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10  Abstract

11 A primary challenge of machine learning to predict marine heatwave (MHW) for the south China
12 sea (SCS) is the limited availability of observational data for model training. To address this issue,
13 this study explores the viability of leveraging multi-member ensemble simulations from the Coupled
14 Model Intercomparison Project Phase 6 (CMIP6), to construct an extensive, physically consistent
15  training dataset for various machine learning models. After training on multiple CMIP6 ensemble
16  members, the constructed models are evaluated for their predictive capacity regarding MHW in the
17  SCS. The results also show that these machine learning-based methods can perform comparably to
18  the existing dynamic models in terms of prediction performance, and in some cases even outperform
19  the latter. Furthermore, by incorporating machine learning interpretability techniques, the key
20  physical processes can also be elucidated from these predictions. That is to say, the new method is
21  not a traditional "black box", but rather an effective tool that can possess certain physical
22  transparency and scientific interpretability.
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28 1 Introduction

29 Marine heatwaves (MHWs) are extreme oceanic climate events characterized by abnormally
30 elevated sea surface temperatures, persisting from days to several months and even extending across
31  thousands of kilometers (Hobday et al., 2016; Hobday et al., 2018). In recent years, the frequency
32  of MHWs has risen markedly under global warming (Frolicher et al., 2018; Oliver et al., 2018;
33 Holbrook et al., 2020). These abnormal high-temperature events severely impact marine ecosystems,
34 associated with ecosystem services, and the economy (Perkins-Kirkpatrick et al., 2019; Smale et al.,
35  2019). The 2014-2016 "Blob event" in the North Pacific caused a large-scale disruption to marine
36  ecosystems, resulting in mass marine mortality and severe declines in fishery resources (Di Lorenzo
37  etal, 2016). China has a vast offshore area, among which the SCS in the tropical zone experienced
38  frequently many MHWs (Yao et al., 2020; Xiao et al., 2019). The SCS has coral reef habitats and
39  modern marine pastures, and MHWs in the SCS caused severe impacts on its marine ecosystem and
40  economy (Feng et al., 2022; Mo et al., 2022; Zhao et al., 2023). Considering the significant impacts
41  of MHWs on the ecological environment, fishery production, and economic activities, enhancing
42 the predictive capability of MHW:s has become a top priority in marine resource management.

43 MHWSs are modulated by local and large-scale air-sea interactions (Lee et al., 2010; Chen et al.,
44 2015; Tang et al., 2025). Local atmospheric processes are generally closely related to the persistent
45  abnormal high-pressure system in the upper atmosphere. Specifically, this may manifest as reduced
46 cloud cover, enhanced short-wave radiation, and weakened wind speed, which leads to reduced
47  evaporation (Amaya et al., 2020; Sen Gupta et al., 2020). Local oceanic processes include
48  anomalous horizontal and vertical heat advection, weakened vertical mixing, and a shoaling of the
49  mixed layer (Amaya et al., 2021; Han et al., 2022). MHWs are also influenced by remote forcing or
50  oceanic modulation associated with large-scale climate models such as ENSO, the Indian Ocean
51  Dipole (IOD), and the North Atlantic Oscillation (NAO), though the dominant mechanisms may
52  differ substantially across regions (Qi et al., 2022; Saranya et al., 2022). For instance, the local
53  climate of the SCS is influenced by the upper-level ocean currents, and these currents are mainly
54  regulated by the East Asian monsoon (Gan et al., 2006). Local abnormal anticyclones enhance
55  shortwave radiation, weaken the southwest monsoon and upwelling, while abnormal marine
56  anticyclones exacerbate water convergence and Ekman downwelling, further intensifying sea
57  surface warming and increasing the probability of MHWs in the SCS (Yao et al., 2021; Liu et al.,
58  2022; Tan et al., 2022). These anomalous anticyclonic processes may be modulated by
59  teleconnections from large-scale climate models. Therefore, predictive models can improve the
60  stability and reliability of MHW forecasting by capturing these potential predictability signals.

61 MHW prediction methods can be broadly categorized into dynamic methods, empirical methods
62  (statistical techniques or machine learning techniques), and hybrid methods (integrating dynamic
63  techniques with empirical techniques). Dynamical prediction methods typically rely on ensemble

64  forecasting, which performs probabilistic prediction through the distribution of ensemble members.
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65  The prediction uncertainty originates from minor errors in initial conditions, which grow rapidly
66 over time (Tao et al., 2017; Waliser et al., 2003). By calculating the mean of ensemble members,
67  random noise from individual weather events can be filtered out to extract more stable climatic
68  signals. Statistical prediction methods have a long history, among which Canonical Correlation
69  Analysis (CCA) is one of the classic methods (Barnston et al., 1996; Rana et al., 2018). The CCA
70  is typically used to describe the linear relationship between two sets of variables. It is widely used
71  in the relationships between sea surface temperature and precipitation or atmospheric circulation
72  fields to identify possible teleconnection patterns. However, the traditional CCA framework has
73 limitations in handling multiple predictor variables and their interactions simultaneously.
74 Particularly in the case of high-dimensional data or a large number of predictor variables, overfitting
75  is prone to occur (Chen et al., 2017). Moreover, the CCA has insufficient capability to characterize
76  temporal evolution, and can only make up for the lack of temporal information to a certain extent
77  through lagged correlation.
78 Currently, significant research resources have been invested in dynamic model ensemble
79  forecasting, but studies on applying machine learning to MHW prediction remain relatively scarce
80  (Slater et al., 2023). A major challenge in machine learning for MHW prediction lies in the limited
81  availability of observational data for model training (Gao et al., 2024). This limitation not only
82  hinders traditional statistical methods but also affects machine learning-based approaches. For
83  example, to reliably simulate the nonlinear interactions between multiple predictor variables, each
84  predictor variable requires a large number of samples to avoid model overfitting (Van der Ploeg et
85 al, 2014). However, the available observational samples typically span only around four decades,
86  which is insufficient to support large-scale machine learning training. An effective alternative is to
87  train machine learning models on large ensembles of climate model simulations (Seferian et al.,
88  2020; Li et al., 2021). This approach substantially expands the training dataset, enabling coverage
89  of multiple centuries of simulated climate conditions. For example, a study has found that training
90  a Convolutional Neural Network (CNN) on historical climate model simulation data can achieve
91  high-precision ENSO prediction with a lead time of over one year (Ham et al., 2019). In addition,
92  some studies used regularized models to achieve high-precision predictions with various
93  meteorological datasets (Jeffree et al., 2024; Kim et al., 2017).
94 Due to the massive data generated by increasing satellite observations and climate models,
95  machine learning algorithms demonstrate enormous potential in early warning of upcoming extreme
96  events. This study focuses on five machine learning models: Random Forest, XGBoost, LSTM,
97  MLP and SVR. Because they show excellent performance in recent studies for predicting climatic
98 variables such as precipitation and sea surface temperature (Park et al., 2016; Ham et al., 2023;
99  Sattari et al., 2021), as well as for predicting the impacts of climatic extremes (Zhu et al., 2021; Lin
100  etal., 2020; Yang et al., 2025). The objective is to evaluate the feasibility of using large-ensemble
101  climate model data and various machine learning techniques to predict MHWs in the SCS. Then,

3
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102  machine learning models are constructed and applied to predict MHWs based on several climatic
103  variables. The models are trained and validated using publicly available climate model samples,
104  observational samples, and reanalysis datasets to assess the predictability of oceanic extremes across
105  various forecast lead times. Furthermore, interpretable machine learning methods are employed to
106  identify the key physical processes affecting predictions, providing physical interpretability support

107 for the forecast results.

108

109 2 Related knowledge
110 2.1 LSTM

111 Long Short-Term Memory (LSTM) is a special type of recurrent neural network (RNN). It can
112 effectively capture long-term dependencies in time series data (Yu et al., 2019). Traditional RNNs
113 often suffer from gradient vanishing or gradient explosion when handling long sequences. This
114  makes it difficult for them to learn long-range dependencies. LSTM addresses this problem by
115  introducing memory cells and gating mechanisms. These gates include an input gate, a forget gate,
116  and an output gate. The forget gate decides which information should be discarded. The input gate
117  controls how new information is stored. The output gate determines the final output. These
118  mechanisms allow LSTM to pass information effectively across different time steps. These include
119  convolutional neural networks (CNNs) and attention mechanisms. This helps improve its ability to
120  model complex temporal data. In this study, LSTM model consists of three unidirectional layers.
121 Each layer has 128 hidden units. The model is trained with a batch size of 64 and a learning rate of
122 0.001. Loss function is set to be mean squared error (MSE). Training is performed on standardized
123 sliding-window data for 100 epochs. Dropout regularization is applied during training to reduce the

124 risk of overfitting.
125 22MLP

126~ Multi-Layer Perceptron (MLP) is a classical feedforward neural network. It consists of an input
127  layer, one or more hidden layers, and an output layer (Cabaneros et al., 2019). Each neuron is fully
128  connected to all neurons in the previous layer. It uses weights, biases, and activation functions such
129  as ReLU, Sigmoid, or Tanh to perform nonlinear transformations. These operations allow the
130  network to learn complex mappings. The core computations of an MLP include forward propagation
131  and backpropagation. Backpropagation uses gradient descent to optimize the loss function and
132 adjust network parameters to reduce errors. MLP has strong nonlinear modeling capability.
133 Theoretically, it can approximate any continuous function. In this study, the MLP model has two
134 hidden layers. Each layer contains 64 neurons. Activation function and loss function are set to be
135  ReLU and MSE respectively. The model is trained for 100 epochs using features expanded through

136  a sliding window. The optimizer is Adam with a learning rate of 0.001. Dropout regularization is
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137  applied during training to reduce overfitting.

138 23RF

139 Random Forest (RF) is a decision tree method using ensemble learning. It can improve the
140  generalization ability by training multiple decision trees and using voting or averaging for prediction
141  (Huetal, 2023). The core idea of RF is to use the Bagging method. It draws multiple subsets from
142 the original dataset through bootstrap sampling and trains a separate decision tree on each subset.
143 During tree construction, each tree randomly selects a subset of features for splitting. This reduces
144 the risk of overfitting and improves model stability. RF has strong robustness and can evaluate
145  feature importance. It performs well when dealing with high-dimensional data and complex pattern
146  recognition tasks. However, RF needs to train a large number of decision trees, which leads to high
147  computational costs. On large datasets, it may face limitations in memory and computing resources.
148 In this study, the RF model consists of 1,000 decision trees, each with a maximum depth of 10. Each

149  leaf node contains at least 5 samples.
150 24 SVR

151 Support Vector Regression (SVR) is an extension of Support Vector Machines applied to
152  regression tasks. It is used to find an optimal hyperplane that fits the data as closely as possible
153  within a certain error margin (Roy et al., 2023). SVR uses kernel functions such as linear, radial
154  basis function, and polynomial kernels to map data into a high-dimensional space. This enables it
155  to model nonlinear relationships effectively. However, SVR has high computational complexity. It
156  requires long training time and large memory usage when applied to large datasets. Its performance
157  also depends on several hyperparameters such as C, €, and the kernel parameters. These usually
158  need to be tuned using cross-validation to ensure good prediction results. Therefore, SVR performs
159  well in small-scale and high-precision regression tasks. But in large-scale applications, its efficiency
160  and scalability may be limited. In this study, a radial basis function kernel is used. The regularization
161  strength is set to C = 1.0. The kernel coefficient is automatically determined based on the feature

162 dimensions.

163 2.5XGB

164  XGBoost (Extreme Gradient Boosting) is an optimized algorithm using Gradient Boosted Decision
165  Trees (GBDT). It improves predictive performance by iteratively building decision trees to
166  minimize the loss function and adjust sample errors through weighted updates (Niazkar et al., 2024).
167  XGBoost uses a variety of optimization strategies, such as second-order derivative updates,
168  regularization, prevention of overfitting, parallel computation, and pruning. It can also handle
169  missing values and automatically learn optimal split strategies, maintaining high computational
170  efficiency even when applied to large-scale data. Compared with traditional GBDT, the optimization
171  strategies of XGBoost significantly enhance training speed and generalization ability, making it

172 highly effective for regression and classification tasks on structured data. In this study, the XGB
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173 model uses 1,000 trees with a maximum depth of 10, a learning rate of 0.1, and a row and column

174  sampling rate of 80 percent to improve predictive accuracy while controlling overfitting.

175 2.6 Feature Processing

176  This study applies Empirical Orthogonal Function (EOF) analysis (Martinez-Sosa et al., 2021) and
177  lagcorrelation analysis (Zhang et al., 2022) to extract the coupled ocean-atmosphere spatial patterns
178  and temporal characteristics associated with MHWs in the SCS. MHWs are usually influenced by
179  large-scale ocean-atmosphere interactions, and spatial information from a single variable often
180  contains redundancy. EOF analysis can effectively identify dominant modes of spatial variability.
181  This dimensionality reduction helps highlight key climate variability features and reduces the
182  impact of redundant information on machine learning model performance. Firstly, principal
183  component analysis is conducted on the CMIP6 data and observational data using EOF to extract
184  the main spatial modes of each variable within the study area (the South China Sea and its
185  surrounding regions). Next, lag correlation analysis is taken to determine significant lead-lag
186  relationships between climate variables and MHWs. This process aimed to capture precursor signals
187  and provide effective predictive indicators for the model. Finally, the dominant spatial patterns
188  obtained from EOF analysis and the key lead times identified through lag analysis are used as input

189  features for the model to increase the accuracy and lead time of MHW prediction in the SCS.

190 3 Data and Method
191 3.1 Data

192 This study uses multi-model large ensemble simulation data from CMIP6 to provide sufficient
193  training samples for the machine learning models. The historical simulations are conducted by
194  several global climate models (GCMs) developed by different research institutions. The data cover
195  the period from 1950 to 2014. These simulations follow historical forcing scenarios. They include
196  observed changes in greenhouse gas concentrations, solar radiation, volcanic eruptions, and aerosols
197  (Eyring et al., 2016). In this study, CMIP6 models include 20 high-resolution coupled climate
198  models such as ACCESS-CM2, BCC-CSM2-MR, CMCC-CM2-SR5, MIROC6, and MRI-ESM2-
199 0. These models have a spatial resolution of about 1 degree. They simulate the full interactions
200  among the atmosphere, ocean, land and sea ice.

201 CMIP6 climate variables used in this study contain sea surface temperature, surface air
202  temperature, sea level pressure, and zonal and meridional wind fields at 10 meters height. Previous
203  studies show that CMIP6 models perform better than CMIP5 in simulating large-scale climate
204  wvariability in the tropical and subtropical regions. They are especially better at reproducing the
205  frequency, intensity, and teleconnection patterns of ENSO events (Bellenger et al., 2014). This is
206  important for training machine learning models with climate model data. Systematic biases in
207  teleconnections or air-sea interactions may be learned by the model during training and affect

208  prediction results (Zhang et al., 2019).
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209 After training the machine learning models using CMIP6 multi-model data, the offline trained
210  models are applied to observational data for prediction testing. To ensure consistency of variables
211  between the training and validation stages, same set of variables are used during testing. The sea
212 surface temperature data came from the high-resolution Optimum Interpolation Sea Surface
213 Temperature (OISST) dataset provided by NOAA. This dataset combines multiple satellite
214  observations and in-situ measurements. It is commonly used in global climate studies and marine
215  extreme event monitoring (Huang et al., 2017). Atmospheric circulation data were obtained from
216  the ERAS global reanalysis product provided by ECMWE. This dataset has high spatial and temporal
217  resolution and includes a wide range of atmospheric variables. It was widely used in climate
218  diagnostics and model evaluation (Hersbach et al., 2020). In processing the observational and
219  reanalysis variables, the same dimensionality reduction and preprocessing methods as used for the
220  CMIP6 data. This ensures consistency in the data processing and improved the generalization ability

221 of the models under real observation conditions.

222

223 Fig.1. Overview of the marine heatwave prediction framework. In this study, the simulation experiments are
224 conducted over the South China Sea, defined by the region spanning 0°-30°N and 100°-130°E. Five machine learning

225 models are trained on CMIP6 ensemble data and subsequently tested using observational datasets to forecast MHWs
226 inthe SCS.

227 3.2 Method

228 The Fig. 1 shows the complete process of the framework. This study focuses on a specific region
229  ofthe South China Sea, as shown by the red box in Fig. 1. SST from this region were extracted and
230  used to construct a one-dimensional time series. To avoid the influence of long-term warming trends
231  on model training, the SST series was first detrended. A daily climatological mean was then
232 constructed to represent the typical SST for each day. Because high-frequency fluctuations exist in
233 daily climate data, a 31-day moving average was applied to smooth the climatological mean and
234  improve the stability of the analysis. SSTA was also computed by subtracting the climatological
235  mean from the corresponding daily SST. Based on the SSTA, MHW events during the study period

236  were identified and labeled for each sample. To reduce the impact of short-term natural fluctuations
7
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237  such as storms and intraseasonal disturbances, a 7-day moving average was applied. This helps
238  improve the model’s response to climate-scale signals and reduces the risk of overfitting. Other key
239 meteorological drivers, including T2M, PSL, UAS, and VAS, were processed using the same
240  method to ensure consistency across variables.

241 All input variables are standardized to improve comparability across different scales and to
242 accelerate model convergence. EOF analysis and lag analysis are applied to the predictors, and the
243  derived variables are used for model training. Five machine learning models are trained and
244 calibrated using CMIP6 data. After training, all model parameters are kept fixed. The models are
245  then applied offline to observational and reanalysis data to evaluate their performance in predicting
246 MHWs in the SCS during the period 2015 to 2022. The processed predictors and labels are finally
247  input into multiple machine learning models to perform classification and regression tasks for both
248  short-term and long-term MHW prediction. Hyperparameters re tuned using a validation set to
249  determine the optimal configuration. This workflow improves the stability and accuracy of the
250  models and also laid the foundation for subsequent interpretability analysis using SHAP values and

251  feature importance evaluation.

252 4 Results and Discussion

253 4.1 Prediction accuracy

254 After training and hyperparameter tuning of each machine learning model using a large ensemble
255  data from CMIP6. In this study, model parameters are fixed after determination and observation
256  data are used for multi-duration testing and evaluation. The prediction tasks span seven forecast lead
257  times: 7, 15, 30, 90, 180, 365, and 730 days. In each prediction, the model uses observed
258  atmospheric and oceanic variables prior to the target date as input features to simulate the prediction
259  process in real-world application scenarios. This independent testing set evaluation provides an

260  objective assessment of the model’s generalization capability.
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262 Fig.2. Comparison of prediction accuracy for MHWs in SCS across short-term lead times (7, 15, and 30 days) using
263 three categories of methods. Black bars represent the prediction accuracy of ERA5 reanalysis data, blue bars denote
264 the prediction accuracy of three CMIP6 model members (ACCESS, BBC, CAN), and red bars signify the prediction
265 accuracy of five machine learning models (RF, XGB, LSTM, SVR, MLP). The values on each bar indicate the
266 corresponding model's prediction accuracy.
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267 To systematically compare the predictive capabilities of different models in various time spans,
268  Fig. 2 presents the accuracy of five machine learning models for short-term predictions at 7, 15, and
269 30 days. The prediction accuracy of each machine learning method (red bars) is compared with the
270  simulation results of three groups of CMIP6 members (blue bars) and the ERA5 reanalysis data
271  results (black bars). All methods use the same test years to ensure horizontal comparability.
272 Furthermore, Fig. 3 illustrates the performance of the same five machine learning models for longer-
273  term forecasts at 90, 180, 365, and 730 days. Fig. 3 adopts the same comparison benchmark and
274 color scheme as Fig. 2, facilitating analysis of the changing trends in model performance as

275  prediction duration increases.
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277 Fig.3. Comparison of prediction accuracy for MHWs in SCS across long-term lead times (90, 180, 365 and 720 days)
278 using three categories of methods. Similarly to Figure 2, black bars represent the prediction accuracy of ERAS data,
279 blue bars denote the prediction accuracy of three CMIP6 model members, and red bars signify the prediction
280 accuracy of five machine learning models. The values on the bars indicate the prediction accuracy, while the
281 horizontal black dashed line represents the benchmark level for random predictions, with the benchmark decreasing
282 gradually as the prediction duration extends.

283 In Fig. 2, ERAS data, three groups of CMIP6 members (ACCESS, BBC, CAN), and five machine
284 learning models (RF, XGB, LSTM, SVR, MLP) are compared for their accuracy in MHW prediction
285  across three short-term prediction horizons (7 days, 15 days, and 30 days, respectively). From an
286  overall perspective, it can be observed that the performance differences among models are relatively
287  small over short prediction horizons, and the accuracy is generally high. ERAS attains the highest
288  prediction accuracy at the 7-day forecast horizon. The performance of the RF model closely follows
289  that of the ERAS data and is competitive with the ERAS5 data. At 15- and 30-day lead times, RF
290  model and XGB model consistently maintain leading performance. Notably, the RF model ranks
291  among the top performers in the short-term and exhibits remarkable stability with the smallest
292  precision fluctuations across different timesteps. It is also worthy of note that the ACCESS and BBC

293  models have exhibited highly consistent performance in short-term predictions. Their performance
9
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294  in multiple forecast horizons is almost comparable to that of machine learning models, and they
295  even outperform certain machine learning models at specific time points (e.g., the 30-day). This
296  demonstrates that physics-based model simulations retain a degree of advantage at specific lead
297  times. This stability may be attributed to its long-term operational foundation and systematic
298  modeling capability for physical processes. However, the MLP model and SVR model demonstrated
299  the poorest performance in all forecast horizons, indicating their limited capability to extract
300  complex signals from MHWs.

301 Fig. 3 illustrates performance of different models over longer timeframes (90 days, 180 days, 365
302  days, and 730 days). As the prediction lead time increases, the prediction accuracy of all models
303  shows a decline to varying degrees, among which the decline in machine learning models is the
304  most significant. the prediction accuracy of the RF model drops from 0.882 for 7-day to 0.522 for
305  365-day, and further drops to 0.441 for 730-day, representing a decline of over 40% in accuracy
306  from 7 days to 730 days. The MLP model and SVR model exhibit more pronounced weakness in
307  long-term predictions, indicating their unsuitability for identifying and forecasting MHW trends in
308  extended periods. By contrast, ERAS and CMIP6 demonstrate stronger stability, maintaining an
309  accuracy above 0.6 over both 365-day and 730-day. This demonstrates the superiority of physical
310  models in long-term climate prediction. Machine learning models perform outstandingly in short-
311  term predictions, mainly benefiting from their non-linear fitting capability and high sensitivity to
312  patterns in the training dataset. However, their predictive capability rapidly declines in long-term
313  due to the absence of physical process constraints. Conversely, physical models such as CMIP6 and
314  ERAS exhibit stronger systematicity and stability, particularly demonstrating advantages in

315  simulating teleconnection signals and low-frequency climatic backgrounds.
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317 Fig.4. Comparison between prediction results of models in short-term and actual South China Sea MHWs. The
318 scatter plot shows the occurrence of MHWs and the prediction results of different machine learning models. The
319 scatter points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each
320  machine learning model.

321 To further evaluate the temporal detection capabilities of each model in different lead times, Fig.
322 4 and 5 present point-by-point comparisons between model predictions and observed MHWs. Each

323  dot in the plots represents an individual MHW event, and each row corresponds to the prediction
10
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324 output of a specific method. The top row shows actual MHW:s identified from observational data,
325  while the remaining rows present simulation results from different machine learning models in
326  various prediction lead times. This point-by-point aligned visualization intuitively demonstrates the

327  temporal fitting capability and accuracy of models in different time scales.
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329 Fig.5. Comparison between prediction results of models in long-term and actual South China Sea MHWs. The scatter
330 plot shows the occurrence of MHWs and the prediction results of different machine learning models. The scatter
331 points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each machine
332 learning model.

333 Fig. 4 demonstrates the prediction performance of models in three short-term forecast lead times
334  (7-day, 15-day, and 30-day). Most model predictions generally align with the distribution of actual
335  MHWs, indicating that machine learning models can relatively accurately capture MHWs.
336  Especially in the years when MHW occurred frequently such as 2016, 2020 and 2022, the alignment
337  degree between the model and the observations was relatively high. This indicates that machine
338  learning models exhibit good temporal localization capability about MHWs in short-term forecast
339  lead times and can effectively respond to disturbances in short-term climatic signals. However, Fig.
340 5 shows a trend of gradual performance degradation in models as the forecast lead time increases
341  from 90 to 730 days. It specifically manifests as the gradual dispersion of prediction result
342  distributions from machine learning methods, featuring not only more deviating points but also
343  substantial occurrences of "false positives" and "false negatives". In 365-day and 730-day
344 predictions, the fitting capability of almost all models to actual MHWs significantly diminishes,
345  with MHW prediction points overall deviating or dispersing, making it difficult to accurately
346  reproduce the concentrated distribution intervals of events in observational data. For example, the
347  performance of RF model and XGB model significantly declines in long-term prediction, while
348  MLPmodel and SVR model exhibit near-random prediction states over extended durations. Overall,
349  while machine learning models perform well in short-term predictions, their prediction accuracy

350  declines in longer-term forecasts.
351 4.2 Interpretable Random Forest Model

352 Machine learning methods are often considered a relatively "brute-force" solution strategy, and
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their "black-box" results in weak interpretability. The lack of interpretability in models may affect
their credibility in scientific research and practical applications. Models sometimes produce
superficially accurate results for erroneous mechanisms. Therefore, to further understand the
internal operational mechanisms of the models, this section investigates the machine learning "black
box" and attempts to reveal the physical implications in its decision-making process. RF model
performs outstandingly in multiple prediction evaluations, and selects three representative forecast
lead time—7-day, 30-day, and 90-day—for in-depth interpretation. It is important to emphasize that
these interpretation methods merely serve as processing tools for model outputs and do not interfere
with or affect the prediction pipeline or parameter architecture. The feature importance evaluation
method in RF models relies on statistically averaging the improvement in classification purity
contributed by each feature across all decision trees. At each node split, the "purity" reduction
caused by the feature is calculated and multiplied by the number of samples at that node. The
“impurity” reductions caused by the feature across all trees are summed up and normalized to obtain
its importance score (Wang et al., 2024). This method can identify the most influential input features

in the prediction process to provide a basis for the physical interpretability.

Top 15 Feature Importance (7 Days)
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Fig.6. Univariate feature importance analysis in the Random Forest model. This figure presents univariate feature
importance for Random Forest MHW forecasts at multiple lead times. It reports four indicators: feature importance
scores from training that combine split frequency and information gain with higher values meaning greater
contribution, relative accuracy reduction computed by shuffling a single variable with a larger drop implying more
importance, average minimum tree depth showing where a variable first splits with shallower depth indicating higher
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374 importance, and root node occurrence count reflecting how often a variable becomes the root with higher counts
375 indicating stronger initial influence. Panels (a)(c)(e) mark the top 15 predictors in red matching the scores in (b)(d)(f),
376 and names follow Fig. 1. For example, SSTA pc 1 is the first EOF mode of SSTA and SSTA_Lag]l is a one-day lag.

377 Feature importance assessment is firstly employed to quantify the relative contribution of various
378  predictors in the regression-based forecasting task. The results are presented in Fig. 6. Based on
379  integrating multiple metrics, sea surface temperature anomaly (SSTA), 2-meter air temperature
380 (T2M), and wind field information (UAS, VAS) emerge as the variables most significantly
381  influencing prediction accuracy. Notably, there is a widespread negative correlation between the
382  relative accuracy reduction metric of variables and their average minimum tree depth. This indicates
383 that the most important variables tend to appear earlier in the upper layers of decision trees (closer
384  to the root node). The dominance of key predictive factors also varies across different forecast lead
385  times. SSTA and VAS consistently serve as dominant predictors in all lead times. In short-term
386  forecasts (e.g., 7- and 30-day), SSTA-related features (including principal components and lagged
387  terms) exhibit the highest importance, indicating they carry more information about recent MHWs.
388  However, in longer-term forecasts (e.g., 90 days), the importance of VAS-related features increases
389  significantly while the ranking of SSTA-related variables declines relatively, indicating that wind
390 field signals may have greater predictive value on longer timescales. Additionally, T2M is relatively
391  important in short-term forecasts while VAS plays a more critical role in long-term predictions. The
392  trend of predictive variable weights changing with forecast lead times is also reflected in the lag
393  period. The RF model tends to use variables with shorter lag periods for short-term forecasts, while
394  input factors with longer lag periods gradually replace short-lag variables in long-term predictions.
395  This change aligns with the expected pattern that variables closer to the target date generally contain
396  more immediate information relevant to the prediction. It is worth emphasizing that the key
397  predictive factors highlighted in Fig. 6 align with the current understand of formation mechanisms
398  of MHWs in the SCS. Numerous studies have shown that large-scale climate models, for example,
399  the El Nino-Southern Oscillation (ENSO) modulate the frequency and intensity of MHWs in SCS
400  via teleconnection mechanisms (Zhang et al., 2025). For instance, during ENSO, PSL and wind
401  fields anomalies can influence the intensity and position of the Western Pacific Subtropical High
402  (WPSH), thereby altering the surface thermal structure of the SCS. This ultimately leads to localized
403 SSTA, increasing the probability of MHW.

404 Although the RF model can quantify the global importance of predictors, it is difficult to provide
405  local interpretability and the dependencies among variables. This study introduces the SHapley
406  Additive exPlanations (SHAP) method, which enables both global and local model interpretation.
407  Fig. 7 displays a SHAP summary plot visualizing how predictors contribute to model outputs,
408 thereby illuminating the model's decision mechanisms (Li et al., 2022; Li et al., 2022).

409 For 7-day forecast horizons, the ranking of the top 15 most important predictors identified by
410  SHAP is highly consistent with the feature importance rankings from the RF model. Although slight

411  variations exist in the ranking of specific variables across other forecast horizons, the composition
13
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of the top 15 key variables remains relatively stable, further validating their predictive importance.
In contrast to global importance scores, SHAP provides more intuitive visualizations of variable
impacts. Among key predictors except the two wind components (UAS and VAS), high values of
most variables show a positive correlation with positive SHAP values—meaning their increase
promotes MHW prediction. This implies the model is more likely to identify MHWSs when these
variables are elevated. For example, higher SSTA typically indicates warmer sea surface

temperatures, which are closely associated with the MHW formation.
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Fig.7. SHAP feature importance distribution of the RF model, showing the contribution degree and direction
of the top 15 predictor variables across different forecast lead times (7-day, 30-day, and 90-day). (a) and (b)
correspond to 7-day, (c) and (d) to 30-day, and (e) and (f) to 90-day. Each data point represents a sample, with the x-
axis denoting the SHAP value (degree and direction of feature contribution to model predictions) and the y-axis
listing predictor variable names. The color of each data point indicates the degree of the corresponding feature value,
with red denoting higher values and blue indicating lower values. The horizontal position of data points represents
the degree of influence of the feature on model predictions. Larger SHAP values on the right indicate a greater
contribution of the feature to predicting MHWs, while smaller or negative SHAP values on the left signify stronger
inhibitory effects.

Warming in the Indian Ocean may trigger an anti-Walker circulation between the tropical Indian
Ocean and western Pacific, of which enhances the Philippine Anticyclone (PAC). Such large-scale
circulation changes weaken convective activity in the northwestern Pacific, promoting westward
extension of the WPSH toward China's southern coast (Liang et al., 2023). The westward expansion
of WPSH typically suppresses easterly anomalies induced by the SCS anticyclonic circulation,
leading to weakening of the southwest monsoon. This further diminishes upwelling and cold surge

phenomena, creating favorable conditions for MHW formation (Xie et al., 2003; Song et al., 2023).
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436  On the other hand, lower wind speeds reduce sea surface evaporation, decreasing heat release from
437  the ocean to the atmosphere and exacerbating oceanic heat storage—processes that facilitate MHW
438  development. Meanwhile, La Nifla-type tropical Pacific patterns enhance westward ocean currents
439  via anomalous easterlies, transporting warm water to the western Pacific and SCS. These results
440  demonstrate that the SHAP method not only enhances model interpretability but also further

441  validates that the model can identify key factors with physical significance.
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443 Fig.8. SHAP waterfall plots of the RF model, showing the contribution degree and direction of the top 10
444 important predictor variables for the 100th and 1000th test samples across different forecast lead times. (a),
445 (c), and (e) represent the 100th sample for 7-day, 30-day, and 90-day, respectively, while (b), (d), and (f) correspond
446 to the 1000th sample. Each bar denotes a predictor, with its length and arrow direction indicating the contribution
447 deggre and sign to MHW occurrence probability: red bars extending to the right signify positive contributions
448 (increasing MHW probability), blue bars extending to the left denote negative contributions (decreasing probability),
449 and the numerical values beside bars represent the absolute contribution degree.

450 SHAP not only evaluates global feature importance, but also offers strong local interpretability,
451  enabling in-depth revelation of the model's decision basis for individual prediction samples. To
452  analyze how key predictive factors influence specific sample predictions, the 100th and 1000th test
453  samples were selected as representative cases. Both samples belong to MHWs and were successfully
454 predicted by the model in all forecast lead times.

455 Fig. 8 shows SHAP waterfall plots illustrating the local interpretability results of the top 10
456  features for these two samples in 7-day, 30-day, and 90-day forecast lead time. Left panels (a, c, €)
457  correspond to the 100th sample, while right panels (b, d, f) correspond to the 1000th sample. Red
458  arrows mean positive contributions, blue arrows denote negative impacts, and arrow length
459  represents the degree of SHAP values (i.e., the contribution degree of features to prediction results).

460  The plots show that SSTA and T2M consistently rank among the top features in all forecast lead
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461  times, exerting significant positive impacts on model predictions. As shown in the figure, SSTA and
462  T2M consistently rank among the top predictors in all forecast lead times, exerting significant
463  positive impacts on model predictions. In particular, the principal components and lagged terms of
464  SSTA exhibit the highest contribution values, indicating their dominant role in MHW prediction.
465  This aligns with MHW formation mechanisms: higher SSTA and T2M signify warm anomalies in
466  the SCS, providing thermal support for MHWs. Additionally, most SHAP values of wind field
467  variables (UAS, VAS) are negative, suggesting that lower values promote MHW prediction. This
468  mechanism is evident in multiple forecast lead times, with the negative contribution of wind field

469  lagged terms being particularly prominent in 90-day predictions.
470

G
SSTA pe 2

471 T S
472 Fig.9. SHAP two-factor dependency plots for 7-day predictions of the RF model, demonstrating the interaction
473 of six groups of predictor variables in South China Sea MHW prediction. In each subplot, the x-axis represents
474 the actual value of the dominant variable in the group, and the y-axis represents the corresponding SHAP value

475 (degree of contribution). The color of data points indicates the magnitude of the second variable: red for high values
476 and blue for low values.

477 SHAP values can not only reveal the global and local contributions of individual predictors but
478  also analyze the interaction effects between different predictors. To explore the dependency
479  relationships and nonlinear response mechanisms among variables, this study focused on the 7-day
480  forecast lead time and generated SHAP dependency plots, as illustrated in Fig. 9.

481 Fig. 9 illustrates the relationship between SHAP values and input variable values. The figure uses
482  color to represent the values of another interacting variable, revealing the synergistic effects between
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483  predictor variables. For example, in Fig. 9(a) and 9(b), the principal components and lagged terms
484  of SSTA(SSTA pc 3, SSTA lagl) exhibit nonlinear response features. When SSTA values are low,
485  their SHAP values are negative and inhibit MHW prediction. Once exceeding a threshold
486  (approximately 0) SHAP values rise rapidly and turn positive. This not only indicates that a higher
487  SSTA drives the occurrence of MHW, but also serves as an illustration of the pronounced sensitivity
488  exhibited by the model towards variations in SSTA. Wind-related features show contrasting patterns.
489  Asshown in Figures 9(c) and 9(d), the principal components of wind fields (VAS_pc_1, VAS _pc_2)
490  have negative SHAP values at high wind speeds, inhibiting model predictions. At low wind speeds,
491  SHAP values tend to be positive, suggesting that lower wind speeds facilitate oceanic heat
492  accumulation and MHW formation. Meanwhile, color gradients indicate that at the same SSTA or
493  VAS values, the values of the other variable significantly affect SHAP values, reflecting strong
494  interaction effects between SSTA and wind fields. The Fig. 9(e) and 9(f) further reveal the
495  synergistic influence mechanisms of SSTA with T2M and PSL. In Fig. 9(e), the SHAP value of
496  SSTA_lag7 rises nonlinearly with its own increase, and the value of T2M_pc 1 significantly
497  modulates it, indicating that rising air temperature can enhance the influence of SSTA. The Fig. 9(f)
498  shows that when PSL pc 2 is high, the positive contribution of SSTA pc 2 is amplified, which
499  may reflect the enhanced role of WPSH westward extension in MHW formation.

500 In summary, SHAP dependency plots reveal nonlinear interaction relationships among key
501  variables, where SSTA and wind field components form the core factor combination for MHW
502  prediction. The study finds that SSTA has a stronger predictive power in short-term forecasts, with
503 its importance gradually diminishing as the forecast lead times extends. In contrast, the importance
504  of wind fields (especially VAS) grows in long-term forecasts, aligning with their physical
505  mechanisms of regulating oceanic heat fluxes and influencing upwelling. These results not only
506  enhance the interpretability of models but also provide a theoretical basis for understanding MHW

507  formation mechanisms and prediction.

508 5 Conclusion and Discussion

509 This study tested a method for predicting MHWSs in the SCS using non-homologous training and
510  testing datasets. CMIP6 ensemble was used to train multiple machine learning models and combined
511  observational data for MHW prediction. The results showed that short-term prediction accuracy is
512  higher than that of long-term forecasts. In both lead times, the machine learning models
513  demonstrated superior predictive skill compared with baseline methods, achieving performance
514  comparable to or exceeding that of other climate simulation models.

515 Then, the relative importance of predictors was accessed by using feature importance analysis in
516  the Random Forest model and SHAP values. These predictors includes both SST-related variables
517  and atmospheric factors, so as to enhance new model’s physical interpretability. The analysis

518  revealed that SST and wind fields are the two most critical factors influencing MHWs. SST variables
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519  dominated in short-term predictions, while wind-related features became increasingly important in
520  mid- to long-term forecasts. Compared with traditional models trained solely on observational data,
521  models trained on extensive climate simulation outputs are better equipped to overcome sampling
522  limitations and represent complex nonlinear dynamics. Integrating multiple climate models into
523  machine learning training further enhances predictive performance and improves model
524  generalizability.

525 Among the machine learning models tested in this study, Random Forest (RF) model shows the
526  best prediction performance. Its advantage may come from its strong interpretability. It also uses
527  fewer parameters and is less sensitive to parameter settings. This makes it suitable for handling the
528  number of variables involved in this study. However, as more complex and diverse features may be
529  introduced in the future, it is still necessary to explore deep learning models with stronger nonlinear
530 fitting capabilities. Moreover, this study focuses only on the SCS. In the future, the method can be
531  extended to other ocean regions or even the global scale. This will help to learn the characteristics
532  and evolution patterns of MHWs in different regions. It will also provide more comprehensive

533  support for the development of a global marine heatwave early warning system.
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