

1 **An interpretable machine learning for marine heatwave prediction for
2 the south China sea**

3

4 Peihao Yang¹, Guodong Ye^{1,2,*}

5 ¹College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

6 ²Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang 524088,
7 China

8 ***Corresponding Author:** Guodong Ye (guodongye@hotmail.com)

9

10 **Abstract**

11 A primary challenge of machine learning to predict marine heatwave (MHW) for the south China
12 sea (SCS) is the limited availability of observational data for model training. To address this issue,
13 this study explores the viability of leveraging multi-member ensemble simulations from the Coupled
14 Model Intercomparison Project Phase 6 (CMIP6), to construct an extensive, physically consistent
15 training dataset for various machine learning models. After training on multiple CMIP6 ensemble
16 members, the constructed models are evaluated for their predictive capacity regarding MHW in the
17 SCS. The results also show that these machine learning-based methods can perform comparably to
18 the existing dynamic models in terms of prediction performance, and in some cases even outperform
19 the latter. Furthermore, by incorporating machine learning interpretability techniques, the key
20 physical processes can also be elucidated from these predictions. That is to say, the new method is
21 not a traditional "black box", but rather an effective tool that can possess certain physical
22 transparency and scientific interpretability.

23 **Keywords:** South China Sea marine heatwave; machine learning; interpretable analysis; marine
24 heatwave prediction.

25

26

27

28 **1 Introduction**

29 Marine heatwaves (MHWs) are extreme oceanic climate events characterized by abnormally
30 elevated sea surface temperatures, persisting from days to several months and even extending across
31 thousands of kilometers (Hobday et al., 2016; Hobday et al., 2018). In recent years, the frequency
32 of MHWs has risen markedly under global warming (Frölicher et al., 2018; Oliver et al., 2018;
33 Holbrook et al., 2020). These abnormal high-temperature events severely impact marine ecosystems,
34 associated with ecosystem services, and the economy (Perkins-Kirkpatrick et al., 2019; Smale et al.,
35 2019). The 2014-2016 "Blob event" in the North Pacific caused a large-scale disruption to marine
36 ecosystems, resulting in mass marine mortality and severe declines in fishery resources (Di Lorenzo
37 et al., 2016). China has a vast offshore area, among which the SCS in the tropical zone experienced
38 frequently many MHWs (Yao et al., 2020; Xiao et al., 2019). The SCS has coral reef habitats and
39 modern marine pastures, and MHWs in the SCS caused severe impacts on its marine ecosystem and
40 economy (Feng et al., 2022; Mo et al., 2022; Zhao et al., 2023). Considering the significant impacts
41 of MHWs on the ecological environment, fishery production, and economic activities, enhancing
42 the predictive capability of MHWs has become a top priority in marine resource management.

43 MHWs are modulated by local and large-scale air-sea interactions (Lee et al., 2010; Chen et al.,
44 2015; Tang et al., 2025). Local atmospheric processes are generally closely related to the persistent
45 abnormal high-pressure system in the upper atmosphere. Specifically, this may manifest as reduced
46 cloud cover, enhanced short-wave radiation, and weakened wind speed, which leads to reduced
47 evaporation (Amaya et al., 2020; Sen Gupta et al., 2020). Local oceanic processes include
48 anomalous horizontal and vertical heat advection, weakened vertical mixing, and a shoaling of the
49 mixed layer (Amaya et al., 2021; Han et al., 2022). MHWs are also influenced by remote forcing or
50 oceanic modulation associated with large-scale climate models such as ENSO, the Indian Ocean
51 Dipole (IOD), and the North Atlantic Oscillation (NAO), though the dominant mechanisms may
52 differ substantially across regions (Qi et al., 2022; Saranya et al., 2022). For instance, the local
53 climate of the SCS is influenced by the upper-level ocean currents, and these currents are mainly
54 regulated by the East Asian monsoon (Gan et al., 2006). Local abnormal anticyclones enhance
55 shortwave radiation, weaken the southwest monsoon and upwelling, while abnormal marine
56 anticyclones exacerbate water convergence and Ekman downwelling, further intensifying sea
57 surface warming and increasing the probability of MHWs in the SCS (Yao et al., 2021; Liu et al.,
58 2022; Tan et al., 2022). These anomalous anticyclonic processes may be modulated by
59 teleconnections from large-scale climate models. Therefore, predictive models can improve the
60 stability and reliability of MHW forecasting by capturing these potential predictability signals.

61 MHW prediction methods can be broadly categorized into dynamic methods, empirical methods
62 (statistical techniques or machine learning techniques), and hybrid methods (integrating dynamic
63 techniques with empirical techniques). Dynamical prediction methods typically rely on ensemble
64 forecasting, which performs probabilistic prediction through the distribution of ensemble members.

65 The prediction uncertainty originates from minor errors in initial conditions, which grow rapidly
66 over time (Tao et al., 2017; Waliser et al., 2003). By calculating the mean of ensemble members,
67 random noise from individual weather events can be filtered out to extract more stable climatic
68 signals. Statistical prediction methods have a long history, among which Canonical Correlation
69 Analysis (CCA) is one of the classic methods (Barnston et al., 1996; Rana et al., 2018). The CCA
70 is typically used to describe the linear relationship between two sets of variables. It is widely used
71 in the relationships between sea surface temperature and precipitation or atmospheric circulation
72 fields to identify possible teleconnection patterns. However, the traditional CCA framework has
73 limitations in handling multiple predictor variables and their interactions simultaneously.
74 Particularly in the case of high-dimensional data or a large number of predictor variables, overfitting
75 is prone to occur (Chen et al., 2017). Moreover, the CCA has insufficient capability to characterize
76 temporal evolution, and can only make up for the lack of temporal information to a certain extent
77 through lagged correlation.

78 Currently, significant research resources have been invested in dynamic model ensemble
79 forecasting, but studies on applying machine learning to MHW prediction remain relatively scarce
80 (Slater et al., 2023). A major challenge in machine learning for MHW prediction lies in the limited
81 availability of observational data for model training (Gao et al., 2024). This limitation not only
82 hinders traditional statistical methods but also affects machine learning-based approaches. For
83 example, to reliably simulate the nonlinear interactions between multiple predictor variables, each
84 predictor variable requires a large number of samples to avoid model overfitting (Van der Ploeg et
85 al., 2014). However, the available observational samples typically span only around four decades,
86 which is insufficient to support large-scale machine learning training. An effective alternative is to
87 train machine learning models on large ensembles of climate model simulations (Seferian et al.,
88 2020; Li et al., 2021). This approach substantially expands the training dataset, enabling coverage
89 of multiple centuries of simulated climate conditions. For example, a study has found that training
90 a Convolutional Neural Network (CNN) on historical climate model simulation data can achieve
91 high-precision ENSO prediction with a lead time of over one year (Ham et al., 2019). In addition,
92 some studies used regularized models to achieve high-precision predictions with various
93 meteorological datasets (Jeffree et al., 2024; Kim et al., 2017).

94 Due to the massive data generated by increasing satellite observations and climate models,
95 machine learning algorithms demonstrate enormous potential in early warning of upcoming extreme
96 events. This study focuses on five machine learning models: Random Forest, XGBoost, LSTM,
97 MLP and SVR. Because they show excellent performance in recent studies for predicting climatic
98 variables such as precipitation and sea surface temperature (Park et al., 2016; Ham et al., 2023;
99 Sattari et al., 2021), as well as for predicting the impacts of climatic extremes (Zhu et al., 2021; Lin
100 et al., 2020; Yang et al., 2025). The objective is to evaluate the feasibility of using large-ensemble
101 climate model data and various machine learning techniques to predict MHWs in the SCS. Then,

102 machine learning models are constructed and applied to predict MHWs based on several climatic
103 variables. The models are trained and validated using publicly available climate model samples,
104 observational samples, and reanalysis datasets to assess the predictability of oceanic extremes across
105 various forecast lead times. Furthermore, interpretable machine learning methods are employed to
106 identify the key physical processes affecting predictions, providing physical interpretability support
107 for the forecast results.

108

109 **2 Related knowledge**

110 **2.1 LSTM**

111 Long Short-Term Memory (LSTM) is a special type of recurrent neural network (RNN). It can
112 effectively capture long-term dependencies in time series data (Yu et al., 2019). Traditional RNNs
113 often suffer from gradient vanishing or gradient explosion when handling long sequences. This
114 makes it difficult for them to learn long-range dependencies. LSTM addresses this problem by
115 introducing memory cells and gating mechanisms. These gates include an input gate, a forget gate,
116 and an output gate. The forget gate decides which information should be discarded. The input gate
117 controls how new information is stored. The output gate determines the final output. These
118 mechanisms allow LSTM to pass information effectively across different time steps. These include
119 convolutional neural networks (CNNs) and attention mechanisms. This helps improve its ability to
120 model complex temporal data. In this study, LSTM model consists of three unidirectional layers.
121 Each layer has 128 hidden units. The model is trained with a batch size of 64 and a learning rate of
122 0.001. Loss function is set to be mean squared error (MSE). Training is performed on standardized
123 sliding-window data for 100 epochs. Dropout regularization is applied during training to reduce the
124 risk of overfitting.

125 **2.2 MLP**

126 Multi-Layer Perceptron (MLP) is a classical feedforward neural network. It consists of an input
127 layer, one or more hidden layers, and an output layer (Cabaneros et al., 2019). Each neuron is fully
128 connected to all neurons in the previous layer. It uses weights, biases, and activation functions such
129 as ReLU, Sigmoid, or Tanh to perform nonlinear transformations. These operations allow the
130 network to learn complex mappings. The core computations of an MLP include forward propagation
131 and backpropagation. Backpropagation uses gradient descent to optimize the loss function and
132 adjust network parameters to reduce errors. MLP has strong nonlinear modeling capability.
133 Theoretically, it can approximate any continuous function. In this study, the MLP model has two
134 hidden layers. Each layer contains 64 neurons. Activation function and loss function are set to be
135 ReLU and MSE respectively. The model is trained for 100 epochs using features expanded through
136 a sliding window. The optimizer is Adam with a learning rate of 0.001. Dropout regularization is

137 applied during training to reduce overfitting.

138 **2.3 RF**

139 Random Forest (RF) is a decision tree method using ensemble learning. It can improve the
140 generalization ability by training multiple decision trees and using voting or averaging for prediction
141 (Hu et al., 2023). The core idea of RF is to use the Bagging method. It draws multiple subsets from
142 the original dataset through bootstrap sampling and trains a separate decision tree on each subset.
143 During tree construction, each tree randomly selects a subset of features for splitting. This reduces
144 the risk of overfitting and improves model stability. RF has strong robustness and can evaluate
145 feature importance. It performs well when dealing with high-dimensional data and complex pattern
146 recognition tasks. However, RF needs to train a large number of decision trees, which leads to high
147 computational costs. On large datasets, it may face limitations in memory and computing resources.
148 In this study, the RF model consists of 1,000 decision trees, each with a maximum depth of 10. Each
149 leaf node contains at least 5 samples.

150 **2.4 SVR**

151 Support Vector Regression (SVR) is an extension of Support Vector Machines applied to
152 regression tasks. It is used to find an optimal hyperplane that fits the data as closely as possible
153 within a certain error margin (Roy et al., 2023). SVR uses kernel functions such as linear, radial
154 basis function, and polynomial kernels to map data into a high-dimensional space. This enables it
155 to model nonlinear relationships effectively. However, SVR has high computational complexity. It
156 requires long training time and large memory usage when applied to large datasets. Its performance
157 also depends on several hyperparameters such as C , ϵ , and the kernel parameters. These usually
158 need to be tuned using cross-validation to ensure good prediction results. Therefore, SVR performs
159 well in small-scale and high-precision regression tasks. But in large-scale applications, its efficiency
160 and scalability may be limited. In this study, a radial basis function kernel is used. The regularization
161 strength is set to $C = 1.0$. The kernel coefficient is automatically determined based on the feature
162 dimensions.

163 **2.5 XGB**

164 XGBoost (Extreme Gradient Boosting) is an optimized algorithm using Gradient Boosted Decision
165 Trees (GBDT). It improves predictive performance by iteratively building decision trees to
166 minimize the loss function and adjust sample errors through weighted updates (Niazkar et al., 2024).
167 XGBoost uses a variety of optimization strategies, such as second-order derivative updates,
168 regularization, prevention of overfitting, parallel computation, and pruning. It can also handle
169 missing values and automatically learn optimal split strategies, maintaining high computational
170 efficiency even when applied to large-scale data. Compared with traditional GBDT, the optimization
171 strategies of XGBoost significantly enhance training speed and generalization ability, making it
172 highly effective for regression and classification tasks on structured data. In this study, the XGB

173 model uses 1,000 trees with a maximum depth of 10, a learning rate of 0.1, and a row and column
174 sampling rate of 80 percent to improve predictive accuracy while controlling overfitting.

175 **2.6 Feature Processing**

176 This study applies Empirical Orthogonal Function (EOF) analysis (Martinez-Sosa et al., 2021) and
177 lag correlation analysis (Zhang et al., 2022) to extract the coupled ocean-atmosphere spatial patterns
178 and temporal characteristics associated with MHWs in the SCS. MHWs are usually influenced by
179 large-scale ocean-atmosphere interactions, and spatial information from a single variable often
180 contains redundancy. EOF analysis can effectively identify dominant modes of spatial variability.
181 This dimensionality reduction helps highlight key climate variability features and reduces the
182 impact of redundant information on machine learning model performance. Firstly, principal
183 component analysis is conducted on the CMIP6 data and observational data using EOF to extract
184 the main spatial modes of each variable within the study area (the South China Sea and its
185 surrounding regions). Next, lag correlation analysis is taken to determine significant lead-lag
186 relationships between climate variables and MHWs. This process aimed to capture precursor signals
187 and provide effective predictive indicators for the model. Finally, the dominant spatial patterns
188 obtained from EOF analysis and the key lead times identified through lag analysis are used as input
189 features for the model to increase the accuracy and lead time of MHW prediction in the SCS.

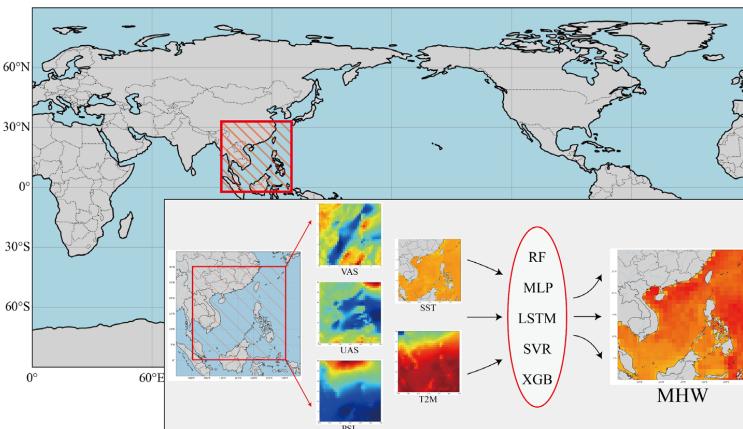
190 **3 Data and Method**

191 **3.1 Data**

192 This study uses multi-model large ensemble simulation data from CMIP6 to provide sufficient
193 training samples for the machine learning models. The historical simulations are conducted by
194 several global climate models (GCMs) developed by different research institutions. The data cover
195 the period from 1950 to 2014. These simulations follow historical forcing scenarios. They include
196 observed changes in greenhouse gas concentrations, solar radiation, volcanic eruptions, and aerosols
197 (Eyring et al., 2016). In this study, CMIP6 models include 20 high-resolution coupled climate
198 models such as ACCESS-CM2, BCC-CSM2-MR, CMCC-CM2-SR5, MIROC6, and MRI-ESM2-
199 0. These models have a spatial resolution of about 1 degree. They simulate the full interactions
200 among the atmosphere, ocean, land and sea ice.

201 CMIP6 climate variables used in this study contain sea surface temperature, surface air
202 temperature, sea level pressure, and zonal and meridional wind fields at 10 meters height. Previous
203 studies show that CMIP6 models perform better than CMIP5 in simulating large-scale climate
204 variability in the tropical and subtropical regions. They are especially better at reproducing the
205 frequency, intensity, and teleconnection patterns of ENSO events (Bellenger et al., 2014). This is
206 important for training machine learning models with climate model data. Systematic biases in
207 teleconnections or air-sea interactions may be learned by the model during training and affect
208 prediction results (Zhang et al., 2019).

209 After training the machine learning models using CMIP6 multi-model data, the offline trained
210 models are applied to observational data for prediction testing. To ensure consistency of variables
211 between the training and validation stages, same set of variables are used during testing. The sea
212 surface temperature data came from the high-resolution Optimum Interpolation Sea Surface
213 Temperature (OISST) dataset provided by NOAA. This dataset combines multiple satellite
214 observations and in-situ measurements. It is commonly used in global climate studies and marine
215 extreme event monitoring (Huang et al., 2017). Atmospheric circulation data were obtained from
216 the ERA5 global reanalysis product provided by ECMWF. This dataset has high spatial and temporal
217 resolution and includes a wide range of atmospheric variables. It was widely used in climate
218 diagnostics and model evaluation (Hersbach et al., 2020). In processing the observational and
219 reanalysis variables, the same dimensionality reduction and preprocessing methods as used for the
220 CMIP6 data. This ensures consistency in the data processing and improved the generalization ability
221 of the models under real observation conditions.



222
223 Fig.1. Overview of the marine heatwave prediction framework. In this study, the simulation experiments are
224 conducted over the South China Sea, defined by the region spanning 0°-30°N and 100°-130°E. Five machine learning
225 models are trained on CMIP6 ensemble data and subsequently tested using observational datasets to forecast MHWs
226 in the SCS.

227 **3.2 Method**

228 The Fig. 1 shows the complete process of the framework. This study focuses on a specific region
229 of the South China Sea, as shown by the red box in Fig. 1. SST from this region were extracted and
230 used to construct a one-dimensional time series. To avoid the influence of long-term warming trends
231 on model training, the SST series was first detrended. A daily climatological mean was then
232 constructed to represent the typical SST for each day. Because high-frequency fluctuations exist in
233 daily climate data, a 31-day moving average was applied to smooth the climatological mean and
234 improve the stability of the analysis. SSTA was also computed by subtracting the climatological
235 mean from the corresponding daily SST. Based on the SSTA, MHW events during the study period
236 were identified and labeled for each sample. To reduce the impact of short-term natural fluctuations

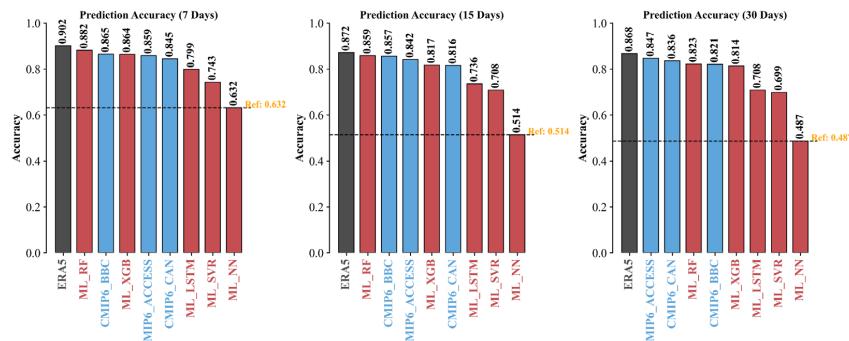
237 such as storms and intraseasonal disturbances, a 7-day moving average was applied. This helps
238 improve the model's response to climate-scale signals and reduces the risk of overfitting. Other key
239 meteorological drivers, including T2M, PSL, UAS, and VAS, were processed using the same
240 method to ensure consistency across variables.

241 All input variables are standardized to improve comparability across different scales and to
242 accelerate model convergence. EOF analysis and lag analysis are applied to the predictors, and the
243 derived variables are used for model training. Five machine learning models are trained and
244 calibrated using CMIP6 data. After training, all model parameters are kept fixed. The models are
245 then applied offline to observational and reanalysis data to evaluate their performance in predicting
246 MHWs in the SCS during the period 2015 to 2022. The processed predictors and labels are finally
247 input into multiple machine learning models to perform classification and regression tasks for both
248 short-term and long-term MHW prediction. Hyperparameters are tuned using a validation set to
249 determine the optimal configuration. This workflow improves the stability and accuracy of the
250 models and also laid the foundation for subsequent interpretability analysis using SHAP values and
251 feature importance evaluation.

252 **4 Results and Discussion**

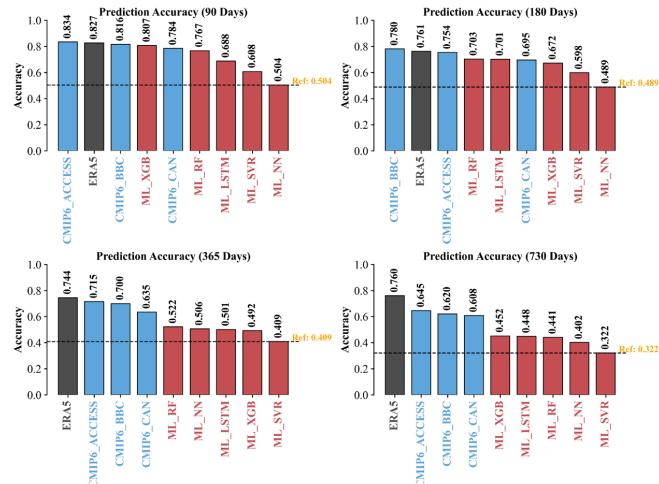
253 **4.1 Prediction accuracy**

254 After training and hyperparameter tuning of each machine learning model using a large ensemble
255 data from CMIP6. In this study, model parameters are fixed after determination and observation
256 data are used for multi-duration testing and evaluation. The prediction tasks span seven forecast lead
257 times: 7, 15, 30, 90, 180, 365, and 730 days. In each prediction, the model uses observed
258 atmospheric and oceanic variables prior to the target date as input features to simulate the prediction
259 process in real-world application scenarios. This independent testing set evaluation provides an
260 objective assessment of the model's generalization capability.



261
262 Fig.2. Comparison of prediction accuracy for MHWs in SCS across short-term lead times (7, 15, and 30 days) using
263 three categories of methods. Black bars represent the prediction accuracy of ERA5 reanalysis data, blue bars denote
264 the prediction accuracy of three CMIP6 model members (ACCESS, BBC, CAN), and red bars signify the prediction
265 accuracy of five machine learning models (RF, XGB, LSTM, SVR, MLP). The values on each bar indicate the
266 corresponding model's prediction accuracy.

267 To systematically compare the predictive capabilities of different models in various time spans,
 268 Fig. 2 presents the accuracy of five machine learning models for short-term predictions at 7, 15, and
 269 30 days. The prediction accuracy of each machine learning method (red bars) is compared with the
 270 simulation results of three groups of CMIP6 members (blue bars) and the ERA5 reanalysis data
 271 results (black bars). All methods use the same test years to ensure horizontal comparability.
 272 Furthermore, Fig. 3 illustrates the performance of the same five machine learning models for longer-
 273 term forecasts at 90, 180, 365, and 730 days. Fig. 3 adopts the same comparison benchmark and
 274 color scheme as Fig. 2, facilitating analysis of the changing trends in model performance as
 275 prediction duration increases.

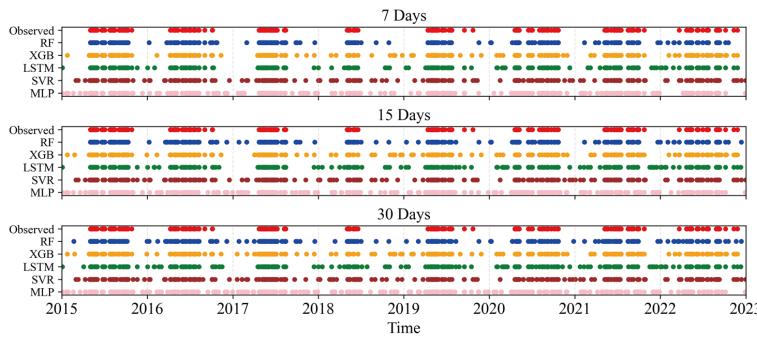


276
 277 Fig.3. Comparison of prediction accuracy for MHWs in SCS across long-term lead times (90, 180, 365 and 720 days)
 278 using three categories of methods. Similarly to Figure 2, black bars represent the prediction accuracy of ERA5 data,
 279 blue bars denote the prediction accuracy of three CMIP6 model members, and red bars signify the prediction
 280 accuracy of five machine learning models. The values on the bars indicate the prediction accuracy, while the
 281 horizontal black dashed line represents the benchmark level for random predictions, with the benchmark decreasing
 282 gradually as the prediction duration extends.

283 In Fig. 2, ERA5 data, three groups of CMIP6 members (ACCESS, BBC, CAN), and five machine
 284 learning models (RF, XGB, LSTM, SVR, MLP) are compared for their accuracy in MHW prediction
 285 across three short-term prediction horizons (7 days, 15 days, and 30 days, respectively). From an
 286 overall perspective, it can be observed that the performance differences among models are relatively
 287 small over short prediction horizons, and the accuracy is generally high. ERA5 attains the highest
 288 prediction accuracy at the 7-day forecast horizon. The performance of the RF model closely follows
 289 that of the ERA5 data and is competitive with the ERA5 data. At 15- and 30-day lead times, RF
 290 model and XGB model consistently maintain leading performance. Notably, the RF model ranks
 291 among the top performers in the short-term and exhibits remarkable stability with the smallest
 292 precision fluctuations across different timesteps. It is also worthy of note that the ACCESS and BBC
 293 models have exhibited highly consistent performance in short-term predictions. Their performance

294 in multiple forecast horizons is almost comparable to that of machine learning models, and they
295 even outperform certain machine learning models at specific time points (e.g., the 30-day). This
296 demonstrates that physics-based model simulations retain a degree of advantage at specific lead
297 times. This stability may be attributed to its long-term operational foundation and systematic
298 modeling capability for physical processes. However, the MLP model and SVR model demonstrated
299 the poorest performance in all forecast horizons, indicating their limited capability to extract
300 complex signals from MHWs.

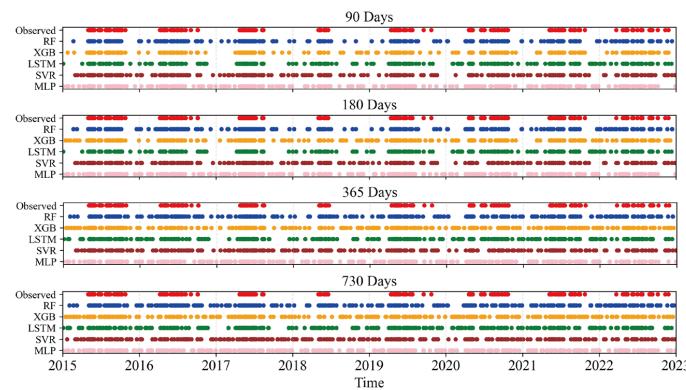
301 Fig. 3 illustrates performance of different models over longer timeframes (90 days, 180 days, 365
302 days, and 730 days). As the prediction lead time increases, the prediction accuracy of all models
303 shows a decline to varying degrees, among which the decline in machine learning models is the
304 most significant. the prediction accuracy of the RF model drops from 0.882 for 7-day to 0.522 for
305 365-day, and further drops to 0.441 for 730-day, representing a decline of over 40% in accuracy
306 from 7 days to 730 days. The MLP model and SVR model exhibit more pronounced weakness in
307 long-term predictions, indicating their unsuitability for identifying and forecasting MHW trends in
308 extended periods. By contrast, ERA5 and CMIP6 demonstrate stronger stability, maintaining an
309 accuracy above 0.6 over both 365-day and 730-day. This demonstrates the superiority of physical
310 models in long-term climate prediction. Machine learning models perform outstandingly in short-
311 term predictions, mainly benefiting from their non-linear fitting capability and high sensitivity to
312 patterns in the training dataset. However, their predictive capability rapidly declines in long-term
313 due to the absence of physical process constraints. Conversely, physical models such as CMIP6 and
314 ERA5 exhibit stronger systematicity and stability, particularly demonstrating advantages in
315 simulating teleconnection signals and low-frequency climatic backgrounds.



316
317 Fig.4. Comparison between prediction results of models in short-term and actual South China Sea MHWs. The
318 scatter plot shows the occurrence of MHWs and the prediction results of different machine learning models. The
319 scatter points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each
320 machine learning model.

321 To further evaluate the temporal detection capabilities of each model in different lead times, Fig.
322 4 and 5 present point-by-point comparisons between model predictions and observed MHWs. Each
323 dot in the plots represents an individual MHW event, and each row corresponds to the prediction

324 output of a specific method. The top row shows actual MHWs identified from observational data,
325 while the remaining rows present simulation results from different machine learning models in
326 various prediction lead times. This point-by-point aligned visualization intuitively demonstrates the
327 temporal fitting capability and accuracy of models in different time scales.



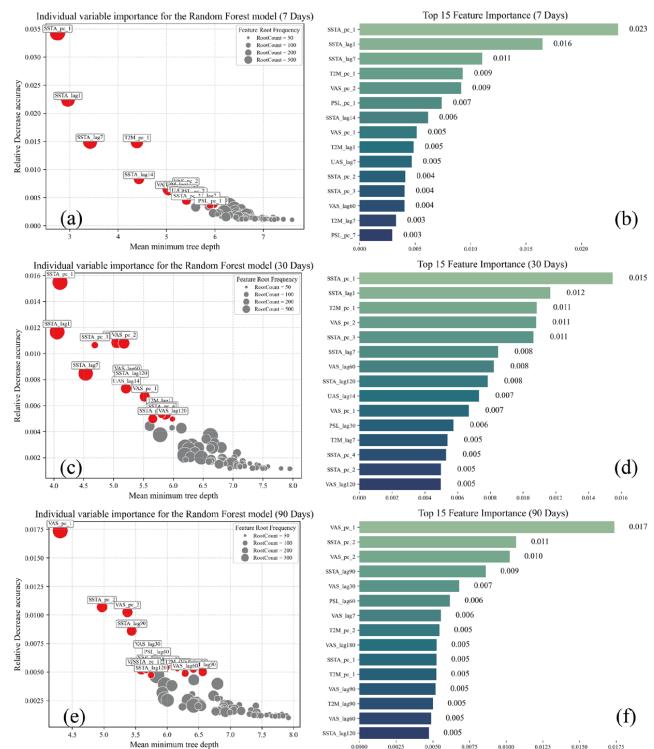
328
329 Fig.5. Comparison between prediction results of models in long-term and actual South China Sea MHWs. The scatter
330 plot shows the occurrence of MHWs and the prediction results of different machine learning models. The scatter
331 points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each machine
332 learning model.

333 Fig. 4 demonstrates the prediction performance of models in three short-term forecast lead times
334 (7-day, 15-day, and 30-day). Most model predictions generally align with the distribution of actual
335 MHWs, indicating that machine learning models can relatively accurately capture MHWs.
336 Especially in the years when MHW occurred frequently such as 2016, 2020 and 2022, the alignment
337 degree between the model and the observations was relatively high. This indicates that machine
338 learning models exhibit good temporal localization capability about MHWs in short-term forecast
339 lead times and can effectively respond to disturbances in short-term climatic signals. However, Fig.
340 5 shows a trend of gradual performance degradation in models as the forecast lead time increases
341 from 90 to 730 days. It specifically manifests as the gradual dispersion of prediction result
342 distributions from machine learning methods, featuring not only more deviating points but also
343 substantial occurrences of "false positives" and "false negatives". In 365-day and 730-day
344 predictions, the fitting capability of almost all models to actual MHWs significantly diminishes,
345 with MHW prediction points overall deviating or dispersing, making it difficult to accurately
346 reproduce the concentrated distribution intervals of events in observational data. For example, the
347 performance of RF model and XGB model significantly declines in long-term prediction, while
348 MLP model and SVR model exhibit near-random prediction states over extended durations. Overall,
349 while machine learning models perform well in short-term predictions, their prediction accuracy
350 declines in longer-term forecasts.

351 **4.2 Interpretable Random Forest Model**

352 Machine learning methods are often considered a relatively "brute-force" solution strategy, and

353 their "black-box" results in weak interpretability. The lack of interpretability in models may affect
 354 their credibility in scientific research and practical applications. Models sometimes produce
 355 superficially accurate results for erroneous mechanisms. Therefore, to further understand the
 356 internal operational mechanisms of the models, this section investigates the machine learning "black
 357 box" and attempts to reveal the physical implications in its decision-making process. RF model
 358 performs outstandingly in multiple prediction evaluations, and selects three representative forecast
 359 lead time—7-day, 30-day, and 90-day—for in-depth interpretation. It is important to emphasize that
 360 these interpretation methods merely serve as processing tools for model outputs and do not interfere
 361 with or affect the prediction pipeline or parameter architecture. The feature importance evaluation
 362 method in RF models relies on statistically averaging the improvement in classification purity
 363 contributed by each feature across all decision trees. At each node split, the "purity" reduction
 364 caused by the feature is calculated and multiplied by the number of samples at that node. The
 365 "impurity" reductions caused by the feature across all trees are summed up and normalized to obtain
 366 its importance score (Wang et al., 2024). This method can identify the most influential input features
 367 in the prediction process to provide a basis for the physical interpretability.



368
 369 Fig.6. Univariate feature importance analysis in the Random Forest model. This figure presents univariate feature
 370 importance for Random Forest MHW forecasts at multiple lead times. It reports four indicators: feature importance
 371 scores from training that combine split frequency and information gain with higher values meaning greater
 372 contribution, relative accuracy reduction computed by shuffling a single variable with a larger drop implying more
 373 importance, average minimum tree depth showing where a variable first splits with shallower depth indicating higher

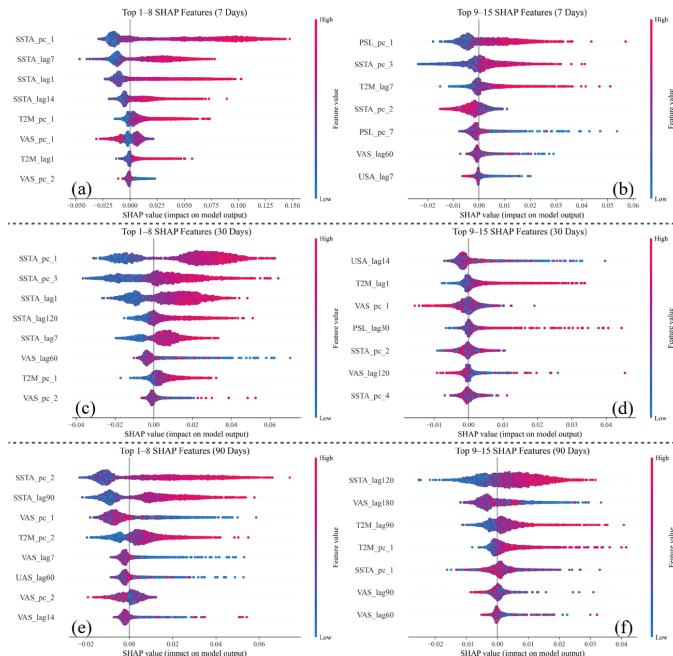
374 importance, and root node occurrence count reflecting how often a variable becomes the root with higher counts
375 indicating stronger initial influence. Panels (a)(c)(e) mark the top 15 predictors in red matching the scores in (b)(d)(f),
376 and names follow Fig. 1. For example, SSTA_pc_1 is the first EOF mode of SSTA and SSTA_Lag1 is a one-day lag.

377 Feature importance assessment is firstly employed to quantify the relative contribution of various
378 predictors in the regression-based forecasting task. The results are presented in Fig. 6. Based on
379 integrating multiple metrics, sea surface temperature anomaly (SSTA), 2-meter air temperature
380 (T2M), and wind field information (UAS, VAS) emerge as the variables most significantly
381 influencing prediction accuracy. Notably, there is a widespread negative correlation between the
382 relative accuracy reduction metric of variables and their average minimum tree depth. This indicates
383 that the most important variables tend to appear earlier in the upper layers of decision trees (closer
384 to the root node). The dominance of key predictive factors also varies across different forecast lead
385 times. SSTA and VAS consistently serve as dominant predictors in all lead times. In short-term
386 forecasts (e.g., 7- and 30-day), SSTA-related features (including principal components and lagged
387 terms) exhibit the highest importance, indicating they carry more information about recent MHWs.
388 However, in longer-term forecasts (e.g., 90 days), the importance of VAS-related features increases
389 significantly while the ranking of SSTA-related variables declines relatively, indicating that wind
390 field signals may have greater predictive value on longer timescales. Additionally, T2M is relatively
391 important in short-term forecasts while VAS plays a more critical role in long-term predictions. The
392 trend of predictive variable weights changing with forecast lead times is also reflected in the lag
393 period. The RF model tends to use variables with shorter lag periods for short-term forecasts, while
394 input factors with longer lag periods gradually replace short-lag variables in long-term predictions.
395 This change aligns with the expected pattern that variables closer to the target date generally contain
396 more immediate information relevant to the prediction. It is worth emphasizing that the key
397 predictive factors highlighted in Fig. 6 align with the current understand of formation mechanisms
398 of MHWs in the SCS. Numerous studies have shown that large-scale climate models, for example,
399 the El Nino-Southern Oscillation (ENSO) modulate the frequency and intensity of MHWs in SCS
400 via teleconnection mechanisms (Zhang et al., 2025). For instance, during ENSO, PSL and wind
401 fields anomalies can influence the intensity and position of the Western Pacific Subtropical High
402 (WPSH), thereby altering the surface thermal structure of the SCS. This ultimately leads to localized
403 SSTA, increasing the probability of MHW.

404 Although the RF model can quantify the global importance of predictors, it is difficult to provide
405 local interpretability and the dependencies among variables. This study introduces the SHapley
406 Additive exPlanations (SHAP) method, which enables both global and local model interpretation.
407 Fig. 7 displays a SHAP summary plot visualizing how predictors contribute to model outputs,
408 thereby illuminating the model's decision mechanisms (Li et al., 2022; Li et al., 2022).

409 For 7-day forecast horizons, the ranking of the top 15 most important predictors identified by
410 SHAP is highly consistent with the feature importance rankings from the RF model. Although slight
411 variations exist in the ranking of specific variables across other forecast horizons, the composition

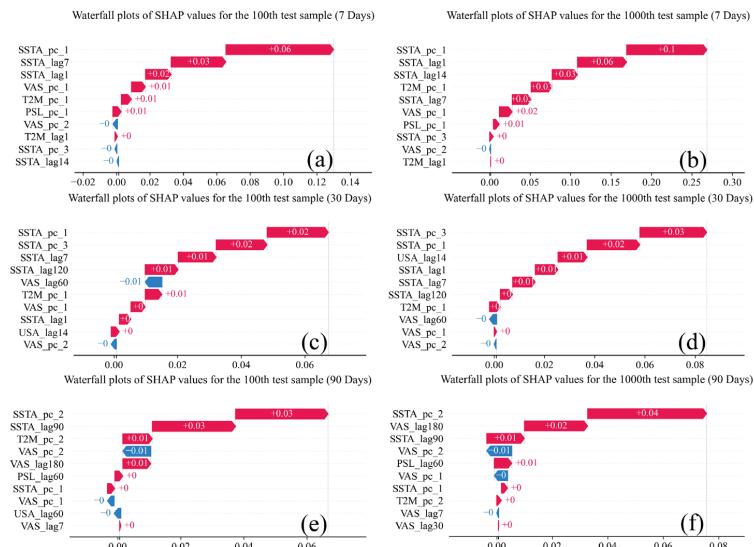
412 of the top 15 key variables remains relatively stable, further validating their predictive importance.
 413 In contrast to global importance scores, SHAP provides more intuitive visualizations of variable
 414 impacts. Among key predictors except the two wind components (UAS and VAS), high values of
 415 most variables show a positive correlation with positive SHAP values—meaning their increase
 416 promotes MHW prediction. This implies the model is more likely to identify MHWs when these
 417 variables are elevated. For example, higher SSTA typically indicates warmer sea surface
 418 temperatures, which are closely associated with the MHW formation.



419
 420 **Fig.7. SHAP feature importance distribution of the RF model, showing the contribution degree and direction**
 421 **of the top 15 predictor variables across different forecast lead times (7-day, 30-day, and 90-day).** (a) and (b)
 422 correspond to 7-day, (c) and (d) to 30-day, and (e) and (f) to 90-day. Each data point represents a sample, with the x-
 423 axis denoting the SHAP value (degree and direction of feature contribution to model predictions) and the y-axis
 424 listing predictor variable names. The color of each data point indicates the degree of the corresponding feature value,
 425 with red denoting higher values and blue indicating lower values. The horizontal position of data points represents
 426 the degree of influence of the feature on model predictions. Larger SHAP values on the right indicate a greater
 427 contribution of the feature to predicting MHWs, while smaller or negative SHAP values on the left signify stronger
 428 inhibitory effects.

429 Warming in the Indian Ocean may trigger an anti-Walker circulation between the tropical Indian
 430 Ocean and western Pacific, of which enhances the Philippine Anticyclone (PAC). Such large-scale
 431 circulation changes weaken convective activity in the northwestern Pacific, promoting westward
 432 extension of the WPSH toward China's southern coast (Liang et al., 2023). The westward expansion
 433 of WPSH typically suppresses easterly anomalies induced by the SCS anticyclonic circulation,
 434 leading to weakening of the southwest monsoon. This further diminishes upwelling and cold surge
 435 phenomena, creating favorable conditions for MHW formation (Xie et al., 2003; Song et al., 2023).

436 On the other hand, lower wind speeds reduce sea surface evaporation, decreasing heat release from
437 the ocean to the atmosphere and exacerbating oceanic heat storage—processes that facilitate MHW
438 development. Meanwhile, La Niña-type tropical Pacific patterns enhance westward ocean currents
439 via anomalous easterlies, transporting warm water to the western Pacific and SCS. These results
440 demonstrate that the SHAP method not only enhances model interpretability but also further
441 validates that the model can identify key factors with physical significance.

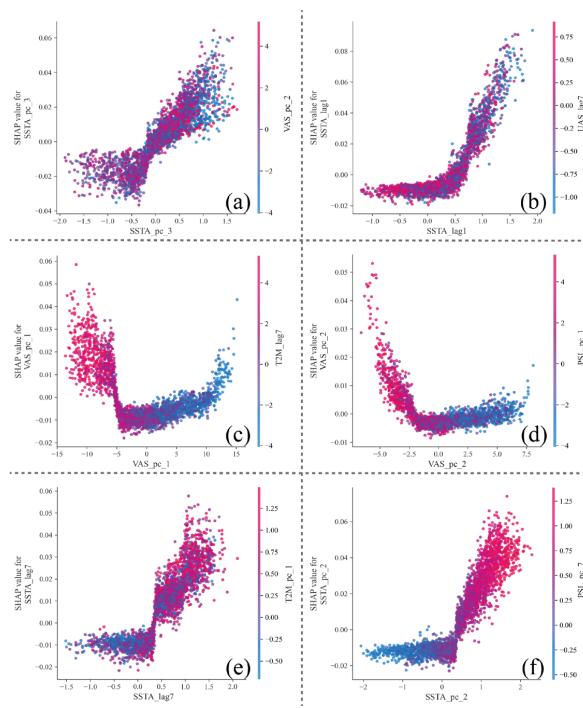


442
 443 **Fig.8. SHAP waterfall plots of the RF model, showing the contribution degree and direction of the top 10**
 444 **important predictor variables for the 100th and 1000th test samples across different forecast lead times.** (a),
 445 (c), and (e) represent the 100th sample for 7-day, 30-day, and 90-day, respectively, while (b), (d), and (f) correspond
 446 to the 1000th sample. Each bar denotes a predictor, with its length and arrow direction indicating the contribution
 447 degree and sign to MHW occurrence probability: red bars extending to the right signify positive contributions
 448 (increasing MHW probability), blue bars extending to the left denote negative contributions (decreasing probability),
 449 and the numerical values beside bars represent the absolute contribution degree.

450 SHAP not only evaluates global feature importance, but also offers strong local interpretability,
451 enabling in-depth revelation of the model's decision basis for individual prediction samples. To
452 analyze how key predictive factors influence specific sample predictions, the 100th and 1000th test
453 samples were selected as representative cases. Both samples belong to MHWs and were successfully
454 predicted by the model in all forecast lead times.

455 Fig. 8 shows SHAP waterfall plots illustrating the local interpretability results of the top 10
 456 features for these two samples in 7-day, 30-day, and 90-day forecast lead time. Left panels (a, c, e)
 457 correspond to the 100th sample, while right panels (b, d, f) correspond to the 1000th sample. Red
 458 arrows mean positive contributions, blue arrows denote negative impacts, and arrow length
 459 represents the degree of SHAP values (i.e., the contribution degree of features to prediction results).
 460 The plots show that SSTA and T2M consistently rank among the top features in all forecast lead

461 times, exerting significant positive impacts on model predictions. As shown in the figure, SSTA and
 462 T2M consistently rank among the top predictors in all forecast lead times, exerting significant
 463 positive impacts on model predictions. In particular, the principal components and lagged terms of
 464 SSTA exhibit the highest contribution values, indicating their dominant role in MHW prediction.
 465 This aligns with MHW formation mechanisms: higher SSTA and T2M signify warm anomalies in
 466 the SCS, providing thermal support for MHWs. Additionally, most SHAP values of wind field
 467 variables (UAS, VAS) are negative, suggesting that lower values promote MHW prediction. This
 468 mechanism is evident in multiple forecast lead times, with the negative contribution of wind field
 469 lagged terms being particularly prominent in 90-day predictions.
 470



471
 472 **Fig.9. SHAP two-factor dependency plots for 7-day predictions of the RF model, demonstrating the interaction**
 473 **of six groups of predictor variables in South China Sea MHW prediction.** In each subplot, the x-axis represents
 474 the actual value of the dominant variable in the group, and the y-axis represents the corresponding SHAP value
 475 (degree of contribution). The color of data points indicates the magnitude of the second variable: red for high values
 476 and blue for low values.

477 SHAP values can not only reveal the global and local contributions of individual predictors but
 478 also analyze the interaction effects between different predictors. To explore the dependency
 479 relationships and nonlinear response mechanisms among variables, this study focused on the 7-day
 480 forecast lead time and generated SHAP dependency plots, as illustrated in Fig. 9.

481 Fig. 9 illustrates the relationship between SHAP values and input variable values. The figure uses
 482 color to represent the values of another interacting variable, revealing the synergistic effects between

483 predictor variables. For example, in Fig. 9(a) and 9(b), the principal components and lagged terms
484 of SSTA (SSTA_pc_3, SSTA_lag1) exhibit nonlinear response features. When SSTA values are low,
485 their SHAP values are negative and inhibit MHW prediction. Once exceeding a threshold
486 (approximately 0) SHAP values rise rapidly and turn positive. This not only indicates that a higher
487 SSTA drives the occurrence of MHW, but also serves as an illustration of the pronounced sensitivity
488 exhibited by the model towards variations in SSTA. Wind-related features show contrasting patterns.
489 As shown in Figures 9(c) and 9(d), the principal components of wind fields (VAS_pc_1, VAS_pc_2)
490 have negative SHAP values at high wind speeds, inhibiting model predictions. At low wind speeds,
491 SHAP values tend to be positive, suggesting that lower wind speeds facilitate oceanic heat
492 accumulation and MHW formation. Meanwhile, color gradients indicate that at the same SSTA or
493 VAS values, the values of the other variable significantly affect SHAP values, reflecting strong
494 interaction effects between SSTA and wind fields. The Fig. 9(e) and 9(f) further reveal the
495 synergistic influence mechanisms of SSTA with T2M and PSL. In Fig. 9(e), the SHAP value of
496 SSTA_lag7 rises nonlinearly with its own increase, and the value of T2M_pc_1 significantly
497 modulates it, indicating that rising air temperature can enhance the influence of SSTA. The Fig. 9(f)
498 shows that when PSL_pc_2 is high, the positive contribution of SSTA_pc_2 is amplified, which
499 may reflect the enhanced role of WPSH westward extension in MHW formation.

500 In summary, SHAP dependency plots reveal nonlinear interaction relationships among key
501 variables, where SSTA and wind field components form the core factor combination for MHW
502 prediction. The study finds that SSTA has a stronger predictive power in short-term forecasts, with
503 its importance gradually diminishing as the forecast lead times extends. In contrast, the importance
504 of wind fields (especially VAS) grows in long-term forecasts, aligning with their physical
505 mechanisms of regulating oceanic heat fluxes and influencing upwelling. These results not only
506 enhance the interpretability of models but also provide a theoretical basis for understanding MHW
507 formation mechanisms and prediction.

508 **5 Conclusion and Discussion**

509 This study tested a method for predicting MHWs in the SCS using non-homologous training and
510 testing datasets. CMIP6 ensemble was used to train multiple machine learning models and combined
511 observational data for MHW prediction. The results showed that short-term prediction accuracy is
512 higher than that of long-term forecasts. In both lead times, the machine learning models
513 demonstrated superior predictive skill compared with baseline methods, achieving performance
514 comparable to or exceeding that of other climate simulation models.

515 Then, the relative importance of predictors was accessed by using feature importance analysis in
516 the Random Forest model and SHAP values. These predictors includes both SST-related variables
517 and atmospheric factors, so as to enhance new model's physical interpretability. The analysis
518 revealed that SST and wind fields are the two most critical factors influencing MHWs. SST variables

519 dominated in short-term predictions, while wind-related features became increasingly important in
520 mid- to long-term forecasts. Compared with traditional models trained solely on observational data,
521 models trained on extensive climate simulation outputs are better equipped to overcome sampling
522 limitations and represent complex nonlinear dynamics. Integrating multiple climate models into
523 machine learning training further enhances predictive performance and improves model
524 generalizability.

525 Among the machine learning models tested in this study, Random Forest (RF) model shows the
526 best prediction performance. Its advantage may come from its strong interpretability. It also uses
527 fewer parameters and is less sensitive to parameter settings. This makes it suitable for handling the
528 number of variables involved in this study. However, as more complex and diverse features may be
529 introduced in the future, it is still necessary to explore deep learning models with stronger nonlinear
530 fitting capabilities. Moreover, this study focuses only on the SCS. In the future, the method can be
531 extended to other ocean regions or even the global scale. This will help to learn the characteristics
532 and evolution patterns of MHWs in different regions. It will also provide more comprehensive
533 support for the development of a global marine heatwave early warning system.

534 **Acknowledgments**

535 This study was supported in part by the Innovation Team Project of the General University in the
536 Guangdong Province, China (Grant number 2024KCXTD042).

537 **Author contributions**

538 **Peihao Yang:** Writing-original draft, Software, Validation, Methodology.
539 **Guodong Ye:** Supervision, Conceptualization, Methodology, Investigation, Resources, Project
540 administration, Writing-review & editing.

541 **Funding**

542 This research did not receive any specific grant from funding agencies in the public, commercial,
543 or not-for-profit sectors.

544 **Conflict of interest**

545 The authors declare that they have no competing financial interests or personal relationships that may
546 have influenced the work reported in this study.

547 **Data availability**

548 These datasets are publicly available. Sea surface temperature data are taken from the NOAA dataset

549 (https://www.esrl.noaa.gov/psd). SST-related meteorological data taken from the ERA5 dataset
550 (https://cds.climate.copernicus.eu).

551 **References**

552 Amaya, D. J., Alexander, M. A., Capotondi, A., Deser, C., Karnauskas, K. B., Miller, A. J. and
553 Mantua, N. J.: Are long-term changes in mixed layer depth influencing North Pacific marine
554 heatwaves?, *Bulletin of the American Meteorological Society*, 102, S59–S66, 2021.

555 Amaya, D. J., Miller, A. J., Xie, S. P. and Kosaka, Y.: Physical drivers of the summer 2019 North
556 Pacific marine heatwave, *Nature Communications*, 11, 1903, 2020.

557 Barnston, A. G. and Smith, T. M.: Specification and prediction of global surface temperature and
558 precipitation from global SST using CCA, *Journal of Climate*, 9, 2660–2697, 1996.

559 Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M. and Vialard, J.: ENSO representation in
560 climate models, from CMIP3 to CMIP5, *Climate Dynamics*, 42, 1999–2018, 2014.

561 Cabaneros, S. M., Calautit, J. K. and Hughes, B. R.: A review of artificial neural network models
562 for ambient air pollution prediction, *Environmental Modelling & Software*, 119, 285–304,
563 2019.

564 Chen, K., Gawarkiewicz, G., Kwon, Y. O. and Zhang, W. G.: The role of atmospheric forcing versus
565 ocean advection during the extreme warming of the Northeast US continental shelf in 2012,
566 *Journal of Geophysical Research: Oceans*, 120, 4324–4339, 2015.

567 Chen, Z., Ding, S. X., Peng, T., Yang, C. and Gui, W.: Fault detection for non-Gaussian processes
568 using generalized canonical correlation analysis and randomized algorithms, *IEEE
569 Transactions on Industrial Electronics*, 65, 1559–1567, 2017.

570 Di Lorenzo, E. and Mantua, N.: Multi-year persistence of the 2014/15 North Pacific marine
571 heatwave, *Nature Climate Change*, 6, 1042–1047, 2016.

572 Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. and Taylor, K. E.:
573 Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
574 design and organization, *Geoscientific Model Development*, 9, 1937–1958, 2016.

575 Feng, Y., Bethel, B. J., Dong, C., Zhao, H., Yao, Y. and Yu, Y.: Marine heatwave events near Weizhou
576 Island, Beibu Gulf in 2020 and their possible relations to coral bleaching, *Science of the Total
577 Environment*, 823, 153414, 2022.

578 Frölicher, T. L. and Laufkötter, C.: Emerging risks from marine heat waves, *Nature Communications*,
579 9, 650, 2018.

580 Gan, J., Li, H., Curchitser, E. N. and Haidvogel, D. B.: Modeling South China Sea circulation,
581 response to seasonal forcing regimes, *Journal of Geophysical Research: Oceans*, 111, C06034,
582 2006.

583 Gao, G., Yao, B., Li, Z., Duan, D. and Zhang, X.: Forecasting of sea surface temperature in eastern
584 tropical Pacific by a hybrid multiscale spatial–temporal model combining error correction map,
585 *IEEE Transactions on Geoscience and Remote Sensing*, 62, 1–22, 2024.

586 Ham, Y.-G., Kim, J.-H. and Luo, J.-J.: Deep learning for multi-year ENSO forecasts, *Nature*, 573,

587 568–572, 2019.

588 Ham, Y.-G., Kim, J.-H., Min, S.-K., Kim, D., Li, T., Timmermann, A. and Stuecker, M. F.:
589 Anthropogenic fingerprints in daily precipitation revealed by deep learning, *Nature*, 622, 301–
590 307, 2023.

591 Han, W., Zhang, L., Meehl, G. A., Kido, S., Tozuka, T., Li, Y., McPhaden, M. J., Hu, A., Cazenave,
592 A., Rosenbloom, N., Strand, G., West, B. J. and Xing, W.: Sea level extremes and compounding
593 marine heatwaves in coastal Indonesia, *Nature Communications*, 13, 6410, 2022.

594 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
595 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X., Balsamo,
596 G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
597 Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
598 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
599 Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S. and Thépaut, J.-N.: The ERA5
600 global reanalysis, *Quarterly Journal of the Royal Meteorological Society*, 146, 1999–2049,
601 2020.

602 Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J.,
603 Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J.,
604 Scannell, H. A., Sen Gupta, A. and Wernberg, T.: A hierarchical approach to defining marine
605 heatwaves, *Progress in Oceanography*, 141, 227–238, 2016.

606 Hobday, A. J., Oliver, E. C. J., Sen Gupta, A., Benthuysen, J. A., Burrows, M. T., Donat, M. G.,
607 Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T. and Smale, D. A.: Categorizing
608 and naming marine heatwaves, *Oceanography*, 31, 162–173, 2018.

609 Holbrook, N. J., Sen Gupta, A., Oliver, E. C. J., Hobday, A. J., Benthuysen, J. A., Scannell, H. A.,
610 Smale, D. A. and Wernberg, T.: Keeping pace with marine heatwaves, *Nature Reviews Earth
& Environment*, 1, 482–493, 2020.

612 Hu, J. and Szymczak, S.: A review on longitudinal data analysis with random forest, *Briefings in
613 Bioinformatics*, 24, bbad002, 2023.

614 Huang, B., Thorne, P. W., Banzon, V. F., Boyer, T., Chepurin, G., Lawrimore, J. H., Menne, M. J.,
615 Smith, T. M., Vose, R. S. and Zhang, H.-M.: Extended reconstructed sea surface temperature,
616 version 5 (ERSSTv5), upgrades, validations, and intercomparisons, *Journal of Climate*, 30,
617 8179–8205, 2017.

618 Jeffree, J., Hogg, A. M. C. C., Morrison, A. K., Solodoch, A., Stewart, A. L. and McGirr, R.: GRACE
619 satellite observations of Antarctic Bottom Water transport variability, *Journal of Geophysical
620 Research: Oceans*, 129, e2024JC020990, 2024.

621 Kim, J., Oh, H. S., Lim, Y. and Kang, H. S.: Seasonal precipitation prediction via data-adaptive
622 principal component regression, *International Journal of Climatology*, 37, 75–86, 2017.

623 Lee, T., Hobbs, W. R., Willis, J. K., Halkides, D., Fukumori, I., Armstrong, E. M., Hayashi, A. K.,
624 Liu, W. T., Patzert, W. and Wang, O.: Record warming in the South Pacific and western
625 Antarctica associated with the strong central-Pacific El Niño in 2009–10, *Geophysical
626 Research Letters*, 37, L19704, 2010.

627 Li, L., Qiao, J., Yu, G., Wang, L., Li, H. Y., Liao, C. and Zhu, Z.: Interpretable tree-based ensemble

628 model for predicting beach water quality, *Water Research*, 211, 118078, 2022.

629 Li, Z., Liu, F., Yang, W., Peng, S. and Zhou, J.: A survey of convolutional neural networks, analysis,
630 applications, and prospects, *IEEE Transactions on Neural Networks and Learning Systems*, 33,
631 6999–7019, 2021.

632 Li, Z.: Extracting spatial effects from machine learning model using local interpretation method, an
633 example of SHAP and XGBoost, *Computers, Environment and Urban Systems*, 96, 101845,
634 2022.

635 Liang, C. M., Liang, Z., Zhou, S. W., Shen, X. Y., Huang, C. R., Ding, Y. H., Liu, Y. J., Yao, H. X.
636 and Zhou, K. X.: Rapid increase in warm–wet compound extreme events with high health risks
637 in southern China, joint influence of ENSO and the Indian Ocean, *Advances in Climate Change
638 Research*, 14, 856–865, 2023.

639 Lin, A., Wu, H., Liang, G., Cardenas-Tristan, A., Wu, X., Zhao, C. and Li, D.: A big data-driven
640 dynamic estimation model of relief supplies demand in urban flood disaster, *International
641 Journal of Disaster Risk Reduction*, 49, 101682, 2020.

642 Liu, K., Xu, K., Zhu, C. and Liu, B.: Diversity of marine heatwaves in the South China Sea regulated
643 by ENSO phase, *Journal of Climate*, 35, 877–893, 2022.

644 Martinez-Sosa, P., Tierney, J. E., Stefanescu, I. C., Crampton-Flood, E. D., Shuman, B. N. and
645 Routson, C.: A global Bayesian temperature calibration for lacustrine brGDGTs, *Geochimica
646 et Cosmochimica Acta*, 305, 87–105, 2021.

647 Mo, S., Chen, T., Chen, Z., Zhang, W. and Li, S.: Marine heatwaves impair the thermal refugia
648 potential of marginal reefs in the northern South China Sea, *Science of the Total Environment*,
649 825, 154100, 2022.

650 Niazkar, M., Menapace, A., Brentan, B., Piraei, R., Jimenez, D., Dhawan, P. and Righetti, M.:
651 Applications of XGBoost in water resources engineering, a systematic literature review (Dec
652 2018–May 2023), *Environmental Modelling & Software*, 174, 105971, 2024.

653 Oliver, E. C. J., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V.,
654 Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick,
655 S. E., Scannell, H. A., Straub, S. C. and Wernberg, T.: Longer and more frequent marine
656 heatwaves over the past century, *Nature Communications*, 9, 1324, 2018.

657 Park, S., Im, J., Jang, E. and Rhee, J.: Drought assessment and monitoring through blending of
658 multi-sensor indices using machine learning approaches for different climate regions,
659 *Agricultural and Forest Meteorology*, 216, 157–169, 2016.

660 Perkins-Kirkpatrick, S. E., King, A. D., Cougnon, E., Grose, M. R., Oliver, E. C. J., Holbrook, N.,
661 Lewis, S. C. and Pourasghar, F.: The role of natural variability and anthropogenic climate
662 change in the 2017/18 Tasman Sea marine heatwave, *Bulletin of the American Meteorological
663 Society*, 100, S105–S110, 2019.

664 Qi, R., Zhang, Y., Du, Y. and Feng, M.: Characteristics and drivers of marine heatwaves in the
665 western equatorial Indian Ocean, *Journal of Geophysical Research: Oceans*, 127,
666 e2022JC018732, 2022.

667 Rana, S., Renwick, J., McGregor, J. and Singh, A.: Seasonal prediction of winter precipitation

668 anomalies over Central Southwest Asia, a canonical correlation analysis approach, *Journal of*
669 *Climate*, 31, 727–741, 2018.

670 Roy, A. and Chakraborty, S.: Support vector machine for structural reliability analysis, a review,
671 *Reliability Engineering & System Safety*, 233, 109126, 2023.

672 Saranya, J. S., Roxy, M. K., Dasgupta, P. and Anand, A.: Genesis and trends in marine heatwaves
673 over the tropical Indian Ocean and their interaction with the Indian summer monsoon, *Journal*
674 *of Geophysical Research: Oceans*, 127, e2021JC017427, 2022.

675 Sattari, M. T., Feizi, H., Samadianfar, S., Falsafian, K. and Salwana, E.: Estimation of monthly
676 and seasonal precipitation, a comparative study using data-driven methods versus hybrid
677 approach, *Measurement*, 173, 108512, 2021.

678 Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A., Kwiatkowski, L., Aumont,
679 O., Christian, J., Dunne, J., Gehlen, M., Ilyina, T., Li, H., Long, M. C., Luo, J. Y., Nakano, H.,
680 Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y., Tjiputra, J., Tsujino,
681 H., Watanabe, M., Wu, T., Wu, F. and Yamamoto, A.: Tracking improvement in simulated
682 marine biogeochemistry between CMIP5 and CMIP6, *Current Climate Change Reports*, 6, 95–
683 119, 2020.

684 Sen Gupta, A., Thomsen, M., BenthuySEN, J. A., Hobday, A. J., Oliver, E. C. J., Alexander, L. V.,
685 Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Perkins-Kirkpatrick, S., Moore, P. J.,
686 Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T. and
687 Smale, D. A.: Drivers and impacts of the most extreme marine heatwave events, *Scientific*
688 *Reports*, 10, 19359, 2020.

689 Slater, L. J., Arnal, L., Boucher, M.-A., Chang, A. Y. Y., Moulds, S., Murphy, C., Nearing, G., Shalev,
690 G., Shen, C., Speight, L., Villarini, G., Wilby, R. L., Wood, A. and Zappa, M.: Hybrid
691 forecasting, blending climate predictions with AI models, *Hydrology and Earth System*
692 *Sciences*, 27, 1865–1889, 2023.

693 Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M.
694 T., Alexander, L., BenthuySEN, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J.,
695 Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L. and Moore, P. J.:
696 Marine heatwaves threaten global biodiversity and the provision of ecosystem services, *Nature*
697 *Climate Change*, 9, 306–312, 2019.

698 Song, Q., Yao, Y. and Wang, C.: Response of future summer marine heatwaves in the South China
699 Sea to enhanced western Pacific subtropical high, *Geophysical Research Letters*, 50,
700 e2023GL103667, 2023.

701 Tan, H. J., Cai, R. S. and Wu, R. G.: Summer marine heatwaves in the South China Sea, trend,
702 variability and possible causes, *Advances in Climate Change Research*, 13, 323–332, 2022.

703 Tang, S., Chen, R. and Chen, Z.: Spatial diversity of the summer marine heat waves in the South
704 China Sea, *Journal of Climate*, 38, 1051–1065, 2025.

705 Tao, L. J., Zhang, R. H. and Gao, C.: Initial error-induced optimal perturbations in ENSO predictions,
706 as derived from an intermediate coupled model, *Advances in Atmospheric Sciences*, 34, 791–
707 803, 2017.

708 Van der Ploeg, T., Austin, P. C. and Steyerberg, E. W.: Modern modelling techniques are data hungry,

709 a simulation study for predicting dichotomous endpoints, *BMC Medical Research*
710 *Methodology*, 14, 1–13, 2014.

711 Waliser, D. E., Lau, K. M., Stern, W. and Jones, C.: Potential predictability of the Madden–Julian
712 oscillation, *Bulletin of the American Meteorological Society*, 84, 33–50, 2003.

713 Wang, H., Liang, Q., Hancock, J. T. and Khoshgoftaar, T. M.: Feature selection strategies, a
714 comparative analysis of SHAP-value and importance-based methods, *Journal of Big Data*, 11,
715 44, 2024.

716 Xiao, F., Wang, D., Zeng, L., Liu, Q. and Zhou, W.: Contrasting changes in the sea surface
717 temperature and upper ocean heat content in the South China Sea during recent decades,
718 *Climate Dynamics*, 53, 1597–1612, 2019.

719 Xie, S. P., Xie, Q., Wang, D. and Liu, W. T.: Summer upwelling in the South China Sea and its role
720 in regional climate variations, *Journal of Geophysical Research: Oceans*, 108, 3261, 2003.

721 Yang, P. and Ye, G.: Tropical cyclone track prediction model for multidimensional features and time
722 differences series observation, *Alexandria Engineering Journal*, 111, 432–445, 2025.

723 Yao, Y. and Wang, C.: Variations in summer marine heatwaves in the South China Sea, *Journal of*
724 *Geophysical Research: Oceans*, 126, e2021JC017792, 2021.

725 Yao, Y., Wang, J., Yin, J. and Zou, X.: Marine heatwaves in China's marginal seas and adjacent
726 offshore waters, past, present, and future, *Journal of Geophysical Research: Oceans*, 125,
727 e2019JC015801, 2020.

728 Yu, Y., Si, X., Hu, C. and Zhang, J.: A review of recurrent neural networks, LSTM cells and network
729 architectures, *Neural Computation*, 31, 1235–1270, 2019.

730 Zhang, L., Delworth, T. L., Cooke, W. and Yang, X.: Natural variability of Southern Ocean
731 convection as a driver of observed climate trends, *Nature Climate Change*, 9, 59–65, 2019.

732 Zhang, N., Lan, J. and Dong, C.: Subsurface heatwaves and cold spells in the South China Sea
733 regulated by ENSO, role of the South China Sea throughflow, *Geophysical Research Letters*,
734 52, e2025GL114692, 2025.

735 Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y. and Hao, F.: Drought propagation under
736 global warming, characteristics, approaches, processes, and controlling factors, *Science of the*
737 *Total Environment*, 838, 156021, 2022.

738 Zhao, Y., Chen, M., Chung, T. H., Chan, L. L. and Qiu, J. W.: The 2022 summer marine heatwaves
739 and coral bleaching in China's Greater Bay Area, *Marine Environmental Research*, 189,
740 106044, 2023.

741 Zhu, L. and Aguilera, P.: Evaluating variations in tropical cyclone precipitation in Eastern Mexico
742 using machine learning techniques, *Journal of Geophysical Research: Atmospheres*, 126,
743 e2021JD034604, 2021.