kljun et al., 2015 

model); blue dots indicate locations of manual chambers and plant root simulator (PRS) probes; colored rectangles show areas for 290 
Nmin and aboveground biomass sampling; triangles denote fixed locations for LAI and canopy height measurements. Orthophoto: 

Federal Office of Topography swisstopo. 
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2.7 Investigating the temporal development of N2O drivers 

2.7.1 XGBoost model 

To investigate biotic and abiotic drivers of N2O fluxes, we implemented a regression model based on eXtreme Gradient 295 

Boosting (XGBoost; Chen & Guestrin, 2016), using the xgboost library in Python. The dataset was aggregated into 4-hour 

intervals to balance temporal resolution with noise reduction. An initial set of predictors included variables previously 

identified as key drivers of N2O fluxes (Butterbach-Bahl et al., 2013; Feigenwinter et al., 2023; Goodrich et al., 2021; Maier 

et al., 2022, 2025), namely soil temperature, WFPS (at depths of 0.05, 0.15, and 0.3 m), precipitation, time since key 

management events (soil preparation, fertilization, and harvest), and gross primary productivity (GPP). GPP was selected as 300 

the indicator of vegetation performance instead of leaf area index (LAI) and canopy height because of its higher temporal 

resolution and its strong correlation with aboveground crop N content observed during the winter wheat season (Fig. A1). To 

represent N availability from fertilization, we included the cumulative N applied over the preceding 30 days (kg N ha -1), a 

window length that reflects the typical duration of enhanced soil N availability and N2O emissions following fertilizer 

application (Bouwman, 1996). In addition, we derived lagged values, rolling means (sums for precipitation and GPP), and 305 

first-order time derivatives (i.e., rates of change) for environmental variables, calculated over 12-, 24-, and 48-hour intervals. 

Recursive feature elimination (Guyon et al., 2002) was applied to systematically identify the most informative predictors 

from the initial variable set. The cumulative N applied over the preceding 30 days emerged as the strongest important 

predictor of N2O fluxes, followed by time since soil preparation, time since fertilization, and the 48-h (preceding) rolling 

mean of WFPS at 0.3 m depth. To minimize multicollinearity while retaining the key biotic and abiotic drivers, we selected 310 

the variable with the highest ranking from each category of predictors. The final set of predictors included: cumulative N 

applied over the past 30 days, time since fertilization, time since soil preparation, the 48-h (preceding) rolling mean of WFPS 

at 0.3 m depth, the change in WFPS at 0.3 m depth over the preceding 48 h, the 48-h (preceding) rolling mean of soil 

temperature at 0.3 m depth, and the cumulative GPP over the preceding 48 h. For WFPS, both its absolute value and short-

term temporal change were retained, as they capture distinct dimensions of soil moisture dynamics. Similarly, both 315 

cumulative applied N and time since fertilization were included, reflecting their complementary roles in describing N 

availability and timing of fertilization events. 

Following variable selection, model hyperparameters were optimized using 10-fold cross-validation. To account for 

temporal autocorrelation and avoid overfitting, while also providing representative coverage of the measurement period, we 

employed a custom time-block strategy. This approach involved an 80/20 split between training and validation, with the 320 

validation set comprising randomly selected, non-overlapping time blocks that together represented 20% of the available 

data. This splitting strategy was consistently applied throughout the modeling workflow, including during cross-validation 

and final model evaluation. Model performance was evaluated using root mean squared error (RMSE), which quantified the 

average deviation between predicted and observed values, and the coefficient of determination (R2), calculated both during 

cross-validation and for the final model.  325 
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The final XGBoost model used the following hyperparameter values: colsample_bytree = 1, gamma = 0, learning_rate = 

0.05, max_depth = 10, min_child_weight = 2, n_estimators = 100, and subsample = 0.65, and was trained with early 

stopping (10 rounds) to prevent overfitting. Cross-validation results showed a R2 of 0.60 and a RMSE of 1.1 nmol N2O m-2 s-

1 on the validation set, while the training set showed a R2 of 0.98 and a RMSE of 0.29 nmol N2O m-2 s-1. The final model, 

trained with early stopping (10 rounds) to prevent overfitting, achieved a R2 of 0.70 and a RMSE of 1.14 nmol N2O m-2 s-1 330 

on the test set (Fig. A2).  

2.7.2 SHAP analyses 

To interpret model outputs and investigate the temporal dynamics of predictor (i.e., driver) contributions to N2O fluxes, we 

applied SHAP (SHapley Additive exPlanations; Lundberg and Lee, 2017), a model-agnostic interpretability framework 

based on cooperative game theory. SHAP was implemented using the SHAP Python library in combination with the 335 

XGBoost model trained for N2O flux prediction. Specifically, we used TreeExplainer (Lundberg et al., 2020), a SHAP 

implementation optimized for tree-based models such as XGBoost. This method decomposes each model prediction into 

additive contributions from individual predictors, quantifying how much each one increases or decreases the prediction 

relative to a defined baseline. 

In SHAP analysis, the baseline is defined by the expected prediction over a reference dataset that represents typical input 340 

conditions and serves as a reference state for calculating feature contributions (Lundberg et al., 2020; Molnar, 2025). To 

construct this dataset, we excluded the 30 days following fertilization or soil preparation to best represent average, 

undisturbed environmental conditions. This ensured that SHAP values reflected the influence of the predictor variables in 

relation to typical conditions, without being skewed by the absence of recent management events. SHAP values were used to 

quantify the absolute contribution of each predictor to the model output. For interpretability, SHAP values were then 345 

normalized by dividing each SHAP value by the sum of all absolute SHAP values for that prediction. This transformation 

yielded unitless relative contributions that are independent of prediction magnitude and whose absolute values sum to one 

across all predictors at each time step, while preserving the direction of each predictor’s effect. This enabled a time-resolved 

assessment of the relative importance of individual predictors. 

For interpretation of the SHAP analyses, we grouped related variables by summing their SHAP values to assess the overall 350 

contribution of broad driver categories. Specifically, SHAP values for the cumulative N applied and time since fertilization 

were combined to represent the contribution of fertilization-related drivers, labeled as ‘N fertilization’. Likewise, SHAP 

values for WFPS and its temporal derivative were aggregated to capture the influence of soil moisture dynamics, referred to 

as ‘WFPS’. For clarity, we refer to ‘time since soil preparation’ as ‘soil disturbance’. From this point onward, we will refer 

to predictor variables as 'drivers' in the manuscript.  355 

All statistical analyses were conducted in Python (version 3.9.13) using NumPy (Harris et al., 2020a), pandas (McKinney, 

2010), SciPy (Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011). Data visualization was performed with 
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Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021). The Python scripts used for these analyses and visualizations are 

available on GitHub and archived on Zenodo (Turco, 2025b). 

3. Results 360 

3.1 Environmental conditions and vegetation growth 

The cropping season for winter wheat at Oensingen started on 6 October 2022, following a temporary grassland (grass-

clover), which was cut on 20 September 2022 (Table 1). Large precipitation events followed this final cut, totaling 103 mm 

in 15 days (Fig. 2a), resulting in increased WFPS values (Fig. 2b). During this period, topsoil temperature (0.05 m depth) 

ranged between 12 and 15 °C (Fig. 2c). Throughout the winter wheat growing season, cumulative precipitation amounted to 365 

698 mm. However, rainfall was unevenly distributed, with November to December 2022 and March to April 2023 

accounting for 33% and 29% of the total precipitation, respectively (Fig. 2a). A dry spell occurred between late December 

2022 and early March 2023, but WFPS in the topsoil remained above 60% (Fig. 2b). In contrast, a second drought period 

between mid-May and late June 2023 coincided with warmer conditions and led to a decline in WFPS throughout the soil 

profile (20 to 30% in the top 0.3 m). Topsoil temperature ranged between 0.4 and 24.6 °C and showed a typical temporal 370 

course, with lowest values from December 2022 to February 2023 and highest values in July 2023. The development of LAI 

during the growing season followed the seasonal weather pattern, remaining low throughout winter and early spring before 

increasing steadily from late March 2023 (Fig. 2d). Canopy development peaked in late May, shortly before anthesis (i.e., 

flowering; Table A2) in early June 2023. During June’s dry and warm conditions, canopy desiccation and signs of water 

stress became apparent, accompanied by the onset of senescence as seen in the decline of LAI. Crop management started 375 

with two fertilization events early in the season (27-28 February 2023) during late tillering (Table A2), approximately one 

week before the onset of rainfall that ended the winter dry spell. The last fertilization event was conducted during the early 

stem elongation phase (6 April), following a period of increased temperature.  After the harvest of winter wheat in mid-July 

2023 (Table 1), the soil was cultivated and a cover crop was sown at the end of July, accompanied by intense rainfall and 

declining soil temperature. The summer cover crop season was short and characterized by increasing soil moisture, 380 

particularly in the deeper soil layers (0.3-0.5 m; Fig. 2b), and by gradually decreasing soil temperature (Fig. 2c). The season 

ended with mulching and soil cultivation at the end of September (Table 1), after which the soil was left bare until the 

sowing of the next crop on 4 October 2023. 
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Figure 2. Environmental conditions and vegetation dynamics at the Oensingen cropland from September 2022 to October 2023. 385 
The unshaded area corresponds to the winter wheat cropping season, while the shaded areas indicate the final phase of the 

preceding temporary grassland and the cover crop following the winter wheat harvest. (a) Daily precipitation sums; (b) daily 

average water-filled pore space (WFPS) at 0.05, 0.15, 0.3, and 0.5 m soil depths; (c) daily average soil temperature (soil T) at the 

same depths as WFPS; (d) leaf area index (LAI), with diamonds indicating measured values and the line representing modeled 

values obtained using cubic splines. Yellow lines indicate fertilization (fert) events.  390 

3.2 Greenhouse gas fluxes          

3.2.1 Net ecosystem CO2 exchange (NEE) 

During the final regrowth phase of the temporary grassland in October 2022, daily mean NEE fluctuated around zero (-2.2 to 

+3.9 μmol m-2 s-1; Fig. 3a). After the final grassland cut, NEE became positive, indicating a net release of CO2. Two weeks 

later, an herbicide application followed by direct seeding of winter wheat further increased NEE, which reached a daily mean 395 

of +6.1 μmol m-2 s-1. In late October 2022, NEE gradually declined in response to decreasing soil temperature (Fig. 2c) and 
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remained low but positive during the winter months (December - February), reflecting a small net release of CO2. From early 

to late March 2023, daily mean NEE decreased from +2.3 to -3.5 μmol m-2 s-1, indicating the onset of net CO2 uptake. 

During peak crop growth in early May, daily mean NEE reached -10.5 μmol m-2 s-1, and the most negative half-hourly flux 

(QC0) was -48.2 μmol m-2 s-1. With the onset of crop anthesis at the end of May (Table A2) and the occurrence of dry soil 400 

conditions (Fig. 2b), NEE steadily increased, consistent with reduced photosynthetic CO2 uptake, typical of this phenological 

phase in winter wheat. A small CO2 emission peak, with daily mean NEE reaching up to +3.7 μmol m-2 s-1, occurred in late 

June following rewetting after an extended dry period. From July to late August 2023, daily mean NEE remained positive 

(+1.9 to +7.7 μmol m-2 s-1), indicating net CO2 release during wheat maturation as well as after harvest and subsequent early 

cover crop establishment. In late August 2023, NEE was negative again, reflecting net CO2 uptake due to the successful 405 

establishment of the cover crop. Directly after mulching of the cover crop and soil cultivation in late September, the field 

became a net CO2 source again (positive NEE). 

3.2.2 Net ecosystem N2O fluxes 

Net N2O fluxes showed pronounced temporal variations, with very low fluxes during winter 2022/2023 and highest 

emissions during crop establishment and after fertilization events. During the final grassland regrowth phase, daily mean 410 

N2O fluxes were negligible (-0.3 to +0.6 nmol m-2 s-1; Fig. 3a), but increased markedly after winter wheat seeding, reaching a 

daily mean of +5.7 nmol m-2 s-1 on 22 October 2022 (Fig. 3b). This peak occurred after rainfall increased topsoil (0.05 m) 

WFPS from 51 to 62% (Fig. 2b), when soil temperature exceeded 14 °C (Fig. 2c), and LAI was below 1 m2 m-2 (Fig. 2d). 

Throughout winter (December 2022 - February 2023), N2O fluxes remained near zero, with daily means ranging from -0.1 to 

+0.9 nmol m-2 s-1. Following the first fertilization events (27-28 February), providing a total of 111 kg N ha⁻¹ (Table 1), N2O 415 

fluxes exhibited three distinct peaks in March 2023. The first peak occurred shortly after fertilization, with a daily mean flux 

of +6.2 nmol m-2 s-1 on 2 March 2023, under conditions of topsoil WFPS above 65%, soil temperature below 5 °C, and LAI 

still below 1 m2 m-2. A second peak followed approximately ten days later, reaching a daily mean flux of +13.6 nmol m-2 s-1 

on 12 March and a maximum half-hourly flux (QC0) of +27.8 nmol m-2 s-1. The last peak occurred between 25 and 29 

March, reaching a daily mean flux of +4.0 nmol m-2 s-1 on 28 March. These second and third peaks were preceded by 420 

precipitation events that raised topsoil WFPS above 80%, with soil temperature ranging from 5 to 10 °C, while LAI 

exceeded 1 m2 m-2 only during the last peak. Following the final fertilization event on 6 April (27 kg N ha-1; Table 1), net 

ecosystem N2O fluxes increased again, with daily mean values reaching +5.1 nmol m⁻² s⁻¹ on 14 April 2023.  Although less 

pronounced than the March peaks, this emission event likewise followed rainfall that increased WFPS above 80% (Fig. 2b), 

but occurred under a more developed canopy, with LAI being nearly double than that during the March peaks (Fig. 2d). 425 

During peak crop growth period, when LAI increased from 2.5 to 4 m2 m-2 (mid-April to late May; Fig. 2d), daily mean N2O 

fluxes remained negligible (-0.4 to +1.4 nmol m-2 s-1), despite high WFPS values (above 60% throughout the soil profile) and 

increasing soil temperatures. A short-lived emission event occurred after rewetting on 19 June, following a drought in 

May/June 2023. Despite WFPS remaining below 40%, daily mean N2O fluxes reached +11.2 nmol m-2 s-1 on 20 June, with a 
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maximum half-hourly flux (QC0) of +21.6 nmol m-2 s-1, at a time when LAI was already declining following anthesis (Table 430 

A2). In July, during the final stages of wheat maturation and after harvest, daily mean N2O fluxes remained low but positive 

(0.0 to +3.1 nmol m-2 s-1).  A distinct peak occurred in late July, shortly after the cover crop was sown, with a daily mean 

flux of +7.3 nmol m⁻² s⁻¹ on 30 July. Emissions remained low in August (0.0 to +2.3 nmol m⁻² s⁻¹) but rose slightly 

following mulching of the cover crop and subsequent soil cultivation in late September 2023. 

3.2.3 Net ecosystem CH4 fluxes 435 

Net CH₄ fluxes remained low throughout the measurement period, typically indicating small CH4 emissions, with daily 

average fluxes ranging from -7.0 to +28.5 nmol CH4 m-2 s-1 (Fig. 3c). No consistent temporal patterns were evident, although 

slightly elevated fluxes indicating net CH4 release were recorded from mid-October to early November 2022 and in early 

January 2023 (Fig. 2). 

 440 

Figure 3. Gap-filled greenhouse gas fluxes at the Oensingen cropland measured from September 2022 to October 2023. The 

unshaded area corresponds to the winter wheat cropping season, while the shaded areas indicate the final phase of the preceding 

temporary grassland and the cover crop following winter harvest. (a) Net ecosystem CO2 exchange (NEE), (b) net ecosystem N2O 

fluxes, and (c) net ecosystem CH4 fluxes. Fluxes were gap-filled using the Marginal Distribution Sampling (MDS) for NEE and 

random forest (RF) for N2O and CH4 fluxes. Lines represent daily averages of the gap-filled half-hourly fluxes, while the shading 445 
indicates ± 1 standard deviation. Vertical lines mark management activities: yellow dashed = mineral fertilization (fert), yellow 

solid = slurry fertilization (fert), blue solid = soil cultivation, blue dotted = sowing, blue dashed = harvest, and blue dash-dot = 

herbicide application. See Table 1 for details on management activities. 

3.3 N2O emission factor and greenhouse gas budgets 

During the winter wheat cropping season (282 days), cumulative N2O emissions were 5.5 kg N2O-N ha−1 (Table 2), with an 450 

average gap-filled flux of 0.81 nmol m⁻² s⁻¹. When scaled to crop yield, this corresponded to 1.1 kg of N2O-N emitted per 
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ton of wheat grain (dry matter). A background N2O flux of 0.44 nmol m⁻² s⁻¹ was calculated as the average of gap-filled 

fluxes outside the 30-day post-fertilization periods, thereby minimizing the influence of short-term fertilization-induced 

peaks. Accounting for this background flux, the N2O cumulative flux due to fertilization-induced emissions amounted to 2.5 

kg N2O-N ha−1 during the winter wheat cropping season, accounting for approximately 45% of the total N2O emissions. 455 

Based on a total N input from fertilizers of 138 kg N ha-1 (Table 1), the resulting emission factor (EF) was 1.8%. During the 

subsequent 60-day cover crop season, cumulative N2O emissions reached 1.1 kg N2O-N ha−1, and the average daily sum of 

N2O emissions (17.6 g N2O-N ha-1 d-1) was only slightly lower than that observed during the winter wheat season (19.6 g 

N2O-N ha-1 d-1).  

Throughout the winter wheat cropping season, the ecosystem acted as a net CO2 sink, with a cumulative NEE of -89 g CO2-C 460 

m-2 (Table 2). However, this climate benefit was largely offset (~ 70%) by concurrent net N2O emissions, while net CH4 

emissions remained negligible. In contrast, the cover crop acted as a net CO2 source, emitting 108 g CO2-C m-2. Net N2O 

emissions during this period accounted for approximately 10% of the total GHG budget, while the net CH4 sink was again 

negligible. The difference in NEE between the two crops was reflected in their respective GHG budgets: winter wheat 

resulted in a net GHG sink of -76 g CO2-equivalents (CO2-eq) m-2, while the cover crop resulted in a net GHG source of 441 465 

g CO2-eq m-2. The difference between the two crops was even more striking when comparing their daily sums of CO2-eq, 

with winter wheat averaging -0.27 g CO2-eq m-2 d-1 and the cover crop averaging +7.4 g CO2-eq m-2 d-1, resulting in a daily 

difference of approximately 8 g CO2-eq m-2 d-1 (Table 2). 

 

Table 2. Cumulative greenhouse gas (GHG) fluxes and daily average sums for the winter wheat and the cover crop cropping 470 
seasons (282 and 60 days, respectively), shown separately for the three gases CO2, N2O, and CH4, as well as the GHG budget (sum 

of all three gases). No C inputs or exports (fertilization, harvest) are included in the flux budget. Negative values indicate net 

uptake, while positive values represent net release of CO2, N2O, and CH4 to the atmosphere. CO2-equivalents (g CO2-eq m-2) for 

N2O and CH4 were calculated using global warming potentials (GWP100) of 273 and 27, respectively, applied to fluxes expressed in 

g m-2 (IPCC, 2021). 475 

  
Winter wheat 

(282 days) 

Cover crop 

(60 days) 

CO2 Cumulative (g CO2-C m-2) -89 +108 

 Cumulative (g CO2-eq m-2) -329 +397 

 Daily (g CO2-eq m-2 d-1) -1.17 +6.62 

N2O Cumulative (kg N2O-N ha-1) +5.5 +1.1 

 Cumulative (g CO2-eq m-2) +237 +45 

 Daily (g CO2-eq m-2 d-1) +0.84 +0.76 

CH4 Cumulative (g CO2-C m-2) +0.45 -0.03 

 Cumulative (g CO2-eq m-2) +16 -1 

 Daily (g CO2-eq m-2 d-1) +0.06 -0.02 

GHG budget Cumulative (g CO2-eq m-2) -76 +441 
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 Daily (g CO2-eq m-2 d-1) -0.27 +7.35 

 

3.4 Drivers of N2O flux dynamics over time 

3.4.1 Temporal development of N2O flux driver contributions 

We used SHAP to quantify both the magnitude and direction (positive or negative) of each driver’s contribution to net 

ecosystem N2O fluxes across all three crops, relative to a reference state (baseline). In our case, the baseline represents the 480 

model’s expected N2O flux under rather undisturbed conditions (avoiding post-fertilization and post-soil management 

periods) and was estimated as 0.27 nmol m-2 s-1 using a subset of the data (see Sect. 2.7.2). This baseline value was lower 

than the N2O background flux given above, since we also excluded post-soil management periods. To assess the overall 

influence of each driver across the study period, we summed the SHAP values over time, but separately for positive and 

negative contributions. This approach avoided cancelling opposing effects and revealed how strongly each driver enhanced 485 

or decreased N2O emissions (Fig. A3). N fertilization and soil disturbance increased the N2O fluxes (i.e., positive SHAP 

values) relative to the baseline. In contrast, soil moisture, soil temperature, and GPP exhibited both positive and negative 

SHAP values, reflecting their capacity to either increase or decrease N2O fluxes depending on environmental conditions. 

Across the study period (September 2022 - October 2023), N fertilization was the dominant driver increasing N2O fluxes 

(37% of all positive contributions), while soil moisture (23%), soil disturbance (16%), GPP (14%), and soil temperature 490 

(10%) also contributed to positive deviations from the baseline flux. Conversely, soil moisture (48% of all negative 

contributions), soil temperature (28%), and GPP (24%) showed substantial negative contributions, indicating periods when 

these variables reduced N2O fluxes relative to the baseline.  

To assess the relative influence of each driver in a time-resolved manner and independently of the absolute magnitude of 

predictions, we computed daily averages of normalized SHAP values (see Sect. 2.7.2). These relative driver contributions 495 

revealed distinct temporal patterns across the study period (September 2022 - October 2023; Fig. 4). In September 2022, 

during the final grassland regrowth phase, N2O emissions were mainly suppressed by WFPS (negative relative contributions; 

Fig. 4), although GPP exerted a positive effect later in the month. At the beginning of October, herbicide application and the 

direct seeding of wheat introduced soil disturbance, and N2O fluxes during crop establishment were primarily driven by soil 

disturbance and GPP (positive relative contributions; Fig. 4). Throughout winter (November 2022 - February 2023), soil 500 

temperature consistently suppressed N2O emissions (negative relative contributions), while GPP maintained a positive effect. 

In spring (March - April 2023), which corresponded to the period of highest observed N2O fluxes (Fig. 4a), emissions were 

primarily driven by N fertilization, followed by WFPS. Later in the season, when photosynthetic activity and presumably 

plant N demand increased (April), the effect of GPP shifted towards decreasing N2O fluxes. The low N2O emissions 

observed from May to mid-June were thus strongly driven by large negative effects of soil temperature, GPP, and WFPS 505 

(Fig. 4b). In contrast, during grain filling and post-harvest (July to mid-August), the SHAP analysis indicated that soil 
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temperature and soil disturbance strongly increased N2O emissions, while GPP had a smaller but still positive effect. 

Following the establishment of the cover crop in September, the effect of GPP became negative again, coinciding with an 

increase in photosynthetic CO2 uptake. 

To investigate the changing role of GPP in more detail, we focused on the winter wheat period from March 2023 to harvest 510 

(mid-July 2023), thereby limiting potential confounding factors (Fig. 5). In this period, N2O fluxes were negatively related to 

GPP, suggesting that high photosynthetic activity (high GPP) was associated with low N2O emissions. This relationship was 

modulated by WFPS: the decline in N2O fluxes with increasing GPP was weakest in the driest WFPS class (≤ 55%) and 

became progressively stronger at higher soil moisture, as indicated by increasingly negative regression slopes (R2 = 0.28, 

0.62, and 0.80; all p < 0.001; Fig. 5). 515 

 

Figure 4. Temporal dynamics of N2O fluxes, gross primary productivity (GPP), and relative driver contributions to N2O fluxes at 

the Oensingen cropland from September 2022 to October 2023.  The unshaded area corresponds to the winter wheat cropping 

season, while the shaded areas indicate the final phase of the preceding temporary grassland and the cover crop following winter 

harvest. (a) Daily average N2O fluxes (measured, highest quality fluxes only) are shown in black, and daily average GPP in green. 520 
Arrows at the top denote management activities conducted during the winter wheat cropping season. (b) Relative contributions of 

individual drivers (i.e., N fertilization, water-filled pore space (WFPS), GPP, soil disturbance, and soil temperature (soil T)) are 

expressed as daily averages of normalized SHAP values (see Sect. 2.6.2 for methodological details). The baseline (SHAP = 0) 

corresponds to a predicted N2O flux of 0.27 nmol m-2 s-1. Positive values indicate a driver’s increasing effect on N2O fluxes, while 

negative values reflect a decreasing effect. The white line represents the model-predicted N2O flux. 525 
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Figure 5. Relationship between gross primary productivity (GPP; rolling sum over the preceding 48 h) and the measured N2O 

fluxes (QC0 only, daily averages) between March and mid-July 2023 in winter wheat. Points are colored by water-filled pore space 

classes (WFPS; at 0.3 m soil depth), based on the 48-h rolling mean of WFPS (same window as for GPP). Dashed lines show the 

linear regressions for each class, with the corresponding regression statistics given as well. 530 

3.4.2 Soil available nitrogen 

To assess soil N availability to roots and microorganisms, we used two complementary approaches: (i) time-integrated 

supply of plant-available NO3
--N measured with PRS probes, and (ii) instantaneous mineral N supply (Nmin), derived from 

soil-extractable NO3
- and NH4

+ concentrations in the 0-0.3 m soil layer. N2O fluxes increased significantly with soil mineral 

N availability, both for integrated (Fig. 6c, R2 = 0.61; p<0.05) and instantaneous supply (Fig. 6d; R2 = 0.77; p<0.05). The 535 

lowest N2O emissions occurred during periods of highest GPP (point 4 in Fig. 6c; point D in Fig. 6d) or without prior 

fertilization events (points A and B in Fig. 6d). In contrast, the highest N2O emissions occurred after fertilization events, 

when soil mineral N availability was highest (points 1 and 2 in Fig. 6c; point C in Fig. 6d), with average Nmin values 

reaching 74 kg N ha-1 ten days after the first fertilization. Between these extremes, intermediate N availability was observed 

in December 2022 (point A in Fig. 6d) and in August 2023 during the post-harvest period (points 6 and 7 in Fig. 6c; point E 540 

in Fig. 6d). While in August the intermediate N availability coincided with higher N2O emissions, this was not the case in 

December, when soil temperature at 0.05 m depth ranged between 3 and 5 °C during the sampling week. 
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Figure 6. Relationships between nitrogen (N) availability and N2O fluxes. (a) Timeline of burial periods for plant root simulators 

(PRS) probes, and (b) of soil mineral N (Nmin) sampling campaigns. Sowing, harvest, and fertilization dates are also provided. (c) 545 
Relationship between cumulative available NO3

--N (μg N 17.5 cm-2, based on PRS probes) and cumulative N2O fluxes over the 

corresponding burial period (15 to 21 days). Means and  ± 1 standard deviation are given (n=5). Circle size reflects cumulative 

GPP during the same period. Numbers indicate the corresponding period as shown in panel (a). A linear regression is shown as a 

dashed red line, together with the coefficient of determination (R2) and corresponding p-value. (d) Relationship between Nmin (0-

0.3 m soil depth) and cumulative N2O fluxes during the week centered on the soil sampling (± 3.5 days). Means  ± 1 standard 550 
deviation are given (n= 4; except for 1st sampling with no replicates). Circle size reflects cumulative GPP during the same period. 

Letters indicate the corresponding period as shown in panel (b). A linear regression is shown as a dashed red line, together with 

the coefficient of determination (R2) and corresponding p-value. 

3.5 N2O sources using stable isotopes 

We used stable oxygen and nitrogen isotopes to identify the microbial processes underlying the measured N2O fluxes. The 555 

δ18O in N2O ranged between 17.3 and 39.8‰, while the site preference (SP-N2O) ranged from -7.2 to +18.2‰ (Fig. 7a). The 

dual isotope plots suggested that denitrification and/or nitrifier denitrification were the dominant N2O production pathways 

during the three weeks following the fertilization events on 27 and 28 February 2023 (Fig. 7a; Fig. A5).  Moreover, the 

observed trend of increasing enrichment of δ18O and SP-N2O over time (Fig. 7a) suggested isotopic fractionation associated 

with the microbial reduction of N2O to N2 during denitrification. Results from the FRAME model supported the qualitative 560 

source attribution derived from the isotopic mapping approach and enabled the quantification of the relative contributions of 

individual N2O-producing processes. While N2O fluxes slowly decreased over time (Fig. 7b), the contributions of these 

processes also changed over time. Bacterial denitrification and nitrifier denitrification together accounted for approximately 

90% of N2O production (Fig. 7c), except on 1 March, when nitrification and/or fungal denitrification contributed up to 20% 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



22 

 

of the total. Moreover, the gradual increase of the reduced N2O fraction over time (Fig. 7c) indicated a shift toward more 565 

complete denitrification, which coincided with a decrease in N2O fluxes (Fig. 7b). 

 

Figure 7. Isotopic signature of N2O, N2O flux magnitudes, and their estimated source fractions in March 2023, following 

fertilization applied on 27 February (ammonium-nitrate) and 28 February (slurry). (a) Dual isotope plot of δ18O-N2O  vs. site 

preference (SP-N2O). Colored boxes denote endmembers for the N2O mixing (nD: nitrifier denitrification, bD: bacterial 570 
denitrification, Ni: nitrification, fD: fungal denitrification). Endmember values of boxes are derived from Yu et al. (2020) and 

adjusted to the values of soil water (δ18O-H2O = - 9.2‰) at the study site (except for the Ni box). Lines for mixing (black) and N2O 

reduction to N2 (red) are shown. Individual measurements are shown as circles, with size reflecting flux magnitude and color 

indicating location (1 to 5; see Fig. 1). (b) N2O fluxes measured with static chambers (black) and reduced N2O fractions estimated 

by the FRAME model (purple). Values represent means ± one standard error across measurement locations. (c) N2O source 575 
fractions estimated by the FRAME model for denitrification & nitrifier denitrification and nitrification & fungal denitrification, 

displayed as violin plots, with mean values indicated by diamonds (see text for details). 

4. Discussion 

4.1 Seasonal changes in N2O fluxes and their drivers 

The central aim of this study was to determine when and how different biophysical and management factors influenced N2O 580 

fluxes during a winter wheat cropping season, to uncover seasonal patterns in the contributions of each driver. Two periods 

emerged as particularly sensitive to net N2O emissions: crop establishment and early spring. Elevated N2O emissions during 

the establishment phase of winter wheat were primarily driven by soil disturbance and low GPP.  Low GPP reflected limited 

plant N uptake, while soil disturbance, resulting from herbicide termination of the temporary grassland and direct seeding of 

winter wheat, likely stimulated mineralization of soil organic matter and crop residues. This was supported by an increase in 585 
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net ecosystem exchange of CO2 (NEE), indicating intensified soil respiration. Furthermore, soil Nmin increased from 8.7 kg N 

ha-1 before crop seeding to 34.6 kg N ha-1 by early December 2022 (0-0.3 m soil depth; Fig. 6d), indicating elevated N 

availability due to low plant N uptake and enhanced N mineralization, consistent with previous observations after herbicide 

termination of grassland swards from Buchen et al. (2017) and Helfrich et al. (2020). A similar pattern was also observed 

during cover-crop establishment after wheat harvest: although wheat residues had a lower N concentration (%N) than 590 

grassland residues (including clover), elevated soil temperature and mechanical disturbance during post-harvest operations 

likely enhanced mineralization of soil organic matter (Grandy and Robertson, 2006). This was supported by an increase in 

soil Nmin from 12 kg N ha-1 in late May to 27 kg N ha-1 in early August (0-0.3 m soil depth; Fig. 6d). Thus, different 

management practices leading to no or reduced vegetation performance favor N2O emissions. 

The high N2O emissions in early spring were predominantly driven by N fertilization, with WFPS contributing significantly 595 

during peak emission events, while GPP consistently decreased emissions from mid-April onward. The first fertilizer 

applications in late February supplied a large N input (111 kg N ha⁻¹) during the early crop development stage (tillering) and 

coincided with high soil moisture, conditions typical of central European climates (Ruosteenoja et al., 2018). At this stage, 

both LAI (Fig. 2d) and photosynthetic CO2 assimilation rates (Fig. 4a) were still low, indicating limited plant N uptake 

typical of early growth stages in Swiss winter wheat systems (Argento et al., 2022). These conditions resulted in excess N 600 

availability, with soil Nmin reaching 74 kg N ha-1 (0-0.3 m soil depth; Fig. 6d), which, in combination with precipitation 

events that increased WFPS (Fig. 2b), created optimal conditions for microbial N2O production. By contrast, the final 

fertilization in early April 2023 involved a smaller N input (27 kg N ha⁻¹) and was timed to coincide with the stem 

elongation phase, when plant N demand is typically very high. This is supported by higher LAI (~ 2 m2 m-2; Fig. 2d) and 

higher GPP (Fig. 4a), indicative of active growth and greater N assimilation. Under these conditions, less mineral N was 605 

likely available for microbial activity, reducing substrate availability for N2O production and resulting in significantly lower 

N2O losses.    

Over the entire study period, nitrogen (N) fertilization emerged as the dominant positive driver of N2O fluxes (Fig. A3), 

consistent with its role as the primary source of reactive nitrogen in croplands (Shcherbak et al., 2014). However, substantial 

and temporally dynamic contributions of soil moisture (WFPS), gross primary productivity (GPP), soil temperature, and soil 610 

disturbance highlighted the multifactorial nature of N2O emissions and the need to consider both biophysical and 

management drivers, along with their complex interactions. Overall, WFPS exhibited both positive and negative effects, but 

consistently emerged as a key driver during peak N2O emission events. GPP, used as a proxy for crop N uptake, showed a 

clear negative relationship with N2O fluxes: low GPP was associated with elevated N2O emissions, while sustained 

photosynthetic activity decreased emissions (Fig. 5). This supported earlier observations that active crop growth competes 615 

with microbial processes for soil available N, thereby limiting N2O production (Feigenwinter et al., 2023; Maier et al., 2022; 

Timilsina et al., 2024). Further evidence was found in the observed decline in soil N availability during periods of high GPP, 

particularly in late May (Fig. 6), suggesting efficient crop N uptake. Interestingly, the limiting effect of GPP on N2O fluxes 

appeared to be strongly modulated by soil moisture, with larger limitations, i.e., steeper negative slopes observed under 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



24 

 

higher WFPS conditions (Fig. 5). This provided additional evidence that plant N uptake plays a critical role in mitigating 620 

emissions under environmental conditions favorable for N2O production. 

4.2 N2O emission factor and greenhouse gas budgets 

In this study, an EF of 1.8% was estimated for winter wheat, slightly exceeding the IPCC (2019) default value of 1.6% for 

synthetic N fertilizers in wet climates (Table 2). However, in our study, approximately 30% of the applied N was derived 

from organic fertilizer applied as slurry, for which the IPCC recommends a lower EF of 0.6%. When accounting for the 625 

mixed N sources, the weighted IPCC default EF for our cropping system is 1.3%, indicating that the observed EF exceeded 

this value by 0.5 percentage points. Cumulative N2O emissions during the winter wheat season were 5.5 kg N2O-N ha−1, 

substantially exceeding the ranges reported for winter wheat by Garnier et al. (2024) for northern France (0.1 - 2.7 kg N2O-N 

ha−1) and by Tallec et al. (2022) for southwestern France (0.95 - 2.91 kg N2O-N ha−1), both studies using chamber 

measurements, although our N input (138 kg N ha-1) was within their input ranges. Yield-scaled N2O emissions in our study 630 

(1.1 kg N2O-N Mg-1) were approximately three times higher than the global wheat values reported by Yao et al. (2024) 

(0.301 - 0.346 kg N2O-N Mg-1). These discrepancies may partly reflect methodological differences, as global meta-analyses 

predominantly compile chamber-based flux measurements, which typically have lower temporal and spatial resolutions than 

the continuous EC flux measurements used in our study. High-frequency EC measurements are valuable for capturing short-

lived N2O emission peaks and for integrating the highly dynamic N2O fluxes over a larger spatial area than chamber 635 

measurements. Despite higher equipment costs and computational requirements, EC measurements thus improve the 

representativeness and the accuracy of cumulative N2O loss estimates. To our knowledge, this is the first study to report EC-

based N2O fluxes over a complete winter wheat cropping season. Notably, emissions from winter wheat only slightly 

exceeded those observed for maize in Switzerland (4.8 kg N2O-N ha−1; Maier et al., 2022), despite a much shorter cropping 

season of maize (127 days) compared to that of winter wheat (282 days; about 2.2 times longer). The two crops also clearly 640 

differed in their N use efficiency (NUE), calculated as the ratio between N output to N input, with winter wheat taking up 

162 kg N ha-1 from an input of 138 kg N ha-1 (NUE = 117%), whereas maize took up only 56 kg N ha-1 from an input of 110 

kg N ha-1 (NUE = 51%). The higher NUE observed for wheat is consistent with findings from Yu et al. (2022) and can be 

due to many factors, including crop-specific differences in N use (e.g., related to C3 vs. C4 photosynthetic types), soil N 

pools and N dynamics (e.g., mineralization rates), as well as weather conditions, affecting plant growth and N2O emissions.  645 

The substantial N2O losses significantly affected the total GHG budget of the winter wheat season, with N2O emissions 

offsetting 70% of the climate benefit gained from net CO2 uptake. The offset was considerably higher than reported by Maier 

et al. (2022) for pea and maize in Switzerland (12% and 10%, respectively), and it also exceeds values reported for managed 

permanent grasslands in Central Europe, where combined N2O and CH4 emissions offset about 21% of CO2 uptake 

(Hörtnagl et al., 2018). This large difference is most probably related to the small net CO2 sink during the winter wheat 650 

season, as the ecosystem acted as a net CO2 source for approximately five months, namely from seeding to mid-March. In 

contrast, spring-sown pea and maize did not undergo a winter phase; thus, net CO2 release occurred only briefly during their 
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respective cropping seasons, overcompensated by fast growth and thus high CO2 uptake during the summer months. Since, 

to our knowledge, full GHG budgets for winter wheat under temperate conditions are lacking, our study helps to close this 

gap by providing a season-long, field-scale budget based on continuous flux measurements. 655 

Despite the absence of fertilizer application, the average N2O flux during the cover crop season was only slightly lower than 

that observed during the winter wheat season (0.72 vs. 0.81 nmol m-2 s-1, respectively). This unexpectedly small difference 

may be explained by the slow crop establishment during the short cover crop season (60 days), resulting in low plant N 

uptake, while warm summer temperatures combined with recent soil disturbance from soil preparation enhanced N 

mineralization of soil organic matter and residues. Recent studies have shown that bare-soil conditions can promote N2O 660 

emissions due to reduced plant N uptake and enhanced microbial activity (Maier et al., 2025; Shang et al., 2024; Tallec et al., 

2022; Timilsina et al., 2024), which aligns well with our observations. Moreover, daily mean NEE remained positive until 

late August (Fig. 3a), indicating that the soil acted as a net CO2 source for approximately half of the 60-day cover crop 

season. As a result, the cover crop season was characterized by net CO2 release, accounting for 90% of the total GHG budget 

during this period (Table 2). The remaining 10% was attributed to N2O emissions, as CH4 fluxes were negligible. 665 

Nevertheless, the cover crop season was beneficial for the overall GHG budget at the Oensingen cropland site. In 2019, the 

soil remained bare after the winter wheat harvest until the sowing of winter barley and no cover crop was sown. As a result, 

the post-harvest daily CO2-eq fluxes were approximately double (16 g CO2-eq m-2 d-1 over bare soil; Maier et al., 2025) 

compared to those measured in this study (7.4 g CO2-eq m-2 d-1 over cover crop).  These elevated GHG emissions were 

primarily driven by increased CO2 emissions, with N2O contributing to a lesser extent. Although management and climatic 670 

conditions differed between the two years, this pronounced difference in GHG budgets highlights the benefit of maintaining 

a green cover crop in summer, between two winter crops, to reduce the GHG footprint of crop production. This interpretation 

is consistent with findings from Emmel et al. (2018), who showed through modelling that cover crops reduced CO2 losses 

compared with bare soil at the same site. These results also align with current Swiss policy efforts (Art. 71c DZV, Swiss 

Federal Council, 2025), aimed at limiting post-harvest bare-soil periods and promoting continuous soil cover to reduce 675 

erosion, improve soil fertility, and nitrate losses to ground water.  

4.3 Temporal dynamics of N2O source processes 

The FRAME model by Lewicki et al. (2022) provided a powerful framework for quantifying the relative contributions of 

different N2O-producing processes over time. In our study, denitrification and/or nitrifier denitrification were the dominant 

sources of N2O production (Fig. 7). Interestingly, nitrification and/or fungal denitrification contributed most strongly 680 

immediately after N fertilization (~20%), but declined rapidly thereafter, indicating that nitrification was only a short-lived 

contributor while denitrification remained dominant (Fig. 7). This transient response is consistent with the typical post-

fertilization evolution of mineral N, where NH4
+ availability peaks and is subsequently depleted as it is oxidized to NO3

- 

(Pérez et al., 2001). At our site, the overall dominance of denitrification-related pathways likely reflects poor soil drainage 

(only 10% sand) and persistently high topsoil (0.05 m) WFPS levels (above 65% during the fertilization in March). Such 685 
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conditions can create anaerobic environments that favor denitrification (Bateman and Baggs, 2005; Davidson, 1991). The 

initially low fraction (~0.5) of reduced N2O following fertilization might be related to elevated NO3
- concentrations, resulting 

in NO2
- accumulation and inhibition of the final reduction step of N2O to N2 (Blackmer and Bremner, 1978; Senbayram et 

al., 2019). Over time, the fraction of reduced N2O increased markedly, reaching high values on 17 March (~0.8), coincident 

with topsoil WFPS exceeding 80% and thus favoring complete denitrification. Detailed soil microbial community analyses 690 

would be needed to disentangle these competing N2O production processes, preferentially across different sites and crop 

rotations. 

4.4 Implications for N2O mitigation in cropland 

Our findings reinforce recent studies emphasizing the critical role of vegetation as a N sink in reducing the risk of N2O 

emissions from agricultural ecosystems (Feigenwinter et al., 2023; Maier et al., 2022, 2025; Tallec et al., 2022; Timilsina et 695 

al., 2024). Specifically, we identified crop establishment and early spring as two phases particularly prone to high N2O losses 

during the winter wheat season. These periods were characterized by a mismatch between N supply and plant demand, 

driven by limited crop growth and substantial mineral N inputs from mineralization or early fertilization, resulting in surplus 

mineral N in the soil. This excess N, combined with favorable moisture and temperature conditions, created optimal 

conditions for microbial N2O production. Stable isotope data further suggested that although denitrification was the 700 

dominant process for N2O production, high mineral N concentrations not only provided the substrates for N2O production 

but may also have inhibited the complete reduction of NO3
- to N2, thereby increasing the proportion of N lost as N2O instead 

of N2 (Pan et al., 2022). To address these vulnerabilities, management strategies that promote rapid and sustained crop 

growth, such as optimized sowing dates and cultivar choice, are key N2O mitigation strategies during the crop establishment 

phase (Tallec et al., 2022; Maier et al., 2025). In early spring, mitigation will depend on better synchronizing fertilizer N 705 

inputs with crop N demand and soil N release. This can be achieved by adjusting both the timing and the amount of N 

application (Hoben et al., 2011; Omonode et al., 2017), including split applications, site-specific fertilization planning 

(Jordan‐Meille et al., 2023), precision fertilization (Diacono et al., 2013), and enhanced-efficiency fertilizers that slow N 

release (Akiyama et al., 2010). Finally, site-specific soil conditions should be considered, as they can substantially influence 

N2O emission dynamics. At our poorly drained site, elevated soil moisture likely amplified denitrification losses by creating 710 

anaerobic conditions. Improving drainage in such settings may therefore help to mitigate N2O emissions by reducing the 

extent and duration of these favorable conditions for denitrification (Bouwman, 1996; Grossel et al., 2016). 

5.5 Conclusions 

The SHAP-based approach proved to be an effective tool for identifying critical periods for N2O losses and the main drivers 

for each period. This provided valuable insights into the temporal dynamics of N2O emissions during a winter wheat 715 

cropping season and the subsequent summer cover crop. Thanks to its flexibility and data-driven nature, this method could 
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be applied to other cropping systems to improve understanding of N2O emission dynamics and inform targeted management. 

Crop establishment and early spring emerged as particularly vulnerable phases for N2O losses, largely due to a mismatch 

between N supply and plant demand. This mismatch, often driven by slow early crop development or early fertilization, led 

to elevated mineral N levels in the soil, which, under favorable moisture and temperature conditions, created hotspots for 720 

microbial N2O production, primarily through denitrification and/or nitrifier denitrification. Gross primary productivity 

(GPP), as a proxy for plant N uptake, showed a strong negative relationship with N2O fluxes, emphasizing the role of active 

vegetation in limiting emissions. The emission factor (EF) estimated for winter wheat was 1.8%, exceeding IPCC default 

values, and cumulative N2O emissions were substantially higher than those previously reported for wheat. These losses 

notably offset 70% of the climate benefit from net CO2 uptake, highlighting the need for high-resolution N2O flux 725 

measurements over cropland to accurately represent N2O emissions in cropland GHG models at regional and global scales. 

Overall, our findings underscore the importance of implementing management strategies that enhance crop growth in the 

establishment phase and better align N inputs with plant N demand to reduce N2O emissions and minimize the GHG 

footprint of crop production. 

Appendix A 730 

Table A1. Management activities conducted during the 2022-2023 measurement period at the cropland in Oensingen. 

Crop Management activity Date 

Grass-clover Harvest 20 September 2022 

 Herbicide application  

(Glyphosate, W-5553 Sintagro) 

3 October 2022 

Winter wheat Sowing (direct seeding) 6 October 2022 

 Insecticide application 

(Sprinter, Netzmittel, Pixxarro) 

12 October 2022 

 Ammonium nitrate application 

(Mg-Ammonsalpeter, Landor) 

27 February 2023 

 Slurry application (dairy) 28 February 2023 

 Herbicide application 

(Concert SX, Derux, Gondor) 

22 March 2023 

 Ammonium nitrate application 

(Mg-Ammonsalpeter, Landor) 

6 April 2023 

 Harvest (grain and straw) 15 July 2023 

Bare soil Soil cultivation (10 cm depth) 17 July 2023 

Cover crop Sowing 27 July 2023 

 Mulching 25 September 2023 
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Bare soil Soil cultivation (10 cm depth) 27 September 2023  

 

Table A2. Overview of key phenological stages of winter wheat, showing the observation dates and corresponding BBCH growth 

stage numbers during the 2022-23 growing season. 

Date BBCH 

11 November 2022 13 

22 December 2022 21 

7 February 2023 22-23 

17 March 2023 24-25 

4 April 2023 31 

5 May 2023 33 

19 May 2023 39 

31 May 2023 59 

19 June 2023 73 

28 June 2023 75 

11 July 2023 92 

 735 

 

Figure A1. Relationship between cumulative gross primary productivity (GPP) and aboveground crop N content during the wheat 

growing season. Means  ± 1 standard deviation are given (n=12). The dashed red line indicates a linear least-squares regression, 

with the coefficient of determination (R2) and respective p-value shown. 

 740 
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Figure A2. Observed and predicted N2O fluxes at the cropland Oensingen for the test set (20% of total data). The blue circles 

represent the values predicted by the XGBoost model, while the red crosses indicate the observed values. The coefficient of 

determination (R2) and root mean square error (RMSE) for the test set are given. 745 

 

Figure A3. Cumulative positive (red) and negative (blue) SHAP contributions of each driver to predicted N2O fluxes from 

September 2022 to October 2023 at the cropland Oensingen. Positive and negative SHAP values were summed up separately, such 

that increases and decreases in N2O fluxes are shown independently rather than canceling each other out.  
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 750 

Figure A4. Temporal dynamics of N2O fluxes, gross primary productivity (GPP), and driver contributions to N2O fluxes at the 

Oensingen cropland from September 2022 to October 2023.  The unshaded area corresponds to the winter wheat cropping season, 

while the shaded areas indicate the final phase of the preceding temporary grassland and the cover crop following winter harvest. 

(a) Daily average N2O fluxes (measured, highest quality fluxes only) are shown in black, and daily average GPP in green. Arrows 

at the top denote management activities conducted during the winter wheat cropping season. (b) Contributions of individual 755 
drivers (i.e., N fertilization, water-filled pore space (WFPS), GPP, soil disturbance, and soil temperature (soil T)) are expressed as 

daily averages of SHAP values (see Sect. 2.6.2 for methodological details). The baseline (SHAP = 0) corresponds to a predicted N2O 

flux of 0.27 nmol m-2 s-1. Positive values indicate a driver’s increasing effect on N2O fluxes, while negative values reflect a 

decreasing effect.  
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 760 

Figure A5. Dual isotope plot of δ15Nbulk-N2O  vs. site preference (SP). Colored boxes denote N2O mixing endmembers (nD: nitrifier 

denitrification, bD: bacterial denitrification, Ni: nitrification, fD: fungal denitrification). Endmember values are derived from (Yu 

et al., 2020). Lines for mixing (black) and N2O reduction to N2 (red) are shown. Individual measurements are shown as circles, 

with size reflecting flux magnitude and color indicating location (1 to 5; see Fig. 1). 

Code availability 765 

The Python scripts used for data analysis and visualization are available on GitHub (fabioturc/n2o-wheat-drivers-sources) 

and archived on Zenodo (https://doi.org/10.5281/zenodo.18075225). Scripts used to produce the fluxes dataset are available 

on GitHub (fabioturc/dataset_ch-oe2_2021-23_flux_product) and Zenodo (https://doi.org/10.5281/zenodo.17975468). 

Data availability 

Eddy covariance ecosystem fluxes, meteorological data, and management information are openly available for download in 770 

the ETH Zurich Research Collection (https://doi.org/10.3929/ethz-c-000782868). All analysis data for this study are also 

openly available at Zenodo (https://doi.org/10.5281/zenodo.18075225). 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



32 

 

Author contributions 

FT, IF, LA, FL, and NB: conceptualization of the study. FT and LH: data curation. FT: formal analysis, visualization, and 

writing (original draft preparation). IF, FL, and NB: supervision. FL and NB: project administration. FL and NB: funding 775 

acquisition. All authors: methodology and writing (reviewing and editing).  

Competing interests 

The authors declare that they have no conflict of interest.  

Acknowledgements 

We gratefully acknowledge the technical assistance of Thomas Baur, Martin Rüegg, Philip Meier, Markus Staudinger, and 780 

Peter Ravelhofer for the maintenance of the eddy covariance station at Oensingen. Special thanks go to Matti Barthel for his 

support in planning the isotope campaign and conducting the N2O isotope analyses and to Francesco Argento for organizing 

the Nmin sampling. We also thank Seraina Wagner and Alena Pavlačková for their help in the field and laboratory. 

Appreciation is extended to Annika Ackermann and Roland A. Werner for running the Stable Isotope Laboratory of the 

Grassland Sciences Group, as well as to Samuel Tschumi and his team for managing the agricultural field surrounding the 785 

flux station. We thank Regine Maier for her guidance on station maintenance and flux processing. We also thank Eliza 

Harris and Yu Zhou for their valuable advice on the machine-learning model setup. AI tools (ChatGPT, Microsoft Copilot, 

Grammarly, Consensus, and DeepL) were used to support code development and scientific writing. All AI-assisted content 

was critically reviewed and revised by the authors to ensure accuracy, clarity, and scientific integrity. 

Financial support 790 

We acknowledge funding for the DONA project provided by Nestlé through the ETH Zürich Foundation and the World 

Food System Center. 

References 

Akiyama, H., Yan, X., and Yagi, K.: Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for 

N2O and NO emissions from agricultural soils: meta-analysis, Glob. Change Biol., 16, 1837–1846, 795 

https://doi.org/10.1111/j.1365-2486.2009.02031.x, 2010. 

Alaoui, A. and Goetz, B.: Dye tracer and infiltration experiments to investigate macropore flow, Geoderma, 144, 279–286, 

https://doi.org/10.1016/j.geoderma.2007.11.020, 2008. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



33 

 

Ammann, C., Flechard, C. R., Leifeld, J., Neftel, A., and Fuhrer, J.: The carbon budget of newly established temperate 

grassland depends on management intensity, Agric. Ecosyst. Environ., 121, 5–20, 800 

https://doi.org/10.1016/j.agee.2006.12.002, 2007. 

Argento, F., Liebisch, F., Simmler, M., Ringger, C., Hatt, M., Walter, A., and Anken, T.: Linking soil N dynamics and plant 

N uptake by means of sensor support, Eur. J. Agron., 134, 126462, https://doi.org/10.1016/j.eja.2022.126462, 2022. 

Aubinet, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E.: Long term carbon dioxide 

exchange above a mixed forest in the Belgian Ardennes, Agric. For. Meteorol., 108, 293–315, 805 

https://doi.org/10.1016/S0168-1923(01)00244-1, 2001. 

Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy covariance: a practical guide to measurement and data analysis, 

Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-007-2351-1, 2012. 

Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, 

present and future, Glob. Change Biol., 9, 479–492, https://doi.org/10.1046/j.1365-2486.2003.00629.x, 2003. 810 

Bateman, E. J. and Baggs, E. M.: Contributions of nitrification and denitrification to N2O emissions from soils at different 

water-filled pore space, Biol. Fertil. Soils, 41, 379–388, https://doi.org/10.1007/s00374-005-0858-3, 2005. 

Blackmer, A. M. and Bremner, J. M.: Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms, Soil 

Biol. Biochem., 10, 187–191, https://doi.org/10.1016/0038-0717(78)90095-0, 1978. 

Bouwman, A. F.: Direct emission of nitrous oxide from agricultural soils, Nutr. Cycl. Agroecosystems, 46, 53–70, 815 

https://doi.org/10.1007/BF00210224, 1996. 

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

Buchen, C., Well, R., Helfrich, M., Fuß, R., Kayser, M., Gensior, A., Benke, M., and Flessa, H.: Soil mineral N dynamics 

and N2O emissions following grassland renewal, Agric. Ecosyst. Environ., 246, 325–342, 

https://doi.org/10.1016/j.agee.2017.06.013, 2017. 820 

Buchen, C., Lewicka-Szczebak, D., Flessa, H., and Well, R.: Estimating N2O processes during grassland renewal and 

grassland conversion to maize cropping using N2O isotopocules, Rapid Commun. Mass Spectrom., 32, 1053–1067, 

https://doi.org/10.1002/rcm.8132, 2018. 

Buerge, D.: Die Nmin bestimmung: probenahme, aufbereitung, extraktion und NO3
− und NH4

+ messung sowie berechnung. 

Schweizerische referenzmethoden der forschungsanstalten. Version 1.2, 2020. 825 

Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., and Zechmeister-Boltenstern, S.: Nitrous oxide emissions 

from soils: how well do we understand the processes and their controls?, Philos. Trans. R. Soc. B Biol. Sci., 368, 20130122, 

2013. 

Carlson, K. M., Gerber, J. S., Mueller, N. D., Herrero, M., MacDonald, G. K., Brauman, K. A., Havlik, P., O’Connell, C. S., 

Johnson, J. A., Saatchi, S., and West, P. C.: Greenhouse gas emissions intensity of global croplands, Nat. Clim. Change, 7, 830 

63–68, https://doi.org/10.1038/nclimate3158, 2017. 

Chatskikh, D. and Olesen, J. E.: Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley, Soil 

Tillage Res., 97, 5–18, https://doi.org/10.1016/j.still.2007.08.004, 2007. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



34 

 

Chen, T. and Guestrin, C.: Xgboost: a scalable tree boosting system, in: Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 785–794, 835 

https://doi.org/10.1145/2939672.2939785, 2016. 

Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A., Luyssaert, S., Janssens, I. A., Bondeau, A., Dechow, 

R., Leip, A., Smith, Pc., Beer, C., Van Der Werf, G. R., Gervois, S., Van Oost, K., Tomelleri, E., Freibauer, A., Schulze, E. 

D., and Team, C. S.: The European carbon balance. Part 2: croplands, Glob. Change Biol., 16, 1409–1428, 

https://doi.org/10.1111/j.1365-2486.2009.02055.x, 2010. 840 

Davidson, E. A.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: Microbial production and 

consumption of greenhouse gases: methane, nitrogen oxide, and halomethanes, edited by: Rogers, J. E. and Whitman, W. B., 

ASM Press, Washington, D.C., 219–235, 1991. 

Decock, C. and Six, J.: How reliable is the intramolecular distribution of 15N in N2O to source partition N2O emitted from 

soil?, Soil Biol. Biochem., 65, 114–127, https://doi.org/10.1016/j.soilbio.2013.05.012, 2013. 845 

Del Grosso, S. J., Smith, W., Kraus, D., Massad, R. S., Vogeler, I., and Fuchs, K.: Approaches and concepts of modelling 

denitrification: increased process understanding using observational data can reduce uncertainties, Curr. Opin. Environ. 

Sustain., 47, 37–45, https://doi.org/10.1016/j.cosust.2020.07.003, 2020. 

Diacono, M., Rubino, P., and Montemurro, F.: Precision nitrogen management of wheat. A review, Agron. Sustain. Dev., 33, 

219–241, https://doi.org/10.1007/s13593-012-0111-z, 2013. 850 

Ehleringer, J. R. and Osmond, C. B.: Stable isotopes, in: Plant Physiological Ecology: Field methods and instrumentation, 

edited by: Pearcy, R. W., Ehleringer, J. R., Mooney, H. A., and Rundel, P. W., Springer Netherlands, Dordrecht, 281–300, 

https://doi.org/10.1007/978-94-010-9013-1_13, 2000. 

Emmel, C., Winkler, A., Hörtnagl, L., Revill, A., Ammann, C., D’Odorico, P., Buchmann, N., and Eugster, W.: Integrated 

management of a Swiss cropland is not sufficient to preserve its soil carbon pool in the long term, Biogeosciences, 15, 5377–855 

5393, https://doi.org/10.5194/bg-15-5377-2018, 2018. 

Epper, C. A., Zavattaro, L., Velthof, G. L., Thuriès, L., Steinsberger, T., Sørensen, P., Richards, K., Oberson, A., Möller, K., 

Merbold, L., Menzi, H., Liebisch, F., Levavasseur, F., Leiber, F., Kupper, T., Krol, D., Janke, D., Hofmeier, M., Hoekstra, 

N. J., Guillaume, T., Gilgen, A., Ghiasi, S., Frick, H., Dragoni, F., Otálora, X. D. de, Chadwick, D. R., Cavalli, D., 

Bretscher, D., Bischoff, W.-A., Bechini, L., Argento, F., Amon, B., Ammann, C., and Mayer, J.: Chapter Six - Optimizing 860 

nitrogen use efficiency in European livestock systems: from feed to plant growth, vol. 191, edited by: Sparks, D. L., 

Academic Press, 277–362, https://doi.org/10.1016/bs.agron.2025.01.003, 2025. 

Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W.: How a century of ammonia synthesis changed 

the world, Nat. Geosci., 1, 636–639, https://doi.org/10.1038/ngeo325, 2008. 

European Commission: Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against 865 

pollution caused by nitrates from agricultural sources, 1991. 

Feigenwinter, I., Hörtnagl, L., and Buchmann, N.: N2O and CH4 fluxes from intensively managed grassland: the importance 

of biological and environmental drivers vs. management, Sci. Total Environ., 903, 166389, 

https://doi.org/10.1016/j.scitotenv.2023.166389, 2023. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



35 

 

FOEN: Switzerland’s greenhouse gas inventory 1990–2023: national inventory document and reporting tables (CRT). 870 

Submission of 2025 under the United Nations framework convention on climate change and under the Paris agreement., 

Federal Office for the Environment, Bern, 2025. 

Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., 

Watanabe, M., Wild, M., and Zhang, H.: The Earth’s energy budget, climate feedbacks, and climate sensitivity, in: Climate 

change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the 875 

intergovernmental panel on climate change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., 

Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., 

Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United 

Kingdom and New York, NY, USA, 923–1054, https://doi.org/10.1017/9781009157896.009, 2021. 

Fratini, G., Ibrom, A., Arriga, N., Burba, G., and Papale, D.: Relative humidity effects on water vapour fluxes measured with 880 

closed-path eddy-covariance systems with short sampling lines, Agric. For. Meteorol., 165, 53–63, 

https://doi.org/10.1016/j.agrformet.2012.05.018, 2012. 

Gallarotti, N., Barthel, M., Verhoeven, E., Pereira, E. I. P., Bauters, M., Baumgartner, S., Drake, T. W., Boeckx, P., Mohn, 

J., Longepierre, M., Mugula, J. K., Makelele, I. A., Ntaboba, L. C., and Six, J.: In-depth analysis of N2O fluxes in tropical 

forest soils of the Congo Basin combining isotope and functional gene analysis, ISME J., 15, 3357–3374, 885 

https://doi.org/10.1038/s41396-021-01004-x, 2021. 

Garnier, J., Casquin, A., Mercier, B., Martinez, A., Gréhan, E., Azougui, A., Bosc, S., Pomet, A., Billen, G., and Mary, B.: 

Six years of nitrous oxide emissions from temperate cropping systems under real-farm rotational management, Agric. For. 

Meteorol., 354, 110085, https://doi.org/10.1016/j.agrformet.2024.110085, 2024. 

Gnisia, G., Weik, J., Ruser, R., Essich, L., Lewandowski, I., and Stein, A.: Machine learning-based prediction of nitrous 890 

oxide emissions from arable farming: exploring management practices as predictor variables, Ecol. Indic., 172, 113233, 

https://doi.org/10.1016/j.ecolind.2025.113233, 2025. 

Goodrich, J. P., Wall, A. M., Campbell, D. I., Fletcher, D., Wecking, A. R., and Schipper, L. A.: Improved gap filling 

approach and uncertainty estimation for eddy covariance N2O fluxes, Agric. For. Meteorol., 297, 108280, 

https://doi.org/10.1016/j.agrformet.2020.108280, 2021. 895 

Grandy, A. S. and Robertson, G. P.: Initial cultivation of a temperate-region soil immediately accelerates aggregate turnover 

and CO2 and N2O fluxes, Glob. Change Biol., 12, 1507–1520, https://doi.org/10.1111/j.1365-2486.2006.01166.x, 2006. 

Grossel, A., Nicoullaud, B., Bourennane, H., Lacoste, M., Guimbaud, C., Robert, C., and Hénault, C.: The effect of tile-

drainage on nitrous oxide emissions from soils and drainage streams in a cropped landscape in Central France, Agric. 

Ecosyst. Environ., 230, 251–260, https://doi.org/10.1016/j.agee.2016.06.015, 2016. 900 

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V.: Gene selection for cancer classification using support vector machines, 

Mach. Learn., 46, 389–422, https://doi.org/10.1023/A:1012487302797, 2002. 

Hamrani, A., Akbarzadeh, A., and Madramootoo, C. A.: Machine learning for predicting greenhouse gas emissions from 

agricultural soils, Sci. Total Environ., 741, 140338, https://doi.org/10.1016/j.scitotenv.2020.140338, 2020. 

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, 905 

S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., 

Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: 

Array programming with NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-020-2649-2, 2020a. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



36 

 

Harris, S. J., Liisberg, J., Xia, L., Wei, J., Zeyer, K., Yu, L., Barthel, M., Wolf, B., Kelly, B. F. J., Cendón, D. I., Blunier, T., 

Six, J., and Mohn, J.: N2O isotopocule measurements using laser spectroscopy: analyzer characterization and 910 

intercomparison, Atmospheric Meas. Tech., 13, 2797–2831, https://doi.org/10.5194/amt-13-2797-2020, 2020b. 

Helfrich, M., Nicolay, G., Well, R., Buchen-Tschiskale, C., Dechow, R., Fuß, R., Gensior, A., Paulsen, H. M., Berendonk, 

C., and Flessa, H.: Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O 

emission, Agric. Ecosyst. Environ., 298, 106975, https://doi.org/10.1016/j.agee.2020.106975, 2020. 

Hoben, J. P., Gehl, R. J., Millar, N., Grace, P. R., and Robertson, G. P.: Nonlinear nitrous oxide (N2O) response to nitrogen 915 

fertilizer in on-farm corn crops of the US Midwest, Glob. Change Biol., 17, 1140–1152, https://doi.org/10.1111/j.1365-

2486.2010.02349.x, 2011. 

Horst, T. W. and Lenschow, D. H.: Attenuation of scalar fluxes measured with spatially-displaced sensors, Bound.-Layer 

Meteorol., 130, 275–300, https://doi.org/10.1007/s10546-008-9348-0, 2009. 

Hörtnagl, L.: diive, https://doi.org/10.5281/zenodo.16386810, 2025. 920 

Hörtnagl, L., Barthel, M., Buchmann, N., Eugster, W., Butterbach-Bahl, K., Díaz-Pinés, E., Zeeman, M., Klumpp, K., Kiese, 

R., Bahn, M., Hammerle, A., Lu, H., Ladreiter-Knauss, T., Burri, S., and Merbold, L.: Greenhouse gas fluxes over managed 

grasslands in Central Europe, Glob. Change Biol., 24, 1843–1872, https://doi.org/10.1111/gcb.14079, 2018. 

Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 

2007. 925 

IPCC: N₂O emissions from managed soils, and CO₂ emissions from lime and urea application, Chapter 11, in: 2019 

refinement to the 2006 IPCC guidelines for national greenhouse gas inventories, edited by: Calvo Buendia, E., Tanabe, K., 

Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., and Federici, S., 

Intergovernmental Panel on Climate Change (IPCC), Geneva, Switzerland, 2019. 

IPCC: Climate change 2021 - the physical science basis: contribution of working group I to the sixth assessment report of the 930 

intergovernmental panel on climate change, Cambridge University Press, 2021. 

Jordan‐Meille, L., Denoroy, P., Dittert, K., Cugnon, T., Quemada, M., Wall, D., Bechini, L., Marx, S., Oenema, O., 

Reijneveld, A., Liebisch, F., Diedhiou, K., Degan, F., and Higgins, S.: Comparison of nitrogen fertilisation recommendations 

of West European Countries, Eur. J. Soil Sci., 74, e13436, https://doi.org/10.1111/ejss.13436, 2023. 

Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple two-dimensional parameterisation for Flux Footprint 935 

Prediction (FFP), Geosci. Model Dev., 8, 3695–3713, https://doi.org/10.5194/gmd-8-3695-2015, 2015. 

Krebs, L., Hörtnagl, L., Scapucci, L., Gharun, M., Feigenwinter, I., and Buchmann, N.: Net ecosystem CO2 exchange of a 

subalpine spruce forest in Switzerland over 26 years: effects of phenology and contributions of abiotic drivers at daily time 

scales, Glob. Change Biol., 31, e70371, https://doi.org/10.1111/gcb.70371, 2025. 

Ladha, J. K., Pathak, H., J. Krupnik, T., Six, J., and van Kessel, C.: Efficiency of fertilizer nitrogen in cereal production: 940 

retrospects and prospects, in: Advances in Agronomy, vol. 87, Academic Press, 85–156, https://doi.org/10.1016/S0065-

2113(05)87003-8, 2005. 

Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J., and Garnier, J.: 50 year trends in nitrogen use efficiency of world 

cropping systems: the relationship between yield and nitrogen input to cropland, Environ. Res. Lett., 9, 105011, 

https://doi.org/10.1088/1748-9326/9/10/105011, 2014. 945 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



37 

 

Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soils: a review, Eur. J. Soil Biol., 

37, 25–50, https://doi.org/10.1016/S1164-5563(01)01067-6, 2001. 

Lewicka-Szczebak, D., Lewicki, M. P., and Well, R.: N2O isotope approaches for source partitioning of N2O production and 

estimation of N2O reduction – validation with the 15N gas-flux method in laboratory and field studies, Biogeosciences, 17, 

5513–5537, https://doi.org/10.5194/bg-17-5513-2020, 2020. 950 

Lewicki, M. P., Lewicka-Szczebak, D., and Skrzypek, G.: FRAME—Monte Carlo model for evaluation of the stable isotope 

mixing and fractionation, PLOS ONE, 17, e0277204, https://doi.org/10.1371/journal.pone.0277204, 2022. 

Liang, G.: Nitrogen fertilization mitigates global food insecurity by increasing cereal yield and its stability, Glob. Food 

Secur., 34, 100652, https://doi.org/10.1016/j.gfs.2022.100652, 2022. 

Lognoul, M., Debacq, A., De Ligne, A., Dumont, B., Manise, T., Bodson, B., Heinesch, B., and Aubinet, M.: N2O flux 955 

short-term response to temperature and topsoil disturbance in a fertilized crop: an eddy covariance campaign, Agric. For. 

Meteorol., 271, 193–206, https://doi.org/10.1016/j.agrformet.2019.02.033, 2019. 

Lundberg, S. M. and Lee, S.-I.: A unified approach to interpreting model predictions, in: Advances in neural information 

processing systems, 30, 2017. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, 960 

S.-I.: From local explanations to global understanding with explainable AI for trees, Nat. Mach. Intell., 2, 56–67, 

https://doi.org/10.1038/s42256-019-0138-9, 2020. 

Maier, R., Hörtnagl, L., and Buchmann, N.: Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two 

cropping seasons: drivers, budgets, and emission factors for nitrous oxide, Sci. Total Environ., 849, 157541, 

https://doi.org/10.1016/j.scitotenv.2022.157541, 2022. 965 

Maier, R., Hörtnagl, L., and Buchmann, N.: Large nitrous oxide emissions from arable soils after crop harvests prior to 

sowing, Nutr. Cycl. Agroecosystems, https://doi.org/10.1007/s10705-024-10395-0, 2025. 

Mauder, M. and Foken, T.: Documentation and instruction manual of the eddy covariance software package TK2, University 

of Bayreuth, Department of Micrometeorology, Bayreuth, Germany, 2004. 

McKinney, W.: Data structures for statistical computing in Python, in: Proceedings of the 9th Python in Science Conference, 970 

56–61, https://doi.org/10.25080/Majora-92bf1922-00a, 2010. 

Meier, U.: Growth stages of mono- and dicotyledonous plants: BBCH Monograph, https://doi.org/10.5073/20180906-

074619, 2018. 

Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N.: Greenhouse gas budget (CO2, CH4 and 

N2O) of intensively managed grassland following restoration, Glob. Change Biol., 20, 1913–1928, 975 

https://doi.org/10.1111/gcb.12518, 2014. 

Molnar, C.: Interpretable machine learning: a guide for making black box models explainable, 3rd ed., 2025. 

Moncrieff, J., Clement, R., Finnigan, J., and Meyers, T.: Averaging, detrending, and filtering of eddy covariance time series, 

in: Handbook of micrometeorology: a guide for surface flux measurement and analysis, edited by: Lee, X., Massman, W., 

and Law, B., Springer Netherlands, Dordrecht, 7–31, https://doi.org/10.1007/1-4020-2265-4_2, 2005. 980 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



38 

 

Nabuurs, G.-J., Mrabet, R., Abu Hatab, A., Bustamante, M., Clark, H., Havlík, P., House, J., Mbow, C., Ninan, K. N., Popp, 

A., Roe, S., Sohngen, B., and Towprayoon, S.: Agriculture, forestry and other land uses (AFOLU), in: Climate change 2022: 

mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel 

on climate change, edited by: Shukla, P. R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, 

M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, S., and Malley, J., Cambridge University 985 

Press, Cambridge, UK and New York, USA, https://doi.org/10.1017/9781009157926.009, 2022. 

Nemitz, E., Mammarella, I., Ibrom, A., Aurela, M., Burba, G. G., Dengel, S., Gielen, B., Grelle, A., Heinesch, B., Herbst, 

M., Hörtnagl, L., Klemedtsson, L., Lindroth, A., Lohila, A., McDermitt, D. K., Meier, P., Merbold, L., Nelson, D., Nicolini, 

G., Nilsson, M. B., Peltola, O., Rinne, J., and Zahniser, M.: Standardisation of eddy-covariance flux measurements of 

methane and nitrous oxide, Int. Agrophysics, 32, 517–549, https://doi.org/10.1515/intag-2017-0042, 2018. 990 

Omonode, R. A., Halvorson, A. D., Gagnon, B., and Vyn, T. J.: Achieving lower nitrogen balance and higher nitrogen 

recovery efficiency reduces nitrous oxide emissions in North America’s maize cropping systems, Front. Plant Sci., 8, 

https://doi.org/10.3389/fpls.2017.01080, 2017. 

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., 

Vesala, T., and Yakir, D.: Towards a standardized processing of net ecosystem exchange measured with eddy covariance 995 

technique: algorithms and uncertainty estimation, Biogeosciences, 3, 571–583, https://doi.org/10.5194/bg-3-571-2006, 2006. 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., 

Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., 

Ammann, C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, 

A., Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. 1000 

A., Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, 

J., Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I.,  

Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., 

D’Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. de, Ligne, A. D., De Oliveira, R. C., 

Delpierre, N., Desai, A. R., Di Bella, C. M., Tommasi, P. di, Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., 1005 

Dufrêne, E., Dunn, A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., 

Famulari, D., Fares, S., Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., et al.: The 

FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data, Sci. Data, 7, 225, 

https://doi.org/10.1038/s41597-020-0534-3, 2020. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., 1010 

Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É.: Scikit-learn: machine 

learning in Python, J Mach Learn Res, 12, 2825–2830, 2011. 

Pérez, T., Trumbore, S. E., Tyler, S. C., Matson, P. A., Ortiz-Monasterio, I., Rahn, T., and Griffith, D. W. T.: Identifying the 

agricultural imprint on the global N2O budget using stable isotopes, J. Geophys. Res. Atmospheres, 106, 9869–9878, 

https://doi.org/10.1029/2000JD900809, 2001. 1015 

Philibert, A., Loyce, C., and Makowski, D.: Prediction of N2O emission from local information with Random Forest, 

Environ. Pollut., 177, 156–163, https://doi.org/10.1016/j.envpol.2013.02.019, 2013. 

Portmann, R. W., Daniel, J. S., and Ravishankara, A. R.: Stratospheric ozone depletion due to nitrous oxide: influences of 

other gases, Philos. Trans. R. Soc. B Biol. Sci., 367, 1256–1264, https://doi.org/10.1098/rstb.2011.0377, 2012. 

Ravishankara, A. R., Daniel, J. S., and Portmann, R. W.: Nitrous oxide (N2O): the dominant ozone-depleting substance 1020 

emitted in the 21st century, Science, 326, 123–125, https://doi.org/10.1126/science.1176985, 2009. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



39 

 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., 

Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., 

Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., 

Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into 1025 

assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol., 11, 1424–1439, 

https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. 

Rummel, P. S., Englert, P., Beule, L., and Pausch, J.: N2O flux dynamics and production pathways modulated by soil organic 

matter and litter turnover, Biol. Fertil. Soils, https://doi.org/10.1007/s00374-025-01925-1, 2025. 

Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., and Peltola, H.: Seasonal soil moisture and drought 1030 

occurrence in Europe in CMIP5 projections for the 21st century, Clim. Dyn., 50, 1177–1192, https://doi.org/10.1007/s00382-

017-3671-4, 2018. 

Sabbatini, S., Mammarella, I., Arriga, N., Fratini, G., Graf, A., Hörtnagl, L., Ibrom, A., Longdoz, B., Mauder, M., Merbold, 

L., Metzger, S., Montagnani, L., Pitacco, A., Rebmann, C., Sedlák, P., Šigut, L., Vitale, D., and Papale, D.: Eddy covariance  

raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations, Int. Agrophysics, 32, 495–515, 1035 

https://doi.org/10.1515/intag-2017-0043, 2018. 

Saha, D., Basso, B., and Robertson, G. P.: Machine learning improves predictions of agricultural nitrous oxide (N2O) 

emissions from intensively managed cropping systems, Environ. Res. Lett., 16, 024004, https://doi.org/10.1088/1748-

9326/abd2f3, 2021. 

Scapucci, L., Shekhar, A., Aranda-Barranco, S., Bolshakova, A., Hörtnagl, L., Gharun, M., and Buchmann, N.: Compound 1040 

soil and atmospheric drought (CSAD) events and CO2 fluxes of a mixed deciduous forest: the occurrence, impact, and 

temporal contribution of main drivers, Biogeosciences, 21, 3571–3592, https://doi.org/10.5194/bg-21-3571-2024, 2024. 

Scapucci, L., Krebs, L., Burri, S., Hörtnagl, L., and Buchmann, N.: Soil and forest floor respiration already acclimated to 

increasing temperatures in a mixed deciduous forest, Ecol. Process., 14, 71, https://doi.org/10.1186/s13717-025-00639-4, 

2025. 1045 

Schulze, E. D., Luyssaert, S., Ciais, P., Freibauer, A., Janssens, I. A., Soussana, J. F., Smith, P., Grace, J., Levin, I., 

Thiruchittampalam, B., Heimann, M., Dolman, A. J., Valentini, R., Bousquet, P., Peylin, P., Peters, W., Rödenbeck, C., 

Etiope, G., Vuichard, N., Wattenbach, M., Nabuurs, G. J., Poussi, Z., Nieschulze, J., and Gash, J. H.: Importance of methane 

and nitrous oxide for Europe’s terrestrial greenhouse-gas balance, Nat. Geosci., 2, 842–850, 

https://doi.org/10.1038/ngeo686, 2009. 1050 

Senbayram, M., Budai, A., Bol, R., Chadwick, D., Marton, L., Gündogan, R., and Wu, D.: Soil NO3
− level and O2 

availability are key factors in controlling N2O reduction to N2 following long-term liming of an acidic sandy soil, Soil Biol. 

Biochem., 132, 165–173, https://doi.org/10.1016/j.soilbio.2019.02.009, 2019. 

Shang, Z., Cui, X., van Groenigen, K. J., Kuhnert, M., Abdalla, M., Luo, J., Zhang, W., Song, Z., Jiang, Y., Smith, P., and 

Zhou, F.: Global cropland nitrous oxide emissions in fallow period are comparable to growing-season emissions, Glob. 1055 

Change Biol., 30, e17165, https://doi.org/10.1111/gcb.17165, 2024. 

Shcherbak, I., Millar, N., and Robertson, G. P.: Global meta-analysis of the nonlinear response of soil nitrous oxide (N2O) 

emissions to fertilizer nitrogen, Proc. Natl. Acad. Sci., 111, 9199–9204, https://doi.org/10.1073/pnas.1322434111, 2014. 

Smith, K. A.: Changing views of nitrous oxide emissions from agricultural soil: key controlling processes and assessment at 

different spatial scales, Eur. J. Soil Sci., 68, 137–155, https://doi.org/10.1111/ejss.12409, 2017. 1060 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



40 

 

Smith, K. A., McTaggart, I. P., Dobbie, K. E., and Conen, F.: Emissions of N2O from Scottish agricultural soils, as a 

function of fertilizer N, Nutr. Cycl. Agroecosystems, 52, 123–130, https://doi.org/10.1023/A:1009781518738, 1998. 

Swiss Federal Council: Water Protection Ordinance (WPO, 814.201) of 28 October 1998, 1998. 

Swiss Federal Council: Verordnung über die Direktzahlungen an die Landwirtschaft (Direktzahlungsverordnung, DZV) vom 

23. Oktober 2013 (Stand am 1. Januar 2025), 2025. 1065 

Tallec, T., Bigaignon, L., Delon, C., Brut, A., Ceschia, E., Mordelet, P., Zawilski, B., Granouillac, F., Claverie, N., Fieuzal, 

R., Lemaire, B., and Le Dantec, V.: Dynamics of nitrous oxide emissions from two cropping systems in southwestern France 

over 5 years: cross impact analysis of heterogeneous agricultural practices and local climate variability, Agric. For. 

Meteorol., 323, 109093, https://doi.org/10.1016/j.agrformet.2022.109093, 2022. 

Tian, H., Pan, N., Thompson, R. L., Canadell, J. G., Suntharalingam, P., Regnier, P., Davidson, E. A., Prather, M., Ciais, P., 1070 

Muntean, M., Pan, S., Winiwarter, W., Zaehle, S., Zhou, F., Jackson, R. B., Bange, H. W., Berthet, S., Bian, Z., Bianchi, D., 

Bouwman, A. F., Buitenhuis, E. T., Dutton, G., Hu, M., Ito, A., Jain, A. K., Jeltsch-Thömmes, A., Joos, F., Kou-Giesbrecht, 

S., Krummel, P. B., Lan, X., Landolfi, A., Lauerwald, R., Li, Y., Lu, C., Maavara, T., Manizza, M., Millet, D. B., Mühle, J.,  

Patra, P. K., Peters, G. P., Qin, X., Raymond, P., Resplandy, L., Rosentreter, J. A., Shi, H., Sun, Q., Tonina, D., Tubiello, F. 

N., van der Werf, G. R., Vuichard, N., Wang, J., Wells, K. C., Western, L. M., Wilson, C., Yang, J., Yao, Y., You, Y., and 1075 

Zhu, Q.: Global nitrous oxide budget (1980–2020), Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-

2543-2024, 2024. 

Timilsina, A., Neupane, P., Yao, J., Raseduzzaman, M., Bizimana, F., Pandey, B., Feyissa, A., Li, X., Dong, W., Yadav, R. 

K. P., Gomez-Casanovas, N., and Hu, C.: Plants mitigate ecosystem nitrous oxide emissions primarily through reductions in 

soil nitrate content: evidence from a meta-analysis, Sci. Total Environ., 949, 175115, 1080 

https://doi.org/10.1016/j.scitotenv.2024.175115, 2024. 

Toyoda, S. and Yoshida, N.: Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass 

spectrometer, Anal. Chem., 71, 4711–4718, https://doi.org/10.1021/ac9904563, 1999. 

Toyoda, S., Yoshida, N., Miwa, T., Matsui, Y., Yamagishi, H., Tsunogai, U., Nojiri, Y., and Tsurushima, N.: Production 

mechanism and global budget of N2O inferred from its isotopomers in the western North Pacific, Geophys. Res. Lett., 29, 7–1085 

1, https://doi.org/10.1029/2001GL014311, 2002. 

Turco, F.: fabioturc/dataset_ch-oe2_2021-23_flux_product: FP2025.12, https://doi.org/10.5281/zenodo.17975468, 2025a. 

Turco, F.: fabioturc/n2o-wheat-drivers-sources: version 2025-12-28, https://doi.org/10.5281/zenodo.18075225, 2025b. 

Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., and Van Kessel, C.: Towards an agronomic 

assessment of N2O emissions: a case study for arable crops, Eur. J. Soil Sci., 61, 903–913, https://doi.org/10.1111/j.1365-1090 

2389.2009.01217.x, 2010. 

Verhoeven, E., Barthel, M., Yu, L., Celi, L., Said-Pullicino, D., Sleutel, S., Lewicka-Szczebak, D., Six, J., and Decock, C.: 

Early season N2O emissions under variable water management in rice systems: source-partitioning emissions using isotope 

ratios along a depth profile, Biogeosciences, 16, 383–408, https://doi.org/10.5194/bg-16-383-2019, 2019. 

Vickers, D. and Mahrt, L.: Quality control and flux sampling problems for tower and aircraft data, J. Atmospheric Ocean. 1095 

Technol., 14, 512–526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2, 1997. 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.



41 

 

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., 

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., 

Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R. , 

Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: SciPy 1100 

1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-

019-0686-2, 2020. 

Waskom, M. L.: Seaborn: statistical data visualization, J. Open Source Softw., 6, 3021, https://doi.org/10.21105/joss.03021, 

2021. 

Wilczak, J. M., Oncley, S. P., and Stage, S. A.: Sonic anemometer tilt correction algorithms, Bound.-Layer Meteorol., 99, 1105 

127–150, https://doi.org/10.1023/A:1018966204465, 2001. 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.: Basic and 

extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 15, 5015–5030, 

https://doi.org/10.5194/bg-15-5015-2018, 2018. 

Yao, Z., Guo, H., Wang, Y., Zhan, Y., Zhang, T., Wang, R., Zheng, X., and Butterbach-Bahl, K.: A global meta-analysis of 1110 

yield-scaled N2O emissions and its mitigation efforts for maize, wheat, and rice, Glob. Change Biol., 30, e17177, 

https://doi.org/10.1111/gcb.17177, 2024. 

Yu, L., Harris, E., Lewicka‐Szczebak, D., Barthel, M., Blomberg, M. R. A., Harris, S. J., Johnson, M. S., Lehmann, M. F., 

Liisberg, J., Müller, C., Ostrom, N. E., Six, J., Toyoda, S., Yoshida, N., and Mohn, J.: What can we learn from N2O isotope 

data? Analytics, processes and modelling, Rapid Commun. Mass Spectrom., 34, https://doi.org/10.1002/rcm.8858, 2020. 1115 

Yu, X., Keitel, C., Zhang, Y., Wangeci, A. N., and Dijkstra, F. A.: Global meta-analysis of nitrogen fertilizer use efficiency 

in rice, wheat and maize, Agric. Ecosyst. Environ., 338, 108089, https://doi.org/10.1016/j.agee.2022.108089, 2022. 

 

https://doi.org/10.5194/egusphere-2026-27
Preprint. Discussion started: 20 January 2026
c© Author(s) 2026. CC BY 4.0 License.


