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Abstract 10 

A primary challenge of machine learning to predict marine heatwave (MHW) for the south China 11 

sea (SCS) is the limited availability of observational data for model training. To address this issue, 12 

this study explores the viability of leveraging multi-member ensemble simulations from the Coupled 13 

Model Intercomparison Project Phase 6 (CMIP6), to construct an extensive, physically consistent 14 

training dataset for various machine learning models. After training on multiple CMIP6 ensemble 15 

members, the constructed models are evaluated for their predictive capacity regarding MHW in the 16 

SCS. The results also show that these machine learning-based methods can perform comparably to 17 

the existing dynamic models in terms of prediction performance, and in some cases even outperform 18 

the latter. Furthermore, by incorporating machine learning interpretability techniques, the key 19 

physical processes can also be elucidated from these predictions. That is to say, the new method is 20 

not a traditional "black box", but rather an effective tool that can possess certain physical 21 

transparency and scientific interpretability. 22 

Keywords: South China Sea marine heatwave; machine learning; interpretable analysis; marine 23 

heatwave prediction. 24 
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1 Introduction 28 

Marine heatwaves (MHWs) are extreme oceanic climate events characterized by abnormally 29 

elevated sea surface temperatures, persisting from days to several months and even extending across 30 

thousands of kilometers (Hobday et al., 2016; Hobday et al., 2018). In recent years, the frequency 31 

of MHWs has risen markedly under global warming (Frölicher et al., 2018; Oliver et al., 2018; 32 

Holbrook et al., 2020). These abnormal high-temperature events severely impact marine ecosystems, 33 

associated with ecosystem services, and the economy (Perkins-Kirkpatrick et al., 2019; Smale et al., 34 

2019). The 2014-2016 "Blob event" in the North Pacific caused a large-scale disruption to marine 35 

ecosystems, resulting in mass marine mortality and severe declines in fishery resources (Di Lorenzo 36 

et al., 2016). China has a vast offshore area, among which the SCS in the tropical zone experienced 37 

frequently many MHWs (Yao et al., 2020; Xiao et al., 2019). The SCS has coral reef habitats and 38 

modern marine pastures, and MHWs in the SCS caused severe impacts on its marine ecosystem and 39 

economy (Feng et al., 2022; Mo et al., 2022; Zhao et al., 2023). Considering the significant impacts 40 

of MHWs on the ecological environment, fishery production, and economic activities, enhancing 41 

the predictive capability of MHWs has become a top priority in marine resource management. 42 

MHWs are modulated by local and large-scale air-sea interactions (Lee et al., 2010; Chen et al., 43 

2015; Tang et al., 2025). Local atmospheric processes are generally closely related to the persistent 44 

abnormal high-pressure system in the upper atmosphere. Specifically, this may manifest as reduced 45 

cloud cover, enhanced short-wave radiation, and weakened wind speed, which leads to reduced 46 

evaporation (Amaya et al., 2020; Sen Gupta et al., 2020). Local oceanic processes include 47 

anomalous horizontal and vertical heat advection, weakened vertical mixing, and a shoaling of the 48 

mixed layer (Amaya et al., 2021; Han et al., 2022). MHWs are also influenced by remote forcing or 49 

oceanic modulation associated with large-scale climate models such as ENSO, the Indian Ocean 50 

Dipole (IOD), and the North Atlantic Oscillation (NAO), though the dominant mechanisms may 51 

differ substantially across regions (Qi et al., 2022; Saranya et al., 2022). For instance, the local 52 

climate of the SCS is influenced by the upper-level ocean currents, and these currents are mainly 53 

regulated by the East Asian monsoon (Gan et al., 2006). Local abnormal anticyclones enhance 54 

shortwave radiation, weaken the southwest monsoon and upwelling, while abnormal marine 55 

anticyclones exacerbate water convergence and Ekman downwelling, further intensifying sea 56 

surface warming and increasing the probability of MHWs in the SCS (Yao et al., 2021; Liu et al., 57 

2022; Tan et al., 2022). These anomalous anticyclonic processes may be modulated by 58 

teleconnections from large-scale climate models. Therefore, predictive models can improve the 59 

stability and reliability of MHW forecasting by capturing these potential predictability signals.  60 

MHW prediction methods can be broadly categorized into dynamic methods, empirical methods 61 

(statistical techniques or machine learning techniques), and hybrid methods (integrating dynamic 62 

techniques with empirical techniques). Dynamical prediction methods typically rely on ensemble 63 

forecasting, which performs probabilistic prediction through the distribution of ensemble members. 64 
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The prediction uncertainty originates from minor errors in initial conditions, which grow rapidly 65 

over time (Tao et al., 2017; Waliser et al., 2003). By calculating the mean of ensemble members, 66 

random noise from individual weather events can be filtered out to extract more stable climatic 67 

signals. Statistical prediction methods have a long history, among which Canonical Correlation 68 

Analysis (CCA) is one of the classic methods (Barnston et al., 1996; Rana et al., 2018). The CCA 69 

is typically used to describe the linear relationship between two sets of variables. It is widely used 70 

in the relationships between sea surface temperature and precipitation or atmospheric circulation 71 

fields to identify possible teleconnection patterns. However, the traditional CCA framework has 72 

limitations in handling multiple predictor variables and their interactions simultaneously. 73 

Particularly in the case of high-dimensional data or a large number of predictor variables, overfitting 74 

is prone to occur (Chen et al., 2017). Moreover, the CCA has insufficient capability to characterize 75 

temporal evolution, and can only make up for the lack of temporal information to a certain extent 76 

through lagged correlation.  77 

Currently, significant research resources have been invested in dynamic model ensemble 78 

forecasting, but studies on applying machine learning to MHW prediction remain relatively scarce 79 

(Slater et al., 2023). A major challenge in machine learning for MHW prediction lies in the limited 80 

availability of observational data for model training (Gao et al., 2024). This limitation not only 81 

hinders traditional statistical methods but also affects machine learning-based approaches. For 82 

example, to reliably simulate the nonlinear interactions between multiple predictor variables, each 83 

predictor variable requires a large number of samples to avoid model overfitting (Van der Ploeg et 84 

al., 2014). However, the available observational samples typically span only around four decades, 85 

which is insufficient to support large-scale machine learning training. An effective alternative is to 86 

train machine learning models on large ensembles of climate model simulations (Seferian et al., 87 

2020; Li et al., 2021). This approach substantially expands the training dataset, enabling coverage 88 

of multiple centuries of simulated climate conditions. For example, a study has found that training 89 

a Convolutional Neural Network (CNN) on historical climate model simulation data can achieve 90 

high-precision ENSO prediction with a lead time of over one year (Ham et al., 2019). In addition, 91 

some studies used regularized models to achieve high-precision predictions with various 92 

meteorological datasets (Jeffree et al., 2024; Kim et al., 2017). 93 

Due to the massive data generated by increasing satellite observations and climate models, 94 

machine learning algorithms demonstrate enormous potential in early warning of upcoming extreme 95 

events. This study focuses on five machine learning models: Random Forest, XGBoost, LSTM, 96 

MLP and SVR. Because they show excellent performance in recent studies for predicting climatic 97 

variables such as precipitation and sea surface temperature (Park et al., 2016; Ham et al., 2023; 98 

Sattari et al., 2021), as well as for predicting the impacts of climatic extremes (Zhu et al., 2021; Lin 99 

et al., 2020; Yang et al., 2025). The objective is to evaluate the feasibility of using large-ensemble 100 

climate model data and various machine learning techniques to predict MHWs in the SCS. Then, 101 
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machine learning models are constructed and applied to predict MHWs based on several climatic 102 

variables. The models are trained and validated using publicly available climate model samples, 103 

observational samples, and reanalysis datasets to assess the predictability of oceanic extremes across 104 

various forecast lead times. Furthermore, interpretable machine learning methods are employed to 105 

identify the key physical processes affecting predictions, providing physical interpretability support 106 

for the forecast results. 107 

 108 

2 Related knowledge 109 

2.1 LSTM 110 

Long Short-Term Memory (LSTM) is a special type of recurrent neural network (RNN). It can 111 

effectively capture long-term dependencies in time series data (Yu et al., 2019). Traditional RNNs 112 

often suffer from gradient vanishing or gradient explosion when handling long sequences. This 113 

makes it difficult for them to learn long-range dependencies. LSTM addresses this problem by 114 

introducing memory cells and gating mechanisms. These gates include an input gate, a forget gate, 115 

and an output gate. The forget gate decides which information should be discarded. The input gate 116 

controls how new information is stored. The output gate determines the final output. These 117 

mechanisms allow LSTM to pass information effectively across different time steps. These include 118 

convolutional neural networks (CNNs) and attention mechanisms. This helps improve its ability to 119 

model complex temporal data. In this study, LSTM model consists of three unidirectional layers. 120 

Each layer has 128 hidden units. The model is trained with a batch size of 64 and a learning rate of 121 

0.001. Loss function is set to be mean squared error (MSE). Training is performed on standardized 122 

sliding-window data for 100 epochs. Dropout regularization is applied during training to reduce the 123 

risk of overfitting. 124 

2.2 MLP 125 

Multi-Layer Perceptron (MLP) is a classical feedforward neural network. It consists of an input 126 

layer, one or more hidden layers, and an output layer (Cabaneros et al., 2019). Each neuron is fully 127 

connected to all neurons in the previous layer. It uses weights, biases, and activation functions such 128 

as ReLU, Sigmoid, or Tanh to perform nonlinear transformations. These operations allow the 129 

network to learn complex mappings. The core computations of an MLP include forward propagation 130 

and backpropagation. Backpropagation uses gradient descent to optimize the loss function and 131 

adjust network parameters to reduce errors. MLP has strong nonlinear modeling capability. 132 

Theoretically, it can approximate any continuous function. In this study, the MLP model has two 133 

hidden layers. Each layer contains 64 neurons. Activation function and loss function are set to be 134 

ReLU and MSE respectively. The model is trained for 100 epochs using features expanded through 135 

a sliding window. The optimizer is Adam with a learning rate of 0.001. Dropout regularization is 136 
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applied during training to reduce overfitting. 137 
2.3 RF 138 

Random Forest (RF) is a decision tree method using ensemble learning. It can improve the 139 

generalization ability by training multiple decision trees and using voting or averaging for prediction 140 

(Hu et al., 2023). The core idea of RF is to use the Bagging method. It draws multiple subsets from 141 

the original dataset through bootstrap sampling and trains a separate decision tree on each subset. 142 

During tree construction, each tree randomly selects a subset of features for splitting. This reduces 143 

the risk of overfitting and improves model stability. RF has strong robustness and can evaluate 144 

feature importance. It performs well when dealing with high-dimensional data and complex pattern 145 

recognition tasks. However, RF needs to train a large number of decision trees, which leads to high 146 

computational costs. On large datasets, it may face limitations in memory and computing resources. 147 

In this study, the RF model consists of 1,000 decision trees, each with a maximum depth of 10. Each 148 

leaf node contains at least 5 samples. 149 

2.4 SVR 150 

Support Vector Regression (SVR) is an extension of Support Vector Machines applied to 151 

regression tasks. It is used to find an optimal hyperplane that fits the data as closely as possible 152 

within a certain error margin (Roy et al., 2023). SVR uses kernel functions such as linear, radial 153 

basis function, and polynomial kernels to map data into a high-dimensional space. This enables it 154 

to model nonlinear relationships effectively. However, SVR has high computational complexity. It 155 

requires long training time and large memory usage when applied to large datasets. Its performance 156 

also depends on several hyperparameters such as C,  , and the kernel parameters. These usually 157 

need to be tuned using cross-validation to ensure good prediction results. Therefore, SVR performs 158 

well in small-scale and high-precision regression tasks. But in large-scale applications, its efficiency 159 

and scalability may be limited. In this study, a radial basis function kernel is used. The regularization 160 

strength is set to C = 1.0. The kernel coefficient is automatically determined based on the feature 161 

dimensions. 162 

2.5 XGB 163 

XGBoost (Extreme Gradient Boosting) is an optimized algorithm using Gradient Boosted Decision 164 

Trees (GBDT). It improves predictive performance by iteratively building decision trees to 165 

minimize the loss function and adjust sample errors through weighted updates (Niazkar et al., 2024). 166 

XGBoost uses a variety of optimization strategies, such as second-order derivative updates, 167 

regularization, prevention of overfitting, parallel computation, and pruning. It can also handle 168 

missing values and automatically learn optimal split strategies, maintaining high computational 169 

efficiency even when applied to large-scale data. Compared with traditional GBDT, the optimization 170 

strategies of XGBoost significantly enhance training speed and generalization ability, making it 171 

highly effective for regression and classification tasks on structured data. In this study, the XGB 172 
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model uses 1,000 trees with a maximum depth of 10, a learning rate of 0.1, and a row and column 173 

sampling rate of 80 percent to improve predictive accuracy while controlling overfitting. 174 

2.6 Feature Processing 175 

This study applies Empirical Orthogonal Function (EOF) analysis (Martinez-Sosa et al., 2021) and 176 

lag correlation analysis (Zhang et al., 2022) to extract the coupled ocean-atmosphere spatial patterns 177 

and temporal characteristics associated with MHWs in the SCS. MHWs are usually influenced by 178 

large-scale ocean-atmosphere interactions, and spatial information from a single variable often 179 

contains redundancy. EOF analysis can effectively identify dominant modes of spatial variability. 180 

This dimensionality reduction helps highlight key climate variability features and reduces the 181 

impact of redundant information on machine learning model performance. Firstly, principal 182 

component analysis is conducted on the CMIP6 data and observational data using EOF to extract 183 

the main spatial modes of each variable within the study area (the South China Sea and its 184 

surrounding regions). Next, lag correlation analysis is taken to determine significant lead-lag 185 

relationships between climate variables and MHWs. This process aimed to capture precursor signals 186 

and provide effective predictive indicators for the model. Finally, the dominant spatial patterns 187 

obtained from EOF analysis and the key lead times identified through lag analysis are used as input 188 

features for the model to increase the accuracy and lead time of MHW prediction in the SCS. 189 

3 Data and Method 190 

3.1 Data 191 

  This study uses multi-model large ensemble simulation data from CMIP6 to provide sufficient 192 

training samples for the machine learning models. The historical simulations are conducted by 193 

several global climate models (GCMs) developed by different research institutions. The data cover 194 

the period from 1950 to 2014. These simulations follow historical forcing scenarios. They include 195 

observed changes in greenhouse gas concentrations, solar radiation, volcanic eruptions, and aerosols 196 

(Eyring et al., 2016). In this study, CMIP6 models include 20 high-resolution coupled climate 197 

models such as ACCESS-CM2, BCC-CSM2-MR, CMCC-CM2-SR5, MIROC6, and MRI-ESM2-198 

0. These models have a spatial resolution of about 1 degree. They simulate the full interactions 199 

among the atmosphere, ocean, land and sea ice. 200 

CMIP6 climate variables used in this study contain sea surface temperature, surface air 201 

temperature, sea level pressure, and zonal and meridional wind fields at 10 meters height. Previous 202 

studies show that CMIP6 models perform better than CMIP5 in simulating large-scale climate 203 

variability in the tropical and subtropical regions. They are especially better at reproducing the 204 

frequency, intensity, and teleconnection patterns of ENSO events (Bellenger et al., 2014). This is 205 

important for training machine learning models with climate model data. Systematic biases in 206 

teleconnections or air-sea interactions may be learned by the model during training and affect 207 

prediction results (Zhang et al., 2019). 208 
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After training the machine learning models using CMIP6 multi-model data, the offline trained 209 

models are applied to observational data for prediction testing. To ensure consistency of variables 210 

between the training and validation stages, same set of variables are used during testing. The sea 211 

surface temperature data came from the high-resolution Optimum Interpolation Sea Surface 212 

Temperature (OISST) dataset provided by NOAA. This dataset combines multiple satellite 213 

observations and in-situ measurements. It is commonly used in global climate studies and marine 214 

extreme event monitoring (Huang et al., 2017). Atmospheric circulation data were obtained from 215 

the ERA5 global reanalysis product provided by ECMWF. This dataset has high spatial and temporal 216 

resolution and includes a wide range of atmospheric variables. It was widely used in climate 217 

diagnostics and model evaluation (Hersbach et al., 2020). In processing the observational and 218 

reanalysis variables, the same dimensionality reduction and preprocessing methods as used for the 219 

CMIP6 data. This ensures consistency in the data processing and improved the generalization ability 220 

of the models under real observation conditions. 221 

 222 

Fig.1. Overview of the marine heatwave prediction framework. In this study, the simulation experiments are 223 
conducted over the South China Sea, defined by the region spanning 0°-30°N and 100°-130°E. Five machine learning 224 
models are trained on CMIP6 ensemble data and subsequently tested using observational datasets to forecast MHWs 225 
in the SCS. 226 

3.2 Method   227 

The Fig. 1 shows the complete process of the framework. This study focuses on a specific region 228 

of the South China Sea, as shown by the red box in Fig. 1. SST from this region were extracted and 229 

used to construct a one-dimensional time series. To avoid the influence of long-term warming trends 230 

on model training, the SST series was first detrended. A daily climatological mean was then 231 

constructed to represent the typical SST for each day. Because high-frequency fluctuations exist in 232 

daily climate data, a 31-day moving average was applied to smooth the climatological mean and 233 

improve the stability of the analysis. SSTA was also computed by subtracting the climatological 234 

mean from the corresponding daily SST. Based on the SSTA, MHW events during the study period 235 

were identified and labeled for each sample. To reduce the impact of short-term natural fluctuations 236 
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such as storms and intraseasonal disturbances, a 7-day moving average was applied. This helps 237 

improve the model’s response to climate-scale signals and reduces the risk of overfitting. Other key 238 

meteorological drivers, including T2M, PSL, UAS, and VAS, were processed using the same 239 

method to ensure consistency across variables. 240 

All input variables are standardized to improve comparability across different scales and to 241 

accelerate model convergence. EOF analysis and lag analysis are applied to the predictors, and the 242 

derived variables are used for model training. Five machine learning models are trained and 243 

calibrated using CMIP6 data. After training, all model parameters are kept fixed. The models are 244 

then applied offline to observational and reanalysis data to evaluate their performance in predicting 245 

MHWs in the SCS during the period 2015 to 2022. The processed predictors and labels are finally 246 

input into multiple machine learning models to perform classification and regression tasks for both 247 

short-term and long-term MHW prediction. Hyperparameters re tuned using a validation set to 248 

determine the optimal configuration. This workflow improves the stability and accuracy of the 249 

models and also laid the foundation for subsequent interpretability analysis using SHAP values and 250 

feature importance evaluation. 251 

4 Results and Discussion 252 

4.1 Prediction accuracy 253 

After training and hyperparameter tuning of each machine learning model using a large ensemble 254 

data from CMIP6. In this study, model parameters are fixed after determination and observation 255 

data are used for multi-duration testing and evaluation. The prediction tasks span seven forecast lead 256 

times: 7, 15, 30, 90, 180, 365, and 730 days. In each prediction, the model uses observed 257 

atmospheric and oceanic variables prior to the target date as input features to simulate the prediction 258 

process in real-world application scenarios. This independent testing set evaluation provides an 259 

objective assessment of the model’s generalization capability. 260 

 261 

Fig.2. Comparison of prediction accuracy for MHWs in SCS across short-term lead times (7, 15, and 30 days) using 262 
three categories of methods. Black bars represent the prediction accuracy of ERA5 reanalysis data, blue bars denote 263 
the prediction accuracy of three CMIP6 model members (ACCESS, BBC, CAN), and red bars signify the prediction 264 
accuracy of five machine learning models (RF, XGB, LSTM, SVR, MLP). The values on each bar indicate the 265 
corresponding model's prediction accuracy. 266 
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To systematically compare the predictive capabilities of different models in various time spans, 267 

Fig. 2 presents the accuracy of five machine learning models for short-term predictions at 7, 15, and 268 

30 days. The prediction accuracy of each machine learning method (red bars) is compared with the 269 

simulation results of three groups of CMIP6 members (blue bars) and the ERA5 reanalysis data 270 

results (black bars). All methods use the same test years to ensure horizontal comparability. 271 

Furthermore, Fig. 3 illustrates the performance of the same five machine learning models for longer-272 

term forecasts at 90, 180, 365, and 730 days. Fig. 3 adopts the same comparison benchmark and 273 

color scheme as Fig. 2, facilitating analysis of the changing trends in model performance as 274 

prediction duration increases. 275 

 276 

Fig.3. Comparison of prediction accuracy for MHWs in SCS across long-term lead times (90, 180, 365 and 720 days) 277 
using three categories of methods. Similarly to Figure 2, black bars represent the prediction accuracy of ERA5 data, 278 
blue bars denote the prediction accuracy of three CMIP6 model members, and red bars signify the prediction 279 
accuracy of five machine learning models. The values on the bars indicate the prediction accuracy, while the 280 
horizontal black dashed line represents the benchmark level for random predictions, with the benchmark decreasing 281 
gradually as the prediction duration extends.  282 

In Fig. 2, ERA5 data, three groups of CMIP6 members (ACCESS, BBC, CAN), and five machine 283 

learning models (RF, XGB, LSTM, SVR, MLP) are compared for their accuracy in MHW prediction 284 

across three short-term prediction horizons (7 days, 15 days, and 30 days, respectively). From an 285 

overall perspective, it can be observed that the performance differences among models are relatively 286 

small over short prediction horizons, and the accuracy is generally high. ERA5 attains the highest 287 

prediction accuracy at the 7-day forecast horizon. The performance of the RF model closely follows 288 

that of the ERA5 data and is competitive with the ERA5 data. At 15- and 30-day lead times, RF 289 

model and XGB model consistently maintain leading performance. Notably, the RF model ranks 290 

among the top performers in the short-term and exhibits remarkable stability with the smallest 291 

precision fluctuations across different timesteps. It is also worthy of note that the ACCESS and BBC 292 

models have exhibited highly consistent performance in short-term predictions. Their performance 293 
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in multiple forecast horizons is almost comparable to that of machine learning models, and they 294 

even outperform certain machine learning models at specific time points (e.g., the 30-day). This 295 

demonstrates that physics-based model simulations retain a degree of advantage at specific lead 296 

times. This stability may be attributed to its long-term operational foundation and systematic 297 

modeling capability for physical processes. However, the MLP model and SVR model demonstrated 298 

the poorest performance in all forecast horizons, indicating their limited capability to extract 299 

complex signals from MHWs. 300 

Fig. 3 illustrates performance of different models over longer timeframes (90 days, 180 days, 365 301 

days, and 730 days). As the prediction lead time increases, the prediction accuracy of all models 302 

shows a decline to varying degrees, among which the decline in machine learning models is the 303 

most significant. the prediction accuracy of the RF model drops from 0.882 for 7-day to 0.522 for 304 

365-day, and further drops to 0.441 for 730-day, representing a decline of over 40% in accuracy 305 

from 7 days to 730 days. The MLP model and SVR model exhibit more pronounced weakness in 306 

long-term predictions, indicating their unsuitability for identifying and forecasting MHW trends in 307 

extended periods. By contrast, ERA5 and CMIP6 demonstrate stronger stability, maintaining an 308 

accuracy above 0.6 over both 365-day and 730-day. This demonstrates the superiority of physical 309 

models in long-term climate prediction. Machine learning models perform outstandingly in short-310 

term predictions, mainly benefiting from their non-linear fitting capability and high sensitivity to 311 

patterns in the training dataset. However, their predictive capability rapidly declines in long-term 312 

due to the absence of physical process constraints. Conversely, physical models such as CMIP6 and 313 

ERA5 exhibit stronger systematicity and stability, particularly demonstrating advantages in 314 

simulating teleconnection signals and low-frequency climatic backgrounds. 315 

 316 

Fig.4. Comparison between prediction results of models in short-term and actual South China Sea MHWs. The 317 
scatter plot shows the occurrence of MHWs and the prediction results of different machine learning models. The 318 
scatter points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each 319 
machine learning model. 320 

To further evaluate the temporal detection capabilities of each model in different lead times, Fig. 321 

4 and 5 present point-by-point comparisons between model predictions and observed MHWs. Each 322 

dot in the plots represents an individual MHW event, and each row corresponds to the prediction 323 
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output of a specific method. The top row shows actual MHWs identified from observational data, 324 

while the remaining rows present simulation results from different machine learning models in 325 

various prediction lead times. This point-by-point aligned visualization intuitively demonstrates the 326 

temporal fitting capability and accuracy of models in different time scales. 327 

 328 

Fig.5. Comparison between prediction results of models in long-term and actual South China Sea MHWs. The scatter 329 
plot shows the occurrence of MHWs and the prediction results of different machine learning models. The scatter 330 
points in the first row represent actual MHWs, while subsequent rows denote predicted MHWs from each machine 331 
learning model. 332 

Fig. 4 demonstrates the prediction performance of models in three short-term forecast lead times 333 

(7-day, 15-day, and 30-day). Most model predictions generally align with the distribution of actual 334 

MHWs, indicating that machine learning models can relatively accurately capture MHWs. 335 

Especially in the years when MHW occurred frequently such as 2016, 2020 and 2022, the alignment 336 

degree between the model and the observations was relatively high. This indicates that machine 337 

learning models exhibit good temporal localization capability about MHWs in short-term forecast 338 

lead times and can effectively respond to disturbances in short-term climatic signals. However, Fig. 339 

5 shows a trend of gradual performance degradation in models as the forecast lead time increases 340 

from 90 to 730 days. It specifically manifests as the gradual dispersion of prediction result 341 

distributions from machine learning methods, featuring not only more deviating points but also 342 

substantial occurrences of "false positives" and "false negatives". In 365-day and 730-day 343 

predictions, the fitting capability of almost all models to actual MHWs significantly diminishes, 344 

with MHW prediction points overall deviating or dispersing, making it difficult to accurately 345 

reproduce the concentrated distribution intervals of events in observational data. For example, the 346 

performance of RF model and XGB model significantly declines in long-term prediction, while 347 

MLP model and SVR model exhibit near-random prediction states over extended durations. Overall, 348 

while machine learning models perform well in short-term predictions, their prediction accuracy 349 

declines in longer-term forecasts. 350 
4.2 Interpretable Random Forest Model 351 

Machine learning methods are often considered a relatively "brute-force" solution strategy, and 352 
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their "black-box" results in weak interpretability. The lack of interpretability in models may affect 353 

their credibility in scientific research and practical applications. Models sometimes produce 354 

superficially accurate results for erroneous mechanisms. Therefore, to further understand the 355 

internal operational mechanisms of the models, this section investigates the machine learning "black 356 

box" and attempts to reveal the physical implications in its decision-making process. RF model 357 

performs outstandingly in multiple prediction evaluations, and selects three representative forecast 358 

lead time—7-day, 30-day, and 90-day—for in-depth interpretation. It is important to emphasize that 359 

these interpretation methods merely serve as processing tools for model outputs and do not interfere 360 

with or affect the prediction pipeline or parameter architecture. The feature importance evaluation 361 

method in RF models relies on statistically averaging the improvement in classification purity 362 

contributed by each feature across all decision trees. At each node split, the "purity" reduction 363 

caused by the feature is calculated and multiplied by the number of samples at that node. The 364 

“impurity” reductions caused by the feature across all trees are summed up and normalized to obtain 365 

its importance score (Wang et al., 2024). This method can identify the most influential input features 366 

in the prediction process to provide a basis for the physical interpretability. 367 

 368 

Fig.6. Univariate feature importance analysis in the Random Forest model. This figure presents univariate feature 369 
importance for Random Forest MHW forecasts at multiple lead times. It reports four indicators: feature importance 370 
scores from training that combine split frequency and information gain with higher values meaning greater 371 
contribution, relative accuracy reduction computed by shuffling a single variable with a larger drop implying more 372 
importance, average minimum tree depth showing where a variable first splits with shallower depth indicating higher 373 
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importance, and root node occurrence count reflecting how often a variable becomes the root with higher counts 374 
indicating stronger initial influence. Panels (a)(c)(e) mark the top 15 predictors in red matching the scores in (b)(d)(f), 375 
and names follow Fig. 1. For example, SSTA_pc_1 is the first EOF mode of SSTA and SSTA_Lag1 is a one-day lag. 376 

Feature importance assessment is firstly employed to quantify the relative contribution of various 377 

predictors in the regression-based forecasting task. The results are presented in Fig. 6. Based on 378 

integrating multiple metrics, sea surface temperature anomaly (SSTA), 2-meter air temperature 379 

(T2M), and wind field information (UAS, VAS) emerge as the variables most significantly 380 

influencing prediction accuracy. Notably, there is a widespread negative correlation between the 381 

relative accuracy reduction metric of variables and their average minimum tree depth. This indicates 382 

that the most important variables tend to appear earlier in the upper layers of decision trees (closer 383 

to the root node). The dominance of key predictive factors also varies across different forecast lead 384 

times. SSTA and VAS consistently serve as dominant predictors in all lead times. In short-term 385 

forecasts (e.g., 7- and 30-day), SSTA-related features (including principal components and lagged 386 

terms) exhibit the highest importance, indicating they carry more information about recent MHWs. 387 

However, in longer-term forecasts (e.g., 90 days), the importance of VAS-related features increases 388 

significantly while the ranking of SSTA-related variables declines relatively, indicating that wind 389 

field signals may have greater predictive value on longer timescales. Additionally, T2M is relatively 390 

important in short-term forecasts while VAS plays a more critical role in long-term predictions. The 391 

trend of predictive variable weights changing with forecast lead times is also reflected in the lag 392 

period. The RF model tends to use variables with shorter lag periods for short-term forecasts, while 393 

input factors with longer lag periods gradually replace short-lag variables in long-term predictions. 394 

This change aligns with the expected pattern that variables closer to the target date generally contain 395 

more immediate information relevant to the prediction. It is worth emphasizing that the key 396 

predictive factors highlighted in Fig. 6 align with the current understand of formation mechanisms 397 

of MHWs in the SCS. Numerous studies have shown that large-scale climate models, for example, 398 

the El Nino-Southern Oscillation (ENSO) modulate the frequency and intensity of MHWs in SCS 399 

via teleconnection mechanisms (Zhang et al., 2025). For instance, during ENSO, PSL and wind 400 

fields anomalies can influence the intensity and position of the Western Pacific Subtropical High 401 

(WPSH), thereby altering the surface thermal structure of the SCS. This ultimately leads to localized 402 

SSTA, increasing the probability of MHW. 403 

Although the RF model can quantify the global importance of predictors, it is difficult to provide 404 

local interpretability and the dependencies among variables. This study introduces the SHapley 405 

Additive exPlanations (SHAP) method, which enables both global and local model interpretation. 406 

Fig. 7 displays a SHAP summary plot visualizing how predictors contribute to model outputs, 407 

thereby illuminating the model's decision mechanisms (Li et al., 2022; Li et al., 2022).  408 

For 7-day forecast horizons, the ranking of the top 15 most important predictors identified by 409 

SHAP is highly consistent with the feature importance rankings from the RF model. Although slight 410 

variations exist in the ranking of specific variables across other forecast horizons, the composition 411 
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of the top 15 key variables remains relatively stable, further validating their predictive importance. 412 

In contrast to global importance scores, SHAP provides more intuitive visualizations of variable 413 

impacts. Among key predictors except the two wind components (UAS and VAS), high values of 414 

most variables show a positive correlation with positive SHAP values—meaning their increase 415 

promotes MHW prediction. This implies the model is more likely to identify MHWs when these 416 

variables are elevated. For example, higher SSTA typically indicates warmer sea surface 417 

temperatures, which are closely associated with the MHW formation. 418 

 419 

Fig.7. SHAP feature importance distribution of the RF model, showing the contribution degree and direction 420 
of the top 15 predictor variables across different forecast lead times (7-day, 30-day, and 90-day). (a) and (b) 421 
correspond to 7-day, (c) and (d) to 30-day, and (e) and (f) to 90-day. Each data point represents a sample, with the x-422 
axis denoting the SHAP value (degree and direction of feature contribution to model predictions) and the y-axis 423 
listing predictor variable names. The color of each data point indicates the degree of the corresponding feature value, 424 
with red denoting higher values and blue indicating lower values. The horizontal position of data points represents 425 
the degree of influence of the feature on model predictions. Larger SHAP values on the right indicate a greater 426 
contribution of the feature to predicting MHWs, while smaller or negative SHAP values on the left signify stronger 427 
inhibitory effects. 428 

Warming in the Indian Ocean may trigger an anti-Walker circulation between the tropical Indian 429 

Ocean and western Pacific, of which enhances the Philippine Anticyclone (PAC). Such large-scale 430 

circulation changes weaken convective activity in the northwestern Pacific, promoting westward 431 

extension of the WPSH toward China's southern coast (Liang et al., 2023). The westward expansion 432 

of WPSH typically suppresses easterly anomalies induced by the SCS anticyclonic circulation, 433 

leading to weakening of the southwest monsoon. This further diminishes upwelling and cold surge 434 

phenomena, creating favorable conditions for MHW formation (Xie et al., 2003; Song et al., 2023). 435 
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On the other hand, lower wind speeds reduce sea surface evaporation, decreasing heat release from 436 

the ocean to the atmosphere and exacerbating oceanic heat storage—processes that facilitate MHW 437 

development. Meanwhile, La Niña-type tropical Pacific patterns enhance westward ocean currents 438 

via anomalous easterlies, transporting warm water to the western Pacific and SCS. These results 439 

demonstrate that the SHAP method not only enhances model interpretability but also further 440 

validates that the model can identify key factors with physical significance.   441 

 442 

Fig.8. SHAP waterfall plots of the RF model, showing the contribution degree and direction of the top 10 443 
important predictor variables for the 100th and 1000th test samples across different forecast lead times. (a), 444 
(c), and (e) represent the 100th sample for 7-day, 30-day, and 90-day, respectively, while (b), (d), and (f) correspond 445 
to the 1000th sample. Each bar denotes a predictor, with its length and arrow direction indicating the contribution 446 
deggre and sign to MHW occurrence probability: red bars extending to the right signify positive contributions 447 
(increasing MHW probability), blue bars extending to the left denote negative contributions (decreasing probability), 448 
and the numerical values beside bars represent the absolute contribution degree. 449 

SHAP not only evaluates global feature importance, but also offers strong local interpretability, 450 

enabling in-depth revelation of the model's decision basis for individual prediction samples. To 451 

analyze how key predictive factors influence specific sample predictions, the 100th and 1000th test 452 

samples were selected as representative cases. Both samples belong to MHWs and were successfully 453 

predicted by the model in all forecast lead times. 454 

Fig. 8 shows SHAP waterfall plots illustrating the local interpretability results of the top 10 455 

features for these two samples in 7-day, 30-day, and 90-day forecast lead time. Left panels (a, c, e) 456 

correspond to the 100th sample, while right panels (b, d, f) correspond to the 1000th sample. Red 457 

arrows mean positive contributions, blue arrows denote negative impacts, and arrow length 458 

represents the degree of SHAP values (i.e., the contribution degree of features to prediction results). 459 

The plots show that SSTA and T2M consistently rank among the top features in all forecast lead 460 
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times, exerting significant positive impacts on model predictions. As shown in the figure, SSTA and 461 

T2M consistently rank among the top predictors in all forecast lead times, exerting significant 462 

positive impacts on model predictions. In particular, the principal components and lagged terms of 463 

SSTA exhibit the highest contribution values, indicating their dominant role in MHW prediction. 464 

This aligns with MHW formation mechanisms: higher SSTA and T2M signify warm anomalies in 465 

the SCS, providing thermal support for MHWs. Additionally, most SHAP values of wind field 466 

variables (UAS, VAS) are negative, suggesting that lower values promote MHW prediction. This 467 

mechanism is evident in multiple forecast lead times, with the negative contribution of wind field 468 

lagged terms being particularly prominent in 90-day predictions. 469 
 470 

 471 

Fig.9. SHAP two-factor dependency plots for 7-day predictions of the RF model, demonstrating the interaction 472 
of six groups of predictor variables in South China Sea MHW prediction. In each subplot, the x-axis represents 473 
the actual value of the dominant variable in the group, and the y-axis represents the corresponding SHAP value 474 
(degree of contribution). The color of data points indicates the magnitude of the second variable: red for high values 475 
and blue for low values. 476 

SHAP values can not only reveal the global and local contributions of individual predictors but 477 

also analyze the interaction effects between different predictors. To explore the dependency 478 

relationships and nonlinear response mechanisms among variables, this study focused on the 7-day 479 

forecast lead time and generated SHAP dependency plots, as illustrated in Fig. 9. 480 

Fig. 9 illustrates the relationship between SHAP values and input variable values. The figure uses 481 

color to represent the values of another interacting variable, revealing the synergistic effects between 482 
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predictor variables. For example, in Fig. 9(a) and 9(b), the principal components and lagged terms 483 

of SSTA (SSTA_pc_3, SSTA_lag1) exhibit nonlinear response features. When SSTA values are low, 484 

their SHAP values are negative and inhibit MHW prediction. Once exceeding a threshold 485 

(approximately 0) SHAP values rise rapidly and turn positive. This not only indicates that a higher 486 

SSTA drives the occurrence of MHW, but also serves as an illustration of the pronounced sensitivity 487 

exhibited by the model towards variations in SSTA. Wind-related features show contrasting patterns. 488 

As shown in Figures 9(c) and 9(d), the principal components of wind fields (VAS_pc_1, VAS_pc_2) 489 

have negative SHAP values at high wind speeds, inhibiting model predictions. At low wind speeds, 490 

SHAP values tend to be positive, suggesting that lower wind speeds facilitate oceanic heat 491 

accumulation and MHW formation. Meanwhile, color gradients indicate that at the same SSTA or 492 

VAS values, the values of the other variable significantly affect SHAP values, reflecting strong 493 

interaction effects between SSTA and wind fields. The Fig. 9(e) and 9(f) further reveal the 494 

synergistic influence mechanisms of SSTA with T2M and PSL. In Fig. 9(e), the SHAP value of 495 

SSTA_lag7 rises nonlinearly with its own increase, and the value of T2M_pc_1 significantly 496 

modulates it, indicating that rising air temperature can enhance the influence of SSTA. The Fig. 9(f) 497 

shows that when PSL_pc_2 is high, the positive contribution of SSTA_pc_2 is amplified, which 498 

may reflect the enhanced role of WPSH westward extension in MHW formation. 499 

In summary, SHAP dependency plots reveal nonlinear interaction relationships among key 500 

variables, where SSTA and wind field components form the core factor combination for MHW 501 

prediction. The study finds that SSTA has a stronger predictive power in short-term forecasts, with 502 

its importance gradually diminishing as the forecast lead times extends. In contrast, the importance 503 

of wind fields (especially VAS) grows in long-term forecasts, aligning with their physical 504 

mechanisms of regulating oceanic heat fluxes and influencing upwelling. These results not only 505 

enhance the interpretability of models but also provide a theoretical basis for understanding MHW 506 

formation mechanisms and prediction. 507 

5 Conclusion and Discussion  508 

This study tested a method for predicting MHWs in the SCS using non-homologous training and 509 

testing datasets. CMIP6 ensemble was used to train multiple machine learning models and combined 510 

observational data for MHW prediction. The results showed that short-term prediction accuracy is 511 

higher than that of long-term forecasts. In both lead times, the machine learning models 512 

demonstrated superior predictive skill compared with baseline methods, achieving performance 513 

comparable to or exceeding that of other climate simulation models.  514 

Then, the relative importance of predictors was accessed by using feature importance analysis in 515 

the Random Forest model and SHAP values. These predictors includes both SST-related variables 516 

and atmospheric factors, so as to enhance new model’s physical interpretability. The analysis 517 

revealed that SST and wind fields are the two most critical factors influencing MHWs. SST variables 518 
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dominated in short-term predictions, while wind-related features became increasingly important in 519 

mid- to long-term forecasts. Compared with traditional models trained solely on observational data, 520 

models trained on extensive climate simulation outputs are better equipped to overcome sampling 521 

limitations and represent complex nonlinear dynamics. Integrating multiple climate models into 522 

machine learning training further enhances predictive performance and improves model 523 

generalizability. 524 

Among the machine learning models tested in this study, Random Forest (RF) model shows the 525 

best prediction performance. Its advantage may come from its strong interpretability. It also uses 526 

fewer parameters and is less sensitive to parameter settings. This makes it suitable for handling the 527 

number of variables involved in this study. However, as more complex and diverse features may be 528 

introduced in the future, it is still necessary to explore deep learning models with stronger nonlinear 529 

fitting capabilities. Moreover, this study focuses only on the SCS. In the future, the method can be 530 

extended to other ocean regions or even the global scale. This will help to learn the characteristics 531 

and evolution patterns of MHWs in different regions. It will also provide more comprehensive 532 

support for the development of a global marine heatwave early warning system. 533 
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