

1 **Evaluated kinetic and photochemical data for atmospheric chemistry:**
2 **Volume IX – gas phase reactions of halogenated alkanes, alkenes, and**
3 **oxygenated compounds**

4 Timothy J. Wallington¹, Markus Ammann², John N. Crowley³, Hartmut Herrmann⁴, Michael
5 E. Jenkin⁵, V. Faye McNeill⁶, Abdelwahid Mellouki⁷, and Jürgen Troe⁸
6

7 ¹ Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor,
8 Michigan 48109, USA

9 ² PSI Center for Energy and Environmental Science, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen,
10 Switzerland

11 ³ Max Planck Institute for Chemistry, Division of Atmospheric Chemistry, 55128 Mainz, Germany

12 ⁴ Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318
13 Leipzig, Germany

14 ⁵ Atmospheric Chemistry Services, Okehampton, Devon, EX20 4QB, UK

15 ⁶ Departments of Chemical Engineering and Earth and Environmental Sciences, Columbia University, New York,
16 NY 10027, USA

17 ⁷ African Research Center on Air Quality and Climate (ARC_Air), University Mohammed VI Polytechnic
18 University (UM6P), Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco

19 ⁸ Georg-August-Universität, Institut für Physikalische Chemie, Tammannstraße 6 and Max Planck Institute for
20 Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany

21 Correspondence to: T. J. Wallington (twalling@umich.edu), J. N. Crowley (John.Crowley@mpic.de)

22
23 **Abstract.** This article, the ninth in the series, presents kinetic and photochemical data sheets
24 evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It
25 covers an extension of the gas phase and photochemical reactions of halogenated alkanes,
26 alkenes, and oxygenated organic compounds implemented on the IUPAC website since 2008.
27 The article consists of a summary table of the recommended kinetic parameters for the
28 evaluated reactions, and a supplement containing the data sheets providing information upon
29 which the recommendations are made.

30

31 **1 Introduction**

32

33 In the mid-1970s it was appreciated that there was a need to establish an international panel to
34 produce a set of critically evaluated rate parameters for reactions of interest for atmospheric
35 chemistry. To this end the CODATA Task Group on Chemical Kinetics, under the auspices of
36 the International Council of Scientific Unions (ICSU), was constituted in 1977, and tasked to
37 produce an evaluation of relevant, available kinetic and photochemical data. The first
38 evaluation by this international committee was published in *J. Phys. Chem. Ref. Data* in 1980
39 (Baulch et al., 1980) and was followed by supplements in 1982 (Baulch et al., 1982) and 1984
40 (Baulch et al., 1984). In 1986 the IUPAC Subcommittee on Gas Kinetic Data Evaluation for

41 Atmospheric Chemistry superseded the original CODATA Task Group for Atmospheric
42 Chemistry. The Subcommittee continued its data evaluation program with supplements
43 published in 1989 (Atkinson et al., 1989), 1992 (Atkinson et al., 1992), 1997 (Atkinson et al.,
44 1997a; Atkinson et al., 1997b), 1999 (Atkinson et al., 1999), and 2000 (Atkinson et al., 2000).
45
46 Starting in 2005, the gas-phase evaluation work was expanded to include heterogeneous
47 reactions of gases on solid (Crowley et al., 2010) and liquid substrates (Ammann et al., 2013).
48 Aqueous-phase reactions of atmospheric importance were added starting in 2015. The
49 IUPAC group's work now includes over 1400 gas-phase, heterogeneous, and aqueous-phase
50 reactions of importance in atmospheric chemistry. Reflecting the broader scope, the group
51 changed its name to the IUPAC Task Group on Atmospheric Chemical Kinetic Data
52 Evaluation in 2013. The history of IUPAC data evaluations and their role in addressing the
53 critical societal challenges of stratospheric ozone loss, tropospheric ozone formation, acid
54 rain, urban air pollution, aerosol formation, and climate change is discussed by Cox et al.
55 (2018).
56
57 In 2000 the evaluation was made available on the worldwide web (<https://iupac.aeris-data.fr/>).
58 The IUPAC website hosts an interactive data base with a search facility and hyperlinks
59 between the summary table and data sheets which can be downloaded as individual PDF files.
60 Work is underway to provide machine readable metadata from the data sheets to enable
61 automatic transfer of IUPAC recommended data into atmospheric models. The IUPAC group
62 continues to update and extend the set of evaluated reactions. To enhance the accessibility of
63 this updated material to the scientific community, the evaluation is being published as a series
64 of articles in Atmospheric Chemistry and Physics (Atkinson et al., 2004, 2006, 2007, 2008;
65 Crowley et al., 2010; Ammann et al., 2013; Cox et al. 2020; Mellouki et al., 2021).
66
67 The fourth article in this series covering small (\leq C3) organic halogen species was published
68 in 2008 (Atkinson et al., 2008). The past two decades have seen increasing concern regarding
69 the presence of long-chain persistent bioaccumulative fluorinated organic pollutants such as
70 perfluorooctanoic acid ($C_7F_{15}C(O)OH$, PFOA), perfluorooctane sulphonic acid
71 ($C_8F_{17}S(O)OH$, PFOS), and per- and polyfluoroalkyl substances (PFAS) in the environment
72 (Giesy and Kannan, 2001; Ellis et al., 2004; Lau et al., 2007; Prevedouros et al., 2006).
73 Concern over the growing contribution of hydrofluorocarbons (HFCs) to radiative forcing of
74 climate change (Velders et al., 2009) led to the recent Kigali Agreement to limit HFC

75 emissions. Halogenated alkenes and oxygenates have been developed to replace HFCs
76 (Brown, 2009; Burkholder et al. 2015; Wallington et al., 2015) and are used as industrial
77 solvents, synthesis reagents for surface coatings, inhalation agents, fire retardants, fire-
78 fighting foams, and surfactants (Wallington et al., 2017). To provide data relevant to
79 understanding these new issues we have extended the set of evaluated reactions. We present
80 here in Volume IX data sheets for gas-phase and photochemical reactions of halogenated
81 organic species added since publication of Volume IV (Atkinson et al., 2008).

82

83 **2 Guide to the datasheets**

84

85 For each reaction covered in this volume, a datasheet with details about e.g. experimental
86 methods and a justification of the choice of preferred value is available in the supplementary
87 information. The datasheets covering gas-phase reactions are principally of two types: (i) those
88 for individual thermal reactions and (ii) those for the individual photochemical reactions.

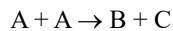
89

90 **2.1 Thermal reactions**

91

92 The datasheets begin with a statement of the reactions including all pathways which are
93 considered feasible. The available kinetic data on the reactions are summarized under two
94 headings: (i) Absolute Rate Coefficients, and (ii) Relative Rate Coefficients. Under these
95 headings, we list the published experimental data as absolute rate coefficients. If the
96 temperature coefficient has been measured, the results are given in the temperature dependent
97 form as stated by the authors over a stated temperature range. For bimolecular reactions, the
98 temperature dependence is usually expressed in the normal Arrhenius form, $k = A \exp(-B/T)$,
99 where $B = E/R$. For a few bimolecular reactions, we have listed temperature dependences in
100 alternative forms such as $k = C(T/298 \text{ K})^n \exp(-D/T)$ or $k = ET^2 \exp(-F/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
101 where the original authors have found that alternative expressions give a better fit to the data.
102 In our recommendations we seek to provide simple Arrhenius expressions that describe the
103 kinetics over the atmospherically relevant temperature range (180-310 K). More complex
104 expressions, which are often needed to describe the kinetic behaviour over larger ranges of
105 temperature, are given in the Comments on Preferred Values section in the data sheets. Rate
106 coefficients are given here in units of $\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Note that “molecule” is not a unit,
107 but is included for clarity. For pressure dependent combination and dissociation reactions, the
108 non-Arrhenius temperature dependence is used. This is discussed more fully in section 2.3 of

109 this guide. Single-temperature data are presented as such and, wherever possible, the rate
110 coefficient at, or close to, 298 K as measured by the original authors is quoted directly. This
111 means that the listed rate coefficient at 298 K may differ slightly from that calculated from the
112 Arrhenius parameters determined by the same authors. Rate coefficients at 298 K marked
113 with an asterisk indicate that the value was calculated by extrapolation of a measured
114 temperature range, which did not include 298 K. The tables of data are supplemented by a
115 series of comments summarizing the experimental details. The following abbreviations,
116 relating to experimental techniques, are used in the Techniques and Comments sections:
117 A – absorption
118 AS – absorption spectroscopy
119 CCD – charge coupled detector
120 CIMS – chemical ionization mass spectroscopy/spectrometry
121 CL – chemiluminescence
122 CRDS – cavity ring-down spectroscopy
123 DF – discharge flow
124 EPR – electron paramagnetic resonance
125 F – flow system
126 FP – flash photolysis
127 FTIR – Fourier transform infrared
128 FTS – Fourier transform spectroscopy
129 GC – gas chromatography/gas chromatographic
130 HPLC – high-performance liquid chromatography
131 IR – infrared
132 LIF – laser induced fluorescence
133 LMR – laser magnetic resonance
134 LP – laser photolysis
135 MM – molecular modulation
136 MS – mass spectrometry/mass spectrometric
137 P – steady state photolysis
138 PLP – pulsed laser photolysis
139 PR – pulse radiolysis


- 140 RA – resonance absorption
141 RF – resonance fluorescence
142 RR – relative rate
143 S – static system
144 TDLS – tunable diode laser spectroscopy
145 UV – ultraviolet
146 UVA – ultraviolet absorption
147 VUVA – vacuum ultraviolet absorption
148
149 For measurements of relative rate coefficients, wherever possible the comments contain the
150 actual measured ratio of rate coefficients together with the rate coefficient of the reference
151 reaction used to calculate the absolute rate coefficient listed in the data table. The absolute
152 value of the rate coefficient given in the table may be different from that reported by the
153 original author owing to a different choice of rate coefficient of the reference reaction.
154 Whenever possible the reference rate data are those preferred in the most recent IUPAC
155 evaluation of that reaction.
156
157 The preferred values in the datasheets are based on our consideration of the suitability of
158 experimental method and coverage of applicable parameter space (temperature, total pressure
159 of diluent gas, partial pressure of gas-phase species) within the atmospherically relevant
160 range. The general approach and methods used have been reviewed by Cox (2012). It is
161 recognized that preferred values may change with publication of new data, and such changes
162 are updated at the website. The preferred rate coefficients are presented (i) at a temperature of
163 298 K and (ii) in temperature dependent form over a stated temperature range. This is
164 followed by a statement of the uncertainty limits in $\log k$ at 298 K and the uncertainty limits
165 either in (E/R) or in n , (for systems with power law temperature dependence), for the mean
166 temperature in the range. Some comments on the assignment of uncertainties are given later in
167 this guide to the datasheets. The ‘Comments on Preferred Values’ section describes how the
168 selection was made and give any other relevant information. The extent of the comments
169 depends upon the present state of our knowledge of the reaction in question. The datasheets
170 are concluded with a list of the relevant references.
171
172 **2.2 Conventions concerning rate coefficients**

173

174 All of the reactions in the table are elementary processes. Thus the rate expression is derived
175 from a statement of the reaction, e.g.

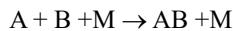
176

178

$$179 -\frac{1}{2} \frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{d[C]}{dt} = k[A]^2 \quad \text{Eq. (1)}$$

180

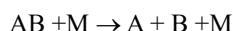
181 Note that the stoichiometric coefficient for A, i.e. 2, appears in the denominator before the rate
182 of change of [A] (which is equal to $2k[A]^2$) and as a power on the right-hand side.
183 Representations of k as a function of temperature characterize simple “direct” bimolecular
184 reactions. Sometimes it is found that k also depends on the pressure and the nature of the bath
185 gas. This may be an indication of complex-formation during the course of the bimolecular
186 reaction, which is always the case in combination reactions. In the following sections the
187 representations of k which are adopted in these cases are explained.


188

189 **2.3 Treatment of combination and dissociation reactions**

190

191 Unlike simple bimolecular reactions such as those considered in Sect. 2.2, combination
192 reactions


193

195

196 and the reverse dissociation reactions

197

199

200 are composed of sequences of different types of physical and chemical elementary processes.
201 Their rate coefficients reflect the more complicated sequential mechanism and depend on the
202 temperature, T , and the nature and concentration of the third body, M. In this evaluation, the
203 combination reactions are described by a formal second-order rate law:

204

$$205 \frac{d[AB]}{dt} = k[A][B] \quad \text{Eq. (2)}$$

206

207 while dissociation reactions are described by a formal first-order rate law:

208

$$209 \quad \frac{-d[AB]}{dt} = k[AB] \quad \text{Eq. (3)}$$

210

211 In both cases, k depends on the temperature and on the concentration of M, i.e., $[M]$. To
212 rationalize the representations of the rate coefficients used in this evaluation, we first consider
213 the Lindemann-Hinshelwood reaction scheme. The combination reactions follow an elementary
214 mechanism of the form,

218 while the dissociation reactions are characterized by:

222 Assuming quasi-stationary concentrations for the highly excited unstable species AB^* (i.e. that
223 $d[AB^*]/dt \approx 0$), it follows that the rate coefficient for the combination reaction is given by:

224

$$225 \quad k = k_1 \left(\frac{k_2[M]}{k_{-1} + k_2[M]} \right) \quad \text{Eq. (4)}$$

226

227 while that for the dissociation reaction is given by:

228

$$229 \quad k = k_{-2}[M] \left(\frac{k_{-1}}{k_{-1} + k_2[M]} \right) \quad \text{Eq. (5)}$$

230

231 In these equations the expressions before the parentheses represent the rate coefficients of the
232 process initiating the reaction, whereas the expressions within the parentheses denote the
233 fraction of reaction events which, after initiation, complete the reaction to products. In the low
234 pressure limit ($[M] \rightarrow 0$) the rate coefficients are proportional to $[M]$; in the high pressure limit
235 ($[M] \rightarrow \infty$) they are independent of $[M]$. It is useful to express k in terms of the limiting low
236 pressure and high pressure rate coefficients,

237

238 $k_0 = \lim k([M])$ for $[M] \rightarrow 0$ and $k_\infty = \lim k([M])$ for $[M] \rightarrow \infty$ Eq. (6)

239

240

241 From this convention, the Lindemann-Hinshelwood equation is obtained

242

243
$$k = \frac{k_0 k_\infty}{k_0 + k_\infty}$$
 Eq. (7)

244

245 It follows that, for combination reactions, $k_0 = k_1 k_2 [M] / k_{-1}$ and $k_\infty = k_1$, while, for dissociation
246 reactions, $k_0 = k_{-2} [M]$ and $k_\infty = k_{-1} k_{-2} / k_2$. Since detailed balancing applies, the ratio of the rate
247 coefficients for combination and dissociation at a fixed T and $[M]$ is given by the equilibrium
248 constant $K_c = k_1 k_2 / k_{-1} k_{-2}$.

249 Starting from the high-pressure limit, the rate coefficients fall off with decreasing third body
250 concentration $[M]$ and the corresponding representation of k as a function of $[M]$ is termed the
251 “falloff curve” of the reaction. In practice, the above Lindemann-Hinshelwood expressions do
252 not suffice to characterize the falloff curves completely. Because of the multistep character of
253 the collisional deactivation ($k_2 [M]$) and activation ($k_{-2} [M]$) processes, and energy- and angular
254 momentum-dependences of the association (k_1) and dissociation (k_{-1}) steps, as well as other
255 phenomena, the falloff expressions have to be modified. This can be done by including a
256 broadening factor F to the Lindemann-Hinshelwood expression (Troe, 1979):

257

258
$$k = \frac{k_0 k_\infty}{k_0 + k_\infty} F = k_0 \left(\frac{1}{1+x} \right) F = k_\infty \left(\frac{x}{1+x} \right) F$$
 Eq. (8)

259

260 The broadening factor F depends on the ratio $x = k_0 / k_\infty$, which is proportional to $[M]$, and can
261 be used as a measure of “reduced pressure”. The first factors on the right-hand side represent
262 the Lindemann-Hinshelwood expression and the additional broadening factor F , at not too high
263 temperatures, is approximately given by (Troe, 1979):

264

265
$$\log F \cong \frac{\log F_c}{1 + [\log (k_0 / k_\infty) / N]^2}$$
 Eq. (9)

266

267 where $\log = \log_{10}$ and $N \approx [0.75 - 1.27 \log F_c]$.

268

269 When F_c decreases, the falloff curve broadens and becomes asymmetric (i.e. $F(k_0 / k_\infty) \neq$

270 $F(k_\infty/k_0)$). The given equation for F then becomes insufficient and should be replaced, e.g. by

271

272
$$F(x) \approx (1+x)/(1+x^n)^{1/n} \quad \text{Eq. (10)}$$

273

274 where $x = k_0/k_\infty$, $n = [\ln 2 / \ln(2/F_c)] [0.8 + 0.2 x^q]$, $q = (F_c - 1) / \ln(F_c/10)$ and $\ln = \log_e$ (Troe and
275 Ushakov, 2014). While the former equation for $\log F$ appears acceptable as long as $F_c \geq 0.6$,
276 the latter equation for F is more rigorous when $F_c \leq 0.6$. With these equations, falloff curves
277 are represented in terms of the three parameters k_0 (being proportional to $[M]$), k_∞ , and F_c .

278 The parameters k_0 , k_∞ , and F_c depend on details of the intra- and intermolecular dynamics and
279 in principle can be calculated. If the required information is not available, one has to obtain
280 them by fitting experimental falloff curves with the expressions given above. Nevertheless, one
281 may estimate F_c to be typically of the order of 0.49, 0.44, 0.39, and 0.35, if the reactants A and
282 B in total have $r = 3, 4, 5$, and 6 external rotational degrees of freedom, respectively (Cobos
283 and Troe, 2003; for the reaction $\text{HO} + \text{NO}_2 + \text{M}$, e.g. one would have $r = 5$ and $F_c \approx 0.39$); F_c
284 may be lower, if low frequency vibrations in A or B are relevant in addition to the rotations and
285 if collisions are inefficient. Over the range 200 – 300 K often one can neglect a temperature
286 dependence of F_c (for detailed calculations of F_c , including a dependence on the bath gas M,
287 see e.g. Troe 1983; Troe and Ushakov, 2011, 2014). The accuracy of $F(x)$ as given above is
288 estimated to be about 10 percent. Larger differences between experimentally fitted F_c often are
289 an indication for inadequate falloff extrapolations to k_0 and/or k_∞ . In this case, the apparent
290 values for k_0 , k_∞ , and F_c still can provide a satisfactory representation of the considered
291 experimental data, in spite of the fact that k_0 and/or k_∞ are not the real limiting values. If falloff
292 curves are fitted in different ways, changes in F_c require changes in the limiting k_0 and k_∞ . In
293 the present evaluation, we generally follow the experimentally fitted values for k_0 , k_∞ , and F_c ,
294 provided that F_c does not differ too much from the standard values given above and theoretically
295 modelled values. If large deviations are encountered, the experimental data are re-evaluated
296 using F_c -values as given above. One should also note that k_∞ for combination reactions without
297 a barrier often have only weak temperature dependences which in many cases can be neglected.

298

299 Besides the energy-transfer mechanism, i.e., reactions (1), (-1), and (2), a second mechanism
300 may become relevant for some reactions considered here. This is the radical-complex (or
301 chaperon) mechanism

302
$$\text{A} + \text{M} \rightarrow \text{AM} \quad (3)$$

305 which, in the low-pressure range, leads to $k_0 = (k_3 / k_3)k_4 [M]$. For some tri- and tetra-atomic
306 adducts AB, e.g., $O + O_2 \rightarrow O_3$ and $HO + C_6H_6 \rightarrow HOC_6H_6$, the value of k_0 may exceed that
307 from the energy-transfer mechanism and show stronger temperature dependences (Luther et al.,
308 2005; Teplukhin and Babikov, 2016). This mechanism may also influence high pressure
309 experiments when k_0 from the radical-complex mechanism exceeds k_∞ from the energy-transfer
310 mechanism (Oum et al., 2003). In this case falloff over wide pressure ranges cannot be
311 represented by contributions from the energy-transfer mechanism alone, in particular when
312 measurements at pressures above about 10 bar are taken into consideration.

313

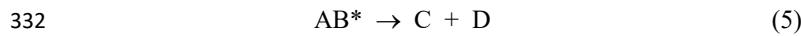
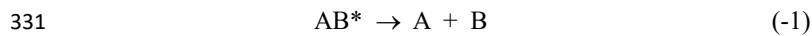
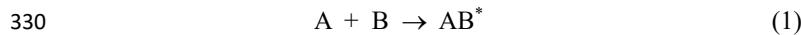
314 The dependence of k_0 and k_∞ on the temperature T is represented in the form $k \propto T^{-n}$ except for
315 cases with an established energy barrier in the potential. We have used this form of temperature
316 dependence because it usually gives a better fit to the data over a wider range of temperature
317 than does the Arrhenius expression. It should be emphasised that the chosen form of the
318 temperature dependence is often only adequate over limited temperature ranges such as 200–
319 300 K. Obviously, the relevant values of n are different for k_0 and k_∞ . In this evaluation, values
320 of k_0 are given for selected examples of third bodies M, and if possible for M = N₂, O₂, or air.

321

322 **2.4 Treatment of complex-forming bimolecular reactions**

323

324 Bimolecular reactions may follow the “direct” pathway




325

327

328 and/or involve complex-formation, in the simplest way characterized by the steps

329

334

335 (there may be additional pathways following from AB*; direct and complex-forming pathways

336 may or may not be coupled). Assuming quasi-stationary concentrations of AB* (i.e. that
337 $d[AB^*]/dt \approx 0$ as in section 2.3), a Lindemann-Hinshelwood type analysis leads to

338

339 $d[AB]/dt = k_{Ass} [A] [B]$ Eq. (11)

340

341 $d[C]/dt = d[D]/dt = k_{CA} [A] [B]$ Eq. (12)

342

343 $d[A]/dt = - (k_{Ass} + k_{CA}) [A] [B]$ Eq. (13)

344

345 The rate constants for association (k_{Ass}) and for chemical activation leading to product
346 formation (k_{CA}) then are given by

347

348 $k_{Ass} = k_1 k_2 [M] / (k_{-1} + k_2 [M] + k_5)$ Eq. (14)

349

350 $k_{CA} = k_1 k_5 / (k_{-1} + k_2 [M] + k_5)$ Eq. (15)

351

352 Note that k_{Ass} and k_{CA} are dependent on the nature and concentration of the third body M, in
353 addition to their temperature dependence. In reality, as for combination and dissociation
354 reactions, the given expressions for k_{Ass} and k_{CA} have to be extended by suitable broadening
355 factors F to account for the multistep character of processes (2) and the energy- and angular
356 momentum-dependences of processes (1), (-1), and (5). These broadening factors, however,
357 generally differ for k_{Ass} and k_{CA} ; also they generally differ from those of simple combination
358 reactions described in section 2.3. One should note that association and chemical activation
359 here are coupled such that their joint treatment is complicated. Some simplification is reached
360 when the processes first are treated separately and the coupling is introduced at the end (Troe,
361 2015). The corresponding rate constants of the separated processes are denoted by k_{Ass}^* and
362 k_{CA}^* and are given by

363

364 $k_{Ass}^* = k_1 k_2 [M] / (k_{-1} + k_2 [M])$ Eq. (16)

365

366 and

367

368 $k_{CA}^* = k_1 k_5 / (k_2 [M] + k_5)$. Eq. (17)

369

370 k_{Ass}^* then corresponds to the rate constant of a combination reaction described in section 2.3
371 and has a broadening factor $F_{\text{Ass}}^*(x^*)$. k_{CA}^* has to be treated in a different way and is expressed
372 in the form

373

$$374 \quad k_{\text{CA}}^* = k_{\text{Ass},\infty} [1/(1+x^*)] F_{\text{CA}}^*(x^*) \quad \text{Eq. (18)}$$

375

376 with $x^* = k_{\text{Ass},\infty} [\text{M}] / k_{\text{CA},\infty}^*$ and a broadening factor $F_{\text{CA}}^*(x)$ (Stewart et al., 1989). The latter
377 factor is generally larger than $F_{\text{Ass}}^*(x^*)$ (Troe, 2015). The rate parameters $k_{\text{CA},0}^*$ and $k_{\text{CA},\infty}^*$
378 depend on the molecular parameters and can be calculated theoretically or fitted experimentally
379 (after the coupling between association and chemical activation has been accounted for). In
380 practice one may try to represent the rate constants in the form of rate constants of separated
381 processes k_{Ass}^* and k_{CA}^* . Coupling these rate constants then leads to a full representation of the
382 rate constants in terms of the six rate parameters $k_{\text{Ass},0}$, $k_{\text{Ass},\infty}$, $F_{\text{Ass},c}$, $k_{\text{CA},0}$, $k_{\text{CA},\infty}$, and $F_{\text{CA},c}$. If
383 one neglects the coupling and fits these parameters directly from the experiments (Miller and
384 Klippenstein, 2001), however, one has to be aware of the fact that the values obtained do not
385 correspond to those of separated, single-channel, association and chemical activation processes
386 (for more details, see Troe, 2015).

387

388 As a consequence of the multistep character of complex-forming bimolecular reactions, a
389 variety of temperature - and pressure – dependences of k_{Ass} and k_{CA} are observed. The low
390 pressure limit of the total rate constants $k_{\text{tot}} = k_{\text{Ass}} + k_{\text{CA}}$, i.e., $k_{\text{tot},0} = k_{\text{CA},0} = k_1 k_5 / (k_{-1} + k_5)$, because
391 of different energy – and angular momentum – dependences of the specific rate constants k_1 ,
392 k_{-1} , and k_5 , may increase or decrease with temperature, the latter with the possibility to a change
393 with an increase above a certain temperature. k_{tot} , as given above, may increase with pressure
394 from $k_{\text{CA},0}$ to k_1 , with $\text{M} = \text{H}_2\text{O}$ often being a particularly efficient third body in the pressure –
395 dependent range. The pressure dependence generally becomes less apparent with increasing
396 temperature. Finally, the further fate of an addition product AB is of importance. It may be
397 collisionally reactivated to energies where $k_5 \gg k_{-1}$, such that formation of C + D is enhanced
398 (in comparison to energies where $k_5 \ll k_{-1}$). There is also the possibility that A-M (or B-M)
399 complexes are formed which react in a chaperon mechanism with B (or A) and then form
400 products. $\text{M} = \text{H}_2\text{O}$ here again may be particularly efficient. Without detailed theoretical
401 analysis, in general, it will be difficult to disentangle the intrinsic mechanism. Therefore,
402 reference to theoretical work is given for selected reactions.

403

404 **2.5 Photochemical reactions**

405

406 Tables are provided in the datasheets which summarise the available experimental data for: (i)
407 absorption cross sections and (ii) quantum yields. These data are supplemented by a series of
408 comments. The next table lists the preferred absorption cross section data and the preferred
409 quantum yields at appropriate wavelength intervals. For absorption cross sections the intervals
410 are usually 1 nm, 5 nm or 10 nm. Any temperature dependence of the absorption cross sections
411 is also given where possible. The aim in presenting these preferred data is to provide a basis for
412 calculating atmospheric photolysis rates. For absorption continua the temperature dependence
413 is often represented by Sulzer-Wieland type expressions (Astholz et al., 1981). Alternately a
414 simple empirical expression of the form: $\log_{10}(\sigma_{T1} / \sigma_{T2}) = B^*(T_1 - T_2)$ is used. The comments
415 again describe how the preferred data were selected and include other relevant points. The
416 photochemical datasheets are concluded with a list of references.

417

418 **2.6 Conventions concerning absorption cross sections**

419

420 These are presented in the datasheets as “absorption cross sections per molecule, base e.” They
421 are defined according to the equation:

422

$$I / I_0 = \exp(-\sigma[N]l) \quad \text{Eq. (19)}$$

424

425 where I_0 and I are the incident and transmitted light intensities, $[N]$ is the number concentration
426 of absorber (expressed in molecule cm^{-3}), l is the path length (expressed in cm), and σ is the
427 absorption cross section (units of $\text{cm}^2 \text{ molecule}^{-1}$). Note that “molecule” is not a unit but is
428 included here for clarity. Other definitions and units are frequently quoted. The closely related
429 quantities “absorption coefficient” and “extinction coefficient” are often used, but care must be
430 taken to avoid confusion in their definition, see Calvert (1990) for definitions and discussion.
431 It is always necessary to know the units of concentration and of path length and the type of
432 logarithm (base e or base 10) corresponding to the definition. The decadic molar absorption
433 coefficient, ϵ , is often quoted, particularly in the older literature, and is defined as:

$$\epsilon = \{1/([A]l)\} \log_{10}(I_0/I), \quad \text{Eq. (20)}$$

435 where $[A]$ is the concentration of the absorber expressed in units of moles per liter. While ϵ is

436 often called an extinction coefficient, the term “extinction” should more properly be used for
437 the sum of absorption and scattering. To convert from ε (base 10, units of $\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) to σ
438 (base e, units of $\text{cm}^2 \text{ molecule}^{-1}$) multiply by 3.82×10^{-20} .

439

440 **2.7 Assignment of uncertainties**

441

442 Under the heading “reliability,” estimates have been made of the absolute accuracies of the
443 preferred values of k at 298 K and of the preferred values of E/R over the quoted temperature
444 range. The accuracy of the preferred rate coefficient at 298 K is quoted as the term $\Delta \log k$,
445 where $\Delta \log k = d$ and d is defined by the equation, $\log k = c \pm d$. This is equivalent to the
446 statement that k is uncertain to a factor of f , where $d = \log f$. The accuracy of the preferred value
447 of E/R is quoted as the term $\Delta(E/R)$, where $\Delta(E/R) = g$ and g is defined by the equation $E/R =$
448 $h \pm g$. d and g are uncertainties corresponding approximately to 95% confidence limits. For
449 second-order rate coefficients listed in this evaluation, an estimate of the uncertainty at any
450 given temperature within the recommended temperature range may be obtained from the
451 equation:

452

453
$$\Delta \log k(T) = \Delta \log k(298 \text{ K}) + 0.4343 \{\Delta E/R(1/T - 1/298 \text{ K})\} \quad \text{Eq. (21)}$$

454

455 The assignment of these absolute uncertainties in k and E/R is our subjective assessment.
456 They are not determined by a rigorous, statistical analysis of the database, which is generally
457 too limited to permit such an analysis. Rather, the uncertainties are based on our knowledge of
458 the techniques, the difficulties of the experimental measurements, the potential for systematic
459 errors, and the number of studies conducted and their agreement or lack thereof. Experience
460 shows that for rate measurements of atomic and free radical reactions in the gas phase, the
461 precision of the measurement, i.e. the reproducibility, is usually good. Thus, for single studies
462 of a particular reaction involving one technique, standard deviations, or even 95% confidence
463 limits, of $\pm 10\%$ or less are frequently reported in the literature. Unfortunately, when we
464 compare data for the same reaction studied by more than one group of investigators and
465 involving different techniques, the rate coefficients sometimes differ by a factor of 2 or even
466 more. This can only mean that one or more of the studies has large systematic errors which
467 are difficult to detect. This is hardly surprising since it is not always possible to study atomic
468 and free radical reactions in isolation, and consequently mechanistic and other difficulties

469 frequently arise. Our assessment of uncertainty limits tends towards the cautious side. Our
470 assessment of uncertainties in the preferred values are not determined by a rigorous, statistical
471 analysis of the database, which is generally too limited to permit such an analysis. Rather, the
472 uncertainties are based on our knowledge of the techniques, the difficulties of the
473 experimental measurements, the potential for systematic errors, and the number of studies
474 conducted and their agreement or lack thereof.

475

476 **Author contribution:** All authors defined the scope of the work. TJW, JNC, and AM developed
477 and drafted the datasheets and manuscript. All authors reviewed, refined, and revised the
478 manuscript and datasheets.

479

480 **Competing interests:** The authors declare that they have no conflict of interest. MA is a
481 member of the editorial board of *Atmospheric Chemistry and Physics*.

482

483 **Acknowledgements.** The members of the Task Group wish to express their appreciation to
484 IUPAC for the financial help which facilitated the preparation of this evaluation. M.A.
485 appreciates support by the Swiss National Science Foundation (grant no. 188662). We also
486 acknowledge financial support from the Office Fédéral de l'Education et de la Science, the
487 Centre National de la Recherche Scientifique-Institut National des Sciences de l'Univers
488 (CNRS-INSU). Support was also obtained from the French Data Terra Research Infrastructure
489 through the AERIS Atmosphere Data and Services Centre. We thank Cathy Boonne, Elliot
490 Richard, and Maroua Soltani for developing and maintaining the website.

491

492

493

494 **References**

495

496 Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J.,
497 and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry:
498 Volume VI – heterogeneous reactions with liquid substrates, *Atmos. Chem. Phys.*, 13,
499 8045–8228 (2013).

500 Astholz, D. C., Brouwer, L., and Troe, J.: High-temperature ultraviolet-absorption spectra of
501 polyatomic molecules in shock waves, *Ber. Bunsenges. Phys. Chem.*, 85, 559–564, 1981.

502 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., and Troe, J.: Evaluated
503 kinetic and photochemical data for atmospheric chemistry: Supplement III, IUPAC
504 Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, *J. Phys. Chem.*
505 Ref. Data, 18, 881–1097, 1989.

506 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., and Troe, J.: Evaluated
507 kinetic and photochemical data for atmospheric chemistry: Supplement IV, IUPAC
508 Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, *J. Phys. Chem.*
509 Ref. Data, 21, 1125–1568, 1992.

510 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M., and Troe,
511 J.: Evaluated kinetic, photochemical, and heterogeneous data for atmospheric chemistry:
512 Supplement V, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric
513 Chemistry, *J. Phys. Chem. Ref. Data*, 26, 521–1011, 1997a.

514 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe,
515 J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VI,
516 IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, *J. Phys.*
517 *Chem. Ref. Data*, 26, 1329–1499, 1997b.

518 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe,
519 J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VII,
520 IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, *J. Phys.*
521 *Chem. Ref. Data*, 28, 191–393, 1999.

522 Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Rossi, M. J., and Troe,
523 J.: Evaluated kinetic and photochemical data for atmospheric chemistry, Supplement VIII,
524 IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, *J. Phys.*
525 *Chem. Ref. Data*, *J. Phys. Chem. Ref. Data*, 29, 167–266, 2000.

526 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
527 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric

- 528 chemistry: Volume I - gas phase reactions of O_x, HO_x, NO_x, and SO_x species, *Atmos. Chem.*
529 *Phys.*, 4, 1461-1738, 2004.
- 530 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
531 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric
532 chemistry: Volume II - gas phase reactions of organic species, *Atmos. Chem. Phys.*, 6,
533 3625-4055, 2006.
- 534 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
535 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric
536 chemistry: Volume III - gas phase reactions of inorganic halogens, *Atmos. Chem. Phys.*, 7,
537 981-1191, 2007.
- 538 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
539 M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical
540 data for atmospheric chemistry: Volume IV - gas phase reactions of organic halogen species,
541 *Atmos. Chem. Phys.*, 8, 4141-4496, 2008.
- 542 Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Troe, J., and Watson, R. T.: Evaluated
543 kinetic and photochemical data for atmospheric chemistry, CODATA Task Group on
544 Chemical Kinetics, *J. Phys. Chem. Ref. Data*, 9, 295–471, 1980.
- 545 Baulch, D. L., Cox, R. A., Crutzen, P. J., Hampson, Jr., R. F., Kerr, J. A., Troe, J., and Watson,
546 R. T.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement I,
547 CODATA Task Group on Chemical Kinetics, *J. Phys. Chem. Ref. Data*, 11, 327–496, 1982.
- 548 Baulch, D. L., Cox, R. A., Hampson, Jr., R. F., Kerr, J. A., Troe, J., and Watson, R. T.: Evaluated
549 kinetic and photochemical data for atmospheric chemistry: Supplement II, CODATA Task
550 Group on Gas Phase Chemical Kinetics, *J. Phys. Chem. Ref. Data*, 13, 1259–1380, 1984.
- 551 Brown, J. S.: HFOs: new, low global warming potential refrigerants, *ASHRAE J.*, 51, 22–29,
552 2009.
- 553 Burkholder, J. B., Cox, R. A., and Ravishankara, A. R.: Atmospheric degradation of ozone
554 depleting substances, their substitutes, and related species, *Chem. Rev.*, 115, 3704-3759,
555 2015.
- 556 Calvert, J. G.: Glossary of atmospheric chemistry terms, *Pure & App. Chem.*, 62, 2167-2219,
557 1990.
- 558 Cobos, C. J. and Troe, J.: Prediction of reduced falloff curves for recombination reactions at
559 low temperatures, *Z. Phys. Chem.*, 217, 1–14, 2003.
- 560 Cox, R. A.: Evaluation of laboratory kinetics and photochemical data for atmospheric chemistry
561 applications, *Chem. Soc. Rev.*, 41, 6231-6246, 2012.

- 562 Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki,
563 A., Rossi, M. J., Troe, J., Wallington, T. J.: IUPAC in the (real) clouds: 40 years of
564 evaluating atmospheric chemistry data, *Chemistry International*, 40, 52, (2018).
- 565 Cox, R. A., Ammann, M., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Mellouki,
566 A., Rossi, M. J., Troe, J., Wallington, T. J.: Evaluated kinetic and photochemical data for
567 atmospheric chemistry: Volume VII – Criegee intermediates, *Atmos. Chem. Phys.*, 20,
568 13497-13519, 2020.
- 569 Crowley, J. N., Ammann, M., Cox, R. A., Hynes, R. G., Jenkin, M. E., Mellouki, A., Rossi, M.
570 J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric
571 chemistry: Volume V – heterogeneous reactions on solid substrates, *Atmos. Chem. Phys.*,
572 10, 9059-9223, 2010.
- 573 Ellis, D. A., Martin, J. W., De Silva, A. O., Mabury, S. A., Hurley, M. D., Sulbaek Andersen, M.
574 P., and Wallington, T. J.: Degradation of fluorotelomer alcohols: A likely atmospheric
575 source of perfluorinated carboxylic acids", *Environ. Sci. Tech.*, 38, 3316-3321, 2004.
- 576 Giesy, J. P. and Kannan, K.: Global distribution of perfluorooctane sulfonate in wildlife,
577 *Environ. Sci. Technol.*, 35, 1339-1342, 2001.
- 578 Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., and Seed, J.: Perfluoroalkyl acids:
579 A review of monitoring and toxicological findings, *Toxicol. Sci.*, 99, 366–394, 2007.
- 580 Luther, K., Oum, K. and Troe, J.: The role of the radical-complex mechanism in the ozone
581 recombination/dissociation reaction, *Phys. Chem. Chem. Phys.*, 7, 2764-2770, 2005.
- 582 Mellouki, A., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill,
583 V. F., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for
584 atmospheric chemistry: Volume VII - gas phase reactions of organic species with four, or
585 more, carbon atoms ($\geq C4$), *Atmos. Chem. Phys.*, 21, 4797-4808, 2021.
- 586 Miller, J. and Klippenstein, S. J.: The reaction between ethyl and molecular oxygen: Further
587 analysis, *Int. J. Chem. Kinet.* 33, 654 – 668, 2001.
- 588 Oum, K., Sekiguchi, K., Luther, K., and Troe, J.: Observation of unique pressure effects in the
589 combination reaction of benzyl radicals in the gas to liquid transition region, *Phys. Chem.
590 Chem. Phys.*, 5, 2931–2933, 2003.
- 591 Prevedouros, C., Cousins, I. T., Buck, R. C., and Korzeniowski, S. H.: Sources, Fate and
592 Transport of Perfluorocarboxylates, *Environ. Sci. Technol.*, 40, 32-44, 2006.
- 593 Stewart, P. H., Larson, C. W., and Golden, D. M.: Pressure and temperature dependence of
594 reactions proceeding via a bound complex. 2. An application to $2CH_3 \rightarrow C_2H_5 + H$,
595 *Combust. Flame*, 75, 25–31, 1989.

- 596 Teplukhin, A. and Babikov, D.: A full-dimensional model of ozone forming reaction: the
597 absolute value of the recombination rate coefficient, its pressure and temperature
598 dependencies, *Phys. Chem. Chem. Phys.*, 18, 19194–19206, 2016.
- 599 Troe, J.: Predictive possibilities of unimolecular rate theory, *J. Phys. Chem.*, 83, 114–126, 1997.
- 600 Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. I. Strong collision rate
601 constants, *Ber. Bunsenges. Phys. Chem.*, 87, 161-169, 1983.
- 602 Troe, J., and Ushakov, V. G.: Revisiting falloff curves of thermal unimolecular reactions, *J.*
603 *Chem. Phys.*, 135, 054304, 2011.
- 604 Troe, J., and Ushakov, V. G.: Representation of "Broad" Falloff Curves for Dissociation and
605 Recombination Reactions, *Z. Phys. Chem.*, 228, 1–10, 2014.
- 606 Troe, J.: Simplified representation of partial and total rate constants of complex-forming
607 bimolecular reactions, *J. Phys. Chem. A*, 119, 12159–12165, 2015.
- 608 Velders, G. J. M., Fahey, D. W., Daniel, J. S., McFarland, M., and Andersen, S. O.: The large
609 contribution of projected HFC emissions to future climate forcing, *Proc. Nat. Acad. Sci.*,
610 106, 10949-10954, 2009.
- 611 Wallington, T. J., Sulbaek Andersen, M. P., Nielsen, O. J.: Atmospheric chemistry of short-chain
612 haloolefins: Photochemical ozone creation potentials (POCPs), global warming potentials
613 (GWPs), and ozone depletion potentials (ODPs), *Chemosphere*, 129, 135-141, 2015.
- 614 Wallington, T. J., Sulbaek Andersen, M. P., Nielsen, O. J.: Atmospheric Chemistry of
615 Halogenated Organic Compounds, in *Advances in Atmospheric Chemistry*, Barker, J. R.,
616 Steiner, A., and Wallington, T. J. (eds.), World Scientific, 2017.
- 617

618 **Table 1 Summary of recommended rate coefficients^a for organic halogen reactions added since publication**
 619 **of Volume IV**

Datasheet ID ^b	Reaction	$k_{298} / \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	$\Delta \log k_{298}^a$	$k(T) / \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	Temp. range/K	$\Delta(E/R) / \text{K}^c$
<i>Organic FOx, ClOx, BrOx, and IOx reactions added to the IUPAC website (see Supplementary Material for datasheets)</i>						
<i>Halogenated alkanes</i>						
oFOx72	$\text{HO} + \text{CF}_3\text{CH}_2\text{CH}_3$ (HFC-263fb) \rightarrow products	4.9×10^{-14}	0.15	$3.7 \times 10^{-12} \exp(-1290/T)$	240-370	300
oFOx73	$\text{HO} + \text{CF}_3\text{CHFC}_2\text{F}$ (HFC-245eb) \rightarrow products	1.6×10^{-14}	0.15	$1.1 \times 10^{-11} \exp(-1250/T)$	240-380	300
oFOx74	$\text{HO} + \text{CHF}_2\text{CHFC}_2\text{F}$ (HFC-245ea) \rightarrow products	1.8×10^{-14}	0.15	$1.8 \times 10^{-12} \exp(-1375/T)$	240-380	300
oFOx75	$\text{HO} + \text{CF}_3\text{CH}_2\text{CH}_2\text{F}$ (HFC-245fa) \rightarrow products	6.9×10^{-15}	0.12	$6.0 \times 10^{-13} \exp(-1331/T)$	270-370	300
oFOx76	$\text{HO} + \text{CF}_3\text{CH}_2\text{CF}_2\text{CH}_3$ (HFC-365mfc) \rightarrow products	7.1×10^{-15}	0.20	$1.6 \times 10^{-12} \exp(-1620/T)$	270-380	200
oFOx77	$\text{HO} + \text{CF}_3\text{CH}_2\text{CH}_2\text{CF}_3$ (HFC-356mff) \rightarrow products	7.8×10^{-15}	0.10	$2.6 \times 10^{-12} \exp(-1734/T)$	260-370	300
oFOx78	$\text{HO} + \text{CF}_3\text{CF}_2\text{CH}_2\text{CH}_2\text{F}$ (HFC-356mff) \rightarrow products	4.2×10^{-14}	0.15	$1.7 \times 10^{-12} \exp(-1108/T)$	250-370	300
oFOx79	$\text{HO} + \text{CHF}_2\text{CF}_2\text{CF}_3$ (HFC-338pcc) \rightarrow products	4.3×10^{-15}	0.08	$7.82 \times 10^{-13} \exp(-1548/T)$	230-420	200
oFOx80	$\text{HO} + \text{CF}_3\text{CH}_2\text{CF}_2\text{CH}_2\text{CF}_3$ (HFC-458mfcf) \rightarrow products	2.6×10^{-15}	0.15	$1.23 \times 10^{-12} \exp(-1833/T)$	270-360	300
oFOx81	$\text{HO} + \text{CF}_3\text{CHFC}_2\text{CF}_3$ (HFC-44-10mee) \rightarrow products	3.3×10^{-15}	0.12	$5.68 \times 10^{-13} \exp(-1534/T)$	240-400	300
oFOx82	$\text{HO} + \text{CF}_3\text{CF}_2\text{CH}_2\text{CH}_2\text{CF}_2\text{CF}_3$ (HFC-55-10mcff) \rightarrow products	8.3×10^{-15}	0.20			
oFOx83	$\text{HO} + \text{CHF}_2(\text{CF}_2)_4\text{CF}_3$ (HFC-52-13p) \rightarrow products	1.8×10^{-15}	0.10	$5.76 \times 10^{-13} \exp(-1726/T)$	250-430	300
oClOx86	$\text{HO} + \text{C}_2\text{H}_5\text{Cl} \rightarrow$ products	3.7×10^{-13}	0.10	$4.25 \times 10^{-12} \exp(-727/T)$	220-400	200
oClOx87	$\text{HO} + \text{CH}_2\text{ClCH}_2\text{Cl} \rightarrow$ products	2.4×10^{-13}	0.08	$8.69 \times 10^{-12} \exp(-1070/T)$	290-360	200
oClOx88	$\text{HO} + \text{CH}_3\text{CHCl}_2 \rightarrow$ products	2.76×10^{-13}	0.10	$2.04 \times 10^{-12} \exp(-596/T)$	290-370	300
oBrOx16	$\text{HO} + \text{CHBr}_3 \rightarrow$ products	2.7×10^{-13}	0.15	$1.0 \times 10^{-12} \exp(-388/T)$	290-370	300
oBrOx17	$\text{HO} + \text{C}_2\text{H}_5\text{Br} \rightarrow$ products	3.3×10^{-13}	0.15	$2.25 \times 10^{-12} \exp(-576/T)$	230-300	300
oBrOx18	$\text{HO} + \text{CH}_2\text{BrCH}_2\text{Br} \rightarrow$ products	2.22×10^{-13}	0.10	$7.69 \times 10^{-12} \exp(-1056/T)$	290-370	300
oBrOx19	$\text{HO} + n\text{-C}_3\text{H}_7\text{Br} \rightarrow$ products	1.0×10^{-12}	0.10	$3.91 \times 10^{-12} \exp(-399/T)$	210-300	300
oBrOx20	$\text{HO} + \text{CH}_3\text{CHBrCH}_3 \rightarrow$ products	7.58×10^{-13}	0.06	$1.96 \times 10^{-12} \exp(-283/T)$	210-355	200
oBrOx21	$\text{HO} + n\text{-C}_4\text{H}_9\text{Br} \rightarrow$ products	2.3×10^{-12}	0.20			
oBrOx22	$\text{HO} + n\text{-C}_5\text{H}_{11}\text{Br} \rightarrow$ products	3.7×10^{-12}	0.20			
oBrOx23	$\text{HO} + n\text{-C}_6\text{H}_{13}\text{Br} \rightarrow$ products	5.5×10^{-12}	0.20			
oIOx4	$\text{HO} + \text{CH}_3\text{CH}_2\text{I} \rightarrow$ products	3.43×10^{-13}	0.10	$5.55 \times 10^{-12} \exp(-830/T)$	290-380	200
oIOx5	$\text{HO} + \text{CH}_3\text{CH}_2\text{CH}_2\text{I} \rightarrow$ products	1.36×10^{-12}	0.08	$1.86 \times 10^{-11} \exp(-780/T)$	290-380	200
oIOx6	$\text{HO} + \text{CH}_3\text{CHICH}_3 \rightarrow$ products	1.29×10^{-12}	0.08	$7.64 \times 10^{-11} \exp(-530/T)$	290-380	200
oFOx108	$\text{Cl} + \text{CHF}_2\text{CH}_2\text{CF}_3$ (HFC-245fa) \rightarrow products	6.9×10^{-15}	0.30			
oFOx110	$\text{Cl} + \text{CF}_3\text{CHFC}_2\text{F}$ (HFC-227ea) \rightarrow products	4.4×10^{-16}	0.15			
oFOx111	$\text{Cl} + \text{CHF}_3$ (HFC-23) \rightarrow products	3.4×10^{-18}	0.50			
oBrOx24	$\text{Cl} + \text{CH}_3\text{Br} \rightarrow$ products	4.5×10^{-13}	0.05	$1.38 \times 10^{-11} \exp(-1020/T)$	210-300	100
<i>Halogenated alkenes</i>						
oFOx112	$\text{HO} + \text{CF}_2=\text{CF}_2$ (HFO-1114) \rightarrow products	1.04×10^{-11}	0.06	$3.84 \times 10^{-12} \exp(297/T)$	250-500	100
oFOx114	$\text{HO} + \text{CF}_3\text{CF}=\text{CH}_2$ (HFO-1234yf) \rightarrow products	1.12×10^{-11}	0.06	$1.16 \times 10^{-12} \exp(-10/T)$	200-300	100
oFOx115	$\text{HO} + E\text{-CF}_3\text{CH}=\text{CHF}$ (HFO-1234ze(E)) \rightarrow products	7.07×10^{-13}	0.06	$6.91 \times 10^{-13} \exp(7/T)$	210-300	100
oFOx117	$\text{HO} + Z\text{-CF}_3\text{CH}=\text{CHF}$ (HFO-1234ze(Z)) \rightarrow products	1.21×10^{-12}	0.15	$8.46 \times 10^{-13} \exp(106/T)$	260-300	100
oFOx118	$\text{HO} + E\text{-CF}_3\text{CF}=\text{CHF}$ (HFO-1225ze(E)) \rightarrow products	2.2×10^{-12}	0.15			
oFOx119	$\text{HO} + Z\text{-CF}_3\text{CF}=\text{CHF}$ (HFO-1225ze(Z)) \rightarrow products	1.2×10^{-12}	0.10	$7.60 \times 10^{-13} \exp(155/T)$	200-300	100
oFOx116	$\text{HO} + \text{CF}_3\text{CF}_2=\text{CF}_2$ (FO-1216) \rightarrow products	2.18×10^{-12}	0.04	$7.38 \times 10^{-13} \exp(322/T)$	240-340	100
oFOx135	$\text{HO} + E\text{-CF}_3\text{CH}=\text{CHCF}_3$ (HFO-1336mzz(E)) \rightarrow products	1.31×10^{-13}	0.06	$6.94 \times 10^{-13} \exp(-496/T)$	210-380	100
oFOx136	$\text{HO} + Z\text{-CF}_3\text{CH}=\text{CHCF}_3$ (HFO-1336mzz(Z)) \rightarrow products	4.80×10^{-13}	0.06	$2.46 \times 10^{-13} \exp(199/T)$	210-300	100
oClOx95	$\text{HO} + \text{CH}_2=\text{CHCl}$ (vinyl chloride) \rightarrow products	7.55×10^{-12}	0.08	$2.54 \times 10^{-12} \exp(325/T)$	280-600	100
oFOx120	$\text{HO} + E\text{-CF}_3\text{CH}=\text{CHCl}$ (HCFO-1233zd(E)) \rightarrow products	3.53×10^{-13}	0.06	$8.79 \times 10^{-13} \exp(-272/T)$	220-300	100
oFOx121	$\text{HO} + Z\text{-CF}_3\text{CH}=\text{CHCl}$ (HCFO-1233zd(Z)) \rightarrow products	9.24×10^{-13}	0.06	$3.61 \times 10^{-13} \exp(280/T)$	220-300	100
oFOx165	$\text{HO} + E\text{-CF}_3\text{CF}=\text{CHCl}$ (HCFO-1224yd(E)) \rightarrow products	1.30×10^{-12}	0.08	$1.09 \times 10^{-12} \exp(53/T)$	250-430	100
oFOx166	$\text{HO} + Z\text{-CF}_3\text{CF}=\text{CHCl}$ (HCFO-1224yd(Z)) \rightarrow products	5.83×10^{-13}	0.08	$8.03 \times 10^{-13} \exp(-95/T)$	250-430	100

oFOx164	HO + <i>E</i> -CF ₃ CBr=CH ₂ (HBFO-1233xfB) → products	3.84 × 10 ⁻¹²	0.06	1.11 × 10 ⁻¹² exp(370/T)	250-430	100
oFOx154	NO ₃ + CF ₂ =CF ₂ (HFO-1114) → products	< 3 × 10 ⁻¹⁵				
oFOx153	NO ₃ + CF ₃ CF ₂ =CH ₂ (HFO-1234yf) → products	2.6 × 10 ⁻¹⁷	0.15			
oFOx122	NO ₃ + Z-CF ₃ CF=CHF (HFO-1225ye(Z)) → products	4.2 × 10 ⁻¹⁸	0.20			
oFOx123	NO ₃ + CF ₃ CF ₂ =CF ₂ (FO-1216) → products	< 3 × 10 ⁻¹⁵				
oFOx155	NO ₃ + CF ₂ =CFCF=CF ₂ → products	1.56 × 10 ⁻¹⁵	0.15			
oClOx96	NO ₃ + CH ₂ =CHCl (vinyl chloride) → products	4.6 × 10 ⁻¹⁶	0.10	1.8 × 10 ⁻¹³ exp(-1780/T)	260-380	300
oFOx126	O ₃ + CF ₂ =CF ₂ (HFO-1114) → products	4.8 × 10 ⁻²¹	0.15			
oFOx113	O ₃ + CF ₃ CH=CH ₂ (HFO-1243zf) → products	1.43 × 10 ⁻²⁰	0.08	4.65 × 10 ⁻¹⁶ exp(-3096/T)	290-390	200
oFOx128	O ₃ + CF ₃ CF=CH ₂ (HFO-1234yf) → products	2.67 × 10 ⁻²¹	0.08			
oFOx129	O ₃ + <i>E</i> -CF ₃ CH=CHF (HFO-1234ze(E)) → products	2.50 × 10 ⁻²¹	0.10			
oFOx156	O ₃ + Z-CF ₃ CH=CHF (HFO-1234ze(Z)) → products	1.7 × 10 ⁻²¹	0.15			
oFOx130	O ₃ + CF ₃ CF ₂ =CF ₂ (FO-1216) → products	6.2 × 10 ⁻²²	0.30			
oFOx157	O ₃ + CF ₂ =CFCF=CF ₂ → products	7.9 × 10 ⁻²¹	0.15	9.51 × 10 ⁻¹⁷ exp (-2800/T)	220-320	200
oFOx127	O ₃ + <i>E</i> -CF ₃ CH=CHCF ₃ (HFO-1336mzz(E)) → products	4.14 × 10 ⁻²²	0.10			
oFOx124	O ₃ + Z-CF ₃ CH=CHCF ₃ (HFO-1336mzz(Z)) → products	7.09 × 10 ⁻²²	0.08			
oClOx97	O ₃ + CH ₂ =CHCl (vinyl chloride) → products	2.5 × 10 ⁻¹⁹	0.15			
oFOx132	O ₃ + <i>E</i> -CF ₃ CH=CHCl (HCFO-1233zd(E)) → products	1.51 × 10 ⁻²¹	0.15			
oFOx131	O ₃ + Z-CF ₃ CH=CHCl (HCFO-1233zd(Z)) → products	1.53 × 10 ⁻²¹	0.15			
oFOx125	O ₃ + CF ₃ CCl=CH ₂ (HCFO-1233xf) → products	3.00 × 10 ⁻²¹	0.08			
Halogenated alcohols						
oFOx84	HO + CH ₂ FCH ₂ OH → products	9.12 × 10 ⁻¹³	0.08	2.23 × 10 ⁻¹² exp(-266/T)	230-300	200
oFOx85	HO + CHF ₂ CH ₂ OH → products	2.61 × 10 ⁻¹³	0.08	1.63 × 10 ⁻¹² exp(-545/T)	220-300	200
oFOx86	HO + CF ₃ CH ₂ OH → products	1.00 × 10 ⁻¹³	0.06	1.25 × 10 ⁻¹² exp(-754/T)	220-300	100
oFOx87	HO + CF ₃ CH ₂ CH ₂ OH → products	9.6 × 10 ⁻¹³	0.10	2.72 × 10 ⁻¹² exp(-305/T)	260-360	100
oFOx88	HO + C ₂ F ₅ CH ₂ OH → products	1.05 × 10 ⁻¹³	0.06	1.28 × 10 ⁻¹² exp(-748/T)	250-430	200
oFOx89	HO + CF ₃ CH(OH)CF ₃ → products	2.43 × 10 ⁻¹⁴	0.12	3.94 × 10 ⁻¹⁵ (T/298) ^{1.57} exp (542/T)	250-430	
oFOx158	HO + (CF ₃) ₂ C(OH)CH ₃ → products	7.71 × 10 ⁻¹⁵	0.12	1.90 × 10 ⁻¹⁸ (T/298) ^{1.15} exp (2476/T)	230-370	
oFOx159	HO + (CF ₃) ₃ COH → products	8.6 × 10 ⁻¹⁶	0.12	3.0 × 10 ⁻²⁰ (T/298) ^{1.13} exp (3060/T)	230-370	
oFOx90	HO + CF ₃ CHFCF ₂ CH ₂ OH → products	1.3 × 10 ⁻¹³	0.12	2.26 × 10 ⁻¹² exp(-848/T)	250-430	200
oFOx91	HO + <i>n</i> -C ₃ F ₇ CH ₂ OH → products	1.11 × 10 ⁻¹³	0.10	6.06 × 10 ⁻¹² exp(-1192/T)	280-370	200
oFOx92	HO + <i>n</i> -C ₄ F ₉ CH ₂ OH → products	9.4 × 10 ⁻¹⁴	0.15			
oFOx93	HO + <i>n</i> -C ₄ F ₉ CH ₂ CH ₂ OH → products	1.0 × 10 ⁻¹²	0.15			
oFOx94	HO + <i>n</i> -C ₆ F ₁₃ CH ₂ CH ₂ OH → products	8.3 × 10 ⁻¹³	0.15			
oFOx95	HO + <i>n</i> -C ₈ F ₁₇ CH ₂ CH ₂ OH → products	9.2 × 10 ⁻¹³	0.15			
oFOx96	HO + CF ₃ CH(OH) ₂ → products	1.2 × 10 ⁻¹³	0.20			
oClOx90	HO + CH ₂ ClCH ₂ OH → products	1.3 × 10 ⁻¹²	0.20			
oClOx91	HO + CCl ₃ CH ₂ OH → products	2.5 × 10 ⁻¹³	0.20			
Halogenated aldehydes						
oFOx97	HO + CHF ₂ CHO → products	1.6 × 10 ⁻¹²	0.15			
oFOx98	HO + C ₂ F ₅ CHO → products	5.2 × 10 ⁻¹³	0.10	2.42 × 10 ⁻¹² exp(-458/T)	250-360	200
oFOx99	HO + <i>n</i> -C ₃ F ₇ CHO → products	5.8 × 10 ⁻¹³	0.08	2.0 × 10 ⁻¹² exp(-369/T)	250-380	200
oFOx100	HO + <i>n</i> -C ₄ F ₉ CHO → products	6.1 × 10 ⁻¹³	0.08	2.0 × 10 ⁻¹² exp(-356/T)	250-380	150
oFOx101	HO + CF ₃ CH ₂ CHO → products	2.7 × 10 ⁻¹²	0.15	7.74 × 10 ⁻¹² exp(-314/T)	260-360	150
oFOx102	HO + <i>n</i> -C ₆ F ₁₃ CH ₂ CHO → products	2.0 × 10 ⁻¹²	0.15			
oFOx103	HO + <i>n</i> -C ₈ F ₁₇ CH ₂ CHO → products	1.8 × 10 ⁻¹²	0.15			
Halogenated ketones						
oFOx104	HO + C ₂ F ₅ C(O)CF(CF ₃) ₂ → products	< 5 × 10 ⁻¹⁶				
oClOx92	HO + CH ₂ ClC(O)CH ₃ → products	4.4 × 10 ⁻¹³	0.15			
oClOx93	HO + CHCl ₂ C(O)CH ₃ → products	4.0 × 10 ⁻¹³	0.15			
oClOx94	HO + CCl ₃ C(O)CH ₃ → products	1.5 × 10 ⁻¹⁴	0.15			
Halogenated acids						
oFOx105	HO + C ₂ F ₅ C(O)OH → products	1.5 × 10 ⁻¹³	0.15			
oFOx106	HO + <i>n</i> -C ₃ F ₇ C(O)OH → products	1.5 × 10 ⁻¹³	0.15			

oFOx107	$\text{HO} + n\text{-C}_4\text{F}_9\text{C}(\text{O})\text{OH} \rightarrow \text{products}$	1.5×10^{-13}	0.15			
Halogenated ethers						
oFOx137	$\text{HO} + \text{CH}_3\text{OCHF}_2 \rightarrow \text{products}$	3.52×10^{-14}	0.15	$1.16 \times 10^{-11} \exp(-1728/T)$	290-470	100
oFOx138	$\text{HO} + \text{CH}_3\text{OCF}_3 \rightarrow \text{products}$	1.29×10^{-14}	0.10	$1.10 \times 10^{-12} \exp(-1324/T)$	290-470	100
oFOx139	$\text{HO} + \text{CHF}_2\text{OCHF}_2 \rightarrow \text{products}$	2.20×10^{-15}	0.10	$1.04 \times 10^{-12} \exp(-1836/T)$	270-470	100
oFOx140	$\text{HO} + \text{CHF}_2\text{OCF}_3 \rightarrow \text{products}$	4.57×10^{-16}	0.10	$3.09 \times 10^{-13} \exp(-1942/T)$	290-400	100
oFOx141	$\text{HO} + \text{CH}_3\text{OCHFCF}_3 \rightarrow \text{products}$	1.57×10^{-13}	0.10	$1.74 \times 10^{-12} \exp(-716/T)$	250-330	100
oFOx142	$\text{HO} + \text{CH}_3\text{OCF}_2\text{CHF}_2 \rightarrow \text{products}$	2.24×10^{-14}	0.10	$2.50 \times 10^{-12} \exp(-1405/T)$	240-440	100
oFOx143	$\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3 \rightarrow \text{products}$	6.24×10^{-13}	0.10			
oFOx144	$\text{HO} + \text{CH}_3\text{OC}_2\text{F}_3 \rightarrow \text{products}$	1.20×10^{-14}	0.10	$1.84 \times 10^{-12} \exp(-1499/T)$	240-440	100
oFOx145	$\text{HO} + n\text{-C}_3\text{F}_7\text{OCH}_3 \rightarrow \text{products}$	1.18×10^{-14}	0.10	$1.98 \times 10^{-12} \exp(-1526/T)$	240-440	100
oFOx146	$\text{HO} + i\text{-C}_3\text{F}_7\text{OCH}_3 \rightarrow \text{products}$	1.52×10^{-14}	0.10	$1.86 \times 10^{-12} \exp(-1432/T)$	240-440	100
oFOx147	$\text{HO} + \text{C}_4\text{F}_9\text{OCH}_3 \rightarrow \text{products}$	1.19×10^{-14}	0.08	$1.15 \times 10^{-12} \exp(-1362/T)$	250-330	100
oFOx148	$\text{HO} + \text{CH}_3\text{OCH}(\text{CF}_3)_2 \rightarrow \text{products}$	2.29×10^{-13}	0.10	$1.08 \times 10^{-12} \exp(-461/T)$	230-340	100
oFOx149	$\text{HO} + \text{CH}_2\text{FOCH}(\text{CF}_3)_2 \text{ (Sevoflurane)} \rightarrow \text{products}$	3.32×10^{-14}	0.15	$8.58 \times 10^{-13} \exp(-969/T)$	230-310	200
oFOx150	$\text{HO} + \text{CHF}_2\text{OCHFCF}_3 \text{ (Desflurane)} \rightarrow \text{products}$	4.08×10^{-15}	0.10	$7.43 \times 10^{-13} \exp(-1551/T)$	230-300	200
Halogenated vinyl ethers						
oFOx133	$\text{HO} + \text{CF}_3\text{OCF}=\text{CF}_2 \rightarrow \text{products}$	2.96×10^{-12}	0.10	$1.01 \times 10^{-12} \exp(320/T)$	250-430	100
oFOx134	$\text{HO} + \text{C}_2\text{F}_5\text{OCF}=\text{CF}_2 \rightarrow \text{products}$	3.0×10^{-12}	0.10	$6.0 \times 10^{-13} \exp(480/T)$	200-300	100
Peroxy radicals						
oFOx160	$\text{CF}_3\text{C}(\text{O})\text{O}_2 + \text{HO}_2 \rightarrow \text{CF}_3\text{C}(\text{O})\text{OOH} + \text{O}_2$ (1)			$k_1/k = 1.8 \times 10^{-12}$		
	$\rightarrow \text{CF}_3\text{C}(\text{O})\text{OH} + \text{O}_3$ (2)			$k_2/k = 7.6 \times 10^{-12}$		
	$\rightarrow \text{CF}_3\text{C}(\text{O})\text{O} + \text{HO}$ (3)			$k_3/k = 1.12 \times 10^{-11}$		
<hr/>						
oFOx161	Overall	2.0×10^{-11}	0.3			
oFOx162	$\text{CF}_3\text{C}(\text{O})\text{O}_2 + \text{NO} \rightarrow \text{CF}_3\text{C}(\text{O})\text{O} + \text{NO}_2$	2.8×10^{-11}	0.2	$4.0 \times 10^{-12} \exp(560/T)$	220-340	200
oFOx163	$\text{CF}_3\text{C}(\text{O})\text{O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CF}_3\text{C}(\text{O})\text{O}_2\text{NO}_2 + \text{M}$	6.6×10^{-12}	0.3			
	$5.0 \times 10^{-20} [\text{N}_2] (k_0/\text{s}^{-1})$			$5.0 \times 10^{-2} \exp(-12350/T)$	290-330	
	$9.9 \times 10^{-5} (k_2/\text{s}^{-1})$			$1.1 \times 10^{17} \exp(-14440/T)$		
	$7.95 \times 10^{-5} (1 \text{ bar}) k/s^{-1}$					

Photochemical reactions added to the IUPAC website (see Supplementary Material for datasheets)

PF5	$\text{CHF}_2\text{CHO} + \text{hv} \rightarrow \text{products}$
PF6	$\text{C}_2\text{F}_5\text{CHO} + \text{hv} \rightarrow \text{products}$
PF7	$n\text{-C}_3\text{F}_7\text{CHO} + \text{hv} \rightarrow \text{products}$
PF8	$n\text{-C}_4\text{F}_9\text{CHO} + \text{hv} \rightarrow \text{products}$
PF9	$\text{CF}_3\text{CH}_2\text{CHO} + \text{hv} \rightarrow \text{products}$
PF10	$n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CHO} + \text{hv} \rightarrow \text{products}$

620
 621
 622
 623
 624
 625

- a: Rate coefficients are also known as rate constants, both terms are used here.
 b: See corresponding datasheets in Supplement for further information (e.g., methods used and products formed).
 c: The cited uncertainty is an expanded uncertainty corresponding approximately to a 95% confidence limit.