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10 Abstract. This study reports on the concentration of rare earth elements (REE) along with ancillary geochemical parameters
at 12 locations across the Mackenzie River, its delta and coastal waters, both under ice and in open water. Specifically, we
analyzed REE, carbon, and redox-sensitive elements (Fe, Mn) in 108 sediment samples and 96 porewater and overlying water
samples collected under ice before the spring freshet (April-May) and in open water in early fall (August—September). While
sediment REE concentrations remained relatively stable across seasons, results revealed a striking contrast between the two

15 sampling seasons in the porewater, where REE concentrations were nearly two orders of magnitude lower under ice (avg. 216
nmol L) than under open water in the fall (avg. 3.20 nmol L"). Similarly, dissolved organic carbon (DOC) concentrations
were approximately one order of magnitude lower under ice than in the fall. Sediment REE concentrations were positively
correlated to those of Fe and Mn, particularly under ice, consistent with control by adsorption processes onto their
(oxy)hydroxides. In the porewater, winter and fall samples form distinct clusters based on concentration magnitudes.

20 Chromophoric properties of dissolved organic matter (DOM) in the overlying water suggest that under-ice DOM was
characterized by low aromaticity, older material compared to the more aromatic, humic-rich DOM measured in open-water.
We conclude that under-ice conditions, chiefly cold temperature, allow for DOM accumulation in the porewater, which,
combined with other possible REE enrichment mechanisms in the porewater, such as REE—carbonate complex formation and
exclusion during ice formation, contributes to the elevated winter REE concentrations observed here. To our knowledge, this

25 s the first report of such large seasonal fluctuation in dissolved REE in the fluvial-marine transition zone of the Mackenzie,

the largest riverine influence on the Arctic Ocean.
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1. Introduction

Arctic coastal environments and deltas represent critical biogeochemical hotspots at the interface between terrestrial and

30 marine systems. They serve as important conduits and processing sites for trace elements and contaminants. The Mackenzie
River system, which drains a large portion of northwestern Canada and discharges into the Beaufort Sea, has received particular
attention for its role in transporting contaminants, with recent studies revealing pronounced seasonal and spatial patterns in
mercury exposure throughout the Mackenzie watershed, linked to hydrological conditions and biogeochemical processes
(Jermilova et al., 2025). These findings highlight the importance of understanding trace element cycling in Arctic river systems,

35 where seasonal variations in temperature, organic matter dynamics, and ice cover can influence contaminant behavior.
Seasonal ice cover responds strongly to global environmental changes (Gudasz et al., 2010; Landy et al., 2022). Seasonality
significantly influences elemental distribution and geochemical processes by affecting water and sediment temperatures, site
salinity through ice exclusion or freshwater dilution (Degrandpre et al., 2021; Finlay et al., 2006), photosynthesis activity
(Retamal et al., 2008; Semkin et al., 2022), river discharge patterns (Gareis and Lesack, 2017), and carbon input from

40 surrounding terrestrial environments (Holmes et al., 2012; Gareis and Lesack, 2017; Liu et al., 2022). These seasonal dynamics
collectively regulate environmental processes and the associated mobility and distribution of reactive elements.

Among the elements of growing scientific interest, rare earth elements (REE) offer insights both into biogeochemical processes
due to their coherent geochemical behavior and sensitivity to environmental conditions (Skerlep et al., 2025; Ye et al., 2019),
and as tracers of sediment sources due to their distribution representing geological signatures (Bossé-Demers et al., 2025).

45 Interest in REE thus continues to grow due to their applications in advanced technologies and their increasing utility as proxies
for environmental processes (Alonso et al., 2012; Haque et al., 2014; Tostevin et al., 2016; Guo et al., 2024; Grenier et al.,
2022).

Generally, REEs tend to behave coherently in the environment due to their similar reactivity patterns and predominant
oxidation state, +11I (Wall, 2021; Rollinson and Pease, 2021). Organic carbon quantity and quality (i.e., aromaticity, molecular

50 weight and functional group composition) may influence the distribution of REE through organic matter complexation, as
dissolved organic compounds can form stable complexes with REE, affecting their mobility and fractionation patterns
(Davranche et al., 2004; Pourret et al., 2007a, c; Marsac et al., 2021). Marginson et al. (2024) found positive dissolved organic
carbon (DOC)-REE and humic-like dissolved organic matter (DOM)-REE correlations in the sub-Arctic George River,
highlighting the influence of organic matter quantity and quality on REE distribution in these systems.

55 While dissolved REE in Arctic lakes and rivers display very different concentrations between sites with otherwise similar
geochemical characteristics (Macmillan et al., 2017; Pokrovsky et al., 2016), the seasonal dynamics of sedimentary REE in
cold regions remains understudied. To our knowledge, REE have never been studied in Arctic river porewater. Despite being
the geochemical compartment that mechanistically connects sediment and overlying water, porewater remains comparatively

understudied due to analytical challenges associated with low concentrations and limited sample (Abbott et al., 2015). Yet,
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60 REE cycling in sediment porewater contributes significantly their mobility in marine sediment (Abbott et al., 2015; Deng et
al., 2022).
Here, we set out to better understand the magnitude and controlling factors of seasonal variations in REE concentrations.
Previous work at other Arctic sites has hinted at various causes for such variation at other sites, including reduced bacterial
degradation of organic matter at low temperatures preserving DOC—-REE complexes (Arnosti et al., 1998), and enhanced REE—

65 carbonate complex stability at low temperatures (Marginson et al., 2024). Here, we investigate the linkages between REE
concentrations, DOC concentrations and DOM quality. To do so, we analysed REE, DOC/DOM, and Fe and Mn in sediment,
overlying water and porewater samples across 12 sites during two sampling seasons in the Mackenzie River Delta. We use
this unique data set to improve our understanding of seasonality effects on REE in a cold region and to better understand how

these impact REE distribution.

70 2. Materials and Methods
2.1. Study Region

The Mackenzie River (Northwest Territories, Canada) flows into the Beaufort Sea through the second-largest delta in the
Arctic. The Mackenzie drainage basin encompasses 1.8 x 10° km? within Canada, including the Rocky Mountains and
Mackenzie Mountains. About half of this area is situated in continuous or discontinuous permafrost zones (Abdul Aziz and

75 Burn, 2006; Hill et al., 2001; Holmes et al., 2012). The river is covered by ice from late October to late May (Hill et al., 2001).
The delta exhibits pronounced seasonal and interannual discharge variability that significantly influences the Beaufort Sea
(Hill et al., 2001; Mulligan and Perrie, 2019; Nghiem et al., 2014; Emmerton et al., 2008a). During winter, the river discharge
diminishes under extensive ice coverage (Goiii et al., 2000; Hill et al., 2001). The ice break-up period in late May and early
June triggers the spring freshet, during which snow and ice meltwater cause increased water discharge (e.g., Hill et al., 2001).

80 By early June, freshwater extends more than 100 km from the river mouth onto the shelf (Juhls et al., 2022). Approximately
70% of annual freshwater discharge occurs between May and September (Leitch et al., 2007; Macdonald et al., 2012), with
recent years showing an overall increase in discharge volume (Kopec et al., 2024; Rood et al., 2017). With the contrasting
seasonal patterns, the Mackenzie River sets an ideal study site for evaluating seasonality effects on REE distribution in coastal
settings.

85 The Mackenzie River is the principal sediment source to the Arctic Ocean. It delivers an estimated 1.28 x 10! kg of sediment
annually (Holmes et al., 2002; Stein et al., 2004) and contributes 90-95% of total sediments to the Beaufort Shelf (Vonk et al.,
2015). Its sediment sources include the Peel (21 x 10° kg), Arctic Red (7 x 10° kg), and Liard (35-45 x 10° kg) rivers (Vonk
et al., 2015). The sediments are mostly composed of fine-grained silt and clay (Hill et al., 2001; Holmes et al., 2012). These
sediments are transported through relatively shallow river channels reaching a maximum depth of approximately 10 m (Hill

90 etal, 2001; Mulligan and Perrie, 2019).
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2.2. Sample retrieval and preservation

EGUsphere\

The Mackenzie River and its downstream coastal areas were sampled within the context of the EU-H2020 project Nunataryuk.

Research teams collected various physicochemical parameters at these sites, with their data and conclusions available in

95  separate publications (Juhls et al., 2022; Bertin et al., 2023; Lizotte et al., 2023). Sampling was performed across two rivers to

coast transects along the western and eastern outflow area of the Mackenzie River during two distinct periods: before the spring

freshet in April and May 2019, with fully ice-covered sites (labeled W in Table 1), and in early fall in August and September

2019, representative of open-water conditions at the end of the season of high biological productivity (labeled F in Table 1).

This corresponds to Leg 1 (17 April to 3 May 2019) and Leg 4 (26 August to 9 September 2019) of the Nunataryuk field

100 campaigns (Lizotte et al., 2023). These sampling campaigns took place before and after large freshwater and sediment

discharge events occurring during the summer. Hereafter, we name those sampling periods “winter” and “fall” as they represent

those respective conditions. The western sampling transects extended from Inuvik (68.35°N, 133.68°W) towards the western

river mouth and the coastal waters of the Mackenzie Bay (69.14°N, 136.85°W). The eastern transects ran from the east river

mouth to the coastal water of Kugmallit Bay (69.66°N, 133.23°W), as presented in Fig. 1.

A l’; Kugmallit Bay =
1030(F)
 Yanld
i ‘
4 Monm.aw(r) , ;
§ i) ,Tukt;)yak'tuk»
v, 830(F) .saom) A
860/ 3
) (W)
870(F)
™" .

870(W)
Mackenzie Bay

\ T Rz
- o (F) ;
¢ 3 lInuwk
s A 4
» s

. RO3{
o (F)
y B Winter Sampling Sites
0 ZD I DY y  Aklavik j @ Fall Sampling Sites
| 3 /
R A | A Towns and Hamlets
i 2 A | \
105 as ’ AR

Figure 1: Sampling sites across the Mackenzie Delta. Squares (blue) represent winter sampling sites and circles (brown) represent

fall sampling sites. Towns and hamlets are shown by triangles (purple). (Source: ESRI | Powered by Esri)
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Table 1: Sampling station channel, water column depth, geographical coordinates, and bottom water temperature.

Site* Channel Water Depth (m) Lat. (N) Lon. (W) Temp. (°C)
340(w) West 3.1 69.151 136.855 0.0
350(w) West 2.2 69.110 136.791 0.0
im) River 1.5 68.319 133.678 0.1
860(w) East 4.2 69.353 133.928 0.0
810(w) East 1.8 69.535 133.415 0.0
870(w) East 4.8 69.289 133.969 0.0
830(w) East 1.5 69.432 133.626 0.0
360(F) West 0.9 68.997 136.478 7.3
380(F) West 1.3 68.863 135.833 10.2
RO3(F) River 3.5 68.391 135.429 9.4
RI2(F) River 32 68.425 133.822 10.2
810(F) East 1.8 69.535 133415 8.2
870(F) East 4.8 69.282 133.970 10.6
830(F) East 0.3 69.432 133.656 10.1
1030(F) East 4.3 69.648 133.221 5.6
340(F) West 2.4 69.152 136.857 7.5
840(F) East 0.6 69.399 133.809 104

110 * (W) Sampled in late winter. (F) Sampled in early fall.

Sediment was sampled with a gravity corer (UWITEC, Austria) with a 9-cm diameter core liner. Winter, under ice sampling
was conducted through a hole in the ice, with the gravity corer maintained using a tripod. Sites were accessed via helicopter
or snowmobile. Fall sampling was conducted on a boat. At each site, duplicate sediment cores were taken, with one used for

115 sediment subsampling at 1-cm intervals and the other for porewater extraction (see below). Subsampling was conducted at the
Aurora Research Institute (ARI) in Inuvik for western sites and at the Tuktoyaktuk Learning Center for eastern sites.
Subsamples were placed in Falcon cups (Corning, USA) and frozen. Back in the laboratory at Université Laval, frozen
sediment samples were freeze-dried and homogenized using an agate mortar and pestle. Aliquots of these homogenized
samples were used for subsequent solid phase analyses.

120  Porewater was sampled from pre-drilled core liners with holes covered by tape at 1-cm intervals. Upon retrieving the core,
acid-washed 5-cm Rhizon samplers (Rhizosphere Research, Netherlands) with 0.15-um PES membranes were inserted into
the core. Porewater was retrieved using acid-washed syringes (VWR, Canada) by creating a vacuum. This allowed collection
of 7-10 mL of porewater (Seeberg-Elverfeldt et al., 2005), starting at 1 cm above the sediment-water interface (the overlying
water) and continuing down to the depth where bottom clays prevented Rhizons insertion (5-20 cm). The collected porewater

125 was distributed into different vials for preservation. For DOC concentration and DOM quality measurements, 2 mL of
porewater were delivered to amber glass vials fitted with Teflon-lined caps. The vials were previously cleaned in hydrochloric
acid (HCI) (10%) baths followed by sodium hydroxide (NaOH) (0.1 M) baths and ultrapure water baths for 24 hours each,

then combusted at 450°C overnight. Teflon-lined caps were washed separately in an ultrapure water bath. For major and trace

5
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elements, samples were transferred to 15-mL clear vacuette tubes polyethylene terephthalate (PET) for the winter samples or
130 15-mL high-density polyethylene (HDPE) centrifuge tubes for the fall samples. Both containers were acid washed in 4% nitric
acid (HNOs3) baths and rinsed with ultrapure water baths prior to use. Approximately 4 mL of porewater sample was amended
with 320 pL of 50% double-distilled Omnitrace HNO3 (Fisher Scientific, Canada) to obtain a final concentration of = 4%
HNOs suitable for preservation.
Prior to major and trace metal analysis in the sediment, 50 mg of homogenized sediment was placed in a Teflon microwave
135 reaction vessel (EasyPrep, CEM Corporation, Canada) amended with 6.5 mL of Aristar Plus 12 M HCl (VWR Canada) and
3.5 mL of doubled-distilled 16 M Omnitrace HNO; (Fisher Scientific, Canada). A procedural blank and a certified reference
material sample (CRM MESS-4, NRC Canada) were included in the microwave carousel. The samples were digested in a
MARS 5 microwave (CEM Corporation, Canada) with a 20-minutes ramp to 1,600 W (setting of maximum 800 PSI 240°C),
followed by a 20-minute hold time and a 30-minute cooling period. After digestion, the samples remained in the vessels
140  overnight to cool completely. The vessels were opened and placed on a temperature-controlled Digiprep block (SCP Sciences,
Canada) for evaporation at 120°C for approximately 3.5 hours, until nearly dry. The samples were then transferred under a
laminar flow hood (ESCO, USA) for recovery in 2.87 mL of doubled-distilled 16 M Omnitrace HNO3 (Fisher Scientific,
Canada). This solution was then transferred to an acid-washed 50-mL HDPE centrifuge tube (VWR Canada). The Teflon
vessels were rinsed three times with ultrapure water, and the solution was added to the centrifuge tube. The final solution was

145  brought to a volume of 50 mL to achieve ~4% HNOs.

2.3. Instrumental Analysis

Major elements in the sediments were analyzed by ICP-OES (Thermo Scientific iCAP 7400, USA) using Iridium (Ir) as an
internal standard. Analysis of the digested CRM MESS-4 yielded accuracy greater than 98% for Fe (n = 11) and 91% for Mn
(n=9). REE in the sediment were measured by triple-quadrupole ICP-MS (Agilent 8900, Agilent Canada) using Iridium (Ir)
150 as an internal standard. The method for REE in sediment was validated using MESS-4 reference material, yielding accuracy
greater than 91% for La, Ce and Eu (n = 21), and greater than 75% for Nd (n = 12). Lu could not be assessed due to low
recovery rates. REE in the porewater were also analyzed by ICP-QQQ-MS, using Te and Rh as internal standard. The method
for REE in porewater was validated using the CRMs SLRS-6 (NRC Canada) and TM-DWS.3 (Environment and Climate
Change, Canada), with accuracy exceeding 92% (n = 3) for all analytes. The analyses were performed in O>-mode with a
155 collision cell to minimize isobaric interferences for REE and Fe, while Mn was performed in single-quad mode. For
concentration values under the detection limit, half detection limit was used to enable statistical analysis.
Solid-phase carbon content in the sediment was determined using a CHN analyzer (Flash 2000, Thermo Scientific, Canada).
Homogenized sediment samples (3 mg) were weighed and placed in tin capsules for analysis. The method was validated using
reference materials (cystine and sulfanilamide), yielding accuracy greater than >99.3% (n = 10). Porewater DOC analysis was
160 performed using a total organic carbon and nitrogen (TOC/TN) analyzer (Vario Cube, Elementar, Germany). In-house carbon

standards were used to validate the method, achieving accuracy of > 90% (n = 17).
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Fluorescent DOM (FDOM) from Matsuoka et al. (2021b) were measured using a spectrofluorometer (Aqualog, Horiba, Japan)
with corrections for inner-filter effects and Raman-Rayleigh scattering. Fluorescent components were identified via a parallel
factor analysis (PARAFAC) modeling and compared with the OpenFluor database. Chromophoric DOM (CDOM) absorption

165  spectra (200-722 nm) from Matsuoka et al. (202 1a) were measured in triplicate within 12 hours of collection using an UltraPath
liquid waveguide system (Juhls et al., 2021; Matsuoka et al., 2021a; Matsuoka et al., 2021b) to derive specific UV absorbance
at 254 nm (SUV Azs4). From the absorption and fluorescence measurements described above, SUV Azss was calculated as the
absorption coefficient at 254 nm normalized to DOC concentration (L mg-C' m™"). We used the measured humification (HIX)
and biological (BIX) indices, as well as PARAFAC components. From the latter, we extracted the following excitation

170  (ex)/emission (em) wavelength pairs (Hansen et al., 2016) : C (340¢x:440em), A (260ex:450em), T (275ex:304¢m), and M peaks
(300ex:390¢m).

2.4. Data Analysis

Spatial interpolation of dissolved and sedimentary REE, DOC, Mn and Fe concentrations was performed using Inverse
Distance Weighted (IDW) interpolation in QGIS (v. 3.40.9). To facilitate visual comparison across compartments with
175  different concentration ranges, data were normalized within each compartment (dissolved concentration, sediment) by dividing
all values by the compartment-specific maximum concentration, resulting in relative concentrations ranging from 0 to 1.
The following data treatment was performed in R (R. Core Team, 2025). Spearman rank correlations were performed to assess
relationships between geochemical variables without assuming linear distributions. Correlations were considered statistically
significant at p < 0.05. Principal component analysis (PCA) was performed on six variables: dissolved XREE, DOC, dissolved
180 Fe, dissolved Mn, SUVAzss and temperature. Salinity was not included since it was almost identical for the two sampling
seasons. Five variables (REE, DOC, Fe, Mn, SUV Aass) were tested for normality using Shapiro-Wilk tests. Temperature was
not tested for normality as it directly represents the seasonal variations. Variables exhibiting right-skewness (REE: W = 0.479,
p <0.0001; DOC: W = 0.865, p < 0.0001; Fe: W = 0.532, p < 0.0001; Mn: W = 0.552, p < 0.0001) were logio-transformed
(Reimann and Filzmoser, 2000). SUVA2ss (W = 0.781, p < 0.0001) and temperature were not transformed. All six variables
185 were z-score standardized, which centers data to a mean of zero and scales to standard deviation of 1. Finally, MANOVA and
ANOVA were performed on five variables, excluding temperature as it defines the seasonal grouping, using Pillari’s trace as

a criterion for seasonal separation. This resulted in biplots with loading vectors scaled x4 with 95% confidence ellipses.

3. Results

Water temperatures in winter were ~0°C at all stations, while they ranged from 5.6 to 10.6°C (X = 9.0 = 1.6°C) during fall
190 (Lizotte et al., 2023). Figure 2 illustrates the marked differences in concentrations of dissolved Y REE between both sampling
seasons in the water column (hereafter referred to as overlying water) and porewater. Similar plots for carbon, Fe and Mn data

are presented in supporting information (Figs. A1, A2, and A3 respectively). Although our spatial coverage is admittedly too
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sparse to allow quantitative interpolation across the Delta, the figure usefully highlights the seasonal contrast in ) REE
concentrations, and the absence of such contrast in the sediment phase, both for > REE and carbon. Y REE concentrations in
195 sediments exhibited minimal seasonal variation, with winter values ranging from 588 umol kg™! to 1,088 umol kg! (X = 816
pmol kg') and fall values ranging from 591 pmol kg to 1,314 pmol kg (X = 969 pmol kg!). Similarly, winter carbon
concentrations in the sediment ranged between 2.89% and 4.87% (X = 3.66%) and fall carbon concentrations ranged between

2.40% and 5.00% (X = 3.37%).
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200  Figure 2: Spatial interpolation of normalized average ZREE concentrations in the Mackenzie River Delta for the overlying water
(water column, WC, top panels), porewater (PW, middle panels) and sediment (Sed, bottom panels) for the winter (left) and fall
(right) sampling seasons. Concentrations were normalized for dissolved and solid compartments with the compartment maximum,
resulting in relative values between 0 (blue) and 1 (red). Grey circles show sampling sites. (Source: ESRI | Powered by Esri)

205 In contrast to the sediment, porewater and overlying water samples exhibited strong seasonal trends for both } REE and DOC
(Fig. 2, Fig. Al). To further illustrate the seasonal contrast, we plotted the distribution of concentrations across defined
intervals (Fig. 3), which shows that winter samples are within the highest concentration ranges for both ) REE and DOC.
These analytes exhibited lower concentrations in fall. During winter, porewater ) REE concentrations ranged from 2.98 nmol
L' to 1624 nmol L' (X = 217 nmol L"), and overlying water concentrations ranged from 19.8 nmol L' to 926 nmol L' (X =

210 196 nmol L™"). In fall, porewater Y REE concentrations ranged from 0.26 nmol L™ to 67.96 nmol L' (X = 3.12 nmol L") and
overlying water concentrations ranged from 0.36 nmol L'! to 0.62 nmol L! (X = 0.50 nmol L'"). This represents a difference
of almost two orders of magnitude in average ) REE concentrations from winter to fall. Similarly, average DOC concentrations

are lower by about an order of magnitude in fall compared to winter. In winter, porewater DOC concentrations ranged from
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13.71 mmol L' to 58.32 mmol L' (X = 22.66 mmol L") and overlying water concentrations ranged from 10.40 mmol L' to
215 25.03 mmol L' (X = 19.41 mmol L!). In comparison, fall concentrations ranged from 0.15 mmol L' to 20.66 mmol L' (X =

2.86 mmol L") for porewater, and from 0.29 mmol L' to 19.36 mmol L' (X = 6.08 mmol L") for overlying water.
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Figure 3: Distribution of samples across logarithmic concentration intervals (n = 48) for Y REE (mmol L') and DOC (mmol L") for
220  the winter (blue) and fall (brown) sampling seasons.

Spearman correlation analysis revealed significant relationships in sediment samples for both seasons (Fig. 4). In winter
sediments, Fe and Mn, Fe and Ce as well as Mn and Ce were positively correlated (Fig. 4 a), while Ce and Nd were strongly
positively correlated (Fig. 4 d). In the dissolved phase (overlying water and porewater), significant correlations were only

225 found among redox-sensitive metals. Fe and Mn were moderately correlated both in winter and fall (Fig. 5) or Ce (Fig. 5 b).
Notably, no significant correlations were detected between REE or metals and DOC in either season (Fig. 5c-d). Winter and
fall samples form instead distinct clusters based on concentration magnitudes (Fig. Sc¢), with no overlap between seasons. This
seasonal separation reflects the approximately two-order-of-magnitude difference in REE concentrations and one-order-of-
magnitude difference in DOC concentrations between seasons (Fig. 2, Fig. A1). Results from the MANOVA on winter (n=53)

230 and fall (n=36) samples support this (Pillai’s trace = 0.883, F-Stat = 125.06, degree of freedom = 5 and p <0.0001). The
combination of large effect size (Pillai's trace = 0.883) and high statistical significance indicates that winter and fall samples
have distinctly different multivariate profiles across the measured variables. Finally, PCA analysis (Fig. 6; Tables A1 and
A2) of the porewater Mn, Fe, DOC, Y REE concentrations, SUVAjs4 and temperature data shows significant multivariate
separation, capturing 83% variance in two dimensions.

235 Finally, SUVAjs4 and HIX indices are higher in the fall than the winter, while values for BIX slightly lower in fall than in
winter. The C:T and A:T peak ratios are higher in fall compared to winter, as is the C:M peak ratio, but to a lesser extent than

the two other peaks (Table 2).
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Table 2: Average chromophoric properties of DOM in the water column in the Mackenzie Delta at sampling sites during winter and

fall.

Field season HIX SUVA1s4 BIX C:T A:T C:M
Winter 6.0+0.7 1.0£0.8 0.71£0.01 25+02 45+0.3 0.934 +£0.009
Fall 10£2 2.43+£0.08 0.60 +0.03 4.0=+0.6 7.0+£0.8 1.01 +£0.02
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Figure 4: Correlation between solid-phase concentrations of Mn and Fe (@), Ce and Fe (b), Ce and Mn (c), and Ce and Nd (@) for the
winter (blue) and fall (brown) sampling seasons. Spearman’s rank (r) are indicated only for significant correlation (p < 0.05).
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Figure 5: Correlation between porewater Mn and Fe (a), Ce, Mn and Fe (b), ZREE and DOC (c¢), and Fe (circles) and Mn (triangles)
over DOC (d) for the winter (blue) and fall (brown) sampling seasons. Spearman’s rank (r) are indicated only for significant
correlation (p < 0.05). Highlighted zones on panel (c) indicate the two distinct concentration ranges observed between the two
sampling seasons.
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Figure 6: PCA biplot of log-transformed seasonal dissolved Mn, Fe, REE and DOC concentration, as well as SUVA2s4 and
temperature data. Points represent individual samples colored by season (winter in blue, n=53 and fall in brown, n=36) with 95%
confidence ellipses. Arrows indicate variable scaled loadings. Black circle represents the equilibrium descriptor contribution (EDC).

4. Discussion
255 4.1. Sediment REE stability and Fe-Mn control

Our results show that Y REE concentrations in the sediments are slightly higher in the fall (816 umol kg') than in the winter
(969 umol kg™). The strong positive correlations between sediment Y REE concentrations and redox-sensitive elements (Fe
and Mn) (Fig. 4) are consistent with Fe and Mn redox-driven recycling controlling REE distribution in the solid phase. Both
field (Ye et al., 2019; Toyoda et al., 1990; Takahashi et al., 2015) and laboratory evidence (Bau, 1999) show that REE can be
260 sequestered by Fe and Mn (oxy)hydroxides. The fact that correlation between Fe, Mn and Y REE in our study are stronger
under-ice suggests that near-zero temperatures are particularly favorable for the control of Fe and Mn on REE. Reduced
microbial respiration along with the thermal suppression of microbial activity likely create stable conditions near the sediment—
water interface (Bouvet et al., 2025; Arnosti et al., 1998) for REE to accumulate onto Fe and Mn (Dang et al., 2022). Covariance
between Ce and Nd (Fig. 4d) indicates that REE co-vary together, allowing the use of ZREE concentrations as the key variable
265 in this study.
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4.2. Dissolved Organic Matter Quantity versus Quality in REE Complexation

Porewater and overlying water (i.e., water-column) dissolved Y REE concentration data shows a seasonal trend (Fig. 2 and
Fig. 3), with two distinct populations of porewater ) REE and DOC measurements (F-statistics of 409.13 and 220.09
respectively, p-values < 0.0001; Table A4) (Fig. 5¢). PCA shows that DOC and Y REE co-vary along the PC1 axis (59%
270 variance), inversely correlated with temperature and SUVA»s4, due to the 180° angle between these vectors. Meanwhile, Fe
and Mn co-vary along PC2, independently of the temperature, DOC concentrations and DOM quality or of > REE
concentrations, given the 90° separation between the vectors. This seasonal variability, where REE and DOC co-vary and are
inversely related to temperature and DOM aromaticity (SUVA1ss), is consistent with OM complexation of REE during colder
periods being controlled by DOM quantity. The second principal component (PC2) explain the next largest variance, which
275  likely captures the redox processes that control the mobilization of Fe and Mn, independent of seasonal effects. This finding
aligns with recent work in the sub-arctic George River, Canada (Marginson et al., 2024) and the temperate Sleepers River,
USA, in which dissolved water-column REE and DOC exhibited positive correlations (Norton and Shanley, 2025). Seasonal
variability in REE dynamics in rivers has also been evidenced for tropical systems, where dissolved REE concentrations
showed strong seasonal variation driven by watershed runoff during wet seasons versus scavenging by organic-rich particles
280 during dry seasons (Dang et al., 2023). While our Arctic system operates under different temperatures and biological
productivity regimes, both studies demonstrate that seasonal changes in organic matter quality and quantity influence dissolved
REE dynamics in river systems with pronounced seasonal variability. Several studies point to organic matter quality playing
a crucial role in REE complexation and distribution in aquatic systems (Catrouillet et al., 2020; Pourret et al., 2007¢; Marsac
etal., 2021; Tadayon et al., 2024). Overall, it is generally accepted that complexed REE account for up to 95% of the dissolved
285 phase in freshwater (Tang and Johannesson, 2003; Johannesson et al., 1995; Pourret et al., 2007b; Revel et al., 2025).
The strong seasonal contrast in DOC concentration (Fig. 2) can be investigated in the light of the chromophoric properties of
DOM, namely low SUVA;s4 and HIX values in the winter relative to the fall (Table 2). Those values point to winter OM
samples having a lower aromaticity and a lower proportion of humic acid than the fall sample (Hansen et al., 2016). Similarly,
BIX values point to a higher proportion of autochthonous dissolved organic matter in the winter and the C:T, A:T and C:M
290 peak-ratios point to a lower humic character in winter. Collectively, those indicators of autochthonous DOM in the winter are
consistent with the enzymatic breakdown of solid-phase OM to aqueous DOM maintaining a significant activity at low
temperatures (Davidson et al., 2006), while the subsequent mineralization of aqueous DOM remains inhibited. This differential
temperature sensitivity may explain in DOM accumulation in the porewater in the winter (German et al., 2012; Schédel et al.,
2016). This lower winter OM degradation is consistent with the markedly lower bacterial abundance observed in winter
295 samples compared to fall samples for the Mackenzie Delta (Lizotte et al., 2023). In fall, increased DOM degradation in the
porewater suppresses the autochthonous signal, leaving catchment-derived terrestrial DOM. The shift in DOM character
between seasons likely extends to molecular weight distributions, with autochthonous winter DOM, characterized by

enzymatic breakdown products, typically exhibiting lower molecular weight compared to the terrestrial, humic-rich DOM
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observed in fall (Hansen et al. 2016). However, the literature present conflicting evidence regarding the role of molecular

300 weight in REE complexation, with some studies showing that REE generally preferentially complex with high molecular
weight OM (Tang and Johannesson, 2003; Catrouillet et al., 2020; Tang and Johannesson, 2010), and others preferentially
complex with low molecular weight OM (Zilber et al., 2024). Without size fractionation data, we cannot evaluate which
mechanism dominates in our system.

Thus, we find two distinct porewater DOM pools depending on the season. Despite fall DOM having higher-affinity (Marsac

305 etal., 2011) binding sites (phenolic groups, binding constant (logarithm of the stability constant (K) for the complexation
reaction, log K, = 4.93) compared to winter DOM (carboxylic groups, log K = 3.29), dissolved REE concentrations are lower
in fall. This likely reflects the dominance of DOC concentration over binding site quality, that is, the winter higher DOC
concentrations (Fig. 2) provide sufficient low-affinity sites to complex more ) REE than the limited pool of high-affinity sites
available in fall.

310 The seasonal variations in organic matter quantity and quality observed in the Mackenzie Delta parallel those documented in
the Lena Delta, another major Arctic river system (Juhls et al., 2020). In both systems, winter DOM is characterized by older,
more degraded material with reduced overall fluxes. These seasonal organic matter dynamics are particularly important
because coastal environments and deltas serve as crucial carbon reservoirs and processing hotspots (Bianchi and Allison,
2009), collectively accounting for approximately 80% of total marine carbon burial (Hedges and Keil, 1995). This significant

315 contribution results from high sedimentation rates and proximity to continental organic matter sources (Bianchi et al., 2018;
Goiii et al., 2000). Recent modeling work on the Mackenzie River plume demonstrated that seasonal variations in terrestrial
CDOM export affect coastal light attenuation, phytoplankton phenology, and sea-surface temperature, switching the coastal
zone from a CO; sink to a source (Bertin et al., 2025). We note that logistical constraints resulted in partially non-overlapping
sampling locations between seasons, particularly in the western transect. However, eastern sites were sampled at identical

320 locations in both seasons and confirm the winter enrichment pattern, while the complete separation of seasonal samples in
multivariate space (Fig. 6) demonstrates that season-driven processes dominate over site-specific spatial variability. Our
findings that seasonal dynamics shapes REE—organic matter interactions therefore have broader implications for understanding

coupled carbon-trace element cycling in these biogeochemical hotspots.

4.3. Inorganic Controls on Dissolved REE Mobility

325 Temperature is a potential factor controlling REE release from the sediment to the porewater. Marginson et al. (2024)
documented a significant correlation between lower temperatures and elevated REE concentrations in the George and Koroc
Rivers, in their tributaries, and in thermokarst lakes in northern Québec. Their proposed mechanism invokes a higher partial
pressure of CO; in colder waters (Young et al., 2025) which subsequently increases the formation and stability of REE—
carbonate complexes in solution (Marginson et al., 2024). Our results are consistent with this previous report.

330 Competition from dissolved Fe and Mn for DOM binding sites (Tang and Johannesson, 2003; Pourret et al., 2007b; Marsac et
al., 2011; Neweshy et al., 2022) likely amplifies the observed higher ) REE concentrations. During summer, the season of high

14
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biological productivity and of high microbial respiration, soluble Fe?" produced via the reductive dissolution of Fe
(oxy)hydroxides accumulates to levels that have been shown to displace REE from DOM binding sites (Neweshy et al., 2022).
Indeed, Fe**, Fe?* and Mn?" all have binding constants (pKmua for humic acid of respectively 0.8, 2.1 and 3.4) that are similar
335 to that of REE (average pKwmua for humic acid of 1.53) (Tang and Johannesson, 2003), with Fe acting as one of the most
important competitors to REE in complexation by DOC (Takahashi et al., 1997). DOM ligands control most of the mobilization
of REE from solid to dissolved phase in natural waters (Wen et al., 2024). The increased competition for DOM ligands may
thus partly explain the lower dissolved YREE concentrations, leaving in solution the poorly soluble free REE*" ions or

carbonate complexes (Tang and Johannesson, 2003; Johannesson et al., 1995; Pourret et al., 2007b).

340 5. Conclusion

Our study reveals the sensitivity of REE cycling to seasonal environmental changes in Arctic coastal systems. Sedimentary
> REE concentrations remain remarkably stable across seasons, with positive correlations to Fe and Mn (oxy)hydroxides that
strengthen in winter. In contrast, porewater ) REE concentrations exhibit pronounced seasonal variability, with significantly
higher values in winter than in fall. This seasonal contrast tracks DOC concentrations, indicating that variations in DOM
345 quantity play a stronger role in controlling REE mobility than changes in DOM quality alone. Winter DOM is characterized
by lower aromaticity and molecular weight and weaker complexation capacity, but is found in much greater abundance,
whereas fall DOM, enriched in humic substances and aromatic compounds, offers stronger ligands for REE binding but in
much lower concentrations. Colder winter conditions likely enhancing the stability of REE—carbonate complexes and suppress
microbial degradation of organic matter, both of which contribute to elevated REE concentrations. In contrast, warmer summer
350 temperatures accelerate organic matter degradation, lowering dissolved ligand abundance and reducing REE solubility. These
seasonal dynamics have implications for understanding REE transport in Arctic coastal systems, which are experiencing

intensifying riverine influence as warming accelerates (Emmerton et al., 2008b; Opsahl et al., 1999; Kipp et al., 2020).
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Appendix A
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Figure Al: Spatial interpolation of normalized average carbon concentrations in the Mackenzie River Delta for the overlying water

(water column, WC, top panels), porewater (PW, middle panels) and sediment (Sed, bottom panels) for the winter (left) and fall

(right) sampling seasons. Concentrations were normalized for dissolved and solid compartments with the compartment maximum,
360 resulting in relative values between 0 (blue) and 1 (red). Grey circles show sampling sites. (Source: ESRI | Powered by Esri)
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Figure A2: Spatial interpolation of normalized average Fe concentrations in the Mackenzie River Delta for the overlying water
365 (water column, WC, top panels), porewater (PW, middle panels) and sediment (Sed, bottom panels) for the winter (left) and fall

(right) sampling seasons. Concentrations were normalized for dissolved and solid compartments with the compartment maximum,

resulting in relative values between 0 (blue) and 1 (red). Grey circles show sampling sites. (Source: ESRI | Powered by Esri)
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Figure A3: Spatial interpolation of normalized average Mn concentrations in the Mackenzie River Delta for the overlying water
(water column, WC, top panels), porewater (PW, middle panels) and sediment (Sed, bottom panels) for the winter (left) and fall
(right) sampling seasons. Concentrations were normalized for dissolved and solid compartments with the compartment maximum,
resulting in relative values between 0 (blue) and 1 (red). Grey circles show sampling sites. (Source: ESRI | Powered by Esri)

Table A1 Principal component analysis summary of log-transformed seasonal dissolved Mn, Fe, REE and DOC data, SUVA»s4

and temperature data for winter (n=53) and fall (n=36).

Component Eigenvalue Variance_Percent = Cumulative_ Percent
PC1 3.540779 59.01298 59.01298
PC2 1.438984 23.98306 82.99605
PC3 0.398984 6.649732 89.64578
PC4 0.360994 6.016569 95.66235
PC5 0.182051 3.034179 98.69653
PCé6 0.078208 1.303474 100
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Table A2 Principal component variable loadings of seasonal dissolved Mn, Fe, REE and DOC data, SUV As4 and temperature
380 data for winter (n=53) and fall (n=36).

Variable PC1 PC2 PC3 PC4
REE_log -0.50833 0.054846 -0.20157 -0.07961
DOC _log -0.46 0.190304 -0.17919 0.555992
Fe_log -0.23202 -0.66391 -0.55114 -0.35446
Mn_log -0.21909 -0.66348 0.615679 0.348132
Temperature 0.487757 -0.19134 0.072649 -0.14759
SUVA254 0.436185 -0.20783 -0.48905 0.644914

Table A3 MANOVA test for differences between winter (n=53) and fall (n=36).
Statistical Test Value F-Statistic df p-value

Pillai's trace 0.883 125.06 (5.83) <0.0001

Table A4 Univariate ANOVA of seasonal dissolved Mn, Fe, REE and DOC data and SUV A»s4 data for winter (n=53) and fall
385 (n=36).

Variable df F-statistic p-value Partial n?
REE_log 1,87 409.13 <0.0001 0.825
DOC_log 1,87 220.09 <0.0001 0.717
Fe_log 1,87 3.45 0.067 0.038
Mn_log 1,87 2.83 0.096 0.032
SUVA254 1,87 107.17 <0.0001 0.552
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Data availability

390 Concentrations of elements in porewater and sediment are available on Borealis at DOI:10.5683/SP3/MLSXCK (Bossé-
Demers et al., 2026). Water column DOM proprieties are available on Pangaea at DOI: 10.1594/PANGAEA.937587 (Juhls et
al., 2021)
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