

Supplementary Material for

**Evaluated kinetic and photochemical data for
atmospheric chemistry: Volume IX – gas phase reactions
of halogenated alkanes, alkenes, and oxygenated
compounds**

T. J. Wallington et al.

Correspondence to: T. J. Wallington (twalling@umich.edu)

Detailed data sheets for the gas phase and photochemical reactions of halogenated alkanes, alkenes, and oxygenated organic compounds implemented on the IUPAC website since 2008, IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (<https://iupac.aeris-data.fr/>), access date: December 31st 2025.

Contents

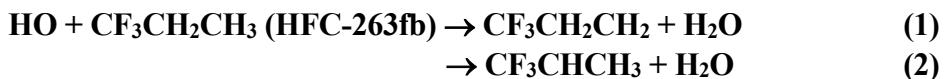
Datasheet ^b ID	Reaction	Page
<i>Halogenated alkanes</i>		
oFOx72	HO + CF ₃ CH ₂ CH ₃ (HFC-263fb) → products	
oFOx73	HO + CF ₃ CHFCH ₂ F (HFC-245eb) → products	
oFOx74	HO + CHF ₂ CHFCHF ₂ (HFC-245ea) → products	
oFOx75	HO + CF ₃ CH ₂ CHF ₂ (HFC-245fa) → products	
oFOx76	HO + CF ₃ CH ₂ CF ₂ CH ₃ (HFC-365mfc) → products	
oFOx77	HO + CF ₃ CH ₂ CH ₂ CF ₃ (HFC-356mff) → products	
oFOx78	HO + CF ₃ CF ₂ CH ₂ CH ₂ F (HFC-356mcf) → products	
oFOx79	HO + CHF ₂ CF ₂ CF ₂ CHF ₂ (HFC-338pcc) → products	
oFOx80	HO + CF ₃ CH ₂ CF ₂ CH ₂ CF ₃ (HFC-458mfcf) → products	
oFOx81	HO + CF ₃ CHFCHFCF ₂ CF ₃ (HFC-44-10mnee) → products	
oFOx82	HO + CF ₃ CF ₂ CH ₂ CH ₂ CF ₂ CF ₃ (HFC-55-10mcff) → products	
oFOx83	HO + CHF ₂ (CF ₂) ₄ CF ₃ (HFC-52-13p) → CHF ₂ (CF ₂) ₄ CF ₃ +H ₂ O	
oClOx86	HO + C ₂ H ₅ Cl → products	
oClOx87	HO + CH ₂ ClCH ₂ Cl → products	
oClOx88	HO + CH ₃ CHCl ₂ → products	
oBrOx16	HO + CHBr ₃ → products	
oBrOx17	HO + C ₂ H ₅ Br → products	
oBrOx18	HO + CH ₂ BrCH ₂ Br → products	
oBrOx19	HO + n-C ₃ H ₇ Br → products	
oBrOx20	HO + CH ₃ CHBrCH ₃ → products	
oBrOx21	HO + n-C ₄ H ₉ Br → products	
oBrOx22	HO + n-C ₅ H ₁₁ Br → products	
oBrOx23	HO + n-C ₆ H ₁₃ Br → products	
oIOx4	HO + CH ₃ CH ₂ I → products	
oIOx5	HO + CH ₃ CH ₂ CH ₂ I → products	
oIOx6	HO + CH ₃ CHICH ₃ → products	
oFOx108	Cl + CHF ₂ CH ₂ CF ₃ (HFC-245fa) → products	
oFOx110	Cl + CF ₃ CHFCF ₃ (HFC-227ea) → products	
oFOx111	Cl + CHF ₃ (HFC-23) → products	
oBrOx24	Cl + CH ₃ Br → products	
<i>Halogenated alkenes</i>		
oFOx112	HO + CF ₂ =CF ₂ (HFO-1114) → products	
oFOx114	HO + CF ₃ CF=CH ₂ (HFO-1234yf) → products	
oFOx115	HO + E-CF ₃ CH=CHF (HFO-1234ze(E)) → products	
oFOx117	HO + Z-CF ₃ CH=CHF (HFO-1234ze(Z)) → products	
oFOx118	HO + E-CF ₃ CF=CHF (HFO-1225ze(E)) → products	
oFOx119	HO + Z-CF ₃ CF=CHF (HFO-1225ze(Z)) → products	
oFOx116	HO + CF ₃ CF=CF ₂ (FO-1216) → products	
oFOx135	HO + E-CF ₃ CH=CHCF ₃ (HFO-1336mzz(E)) → products	
oFOx136	HO + Z-CF ₃ CH=CHCF ₃ (HFO-1336mzz(Z)) → products	
oClOx95	HO + CH ₂ =CHCl (vinyl chloride) → products	
oFOx120	HO + E-CF ₃ CH=CHCl (HCFO-1233zd(E)) → products	
oFOx121	HO + Z-CF ₃ CH=CHCl (HCFO-1233zd(Z)) → products	
oFOx165	HO + E-CF ₃ CF=CHCl (HCFO-1224yd(E)) → products	
oFOx166	HO + Z-CF ₃ CF=CHCl (HCFO-1224yd(Z)) → products	
oFOx164	HO + E-CF ₃ CBr=CH ₂ (HBFO-1233xfb) → products	
oFOx154	NO ₃ + CF ₂ =CF ₂ (HFO-1114) → products	
oFOx153	NO ₃ + CF ₃ CF ₂ =CH ₂ (HFO-1234yf) → products	
oFOx122	NO ₃ + Z-CF ₃ CF=CHF (HFO-1225ye(Z)) → products	
oFOx123	NO ₃ + CF ₃ CF ₂ =CF ₂ (FO-1216) → products	
oFOx155	NO ₃ + CF ₂ =CFCF=CF ₂ → products	

oClOx96	$\text{NO}_3 + \text{CH}_2=\text{CHCl}$ (vinyl chloride) \rightarrow products
oFOx126	$\text{O}_3 + \text{CF}_2=\text{CF}_2$ (HFO-1114) \rightarrow products
oFOx113	$\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2$ (HFO-1243zf) \rightarrow products
oFOx128	$\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2$ (HFO-1234yf) \rightarrow products
oFOx129	$\text{O}_3 + E\text{-CF}_3\text{CH}=\text{CHF}$ (HFO-1234ze(E)) \rightarrow products
oFOx156	$\text{O}_3 + Z\text{-CF}_3\text{CH}=\text{CHF}$ (HFO-1234ze(Z)) \rightarrow products
oFOx130	$\text{O}_3 + \text{CF}_3\text{CF}_2=\text{CF}_2$ (FO-1216) \rightarrow products
oFOx157	$\text{O}_3 + \text{CF}_2=\text{CFCF}=\text{CF}_2$ \rightarrow products
oFOx127	$\text{O}_3 + E\text{-CF}_3\text{CH}=\text{CHCF}_3$ (HFO-1336mzz(E)) \rightarrow products
oFOx124	$\text{O}_3 + Z\text{-CF}_3\text{CH}=\text{CHCF}_3$ (HFO-1336mzz(Z)) \rightarrow products
oClOx97	$\text{O}_3 + \text{CH}_2=\text{CHCl}$ (vinyl chloride) \rightarrow products
oFOx132	$\text{O}_3 + E\text{-CF}_3\text{CH}=\text{CHCl}$ (HCFO-1233zd(E)) \rightarrow products
oFOx131	$\text{O}_3 + Z\text{-CF}_3\text{CH}=\text{CHCl}$ (HCFO-1233zd(Z)) \rightarrow products
oFOx125	$\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2$ (HCFO-1233xf) \rightarrow products
<i>Halogenated alcohols</i>	
oFOx84	$\text{HO} + \text{CH}_2\text{FCH}_2\text{OH} \rightarrow$ products
oFOx85	$\text{HO} + \text{CHF}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx86	$\text{HO} + \text{CF}_3\text{CH}_2\text{OH} \rightarrow$ products
oFOx87	$\text{HO} + \text{CF}_3\text{CH}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx88	$\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH} \rightarrow$ products
oFOx89	$\text{HO} + \text{CF}_3\text{CH}(\text{OH})\text{CF}_3 \rightarrow$ products
oFOx158	$\text{HO} + (\text{CF}_3)_2\text{C}(\text{OH})\text{CH}_3 \rightarrow$ products
oFOx159	$\text{HO} + (\text{CF}_3)_3\text{COH} \rightarrow$ products
oFOx90	$\text{HO} + \text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx91	$\text{HO} + n\text{-C}_3\text{F}_7\text{CH}_2\text{OH} \rightarrow$ products
oFOx92	$\text{HO} + n\text{-C}_4\text{F}_9\text{CH}_2\text{OH} \rightarrow$ products
oFOx93	$\text{HO} + n\text{-C}_4\text{F}_9\text{CH}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx94	$\text{HO} + n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx95	$\text{HO} + n\text{-C}_8\text{F}_{17}\text{CH}_2\text{CH}_2\text{OH} \rightarrow$ products
oFOx96	$\text{HO} + \text{CF}_3\text{CH}(\text{OH})_2 \rightarrow$ products
oClOx90	$\text{HO} + \text{CH}_2\text{ClCH}_2\text{OH} \rightarrow$ products
oClOx91	$\text{HO} + \text{CCl}_3\text{CH}_2\text{OH} \rightarrow$ products
<i>Halogenated aldehydes</i>	
oFOx97	$\text{HO} + \text{CHF}_2\text{CHO} \rightarrow$ products
oFOx98	$\text{HO} + \text{C}_2\text{F}_5\text{CHO} \rightarrow$ products
oFOx99	$\text{HO} + n\text{-C}_3\text{F}_7\text{CHO} \rightarrow$ products
oFOx100	$\text{HO} + n\text{-C}_4\text{F}_9\text{CHO} \rightarrow$ products
oFOx101	$\text{HO} + \text{CF}_3\text{CH}_2\text{CHO} \rightarrow$ products
oFOx102	$\text{HO} + n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CHO} \rightarrow$ products
oFOx103	$\text{HO} + n\text{-C}_8\text{F}_{17}\text{CH}_2\text{CHO} \rightarrow$ products
<i>Halogenated ketones</i>	
oFOx104	$\text{HO} + \text{C}_2\text{F}_5\text{C}(\text{O})\text{CF}(\text{CF}_3)_2 \rightarrow$ products
oClOx92	$\text{HO} + \text{CH}_2\text{ClC}(\text{O})\text{CH}_3 \rightarrow$ products
oClOx93	$\text{HO} + \text{CHCl}_2\text{C}(\text{O})\text{CH}_3 \rightarrow$ products
oClOx94	$\text{HO} + \text{CCl}_3\text{C}(\text{O})\text{CH}_3 \rightarrow$ products
<i>Halogenated acids</i>	
oFOx105	$\text{HO} + \text{C}_2\text{F}_5\text{C}(\text{O})\text{OH} \rightarrow$ products
oFOx106	$\text{HO} + n\text{-C}_3\text{F}_7\text{C}(\text{O})\text{OH} \rightarrow$ products
oFOx107	$\text{HO} + n\text{-C}_4\text{F}_9\text{C}(\text{O})\text{OH} \rightarrow$ products
<i>Halogenated ethers</i>	
oFOx137	$\text{HO} + \text{CH}_3\text{OCHF}_2 \rightarrow$ products
oFOx138	$\text{HO} + \text{CH}_3\text{OCF}_3 \rightarrow$ products
oFOx139	$\text{HO} + \text{CHF}_2\text{OCHF}_2 \rightarrow$ products
oFOx140	$\text{HO} + \text{CHF}_2\text{OCF}_3 \rightarrow$ products
oFOx141	$\text{HO} + \text{CH}_3\text{OCHFCF}_3 \rightarrow$ products
oFOx142	$\text{HO} + \text{CH}_3\text{OCF}_2\text{CHF}_2 \rightarrow$ products
oFOx143	$\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3 \rightarrow$ products
oFOx144	$\text{HO} + \text{CH}_3\text{OC}_2\text{F}_5 \rightarrow$ products
oFOx145	$\text{HO} + n\text{-C}_3\text{F}_7\text{OCH}_3 \rightarrow$ products
oFOx146	$\text{HO} + i\text{-C}_3\text{F}_7\text{OCH}_3 \rightarrow$ products
oFOx147	$\text{HO} + \text{C}_4\text{F}_9\text{OCH}_3 \rightarrow$ products
oFOx148	$\text{HO} + \text{CH}_3\text{OCH}(\text{CF}_3)_2 \rightarrow$ products
oFOx149	$\text{HO} + \text{CH}_2\text{FOCH}(\text{CF}_3)_2$ (Sevoflurane) \rightarrow products
oFOx150	$\text{HO} + \text{CHF}_2\text{OCHFCF}_3$ (Desflurane) \rightarrow products

Halogenated vinyl ethers

oFOx133	HO + CF ₃ OCF=CF ₂ → products
oFOx134	HO + C ₂ F ₅ OCF=CF ₂ → products

Peroxy radicals


oFOx160	$\text{CF}_3\text{C(O)O}_2 + \text{HO}_2 \rightarrow \text{CF}_3\text{C(O)OOH} + \text{O}_2$ (1)
	$\rightarrow \text{CF}_3\text{C(O)OH} + \text{O}_3$ (2)
	$\rightarrow \text{CF}_3\text{C(O)O} + \text{HO}$ (3)

	Overall
oFOx161	$\text{CF}_3\text{C(O)O}_2 + \text{NO} \rightarrow \text{CF}_3\text{C(O)O} + \text{NO}_2$
oFOx162	$\text{CF}_3\text{CO(O)O}_2 + \text{NO}_2 + \text{M} \rightarrow \text{CF}_3\text{C(O)O}_2\text{NO}_2 + \text{M}$
oFOx163	$\text{CF}_3\text{C(O)O}_2\text{NO}_2 + \text{M} \rightarrow \text{CF}_3\text{C(O)O}_2 + \text{NO}_2 + \text{M}$

PF5	$\text{CHF}_2\text{CHO} + \text{hv} \rightarrow \text{products}$
PF6	$\text{C}_2\text{F}_5\text{CHO} + \text{hv} \rightarrow \text{products}$
PF7	$n\text{-C}_3\text{F}_7\text{CHO} + \text{hv} \rightarrow \text{products}$
PF8	$n\text{-C}_4\text{F}_9\text{CHO} + \text{hv} \rightarrow \text{products}$
PF9	$\text{CF}_3\text{CH}_2\text{CHO} + \text{hv} \rightarrow \text{products}$
PF10	$n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CHO} + \text{hv} \rightarrow \text{products}$

oFOx72: HO + CF₃CH₂CH₃ (HFC-263fb)

Last evaluated: June 2025; Last change in preferred values: June 2009.

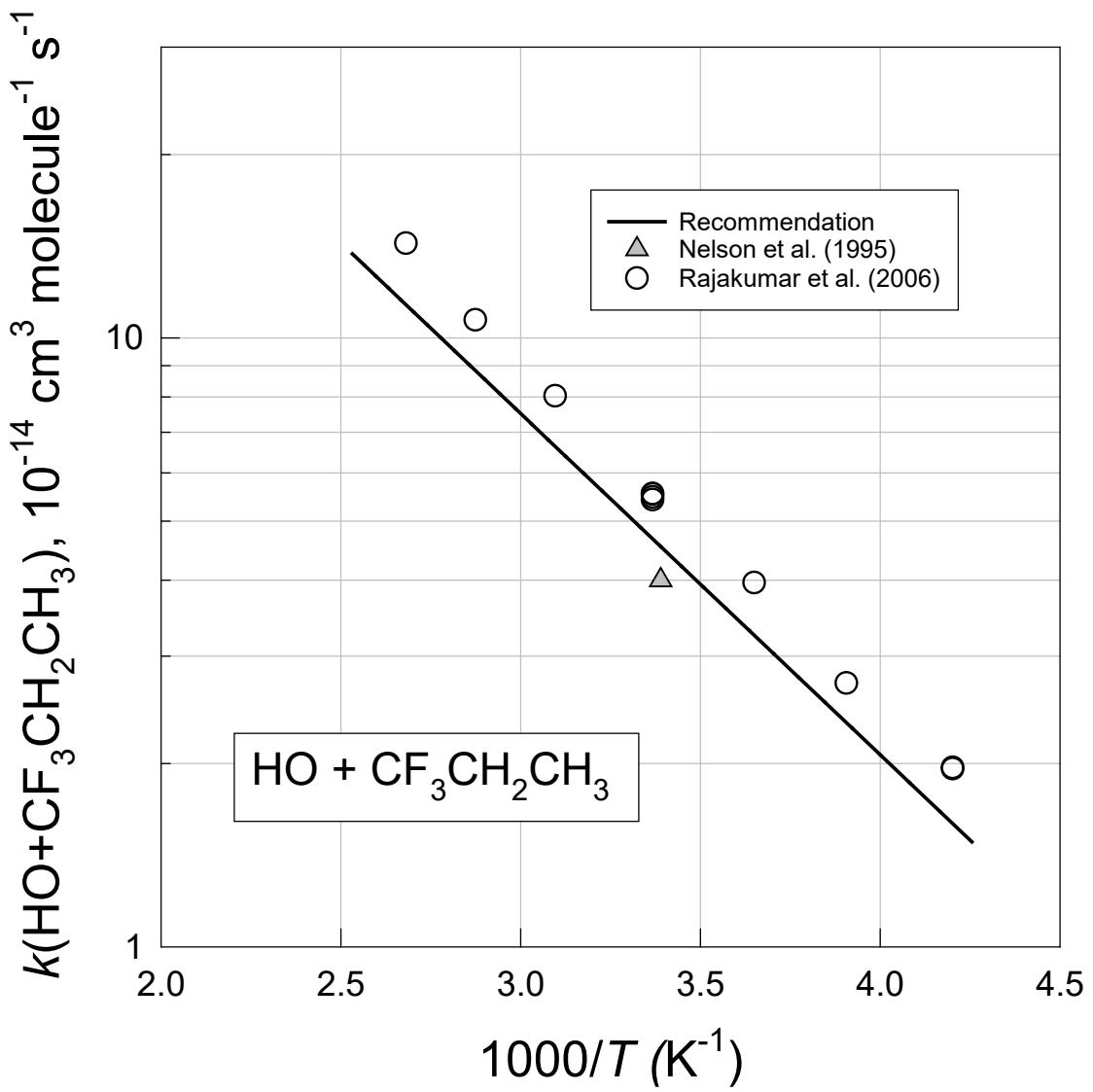
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(4.00 \pm 0.13) \times 10^{-14}$	295	Nelson et al. (1995)	DF-LIF (a)
$4.36 \times 10^{-12} \exp[-(1290 \pm 40)/T]$	238-373	Rajakumar et al. (2006)	PLP-LIF (b)
5.50×10^{-14}	297		

Comments

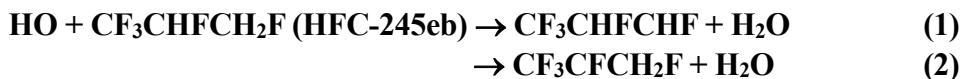
- (a) HO radicals produced via the H + NO₂ reaction. Experiments were performed in 1.1-2.0 Torr (1.5-2.7 mbar) of helium diluent.
- (b) HO radicals produced by 248 nm photolysis of H₂O₂. Experiments were performed in 50-210 Torr (67-280 mbar) of helium diluent. The value given at 297 K is the average of the four determinations reported.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.9×10^{-14}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$3.7 \times 10^{-12} \exp(-1290/T)$	240-370
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	240-370

Comments on Preferred Values

The result from Nelson et al. (1995) lies approximately 25% below that from Rajakumar et al. (2006). Such a difference is within the combined uncertainties from the two studies. Adjusting the rate coefficients reported at 295 K by Nelson et al. (1995) and at 297 K by Rajakumar et al. (2006) using the temperature dependence reported by Rajakumar et al. (2006) and taking an average gives the preferred value of $k = 4.9 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. The temperature dependence is taken from Rajakumar et al. (2006) with the pre-exponential factor adjusted to be consistent with the preferred rate coefficient at 298 K.


References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E., and Magid, H.: J. Phys. Chem., 99, 16301, 1995.
 Rajakumar, B., Portmann, R.W., Burkholder, J. B., and Ravishankara, A. R.: J. Phys. Chem. A, 110, 6724, 2006.

oFOx73: HO + CF₃CHFCH₂F (HFC-245eb)

Last evaluated: June 2025; Last change in preferred values: June 2009.

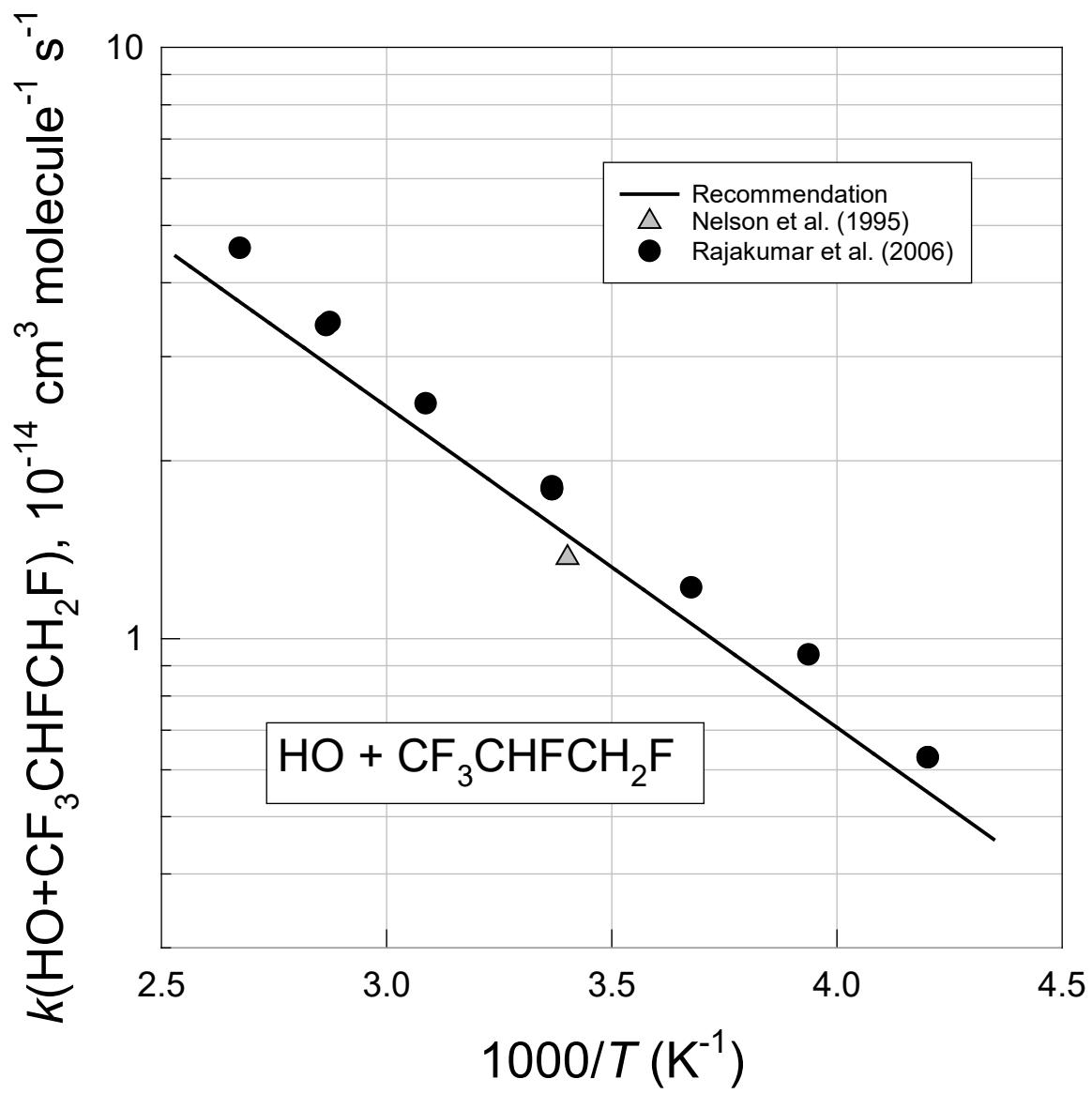
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.37 \pm 0.03) \times 10^{-14}$	294	Nelson et al. (1995)	DF-LIF (a)
$1.23 \times 10^{-12} \exp[-(1250 \pm 40)/T]$	238-374	Rajakumar et al. (2006)	PLP-LIF (b)
1.80×10^{-14}	297		

Comments

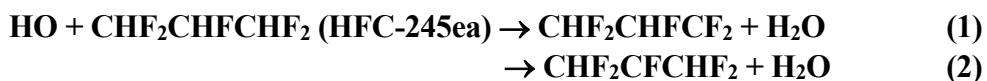
- (a) HO radicals produced via the H + NO₂ reaction. Experiments were performed in 1.4-2.9 Torr (1.9-3.9 mbar) of helium diluent.
- (b) HO radicals produced by 248 nm photolysis of H₂O₂. Experiments were performed in 49-210 Torr (65-280 mbar) of helium diluent. The value given at 297 K is the average of the four determinations reported.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.6×10^{-14}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.1 \times 10^{-12} \exp(-1250/T)$	240-380
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	240-380

Comments on Preferred Values

The rate coefficient reported by Nelson et al. (1995) at 294 K is approximately 25% below that reported by Rajakumar et al. (2006) at 297 K. Adjusting both rate coefficients to values expected at 298 K using the temperature dependence reported by Rajakumar et al. (2006) reduces the difference between the studies to approximately 20%. Such a difference is just within the combined uncertainties from the two studies. The preferred value at 298 K is the average of the values derived from Nelson et al. (1995) and Rajakumar et al. (2006). The temperature dependence is taken from Rajakumar et al. (2006) with the pre-exponential factor adjusted to be consistent with the $k(298 \text{ K})$ value.


References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E. and Magid, H.: J. Phys. Chem., 99, 16301, 1995.
 Rajakumar, B., Portmann, R.W., Burkholder, J. B. and Ravishankara, A. R.: J. Phys. Chem. A, 110, 6724, 2006.

oFOx74: HO + CHF₂CHFCHF₂ (HFC-245ea)

Last evaluated: June 2025; Last change in preferred values: June 2009.

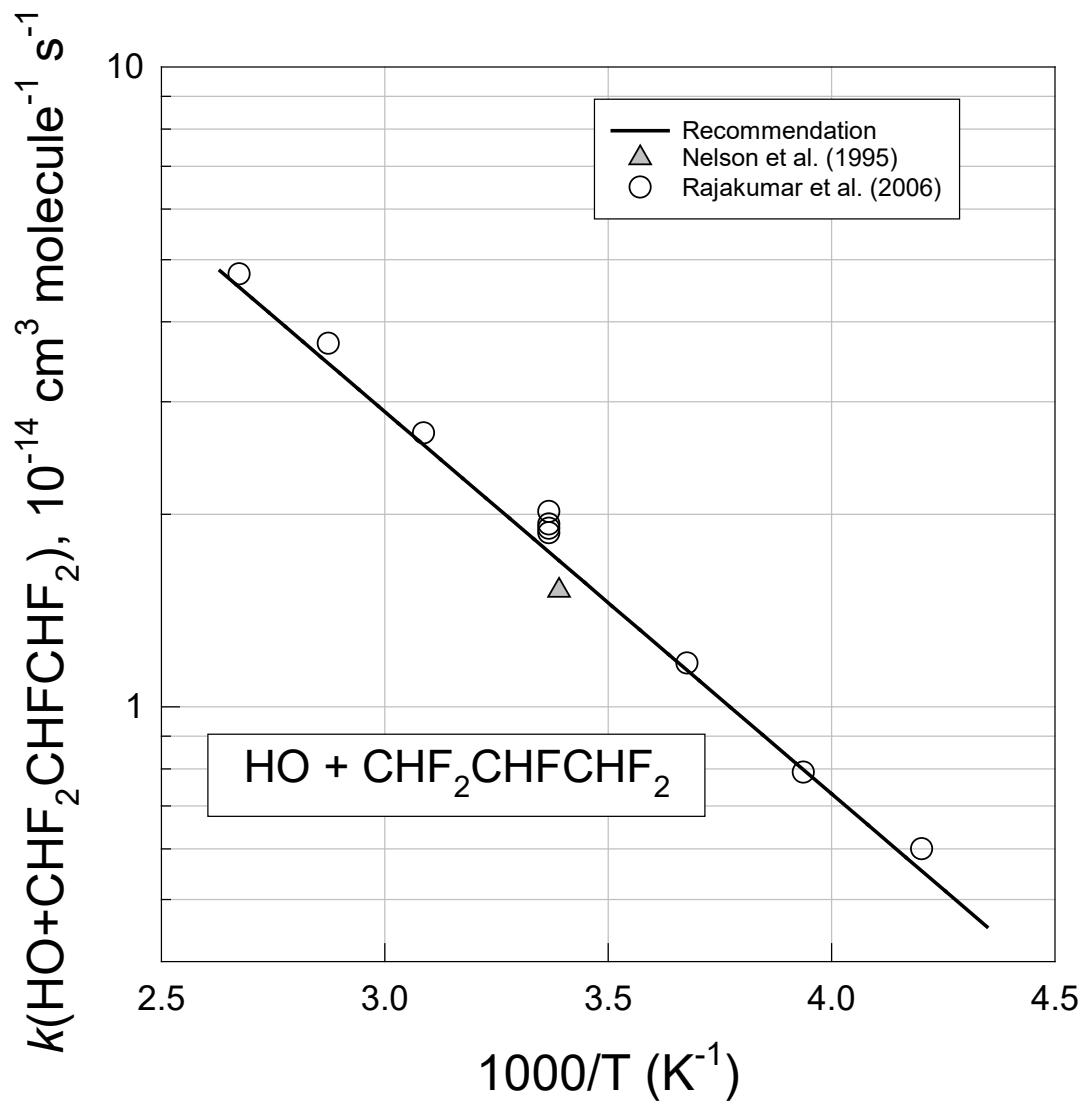
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.52 \pm 0.15) \times 10^{-14}$	294	Nelson et al. (1995)	DF-LIF (a)
$1.91 \times 10^{-12} \exp[-(1375 \pm 100)/T]$	238-374	Rajakumar et al. (2006)	PLP-LIF (b)
1.93×10^{-14}	297		

Comments

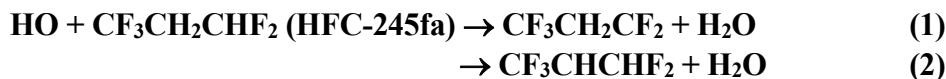
- (a) HO radicals were produced via the H + NO₂ reaction. Experiments were performed in 1.2-2.1 Torr (1.6-2.9 mbar) of helium diluent.
- (b) HO radicals were produced by 248 nm photolysis of H₂O₂. Experiments were performed in 51-205 Torr (68-270 mbar) of helium diluent. The value given at 297 K is the average of the four determinations reported.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.8×10^{-14}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.8 \times 10^{-12} \exp(-1375/T)$	240-380
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	240-380

Comments on Preferred Values

The rate coefficient reported by Nelson et al. (1995) at 294 K is approximately 20% below that reported by Rajakumar et al. (2006) at 297 K. Adjusting both rate coefficients to values expected at 298 K using the temperature dependence reported by Rajakumar et al. (2006) reduces the difference between the studies to approximately 15%. Such a difference is within the likely combined uncertainties from the two studies. The preferred value at 298 K is the average of the values derived from Nelson et al. (1995) and Rajakumar et al. (2006). The temperature dependence is taken from Rajakumar et al. (2006) with the pre-exponential factor adjusted to be consistent with the $k(298 \text{ K})$ value.


References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E., and Magid, H.: J. Phys. Chem., 99, 16301, 1995.
 Rajakumar, B., Portmann, R.W., Burkholder, J. B., and Ravishankara, A. R.: J. Phys. Chem. A, 110, 6724, 2006.

oFOx75: HO + CF₃CH₂CHF₂ (HFC-245fa)

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

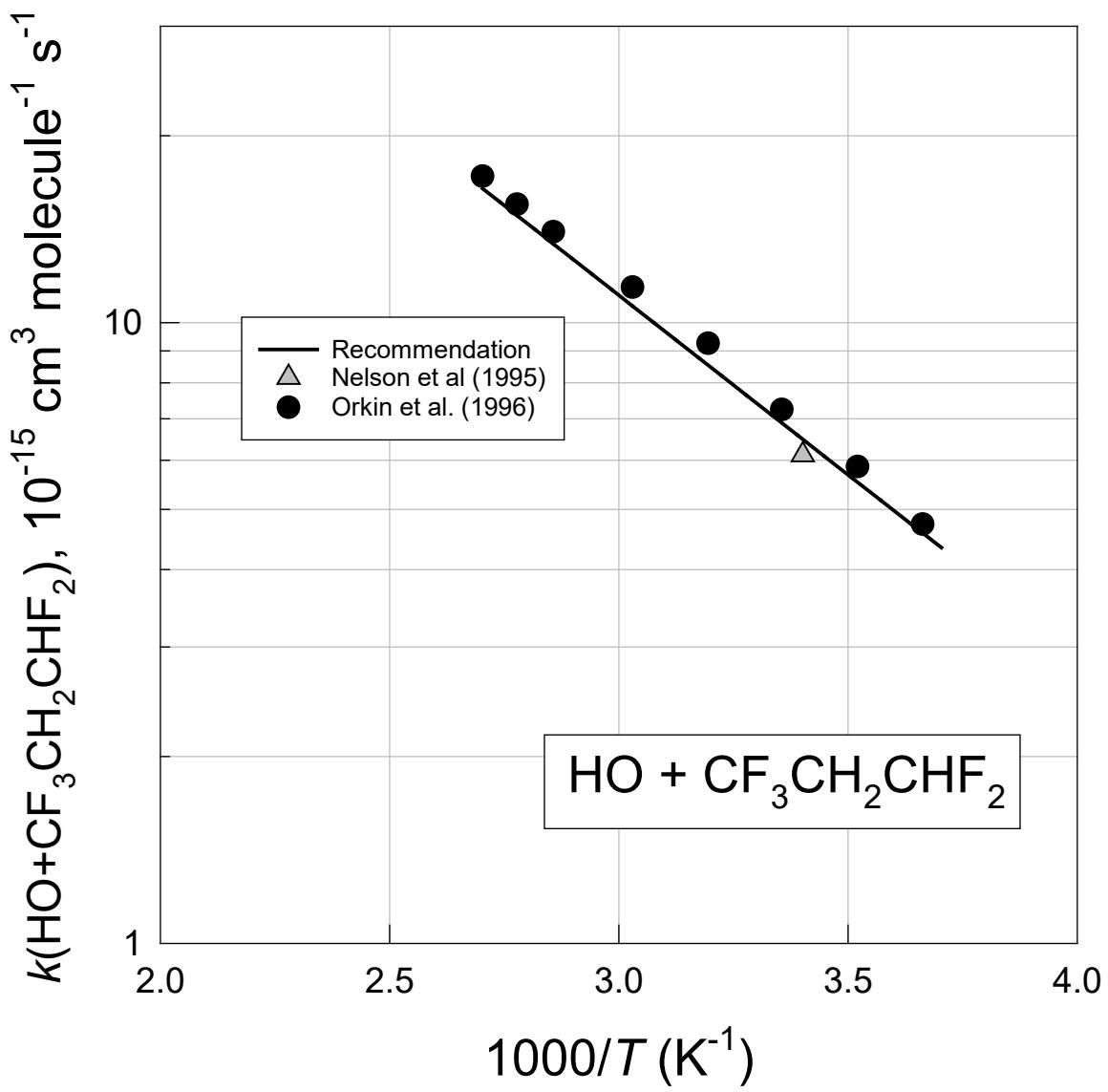
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(6.12 \pm 0.22) \times 10^{-15}$	294	Nelson et al. (1995)	DF-LIF (a)
$6.32 \times 10^{-12} \exp[-(1331 \pm 43)/T]$	273-370	Orkin et al. (1996)	FP-RF (b)
$(7.24 \pm 0.02) \times 10^{-15}$	298		

Comments

(a) HO radicals produced via the H + NO₂ reaction. Experiments were performed in 2.2-3.1 Torr (0.3-0.4 kPa) of helium diluent.

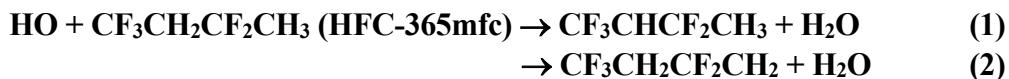
(b) HO radicals were produced from the photolysis of H₂O vapor using a xenon flash lamp. HO radicals were monitored by their resonance fluorescence near 308 nm using microwave discharge resonance lamp. Experiments were performed in 100 Torr (13.33 kPa) of argon diluent.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	6.9×10^{-15}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$6.0 \times 10^{-13} \exp(-1331/T)$	270-370
<i>Reliability</i>		
$\Delta \log k$	± 0.12	298
$\Delta E/R$	± 300	270-370

Comments on Preferred Values

Adjusting the rate coefficient at 294 K reported by Nelson et al. (1995) to the value expected at 298 K using the temperature dependence reported by Orkin et al. (1996) gives $k(298\text{K}) = 6.50 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which is 10% below the $k(298\text{K})$ value reported by Orkin et al. (1996). Such a difference is well within the combined uncertainties from the two studies. The preferred value at 298 K is the average of the values from Nelson et al. (1995) and Orkin et al. (1996). The temperature dependence is taken from Orkin et al. (1996) with the pre-exponential factor adjusted to be consistent with the $k(298\text{K})$ value.


References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E., and Magid, H.: J. Phys. Chem., 99, 16301, 1995.
 Orkin, V. L., Huie, R. E., and Kurylo, M. J.: J. Phys. Chem., 100, 8907, 1996.

oFOx76: HO + CF₃CH₂CF₂CH₃ (HFC-365mfc)

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.68 \times 10^{-12} \exp[-(1585 \pm 80)/T]$	269-370	Mellouki et al. (1995)	PLP-LIF (a)
8.69×10^{-15}	298		
<i>Relative Rate Coefficients</i>			
$1.39 \times 10^{-12} \exp[-1651/T]$	278-323	Barry et al. (1997)	RR (b)
5.46×10^{-15}	298		

Comments

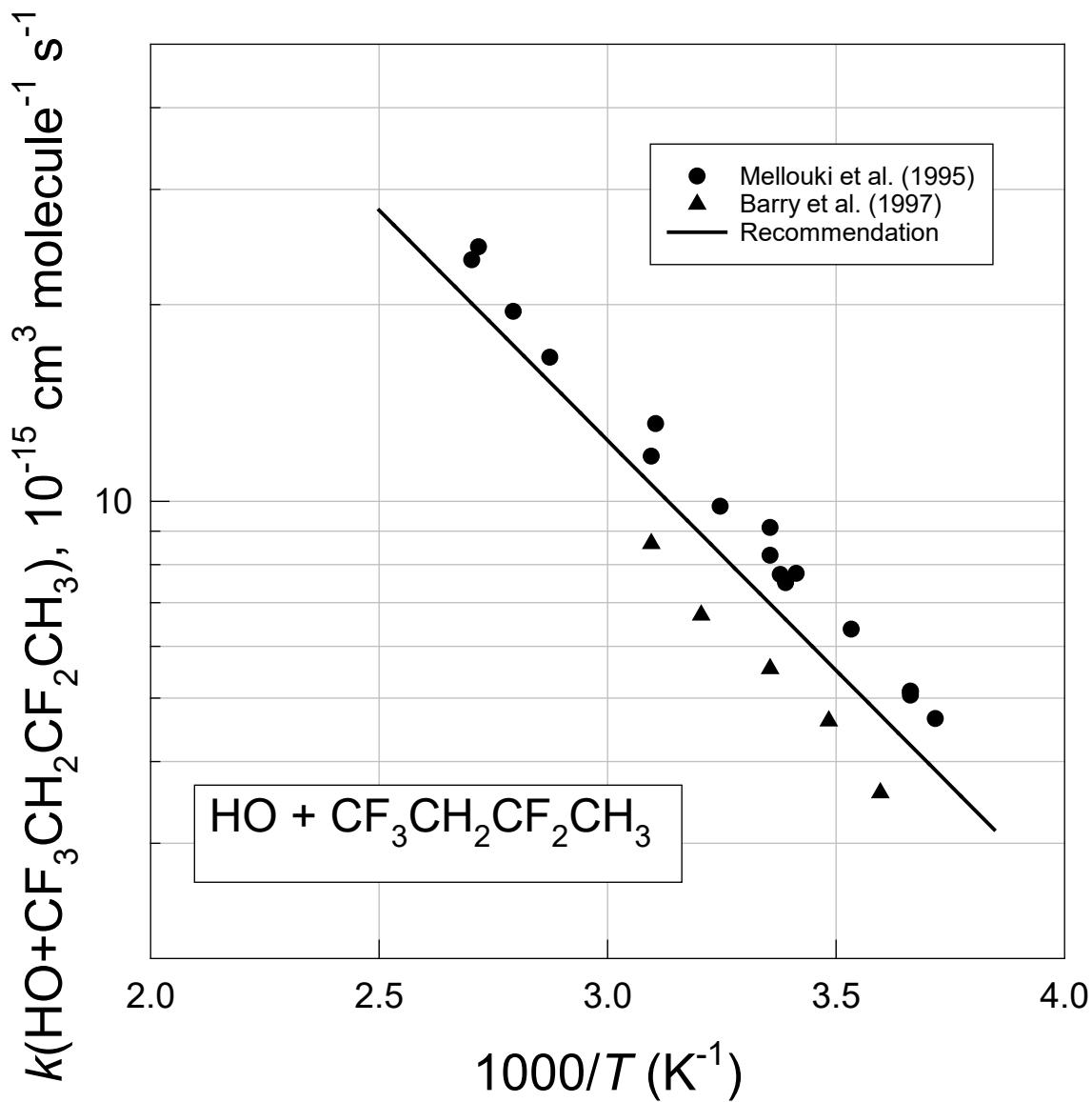
- (a) HO radicals were produced by the 248 nm photolysis of H₂O₂. Experiments were performed in 100 Torr (133 mbar) of helium diluent.
- (b) HO radicals were produced by the 254 nm photolysis of O₃ in the presence of H₂O. Experiments were performed in 1 bar of air diluent. Rate coefficient ratios were placed on an absolute basis using $k(\text{OH} + \text{CH}_3\text{CCl}_3) = 1.2 \times 10^{-12} \exp(-1440/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2008).

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	7.1×10^{-15}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.6 \times 10^{-12} \exp(-1620/T)$	270-380
<i>Reliability</i>		
$\Delta \log k$	0.2	298
$\Delta E/R$	± 200	270-380

Comments on Preferred Values

The rate coefficient at 298 K reported in the absolute rate study by Mellouki et al. (1995) is approximately 60% greater than that measured in the relative rate study by Barry et al. (1997). A possible explanation for this discrepancy is the presence of reactive impurities in the sample used by Mellouki et al. (1995). This explanation should lead to an increasing discrepancy between the two studies with decreasing temperature, but no such trend is evident. The temperature dependencies of the rate coefficients reported in the two studies are in good agreement. There being no obvious reason to prefer either study, we prefer an average of the $k(298\text{K})$ values and temperature dependencies from the two studies with the pre-exponential A factor chosen for consistency with the $k(298\text{K})$. As discussed by Barry et al. (1997) and Inoue et al. (2008), the OH radical initiated atmospheric oxidation of CF₃CH₂CF₂CH₃ is expected to lead to the formation of CF₃CH₂CF₂CHO as the main primary product. Oxidation of CF₃CH₂CF₂CHO will generate CF₃CHO and COF₂ as secondary products. Oxidation of CF₃CHO will produce COF₂.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: *Atmos. Chem. Phys.*, 8, 4141, 2008.

Barry, J., Locke, G., Scollard, D., Sidebottom, H. W., Treacy, J., Clerbaux, C., Colin, R., and Franklin, J.: *Int. J. Chem.*, 29, 607, 1997.

Inoue, Y., Kawasaki, M., Wallington, T. J., and Hurley M. D.: *Chem. Phys. Lett.*, 462, 164, 2008.

Mellouki, A., Téton, S., and Le Bras, G.: *Geophys. Res. Lett.*, 22, 389, 1995.

oFOx77: HO + CF₃CH₂CH₂CF₃ (HFC-356mff)

Last evaluated: June 2025; Last change in preferred values: June 2009.

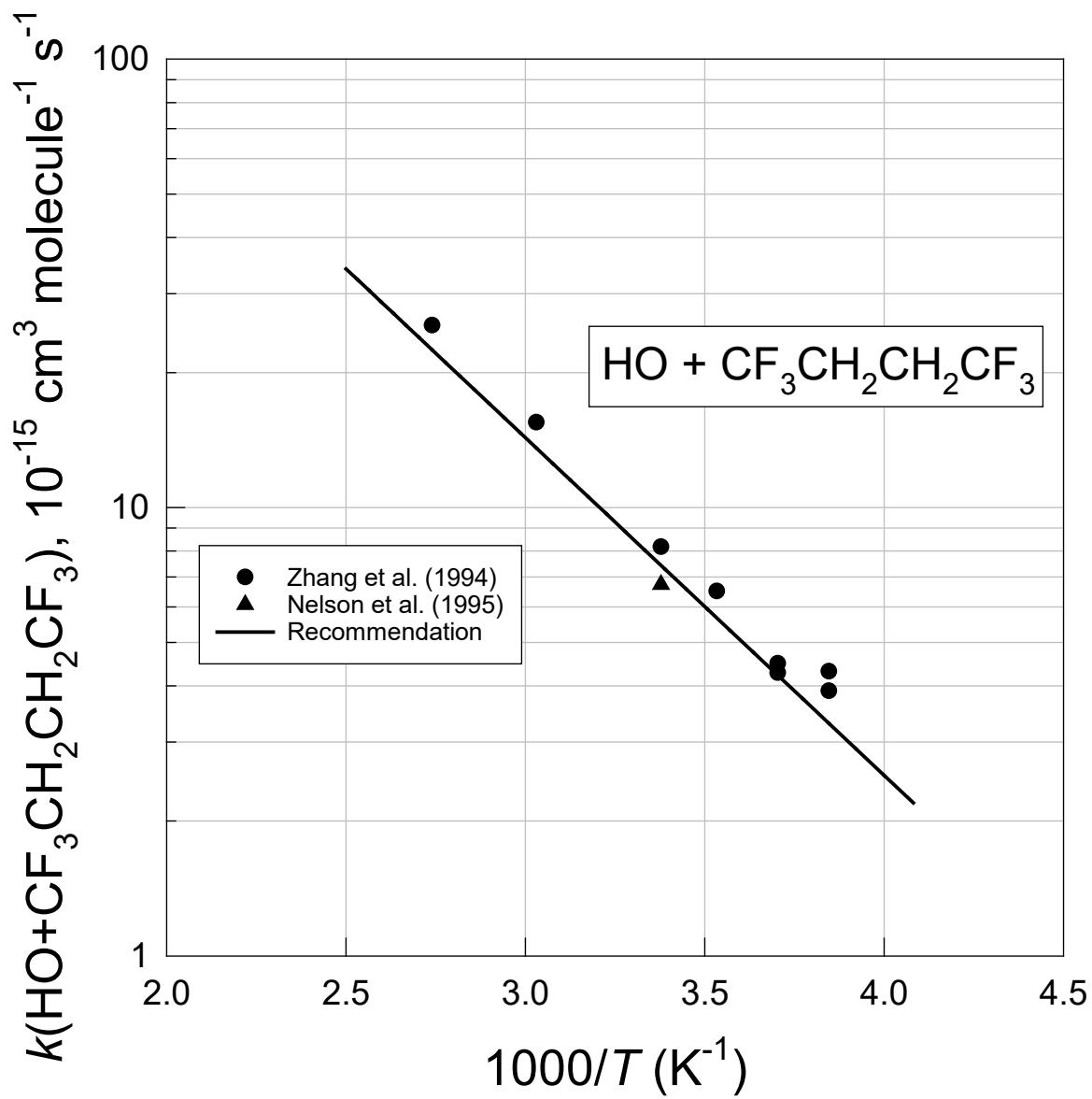
Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$2.94 \times 10^{-12} \exp[-(1734 \pm 87)/T]$	260-365	Zhang et al. (1994)	FP-RF (a)
$(8.17 \pm 1.04) \times 10^{-15}$	296		
$(6.73 \pm 0.14) \times 10^{-15}$	296	Nelson et al. (1995)	DF-LIF (b)

Comments

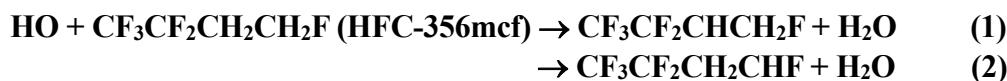
- (a) HO radicals were produced by photolysis of H₂O using a xenon flash lamp at $\lambda > 165$ nm. Experiments were performed in 35 Torr (47 mbar) of argon diluent.
- (b) HO radicals were produced by the reaction of H atoms with NO₂. Experiments were performed in 2.0 Torr (2.7 mbar) of helium diluent.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	7.8×10^{-15}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.6 \times 10^{-12} \exp(-1734/T)$	260-370
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 300	260-370

Comments on Preferred Values

There is good agreement in the rate coefficients reported by Zhang et al. (1994) and Nelson et al. (1995) at 296 K. Adjusting these rate coefficients to 298 K using the temperature dependence reported by Zhang et al. (1994) and taking an average gives our preferred rate coefficient at 298 K. Taking the temperature dependence reported by Zhang et al. (1994) and choosing a pre-exponential factor to be consistent with the rate coefficient at 298 K gives the preferred Arrhenius expression.


References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E., and Magid, H.: J. Phys. Chem., 99, 16301, 1995.
 Zhang, Z., Padmaja, S., Saini, R. D., Huie, R. E., and Kurylo, M. J.: J. Phys. Chem., 98, 4312, 1994.

oFOx78: HO + CF₃CF₂CH₂CH₂F (HFC-356mcf)

Last evaluated: June 2025; Last change in preferred values: June 2009.

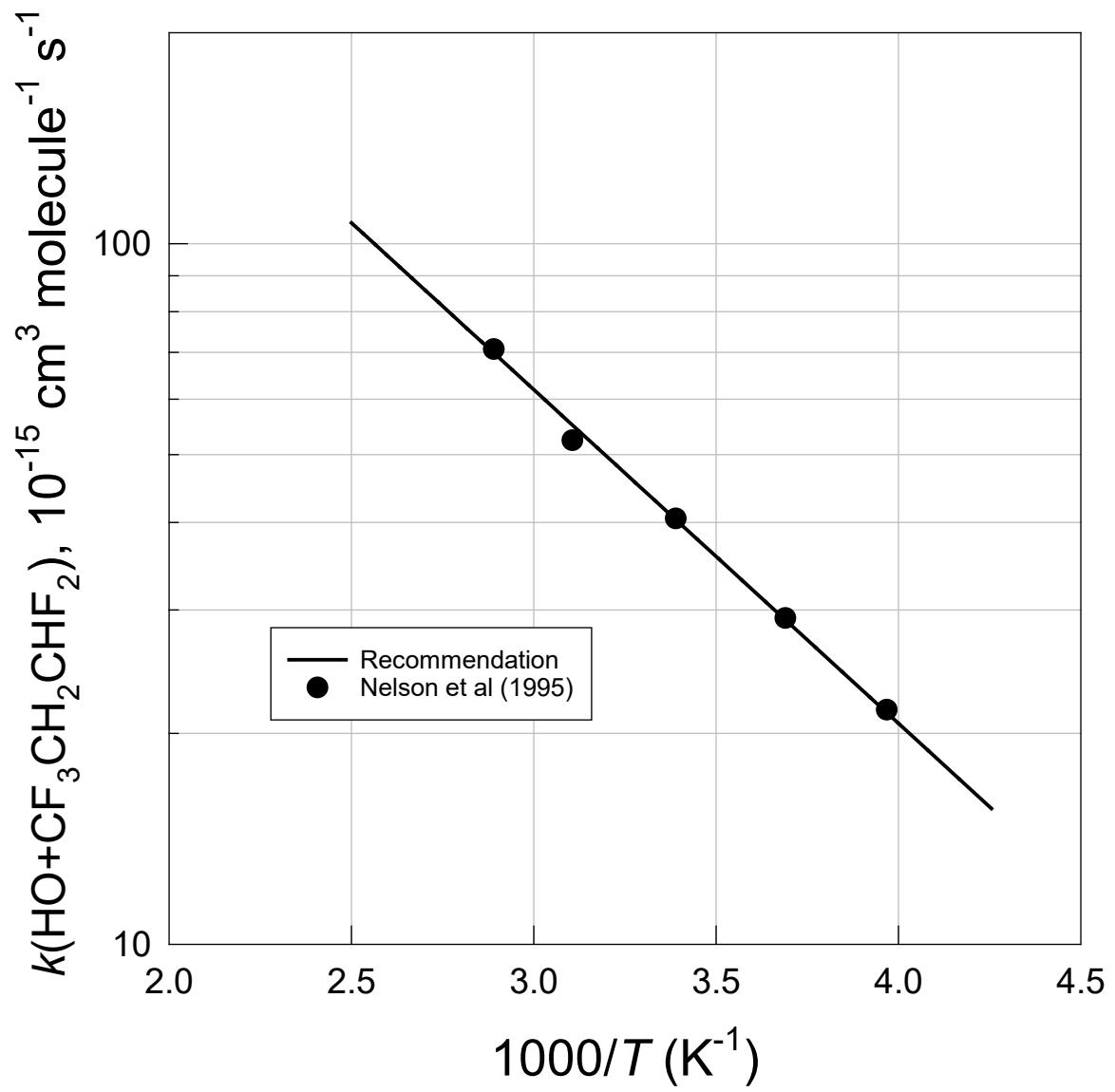
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.74 \times 10^{-12} \exp[-(1108 \pm 120)/T]$	252-366	Nelson et al. (1995)	DF-LIF (a)
$(4.05 \pm 0.23) \times 10^{-14}$	295		

Comments

(a) HO radicals were produced by the reaction of H atoms with NO₂. Experiments were performed in 1.5-3.0 Torr (2-4 mbar) of helium diluent.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.2×10^{-14}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.7 \times 10^{-12} \exp(-1108/T)$	250-370
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	250-370

Comments on Preferred Values

The preferred values are based on the results from the study by Nelson et al. (1995).

References

Nelson Jr., D. D., Zahniser, M. S, Kolb, C. E, and Magid, H.: J. Phys. Chem., 99, 16301, 1995.

oFOx79: HO + CHF₂CF₂CF₂CHF₂ (HFC-338pcc)

Last evaluated: June 2025; Last change in preferred values: June 2009.

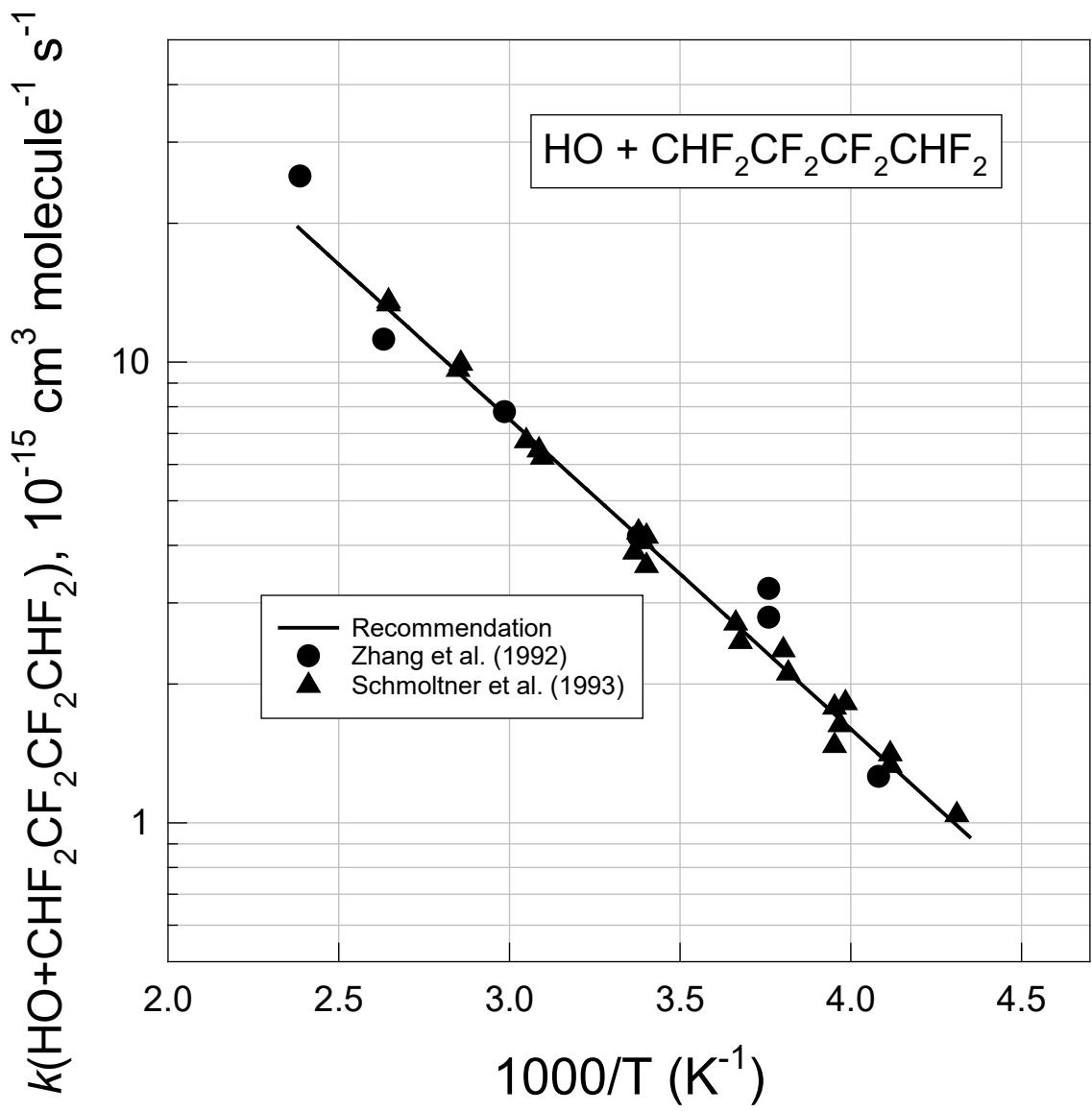
Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$7.8 \times 10^{-13} \exp[-(1510 \pm 260)/T]$	245-419	Zhang et al. (1992)	FP-RF (a)
$(4.18 \pm 0.30) \times 10^{-15}$	296		
$7.71 \times 10^{-13} \exp[-(1550 \pm 60)/T]$	232-378	Schmoltner et al. (1993)	FP/PLP-LIF (b)
$(3.87 \pm 0.27) \times 10^{-15}$	297		

Comments

- (a) HO radicals were produced by the flash photolysis ($\lambda \geq 165$ nm) of H₂O in 35 Torr (47 mbar) of argon diluent.
- (b) HO radicals were produced by the flash photolysis (185 nm $\geq \lambda \geq 165$ nm) of H₂O and pulsed laser photolysis ($\lambda = 355$ nm) of HONO.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.3×10^{-15}	298
	$7.82 \times 10^{-13} \exp(-1548/T)$	230-420
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	± 200	230-420

Comments on Preferred Values

The results of the two studies are in good agreement. A fit of the Arrhenius expression to the combined data set from the two studies gives $k(\text{OH} + \text{CHF}_2\text{CF}_2\text{CF}_2\text{CHF}_2) = 7.82 \times 10^{-13} \exp(-1548/T)$ cm³ molecule⁻¹ s⁻¹. This expression gives $k(\text{OH} + \text{CHF}_2\text{CF}_2\text{CF}_2\text{CHF}_2) = 4.34 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 298 K.

References

Zhang, Z., Saini, R. D., Kurylo, M. J., and Huie, R. E.: Chem. Phys. Lett., 200, 230, 1992.
 Schmoltner, A. M., Talukdar, R. K., Warren, R. F., Mellouki, A., Goldfarb, L., Gierczak, T., McKeen, S. A., and Ravishankara, A. R.: J. Phys. Chem., 97, 8976, 1993.

oFOx80: HO + CF₃CH₂CF₂CH₂CF₃ (HFC-458mfcf)

Last evaluated: June 2025; Last change in preferred values: June 2009.

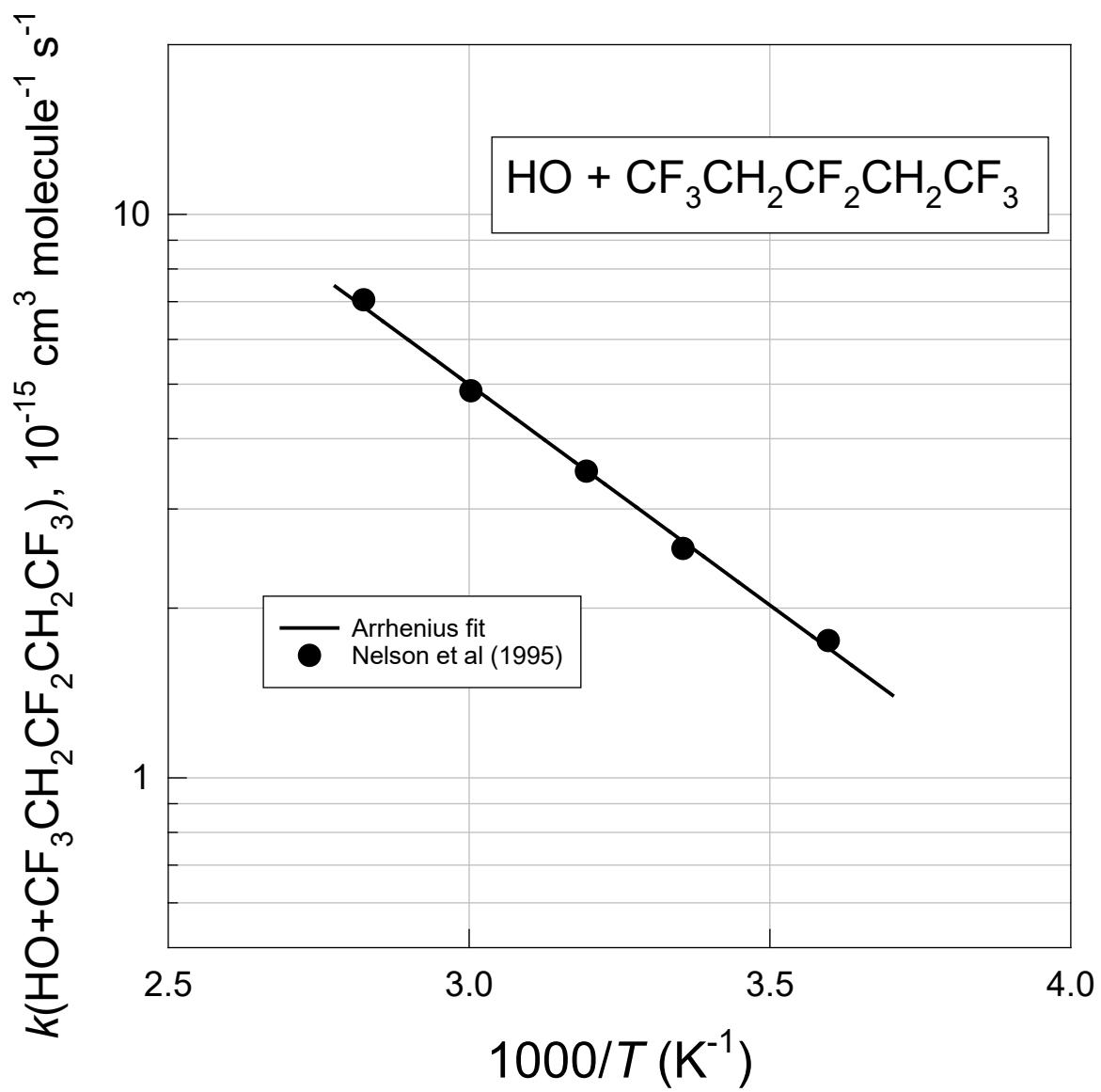
Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.23 \times 10^{-12} \exp[-1833/T]$	278-354	Nelson et al. (1995)	FP-RF (a)
$(2.55 \pm 0.15) \times 10^{-15}$	298		

Comments

(a) HO radicals were produced by the reaction of H atoms with NO₂. Experiments were performed in 0.8-6.4 Torr (1.1-8.5 mbar) of helium diluent.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.6×10^{-15}	298
	$1.23 \times 10^{-12} \exp(-1833/T)$	270-360
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	270-360

Comments on Preferred Values

The Arrhenius expression from Nelson et al. (1995), $k(\text{HO} + \text{CF}_3\text{CH}_2\text{CF}_2\text{CH}_2\text{CF}_3) = 1.23 \times 10^{-12} \exp(-1833/T)$ cm³ molecule⁻¹ s⁻¹ is adopted. This expression gives $k(\text{HO} + \text{CF}_3\text{CH}_2\text{CF}_2\text{CH}_2\text{CF}_3) = 2.6 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 298 K.

References

Nelson Jr., D. D., Zahniser, M. S., Kolb, C. E., and Magid, H.: J. Phys. Chem., 99 16301, 1995.

oFOx81: HO + CF₃CHFCHFCF₂CF₃ (HFC-43-10mee)

Last evaluated: June 2025; Last change in preferred values: June 2009.

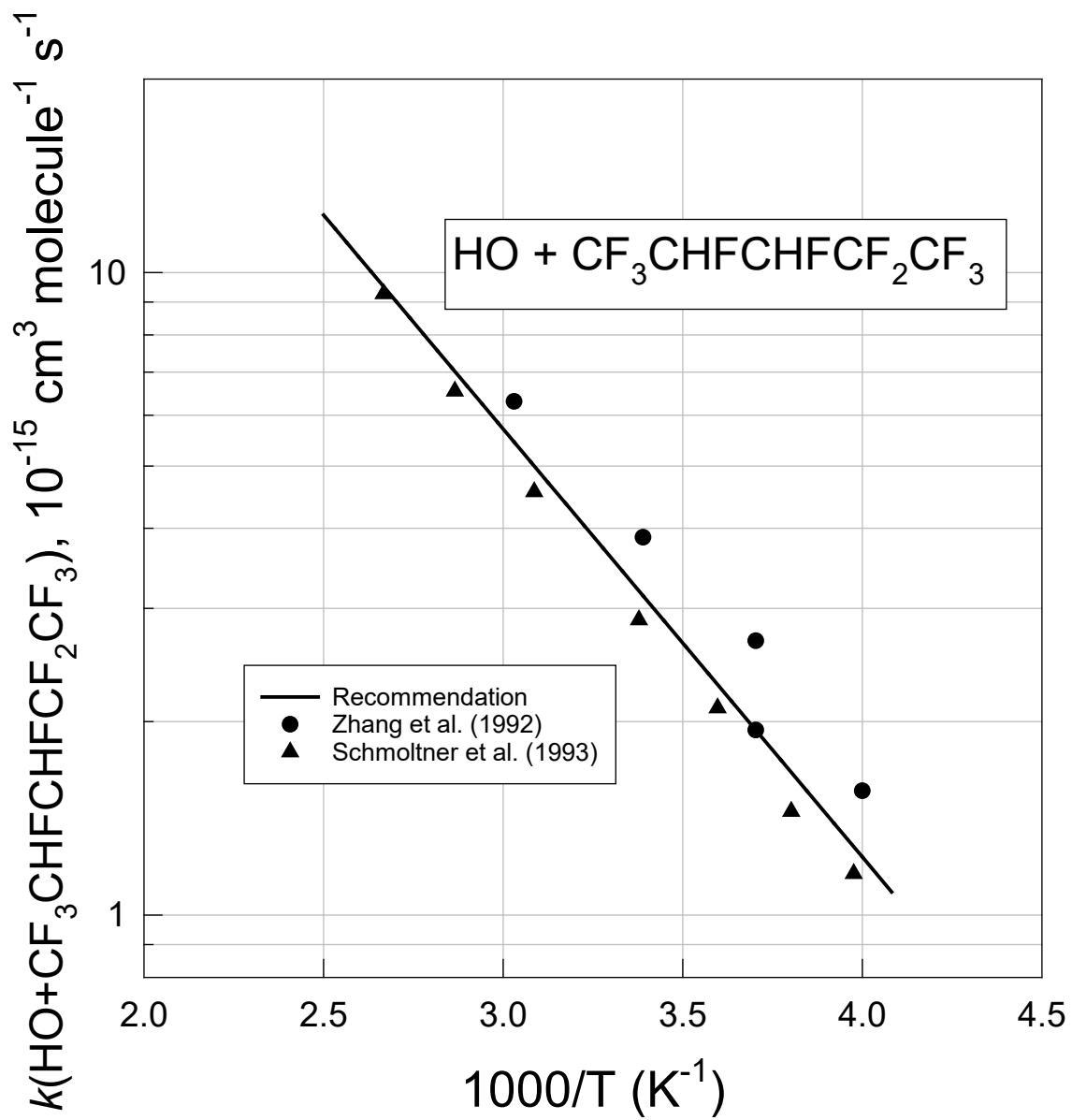
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$4.21 \times 10^{-13} \exp[-(1400 \pm 180)/T]$	250-400	Zhang et al. (1992)	FP-RF (a)
$(3.87 \pm 0.38) \times 10^{-15}$	295		
$6.46 \times 10^{-13} \exp[-(1600 \pm 50)/T]$	251.5-375	Schmoltner et al. (1993)	FP-LIF (b)
$(2.88 \pm 0.20) \times 10^{-15}$	296		

Comments

- (a) HO radicals were produced by the flash photolysis ($\lambda \geq 165 \text{ nm}$) of H₂O in 35 Torr (47 mbar) of argon diluent.
- (b) HO radicals were produced by the flash photolysis ($185 \text{ nm} \geq \lambda \geq 165 \text{ nm}$) of H₂O.

Preferred Values


Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.3×10^{-15}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$5.68 \times 10^{-13} \exp(-1534/T)$	240-400
<i>Reliability</i>		
$\Delta \log k$	0.12	298
$\Delta E/R$	± 300	240-400

Comments on Preferred Values

The rate coefficients measured by Schmoltner et al. (1993) are approximately 20% lower than, but consistent with the experimental uncertainties with, those reported by Zhang et al. (1992). The temperature dependence of the rate coefficients reported by Schmoltner et al. (1993) and Zhang et al. (1992) are in good agreement. There being no obvious reason to prefer either study we have fit the Arrhenius expression to the combined data set from Zhang et al. (1992) and Schmoltner et al. (1993) to give the preferred expression.

References

Zhang, Z., Saini, R.D., Kurylo, M. J., and Huie, R. E.: Chem. Phys. Lett., 200, 230, 1992.
 Schmoltner, A. M., Talukdar, R. K., Warren, R. F., Mellouki, A., Goldfarb, L., Gierczak, T., McKeen, S. A., and Ravishankara, A. R.: J. Phys. Chem., 97, 8976, 1993.

oFOx82: HO + CF₃CF₂CH₂CH₂CF₂CF₃ (HFC-55-10mcff)

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(7.87±0.38) × 10 ⁻¹⁵	295	Nelson et al. (1995)	DF-LIF (a)

Comments

(a) HO radicals were produced by the reaction of H atoms with NO₂. Experiments were performed in 1.6-2.7 Torr (2.1-3.6 mbar) of helium diluent.

Preferred Values

Parameter	Value	<i>T</i> /K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	8.3 × 10 ⁻¹⁵	298
<i>Reliability</i>		
Δ log <i>k</i>	0.2	298

Comments on Preferred Values


Nelson et al. measured *k*(HO+CF₃CF₂CH₂CH₂CF₂CF₃) = (7.87 ± 0.38) × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 295 K. Using an activation energy estimated to be 3.2 kcal mol⁻¹ (13.4 kJ mol⁻¹), Nelson et al. derived a value of *k*(HO+CF₃CF₂CH₂CH₂CF₂CF₃) = (8.3 ± 0.9) × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ at 298 K which is our preferred value.

References

Nelson Jr., D. D., Zahniser, M. S, Kolb, C. E, and Magid, H.: J. Phys. Chem., 99, 16301, 1995.

oFOx83: HO + CHF₂(CF₂)₄CF₃ (HFC-52-13p)

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$7.36 \times 10^{-12} \exp[-(1820 \pm 60)/T]$	250-430	Chen et al. (2004)	FP-LIF/ PLP-LIF (a)
$(1.69 \pm 0.07) \times 10^{-15}$	298		FP-LIF (b)
$(1.72 \pm 0.07) \times 10^{-15}$	298		PLP-LIF (c)
<i>Relative Rate Coefficients</i>			
$4.87 \times 10^{-13} \exp[-1661/T]$	253-328	Chen et al. (2004)	RR (d)
1.87×10^{-15}	298		
$2.61 \times 10^{-13} \exp[-1422/T]$	253-328	Chen et al. (2004)	RR (e)
2.28×10^{-15}	298		

Comments

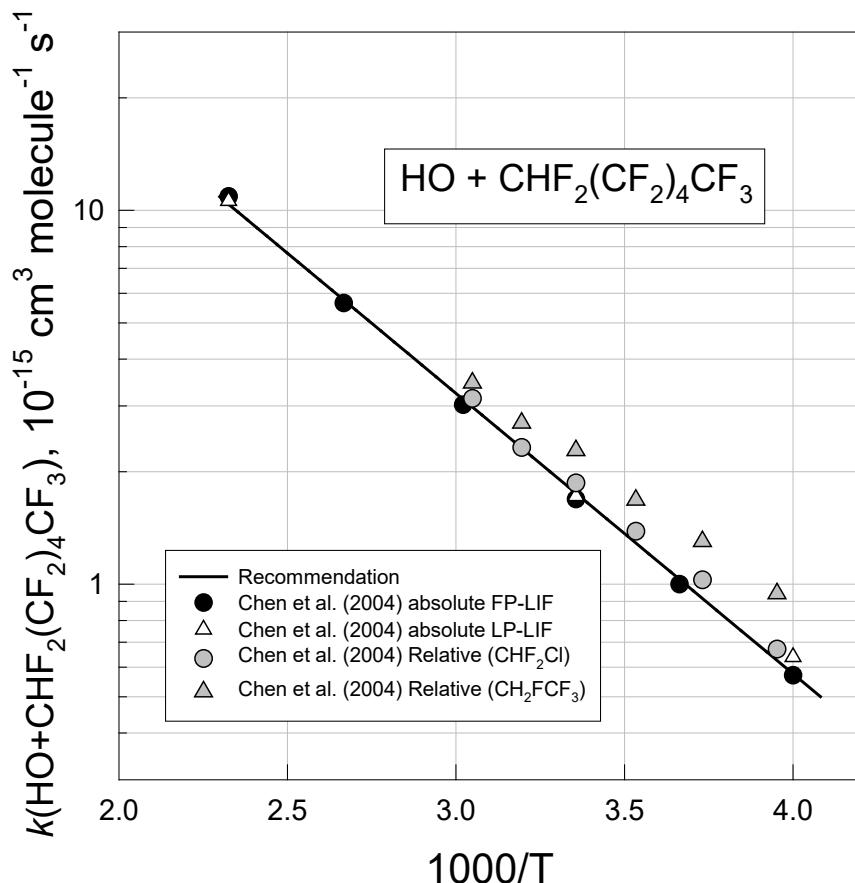
- (a) Experiments were conducted using two different absolute rate methods. The sample of CHF₂(CF₂)₄CF₃ was determined to be 99.998% pure. In the FP-LIF experiments the HO radicals were produced by the photolysis of H₂O using a Xe flash lamp and experiments were performed in 20-100 Torr (27-133 mbar) of argon bath gas. In the PLP-LIF experiments the HO radicals were produced by the 193 nm photolysis of N₂O in the presence of H₂O. Experiments were performed in 20-100 Torr (27-133 mbar) of either argon or helium bath gas. The Arrhenius expression is that given by Chen et al. (2004) from a fit to the absolute rate data.
- (b) Result obtained using FP-LIF technique at 298 K in 40-100 Torr (53-133 mbar) total pressure of argon bath gas.
- (c) Result obtained using PLP-LIF technique at 298 K in 40-100 Torr (53-133 mbar) total pressure of argon or helium bath gas.
- (d) Relative rate method with HO radicals produced by the 254 nm photolysis of O₃ in the presence of H₂O vapor in 200-500 Torr (267-665 mbar) of helium diluent. CHF₂Cl was used as a reference compound. The rate coefficient ratios $k(\text{HO} + \text{CHF}_2(\text{CF}_2)_4\text{CF}_3)/k(\text{HO} + \text{CHF}_2\text{Cl})$ were placed on an absolute basis using $k(\text{HO} + \text{CHF}_2\text{Cl}) = 7.9 \times 10^{-13} \exp(-1530/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2008).
- (e) Relative rate method with HO radicals produced by the 254 nm photolysis of O₃ in the presence of H₂O vapor in 200-500 Torr (267-665 mbar) of helium diluent. CH₂FCF₃ was used as a reference compound. The rate coefficient ratios $k(\text{HO} + \text{CHF}_2(\text{CF}_2)_4\text{CF}_3)/k(\text{HO} + \text{CH}_2\text{FCF}_3)$ were placed on an absolute basis using $k(\text{HO} + \text{CH}_2\text{FCF}_3) = 4.9 \times 10^{-13} \exp(-1395/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2008).

Preferred Values

Parameter	Value	<i>T</i> /K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.8×10^{-15}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$5.76 \times 10^{-13} \exp(-1726/T)$	250-430

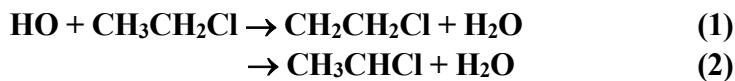
Reliability

$\Delta \log k$	0.10	298
$\Delta E/R$	± 300	250-430


Comments on Preferred Values

The results obtained using two absolute rate methods by Chen et al. (2004) are in good agreement. An Arrhenius fit to the absolute rate data reported by Chen et al. (2004) gives $k(\text{HO} + \text{CHF}_2(\text{CF}_2)_4\text{CF}_3) = 5.76 \times 10^{-13} \exp(-1726/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which is preferred. The relative rate experiments using CHF_2Cl reference are in excellent agreement with the results from the absolute rate study. The relative rate experiments using CH_2FCF_3 reference lie somewhat above but are consistent within the experimental uncertainties with the preferred values.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chen, L., Tokuhashi, K., Kutsuna, S., and Sekiya, A.: Int. J. Chem. Kinet., 36, 26, 2004.

oClOx86: HO + CH₃CH₂Cl

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

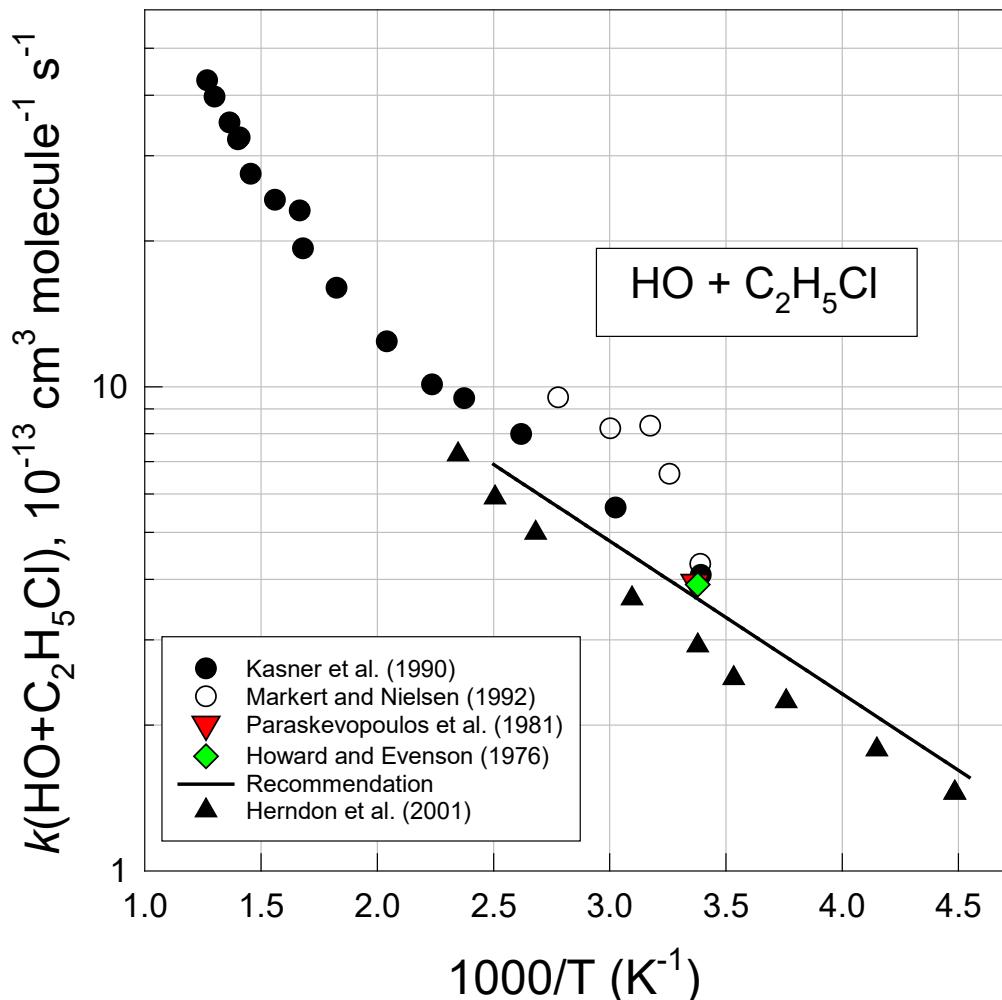
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(3.9 \pm 0.7) \times 10^{-13}$	296	Howard and Evenson (1976)	DF-LMR (a)
$(3.94 \pm 0.53) \times 10^{-13}$	297	Paraskevopoulos et al. (1981)	FP-RA (b)
$2.96 \times 10^{-13} (T/300)^{2.59} \exp[-(28 \pm 75/T)]$	295-789	Kasner et al. (1990)	FP-LIF (c)
$2.4 \times 10^{-11} \exp(-1082/T)$	295-360	Markert and Nielsen (1992)	PR-RA (d)
$(4.3 \pm 0.5) \times 10^{-13}$	295		
$1.5 \times 10^{-13} T^{0.5} \exp(-637/T)$	223-426	Herndon et al. (2001)	PLP-LIF (e)
$(2.92 \pm 0.12) \times 10^{-13}$	296		

Comments

- (a) HO radicals were generated by the reaction of H atoms with NO₂ in 0.1-1.0 kPa (1-10 mbar) of helium.
- (b) HO radicals produced by the flash photolysis of H₂O ($\lambda \geq 165$ nm) in 20-30 Torr (27-40 mbar) of helium.
- (c) HO radicals were produced by the 193 nm (ArF excimer laser) photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 1 bar of helium.
- (d) HO radicals were produced by the pulsed radiolysis of argon (1 bar) containing 15 mbar of H₂O.
- (e) HO radicals were produced by either the photolysis of HONO at 355 nm (third harmonic Nd:YAG laser) or the photolysis of H₂O₂ at 248 nm (KrF excimer laser) in approximately 100 Torr (133 mbar) of helium.

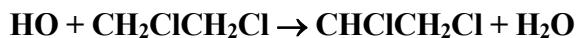
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.7×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$4.25 \times 10^{-12} \exp(-727/T)$	220-400
<i>Reliability</i>		
$\Delta \log k$	0.1	298
$\Delta E/R$	± 200	220-400


Comments on Preferred Values

The room temperature rate coefficients reported by Howard and Evenson (1976), Paraskevopoulos et al. (1981), Kasner et al. (1990), and Markert and Nielsen (1992) are in excellent agreement. However, there is disagreement between the temperature dependences reported by Kasner et al. (1990) and Markert and Nielsen (1992). The data of Markert and Nielsen (1992) are more scattered than those from Kasner et al. (1990). The rate coefficients reported by Herndon et al. (2001) lie approximately 20-30% below those from the other studies. Herdon et al. (2001) argue that the

presence of reactive impurities and/or complications caused by photolysis or radiolysis of the $\text{C}_2\text{H}_5\text{Cl}$ sample may have led to overestimation of $k(\text{OH} + \text{C}_2\text{H}_5\text{Cl})$ in previous studies. However, the discharge flow experiments by Howard and Evenson (1976) would not suffer from photolysis or radiolysis of the $\text{C}_2\text{H}_5\text{Cl}$ sample. Also, the impact of an unsaturated reactive impurity such as ethene or isobutene would be reduced at the low pressures used. Averaging the results obtained by Howard and Evenson (1976), Paraskevopoulos et al. (1981), Kasner et al. (1990), and Herndon et al. (2001) gives our preferred value of $k(\text{HO} + \text{C}_2\text{H}_5\text{Cl}) = 3.71 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. Fitting the three parameter equation $k = CT^2 \exp(-D/T)$ to the data from Herndon et al. (2001) gives $k = 5.19 \times 10^{-18} \text{ T}^2 \exp(-131/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which when centered at 298 K with $A = C e^2 T^2$ and $B = D + 2T$ gives $k = 3.41 \times 10^{-12} \exp(-727/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Adjusting the A factor to match the 298 K preferred value of $k(\text{HO} + \text{C}_2\text{H}_5\text{Cl}) = 3.71 \times 10^{-13}$ gives our preferred Arrhenius expression of $k = 4.25 \times 10^{-12} \exp(-727/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.


References

Herndon, S. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: *Phys. Chem. Chem. Phys.*, 3 4529, 2001.
 Howard, C. J., and Evenson, K. M.: *J. Chem. Phys.*, 64, 4303, 1976.
 Kasner, J. H., Taylor, P. H., and Dellinger, B.: *J. Phys. Chem.*, 94, 3250, 1990.
 Markert, F., and Nielsen, O. J.: *Chem. Phys. Lett.*, 194, 123, 1992.
 Paraskevopoulos, G., Singleton, D. L., and Irwin, R. S.: *J. Phys. Chem.*, 85, 561, 1981.

oClOx87: HO + CH₂ClCH₂Cl

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data (k)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.2 \pm 0.5) \times 10^{-13}$	296	Howard and Evenson (1976)	DF-LMR (a)
$4.08 \times 10^{-12} (T/300)^{1.0} \exp[-(825 \pm 88/T)]$	292-775	Taylor et al. (1991)	PLP-LIF (b)
$(2.48 \pm 0.38) \times 10^{-13}$	292		
$1.05 \times 10^{-11} \exp[-(1141 \pm 107)/T]$	292-363	Qiu et al. (1992)	DF-RF (c)
2.14×10^{-13}	295		
<i>Relative Rate Coefficients</i>			
$(2.50 \pm 0.54) \times 10^{-13}$	297	Arnts et al. (1989)	RR (d)

Comments

- (a) HO radicals were generated by the reaction of H atoms with NO₂ in 0.1-1.0 kPa (0.7-7 Torr) of helium diluent.
- (b) HO radicals were produced by the 193 nm (ArF eximer laser) photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 730-750 Torr (973-1000 mbar) of helium diluent.
- (c) HO radicals were produced by the reaction of F atoms with H₂O in 2-3 Torr (2.7-4.0 mbar) of argon diluent gas.
- (d) The rate coefficient ratio $k(\text{HO}+\text{CH}_2\text{ClCH}_2\text{Cl})/k(\text{HO}+\text{C}_2\text{H}_6) = 1.02 \pm 0.22$ was placed on an absolute basis using $k(\text{HO}+\text{C}_2\text{H}_6) = 1.49 \times 10^{-17} T^2 \exp(-499/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006).

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.4×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$8.57 \times 10^{-12} \exp(-1070/T)$	290-360
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	± 200	290-360

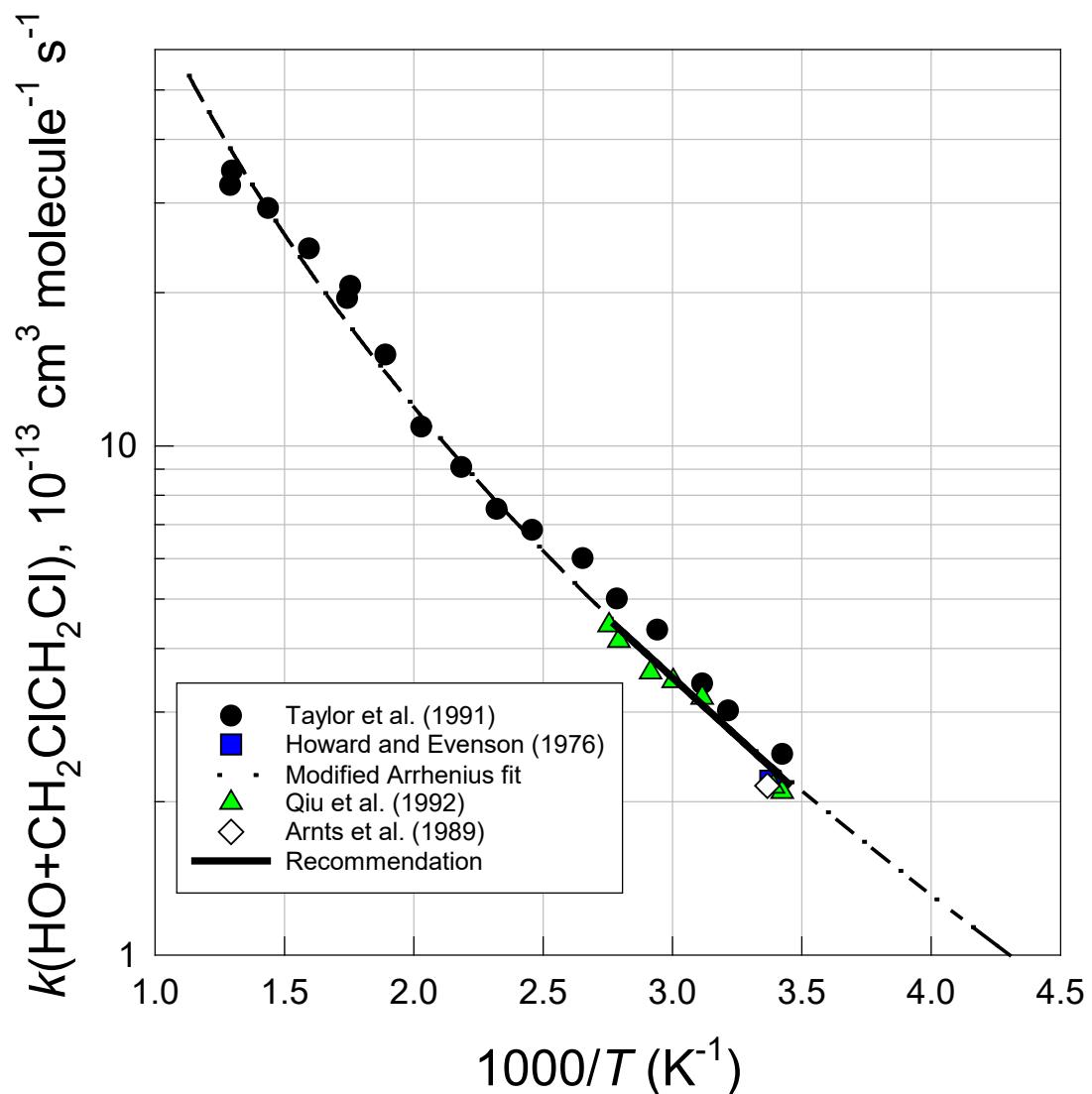
Comments on Preferred Values

The rate coefficients of Howard and Evenson (1976), Arnts et al. (1989), Taylor et al. (1991), and Qiu et al. (1992) are in good agreement. Adjusting the rate coefficients reported by Howard and Evenson (1976), Taylor et al. (1991), and Qiu et al. (1992) at 292 – 296 K using the temperature dependence reported by Qiu et al. (1992) and taking an average give the preferred value of 2.4×10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K. Fitting the three-parameter equation $k = CT^2 \exp(-D/T)$ to the data from Howard and Evenson (1976), Arnts et al. (1989), Taylor et al. (1991), and Qiu et al. (1992) and adjusting the C factor to reproduce the preferred value at 298 K gives $k = 1.06 \times 10^{-17} T^2 \exp(-410/T)$ cm³ molecule⁻¹ s⁻¹. Centering this expression at 330 K with A = C e² T² and B = D + 2T gives $k = 8.57$

$$\times 10^{-12} \exp(-1070/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.$$

References

Arnts, R. R., Seila, R. L., and Bufalini, J. J.: J. Air Pollut. Control Assoc., 39, 453, 1989.


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Herndon, S. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Phys. Chem. Chem. Phys., 3, 4529, 2001.

Howard, C. J., and Evenson, K. M.: J. Chem. Phys., 64, 4303, 1976.

Qiu, L. X., Shi, S. H., Xing, S. B., and Chen, X. G.: J. Phys. Chem., 96, 685, 1992.

Taylor, P. H., McCarron, S., and Dellinger, B.: Chem. Phys. Lett., 177, 27, 1991.

oClOx88: HO + CH₃CHCl₂

Last evaluated: June 2025; Last change in preferred values: June 2009.

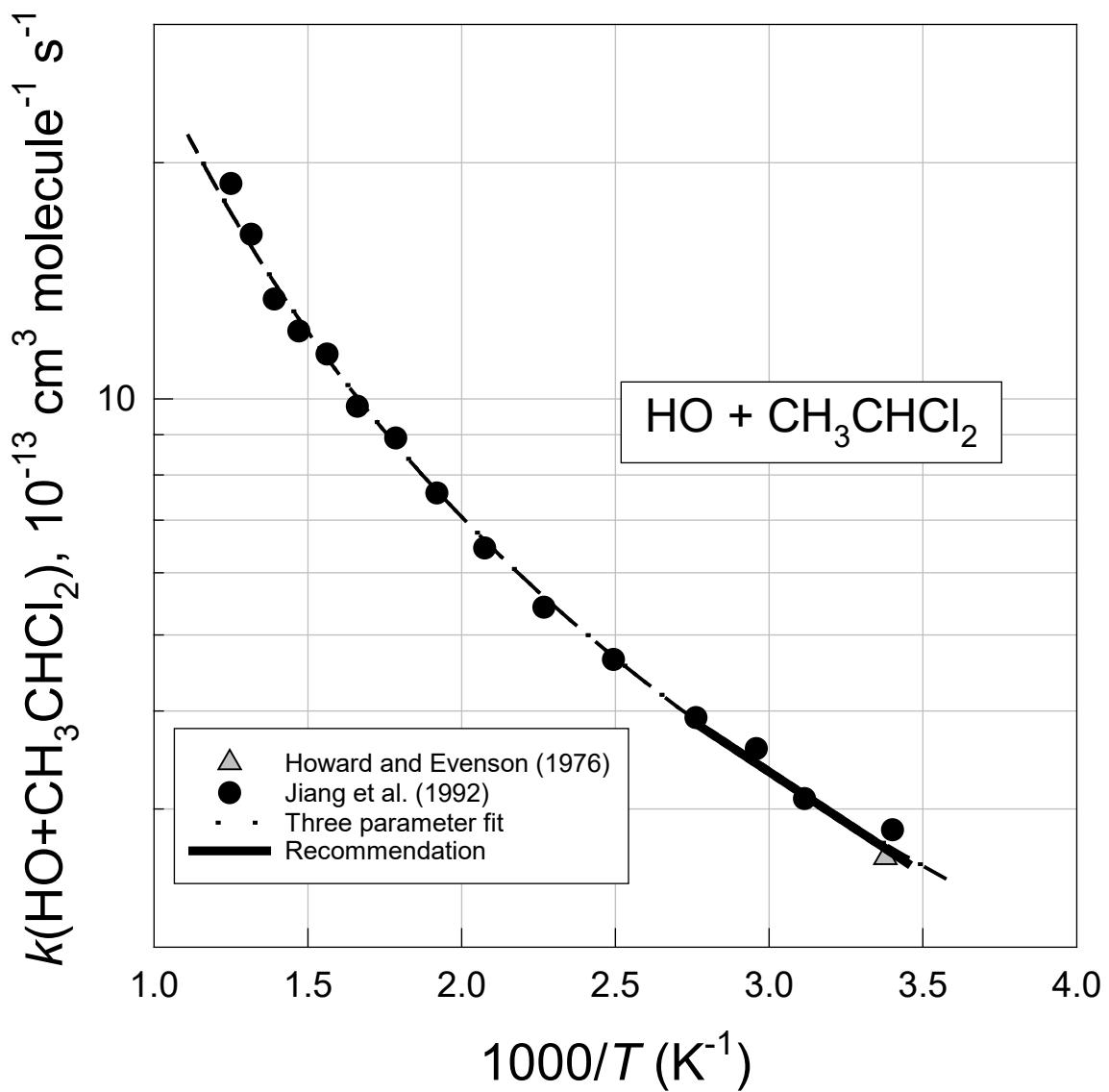
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.6 \pm 0.6) \times 10^{-13}$	296	Howard and Evenson (1976)	DF-LMR (a)
$(8.29 \pm 0.36) \times 10^{-14} (T/300)^{2.67} \exp(387 \pm 18)/T$	294-800	Jiang et al. (1992)	PLP-LIF (b)
$(2.82 \pm 0.14) \times 10^{-13}$	294		

Comments

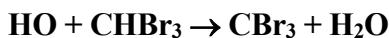
- (a) HO radicals were generated by the reaction of H atoms with NO₂ in 0.1-1.0 kPa of helium.
- (b) HO radicals were produced by the 193 nm photolysis of N₂O to give O(¹D) atoms in the presence of H₂O vapor in 740 ± 10 Torr (986 ± 13 mbar) of helium.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.76×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$2.04 \times 10^{-12} \exp(-596/T)$	290-370
<i>Reliability</i>		
$\Delta \log k$	0.1	298
$\Delta E/R$	± 300	290-370

Comments on Preferred Values

The rate coefficients of Howard and Evenson (1976) and Jiang et al. (1992) at room temperature are in excellent agreement. Fitting the three-parameter equation $k = CT^2 \exp(-D/T)$ to the data from Howard and Evenson (1976) and Jiang et al. (1992) gives $k = 2.53 \times 10^{-18} T^2 \exp(64/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Centering this expression at 330 K with $A = C e^2 T^2$ and $B = D + 2T$ gives $k = 2.04 \times 10^{-12} \exp(-596/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.


References

Howard, C. J., and Evenson, K. M.: J. Chem. Phys., 64, 4303, 1976.
 Jiang, Z., Taylor, P. H., and Dellinger, B.: J. Phys. Chem., 96, 8964, 1992.

oBrOx16: HO + CHBr₃

Last evaluated: June 2023; Last change in preferred values: June 2014.

Rate coefficient data (k)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$9.94 \times 10^{-13} \exp[(-387 \pm 22)/T]$	230-370	Orkin et al. (2013)	FP-RF (a)
$(2.69 \pm 0.04) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$1.31 \times 10^{-12} \exp(-584/T)$	298-366	DeMore (1996)	RR (b)
1.86×10^{-13}	298		

Comments

(a) HO radicals were generated by the VUV pulsed photolysis of H₂O in 30 Torr (40 mbar) of argon. HO radicals were monitored by resonance fluorescence near 308 nm. The purity of the CHBr₃ sample was checked using GC-MS. Results measured using an older version of the FP-RF system with a different gas handling system and higher flash energies were consistent with those using a newer version of the experimental apparatus.

(b) HO radicals produced by photolysis of O₃ at 254 nm in the presence of H₂O vapor in argon diluent (total pressure was not specified). CH₂Cl₂ was used as the reference compound. The loss of CHBr₃ and CH₂Cl₂ was measured using FTIR spectroscopy. A rate coefficient ratio $k(\text{HO}+\text{CHBr}_3)/k(\text{HO}+\text{CH}_2\text{Cl}_2) = (0.73 \pm 0.16) \exp[(276 \pm 71)/T]$ was reported. Using $k(\text{HO}+\text{CH}_2\text{Cl}_2) = 1.8 \times 10^{-12} \exp(-860/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2008) gives $k(\text{HO}+\text{CHBr}_3) = 1.31 \times 10^{-12} \exp(-584/T)$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

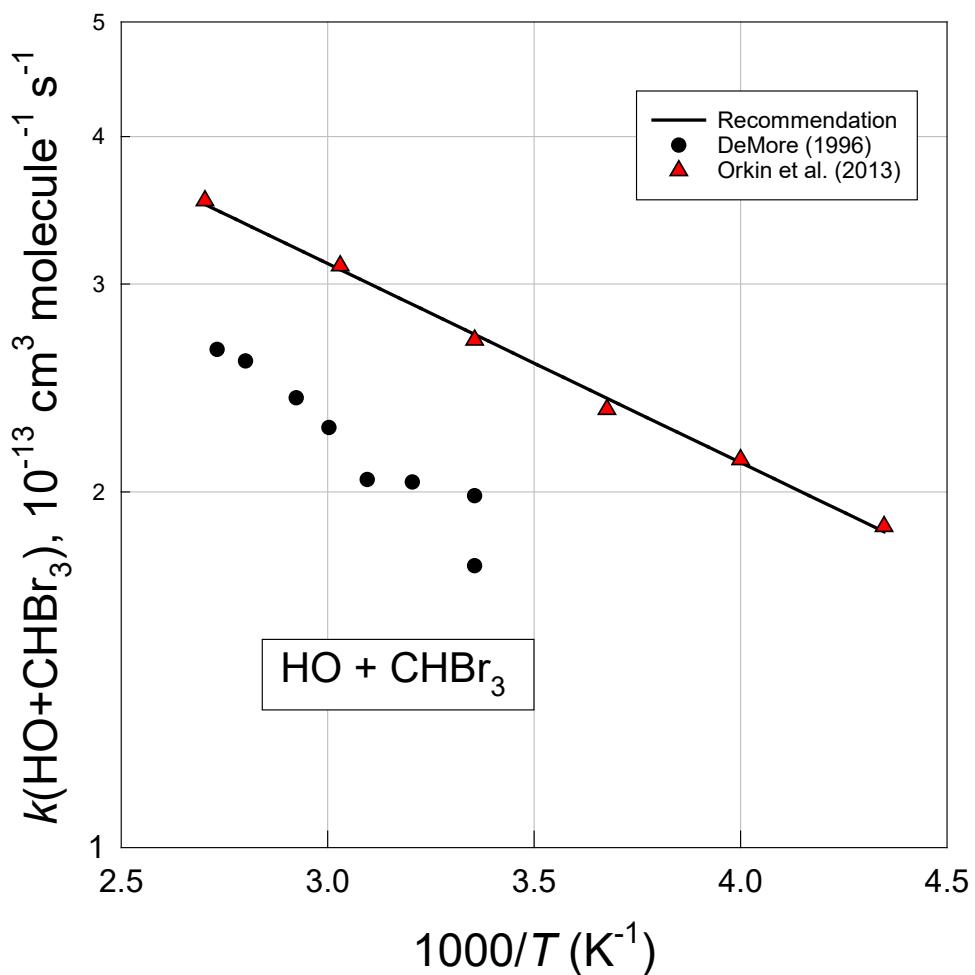
Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.7×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$1.00 \times 10^{-12} \exp(-388/T)$	290-370
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	290-370

Comments on Preferred Values

There is a substantial disagreement between the results from the relative rate study by DeMore (1996) and the absolute rate study by Orkin et al. (2013). Considerable efforts were made by Orkin et al. (2013) to assure the purity of the CHBr₃ sample and it is unlikely that the discrepancy reflects the presence of a reactive impurity in the work of Orkin et al. (2013). Orkin et al. (2013) obtained consistent results using two different versions of their experimental system over a period of several years. DeMore (1996) used CH₂Cl₂ as a reference compound. In the presence of O₂ the degradation of CH₂Cl₂ produces chlorine atoms (Niki et al., 1980). At 298 K, the rate coefficient ratio $k(\text{Cl}+\text{CHBr}_3)/k(\text{Cl}+\text{CH}_2\text{Cl}_2) = 0.79$ (Atkinson et al., 2008; Kamboures et al., 2002) is about a factor of 3 lower than the rate

coefficient ratio $k(\text{HO}+\text{CHBr}_3)/k(\text{HO}+\text{CH}_2\text{Cl}_2) = 2.7$ (present work; Atkinson et al., 2008). Additional loss of CH_2Cl_2 via reaction with chlorine atoms is a likely explanation of the discrepancy between the results from DeMore (1996) and the absolute rate study by Orkin et al. (2013). The preferred Arrhenius expression is derived from a fit to the data from Orkin et al. (2013).

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/en/home-english/>.

DeMore, W. B.: J. Phys. Chem., 100, 5813, 1996.

Kamboures, M. A., Hansen, J. C., Francisco, J. S.: Chem. Phys. Lett., 353, 335, 2002.

Niki, H., Maker, P. D., Savage, C. M., and Breitenbach, L. P.: Int. J. Chem. Kinet., 12, 1001, 1980.

Orkin, V. L., Khamaganov, V. G., Kozlov, S. N., and Kurylo, M. J.: J. Phys. Chem. A, 117, 3809, 2013.

oBrOx17: HO + CH₃CH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.77 \pm 0.34) \times 10^{-12} \exp[-(1344 \pm 86)/T]$	292-418	Qiu et al. (1992), Xing et al. (1992)	DF-RF (a)
3.05×10^{-13}	298		
$1.7 \times 10^{-13} T^{0.5} \exp(-641/T)$	233-422	Herndon et al. (2001)	PLP-LIF (b)
3.29×10^{-13}	297		
<i>Relative Rate Coefficients</i>			
$(2.18 \pm 0.07) \times 10^{-13}$	300	Donaghy et al. (1993)	RR (c)

Comments

- (a) HO radicals were produced by the reaction of F atoms with H₂O in 2-3 Torr (2.7-4.0 mbar) of argon diluent gas. There is substantial overlap in the data set reported by Qiu et al. (1992) and Xing et al. (1992). For simplicity we refer to the combined data set published in these two papers as Qiu et al. (1992). Experiments were performed before and after pumping on, and removing a third of the sample. There was no discernable difference in the measured rate coefficients suggesting the absence of complications from volatile impurities. The value given at 298 K above is the average of the measurements reported by Qiu et al. (1992).
- (b) HO radicals were produced by either the photolysis of HONO at 355 nm or the photolysis of H₂O₂ at 248 nm in approximately 100 Torr (133 mbar) of helium. The value given at 296 K above is the average of the measurements reported by Herndon et al. (2001). The C₂H₅Br sample was checked for impurities using gas chromatography; none were found.
- (c) HO radicals were produced by the photolysis of CH₃ONO in one atmosphere pressure of air. Ethane was used as the reference compound and a rate coefficient ratio of $k(\text{HO}+\text{C}_2\text{H}_5\text{Br})/k(\text{HO}+\text{C}_2\text{H}_6) = 0.885 \pm 0.030$ was reported. Using $k(\text{HO}+\text{C}_2\text{H}_6) = 6.9 \times 10^{-12} \exp(-1000/T)$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{C}_2\text{H}_5\text{Br}) = (2.18 \pm 0.07) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

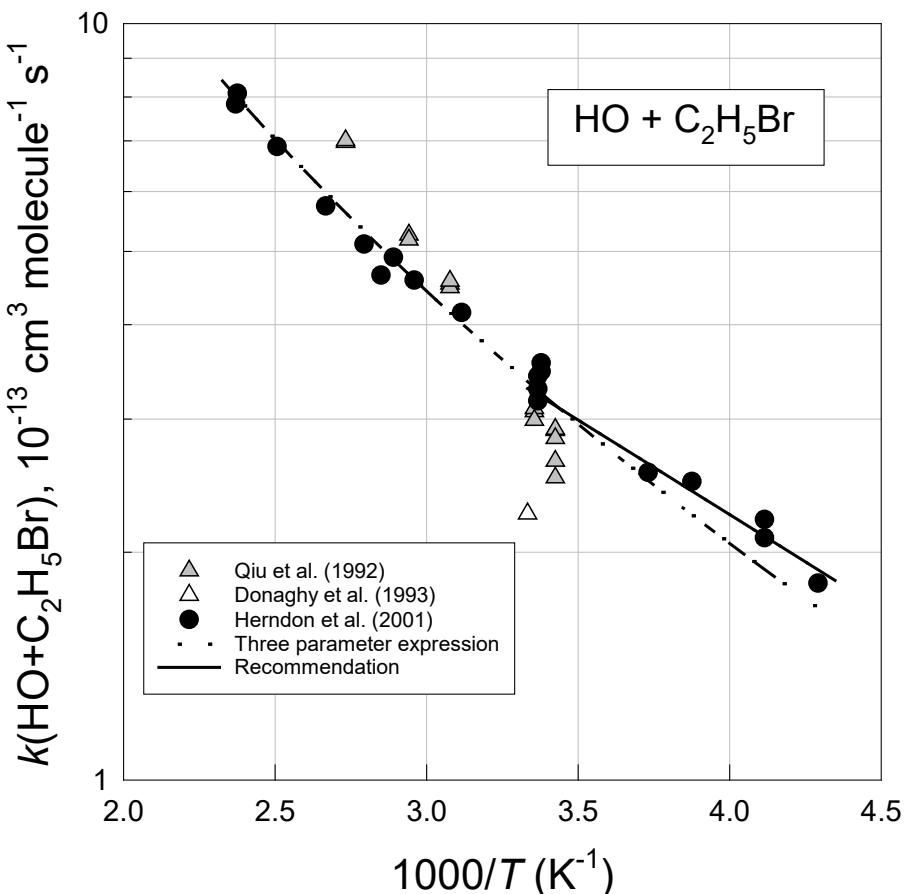
Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.3×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$2.25 \times 10^{-12} \exp(-576/T)$	230-300
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 300	230-300

Comments on Preferred Values

With the exception of the highest temperature data point (418 K from Xing et al., 1992), the

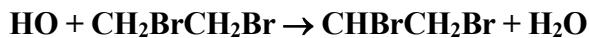
absolute rate coefficients of Qiu et al. (1992) and Herndon et al. (2001) are in reasonable agreement over the temperature range over which measurements were conducted. In contrast, the rate coefficient reported in the relative rate study of Donaghy et al. (1993) is significantly lower than those reported by Qiu et al. (1992) and Herndon et al. (2001). The temperature dependence reported by Qiu et al. (1992) is substantially greater than that reported by Herndon et al. (2001). Fitting the three-parameter equation $k = CT^2 \exp(-D/T)$ to the data from Qiu et al. (1992) [excluding the data point at 418 K] and Herndon et al. (2001) gives $k = 7.12 \times 10^{-18} T^2 \exp(-193/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Taking an average of the rate coefficients reported by Qiu et al. (1992) and Herndon et al. (2001) at 296-298 K gives our preferred value of $3.26 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. Fitting the Arrhenius expression to this data and that at lower temperatures reported by Herndon et al. (2001) gives $k = 2.25 \times 10^{-12} \exp(-576/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which is preferred over the range 230-300 K.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: Int. J. Chem. Kinet., 25, 273, 1993.

Herndon, S. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Phys. Chem. Chem. Phys., 3 4529, 2001.


Qiu, L.X., Shi, S.-H., Xing, S.-B., and Chen, X. G.: J. Phys. Chem., 96, 685, 1992.

Xing, S.-B., Shi, S.-H., Qiu, L. X.: Int. J. Chem. Kinet., 24, 1, 1992.

oBrOx18: HO + CH₂BrCH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data (k)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.50 \pm 0.55) \times 10^{-13}$	296	Howard and Evenson (1976)	DF-LMR (a)
$(1.46 \pm 0.26) \times 10^{-11} \exp[-(1283 \pm 136)/T]$	294-365	Qiu et al. (1992)	DF-RF (b)
1.86×10^{-13}	294		
<i>Relative Rate Coefficients</i>			
$(2.15 \pm 0.45) \times 10^{-13}$	300	Arnts et al. (1989)	RR (c)

Comments

- (a) HO radicals were generated by the reaction of H atoms with NO₂ in 0.1-1.0 kPa (1-10 mbar) of helium.
- (b) HO radicals were produced by the reaction of F atoms with H₂O in 2-3 Torr (2.7-4.0 mbar) of argon. The results reported by Qiu et al. (1992) are an extension of the data set reported by Xing et al. (1992).
- (c) The rate coefficient ratio $k(\text{HO}+\text{CH}_2\text{BrCH}_2\text{Br})/k(\text{HO}+\text{C}_2\text{H}_6) = 0.88 \pm 0.18$ was placed on an absolute basis using $k(\text{HO}+\text{C}_2\text{H}_6) = 1.49 \times 10^{-17} T^2 \exp(-499/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006).

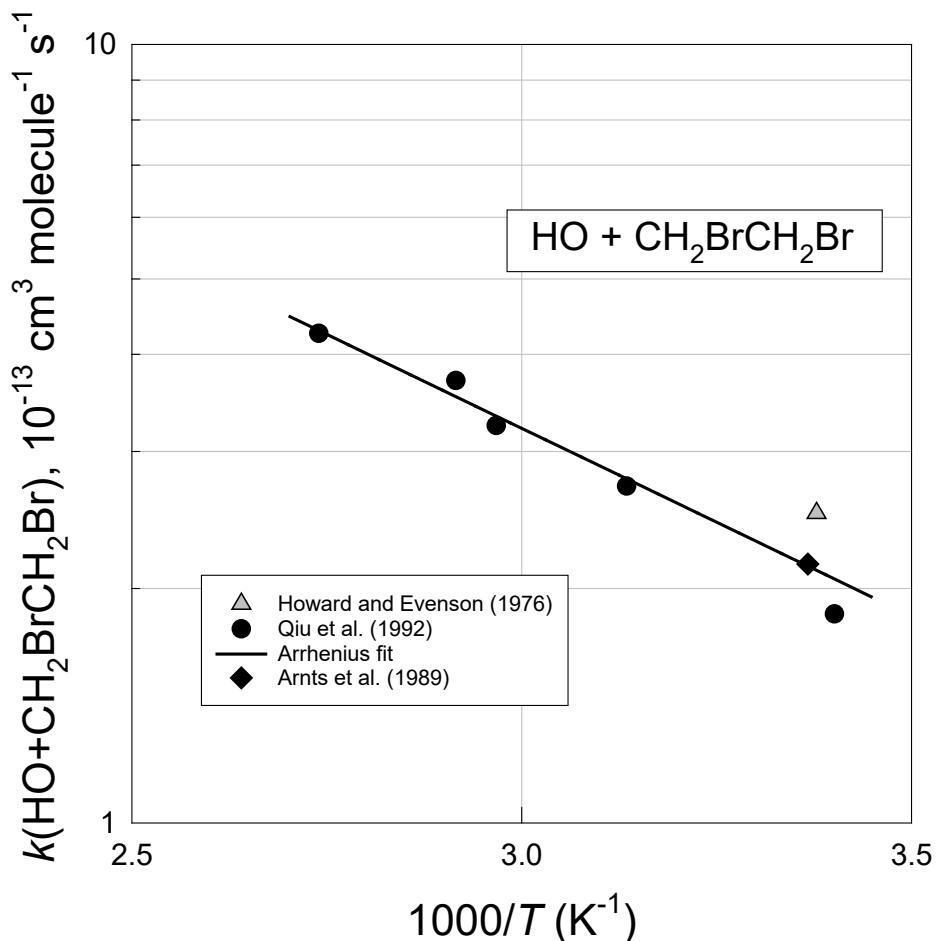
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.22×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$7.69 \times 10^{-12} \exp(-1056/T)$	290-370
<i>Reliability</i>		
$\Delta \log k$	0.1	298
$\Delta E/R$	± 300	290-370

Comments on Preferred Values

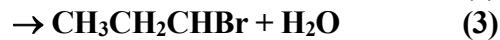
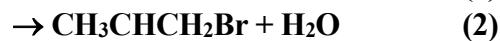
The absolute rate coefficients of Howard and Evenson (1976), Qiu et al. (1992), and Arnts et al. (1989) are in reasonable agreement at ambient temperature. Fitting the Arrhenius expression to the combined data set from the three studies gives $k = 7.69 \times 10^{-12} \exp(-1056/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Calvert et al., 2010) which is preferred over the range 290-370 K.

References


Arnts, R. R., Seila, R. L., and Bufalini, J. J.: J. Air Pollut. Control Assoc., 39, 453, 1989.
 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, to appear, 2010.

Howard, C. J., and Evenson, K. M.: J. Chem. Phys., 64, 4303, 1976.



Qiu, L. X., Shi, S. H., Xing, S.-B., and Chen, X. G.: J. Phys. Chem., 96, 685, 1992.

Xing, S.-B., Shi, S.-H., and Qiu, L. X.: Int. J. Chem. Kinet., 24, 1, 1992.

oBrOx19: HO + CH₃CH₂CH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(5.29 \pm 0.29) \times 10^{-12} \exp[-(456 \pm 31)/T]$	233-372	Téton et al. (1996)	PLP-LIF (a)
1.17×10^{-12}	298		
$(5.75 \pm 0.90) \times 10^{-12} \exp[-(504 \pm 50)/T]$	294-365	Nelson et al. (1997)	DF-LIF (b)
$(1.01 \pm 0.10) \times 10^{-12}$	295		
$9.1 \times 10^{-14} T^{0.5} \exp(-157/T)$	230-386	Herndon et al. (2001)	PLP-LIF (c)
$(8.8 \pm 0.4) \times 10^{-13}$	298		
$(6.6 \pm 0.52) \times 10^{-18} T^2 \exp(154 \pm 24)$	230-360	Gilles et al. (2002)	PLP-LIF (d)
$(9.72 \pm 0.32) \times 10^{-13}$	297		
$2.99 \times 10^{-13} (T/298)^{2.79} \exp(369/T)$	210-480	Kozlov et al. (2003)	FP-RF (e)
$(1.01 \pm 0.15) \times 10^{-12}$	298		
$1.32 \times 10^{-17} T^{1.95} \exp(25/T)$	297-725	Brykov et al. (2007)	PLP-LIF (f)
9.51×10^{-13}	297		
<i>Relative Rate Coefficients</i>			
$(1.10 \pm 0.06) \times 10^{-12}$	300	Donaghy et al. (1993)	RR (g)

Comments

- (a) HO radicals were generated by the photolysis of H₂O₂ at 248 nm in approximately 100 Torr (133 mbar) of helium.
- (b) HO radicals were generated by the reaction of H atoms with NO₂ in 1.1-2.3 Torr (1.5-3.1 kPa) of helium.
- (c) HO radicals were produced by the photolysis of HONO at 355 nm (third harmonic Nd:YAG laser) in approximately 100 Torr (133 mbar) of helium diluent.
- (d) HO radicals were generated by the photolysis of HONO at 351 nm in 50 Torr (67 kPa) of helium.
- (e) HO radicals were generated by the photolysis of H₂O using a xenon flash lamp. Experiments were performed in 30 Torr (4 mbar) of argon.
- (f) HO radicals were generated by either the photolysis of N₂O at 193 nm (ArF excimer laser) to make O(¹D) atoms in the presence of H₂O vapor, or the photolysis of HNO₃ at 248 nm (KrF excimer laser) in 6.69-26.73 kPa of helium.
- (g) The rate coefficient ratio $k(\text{HO} + \text{C}_3\text{H}_5\text{Br})/k(\text{HO} + \text{cyclohexane}) = 0.156 \pm 0.008$ was placed on an absolute basis using $k(\text{HO} + \text{cyclohexane}) = 3.26 \times 10^{-17} T^2 \exp(-262/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ (Atkinson, 2003).

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.0×10^{-12}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$3.91 \times 10^{-12} \exp(-399/T)$	210-300
k_1/k	0.32	
k_2/k	0.56	
k_3/k	0.12	
<i>Reliability</i>		
$\Delta \log k$	0.1	298
$\Delta \log E/R$	± 200	210-300
$\Delta k_1/k$	0.10	
$\Delta k_2/k$	0.05	
$\Delta k_3/k$	0.10	

Comments on Preferred Values

The rate coefficients obtained in the absolute rate studies by Téton et al. (1996), Nelson et al. (1997), Gilles et al. (2002), Kozlov et al. (2003), and Brykov et al. (2003) and in the relative rate study by Donaghy et al. (1993) are in good agreement. The results from the absolute rate study by Herndon et al. (2001) at ambient temperature and above lie approximately 20-30% below those from the other studies. Excluding the data from Herndon et al. (2001) and fitting the three parameter equation $k = CT^2 \exp(-D/T)$ to the remaining composite data set gives $k = 8.14 \times 10^{-18} T^2 \exp(111/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Centering this expression at 255 K with $A = C e^2 T^2$ and $B = D + 2T$ gives $k = 3.91 \times 10^{-12} \exp(-399/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which is preferred over the range 210-300 K.

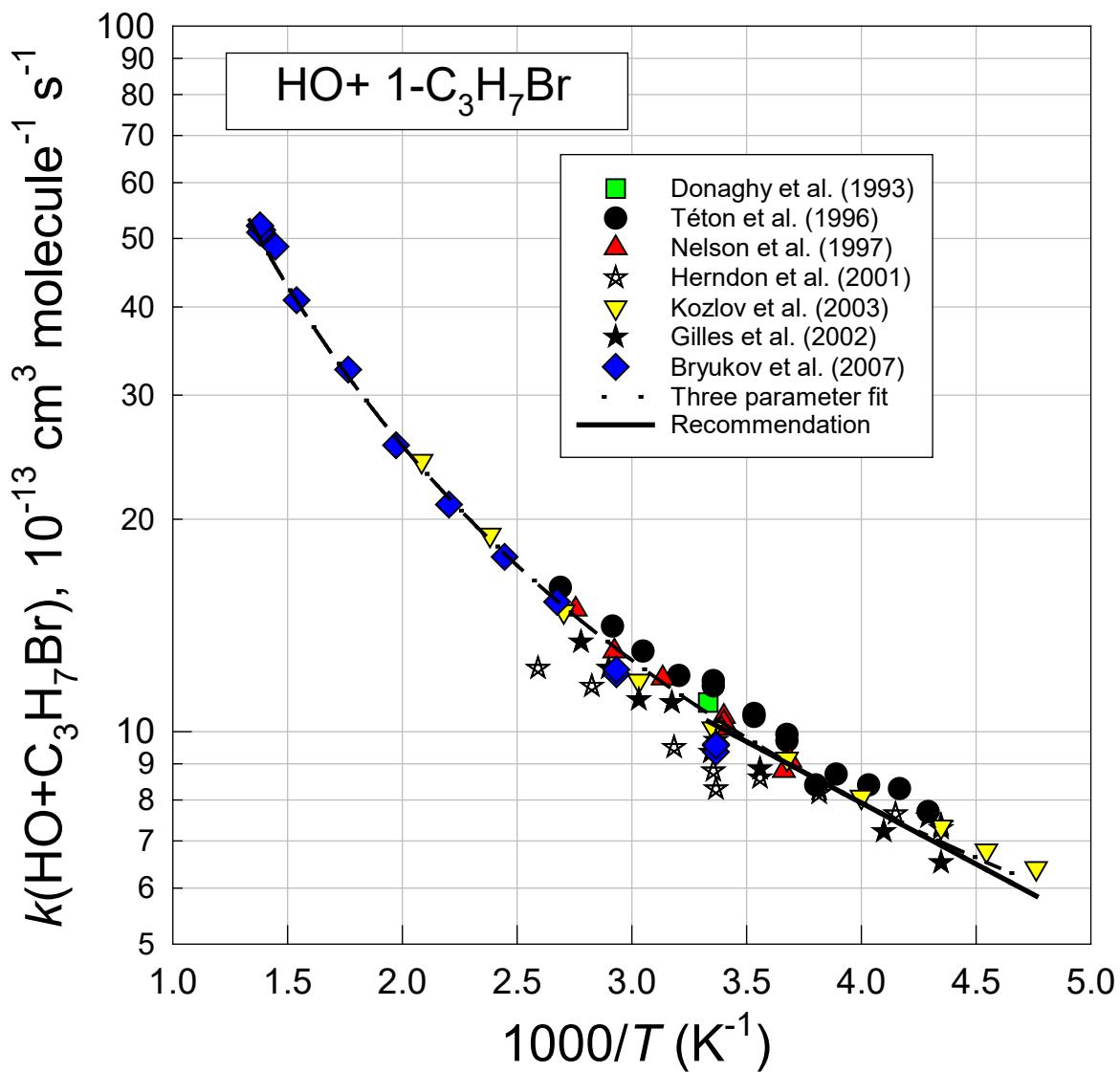
From an analysis of kinetic data for the reaction of HO radicals with $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$, $\text{CD}_3\text{CH}_2\text{CH}_2\text{Br}$, $\text{CD}_3\text{CH}_2\text{CD}_2\text{Br}$, $\text{CH}_3\text{CD}_2\text{CD}_2\text{Br}$, and $\text{CD}_3\text{CD}_2\text{CD}_2\text{Br}$, Gilles et al. (2002) deduced branching ratios at 298 K for abstraction at the 1-, 2-, and 3- positions in $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$ of 0.32 ± 0.08 , 0.56 ± 0.04 , and 0.12 ± 0.08 , respectively. As discussed by Calvert et al. (2008), Gilles et al. (2002) conducted a study of the products of the OH radical initiated oxidation of $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$ in 620 Torr of air in the presence of NO_x at room temperature. Propanal and bromoacetone were identified in molar yields of 30 ± 15 and $50 \pm 20\%$, respectively. The propanal and bromoacetone yields were indistinguishable from the branching ratios for hydrogen abstraction by OH radicals at the 1- and 2- positions deduced from the experiments with the deuterated n-propyl bromide samples. At low $[\text{O}_2]$ propene was observed as a product indicating that reaction with O_2 and dissociation via Br atom elimination are competing loss mechanisms for $\text{CH}_3\text{CHCH}_2\text{Br}$ radicals. Gilles et al. (2002) derived $k_{\text{O}_2}/k_{\text{diss}} = (4.0 \pm 0.6) \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1}$. In one atmosphere of air $k_{\text{O}_2}[\text{O}_2]/k_{\text{diss}} = 21$, and reaction with O_2 dominates the atmospheric fate of $\text{CH}_3\text{CHCH}_2\text{Br}$ radicals. Reaction of HO radicals with $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$ at the 3- position is expected to be of minor (< 20%) importance. The major products of the HO radical initiated oxidation of $\text{CH}_3\text{CH}_2\text{CH}_2\text{Br}$ are propanal and bromoacetone.

References

Atkinson, R.: *Atmos. Chem. Phys.*, 3, 2233, 2003.
 Bryukov, M. G., Virdrine, R. G., and Dillinger, B.: *J. Phys. Chem. A*, 111, 6197, 2007.

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S., and Wallington T. J.: Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York, NY, 2008.

Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: Int. J. Chem. Kinet., 25, 273, 1993.


Gilles, M. K., Burkholder, J.B., Gierczak, T., Marshall, P., and Ravishankara, A.R.: J. Phys. Chem. A, 106, 5358, 2002.

Herndon, S. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: Phys. Chem. Chem. Phys., 3 4529, 2001.

Kozlov, S. N., Orkin, V. L., Huie, R. E., and Kurylo, M. J.: J. Phys. Chem. A, 107, 1333, 2003.

Nelson Jr., D. D., Wormhoudt, J. C., Zahniser, M. S., Kolb, C. E., Ko, M. K. W., and Weisenstein, D. K.: J. Phys. Chem. A, 101, 4987, 1997.

Téton, S., El Boudali, A., and Mellouki, A.: J. Chim. Phys., 93, 274, 1996.

oBrOx20: HO + CH₃CHBrCH₃

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

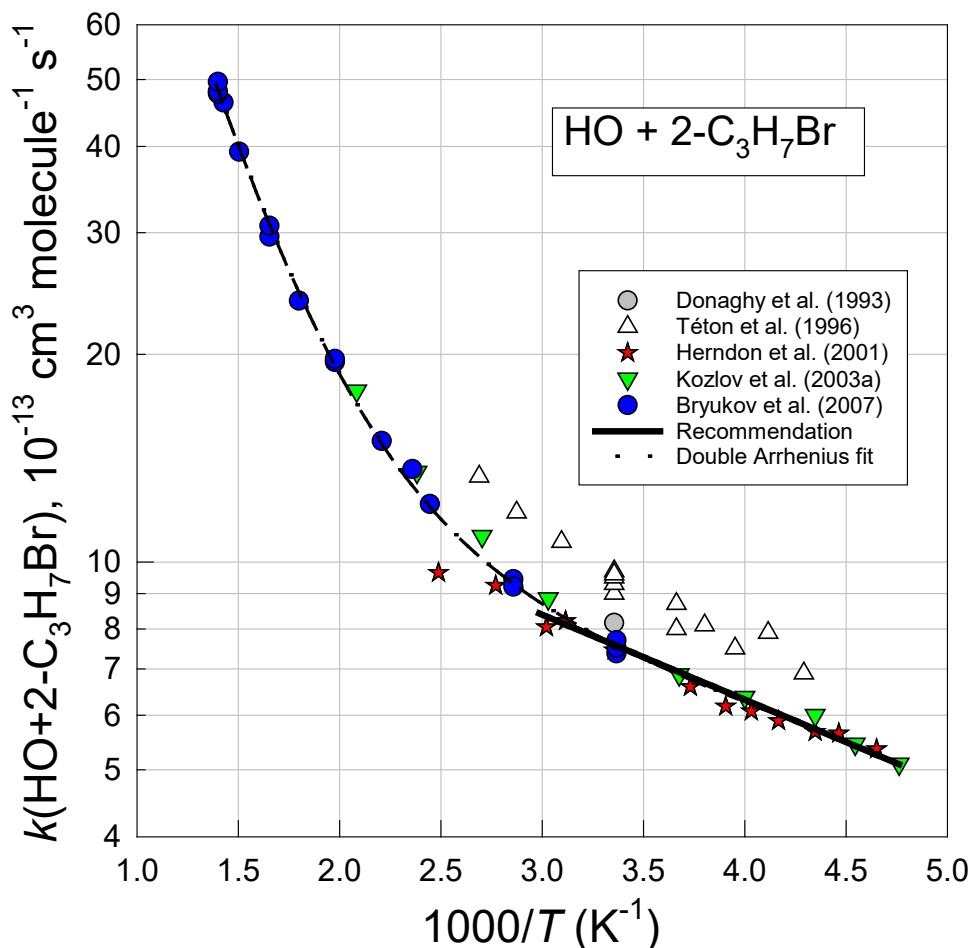
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(3.58 \pm 0.47) \times 10^{-12} \exp[-(392 \pm 75)/T]$	233-372	Téton et al. (1996)	PLP-LIF (a)
9.42×10^{-13}	298		
$7.0 \times 10^{-14} T^{0.5} \exp(-145/T)$	215-402	Herndon et al. (2001)	PLP-LIF (b)
$(7.45 \pm 0.15) \times 10^{-13}$	298		
$1.66 \times 10^{-13} (T/298)^{2.95} \exp(461/T)$	210-480	Kozlov et al. (2003)	FP-RF (c)
$(7.58 \pm 0.12) \times 10^{-13}$	298		
$1.56 \times 10^{-17} T^{4.18} \exp(922/T)$	297-715	Bryukov et al. (2007)	PLP-LIF (d)
7.53×10^{-13}	297		
<i>Relative Rate Coefficients</i>			
$(8.16 \pm 0.35) \times 10^{-13}$	298	Donaghy et al. (1993)	RR (e)

Comments

- (a) The value at 298 K is the average of the five determinations reported by Téton et al. (1996) at this temperature.
- (b) HO radicals were produced by the photolysis of HONO at 355 nm (third harmonic Nd:YAG laser) in approximately 100 Torr (133 mbar) of helium.
- (c) HO radicals were generated by the photolysis of H₂O using a xenon flash lamp. Experiments were performed in 30 Torr (4 mbar) of argon.
- (d) The value at 297 K is the average of the five determinations reported by Bryukov et al. (2003) at this temperature.
- (e) The rate coefficient ratio $k(\text{HO}+\text{C}_3\text{H}_5\text{Br})/k(\text{HO}+\text{cyclohexane}) = 0.117 \pm 0.005$ was placed on an absolute basis using $k(\text{HO}+\text{cyclohexane}) = 3.26 \times 10^{-17} T^2 \exp(-262/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson, 2003).

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	7.58×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.96 \times 10^{-12} \exp(-283/T)$	210-335
<i>Reliability</i>		
$\Delta \log k$	0.06	298
$\Delta E/R$	± 200	210-335


Comments on Preferred Values

The rate coefficients obtained in the absolute rate studies by Herndon et al. (2001), Kozlov et al. (2003), and Bryukov et al. (2003) and in the relative rate study by Donaghy et al. (1993) are in good agreement over the temperature ranges where comparison is possible. Results from the

absolute rate study by Téton et al. (1996) lie approximately 20% above those from the other studies with a similar dependence on temperature. The three parameter equation $k = CT^2 \exp(-D/T)$ is not able to capture the magnitude of the curvature evident in the Arrhenius plot. Fitting a double Arrhenius expression of $k = A \exp(-B/T) + C \exp(-D/T)$ to the composite data set (excluding the data from Téton et al. (1996)) gives $k = 1.07 \times 10^{-10} \exp(-2413/T) + 1.66 \times 10^{-12} \exp(-246/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which provides a good description of the reported rate coefficients over the temperature range 210-720 K. For inclusion into atmospheric chemistry models we prefer the Arrhenius expression $k = 1.96 \times 10^{-12} \exp(-283/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ obtained by fitting the Arrhenius expression to the data from Donaghy et al. (1993), Herndon et al. (2001), Kozlov et al. (2003), and Bryukov et al. (2003) over the range 210-335 K.

References

Atkinson, R.: *Atmos. Chem. Phys.*, 3, 2233, 2003.
 Bryukov, M. G., Virdrine, R. G., and Dillinger, B.: *J. Phys. Chem. A*, 111, 6197, 2007.
 Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: *Int. J. Chem. Kinet.*, 25, 273, 1993.
 Herndon, S. C., Gierczak, T., Talukdar, R. K., and Ravishankara, A. R.: *Phys. Chem. Chem. Phys.*, 3 4529, 2001.
 Kozlov, S. N., Orkin, V. L., Huie, R. E., and Kurylo, M. J.: *J. Phys. Chem. A*, 107, 1333, 2003.
 Téton, S., El Boudali, A., and Mellouki, A.: *J. Chim. Phys.*, 93, 274, 1996.

oBrOx21: HO + CH₃CH₂CH₂CH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(2.29 ± 0.07) × 10 ⁻¹²	299	Donaghy et al. (1993)	RR (a)

Comments

(a) The rate coefficient ratio $k(\text{HO}+\text{C}_4\text{H}_9\text{Br})/k(\text{HO}+\text{cyclohexane}) = 0.327 \pm 0.010$ was placed on an absolute basis using $k(\text{HO}+\text{cyclohexane}) = 3.26 \times 10^{-17} T^2 \exp(-262/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson, 2003).

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.3 × 10 ⁻¹²	298
<i>Reliability</i>		
Δ log <i>k</i>	0.20	298

Comments on Preferred Values

The rate coefficient reported by Donaghy et al. (1993) at 299 K is the sole study and the basis of the preferred value. There are no product studies of this reaction.

References

Atkinson, R.: Atmos. Chem. Phys., 3, 2233, 2003.
 Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: Int. J. Chem. Kinet., 25, 273, 1993.

oBrOx22: HO + CH₃CH₂CH₂CH₂CH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(3.71 ± 0.13) × 10 ⁻¹²	304	Donaghy et al. (1993)	RR (a)

Comments

(a) The rate coefficient ratio $k(\text{HO}+\text{C}_5\text{H}_{11}\text{Br})/k(\text{HO}+\text{cyclohexane}) = 0.520 \pm 0.018$ was placed on an absolute basis using $k(\text{HO}+\text{cyclohexane}) = 3.26 \times 10^{-17} T^2 \exp(-262/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson, 2003).

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	3.7×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.20	298

Comments on Preferred Values

The rate coefficient reported by Donaghy et al. (1993) at 304 K is the sole study and the basis of the preferred value. There are no product data available for this reaction.

References

Atkinson, R.: Atmos. Chem. Phys., 3, 2233, 2003.
 Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: Int. J. Chem. Kinet., 25, 273, 1993.

oBrOx23: HO + CH₃CH₂CH₂CH₂CH₂CH₂Br

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(5.48 ± 0.19) × 10 ⁻¹²	306	Donaghy et al. (1993)	RR (a)

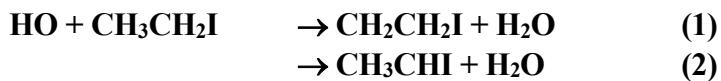
Comments

(a) The rate coefficient ratio $k(\text{HO}+\text{C}_6\text{H}_{13}\text{Br})/k(\text{HO}+\text{cyclohexane}) = 0.763 \pm 0.027$ was placed on an absolute basis using $k(\text{HO}+\text{cyclohexane}) = 3.26 \times 10^{-17} T^2 \exp(-262/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson, 2003).

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	5.5 × 10 ⁻¹²	298
<i>Reliability</i>		
Δ log <i>k</i>	± 0.20	298

Comments on Preferred Values


The rate coefficient reported by Donaghy et al. (1993) at 306 K is the sole study and the basis of the preferred value. There are no product data available for this reaction.

References

Atkinson, R.: Atmos. Chem. Phys., 3, 2233, 2003.
 Donaghy, T., Shanahan, I., Hande, M., and Fitzpatrick, S.: Int. J. Chem. Kinet., 25, 273, 1993.

oIOx4: HO + CH₃CH₂I

Last evaluated: June 2025; Last change in preferred values: June 2014

Rate coefficient data ($k = k_1 + k_2$)

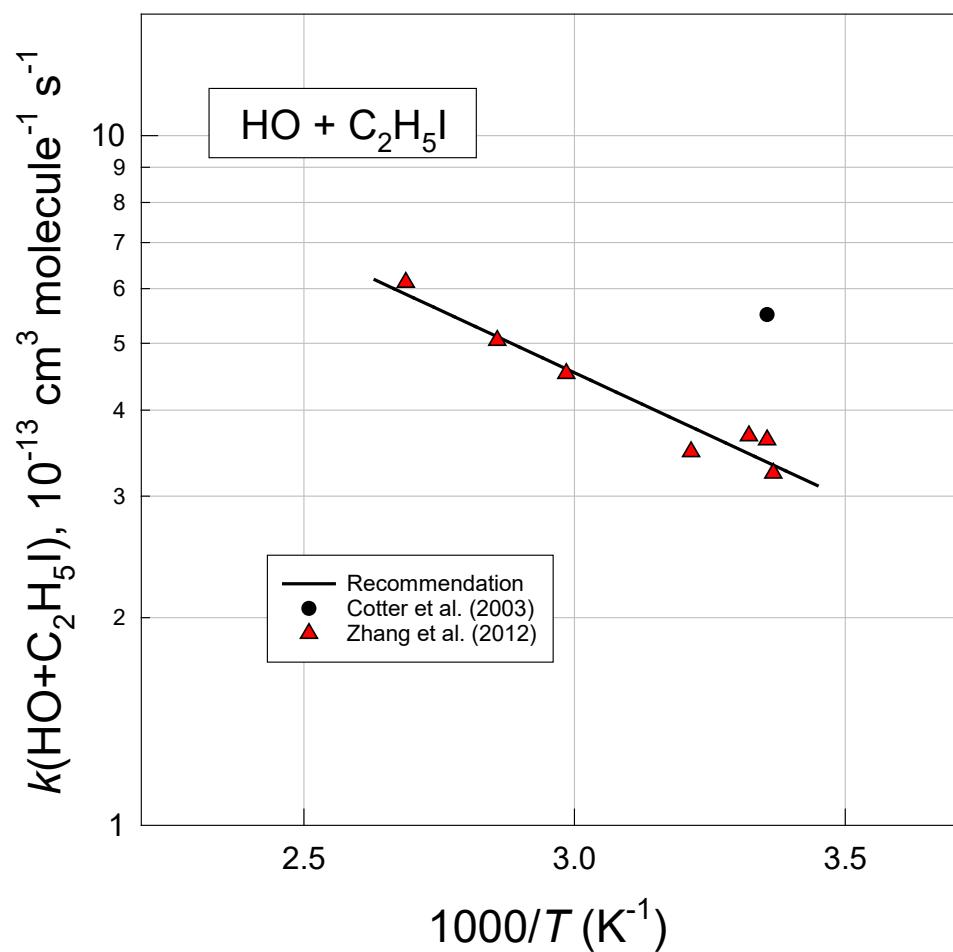
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$5.55 \times 10^{-12} \exp[-(830 \pm 90)/T]$	297-372	Zhang et al. (2012)	FP-RF (a)
$(3.24 \pm 0.08) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$(7.7 \pm 1.0) \times 10^{-13}$	298	Cotter et al. (2003)	DF-RF (b)

Comments

- (a) HO radicals were generated by the VUV flash photolysis of H₂O in 188 Torr (250 mbar) of helium. HO radicals were monitored using resonance fluorescence at 308 nm.
- (b) HO radicals were generated by the reaction of H atoms with NO₂ in 1.5 or 5.0 Torr (2.0 or 6.7 mbar) of helium diluent at 298 ± 2 K. There was no discernable effect of total pressure over the range studied. It was recognized that the measured rate coefficient of $k(\text{HO} + \text{C}_2\text{H}_5\text{I}) = (7.7 \pm 1.0) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ could be an overestimation because of secondary loss of HO radicals via reaction with products of the HO+C₂H₅I reaction. Cotter et al. (2003) estimated that correction of the rate coefficient for possible additional loss of HO radicals via secondary reactions in their experiments would lower the rate coefficient to $5.5 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.43×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$5.55 \times 10^{-12} \exp(-830/T)$	290-380
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	200	298


Comments on Preferred Values

The rate coefficient at 298 K reported by Cotter et al. (2003) is significantly larger than that reported by Zhang et al. (2012). Cotter et al. (2003) considered their determination to be an upper limit because of the likely contribution of secondary reactions to the observed HO loss. The preferred expression is taken from Zhang et al. (2012) and gives $k(\text{HO} + \text{C}_2\text{H}_5\text{I}) = 3.43 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K.

References

Cotter, E. S. N., Canosa-Mas, C.E., Manners, C. R., Wayne, R. P., and Shallcross, D. E.: Atmos.

Environ., 37, 1125, 2003.
Zhang, S., Strekowski, R.S., Monod, A., Bosland, L., and Zetzsch, C.: J. Phys. Chem. A, 116, 9497, 2012.

oIOx5: HO + CH₃CH₂CH₂I

Last evaluated: June 2025; Last change in preferred values: June 2014

Rate coefficient data ($k = k_1 + k_2 + k_3$)

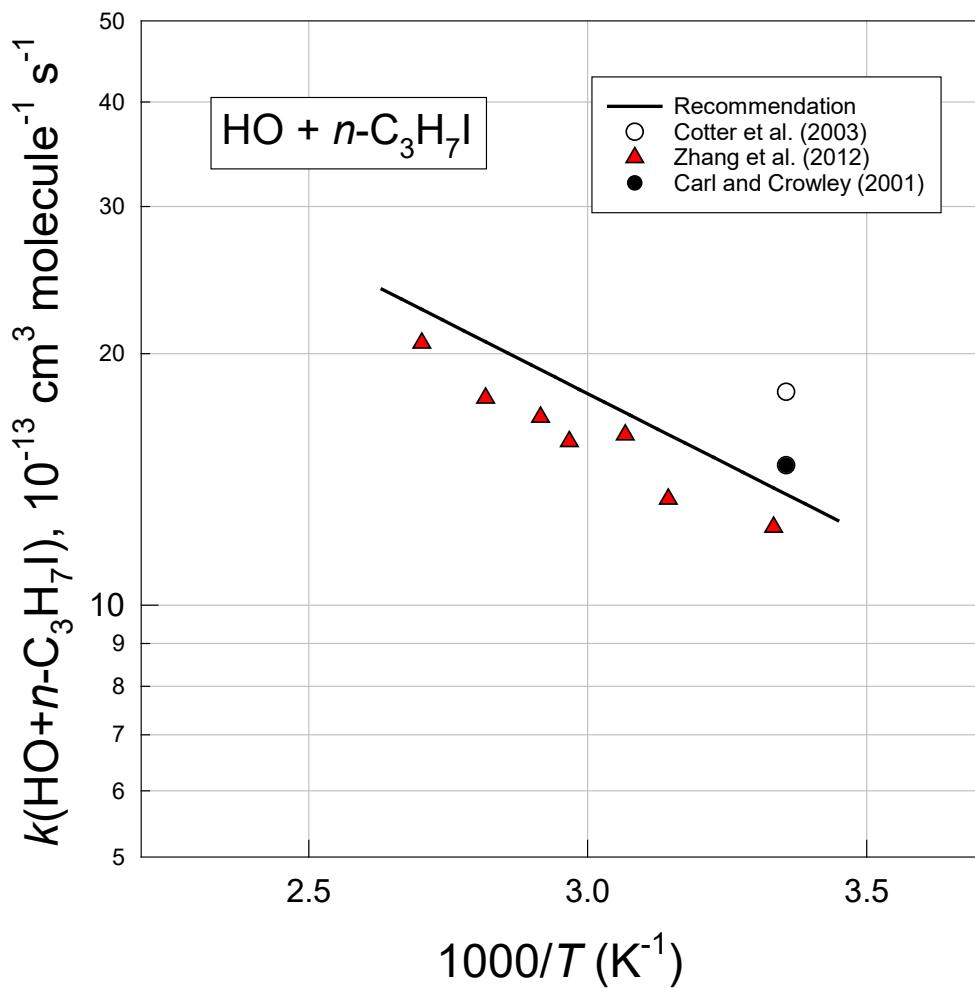
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.47 \pm 0.08) \times 10^{-12}$	298	Carl and Crowley (2001)	PLP-RF (a)
$1.65 \times 10^{-11} \exp[-(780 \pm 90)/T]$	300-370	Zhang et al. (2012)	FP-RF (b)
$(1.24 \pm 0.06) \times 10^{-12}$	300		
<i>Relative Rate Coefficients</i>			
$(2.5 \pm 0.3) \times 10^{-12}$	298	Cotter et al. (2003)	DF-RF (c)

Comments

- (a) HO radicals were generated by the two photon 439.44 nm (Nd-YAG pumped dye laser) photolysis of NO₂ (generating O(¹D) and O(³P) atoms) in the presence of H₂. Experiments were conducted in 20 Torr (27 mbar) of argon diluent. HO radicals were monitored using resonance fluorescence at 308 nm.
- (b) HO radicals were generated by the VUV flash photolysis of H₂O in 188 Torr (250 mbar) of helium diluent. HO radicals were monitored using resonance fluorescence at 308 nm.
- (c) HO radicals were generated by the reaction of H atoms with NO₂ in 1.5 or 5.0 Torr (2.0 or 6.7 mbar) of helium diluent at 298 ± 2 K. There was no discernible effect of total pressure over the range studied. It was noted that the measured rate coefficient could be an upper limit to $k(\text{HO} + \text{C}_3\text{H}_7\text{I})$ because of additional loss of HO radicals via reaction with products of the HO+C₃H₇I reaction. Cotter et al. (2003) estimated that correction of the rate coefficient for possible additional loss of HO radicals via secondary reactions would lower the rate coefficient to $1.8 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.86 \times 10^{-11} \exp(-780)/T$	290 - 380
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.36×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	200	290 - 380


Comments on Preferred Values

Recognizing the possible contribution of secondary loss of HO radicals, Cotter et al. (2003) considered their rate coefficient determination to be an upper limit. The value derived by Cotter et al. (2003) corrected for possible secondary reactions is consistent, within the combined experimental uncertainties, with that from Carl and Crowley (2001) and Zhang et al. (2012). The results from Carl and

Crowley (2001) and Zhang et al. (2012) are in good agreement within the combined uncertainties. Our preferred value at 298 K is the average from Carl and Crowley (2001) and Zhang et al. (2012). The temperature dependence is taken from a fit to the work by Zhang et al. (2012) with the A-factor adjusted to reproduce the preferred value at 298 K.

References

Carl, S. A., and Crowley, J. N.: *Atmos. Chem. Phys.*, 1, 1, 2001.
 Cotter, E. S. N., Canosa-Mas, C.E., Manners, C. R., Wayne, R. P., and Shallcross, D. E.: *Atmos. Environ.*, 37, 1125, 2003.
 Zhang, S., Strekowski, R.S., Monod, A., Bosland, L., and Zetzsch, C.: *J. Phys. Chem. A*, 116, 9497, 2012.

oIOx6: HO + CH₃CHICH₃

Last evaluated: June 2025; Last change in preferred values: June 2014

Rate coefficient data ($k = k_1 + k_2$)

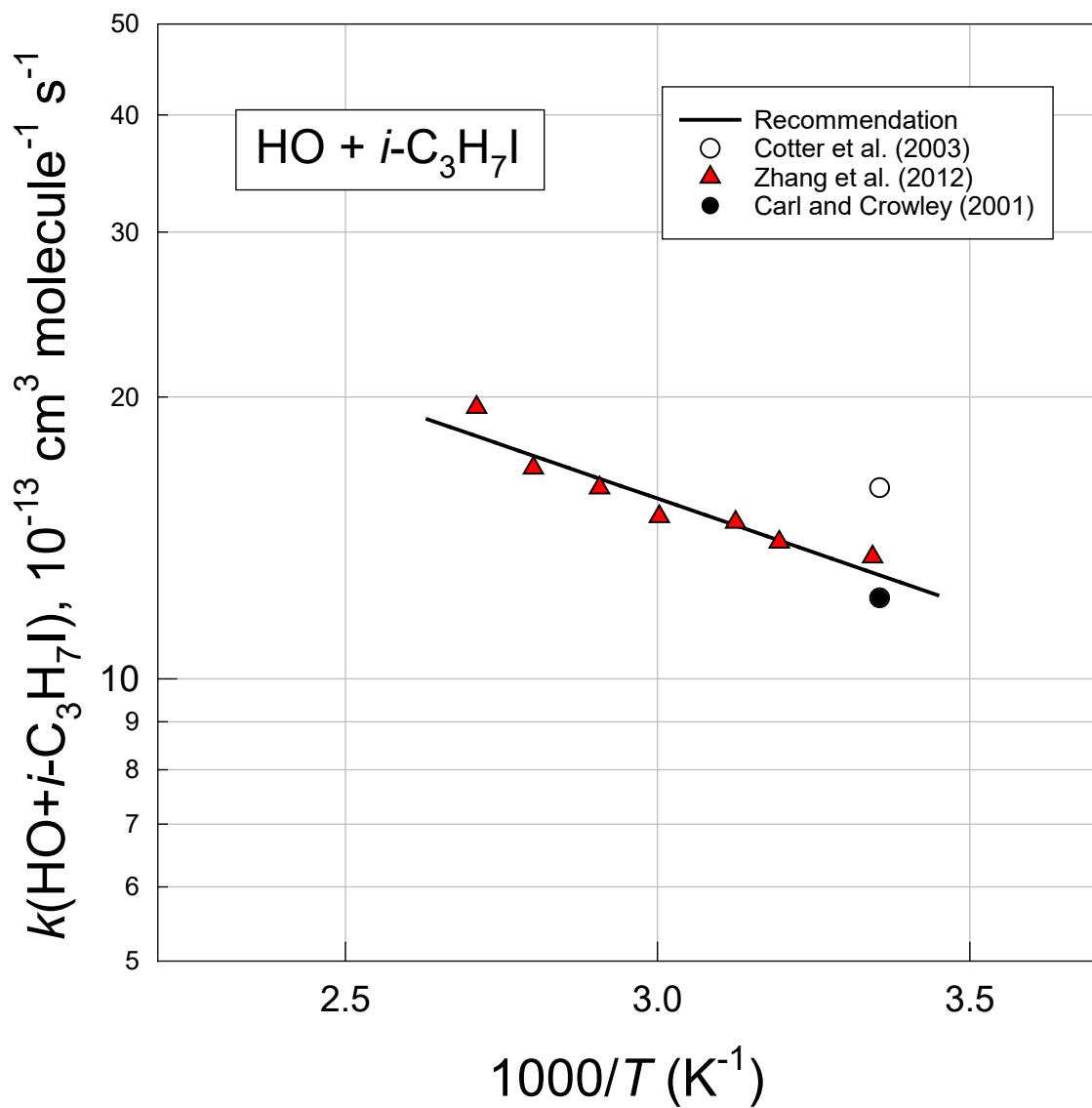
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.22 \pm 0.06) \times 10^{-12}$	298	Carl and Crowley (2001)	PLP-RF (a)
$7.58 \times 10^{-12} \exp[-(530 \pm 80)/T]$	300-370	Zhang et al. (2012)	FP-RF (b)
$(1.35 \pm 0.07) \times 10^{-12}$	299		
<i>Relative Rate Coefficients</i>			
$(1.6 \pm 0.2) \times 10^{-12}$	298	Cotter et al. (2003)	DF-RF (c)

Comments

- (a) HO radicals were generated by either the two photon 439.44 nm (Nd-YAG pumped dye laser) photolysis of NO₂ (generating O(¹D) and O(³P) atoms) in the presence of H₂, or the photolysis of HNO₃ at 248 nm. Experiments were conducted in 20 Torr (27 mbar) of argon. HO radicals were monitored using resonance fluorescence.
- (b) HO radicals were generated by the VUV flash photolysis of H₂O in 188 Torr (250 mbar) of helium diluent. HO radicals were monitored using resonance fluorescence at 308 nm.
- (c) HO radicals were generated by the reaction of H atoms with NO₂ in 1.5 or 5.0 Torr (2.0 or 6.7 mbar) of helium diluent at 298 ± 2 K. There was no discernible effect of total pressure over the range studied. It is possible that the measured rate coefficient is an overestimation of $k(\text{HO} + i\text{-C}_3\text{H}_7\text{I})$ because of additional loss of HO radicals via reaction with products of the HO+*i*-C₃H₇I reaction. While secondary chemistry should manifest itself in curvature of the first order ($\ln([\text{HO}]_{\text{to}}/[\text{HO}]_{\text{t}})$ versus time) plots, Cotter et al. (2003) calculated that such curvature would not be discernable given the data scatter. Cotter et al. (2003) estimated that correction of the rate coefficient for possible additional loss of HO radicals via secondary reactions would lower the rate coefficient to $1.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$7.64 \times 10^{-12} \exp(-530)/T$	290-380
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.29×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	± 0.08	298


Comments on Preferred Values

Recognizing the possible contribution of secondary loss of HO radicals, Cotter et al. (2003) considered their rate coefficient determination to be an upper limit. The value derived by Cotter et al. (2003) corrected for possible secondary reactions is consistent with those from Carl and Crowley (2001) and Zhang et al. (2012). The results from Carl and Crowley (2001) and Zhang et al. (2012) are in good

agreement within the combined uncertainties. Our recommended value at 298 K is the average from Carl and Crowley (2001) and Zhang et al. (2012). The temperature dependence is taken from a fit to the work by Zhang et al. (2012) with the A-factor adjusted to reproduce the recommended value at 298 K.

References

Carl, S. A., and Crowley, J. N.: *Atmos. Chem. Phys.*, 1, 1, 2001.
 Cotter, E. S. N., Canosa-Mas, C.E., Manners, C. R., Wayne, R. P., and Shallcross, D. E.: *Atmos. Environ.*, 37, 1125, 2003.
 Zhang, S., Strekowski, R.S., Monod, A., Bosland, L., and Zetzsch, C.: *J. Phys. Chem. A*, 116, 9497, 2012.

oFOx108: Cl + CHF₂CH₂CF₃ (HFC-245fa)

Last evaluated: June 2025; Last change in preferred values: September 2011.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(6.89 \pm 0.81) \times 10^{-15}$	297	Chen et al. (1997)	(a)

Comments

(a) Cl atoms were generated by the photolysis of Cl₂ in CHF₂CH₂CF₃/CF₃CHClF/Cl₂ mixtures in 700 Torr (933 mbar) of N₂. The decays of CHF₂CH₂CF₃/CF₃CHClF were measured by FTIR spectroscopy. The measured rate coefficient ratio of $k(\text{Cl}+\text{CHF}_2\text{CH}_2\text{CF}_3) / k(\text{Cl}+\text{CF}_3\text{CHClF}) = 2.55 \pm 0.30$ was placed on an absolute basis using $k(\text{Cl}+\text{CF}_3\text{CHClF}) = 2.7 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2008).

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	6.9×10^{-15}	298
<i>Reliability</i>		
$\Delta \log k$	± 0.30	298

Comments on Preferred Values

The preferred value is based on the study by Chen et al. (1997).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 9, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chen, J., Young, V., Niki, H., and Magid, H.: J. Phys. Chem., A, 101, 2648, 1997.

oFOx110: Cl + CF₃CHFCF₃ (HFC-227ea)

Last evaluated: June 2025; Last change in preferred values: September 2011

Rate coefficient data (*k*)

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(4.68 ± 0.52) × 10 ⁻¹⁶	296	Møgelberg et al. (1996)	(a)
(4.10 ± 0.63) × 10 ⁻¹⁶	296		(b)

Comments

(a) Cl atoms were generated by the photolysis of Cl₂ in CF₃CHFCF₃/CHF₂CF₃/Cl₂ and CF₃CHFCF₃/CHF₂CF₂CF₃/Cl₂ mixtures in 700 Torr (933 mbar) of N₂ or air diluent. The loss of the reactant and reference compounds was measured by FTIR spectroscopy. The measured rate coefficient ratios of $k(\text{Cl}+\text{CF}_3\text{CHFCF}_3)/k(\text{Cl}+\text{CHF}_2\text{CF}_3) = 0.18 \pm 0.02$ and $k(\text{Cl}+\text{CF}_3\text{CHFCF}_3)/k(\text{Cl}+\text{CHF}_2\text{CF}_2\text{CF}_3) = 0.13 \pm 0.02$ were placed on an absolute basis using $k(\text{Cl}+\text{CHF}_2\text{CF}_3) = 2.6 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2008) and $k(\text{Cl}+\text{CHF}_2\text{CF}_2\text{CF}_3) = 3.15 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Giessing et al., 1996).

(b) Using CHF₂CF₂CF₃ as reference.

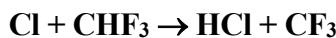
Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.4 × 10 ⁻¹⁶	298
<i>Reliability</i>		
Δ log <i>k</i>	± 0.15	298

Comments on Preferred Values

The preferred value is the average of the relative rate determinations by Møgelberg et al. (1996).

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 9, 4141, 2008; IUPAC Task Group on Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Giessing, A. M. B., Feilberg, A., Møgelberg, T. E., Sehested, J., Bilde, M., Wallington, T. J., and Nielsen, O. J.: J. Phys. Chem., 100, 6572, 1996.

Møgelberg, T. E., Sehested, J., Bilde, M., Wallington, T. J., and Nielsen, O.J: J. Phys. Chem., 100, 8882, 1996.

oFOx111: Cl + CHF₃

Last evaluated: June 2025; Last change in preferred values: September 2011.

$$\Delta H^\circ = 17.9 \text{ kJ mol}^{-1}$$

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(4.3 \pm 1.5) \times 10^{-16}$	298	Jourdain et al., 1976	DF-MS (a)
<i>Relative Rate Coefficients</i>			
$4.6 \times 10^{-13} \exp[-(3520)/T]$	303-399	Coomber and Whittle, 1966	RR (b)
3.4×10^{-18}	298		

Comments

(a) Experiments were performed in 0.3-3 Torr of helium diluent.

(b) The reaction rate coefficients were measured using a competitive method with Cl atoms generated via photolysis of Cl₂ at 366 nm (mercury lamp). The expression in the table above was derived from the measured ratios $k_{\text{CH}_4}/k_{\text{C}_2\text{F}_5\text{H}} = 12.4 \exp[(1450 \pm 40)/RT]$ and $k_{\text{C}_2\text{F}_5\text{H}}/k_{\text{CHF}_3} = 1.16 \exp[(3080 \pm 70)/RT]$ which leads to $k_{\text{CH}_4}/k_{\text{CHF}_3} = 14.4 \exp[(4530 \pm 80)/RT] = 14.4 \exp[(2280 \pm 40)/T]$. Using $k(\text{Cl} + \text{CH}_4) = 6.6 \times 10^{-12} \exp(-1240/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{Cl} + \text{CHF}_3) = 4.6 \times 10^{-13} \exp(-3520/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. At 298 K this expression gives $k(\text{Cl} + \text{CHF}_3) = 3.4 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

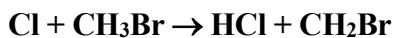
Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	3.4×10^{-18}	298
<i>Reliability</i>		
$\Delta \log k$	0.5	298

Comments on Preferred Values

The rate coefficient reported by Jourdain et al. at 298 K is two orders of magnitude greater than that obtained from the data from Coomber and Whittle. The reaction endothermicity of 17.9 kJ mol⁻¹ provides a lower limit for the activation energy ($Ea/R = 2150$) which combined with an estimate of 1×10^{-12} for the A factor gives an upper limit of $k(\text{Cl} + \text{CHF}_3) < 7 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. In the absolute rate study by Jourdain et al. a contribution from reaction with reactive impurities is difficult to exclude. The study by Coomber and Whittle gives a rate coefficient ratio of $k(\text{Cl} + \text{CH}_4)/k(\text{Cl} + \text{C}_2\text{HF}_5) = 144$ which is approximately a factor of two lower than the ratio of the preferred rate coefficients $k(\text{Cl} + \text{CH}_4)/k(\text{Cl} + \text{C}_2\text{HF}_5) = 385$ (Atkinson et al., 2006; 2008). The preferred value of $k(\text{Cl} + \text{CHF}_3) = 3.4 \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K is based on the results from Coomber and Whittle and has substantial uncertainty.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Coomber, J.B. and Whittle, E.: Trans. Faraday Soc., 62, 2183, 1966.

Jourdain, J. L., Poulet, G., Barassin, J., Le Bras, G. and Combourieu J.: Pollut. Atmos., 75, 256, 1977.

oBrOx24: Cl + CH₃Br

Last evaluated: June 2023; Last change in preferred values: June 2014.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.55 \times 10^{-11} \exp[-(1070 \pm 50)/T]$ (4.38 ± 0.55) $\times 10^{-13}$	222-393.5 298	Gierczak et al. (1994)	PLP-RF (a)
$1.66 \times 10^{-11} \exp[-(1072 \pm 46)/T]$ (4.83 ± 0.12) $\times 10^{-13}$	273-363 303	Kambanis et al. (1997)	VLPR-MS (b)
$1.02 \times 10^{-15} T^{1.42} \exp(-605/T)$ 4.5×10^{-13}	213-697 298	Piety et al. (1998)	PLP-RF (c)
$1.55 \times 10^{-11} \exp[-(1070 \pm 50)/T]$ (4.6 ± 0.2) $\times 10^{-13}$	298-350 298	Larin et al. (2018)	DF-RF (d)
<i>Relative Rate Coefficients</i>			
$1.26 \times 10^{-11} \exp(-1565/T)$ 6.6×10^{-14}	273-368 298	Tschuikow-Roux et al. (1988)	RR (e)
$1.07 \times 10^{-11} \exp(-935/T)$ 4.5×10^{-13}	231-295 295	Orlando et al. (1996)	RR (f)
$9.04 \times 10^{-12} \exp(-886/T)$ 4.5×10^{-13}	298-527 298	Gola et al. (2010)	RR (g)

Comments

- (a) The reaction rate coefficients were measured by generating Cl atoms via 308 nm laser photolysis of Cl₂ and measuring their temporal profiles via resonance fluorescence detection. Experiments were performed in approximately 50 Torr (66.7 mbar) of helium.
- (b) The reaction rate coefficients were measured using a very low pressure reactor, employing a microwave discharge in Cl₂ for the generation of Cl atoms with mass spectrometric detection of reactants and products. Experiments were performed in approximately 1 mTorr (1.33 mbar) of helium.
- (c) The reaction rate coefficients were measured by generating Cl atoms via 266 nm laser photolysis of Cl₂CO (or Cl₂ at 355 nm in a few experiments) and measuring their temporal profiles via resonance fluorescence detection. Experiments were performed at 161 – 697 K in 20 - 250 Torr (27 - 270 mbar) of nitrogen. At temperatures in the range 161 – 177 K reversible addition of Cl atoms to give the CH₃BrCl adduct was observed. For T ≥ 213 K where hydrogen abstraction is the dominant reaction pathway the Arrhenius expression given in the table above was obtained.
- (d) Cl atoms generated by microwave discharge of Cl₂ in helium diluent. Cl atoms were detected using resonance fluorescence at 118.9 nm.
- (e) Cl atoms were generated by the photolysis of Cl₂ at 424 nm, and the concentrations of the reactions products CH₂ClBr and CH₃Cl measured by GC. The measured rate coefficient ratio of $k(\text{Cl} + \text{CH}_3\text{Br})/k(\text{Cl} + \text{CH}_4) = (1.91 \pm 0.09) \exp[-(325 \pm 10)/T]$ is placed on an absolute basis using $k(\text{Cl} + \text{CH}_4) = 6.6 \times 10^{-12} \exp(-1240/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006).
- (f) Cl atoms were generated by the photolysis of Cl₂. The decays of the reactant and reference organic were measured by FTIR spectroscopy. Experiments were performed in

approximately 700 Torr (933 mbar) of N₂. The measured rate coefficient was placed on an absolute basis using $k(\text{Cl} + \text{CH}_4) = 6.6 \times 10^{-12} \exp(-1240/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006).

(g) The decays of the reactant and reference (CH₄) organic were measured by GC. The measured rate coefficient ratios were placed on an absolute basis using $k(\text{Cl} + \text{CH}_4) = 6.6 \times 10^{-12} \exp(-1240/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006).

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.5×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.38 \times 10^{-11} \exp(-1020/T)$	210-300
<i>Reliability</i>		
$\Delta \log k$	0.05	298
$\Delta(E/R)$	± 100	210-300

Comments on Preferred Values

The preferred value at 298 K is an average of the results reported by Gierczak et al. (1994), Kambanis et al. (1997), Piety et al. (1998), Orlando et al. (1996), and Gola et al. (2010). The expression for the temperature dependence listed in the Table of preferred values is derived from the fit to the data of these studies below 300 K. The values reported by Tschiukow-Roux et al. are not used because they seem to be systematically higher than the results of the other measurements. The results reported by Larin et al. (2018) are consistent with the preferred value. At temperatures of 161 – 177 K the reaction leads to the reversible formation of the adduct CH₃BrCl. For temperatures above 213 K there is no experimental evidence for formation of the adduct and reaction proceeds via hydrogen abstraction (Piety et al., 1998; Enami et al., 2005). For temperatures above 298 K there is some disagreement between the results from Piety et al. (1998) and Gola et al. (2010). A fit of the modified Arrhenius expression to the entire data set from Gierczak et al., Kambanis et al., Piety et al., Orlando et al., and Gola et al. gives $k = 1.78 \times 10^{-17} T^2 \exp(-396/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and is preferred for 550 K > T > 298 K.

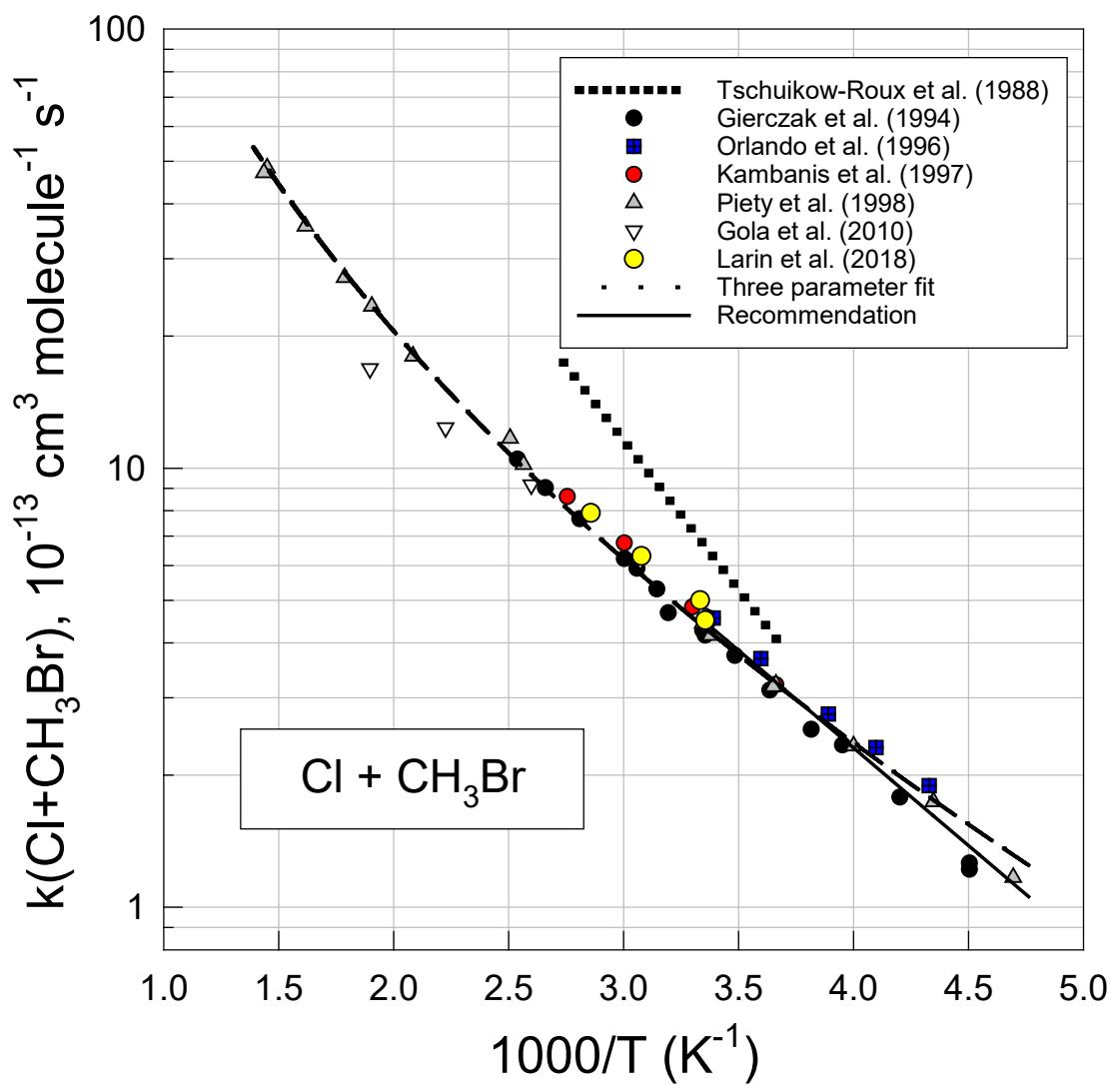
References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Enami, S., Hashimoto, S., Kawasaki, M., Nakano, Y., Ishiwata, T., and Wallington, T. J.: J. Phys. Chem. A, 109, 1587, 2005.

Gierczak, T., Goldfarb, L., Sueper, D. and Ravishankara, A. R.: Int. J. Chem. Kinet., 26, 719, 1994.

Gola, A.A, Sarzyński, D., Dryś, A. and Jodkowski, J.T.: Chem. Phys. Lett., 486, 7, 2010.


Kambanis, K. G., Lazarou, Y. G., and Papagiannakopoulos, P.: J. Phys. Chem. A, 101, 8496, 1997.

Larin, I. K., Spasskii, A. I., Trofimova, E. M., and Proncheva, N. G.: Kinet. Catal., 59, 11, 2018.

Orlando, J. J., Tyndall, G. S., Wallington, T. J., and Dill, M.: Int. J. Chem. Kinet., 28, 433, 1996.

Piety, C. A., Soller, R., Nicovich, J. M., McKee, M. L., and Wine, P. H.: Chem. Phys., 231, 155, 1998.

Tschiukow-Roux, E., Faraji, F., Paddison, S., Niedzielski, J., and Miyokawa, K.: J. Phys. Chem., 92, 1488, 1988.

oFOx112: HO + CF₂=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

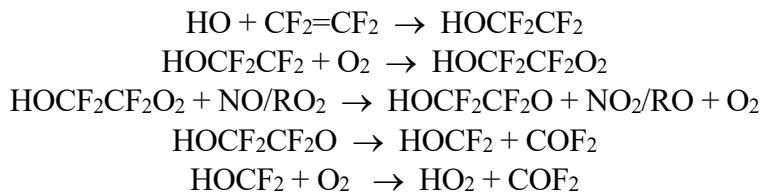
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.02 \pm 0.05) \times 10^{-11}$	298	Orkin et al., 1997	FP-RF (a)
$3.39 \times 10^{-12} \exp[(323 \pm 11)/T]$	250-370	Orkin et al., 2002	FP-RF (a)
$(1.00 \pm 0.015) \times 10^{-11}$	298		
$(8.0 \pm 0.3) \times 10^{-12}$	370	Orkin et al., 2011	FP-RF (a)
$(7.09 \pm 0.02) \times 10^{-12}$	480		
<i>Relative Rate Coefficients</i>			
$(1.07 \pm 0.34) \times 10^{-11}$	298	Acerboni et al., 1999	RR (b)
$(1.07 \pm 0.15) \times 10^{-11}$	298		

Comments

(a) HO radicals were generated by the photolysis of H₂O by a xenon flash lamp in 100 Torr (133 mbar) of argon diluent. HO radicals were monitored using resonance fluorescence.

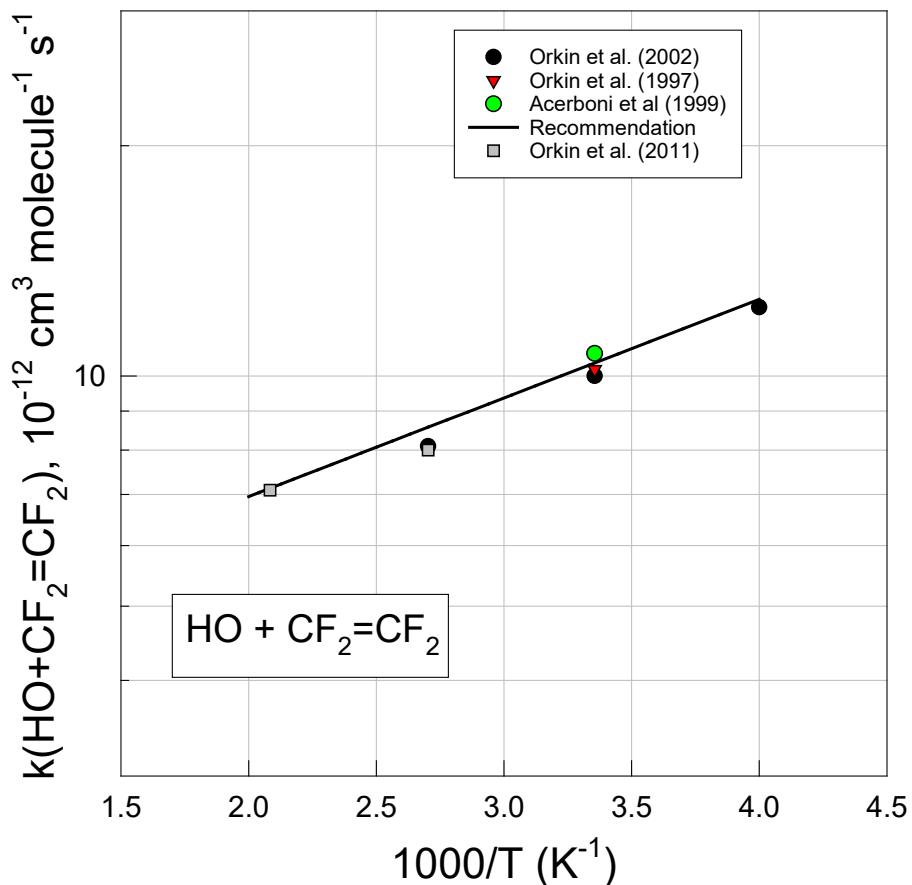
(b) Photolysis of CH₃ONO in C₂F₄-C₃H₆-NO and C₂F₄-cyclohexane-NO mixtures in 740 Torr (986 mbar) of air diluent was used to generate HO radicals and measure $k(\text{C}_2\text{F}_4)/k(\text{C}_3\text{H}_6) = 0.375 \pm 0.118$ and $k(\text{C}_2\text{F}_4)/k(\text{cyclohexane}) = 1.566 \pm 0.226$. Using $k(\text{HO} + \text{C}_3\text{H}_6) = 2.85 \times 10^{-11}$ (Atkinson et al., 2006) and $k(\text{HO} + \text{cyclohexane}) = 6.85 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ (Calvert et al., 2015) gives $k(\text{HO} + \text{C}_2\text{F}_4) = (1.07 \pm 0.34) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and $(1.07 \pm 0.15) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values


Parameter	Value	<i>T</i> /K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.04×10^{-11}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$3.84 \times 10^{-12} \exp(297/T)$	250-500
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	250-500

Comments on Preferred Values

The preferred value at 298 K is an average of the absolute rate determinations by Orkin et al. (1997) and (2002) and the relative rate determination by Acerboni et al. (1999). The temperature dependence is derived from a fit to the data from Orkin et al. (2002) and (2011) with the A factor adjusted to give the preferred rate coefficient at 298 K.


The reaction proceeds via addition to the >C=C< double bond. Based upon the behavior of the reaction of HO radicals with similar halogenated alkenes such as CH₂=CF₂ (Howard, 1976) it is expected that the kinetics of the reaction will be at the high pressure limit for total pressures above

approximately 5 Torr (7 mbar). Consistent with this expectation there is no discernable difference between the rate coefficient measured in 100 Torr of argon diluent by Orkin et al. (1997, 2002) and that measured in 740 Torr of air by Acerboni et al. (1999). The HO radical initiated oxidation of $\text{CF}_2=\text{CF}_2$ will give COF_2 as the major product.

References

Acerboni, G.; Jensen, N. R.; Rindone, B.; and Hjorth, J.: *Chem. Phys. Lett.*, 309, 364, 1999.
 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>
 Calvert, J. G.; Orlando, J. J.; Stockwell, W. R.; and Wallington, T. J.: *The mechanisms of reactions influencing atmospheric ozone*, Oxford University Press, 2015.
 Orkin, V. L.; Huie, R. E.; and Kurylo, M. J.: *J. Phys. Chem. A*, 101, 9118, 1997.
 Orkin, V. L.; Louis, F.; Huie, R. E.; and Kurylo, M. J.: *J. Phys. Chem. A*, 106, 10195, 2002.
 Orkin, V. L.; Poskrebyshev, G. A.; and Kurylo, M. J., *J. Phys. Chem. A*, 115, 6568, 2011.

oFOx114: HO + CF₃CF=CH₂ (HFO-1234yf)

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.41 \times 10^{-12} \exp[-(64 \pm 27)/T]$ $(1.12 \pm 0.02) \times 10^{-12}$	252-370 298	Orkin et al. (1997)	FP-RF (a)
$1.26 \times 10^{-12} \exp[-(35 \pm 10)/T]$ $(1.12 \pm 0.02) \times 10^{-12}$	207-380 296	Papadimitriou et al. (2008)	PLP-LIF (b)
$1.145 \times 10^{-12} \exp[-13/T]$ $(1.096 \pm 0.007) \times 10^{-12}$	220-298 298	Orkin et al. (2010)	FP-RF (c)
$1.54 \times 10^{-12} \exp[100/T]$ $(1.10 \pm 0.01) \times 10^{-12}$	250-430 298	Tokuhashi et al. (2018)	LP, FP-LIF (d)
<i>Relative Rate Coefficients</i>			
$(9.04 \pm 0.67) \times 10^{-13}$ $(9.82 \pm 0.55) \times 10^{-13}$	296 296	Nielsen et al. (2007)	RR (e)

Comments

- (a) HO radicals were generated by the photolysis of H₂O by a xenon flash lamp in 100 Torr (133 mbar) of argon diluent.
- (b) HO radicals were produced using the pulsed laser photolysis of either H₂O₂ or HNO₃ at 248 nm. Experiments at 296K were conducted in a total pressure of 25-600 Torr (33-800 mbar) using helium, nitrogen, or SF₆ diluent. There was no discernable effect of total pressure or diluent on the kinetics of the reaction.
- (c) HO radicals were generated by the photolysis of H₂O by a xenon flash lamp in 30-300 Torr (40-400 mbar) of argon diluent.
- (d) HO radicals were generated by either flash photolysis or pulsed laser photolysis. In the flash photolysis experiments one chemical system (photolysis of water vapor) was employed while in the laser photolysis experiments three different chemical systems were used to generate HO radicals. There was no discernible difference in results obtained using the different methods. Experiments were performed in 5-200 Torr of argon or helium diluent, there was no discernible effect of pressure or diluent gas. The CF₃CF=CH₂ sample was purified before use and determined to be 99.99% pure.
- (e) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of CF₃CF=CH₂ was measured relative to those of C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{CF}_3\text{CF}=\text{CH}_2)/k(\text{C}_2\text{H}_2) = 1.21 \pm 0.09$ and $k(\text{CF}_3\text{CF}=\text{CH}_2)/k(\text{C}_2\text{H}_4) = 0.125 \pm 0.007$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CF}=\text{CH}_2) = (9.04 \pm 0.67) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ and $(9.82 \pm 0.55) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.12×10^{-12}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.16 \times 10^{-12} \exp(-10/T)$	200-300
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	200-300

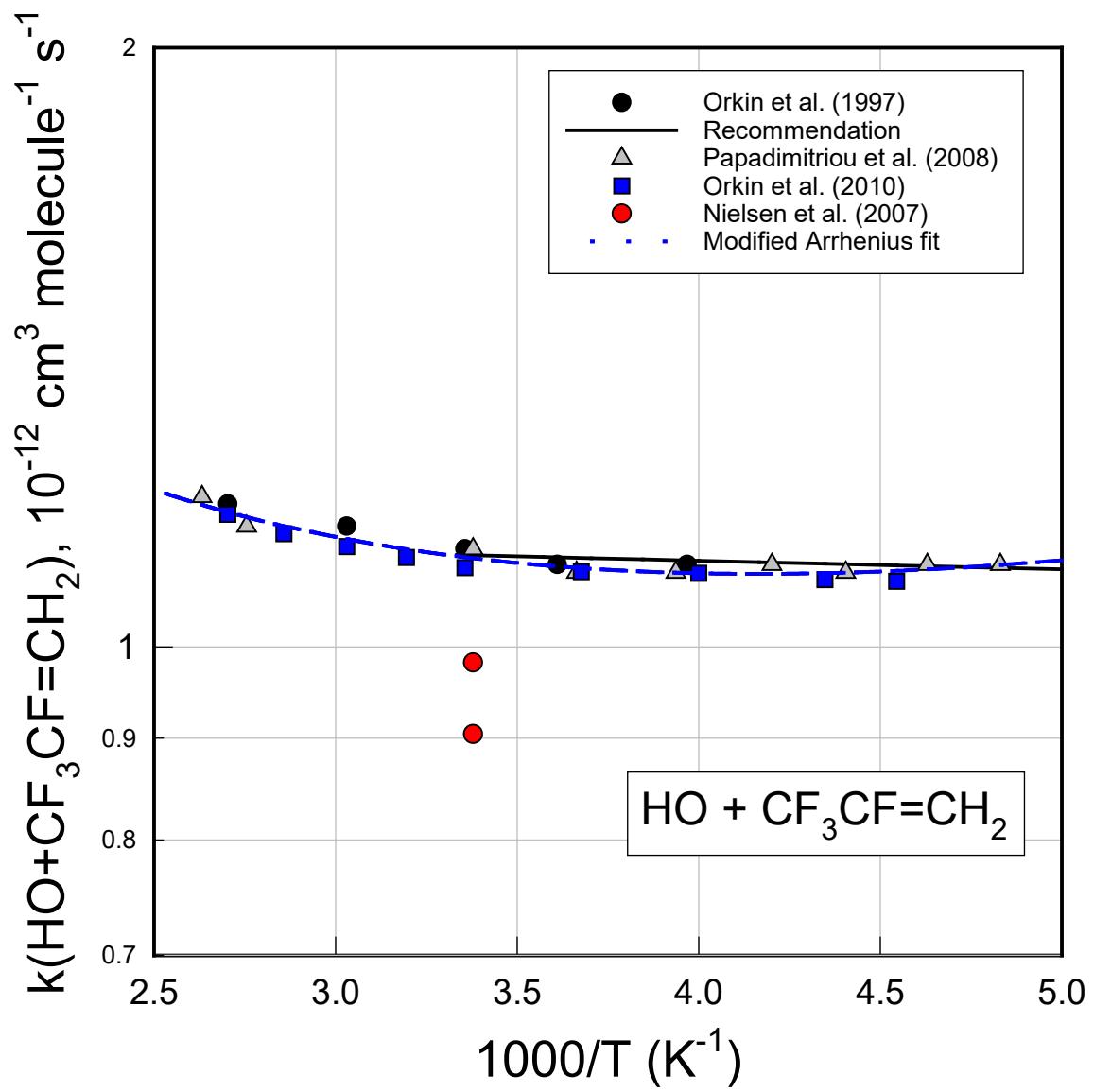
Comments on Preferred Values

The absolute rate measurements by Orkin et al. (1997), Papadimitriou et al. (2008), Orkin et al. (2010), and Tokuhashi et al. (2018) are in excellent agreement (within 5% at all temperatures studied) while the relative rate measurements by Nielsen et al. (2008) at 296 K lie approximately 15% below those from the absolute studies. Orkin et al. (1997), Papadimitriou et al. (2008), and Tokuhashi et al. (2018) showed that for pressures above 5 Torr there is no effect of total pressure and the reaction is at, or near, the high pressure limit. The preferred value at 298 K is the average from Orkin et al. (1997), Papadimitriou et al. (2008), and Orkin et al. (2010). The precision of the absolute rate measurements for this reaction are excellent and a small, but discernable, curvature is evident in the Arrhenius plot. A fit of a modified Arrhenius expression to the entire data set from Orkin et al. (1997), Papadimitriou et al. (2008), and Orkin et al. (2010) gives $k = 0.545 \times (T/298)^{0.882} \exp(212/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. A fit of the Arrhenius expression to the data below 300 K with the A-factor adjusted to reproduce the preferred value of k at 298 K gives $k = 1.16 \times 10^{-12} \exp(-10/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The data from Tokuhashi et al. (2018) are in good agreement with the preferred value. For simplicity and consistency within the IUPAC database we prefer the simple Arrhenius expression. The HO radical initiated oxidation of $\text{CF}_3\text{CF}=\text{CH}_2$ gives $\text{CF}_3\text{C(O)F}$ and HCHO as products (Hurley et al., 2008). The atmospheric fate of $\text{CF}_3\text{C(O)F}$ is hydrolysis to give $\text{CF}_3\text{C(O)OH}$ (trifluoroacetic acid).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Hurley, M. D., Wallington, T. J., Javadi, M.S., and Nielsen, O. J.: Chem. Phys. Lett. 450, 263, 2008.


Nielsen, O. J.; Javadi, M. S.; Sulbaek Andersen, M. P.; Hurley, M. D.; Wallington, T. J.; and Singh, R.: Chem. Phys. Lett. 439, 18, 2007.

Orkin, V. L., Huie, R. E., and Kurylo, M. J.: J. Phys. Chem. A, 101, 9118, 1997.

Orkin, V. L.; Martynova, L. E.; and Ilichev, A. N.: J. Phys. Chem. A, 114, 5967, 2010.

Papadimitriou, V. C.; Talukdar, R. K.; Portmann, R. W.; Ravishankara, A. R.; and Burkholder, J. B.: Phys. Chem. Chem. Phys., 10, 808, 2008.

Tokuhashi, K., Takizawa, K., and Kondo, S.: Environ. Sci. Pollut. Res., 25, 15204, 2018.

oFOx115: HO + *E*-CF₃CH=CHF (HFO-1234ze(E))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
See comment (a) (7.11± 0.05) × 10 ⁻¹³	220-370 298	Orkin et al. (2010)	FP-RF (a)
7.6 × 10 ⁻¹³ (T/298) ^{2.44} exp(666/T) (7.06 ± 0.27) × 10 ⁻¹³	263-358 298	Antiñolo et al. (2017)	PLP-LIF (b)
4.8 × 10 ⁻¹³ (T/298) ^{0.727} exp(110/T) (7.03 ± 0.03) × 10 ⁻¹³	220-430 298	Tokuhashi et al. (2021)	FP, LP-LIF (c)
<i>Relative Rate Coefficients</i>			
(8.00 ± 0.82) × 10 ⁻¹³ (8.72 ± 0.47) × 10 ⁻¹³	296 296	Søndergaard et al. (2007)	RR (d)
1.05 × 10 ⁻¹² exp(-118/T) (7.42 ± 0.28) × 10 ⁻¹³	253-328 298	Zhang et al. (2015)	RR (e)
(7.14 ± 0.34) × 10 ⁻¹³	298		

Comments

(a) HO radicals were generated by the photolysis of H₂O by a xenon flash lamp in 30-200 Torr (40-267 mbar) of argon diluent. HO radicals were monitored using resonance fluorescence. There was no discernable (<5%) effect of total pressure over the range studied on the rate of reaction. A small but distinct curvature was evident in the Arrhenius plot and a modified Arrhenius expression, $k = 1.115 \times 10^{-13} (T/298)^{2.03} \exp(552/T)$ cm³ molecule⁻¹ s⁻¹ was used to best represent the data.

(b) HO radicals were generated by the pulsed laser photolysis of H₂O₂ or HNO₃ and monitored using laser induced fluorescence in 45-300 Torr of helium diluent. There was no discernable effect of total pressure over the range studied.

(c) HO radicals were generated by either flash photolysis or laser photolysis and were monitored using laser induced fluorescence. In the flash photolysis experiments photolysis of water vapor was employed while in the laser photolysis experiments photolysis of N₂O to produce O(¹D) atoms in the presence of either water vapor or CH₄ were used to generate HO radicals. There was no discernible difference in results obtained using the different methods. Experiments were performed in 5-200 Torr of argon or helium diluent, there was no discernible effect of pressure or diluent gas. The CF₃CH=CHF sample was purified before use and the purity of the purified sample was determined to be 99.99%.

(d) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of *E*-CF₃CH=CHF was measured relative to C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{CF}_3\text{CH=CHF})/k(\text{C}_2\text{H}_2) = 1.07 \pm 0.11$ and $k(\text{E-CF}_3\text{CH=CHF})/k(\text{C}_2\text{H}_2) = 0.111 \pm 0.006$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{E-CF}_3\text{CH=CHF}) = (8.00 \pm 0.82) \times 10^{-13}$ and $(8.72 \pm 0.47) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

(e) Photolysis of O₃ in the presence of water vapor in 200 Torr of helium diluent was used to generate HO radicals. The loss of *E*-CF₃CH=CHF was measured relative to *n*-C₄H₁₀ and *n*-C₅H₁₂ and used to measure rate coefficient ratios $k(\text{E-CF}_3\text{CH=CHF})/k(\text{n-C}_4\text{H}_{10})$ and $k(\text{E-CF}_3\text{CH=CHF})/k(\text{n-C}_5\text{H}_{12})$ over the temperature range 253-328 K. Rate coefficient ratios at 298 K were $k(\text{E-CF}_3\text{CH=CHF})/k(\text{n-C}_4\text{H}_{10}) = 0.291 \pm 0.011$ and $k(\text{E-CF}_3\text{CH=CHF})/k(\text{n-C}_5\text{H}_{12}) = 0.187 \pm 0.009$. Using $k(\text{HO} + \text{n-C}_4\text{H}_{10}) =$

$9.80 \times 10^{-12} \exp(-425/T)$ (Atkinson et al., 2006) and $k(\text{HO} + n\text{-C}_5\text{H}_{12}) = 1.81 \times 10^{-11} \exp(-452/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Calvert et al., 2008) gives $k(\text{HO} + E\text{-CF}_3\text{CH}=\text{CHF}) = (7.42 \pm 0.28) \times 10^{-13}$ and $(7.14 \pm 0.34) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	7.07×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$6.91 \times 10^{-13} \exp(7/T)$	210-300
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	210-300

Comments on Preferred Values

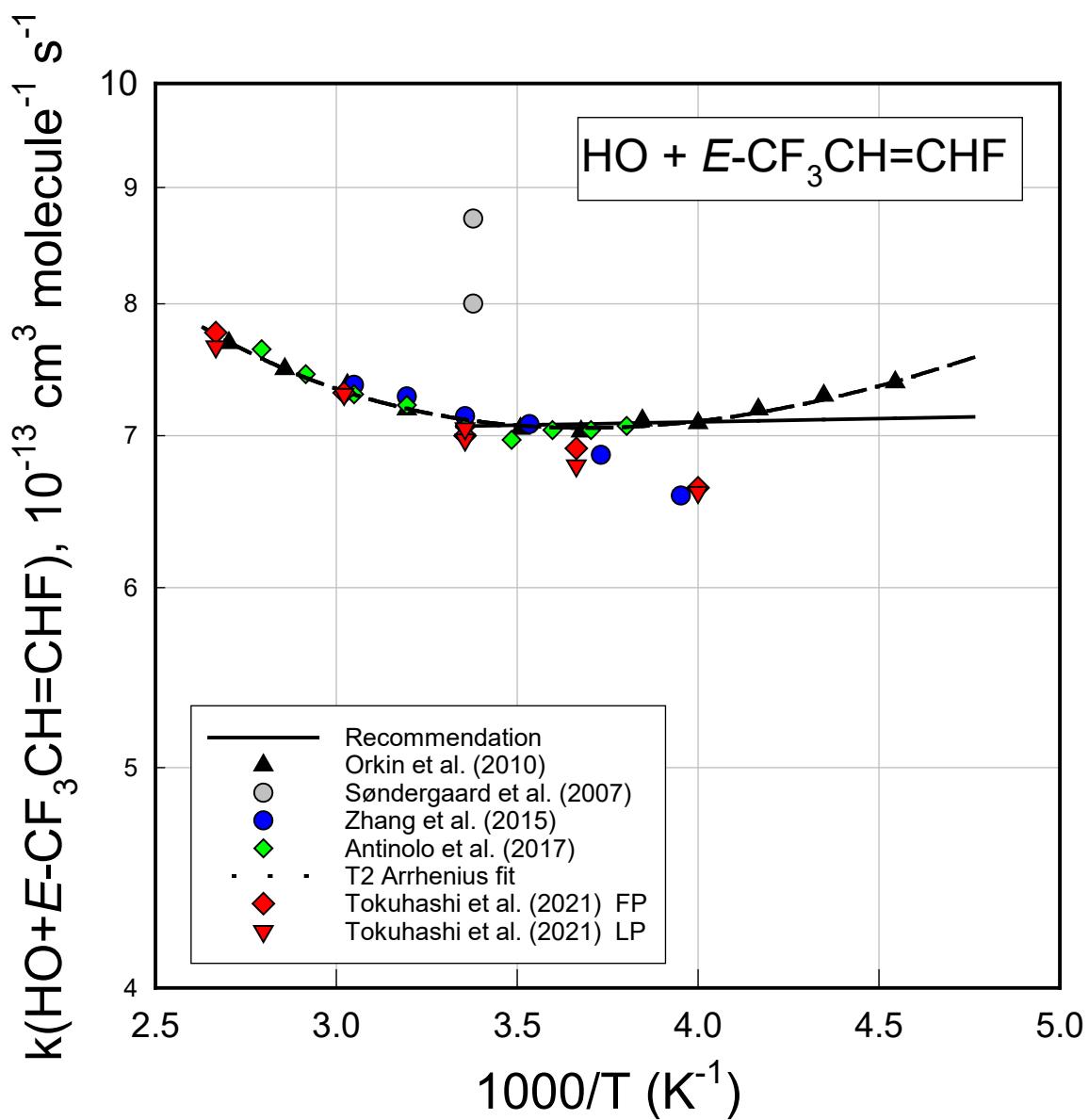
There is good agreement between the rate coefficients measured in the absolute rate studies by Orkin et al. (2010), Antiñolo et al. (2017), and Tokuhashi et al. (2021) and the relative rate study by Zhang et al. (2015). The results of the relative rate study by Søndergaard et al. (2007) lie approximately 15% higher. There was no discernible effect of total pressure over the range 5-200 Torr in the studies by Orkin et al. (2010), Antiñolo et al. (2017), and Tokuhashi et al. (2021) indicating that the reaction is at, or near, the high-pressure limit for pressures above 5 Torr. The measurements by Orkin et al. (2010) and Antiñolo et al. (2017) indicate a slight curvature in the Arrhenius plot which is however not apparent in the results from Zhang et al. (2015) and Tokuhashi et al. (2021). A fit of a modified Arrhenius expression to the combined data set from Orkin et al. (2010) and Antiñolo et al. (2017) gives $k = 1.30 \times 10^{-18} T^2 \exp(551/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Taking an average of the rate coefficients reported by Orkin et al. (2010), Antiñolo et al. (2017), and Tokuhashi et al. (2021) gives our preferred value at 298 K. A fit of the Arrhenius expression to the data from all studies below 300 K, except from Søndergaard et al. (2007), and adjusting the A factor to match the preferred value at 298 K gives $k = 6.91 \times 10^{-13} \exp(7/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. For simplicity and consistency within the IUPAC database we prefer the simple Arrhenius expression. The HO radical initiated oxidation of $\text{CF}_3\text{CH}=\text{CHF}$ in air gives $\text{CF}_3\text{C(O)H}$ and HC(O)F as products (Javadi et al., 2008).

References

Antiñolo, M., Bravo, I., Jiménez, E., Ballesteros, B., Albaladejo, J.: J. Phys. Chem. A, 121, 8322, 2017.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S., and Wallington T. J.: Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York, NY, 2008.


Javadi, M. S., Søndergaard, R., Nielsen, O. J., Hurley, M. D., and Wallington, T. J.: Atmospheric Chemistry and Physics, 8, 3141, 2008.

Orkin, V. L., Martynova, L. E., and Ilichev, A. N.: J. Phys. Chem. A, 114, 5967, 2010.

Søndergaard, R., Nielsen, O. J., Hurley, M. D., Wallington, T. J., and Singh, R.: Chem. Phys. Lett., 443, 199, 2007.

Tokuhashi, K., Takizawa, K., Kondo, S.: Atmos Environ., 255, 118428, 2021.

Zhang, N., Chen, L., Mizukado, J., Quan, H., Suda, H.: Chem. Phys. Lett, 621, 78, 2015.

oFOx117: HO + Z-CF₃CH=CHF (HFO-1234ze(Z))

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.4 \times 10^{-13} (T/298)^{1.91} \exp(640/T)$ $(1.21 \pm 0.03) \times 10^{-12}$	263-358 298	Antiñolo et al. (2017)	PLP-LIF (a)
<i>Relative Rate Coefficients</i>			
$(1.02 \pm 0.06) \times 10^{-12}$ $(1.15 \pm 0.10) \times 10^{-12}$	296 296	Nilsson et al. 2009	RR (b)
$9.11 \times 10^{-13} \exp(-114/T)$ $(1.38 \pm 0.02) \times 10^{-12}$	253-328 298	Zhang et al. (2015)	RR (c)
$(1.42 \pm 0.03) \times 10^{-12}$	298		

Comments

- (a) HO radicals were generated by the pulsed laser photolysis of H₂O₂ or HNO₃ and monitored using laser induced fluorescence in 45-300 Torr of helium diluent. There was no discernible effect of total pressure on the rate coefficient over the range studied.
- (b) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of Z-CF₃CH=CHF was measured relative to C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{C}_2\text{H}_2) = 1.37 \pm 0.11$ and $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{C}_2\text{H}_4) = 0.146 \pm 0.012$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) gives $k(\text{HO} + \text{Z-CF}_3\text{CH=CHF}) = (1.02 \pm 0.06) \times 10^{-12}$ and $(1.15 \pm 0.10) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.
- (c) Photolysis of O₃ in the presence of water vapor in 200 Torr of helium diluent was used to generate HO radicals. The loss of *E*-CF₃CH=CHF was measured relative to *n*-C₄H₁₀ and *n*-C₅H₁₂ to derive rate coefficient ratios $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{n-C}_4\text{H}_{10})$ and $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{n-C}_5\text{H}_{12})$ over the temperature range 253-328 K. Rate coefficient ratios at 298 K were $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{n-C}_4\text{H}_{10}) = 0.585 \pm 0.009$ and $k(\text{Z-CF}_3\text{CH=CHF})/k(\text{n-C}_5\text{H}_{12}) = 0.358 \pm 0.007$. Using $k(\text{HO} + \text{n-C}_4\text{H}_{10}) = 9.80 \times 10^{-12} \exp(-425/T)$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) and $k(\text{HO} + \text{n-C}_5\text{H}_{12}) = 1.81 \times 10^{-11} \exp(-452/T)$ cm³ molecule⁻¹ s⁻¹ (Calvert et al., 2008) gives $k(\text{HO} + \text{Z-CF}_3\text{CH=CHF}) = (1.38 \pm 0.02) \times 10^{-12}$ and $(1.42 \pm 0.03) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.21×10^{-12}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$8.46 \times 10^{-13} \exp(106/T)$	260-300
<i>Reliability</i>		
$\Delta \log k$	± 0.15	298
$\Delta E/R$	± 100	260-300

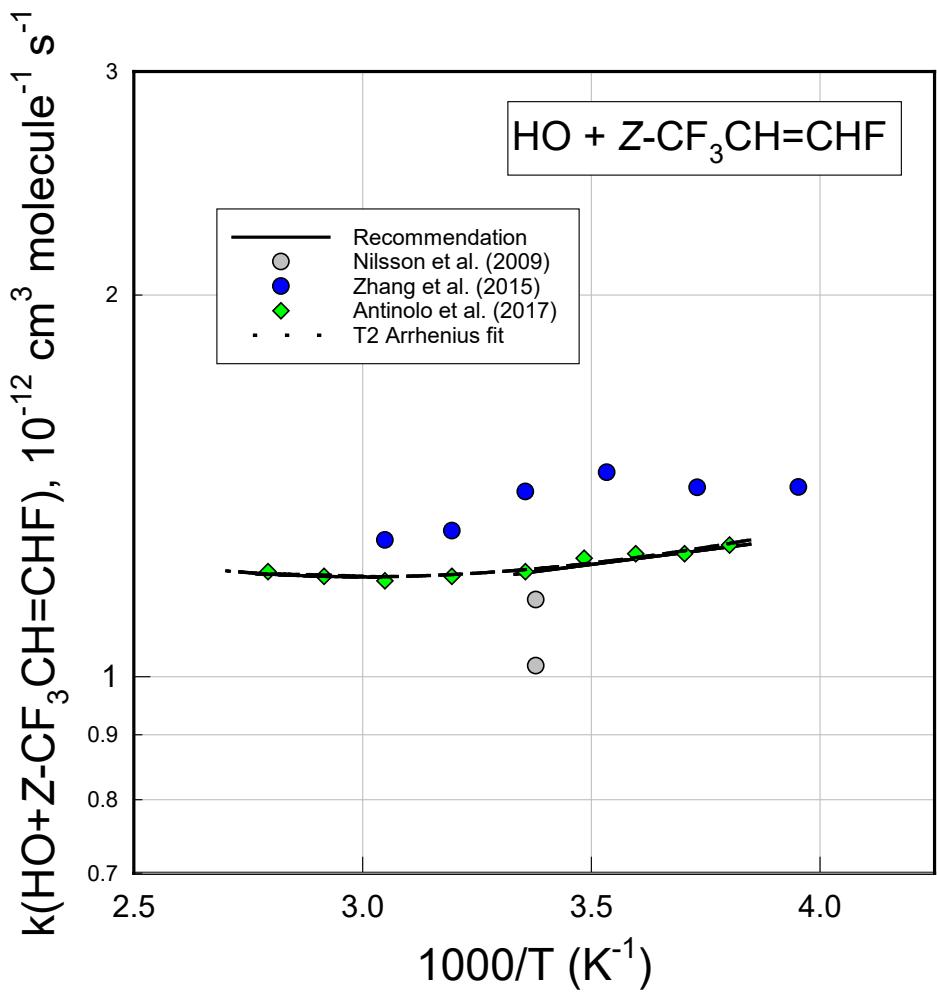
Comments on Preferred Values

There is good agreement between the rate coefficients measured in the absolute rate study by Antiñolo et al. (2017) and the relative rate studies by Nilsson et al. (2009) and Zhang et al. (2015). There was no discernible effect of total pressure over the range 45-300 Torr in the study by Antiñolo et al. (2017) indicating that the reaction is at, or near, the high-pressure limit for pressures above 45 Torr. The preferred rate coefficient at 298 K is taken from the study by Antiñolo et al. (2017). The absolute rate measurements reveals a small curvature in the Arrhenius plot. A fit of a modified Arrhenius expression to the data set from Antiñolo et al. (2017) gives $k = 1.46 \times 10^{-18} T^2 \exp(666/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 280 K and is derived from the three-parameter equation with $A = C e^2 T^2$ and $B = D + 2T$.

The HO radical initiated oxidation of $\text{CF}_3\text{CH}=\text{CHF}$ in air yields $\text{CF}_3\text{C(O)H}$ and HC(O)F as products (Javadi et al., 2008).

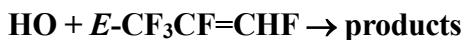
References

Antiñolo, M., Bravo, I., Jiménez, E., Ballesteros, B., and Albaladejo, J.: *J. Phys. Chem. A*, 121, 8322, 2017.


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S., and Wallington T. J.: *Mechanisms of Atmospheric Oxidation of the Alkanes*, Oxford University Press, New York, NY, 2008.

Javadi, M. S., Søndergaard, R., Nielsen, O. J., Hurley, M. D., and Wallington, T. J.: *Atmos. Chem. and Phys.*, 8, 3141, 2008.


Nilsson, E. J. K., Nielsen, O. J., Johnson, M. S., Hurley, M. D., and Wallington, T. J.: *Chem. Phys. Lett.*, 473, 233 (2009).

Zhang, N., Chen, L., Mizukado, J., Quan, H., and Suda, H.: *Chem. Phys. Lett.*, 621, 78, 2015.

oFOx118: HO + *E*-CF₃CF=CHF

Last evaluated: June 2025; Last change in preferred values: January 2023.

Rate coefficient data

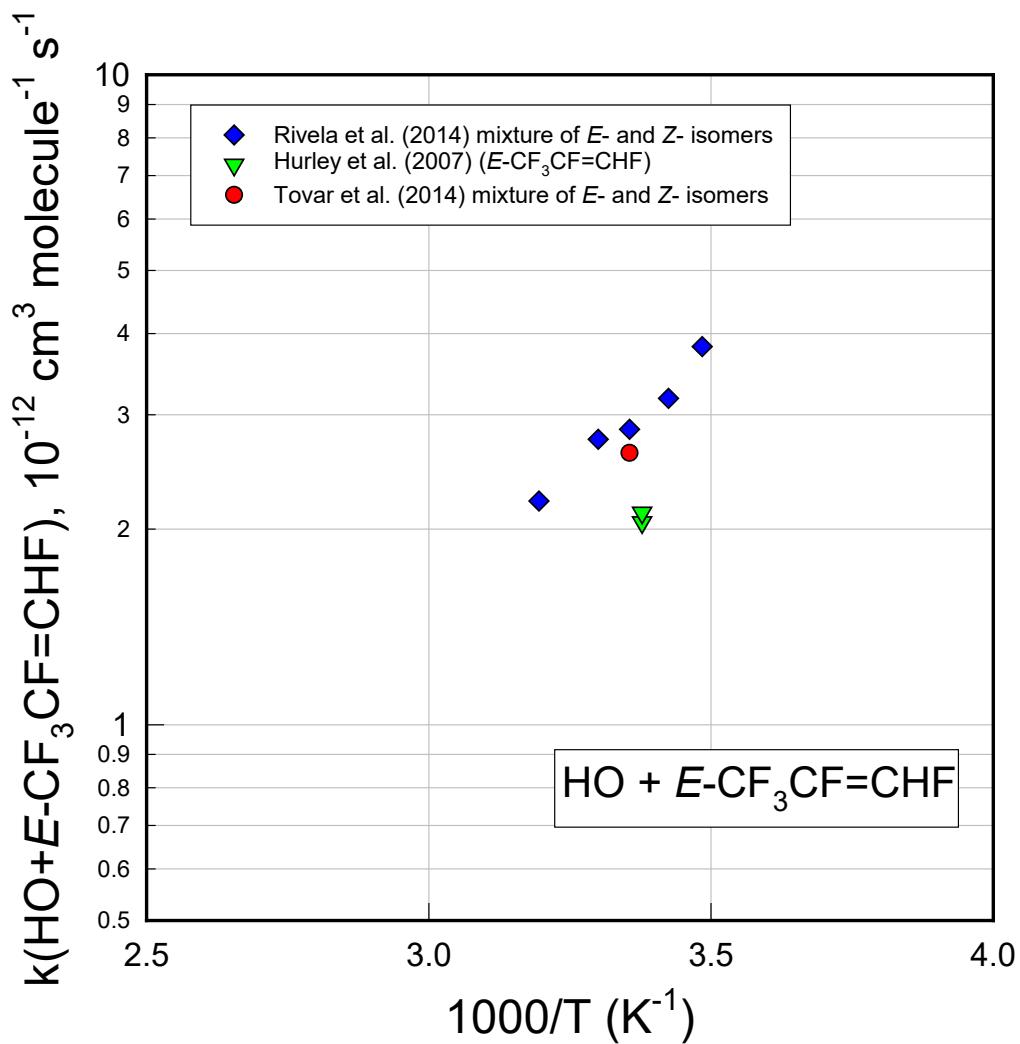
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(2.05 \pm 0.20) \times 10^{-12}$	296	Hurley et al. (2007)	RR (a)
$(2.12 \pm 0.23) \times 10^{-12}$	296		

Comments

(a) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of *E*-CF₃CF=CHF was measured relative to those of C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{E-CF}_3\text{CF=CHF})/k(\text{C}_2\text{H}_2) = 2.74 \pm 0.27$ and $k(\text{E-CF}_3\text{CF=CHF})/k(\text{C}_2\text{H}_4) = 0.27 \pm 0.03$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{E-CF}_3\text{CF=CHF}) = (2.05 \pm 0.20) \times 10^{-12}$ and $(2.12 \pm 0.23) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.2×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298


Comments on Preferred Values

The preferred rate coefficient at 298 K is based on the results from the study by Hurley et al. (2007). Tovar et al. (2014) and Rivela et al. (2019) reported the results of a relative rate study of the reaction of a mixture of the two isomers *E*- and *Z*-CF₃CF=CHF over the temperature range 287-313 K. The isomeric composition of the sample was not measured and the IR feature(s) used to follow the loss of (*E/Z*)-CF₃CF=CHF were not stated so it is unclear which isomer(s) was being studied. However, judging from the similarity of the reported rate coefficient at 298 K with that for *E*-CF₃CF=CHF reported by Hurley et al. (2007) it appears that Tovar et al. (2014) and Rivela et al. (2019) were mainly measuring the kinetics of the *E*-CF₃CF=CHF isomer. The rate coefficients reported by Tovar et al. (2014) and Rivela et al. (2019) at 298 K were $(2.62 \pm 0.76) \times 10^{-12}$ and $(2.85 \pm 0.78) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and are consistent within the combined uncertainties with the preferred value for the *E*-CF₃CF=CHF isomer.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Hurley, M. D., Ball, J. C., and Wallington, T. J.: J. Phys. Chem. A, 111, 9789, 2007.
 Rivelas, C. B., Tovar, C. M., Teruel, M. A., Barnes, I., and Wiesen, P.: Chem. Phys. Lett., 714, 190, 2019.
 Tovar, C. M., Blanco, M. B., Barnes, I., Wiesen, P., and Teruel, M. A.: Atmos. Env., 88, 107, 2014.

oFOx119: HO + Z-CF₃CF=CHF (HFO-1225ye(Z))

Last evaluated: June 2025; Last change in preferred values: January 2023.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.6 \times 10^{-18} T^2 \exp(655/T)$	206-380	Papadimitriou et al. (2008)	PLP-LIF (a)
1.28×10^{-12}	298		
<i>Relative Rate Coefficients</i>			
$(1.15 \pm 0.11) \times 10^{-12}$	296	Hurley et al. (2007)	RR (b)
$(1.26 \pm 0.08) \times 10^{-12}$	296		

Comments

(a) HO radicals were produced using the pulsed laser photolysis of either H₂O₂ or HNO₃ at 248 nm. Experiments at 296K were conducted in a total pressure of 25-600 Torr (33-800 mbar) using helium, nitrogen, or SF₆ diluent. There was no discernable effect of total pressure or diluent on the kinetics of the reaction.

(b) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of Z-CF₃CF=CHF was measured relative to those of C₂H₂ and C₂H₄ and used to derive rate coefficient ratios $k(\text{Z-CF}_3\text{CF=CHF})/k(\text{C}_2\text{H}_2) = 1.54 \pm 0.15$ and $k(\text{Z-CF}_3\text{CF=CHF})/k(\text{C}_2\text{H}_4) = 0.16 \pm 0.01$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{Z-CF}_3\text{CF=CHF}) = (1.15 \pm 0.11) \times 10^{-12}$ and $(1.26 \pm 0.08) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.2×10^{-12}	298
	$7.60 \times 10^{-13} \exp(155/T)$	200-300
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	200-300

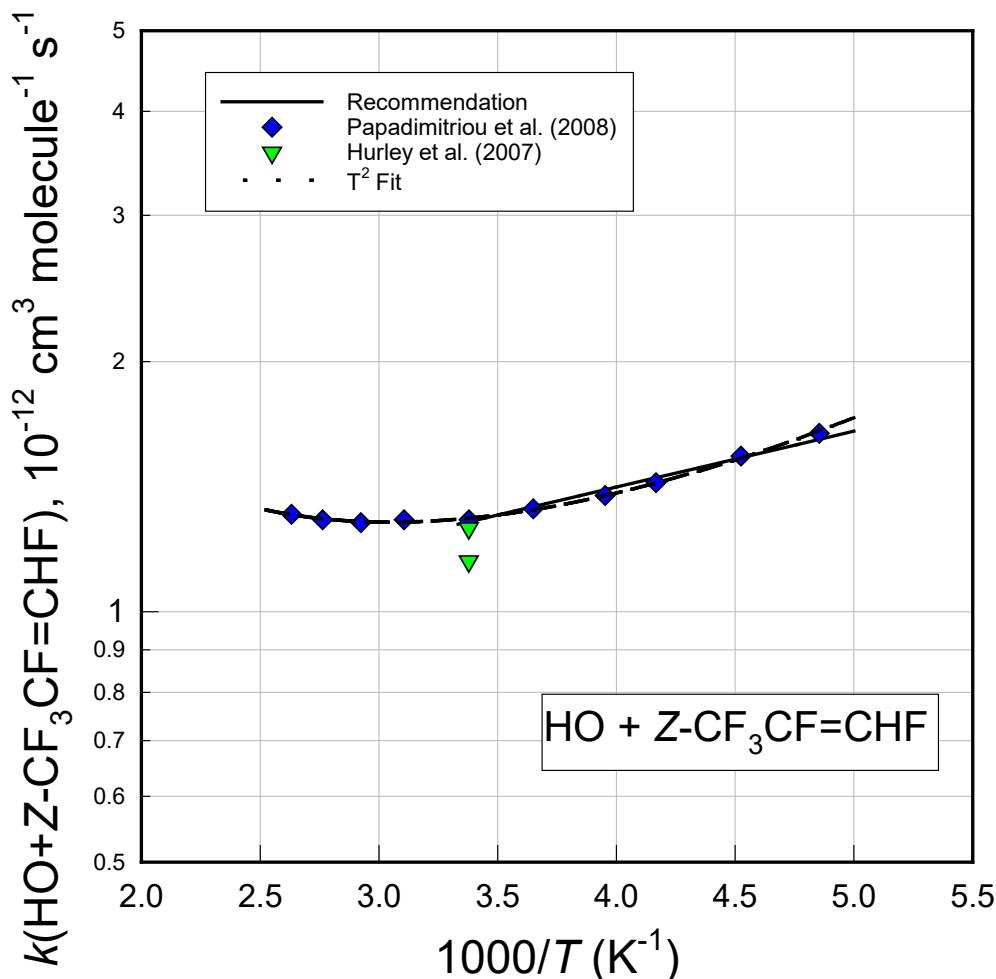
Comments on Preferred Values

There is excellent agreement between the results from the absolute rate study by Papadimitriou et al. (2008) and the relative rate study by Hurley et al. (2007). The preferred rate constant at 298 K is taken from the temperature dependent expression provided by Papadimitriou et al. (2008). There is significant curvature in the Arrhenius plot. Fitting the three parameter equation, $k = CT^2 \exp(-D/T)$ to the data from Papadimitriou et al. (2008) gives $k(\text{HO} + \text{Z-CF}_3\text{CF=CHF}) = 1.62 \times 10^{-18} T^2 \exp(655/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 250 K and is derived from the three-parameter equation with $A = C e^B$ and $B = D + 2T$ with the A factor adjusted to return the preferred rate coefficient at 298 K. Note that the preferred Arrhenius expression should not be used outside the specified temperature range (200-300 K); rather, the full three

parameter expression should be used.

Tovar et al. (2014) and Rivela et al. (2019) have reported the results of a relative rate study of the reaction of a mixture of the two isomers *E*- and *Z*-CF₃CF=CHF over the temperature range 287–313 K. The isomeric composition of the sample was not measured and the IR feature(s) used to follow the loss of (*E/Z*)-CF₃CF=CHF were not stated. However, judging from the similarity of the reported rate coefficients at 298 K of $(2.62 \pm 0.76) \times 10^{-12}$ and $(2.85 \pm 0.78) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ with the values for $k(\text{HO} + \text{E-CF}_3\text{CF=CHF}) = (2.05 \pm 0.20) \times 10^{-12}$ and $(2.12 \pm 0.23) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ reported by Hurley et al. (2008) it appears that Tovar et al. (2014) and Rivela et al. (2019) were mainly measuring the kinetics of the *E*-CF₃CF=CHF isomer.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Hurley, M. D., Ball, J. C., Wallington, T. J.: J. Phys. Chem. A, 111, 9789, 2007.

Papadimitriou, V. C., Talukdar, R. K., Portmann, R. W., Ravishankara, A. R., and Burkholder, J. B.: Phys. Chem. Chem. Phys., 10, 808, 2008.

Rivela, C. B., Tovar, C. M., Teruel, M. A., Barnes, I., and Wiesen, P.: Chem. Phys. Lett., 714, 190, 2019.

Tovar, C. M., Blanco, M. B., Barnes, I., Wiesen, P., and Teruel, M. A.: Atmos. Env., 88, 107, 2014.

oFOx116: HO + CF₃CF=CF₂ (FO-1216)

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
See comment (a)	293-831	McIlroy and Tully (1993)	FP-RF (a)
$(2.27 \pm 0.05) \times 10^{-12}$	293		
$5.66 \times 10^{-13} \exp(-407/T)$	252-370	Orkin et al. (1997)	FP-RF (b)
$(2.17 \pm 0.01) \times 10^{-12}$	298		
$8.74 \times 10^{-13} \exp(260/T)$	250-430	Tokuhashi et al. (2000)	FP-LIF (c)
$(2.12 \pm 0.02) \times 10^{-12}$	298		
$9.75 \times 10^{-14} (T/298)^{1.98} \exp(922/T)$	230-480	Orkin et al. (2011)	FP-LIF (d)
$(2.16 \pm 0.07) \times 10^{-12}$	298		
<i>Relative Rate Coefficients</i>			
$(2.28 \pm 0.16) \times 10^{-12}$	296	Mashino et al. (2000)	RR (e)
$(1.98 \pm 0.11) \times 10^{-12}$	296		
$(2.47 \pm 0.43) \times 10^{-12}$	298	Acerboni et al. (2001)	RR (f)
$(3.29 \pm 0.91) \times 10^{-12}$	298		

Comments

(a) HO radicals were generated by the photolysis of H₂O by a xenon flash lamp in 75-750 Torr (76-760 mbar) of argon diluent. Single-exponential decays were observed over the temperature ranges 293-489 K and 656-831 K while bi-exponential decays were observed for the intermediate temperature range 528-641 K. There was no discernable effect of total pressure over the range studied on the rate of reaction at 293 K. Fitting the Arrhenius expression to the data from 293-489 K gave $k = (9.95 \pm 0.64) \times 10^{-13} \exp [-(486 \pm 44 \text{ cal})/RT] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. A small but distinct curvature was evident in the Arrhenius plot and a modified Arrhenius expression, $k = 1.115 \times 10^{-13} (T/298)^{2.03} \exp(552/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was used to best represent the data.

(b) HO radicals were produced by the photolysis of H₂O by a xenon flash lamp in 100 Torr (133 mbar) of argon diluent.

(c) HO radicals were produced by the xenon flash lamp photolysis of H₂O, or pulsed ArF eximer laser photolysis of N₂O to produce O(¹D) atoms which were then reacted with either H₂O or CH₄ to give HO radicals, or pulsed laser photolysis of H₂O₂. HO radicals were monitored by laser induced fluorescence. Experiments were conducted in 5-200 Torr of helium, or argon, diluent. There was no discernible effect of pressure or diluent gas over the range studied. Results from experiments using four different sources of HO radicals were indistinguishable.

(d) HO radicals were produced by the photolysis of H₂O by a xenon flash lamp in 30-100 Torr (40-133 mbar) of argon diluent.

(e) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of CF₃CF=CF₂ was measured relative to C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{CF}_3\text{CF=CF}_2)/k(\text{C}_2\text{H}_2) = 2.65 \pm 0.15$ and $k(\text{CF}_3\text{CF=CF}_2)/k(\text{C}_2\text{H}_4) = 0.29 \pm 0.02$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CF=CF}_2) = (2.28 \pm 0.16) \times 10^{-13}$ and $(1.98 \pm 0.11) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

(f) Photolysis of CH₃ONO in 740 Torr (986 mbar) of air diluent was used to generate HO radicals. The loss of CF₃CF=CF₂ was measured relative to C₂H₄ and C₃H₆ and used to measure the rate

coefficient ratios $k(\text{CF}_3\text{CF}=\text{CF}_2)/k(\text{C}_2\text{H}_4) = 0.3151 \pm 0.0552$ and $k(\text{CF}_3\text{CF}=\text{CF}_2)/k(\text{C}_3\text{H}_6) = 0.1153 \pm 0.0321$. Using $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k(\text{HO} + \text{C}_3\text{H}_6) = 2.85 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CF}=\text{CF}_2) = (2.47 \pm 0.43) \times 10^{-12}$ and $(3.29 \pm 0.91) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.18×10^{-12}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$7.38 \times 10^{-13} \exp(322/T)$	240-340
<i>Reliability</i>		
$\Delta \log k$	± 0.04	298
$\Delta E/R$	± 100	240-340

Comments on Preferred Values

The results from the absolute rate studies of McIlroy et al. (1993), Orkin et al (1997, 2011) and Tokuhashi et al. (2000) and the relative rate studies of Acerboni et al. (2001) and Mashino et al. (2000) are in good agreement within the experimental uncertainties. There is excellent agreement in the reported rate coefficients from the absolute rate studies at 298 K. The preferred value at 298 K is the average of the measurements by McIlroy et al. (1993), Orkin et al (1997, 2011) and Tokuhashi et al. (2000). There is significant curvature in the Arrhenius plot. Fitting the expression $k = CT^2 \exp(-D/T)$ to the 240K < T < 500 K data from McIlroy et al. (1993), Orkin et al (1997, 2011) and Tokuhashi et al. (2000) and adjusting the pre-exponential A-factor to return the preferred value at 298 K gives $k(\text{HO} + \text{CF}_3\text{CF}=\text{CF}_2) = 1.11 \times 10^{-18} T^2 \exp(922/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 300 K and is derived from the three-parameter equation with $A = C e^2 T^2$ and $B = D + 2T$. Note that the preferred Arrhenius expression should not be used outside the specified temperature range (240-340 K); rather, the modified expression should be used.

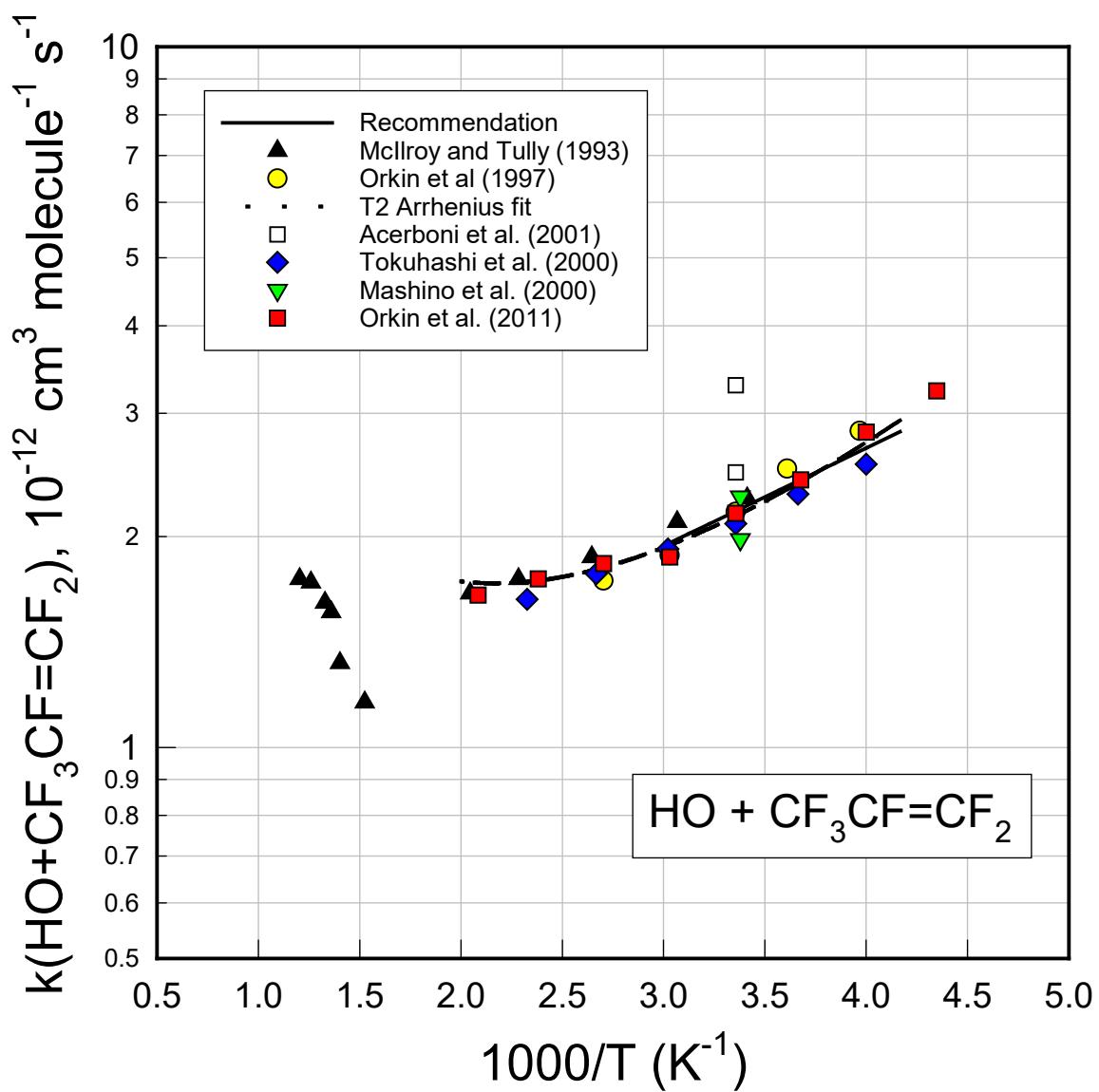
References

Acerboni, G., Beukes, J. A., Jensen, N. R., Hjorth, J., Myhre, G., Nielsen, C. J., and Sundet, J. K.: *Atmos. Environ.*, 35, 4113, 2001.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Javadi, M. S., Søndergaard, R., Nielsen, O. J., Hurley, M. D., and Wallington, T. J.: *Atmos. Chem. Phys.*, 8, 3141, 2008.

Mashino, M., Ninomiya, Y., Kawasaki, M., Wallington, T. J., and Hurley, M. D.: *J. Phys. Chem. A* 104, 7255, 2000.


McIlroy, A., and Tully, F. P.: *J. Phys. Chem.*, 97, 610, 1993.

Søndergaard, R., Nielsen, O. J.; Hurley, M. D., Wallington, T. J.; and Singh, R.: *Chem. Phys. Lett.*, 443, 199, 2007.

Orkin, V. L., Huie, R. E., and Kurylo, M. J.: *J. Phys. Chem. A*, 101, 9118, 1997.

Orkin, V. L., Poskrebyshev, G. A., and Kurylo, M. J.: *J. Phys. Chem. A*, 115, 6568, 2011.

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., and Fujimoto, E.: *Chem. Phys. Lett.*, 325, 189, 2000.

oFOx135: HO + *E*-CF₃CH=CHCF₃ (HFO-1336mzz(E))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(6.94±0.80) × 10 ⁻¹³ exp(-(496±10)/ <i>T</i>)	211-374	Baasandorj et al. (2018)	LP-LIF (a)
(1.31 ± 0.15) × 10 ⁻¹³	298		
<i>Relative Rate Coefficients</i>			
(1.47 ± 0.21) × 10 ⁻¹³	296	Østerstrøm et al. (2017)	RR (b)
(1.88 ± 0.24) × 10 ⁻¹³	296		
1.18 × 10 ⁻¹² exp(-668/ <i>T</i>)	296-375	Baasandorj et al. (2018)	RR (c)
(1.21 ± 0.10) × 10 ⁻¹³	296		
5.91 × 10 ⁻¹³ exp(-515/ <i>T</i>)	253-328	Qing et al. (2018)	RR (d)
(1.10 ± 0.02) × 10 ⁻¹³	298		
4.62 × 10 ⁻¹³ exp(-423/ <i>T</i>)	253-328	Qing et al. (2018)	RR (e)
(1.21 ± 0.10) × 10 ⁻¹³	298		

Comments

- (a) HO radicals were generated by 248 nm laser photolysis of H₂O₂ or (CH₃)₃COOH in 2.5-200 Torr of He or N₂ and were monitored using laser induced fluorescence. There was no discernible effect of pressure or diluent gas on the rate coefficient.
- (b) HO radicals were generated by the photolysis of (CH₃)₂CHONO or CH₃ONO in 700 Torr air/N₂/O₂ in the presence of NO. The loss of *E*-CF₃CH=CHCF₃ was monitored relative to C₃H₈ and C₂H₆ using FTIR spectroscopy. Rate coefficient ratios of *k*(*E*-CF₃CH=CHCF₃)/*k*(C₃H₈) = 0.14±0.02 and *k*(*E*-CF₃CH=CHCF₃)/*k*(C₂H₆) = 0.80±0.10 were measured. Using *k*(HO + C₃H₈) = 1.05 × 10⁻¹² and *k*(HO + C₂H₆) = 2.35 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) at 296 K gives *k*(HO + *E*-CF₃CH=CHCF₃) = (1.47±0.21) × 10⁻¹³ and (1.88±0.24) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹.
- (c) HO radicals were generated by the pulsed laser photolysis of O₃ in the presence of H₂O in 100 Torr of He at 296-375 K. The loss of *E*-CF₃CH=CHCF₃ was monitored relative to that of C₂H₆ by FTIR spectroscopy. At 296 K a rate coefficient ratio of *k*(*E*-CF₃CH=CHCF₃)/*k*(C₂H₆) = 0.50±0.04 was measured. Using *k*(C₂H₆) = 6.9 × 10⁻¹³ exp(-1000/*T*) cm³ molecule⁻¹ s⁻¹ (IUPAC, 2024) gives *k*(*E*-CF₃CH=CHCF₃) = (1.21±0.10) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹. Rate coefficient ratios at 296-375 K were scaled to *k*(C₂H₆) = 6.9 × 10⁻¹³ exp(-1000/*T*) cm³ molecule⁻¹ s⁻¹ (IUPAC, 2024) and an Arrhenius fit to the results gives *k*(*E*-CF₃CH=CHCF₃) = 1.18 × 10⁻¹² exp(-668/*T*) cm³ molecule⁻¹ s⁻¹.
- (d) Photolysis of O₃ in the presence of water vapor in 200 Torr of helium was used to generate HO radicals. The loss of *E*-CF₃CH=CHCF₃ was measured relative to C₂H₆ over the temperature range 253-328 K. A rate coefficient ratio of *k*(*E*-CF₃CH=CHCF₃)/*k*(C₂H₆) = 0.458±0.002 was reported at 298 K. Using *k*(C₂H₆) = 6.9 × 10⁻¹³ exp(-1000/*T*) (IUPAC, 2024) gives *k*(*E*-CF₃CH=CHCF₃) = (1.21±0.10) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹. Rate coefficient ratios at 253-328 K were scaled to *k*(C₂H₆) = 6.9 × 10⁻¹³ exp(-1000/*T*) cm³ molecule⁻¹ s⁻¹ (IUPAC, 2024) and an Arrhenius fit to the results gives *k*(*E*-CF₃CH=CHCF₃) = 5.91 × 10⁻¹³ exp(-515/*T*) cm³ molecule⁻¹ s⁻¹.
- (e) Photolysis of O₃ in the presence of water vapor in 200 Torr of helium was used to generate HO radicals. The loss of *E*-CF₃CH=CHCF₃ was measured relative to CH₂FCH₂F over the temperature range 253-328 K. A rate coefficient ratio of *k*(*E*-CF₃CH=CHCF₃)/*k*(CH₂FCH₂F) = 1.08±0.02 was

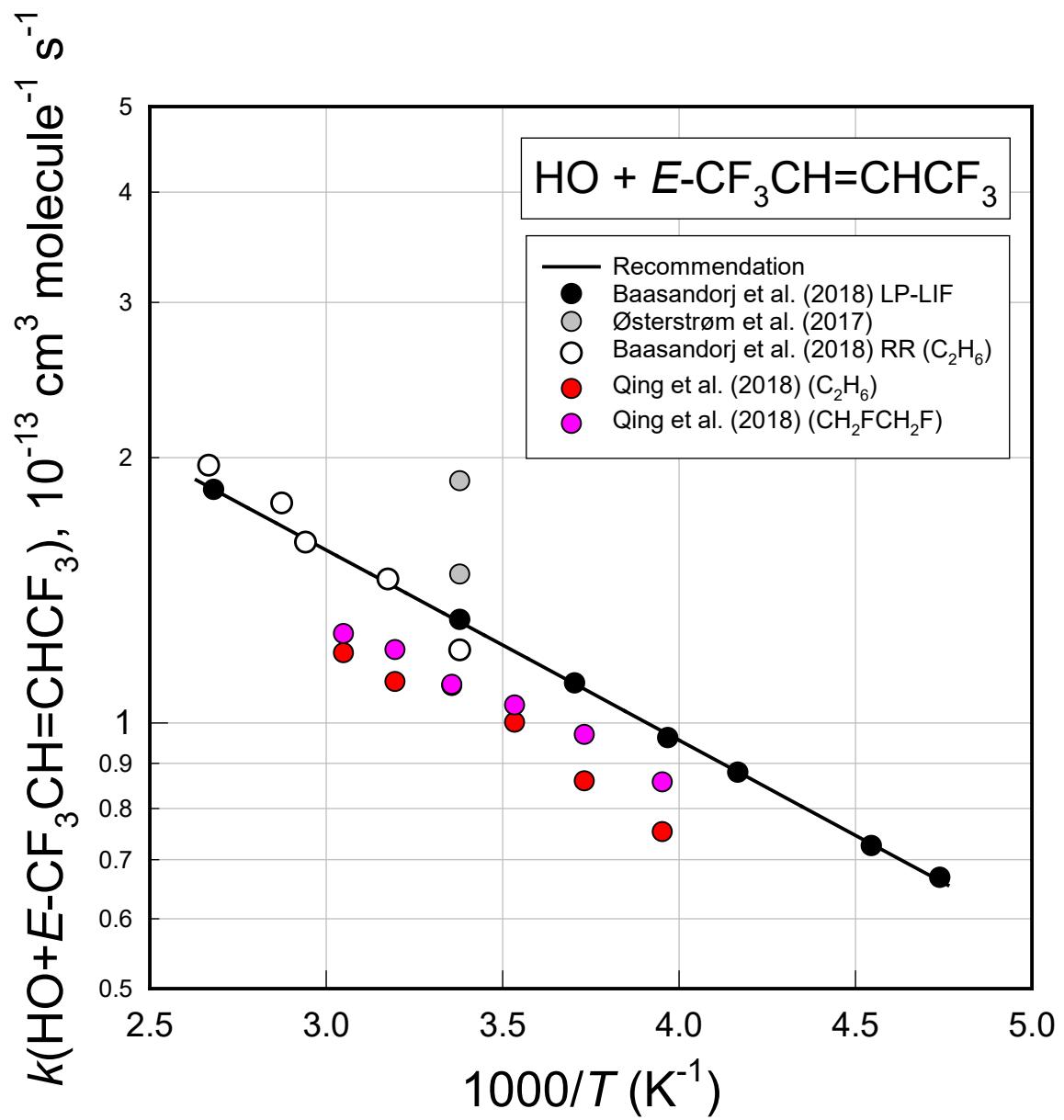
reported at 298 K. Using $k(\text{CH}_2\text{FCH}_2\text{F}) = 1.5 \times 10^{-12} \exp(-800/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (IUPAC, 2024) gives $k(\text{HO} + \text{E-CF}_3\text{CH=CHCF}_3) = (1.21 \pm 0.10) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Rate coefficient ratios at 253-328 K were scaled to $k(\text{CH}_2\text{FCH}_2\text{F}) = 1.5 \times 10^{-12} \exp(-800/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (IUPAC, 2024) and an Arrhenius fit to the results gives $k(\text{HO} + \text{E-CF}_3\text{CH=CHCF}_3) = 4.62 \times 10^{-13} \exp(-423/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.31×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$6.94 \times 10^{-13} \exp(-496/T)$	210-380
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	210-380

Comments on Preferred Values

There is good agreement between the rate coefficients measured in the absolute and relative rate study by Baasandorj et al. (2018) and the relative rate study by Qing et al. (2018). The rate coefficient measured using C_3H_8 as a reference by Østerstrøm et al. (2017) is in good agreement with the results from Baasandorj et al. (2018) and Qing et al. (2018). However, the rate coefficient ratio reported by Østerstrøm et al. using C_2H_6 as a reference compound is approximately 60% larger than measured by Baasandorj et al. (2018) and Qing et al. (2018). A fit to the absolute rate data from Baasandorj et al. (2018) gives the preferred expression, $k = 6.94 \times 10^{-13} \exp(-496/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, is taken from Baasandorj et al. (2018) which gives $k = 1.31 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Baasandorj, M., Marshall, P., Waterland, R. L., Ravishankara, A. R., and Burkholder, J. B.: J. Phys. Chem. A, 122, 4635-4646, 2018.

Østerstrøm, F. F.; Andersen, S. T.; Sølling, T. I.; Nielsen, O. J.; and Sulbæk Andersen, M. P.: Phys. Chem. Chem. Phys. 19, 735–750, 2017.

Qing, F., Guo, Q., Chen, L., Quan, H., and Mizukado, J.: Chem. Phys. Lett., 706, 93-98, 2018.

oFOx136: HO + Z-CF₃CH=CHCF₃ (HFO-1336mzz(Z))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$5.73 \times 10^{-19} T^2 \exp(-678/T)$	212-374	Baasandorj et al. (2011)	LP-LIF (a)
$(4.91 \pm 0.50) \times 10^{-13}$	296		
<i>Relative Rate Coefficients</i>			
$(3.99 \pm 0.63) \times 10^{-13}$	296	Østerstrøm et al. (2017)	RR (b)
$(4.18 \pm 0.42) \times 10^{-13}$	296		
See comment (c)	296-375	Baasandorj et al. (2018)	RR (c)
$(4.94 \pm 0.09) \times 10^{-13}$	296		

Comments

(a) HO radicals were generated by 248 nm laser photolysis of H₂O₂ or (CH₃)₃COOH in 2.5-200 Torr of He or N₂. There was no discernible effect of pressure or diluent gas on the rate coefficient.

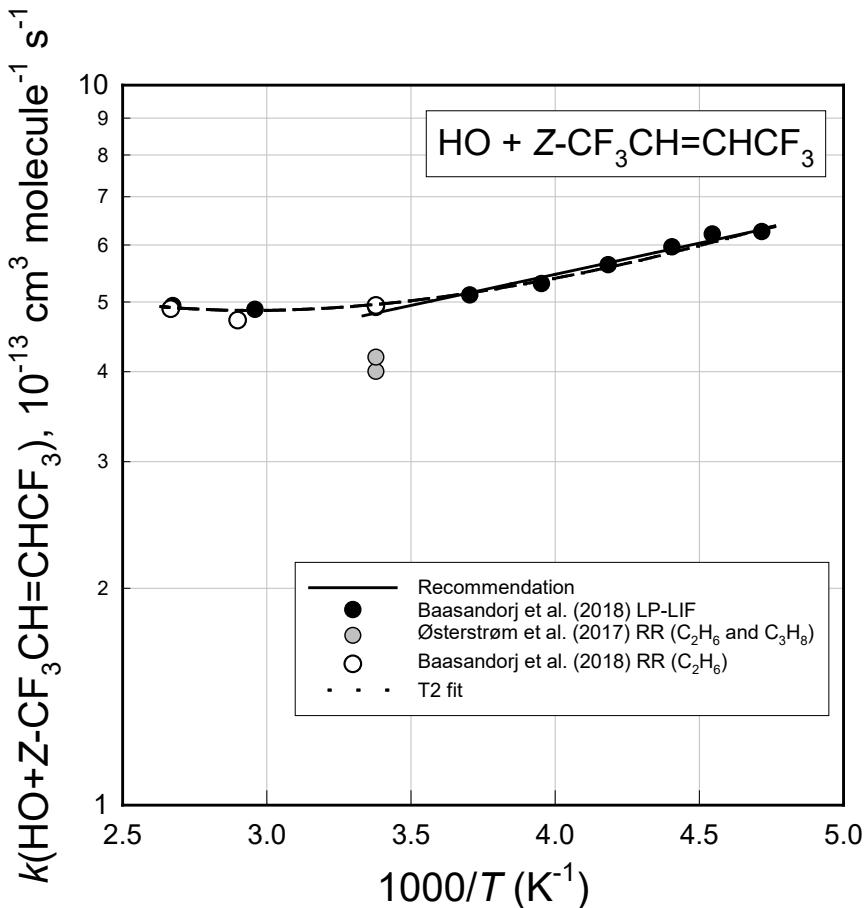
(b) HO radicals were generated by the photolysis of (CH₃)₂CHONO or CH₃ONO in 700 Torr air/N₂/O₂ in the presence of NO. The loss of Z-CF₃CH=CHCF₃ was monitored relative to C₃H₈ and C₂H₆ using FTIR spectroscopy. Rate coefficient ratios of $k(\text{Z-CF}_3\text{CH=CHCF}_3)/k(\text{C}_3\text{H}_8) = 0.38 \pm 0.06$ and $k(\text{Z-CF}_3\text{CH=CHCF}_3)/k(\text{C}_2\text{H}_6) = 1.78 \pm 0.18$ were measured. Using $k(\text{HO} + \text{C}_3\text{H}_8) = 1.05 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k(\text{HO} + \text{C}_2\text{H}_6) = 2.35 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) at 296 K gives $k(\text{HO} + \text{Z-CF}_3\text{CH=CHCF}_3) = (3.99 \pm 0.63) \times 10^{-13}$ and $(4.18 \pm 0.42) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

(c) HO radicals were generated by the 248 nm pulsed laser photolysis of O₃ in the presence of H₂O in 100-200 Torr of He at 296-375 K. The loss of Z-CF₃CH=CHCF₃ was monitored relative to that of C₂H₆ by FTIR spectroscopy. At 296, 345, and 375 K rate coefficient ratios of $k(\text{Z-CF}_3\text{CH=CHCF}_3)/k(\text{C}_2\text{H}_6) = 2.10 \pm 0.04$, 1.24 ± 0.02 , and 1.02 ± 0.02 were measured. Using $k(\text{C}_2\text{H}_6) = 6.9 \times 10^{-13} \exp(-1000/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (IUPAC, 2024) gives $k(\text{Z-CF}_3\text{CH=CHCF}_3) = (4.94 \pm 0.09)$, (4.71 ± 0.08) , and $(4.89 \pm 0.10) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 296, 345, and 375 K, respectively.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.80×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.46 \times 10^{-13} \exp(199/T)$	210-300
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	210-300

Comments on Preferred Values


The rate coefficients measured in the absolute and relative rate studies by Baasandorj et al. (2011) and the relative rate study by Østerstrøm et al. (2017) are consistent. Distinct curvature in the Arrhenius plot is evident over temperature range studied by Baasandorj et al. (2011) and the data are well described by the modified Arrhenius expression $k = (5.73 \pm 0.60) \times 10^{-19} T^2 \exp(-(678 \pm 10)/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. A fit of the Arrhenius expression to the absolute rate data from Baasandorj et al. (2011) below 300 K gives $k = 2.46 \times 10^{-13} \exp(199/T)$ which gives $k = 4.80 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. For simplicity and consistency within the IUPAC database we prefer the simple Arrhenius expression.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Baasandorj, M., Marshall, P., Waterland, R. L., Ravishankara, A. R., and Burkholder, J. B.: J. Phys. Chem. A, 122, 4635–4646, 2018.

Østerstrøm, F. F., Andersen, S. T., Sølling, T. I., Nielsen, O. J., and Sulbæk Andersen, M. P.: Phys. Chem. Chem. Phys. 19, 735–750, 2017.

oClOx95: HO + CH₂=CHCl

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

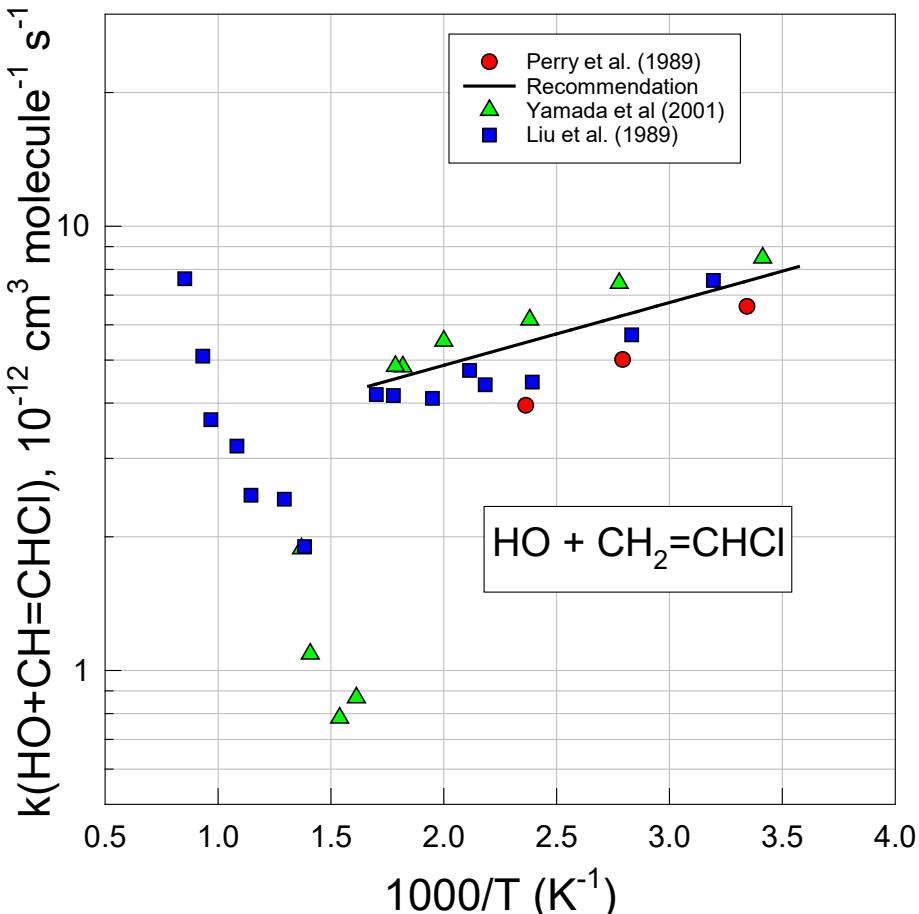
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.5) \times 10^{-12}$	296	Howard (1977)	DF-LMR (a)
$1.14 \times 10^{-12} \exp[(526 \pm 151)/T]$ $(6.60 \pm 0.66) \times 10^{-12}$	299-422 299	Perry et al. (1977)	FP-RF (b)
$2.14 \times 10^{-12} \exp[(700 \pm 120)/T]$ 7.55×10^{-12}	313-1173 313	Liu et al. (1989)	PR-RA (c)
$2.72 \times 10^{-12} \exp[(335 \pm 42)/T]$ $(8.49 \pm 0.40) \times 10^{-12}$	293-730 293	Yamada et al., 2001	LP-LIF (d)

Comments

- (a) HO radicals were produced by the reaction of H atoms with NO₂ in 0.7-7.0 Torr (0.9-9.3 mbar) of helium. The rate coefficient was dependent on total pressure increasing from approximately 2×10^{-12} to 5×10^{-12} cm³ molecule⁻¹ s⁻¹ over the total pressure range 0.7-7.0 Torr.
- (b) Flash photolysis of H₂O in 50 or 100 Torr of argon was used as a source of HO radicals. The decay of HO radicals was monitored using resonance fluorescence. There was no discernable effect (<5%) of total pressure over the range studied.
- (c) Pulse radiolysis of one atmosphere of argon containing approximately 6 Torr of water vapor was used as a source of HO radicals. Resonance absorption at 308 nm was used to monitor the decay of HO radicals in the presence of vinyl chloride. It was deduced that the predominant reaction channel changes from an addition-initiated reaction at temperatures below 588 K to a hydrogen abstraction reaction for temperatures above 723 K. The rate coefficient for the addition reaction was described by the Arrhenius expression $k = 2.14 \times 10^{-12} \exp[(700 \pm 120)/T]$ while that for the H-abstraction reaction was described by $k = 2.98 \times 10^{-11} \exp[-(4020 \pm 700)/T]$ cm³ molecule⁻¹ s⁻¹.
- (d) Photolysis of HONO at 351 nm in 740 Torr of helium was used as a source of HO radicals.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	7.55×10^{-12}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.54 \times 10^{-12} \exp(325/T)$	280-600
<i>Reliability</i>		
$\Delta \log k$	± 0.08	298
$\Delta E/R$	± 100	280-600


Comments on Preferred Values

Howard (1976) showed that at pressures below 7 Torr of helium the rate of the reaction decreases with total pressure. Perry et al. (1977) reported that at total pressures of 50 Torr of argon and above there is no discernable effect of pressure on the measured rate coefficient. The rate coefficients reported by Perry et al. (1977), Liu et al. (1989), and Yamada et al. (2001) near 298 K measured at, or near, the high pressure limit are in reasonable agreement and an average of these gives the preferred value at 298 K. The preferred Arrhenius expression is derived from a fit to the data obtained below 600 K by Perry et al. (1977), Liu et al. (1989), and Yamada et al. (2001) with the pre-exponential factor adjusted to give the preferred rate coefficient at 298 K. The preferred expression describes the high-pressure limiting rate coefficient which is appropriate for atmospheric conditions.

The reaction proceeds via addition of HO to the $>\text{C}=\text{C}<$ double bond to give HOCH_2CHCl and CH_2CHClOH radicals with the former expected to predominate. Elimination of a Cl atom from the CH_2CHClOH radical will give the enol $\text{CH}_2=\text{CHOH}$. Addition of O_2 followed by reaction with NO is expected to give a variety of products including HOCH_2CHO , HCHO , and HC(O)Cl .

References

Howard, C. J.: J. Chem. Phys., 65, 4771, 1976.
Liu, A., Mulac, W. A., and Jonah, C. D., J. Phys. Chem., 93, 4092, 1989.
Perry, R. A., Atkinson, R., and Pitts, J. N., Jr., J. Chem. Phys., 67, 458, 1977.
Yamada, T., Siraj, M., Taylor, P. H., Peng, J., Hu, X., and Marshall, P., J. Phys. Chem. A, 105, 9436, 2001.

oFOx120: HO + *E*-CF₃CH=CHCl (HCFO-1233zd(E))

Last evaluated: January 2025; Last change in preferred values: January 2023.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.025 \times 10^{-13} (T/298)^{2.29} \exp(384/T)$	220-370	Orkin et al. (2014)	FP-RF (a)
$(3.29 \pm 0.10) \times 10^{-13}$	298		
$1.14 \times 10^{-12} \exp[(-330 \pm 10)/T]$	213-376	Gierczak et al. (2014)	PLP-LIF (b)
$(3.76 \pm 0.06) \times 10^{-13}$	296		
<i>Relative Rate Coefficients</i>			
$(3.30 \pm 0.30) \times 10^{-13}$	296	Andersen et al. (2015)	RR (c)
$(3.21 \pm 0.25) \times 10^{-13}$	296		

Comments

(a) HO radicals were produced by the pulsed photolysis of H₂O by a xenon flash lamp in 100 Torr (133 mbar) of argon diluent.

(b) HO radicals were generated by the photolysis of H₂O₂, HNO₃, or (CH₃)₃COOH in 25-100 Torr (33-133 mbar) of helium or nitrogen diluent gas. There was no discernable effect of diluent gas or total pressure over the range studied.

(c) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. The loss of *E*-CF₃CH=CHCl was monitored relative to those of C₂H₄ and C₂H₂. In the initial work by Sulbaek Andersen et al. (2008) the loss of *E*-CF₃CH=CHCl via reaction with Cl atoms produced during the oxidation of *E*-CF₃CH=CHCl was not recognized. In a subsequent reanalysis by Andersen et al. (2015) corrections for such loss were computed and applied which resulted in rate coefficient ratios of $k(\text{E-CF}_3\text{CH=CHCl})/k(\text{C}_2\text{H}_4) = 0.042 \pm 0.004$ and $k(\text{E-CF}_3\text{CH=CHCl})/k(\text{C}_2\text{H}_2) = 0.430 \pm 0.034$. Using $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ and $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{E-CF}_3\text{CH=CHCl}) = (3.30 \pm 0.30) \times 10^{-13}$ and $(3.21 \pm 0.25) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	3.53×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$8.79 \times 10^{-13} \exp(-272/T)$	220-300
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	220-300

Comments on Preferred Values

There is good agreement in the room temperature rate coefficients reported in the absolute rate studies by Orkin et al. (2014) and Gierczak et al. (2014) and the relative rate study by Andersen et al. (2015). The preferred value at 298 K is an average from Orkin et al. (2014) and Gierczak et al. (2014). There

is evidence in the combined data set from Orkin et al. (2014) and Gierczak et al. (2014) for a slight curvature in the Arrhenius plot. Fitting the three parameter equation, $k = CT^2 \exp(-D/T)$ to the data from Orkin et al. (2014) and Gierczak et al. (2014) gives $k(\text{HO} + E\text{-CF}_3\text{CH}=\text{CHCl}) = 1.70 \times 10^{-18} T^2 \exp(248/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 220-380 K. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 260 K and is derived from the three-parameter equation with $A = C e^2 T^2$ and $B = D + 2T$ with the pre-exponential factor adjusted to reproduce the preferred $k(298\text{K})$ value, $k(\text{HO} + E\text{-CF}_3\text{CH}=\text{CHCl}) = 8.79 \times 10^{-13} \exp(-272/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

References

Andersen, L. L., Østerstrøm, F.F., Sulbaek Andersen, M. P., Nielsen, O. J., and Wallington, T.J.: *Chem. Phys. Lett.*, 639, 289, 2015.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Gierczak, T., Baasandorj, M., and Burkholder, J. B.: *J. Phys. Chem. A*, 118, 11015, 2014.

Orkin, V. L., Martynova, L. E., and Kurylo, M. J.: *J. Phys. Chem. A*, 118, 5263, 2014.

Sulbaek Andersen, M. P., Nilsson, E. J. K., Nielsen, O. J., Johnson, M. S., Hurley, M. D., and Wallington, T. J.: *J. Photochem. and Photobiol. A: Chem.*, 199, 92, 2008.

Sulbaek Andersen, M. P., Sølling, T. I., Andersen, L. L., Volkova, A., Hovanessian, D., Britzman, C., Nielsen, O. J., and Wallington, T. J.: *Phys. Chem. Chem. Phys.*, 44, 27949, 2018.

oFOx121: HO + Z-CF₃CH=CHCl (HCFO-1233zd(Z))

Last evaluated: June 2025; Last change in preferred values: January 2023.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$7.22 \times 10^{-19} T^2 \exp[(800)/T]$ (9.46 ± 0.22) $\times 10^{-13}$	213-376 296	Gierczak et al. (2014)	PLP-LIF (a)
<i>Relative Rate Coefficients</i>			
$(8.09 \pm 1.10) \times 10^{-13}$ (7.17 ± 0.61) $\times 10^{-13}$	296 296	Andersen et al. (2015)	RR (b)

Comments

(a) HO radicals were generated by the photolysis of H₂O₂, HNO₃, or (CH₃)₃COOH in 25-100 Torr (33-133 mbar) of helium or nitrogen diluent. There was no discernable effect of diluent gas or total pressure over the range studied.

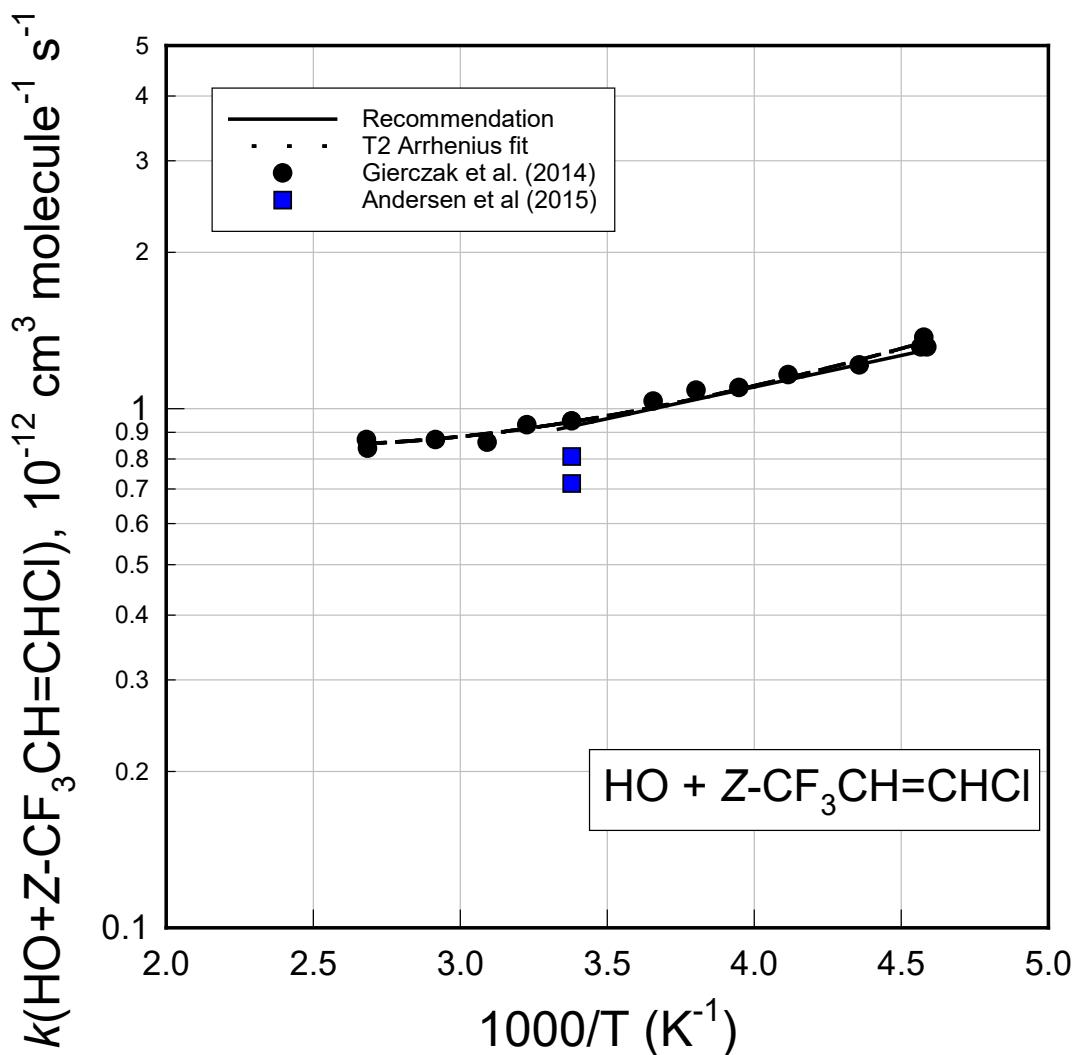
(b) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. The loss of Z-CF₃CH=CHCl was monitored relative to C₂H₄ and C₂H₂. Corrections for the loss of Z-CF₃CH=CHCl via reaction with Cl atoms produced during the oxidation of Z-CF₃CH=CHCl were computed and applied. Rate coefficient ratios of $k(\text{Z-CF}_3\text{CH=CHCl})/k(\text{C}_2\text{H}_4) = 0.103 \pm 0.014$ and $k(\text{Z-CF}_3\text{CH=CHCl})/k(\text{C}_2\text{H}_2) = 0.960 \pm 0.082$ were reported. Using $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ and $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{Z-CF}_3\text{CH=CHCl}) = (8.09 \pm 1.10) \times 10^{-13}$ and $(7.17 \pm 0.61) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	9.24×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$3.61 \times 10^{-13} \exp(280/T)$	220-300
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	220-300

Comments on Preferred Values

The results from the absolute rate study by Gierczak et al. (2014) and relative rate study of Andersen et al. (2015) at 296 K agree within the experimental uncertainties. There is significant curvature in the Arrhenius plot of the results from Gierczak et al. (2014). Gierczak et al. (2014) fitted the three parameter equation, $k = CT^2 \exp(-D/T)$ to their data giving $k(\text{HO} + \text{Z-CF}_3\text{CH=CHCl}) = 7.22 \times 10^{-19} T^2 \exp(800/T)$ cm³ molecule⁻¹ s⁻¹. The preferred Arrhenius expression, $k = A \exp(-B/T)$, is centered at 260 K and is derived from the three-parameter equation with $A = C e^B$ and $B = D + 2T$. Note that the preferred Arrhenius expression, $k(\text{HO} + \text{CF}_3\text{CH=CHCl}) = 3.61 \times 10^{-13} \exp(280/T)$


$\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ should not be used outside the specified temperature range (220-300 K); rather, the full three parameter expression should be used.

References

Andersen, L. L., Østerstrøm, F. F., Sulbaek Andersen, M. P., Nielsen, O. J., and Wallington, T. J.: Chem. Phys. Lett., 639, 289, 2015.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Gierczak, T., Baasandorj, M., and Burkholder, J. B.: J. Phys. Chem. A, 118, 11015, 2014.

oFOx165: HO + *E*-CF₃CF=CHCl (HCFO-1224yd(E))

Last evaluated: June 2025; Last change in preferred values: June 2024.

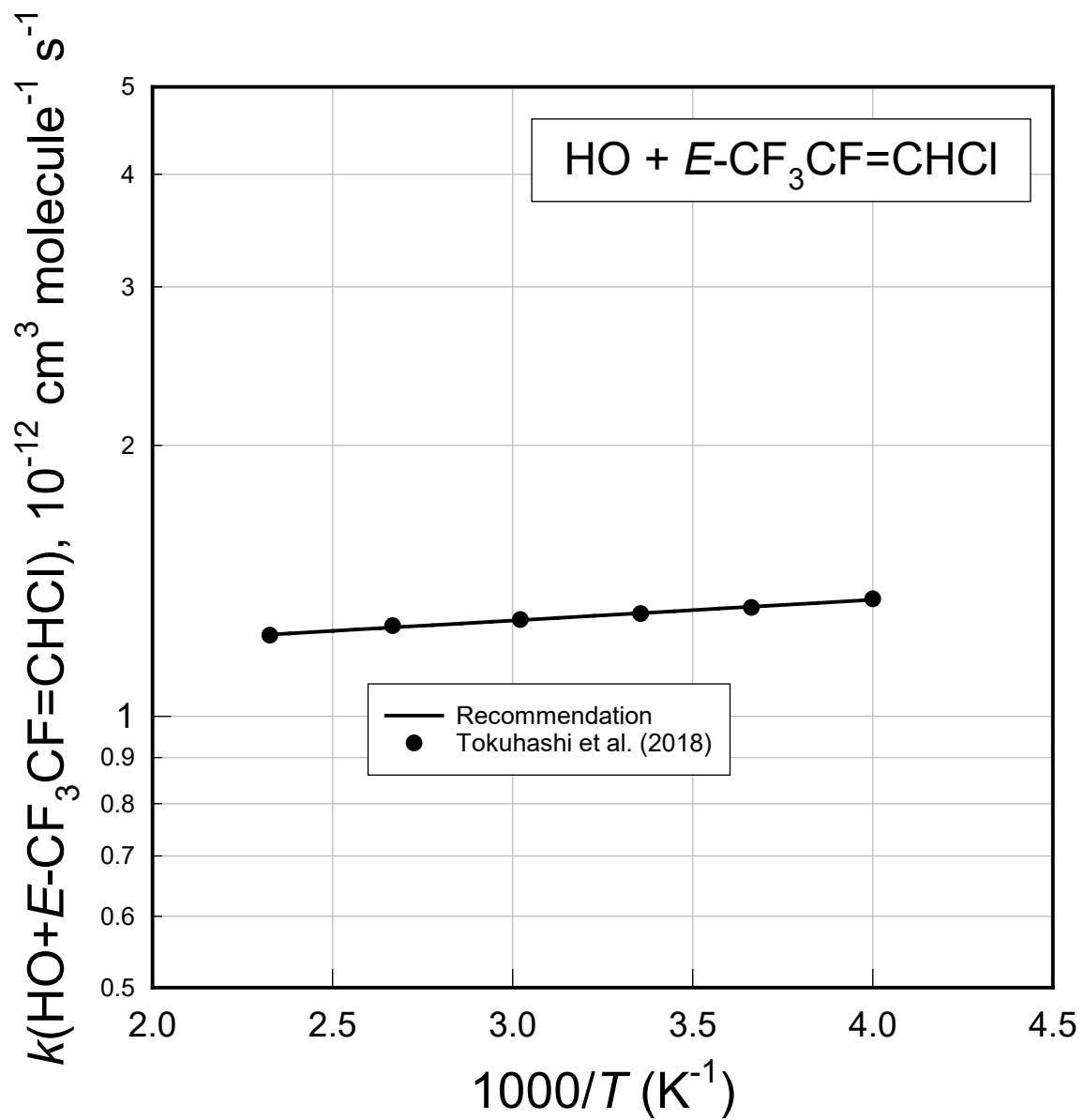
Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(1.09±0.03) × 10 ⁻¹² exp((50±10/ <i>T</i>))	250-430	Tokuhashi et al. (2018)	FP, LP-LIF (a)
(1.30 ± 0.01) × 10 ⁻¹²	298		

Comments

(a) HO radicals were generated by either flash photolysis or laser photolysis and were monitored using laser induced fluorescence. In the flash photolysis experiments photolysis of water vapor using *a* was employed as the source of HO radicals. In the laser photolysis experiments two photolysis of N₂O using an ArF eximer laser to produce O(¹D) atoms in the presence of either water vapor or CH₄ were used to generate HO radicals. There was no discernible difference in results obtained using the different methods. Experiments were performed in 5-200 Torr of argon or helium diluent, there was no discernible effect of pressure or diluent gas. The *E*-CF₃CF=CHCl sample was purified before use and the purity of the purified sample was determined to be 99.4%.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.30 × 10 ⁻¹²	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.09 × 10 ⁻¹² exp(53/ <i>T</i>)	250-430
<i>Reliability</i>		
Δ log <i>k</i>	± 0.08	298
Δ E/R	± 100	250-430

Comments on Preferred Values

The preferred expression, $k = 1.09 \times 10^{-12} \exp(53/T)$, is a fit to the results from Tokuhashi et al. (2018) which gives $k = 1.30 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K.

References

Tokuhashi, K., Uchimaru, T., Takizawa, K., and Kondo, S.: J. Phys. Chem. A., 122, 3120-3127, 2018.

oFOx166: HO + Z-CF₃CF=CHCl (HCFO-1224yd(Z))

Last evaluated: June 2025; Last change in preferred values: June 2024.

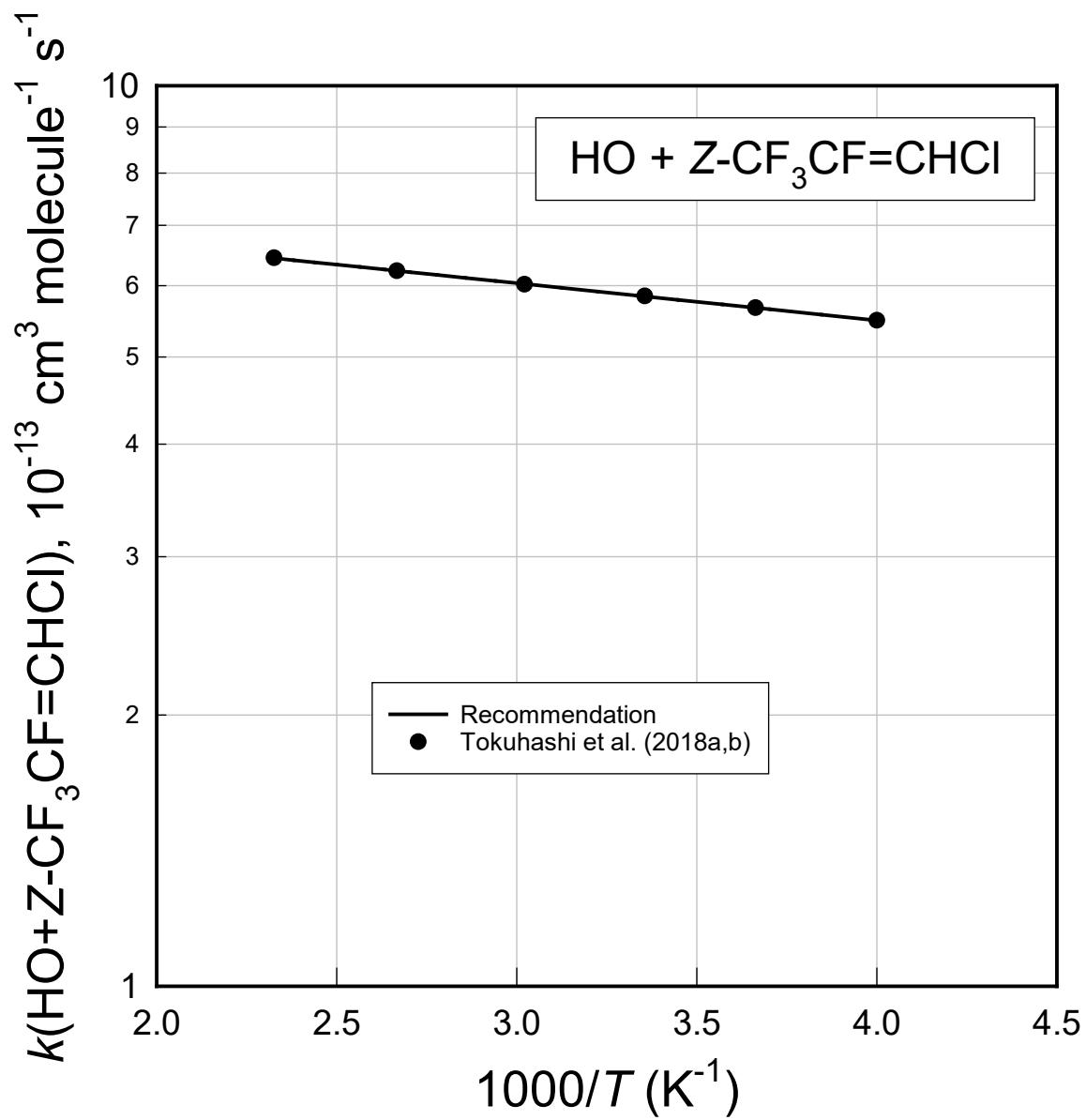
Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(8.02 \pm 0.19) \times 10^{-13} \exp(-(100 \pm 10/T))$	250-430	Tokuhashi et al. (2018a,b)	FP, LP-LIF (a)
$(5.84 \pm 0.03) \times 10^{-13}$	298		

Comments

(a) HO radicals were generated by either flash photolysis or laser photolysis and were monitored using laser induced fluorescence. In the flash photolysis experiments photolysis of water vapor was employed as the source of HO radicals. In the laser photolysis experiments photolysis of N₂O to produce O(¹D) atoms in the presence of either water vapor or CH₄ were used to generate HO radicals. There was no discernible difference in results obtained using the different methods. Experiments were performed in 5-200 Torr of argon or helium diluent, there was no discernible effect of pressure or diluent gas. The Z-CF₃CF=CHCl sample was purified before use and the purity of the purified sample was determined to be 99.92%.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	5.83×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$8.03 \times 10^{-13} \exp -(95/T)$	250-430
<i>Reliability</i>		
$\Delta \log k$	± 0.08	298
$\Delta E/R$	± 100	250-430

Comments on Preferred Values

The preferred expression, $k = 8.03 \times 10^{-13} \exp -(95/T)$, is a fit to the results from Tokuhashi et al. (2018a,b) which gives $k = 5.83 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K.

References

Tokuhashi, K., Uchimaru, T., Takizawa, and K., Kondo, S.: J. Phys. Chem. A., 122, 3120-3127, 2018a.
 Tokuhashi, K., Uchimaru, T., Takizawa, K., and Kondo, S.: J. Phys. Chem. A., 122, 9922-9922, 2018b.

oFOx164: HO + CF₃CBr=CH₂ (HBFO-1233xfB)

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.36 \pm 0.16) \times 10^{-13} \exp((317 \pm 34)/T)$	250-370	Orkin et al. (2002)	FP-RF (a)
$(3.88 \pm 0.15) \times 10^{-12}$	298		
$4.85 \times 10^{-13} (T/298)^{0.92} \exp(613/T)$	220-370	Patten et al. (2011)	FP-RF (b)
$(3.79 \pm 0.02) \times 10^{-12}$	298		
<i>Relative Rate Coefficients</i>			
$(3.61 \pm 0.28) \times 10^{-12}$	296	Sulbaek Andersen et al. (2009)	RR (c)
$(3.99 \pm 0.24) \times 10^{-12}$	296		

Comments

(a) HO radicals were generated by flash photolysis of water. Experiments were performed in 100 Torr of argon diluent.

(b) HO radicals were generated by flash photolysis of water. Experiments were performed in 7-30 Torr of argon diluent. There was no discernible effect of pressure suggesting the reaction is at, or near, the high-pressure limit.

(c) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of CF₃CBr=CH₂ was measured relative to C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{CF}_3\text{CBr}=\text{CH}_2)/k(\text{C}_2\text{H}_2) = 4.829 \pm 0.374$ and $k(\text{CF}_3\text{CBr}=\text{CH}_2)/k(\text{C}_2\text{H}_4) = 0.508 \pm 0.031$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CBr}=\text{CH}_2) = (3.61 \pm 0.28) \times 10^{-12}$ and $(3.99 \pm 0.24) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$

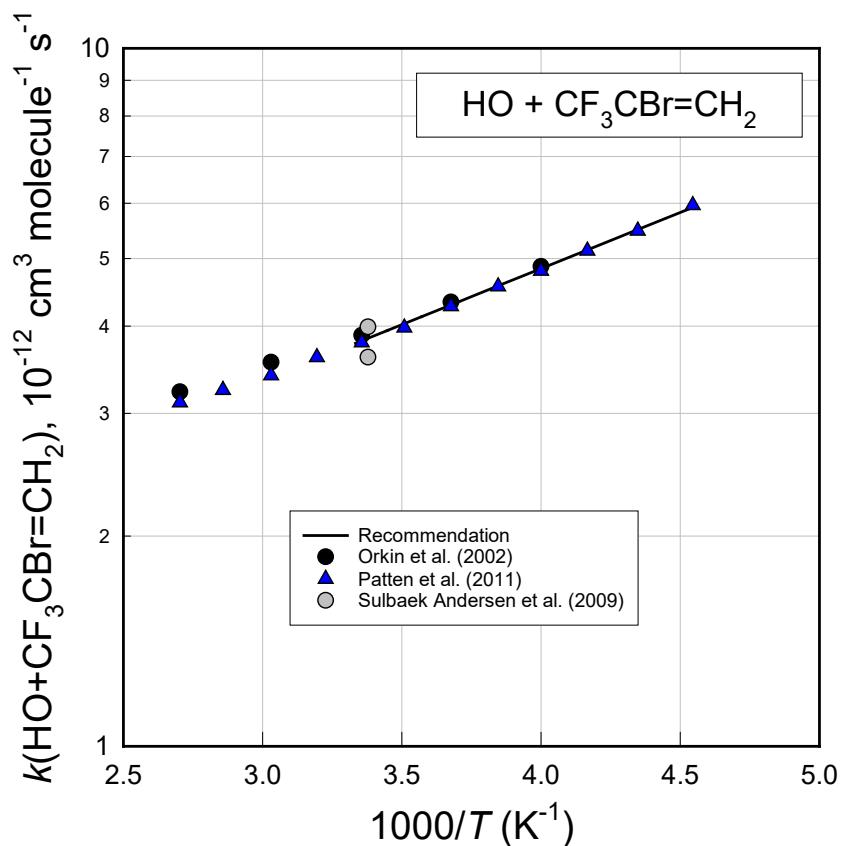
Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	3.84×10^{-12}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$1.11 \times 10^{-12} \exp(370/T)$	250-430
<i>Reliability</i>		
$\Delta \log k$	± 0.06	298
$\Delta E/R$	± 100	250-430

Comments on Preferred Values

There is good agreement between the results of the absolute rate studies by Orkin et al. (2002) and Patten et al. (2011) and the relative rate study by Sulbaek Andersen et al. (2009). An average of the results from Orkin et al. (2002) and Patten et al. (2011) gives $k = 3.84 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. Patten et al.

(2011) showed that their data and those from Orkin et al. (2002) over the entire temperature range studied (220-370 K) are well fit by the expression $k = 4.85 \times 10^{-13} (T/298)^{0.92} \exp(613/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. A fit of the Arrhenius expression to the combined data set from Orkin et al. (2002) and Patten et al. (2011) below 300 K and adjusting the A factor to reproduce the preferred value at 298 K gives $k = 1.11 \times 10^{-12} \exp(370/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. For simplicity and consistency within the IUPAC database we prefer the simple Arrhenius expression.


References

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Orkin, V.L., Louis, F., Huie, R.E., Kurylo, M.J.: J. Phys. Chem. A, 106, 10195-10199, 2002.

Patten, K.O., Khamaganov, V.G., Orkin, V.L., Baughcum, S.L., Wuebbles, D.J.: J. Geophys. Res. Atmos. 116, D24307, 2011.

Sulbaek Andersen, M.P., Hurley, M.D., and Wallington, T.J.: Chem. Phys. Lett., 482, 20-23, 2009.

oFOx154: NO₃ + CF₂=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$< 3 \times 10^{-15}$	298	Acerboni et al., 1999	RR (a)

Comments

(a) NO₃ radicals were produced by mixing O₃ with an excess of NO₂, to establish an equilibrium between NO₂, NO₃, and N₂O₅ in 740 Torr (986 mbar) of air diluent. The decay of C₂F₄ was monitored relative to that of C₃H₆ and a rate coefficient ratio $k(\text{NO}_3 + \text{C}_2\text{F}_4)/k(\text{NO}_3 + \text{C}_3\text{H}_6) = 0.159$ was measured. Using $k(\text{NO}_3 + \text{C}_3\text{H}_6) = 9.5 \times 10^{-15}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{C}_2\text{F}_4) = 1.5 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The authors noted a “relatively large random error” in the determination of the rate coefficient ratio, although they did not quantify the uncertainty, and chose to report an upper limit for $k(\text{NO}_3 + \text{C}_2\text{F}_4) < 3 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$< 3 \times 10^{-15}$	298

Comments on Preferred Values

The upper limit is taken from the study by Acerboni et al. (1999).

References

Acerboni, G., Jensen, N. R., Rindone, B., and Hjorth, J.: Chem. Phys. Lett., 309, 364, 1999.
 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

oFOx153: NO₃ + CF₃CF=CH₂ (HFO-1234yf)

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$< 2 \times 10^{-16}$	233-353	Papadimitriou et al. (2011)	FT-MS (a)
<i>Relative Rate Coefficients</i>			
$(2.6 \pm 0.25) \times 10^{-17}$	296	Papadimitriou et al. (2011)	RR (b)

Comments

(a) NO₃ radicals were produced by thermal decomposition of N₂O₅ in a 400 K oven attached to a low-pressure flow tube reactor. NO₃ radicals were detected using a chemical ionization mass spectrometer. Experiments were performed in 2-6 Torr of helium diluent at 233-353 K. The addition of CF₃CF=CH₂ led to a barely discernable, $< 2 \text{ s}^{-1}$, loss of NO₃ radicals from which an upper limit of $k(\text{NO}_3 + \text{CF}_3\text{CF}=\text{CH}_2) < 2 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

(b) NO₃ radicals were produced by thermal decomposition of N₂O₅ in 630 Torr (840 mbar) of air diluent at 296 K. The decay of CF₃CF=CH₂ was monitored relative to that of C₂H₄ and a rate coefficient ratio $k(\text{NO}_3 + \text{CF}_3\text{CF}=\text{CH}_2)/k(\text{NO}_3 + \text{C}_2\text{H}_4) = 0.124 \pm 0.012$ was measured. Using $k(\text{NO}_3 + \text{C}_3\text{H}_6) = 2.1 \times 10^{-16}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{CF}_3\text{CF}=\text{CH}_2) = (2.6 \pm 0.25) \times 10^{-17} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.6×10^{-17}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the sole study of this reaction by Papadimitriou et al. (2011).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Papadimitriou, V. C., Lazarou, Y. G., Talukdar, R. K., and Burkholder, J. B.: J. Phys. Chem. A, 115, 167, 2011.

oFOx122: NO₃ + Z-CF₃CF=CHF (HFO-1225ye(Z))

Last evaluated: June 2025; Last change in preferred values: June 2018.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$< 2 \times 10^{-16}$	233-353	Papadimitriou et al. (2011)	FT-MS (a)
<i>Relative Rate Coefficients</i>			
$(4.2 \pm 0.5) \times 10^{-18}$	296	Papadimitriou et al. (2011)	RR (b)

Comments

(a) NO₃ radicals were produced by thermal decomposition of N₂O₅ in a 400 K oven attached to a low-pressure flow tube reactor. NO₃ radicals were detected using a chemical ionization mass spectrometer. Experiments were performed in 2-6 Torr of helium diluent at 233-353 K. The addition of CF₃CF=CHF led to a barely discernible, $< 2 \text{ s}^{-1}$, loss of NO₃ radicals from which an upper limit of $k(\text{NO}_3 + \text{CF}_3\text{CF=CHF}) < 2 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

(b) NO₃ radicals were produced by thermal decomposition of N₂O₅ in 630 Torr (840 mbar) of air diluent at 296 K. The decay of CF₃CF=CHF was monitored relative to that of C₂H₄ and a rate coefficient ratio $k(\text{NO}_3 + \text{CF}_3\text{CF=CHF})/k(\text{NO}_3 + \text{C}_2\text{H}_4) = 0.019 \pm 0.002$ was measured. Using $k(\text{NO}_3 + \text{C}_3\text{H}_6) = 2.1 \times 10^{-16}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{CF}_3\text{CF=CHF}) = (4.2 \pm 0.5) \times 10^{-18} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.2×10^{-18}	298
<i>Reliability</i>		
$\Delta \log k$	0.20	298

Comments on Preferred Values

The preferred value is based on the sole study of this reaction by Papadimitriou et al. (2011).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Papadimitriou, V. C., Lazarou, Y. G., Talukdar, R. K., and Burkholder, J. B.: J. Phys. Chem. A, 115, 167, 2011.

oFOx123: $\text{NO}_3 + \text{CF}_3\text{CF}=\text{CF}_2$ (FO-1216)

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$< 3 \times 10^{-15}$	298	Acerboni et al., 2001	RR (a)

Comments

(a) NO_3 radicals were produced by mixing O_3 with an excess of NO_2 , to establish an equilibrium between NO_2 , NO_3 , and N_2O_5 in 740 Torr (986 mbar) of air diluent. The authors specify that a relative rate method was employed, but do not specify the reference used on rate coefficient ratio result. The authors noted that the reaction was very slow and only an upper limit for the rate coefficient $k(\text{NO}_3 + \text{C}_3\text{F}_6) < 3 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$< 3 \times 10^{-15}$	298

Comments on Preferred Values


The preferred value was taken from the study by Acerboni et al. (2001).

References

Acerboni, G., Beukes, J. A., Jensen, N. R., Hjorth, J., Myhre, G., Nielsen, C. J., and Sundet, J. K. :
Atmos. Environ., 35, 4113, 2001.

oFOx155: NO₃ + CF₂=CFCF=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
< 3 × 10 ⁻¹⁵	298	Acerboni et al., 2001	RR (a)
(1.56 ± 0.16) × 10 ⁻¹⁵	298	Chen et al., 2005	RR (b)

Comments

(a) NO₃ radicals were produced by mixing O₃ with an excess of NO₂, to establish an equilibrium between NO₂, NO₃, and N₂O₅ in 740 Torr (986 mbar) of air diluent. The authors specify that a relative rate method was employed, but do not specify the reference used or rate coefficient ratio result. The authors noted that the reaction was very slow and only an upper limit for the rate coefficient $k(\text{NO}_3 + \text{C}_3\text{F}_6) < 3 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

(b) NO₃ radicals were produced by the thermal decomposition of N₂O₅. The loss of CF₂=CFCF=CF₂ was monitored relative to that of C₃H₆ using GC-FID in 720 Torr of air diluent following the addition of N₂O₅. A rate coefficient ratio of $k(\text{NO}_3 + \text{CF}_2=\text{CFCF=CF}_2)/k(\text{NO}_3 + \text{C}_3\text{H}_6) = 0.164 \pm 0.017$ was measured. Placing this result on an absolute basis using $k(\text{NO}_3 + \text{C}_3\text{H}_6) = 9.5 \times 10^{-15}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{CF}_2=\text{CFCF=CF}_2) = (1.56 \pm 0.16) \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.56 × 10 ⁻¹⁵	298
<i>Reliability</i>		
Δ log <i>k</i>	0.1 ± 0.04	298 298

Comments on Preferred Values

The preferred value was taken from the study by Chen et al. (2005). The upper limit reported by Acerboni et al. (2001) is consistent with the preferred value.

References

Acerboni, G., Beukes, J. A., Jensen, N. R., Hjorth, J., Myhre, G., Nielsen, C. J., and Sundet, J. K.: *Atmos. Environ.*, 35, 4113, 2001.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chen, L., Kutsuna, S., Tokuhashi, K., Uchimaru, T., and Sekiya, A.: *Chem. Phys. Lett.*, 416, 187, 2005.

oClOx96: NO₃ + CH₂=CHCl

Last evaluated: June 2025; Last change in preferred values: June 2018.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(4.26 \pm 0.39) \times 10^{-16}$	295	Noremsaune et al. (1997)	DF-Vis (a)
$1.8 \times 10^{-13} \exp(-1780/T)$	266-367		
<i>Relative Rate Coefficients</i>			
$(4.37 \pm 0.19) \times 10^{-16}$	298	Atkinson et al. (1987)	RR (b)
$(1.4 \pm 0.9) \times 10^{-16}$	296	Andersson and Ljungström (1989)	RR (c)
$(2.6 \pm 0.5) \times 10^{-16}$	296	Noremsaune et al. (1995)	RR (d)
$(3.74 \pm 0.57) \times 10^{-16}$	296	Noremsaune et al. (1997)	RR (e)

Comments

(a) NO₃ radicals were produced by the reaction of F atoms with HNO₃ and monitored by absorption at 662 nm.

(b) NO₃ radicals were produced by the thermal decomposition of N₂O₅ in 740 Torr (986 mbar) of air at 298 K. The loss of CH₂=CHCl was monitored using GC-FID relative to that of C₂H₄ and a rate coefficient ratio of $k(\text{NO}_3 + \text{CH}_2=\text{CHCl})/k(\text{NO}_3 + \text{C}_2\text{H}_4) = 2.08 \pm 0.09$ was measured. Using $k(\text{NO}_3 + \text{C}_2\text{H}_4) = 2.1 \times 10^{-16}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{CH}_2=\text{CHCl}) = (4.37 \pm 0.19) \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

(c) NO₃ radicals were produced by reacting NO₂ with O₃ in one atmosphere pressure of N₂ to establish an equilibrium between NO₂, NO₃, and N₂O₅ at 296 K. The decay of N₂O₅ and CH₂=CHCl was monitored by FTIR spectroscopy. A complex chemical mechanism was used with $k(\text{NO}_3 + \text{CH}_2=\text{CHCl})$ varied to give the best fit of the decay of N₂O₅ and CH₂=CHCl. This work is superceded by the studies by Noremsaune et al. (1995, 1997) and not considered further.

(d) NO₃ radicals were produced by the thermal decomposition of N₂O₅ which was synthesized in situ by mixing O₃ with excess NO₂ in 760 Torr (1 bar) of air. Experiments were performed at 295 K and kinetic data were obtained by monitoring the decay of CH₂=CHCl in the chamber over a period of 10-60 minutes and simulating the decay using analytical and numerical methods. The rate coefficient $k(\text{NO}_3 + \text{CH}_2=\text{CHCl})$ derived in the experiments is dependent on the NO₂ + NO₃ = N₂O₅ equilibrium constant assumed in the calculations. Unfortunately, it is unclear what equilibrium constant was used. In the paper it is stated several times that the temperature of the experiments was 295 K, but it then stated that a value of $K_{eq} = 3.77 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}$ at 298 K (Wayne et al. 1991) was used to derive $k(\text{NO}_3 + \text{CH}_2=\text{CHCl})$. K_{eq} is very sensitive to temperature and increases from 2.78×10^{-11} to $4.06 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1}$ over the temperature range 298 to 295 K (IUPAC, 2018). Given the uncertainty in value of K_{eq} used by Noremsaune et al. (1995) we are not able to scale their result to the latest preferred equilibrium coefficient of K_{eq} . The value in the table above is that reported by Noremsaune et al. (1995).

(e) NO₃ radicals were produced by mixing O₃ with an excess of NO₂, to establish an equilibrium between NO₂, NO₃, and N₂O₅ in 740 Torr (986 mbar) of air. The decay of CH₂=CHCl was monitored relative to that of C₂H₄ and a rate coefficient ratio $k(\text{NO}_3 + \text{CH}_2=\text{CHCl})/k(\text{NO}_3 + \text{C}_2\text{H}_4) = 1.78 \pm 0.27$ was measured. Using $k(\text{NO}_3 + \text{C}_2\text{H}_4) = 2.1 \times 10^{-16}$ (Atkinson et al., 2006) gives $k(\text{NO}_3 + \text{CH}_2=\text{CHCl}) = (3.74 \pm 0.57) \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

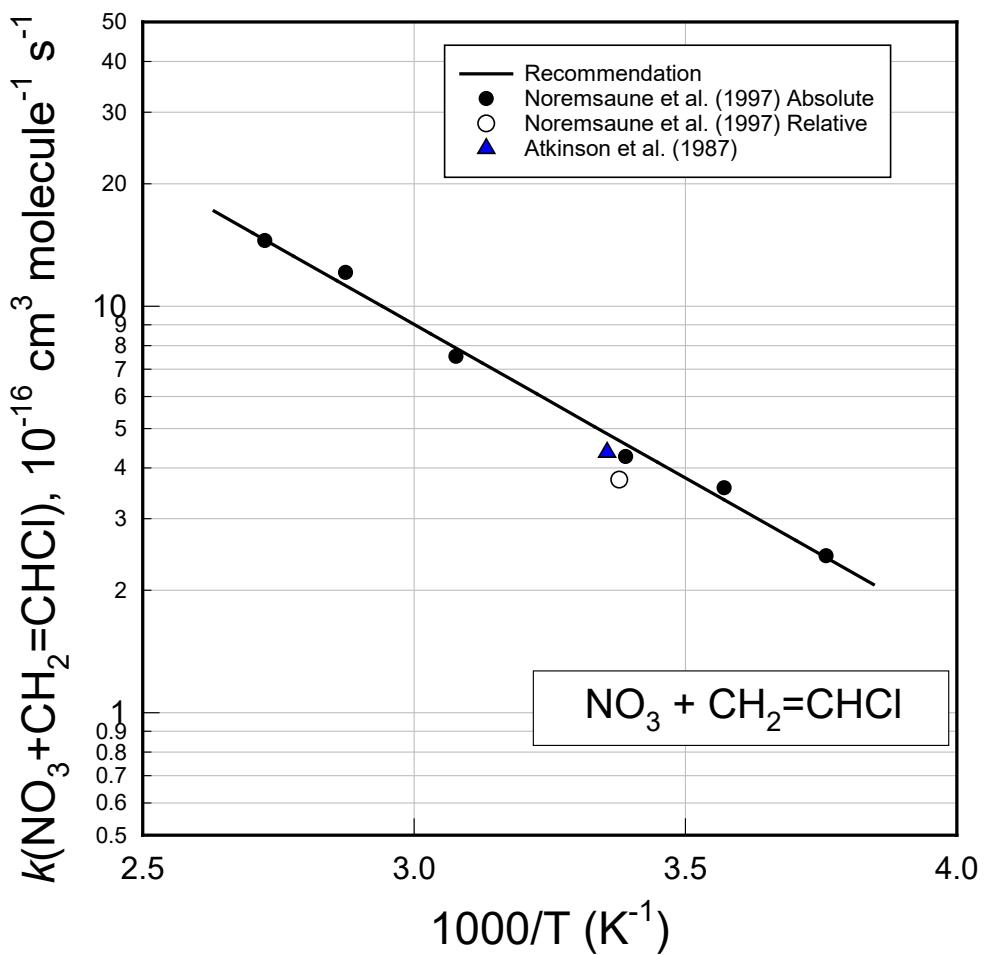
Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.8 \times 10^{-13} \exp(-1780/T)$	260-380
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.6×10^{-16}	298
Reliability		
$\Delta \log k$	± 0.10	298
$\Delta E/R$	± 300	260-380

Comments on Preferred Values

There is good agreement in the absolute and relative rate measurements by Noremsaune et al. (1997) and Atkinson et al. (1987). The preferred Arrhenius expression is that reported by Noremsaune et al. (1997) which gives the value at 298 K in the table above.

References

Andersson, Y., and Ljungstrom, E.: *Atmos. Environ.*, 23, 1153, 1989.


Atkinson, R., Aschmann, S. M., and Goodman, M. A.: *Int. J. Chem. Kinet.*, 19, 299, 1987.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Noremsaune, I. M. W., Hjorth, J.; and Nielsen, C. J.: *J. Atmos. Chem.*, 21, 223, 1995.

Noremsaune, I. M. W., Langer, S., Ljungström, E., and Nielsen, C. J.: *J. Chem. Soc., Faraday Trans.*, 93, 525, 1997.

Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. B., Canosa-Mas, C. E., Hjorth, J., LeBras, G., Moortgat, G., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: *Atmos. Environ.* 25A, 1, 1991.

oFOx126: O₃ + CF₂=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
1.34×10^{-16}	298	Heicklen (1966)	S-IR (a)
$2.63 \times 10^{-13} \exp(-4780/T)$	273-373	Toby and Toby (1976)	S-UV (b)
2.84×10^{-20}	298		
$(4.80 \pm 0.62) \times 10^{-21}$	298	Acerboni et al., 1999	S-FTIR (c)

Comments

- (a) Kinetic data were derived by following the initial rate of formation of the reaction product COF₂ using IR spectroscopy following the mixing of 0.7-24 Torr of O₃ with 0.2-5.7 Torr of C₂F₄.
- (b) UV absorption at 254 nm was used to follow the loss of ozone in the presence of an excess of C₂F₄ following mixing 0.06-0.1 Torr of O₃ with 3.0-7.9 Torr of C₂F₄.
- (c) FTIR spectroscopy was used to follow the loss of C₂F₄ (2-4 ppmv) in the presence of a large excess of O₃ (25-600 ppmv) in 740 Torr (986 mbar) of air at 298 K. Cyclohexane (20-60 ppmv) was added to scavenge radical products of the reaction of O₃ with C₂F₄ which could lead to unwanted secondary loss of C₂F₄. First order decay of C₂F₄ was observed and the pseudo-first order loss rates were linearly dependent on [O₃].

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.8×10^{-21}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The chemical systems used by Heicklen (1966) and Toby and Toby (1976) in which high concentrations (of the order of Torr) of O₃ and C₂F₄ were mixed in the absence of diluent gas and kinetic data were obtained by monitoring the rate of formation of either COF₂ product (Heicklen, 1966) or O₃ reactant (Toby and Toby, 1976). The kinetic behaviour observed was complex indicating the presence of substantial complications from secondary chemistry, and hence the rate coefficients derived are likely upper limits. The study by Acerboni et al. (1999) employed lower concentrations of reactants in 740 Torr of air diluent and derived kinetic data by monitoring the loss of C₂F₄ in the presence of excess O₃. The loss of C₂F₄ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃]. The preferred value is based on the result from Acerboni et al. (1999) with uncertainties increased to reflect the fact that it is based on a single study.

References

Acerboni, G., Jensen, N. R., Rindone, B., Hjorth, J.: *Chem. Phys. Lett.*, 309, 364, 1999.
Heicklen, J.: *J. Phys. Chem.*, 70, 477, 1966.
Toby, F.S.; Toby, S.: *J. Phys. Chem.*, 80, 2313, 1976.

oFOx113: O₃ + CF₃CH=CH₂ (HFO-1243zf)

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(3.5 ± 0.3) × 10 ⁻¹⁹	296	Sulbaek Andersen et al. (2005)	S-FTIR (a)
(1.41 ± 0.26) × 10 ⁻²⁰	296	McGillen et al. (2023)	S-UV (b)
7.07 × 10 ⁻¹⁶ exp(-3236/T)	296-384		
<i>Relative Rate Coefficients</i>			
(3.0 ± 0.4) × 10 ⁻¹⁹	298	Soto et al. (2018)	RR (c)
(1.15 ± 0.23) × 10 ⁻²⁰	296	McGillen et al. (2023)	RR (d)
(1.25 ± 0.26) × 10 ⁻²⁰	296		RR (e)

Comments

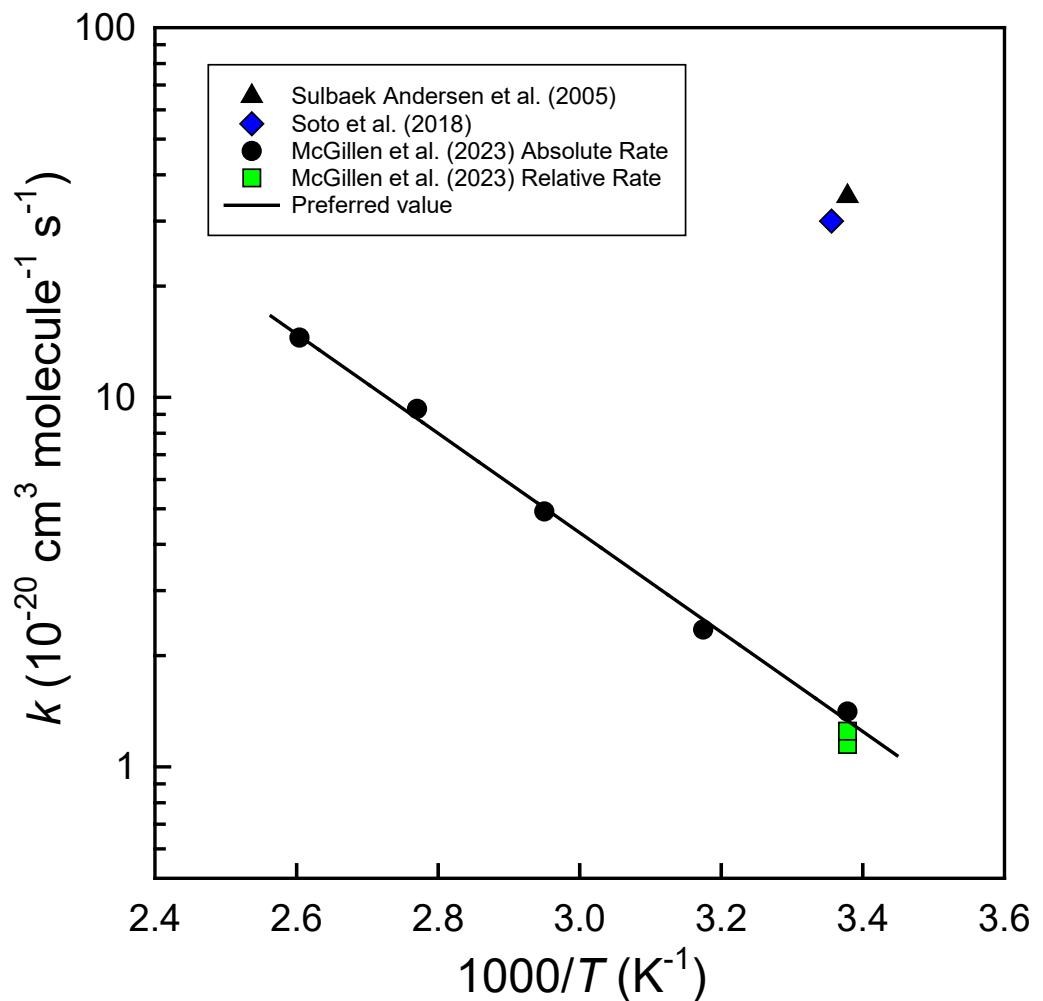
- (a) The decay of CF₃CH=CH₂ was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of CF₃CH=CH₂, cyclohexane, and O₃ in 700 Torr of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of CF₃CH=CH₂ via reaction with OH radicals formed in the reaction system. The loss of CF₃CH=CH₂ followed first order kinetics and the pseudo first-order rate coefficients increased linearly with [O₃].
- (b) The decay of ozone was monitored with a commercial ozone analyser (using UV absorption) in the presence of an excess of CF₃CH=CH₂ in the presence of cyclohexane and HC(O)OH which were added as scavengers for HO radicals and stabilized Criegee intermediates, respectively. The diluent and pressure was not specified but was 1 atmosphere of air (McGillen, private communication). The loss of O₃ followed first order kinetics and the pseudo first-order rate coefficients increased linearly with [CF₃CH=CH₂].
- (c) The loss of CF₃CH=CH₂ was measured relative to that of acrolein (CH₂=CHCHO) in 720 Torr of synthetic air. Cyclohexane was added to avoid potential problems associated with the loss of CF₃CH=CH₂ via reaction with OH radicals formed in the reaction system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2)/k(\text{O}_3 + \text{CH}_2=\text{CHCHO}) = 0.99 \pm 0.01$ was measured which can be combined with $k(\text{O}_3 + \text{CH}_2=\text{CHCHO}) = (3.0 \pm 0.4) \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Treacy et al. 1992) to give $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2) = (3.0 \pm 0.4) \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) The decay of CF₃CH=CH₂ was measured relative to that of HCFO-1233xf (CF₃CCl=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2)/k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = 3.257$ was measured and was combined with $k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = 3.54 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2) = (1.15 \pm 0.23) \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (e) The decay of CF₃CH=CH₂ was measured relative to that of HFO-1234yf (CF₃CF=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2)/k(\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2) = 4.885$ was measured and was combined with $k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = 2.56 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ [McGillen et al. 2023] to give $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2) = (1.25 \pm 0.26) \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.43×10^{-20} $4.65 \times 10^{-16} \exp(-3096/T)$	298 290-390
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	200	

Comments on Preferred Values

The preferred expression is taken from a fit to the absolute rate data from McGillen et al. (2023). The value at 298K is evaluated from the preferred Arrhenius expression. The relative rate and absolute rate results reported by McGillen et al. (2023) are in good agreement but are substantially lower than the results reported by Sulbaek Andersen et al. (2005) and Soto et al. (2018). As discussed by McGillen et al. (2023), the cyclohexane scavenger used by Sulbaek Andersen et al. (2005) and Soto et al. (2018) would be effective for HO radicals but not for Criegee intermediates. Hence, the larger rate constants reported by Sulbaek Andersen et al. (2005) and Soto et al. (2018) presumably reflect secondary loss of $\text{CF}_3\text{CH}=\text{CH}_2$ by reaction with Criegee intermediates. McGillen et al. (2023) showed that CF_3H is formed in a yield of $(0.37 \pm 0.02) \%$ in a “hot acid” reaction channel.


References

McGillen, M. R.; Zachary, T. P.; Fried, M.; Khan, A. H.; Kuwata, K. T.; Martin, C. M.; O'Doherty, S.; Pecere, F.; Shallcross, D. E.; Stanley, K. M.; and Zhang, K.: PNAS, 120, e2312714120, 2023.

Soto, A.; Ballesteros, B.; Jiménez, E.; Antinólo, M.; Martínez, E.; and Albaladejo, J.: Chemosphere 201, 318–327, 2018.

Sulbaek Andersen, M. P.; Nielsen, O. J.; Toft, A.; Nakayama, T.; Matsumi, Y.; Waterland, R. L.; Buck, R. C.; Hurley, M. D.; and Wallington, T. J.: J. Photoch. Photobio. A 176, 124–128, 2005.

Treacy, J.; Elhag, M.; O'Farrell, D.; Sidebottom, H.: Ber. Bunsen-Ges. Phys. Chem., 96, 422–427, 1992.

oFOx128: O₃ + CF₃CF=CH₂ (HFO-1234yf)

Last evaluated: June 2025; last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(2.77 ± 0.21) × 10 ⁻²¹	296	Nielsen et al. (2007)	S-FTIR (a)
(2.56 ± 1.42) × 10 ⁻²¹	296	McGillen et al. (2023)	S-UV (b)
<i>Relative Rate Coefficients</i>			
(2.37 ± 0.47) × 10 ⁻²¹	296	McGillen et al. (2023)	RR (c)
(2.58 ± 0.53) × 10 ⁻²¹	296		RR (d)

Comments

- (a) The decay of CF₃CF=CH₂ was monitored by FTIR spectroscopy when exposed to ozone in 700 Torr of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of CF₃CF=CH₂ via reaction with OH radicals formed in the reaction system. The loss of CF₃CF=CH₂ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].
- (b) The decay of ozone was monitored via UV absorption in the presence of an excess of CF₃CF=CH₂. Either *i*-propanol, or cyclohexane and HC(O)OH which were added as scavengers for HO radicals and stabilized Criegee intermediates. The diluent and pressure was 1 atmosphere of air (McGillen, private communication). The loss of O₃ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [CF₃CF=CH₂].
- (c) The decay of CF₃CF=CH₂ was measured relative to that of HCFO-1233xf (CF₃CCl=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2)/k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = (0.669 \pm 0.133)$ was measured and combined with $k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = 3.54 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al., 2023) to give $k(\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2) = (2.37 \pm 0.47) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) The decay of CF₃CF=CH₂ was measured relative to that of HFO-1243zf (CF₃CH=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2)/k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2) = (0.205 \pm 0.042)$ was measured and combined with $k(\text{O}_3 + \text{CF}_3\text{CH}=\text{CH}_2) = 1.26 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ to give $k(\text{O}_3 + \text{CF}_3\text{CF}=\text{CH}_2) = (2.58 \pm 0.53) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.67 × 10 ⁻²¹	298
<i>Reliability</i>		
Δ log <i>k</i>	0.08	298

Comments on Preferred Values

There is good agreement in the results from the absolute rate studies of Nielsen et al. (2007) and McGillen et al. (2023) and the relative rate studies by McGillen et al. (2023). The preferred value is the average of the two studies. McGillen et al. (2023) performed experiments to look for the formation of CF_4 and CF_3H as products but did not observe them.

References

McGillen, M. R.; Zachary, T. P.; Fried, M.; Khan, A. H.; Kuwata, K. T.; Martin, C. M.; O'Doherty, S.; Pecere, F.; Shallcross, D. E.; Stanley, K. M.; and Zhang, K.: PNAS, 120, e2312714120, 2023.

Nielsen, O. J.; Javadi, M. S.; Sulbaek Andersen, M. P.; Hurley, M. D.; Wallington, T. J.; and Singh, R.: Chem. Phys. Lett. 439, 18, 2007.

oFOx129: O₃ + *E*-CF₃CH=CHF (HFO-1234ze(*E*))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(2.81 ± 0.21) × 10 ⁻²¹	296	Søndergaard et al. (2007)	S-FTIR (a)
<i>Relative Rate Coefficients</i>			
(2.19 ± 0.43) × 10 ⁻²¹	296	McGillen et al. (2023)	RR (b)

Comments

(a) The decay of *E*-CF₃CH=CHF was monitored by FTIR spectroscopy when exposed to ozone in 700 Torr of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of *E*-CF₃CH=CHF via reaction with OH radicals formed in the reaction system. The loss of *E*-CF₃CH=CHF followed first-order kinetics and the pseudo first-order rate coefficients increased linearly with [O₃].

(b) The decay of *E*-CF₃CH=CHF was measured relative to that of HCFO-1233xf (CF₃CCl=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{E-CF}_3\text{CH=CHF})/k(\text{O}_3 + \text{CF}_3\text{CCl=CH}_2) = 0.617 \pm 0.121$ was measured. Combining this with $k(\text{O}_3 + \text{CF}_3\text{CCl=CH}_2) = 3.54 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al., 2023) gives $k(\text{O}_3 + \text{E-CF}_3\text{CH=CHF}) = (2.19 \pm 0.43) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.50 × 10 ⁻²¹	298
<i>Reliability</i>		
Δ log <i>k</i>	0.10	298

Comments on Preferred Values

The preferred value is the average from the absolute rate study by Søndergaard et al. (2007) and the relative rate study by McGillen et al. (2023). McGillen et al. (2023) showed that CF₃H is formed in a yield of (3.11 ± 0.05) % in a “hot acid” reaction channel.

References

McGillen, M. R.; Zachary, T. P.; Fried, M.; Khan, A. H.; Kuwata, K. T.; Martin, C. M.; O’Doherty, S.; Pecere, F.; Shallcross, D. E.; Stanley, K. M.; and Zhang, K.: PNAS, 120, e2312714120, 2023.

Søndergaard, R., Nielsen, O. J., Hurley, M. D., Wallington, T. J., Singh, R.: Chem. Phys. Lett, 443, 199, 2007.

oFOx156: O₃ + Z-CF₃CH=CHF (HFO-1234(Z))

Last evaluated: June 2023; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(1.65 ± 0.16) × 10 ⁻²¹	296	Nilsson et al. (2009)	S-FTIR (a)

Comments

(a) The decay of Z-CF₃CH=CHF was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of 14.7-16.2 mTorr Z-CF₃CH=CHF, 21-65 mTorr cyclohexane, and 950–2260 mTorr O₃ in 700 Torr (933 mbar) of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of Z-CF₃CH=CHF via reaction with OH radicals formed in the reaction system. The loss of Z-CF₃CH=CHF followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.7 × 10 ⁻²¹	298
<i>Reliability</i>		
Δ log <i>k</i>	0.30	298

Comments on Preferred Values

The preferred value is taken from the work by Nilsson et al. (2009); the only study of this reaction. As the authors did not consider the potential loss of Z-CF₃CH=CHF via reaction with Criegee intermediates, we increase the uncertainty substantially.

References

Nilsson, E. J. K., Nielsen, O. J., Johnson, M. S., Hurley, M. D., and Wallington, T. J.: Chem. Phys. Lett., 473, 233, 2009.

oFOx130: O₃ + CF₃CF=CF₂ (FO-1216)

Last evaluated: June 2025; Last change in preferred values: June 2018.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
2.2 × 10 ⁻¹⁷	298	Heicklen (1966)	S-IR (a)
< 3 × 10 ⁻²¹	296	Mashino et al. (2000)	S-FTIR (b)
(6.2 ± 1.5) × 10 ⁻²²	298	Acerboni et al. (2001)	S-FTIR (c)

Comments

- (a) Kinetic data were derived by following the initial rate of formation of the reaction product COF₂ using IR spectroscopy following the mixing of 1.9-14.8 Torr of O₃ with 0.22-7.0 Torr of CF₃CF=CF₂.
- (b) The decay of CF₃CF=CF₂ was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of 1.5-8.1 mTorr CF₃CF=CF₂ and 899–963 mTorr O₃ in 700 Torr of O₂ diluent. There was no scavenger, such as cyclohexane, added to suppress unwanted radical chemistry in the system. The loss of CF₃CF=CF₂ followed first order kinetics but there was a systematic increase in the pseudo first order loss rates with increasing [CF₃CF=CF₂]. The simplest explanation of this observation is loss of CF₃CF=CF₂ via reaction with products of the O₃ + CF₃CF=CF₂ reaction. Mashino et al. (2000) chose to quote an upper limit based on the lowest value of *k*(O₃+ CF₃CF=CF₂) measured in their study.
- (c) FTIR spectroscopy was used to follow the loss of CF₃CF=CF₂ (2-5 ppmv) in the presence of a large excess of O₃ (25-600 ppmv) in 740 Torr (986 mbar) of air at 298 K. Cyclohexane was added as a scavenger to suppress potential complications from unwanted radical reactions. First order decay of CF₃CF=CF₂ was observed and the pseudo first order loss rates were linearly dependent on [O₃].

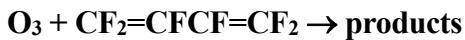
Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	6.2 × 10 ⁻²²	298
<i>Reliability</i>		
Δ log <i>k</i>	0.15	298

Comments on Preferred Values

The preferred value is based on the measurements by Acerboni et al. (2001) which were conducted using cyclohexane to suppress radical chemistry in the system leading to additional loss of CF₃CF=CF₂. Mashino et al. (2000) showed that in the absence of a radical scavenger such as cyclohexane there is additional unwanted loss of CF₃CF=CF₂ and that the severity of this complication increases with the [CF₃CF=CF₂] used in the experiment. The early experiments by Heicklen (1966) used particularly high [CF₃CF=CF₂] and secondary losses of CF₃CF=CF₂ by radical chain reactions presumably explains the overestimation of the rate coefficient by more than a factor of 10⁴ in the early studies.

References


Acerboni, G., Beukes, J. A., Jensen, N. R., Hjorth, J., Myhre, G., Nielsen, C. J., and Sundet, J. K. : Atmos. Environ., 35, 4113, 2001.

Heicklen, J.: J. Phys. Chem., 70, 477, 1966.

Mashino, M., Ninomiya, Y., Kawasaki, M., Wallington, T. J., and Hurley, M. D.: J. Phys. Chem. A 104, 7255, 2000.

oFOx157: O₃ + CF₂=CFCF=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

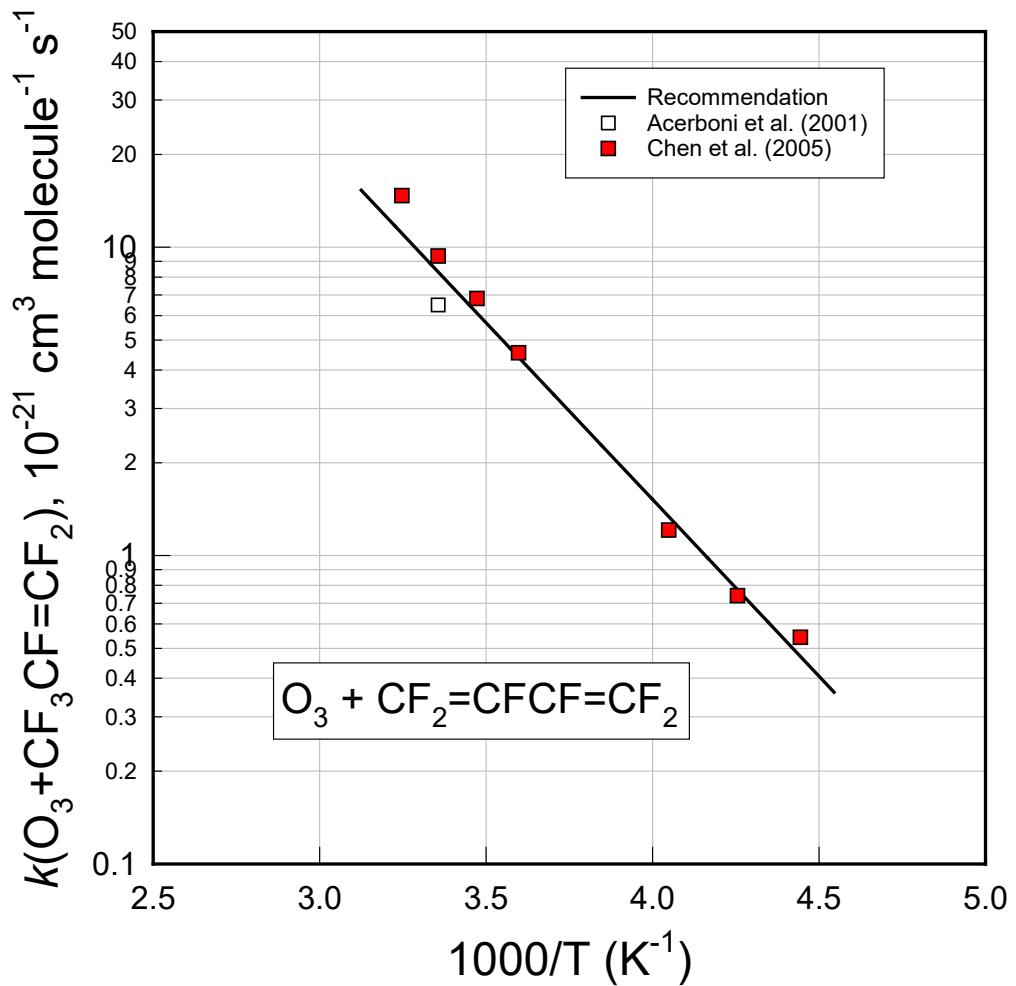
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(6.5 \pm 0.2) \times 10^{-21}$	298	Acerboni et al. (2001)	S-FTIR (a)
$(1.14 \pm 0.94) \times 10^{-16} \exp[-(2800 \pm 225)/T]$	225-308	Chen et al. (2005)	S-FTIR (b)
$(9.37 \pm 0.70) \times 10^{-21}$	298		

Comments

(a) FTIR spectroscopy was used to follow the loss of CF₂=CFCF=CF₂ (3-5 ppmv) in the presence of a large excess of O₃ (25-600 ppmv) in 740 Torr (986 mbar) of air at 298 K. Cyclohexane (20-60 ppmv) was added as a scavenger to suppress potential complications from unwanted radical reactions. First order decay of CF₂=CFCF=CF₂ was observed and the pseudo first order loss rates were linearly dependent on [O₃].

(b) The decay of CF₂=CFCF=CF₂ was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of 1.2×10^{14} molecule cm⁻³ CF₂=CFCF=CF₂ (5 ppmv) and $1.26-6.94 \times 10^{15}$ molecule cm⁻³ O₃ in 720 Torr of air diluent. Cyclohexane (5.6×10^{15} molecule cm⁻³) was added as a scavenger to suppress unwanted radical chemistry in the system. The loss of CF₂=CFCF=CF₂ followed first order kinetics.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	7.9×10^{-21}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$9.51 \times 10^{-17} \exp(-2800/T)$	220-320
<i>Reliability</i>		
$\Delta \log k$	0.20	298
$\Delta E/R$	± 300	

Comments on Preferred Values

The *k*(298 K) values reported by Acerboni et al. (2001) and Chen et al. (2005) differ by approximately 30%. However, given the comment by Chen et al. that there was “a systematic uncertainty of 20% in the measurement of O₃ concentration” in their experiments the results from the two studies are probably consistent within the combined experimental uncertainties. The preferred value at 298 K is an average of the results from Acerboni et al. (2001) and Chen et al. (2005). Taking the temperature dependence from Chen et al. (2005) and adjusting the pre-exponential factor to reproduce the preferred value at 298 K gives the preferred Arrhenius expression of $k = 9.51 \times 10^{-17} \exp(-2800/T)$ cm³ molecule⁻¹ s⁻¹.

References

Acerboni, G., Beukes, J. A., Jensen, N. R., Hjorth, J., Myhre, G., Nielsen, C. J., and Sundet, J. K.: *Atmos. Environ.*, 35, 4113, 2001.
Chen, L., Kutsuna, S., Tokuhashi, K., Uchimaru, T., and Sekiya, A.: *Chem. Phys. Lett.*, 416, 187, 2005.

oFOx127: O₃ + *E*-CF₃CH=CHCF₃ (HFO-1336mzz(*E*))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(4.14 ± 0.42) × 10 ⁻²²	296	Østerstrøm et al. (2017)	S-FTIR (a)
(5.16 ± 0.40) × 10 ⁻²²	296	Baasandorj et al. (2018)	S-FTIR (b)

Comments

(a) The decay of *E*-CF₃CH=CHCF₃ was monitored by FTIR spectroscopy when exposed to ozone in 700 Torr of air or N₂/O₂ diluent. Cyclohexane was added to avoid the loss of *E*-CF₃CH=CHCF₃ via reaction with HO radicals formed in the reaction system. The loss of *E*-CF₃CH=CHCF₃ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

(b) The decay of *E*-CF₃CH=CHCF₃ was monitored by FTIR spectroscopy when exposed to ozone in 10-250 Torr of He diluent. The loss of *E*-CF₃CH=CHCF₃ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	4.14 × 10 ⁻²²	298
<i>Reliability</i>		
Δ log <i>k</i>	0.10	298

Comments on Preferred Values

The preferred value is taken from the absolute rate study by Østerstrøm et al. (2017) in which cyclohexane was added to avoid the loss of *E*-CF₃CH=CHCF₃ via reaction with HO radicals formed in the reaction system. The result from the study by Baasandorj et al. (2018) is approximately 25% higher than that from Østerstrøm et al. (2017) and probably reflects additional loss of *E*-CF₃CH=CHCF₃ from reaction with HO radicals.

References

Baasandorj, M., Marshall, P., Waterland, R. L., Ravishankara, A. R., Burkholder, J. B.: J. Phys. Chem. A, 122, 4635-4646, 2018.

Østerstrøm, F. F.; Andersen, S. T.; Sølling, T. I.; Nielsen, O. J.; Sulbæk Andersen, M. P.: Phys. Chem. Chem. Phys. 19, 735–750, 2017.

oFOx124: O₃ + Z-CF₃CH=CHCF₃ (HFO-1336mzz(Z))

Last evaluated: June 2025; Last change in preferred values: June 2024.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(6.55 \pm 0.70) \times 10^{-22}$	296	Østerstrøm et al. (2017)	S-FTIR (a)
<i>Relative Rate Coefficients</i>			
$(7.63 \pm 1.53) \times 10^{-22}$	296	McGillen et al. (2023)	RR (b)

Comments

(a) The decay of Z-CF₃CH=CHCF₃ was monitored by FTIR spectroscopy when exposed to ozone. Cyclohexane was added to avoid potential problems associated with the loss of Z-CF₃CH=CHCF₃ via reaction with OH radicals formed in the reaction system. The loss of Z-CF₃CH=CHCF₃ was found to be approximately 15% greater in the absence of cyclohexane than in the presence of cyclohexane. The loss of Z-CF₃CH=CHCF₃ followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

(b) The decay of Z-CF₃CH=CHCF₃ was measured relative to that of HCFO-1233xf (CF₃CCl=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{Z-CF}_3\text{CH=CHCF}_3)/k(\text{O}_3 + \text{CF}_3\text{CCl=CH}_2) = 0.043$ was measured and was combined with $k(\text{O}_3 + \text{CF}_3\text{CCl=CH}_2) = 3.54 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3 + \text{Z-CF}_3\text{CH=CHCF}_3) = (7.63 \pm 1.53) \times 10^{-22} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	7.09×10^{-22}	298
<i>Reliability</i>		
$\Delta \log k$	0.08	298

Comments on Preferred Values

The results from the absolute rate study by Østerstrøm et al. (2017) and the relative rate study by McGillen et al. (2023) are in good agreement. The preferred value is an average from the two studies. The upper limit of $k < 6 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ reported by Baasandorj et al. (2011) is consistent with the preferred value. McGillen et al. (2023) observed the formation of CF₃H in a yield of $0.42 \pm 0.02\%$ and showed that this is formed via the hot acid mechanism.

References

Baasandorj, M.; Ravishankara, A. R.; and Burkholder, J. B.: *J. Phys. Chem. A*, 115, 10539–10549, 2011.

McGillen, M. R.; Zachary, T. P.; Fried, M.; Khan, A. H.; Kuwata, K. T.; Martin, C. M.; O'Doherty, S.; Pecere, F.; Shallcross, D. E.; Stanley, K. M.; and Zhang, K.: *Proc. Nat. Acad. Sci.*, 120, e2312714120, 2023.

Østerstrøm, F. F.; Andersen, S. T.; Sølling, T. I.; Nielsen, O. J.; and Sulbæk Andersen, M. P.: *Phys. Chem. Chem. Phys.* 19, 735–750, 2017.

oClOx97: O₃ + CH₂=CHCl

Last evaluated: June 2025; Last change in preferred values: June 2017.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$\sim 2.3 \times 10^{-19}$	305	Gay et al. (1976)	S-FTIR (a)
$(2.45 \pm 0.45) \times 10^{-19}$	298	Zhang et al. (1983)	S-FTIR (b)

Comments

(a) A mixture of approximately 5 ppm of O₃ and 3 ppm of CH₂=CHCl in 1 atmosphere of air at 305 K was prepared and monitored for 4 hours. A rate coefficient of $k(\text{O}_3 + \text{CH}_2=\text{CHCl}) = 0.34 \text{ ppm}^{-1} \text{ min}^{-1}$ was estimated from the rate of loss of CH₂=CHCl.

(b) The loss of CH₂=CHCl in the presence of O₃ in 1 atmosphere of N₂ or air diluent was monitored by FTIR spectroscopy. CH₃CHO was added as a scavenger for Cl atoms formed in the oxidation of CH₂=CHCl. Initial concentrations of CH₂=CHCl were 12-14 mTorr and O₃ were 12-71 mTorr.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	2.5×10^{-19}	298
<i>Reliability</i>		
$\Delta \log k$	0.2	298

Comments on Preferred Values

The preferred value is based upon the study by Zhang et al. (1983) which is in good agreement with the earlier work by Gay et al. (1976).

References

Gay, B. W., Hanst, P. L., and Noonan, R. C.: Environ. Sci. Technol., 10, 58, 1976.
 Zhang, J., Hatakeyama, S., and Akimoto, H.: Int. J. Chem. Kinet., 15 655, 1983.

oFOx132: O₃ + *E*-CF₃CH=CHCl (HCFO-1233zd(E))

Last evaluated: June 2025; last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(1.46 ± 0.12) × 10 ⁻²¹	296	Sulbaek Andersen et al. (2008)	S-FTIR (a)

Comments

(a) The decay of *E*-CF₃CH=CHCl was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of 5.9-14.2 mTorr *E*-CF₃CH=CHCl, 14.0-30.6 mTorr cyclohexane, and 414-4360 mTorr O₃ in 700 Torr (933 mbar) of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of *E*-CF₃CH=CHCl via reaction with OH radicals formed in the reaction system. The loss of *E*-CF₃CH=CHCl followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.5 × 10 ⁻²¹	298
<i>Reliability</i>		
Δ log <i>k</i>	0.15	298

Comments on Preferred Values

The recommended value is taken from the work by Sulbaek Andersen et al. (2008); the only study of this reaction.

References

Sulbaek Andersen, M. P., Nilsson, E. J. K., Nielsen, O. J., Johnson, M. S., Hurley, M. D., and Wallington, T. J.: J. Photochem. and Photobiol. A: Chem., 199, 92, 2008.

oFOx131: O₃ + Z-CF₃CH=CHCl (HCFO-1233zd(Z))

Last evaluated: June 2025; last change in preferred values: June 2019.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.53 \pm 0.12) \times 10^{-21}$	296	Andersen et al. (2015)	S-FTIR (a)

Comments

(a) The decay of Z-CF₃CH=CHCl was monitored by FTIR spectroscopy when exposed to ozone. Reaction mixtures consisted of 4.07-4.17 mTorr Z-CF₃CH=CHCl, 3.96-31.79 mTorr cyclohexane, and 610–2820 mTorr O₃ in 700 Torr of air diluent. Cyclohexane was added to avoid potential problems associated with the loss of Z-CF₃CH=CHCl via reaction with OH radicals formed in the reaction system. The loss of Z-CF₃CH=CHCl followed first order kinetics and the pseudo first order rate coefficients increased linearly with [O₃].

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.53×10^{-21}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The recommended value is taken from the work by Andersen et al. (2015); the only study of this reaction.

References

Andersen, L. L., Østerstrøm, F. F., Sulbaek Andersen, M. P., Nielsen, O. J., and Wallington, T. J.: Chem. Phys. Lett., 639, 289, 2015.

oFOx125: O₃ + CF₃CCl=CH₂ (HCFO-1233xf)

Last evaluated: June 2025; last change in preferred values: June 2024.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(3.00 \pm 0.74) \times 10^{-21}$	296	McGillen et al. (2023)	S-UV (a)
<i>Relative Rate Coefficients</i>			
$(3.86 \pm 0.79) \times 10^{-21}$	296	McGillen et al. (2023)	RR (b)
$(3.82 \pm 0.78) \times 10^{-21}$	296	McGillen et al. (2023)	RR (c)
$(3.95 \pm 0.87) \times 10^{-21}$	296	McGillen et al. (2023)	RR (d)
$(3.15 \pm 0.87) \times 10^{-21}$	296	McGillen et al. (2023)	RR (e)

Comments

- (a) The decay of ozone was monitored via UV absorption in the presence of an excess of CF₃CCl=CH₂ in the presence of either *i*-propanol or cyclohexane and HC(O)OH which were added as scavengers for HO radicals and stabilized Criegee intermediates. The diluent and pressure was 1 atmosphere of air (McGillen, private communication). The loss of O₃ followed first-order kinetics and the pseudo first-order rate coefficients increased linearly with [CF₃CCl=CH₂].
- (b) The decay of CF₃CCl=CH₂ was measured relative to that of HFO-1243zf (CF₃CH=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2)/k(\text{O}_3+\text{CF}_3\text{CH}=\text{CH}_2) = 0.307$ was measured and was combined with $k(\text{O}_3+\text{CF}_3\text{CH}=\text{CH}_2) = 1.26 \times 10^{-20} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2) = (3.86 \pm 0.79) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (c) The decay of CF₃CCl=CH₂ was measured relative to that of HFO-1234yf (CF₃CF=CH₂) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2)/k(\text{O}_3+\text{CF}_3\text{CF}=\text{CH}_2) = 1.495$ was measured and was combined with $k(\text{O}_3+\text{CF}_3\text{CF}=\text{CH}_2) = 2.56 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2) = (3.82 \pm 0.78) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) The decay of CF₃CCl=CH₂ was measured relative to that of HFO-1243ze(*E*) (*E*-CF₃CH=CHF) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2)/k(\text{O}_3+\text{E-CF}_3\text{CH}=\text{CHF}) = 1.619$ was measured and was combined with $k(\text{O}_3+\text{E-CF}_3\text{CH}=\text{CHF}) = 2.44 \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3+\text{CF}_3\text{CCl}=\text{CH}_2) = (3.95 \pm 0.87) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (e) The decay of CF₃CCl=CH₂ was measured relative to that of HFO-1336mzz(*Z*) (*Z*-CF₃CH=CHCF₃) in the presence of a large excess of ozone in 1 bar of air. To avoid unwanted

secondary chemistry isopropanol was added to scavenge both HO radicals and stabilized Criegee intermediates which are formed in the system. A rate constant ratio of $k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2)/k(\text{O}_3 + \text{Z-CF}_3\text{CH}=\text{CHCF}_3) = 4.624$ was measured and was combined with $k(\text{O}_3 + \text{Z-CF}_3\text{CH}=\text{CHCF}_3) = 6.81 \times 10^{-22} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (McGillen et al. 2023) to give $k(\text{O}_3 + \text{CF}_3\text{CCl}=\text{CH}_2) = (3.15 \pm 0.87) \times 10^{-21} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.00×10^{-21}	298
<i>Reliability</i>		
$\Delta \log k$	0.08	298

Comments on Preferred Values

The preferred value is taken from the absolute rate study by McGillen et al. (2023). Results from the relative rate studies by McGillen et al. (2023) are consistent with the preferred value. McGillen et al. (2023) did not observe formation of CF_3Cl and CF_3H as products.

References

McGillen, M. R.; Zachary, T. P.; Fried, M.; Khan, A. H.; Kuwata, K. T.; Martin, C. M.; O'Doherty, S.; Pecere, F.; Shallcross, D. E.; Stanley, K. M.; and Zhang, K.: Proc. Soc. Nat. Acad., 120, e2312714120, 2023.

oFOx84: HO + CH₂FCH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2023.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(5.15 \pm 0.88) \times 10^{-12} \exp[-(330 \pm 45)/T]$	238-355	Rajakumar et al. (2005)	PLP-LIF (a)
$(1.63 \pm 0.09) \times 10^{-12}$	297		
$3.47 \times 10^{-14} (T/298)^{4.49} \exp(977/T)$	230-370	Orkin et al. (2011)	FP-RF (b)
$(9.29 \pm 0.18) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$(1.39 \pm 0.05) \times 10^{-12}$	298	Sellevåg et al. (2004)	RR (c)

Comments

- (a) HO radicals were generated by the 248 nm photolysis of H₂O₂ in 60-100 Torr (80-133 mbar) of helium diluent. Additional experiments were performed at 355 K using DO radicals (formed via O₃ photolysis in the presence of D₂O). The rate coefficients for the reactions of DO and HO radicals with CH₂FCH₂OH were indistinguishable. There was no evidence for the formation of HO radicals following reaction of DO radicals with CH₂FCH₂OH.
- (b) HO radicals were generated by the flash photolysis of H₂O in 1.33-26.7 kPa (10-200 Torr) of argon diluent. The rate coefficients were independent of the H₂O concentration, flash energy, flash repetition rate, residence time of the mixture in the reactor, reactant concentration in the storage bulb, and residence time of the reactant mixture in the delivery volume.
- (c) HO radicals were generated by the photolysis of O₃ in the presence of H₂O in 1013 mbar of air diluent at 298 K. A rate coefficient ratio of $k(\text{HO}+\text{CH}_2\text{FCH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_6) = 5.81 \pm 0.19$ was measured. Placing this on an absolute basis using $k(\text{HO}+\text{C}_2\text{H}_6) = 2.4 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CH}_2\text{FCH}_2\text{OH}) = (1.39 \pm 0.05) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

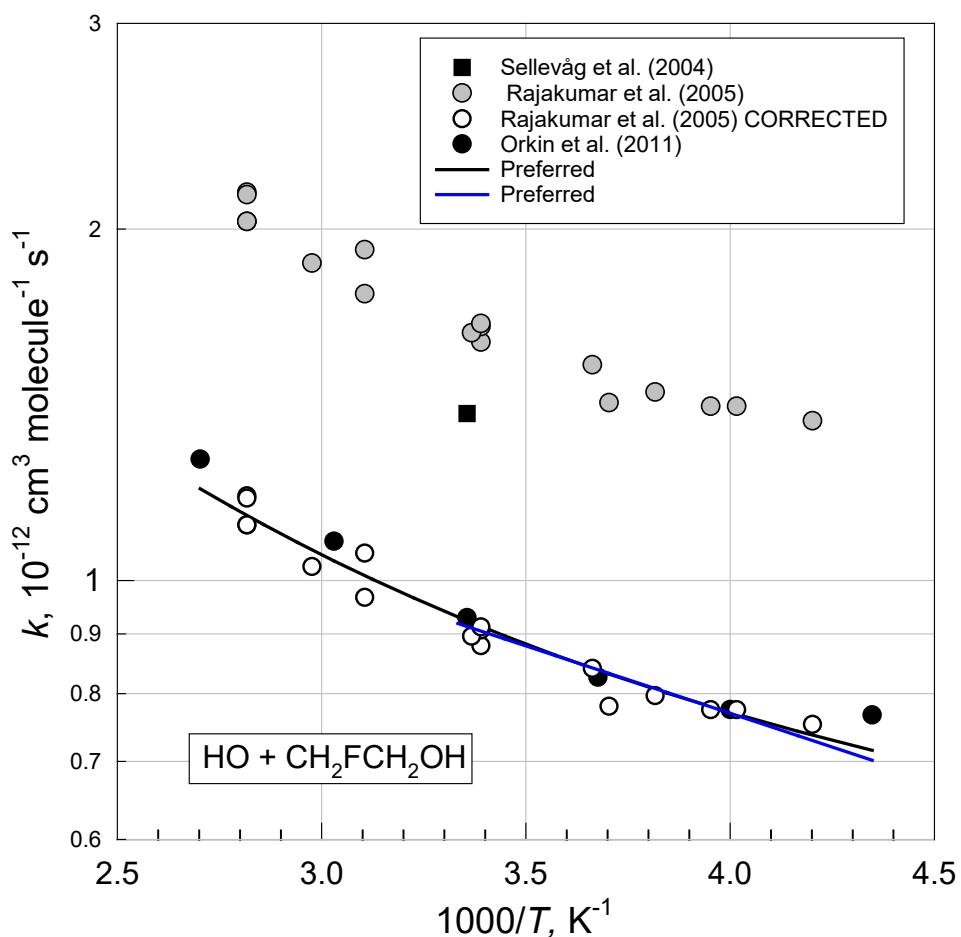
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	9.12×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$2.23 \times 10^{-12} \exp(-266/T)$	230-300
<i>Reliability</i>		
$\Delta \log k$	± 0.08	298
$\Delta E/R$	± 100	230-300

Comments on Preferred Values

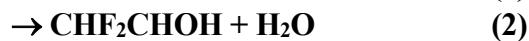
The results from the relative rate study by Sellevåg et al. (2004) and the absolute rate study of Rajakumar et al. (2005) at ambient temperature are indistinguishable within the likely combined experimental uncertainties. The results from the absolute rate study by Orkin et al. (2011) are approximately a factor of 2 lower. The concentration of CH₂FCH₂OH in the study by Rajakumar et al.

was measured using absorption at 184.9 nm. Orkin et al. remeasured the absorption spectrum of $\text{CH}_2\text{FCH}_2\text{OH}$ and determined an absorption cross section at 184.9 nm that was 1.82 times smaller than used by Rajakumar et al. (2005). Correction of the rate coefficients reported by Rajakumar et al. by a factor of 1.82 brings them into good agreement with those from Orkin et al. (2011). A fit of the modified Arrhenius expression $k = CT^2 \exp(-D/T)$, to the combined data set from Orkin et al. (2011) and the corrected data from Rajakumar et al. (2005) gives $k = 4.28 \times 10^{-18} T^2 \exp(264/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 230-370 K. The preferred Arrhenius expression $k = 2.23 \times 10^{-12} \exp(-266/T)$, is centered at 265 K and is derived from the three-parameter equation with $A = C e^2$ T^2 and $B = D + 2T$.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Orkin, V. L., Khamaganov, V. G., Martynova, L. E., and Kurylo, M. J.: J. Phys. Chem. A, 115, 8556, 2011.


Rajakumar, B., Burkholder, J. B., Portmann, R. W., and Ravishankara, A.R.: Phys. Chem. Chem. Phys., 7, 2498, 2005.

Sellevåg, S. R., Nielsen, C. J., Søvde, O. A., Myhre, G., Sundet, J. K., Stordal, F., and Isaksen, I. S. A.: Atmos. Environ., 38, 6725, 2004.

oFOx85: HO + CHF₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2023.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.52 \pm 0.44) \times 10^{-13}$	300	Kovacs et al. (2005)	PLP-RF (a)
$3.87 \times 10^{-14} (T/298)^{4.25} \exp(578/T)$	220-370	Orkin et al. (2011)	FP-RF (b)
$(2.70 \pm 0.02) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$(4.57 \pm 0.38) \times 10^{-13}$	298	Sellevåg et al. (2004)	RR (c)

Comments

- (a) HO radicals were produced by the photolysis of HNO₃ at 248 nm in 105 ± 5 mbar of helium diluent.
- (b) HO radicals were generated by the flash photolysis of H₂O in 1.33-26.7 kPa (10-200 Torr) of argon. The rate coefficient was independent of the H₂O concentration, flash energy, flash repetition rate, residence time of the mixture in the reactor, reactant concentration in the storage bulb, and residence time of the reactant mixture in the delivery volume.
- (c) HO radicals were generated by the photolysis of O₃ in the presence of H₂O in 1013 mbar of air diluent at 298 K. A rate coefficient ratio of $k(\text{HO}+\text{CHF}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_6) = 1.903 \pm 0.016$ was measured. Placing this on an absolute basis using $k(\text{HO}+\text{C}_2\text{H}_6) = 2.4 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CHF}_2\text{CH}_2\text{OH}) = (4.57 \pm 0.38) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

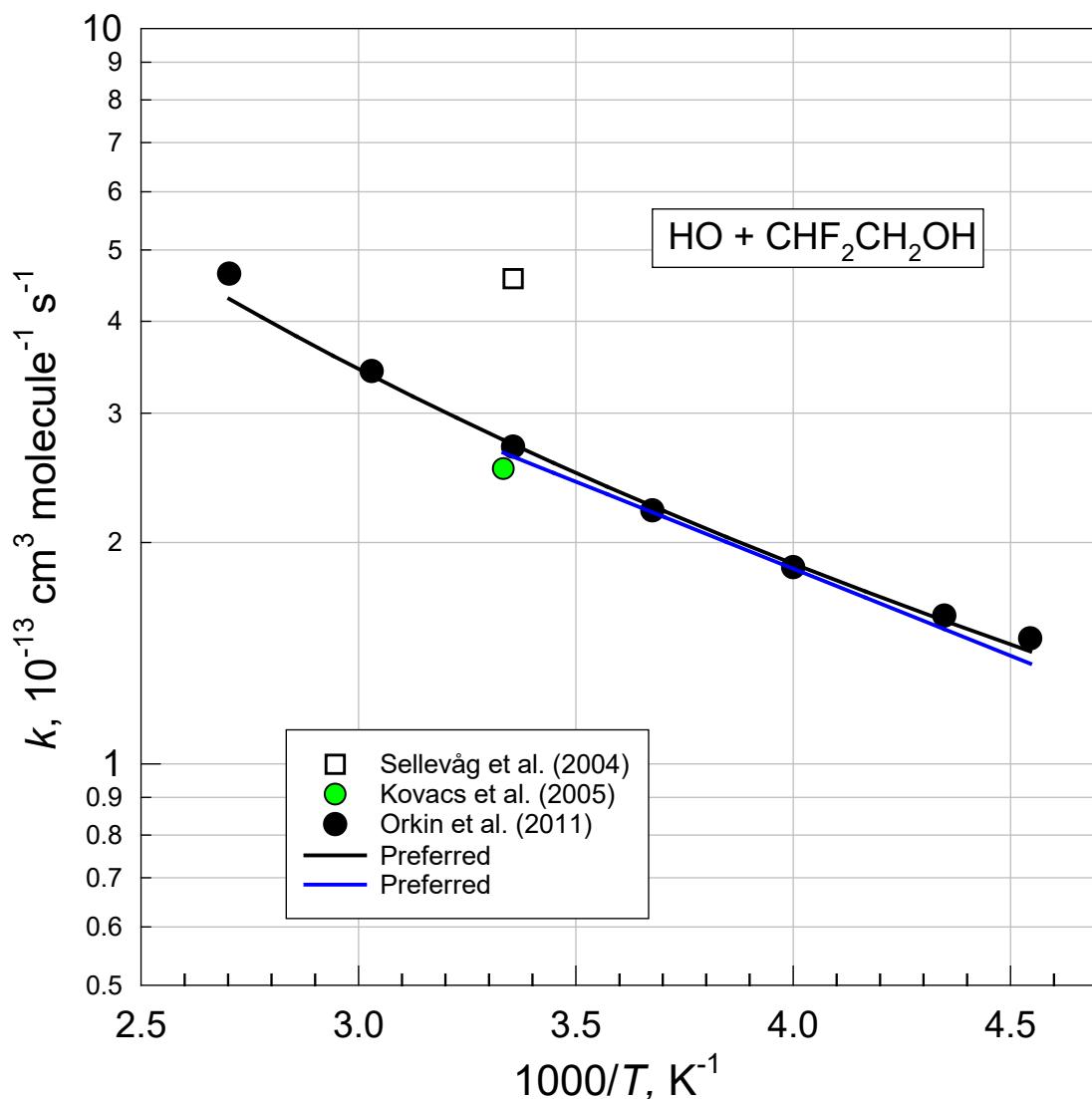
Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.61×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.63 \times 10^{-12} \exp(-545/T)$	220-300
<i>Reliability</i>		
$\Delta \log k$	± 0.08	298
$\Delta E/R$	± 200	220-300

Comments on Preferred Values

The results from the absolute rate studies at ambient temperature by Kovacs et al. (2005) and Orkin et al. (2011) are in excellent agreement. For reasons which are unclear the rate coefficient reported in the relative rate study by Sellevåg et al. (2004) is approximately 80% larger than those from the two absolute rate studies. The preferred value of $k = 2.61 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K is an average of the ambient temperature measurements by Kovacs et al. (2005) and Orkin et al. (2011). There is small, but discernable, curvature in the Arrhenius plot evident in the data from Orkin et al. (2011). A fit of the modified Arrhenius expression $k = CT^2 \exp(-D/T)$, to the combined data set from Kovacs et al. (2005) and Orkin et al. (2011) gives $k = 3.44 \times 10^{-18} T^2 \exp(-35/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 220-370 K. The preferred Arrhenius expression $k = A \exp(-B/T)$ is centered at 255 K and was

derived using $B = D + 2T$ with the value of A adjusted to give the preferred $k(298K)$ value; $k = 1.63 \times 10^{-12} \exp(-545/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Kovacs, G., Szasz-Vadasz, T., Papadimitriou, V. C., Dóbé, S., Bérces, T., and Marta F.: *React. Kinet. Catal. Lett.*, 87, 129, 2005.

Orkin, V. L., Khamaganov, V. G., Martynova, L. E., and Kurylo, M. J.: *J. Phys. Chem. A*, 115, 8556, 2011.

Sellevåg, S. R., Nielsen, C. J., Søvde, O. A., Myhre, G., Sundet, J. K., Stordal, F., and Isaksen, I. S. A.: *Atmos. Environ.*, 38, 6725, 2004.

oFOx86: HO + CF₃CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2023.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(9.55 \pm 0.71) \times 10^{-14}$	298	Wallington et al. (1988)	FP-RF (a)
$(2.00 \pm 0.37) \times 10^{-12} \exp[-(890 \pm 60)/T]$	250-430	Tokuhashi et al. (1999)	LP-LIF (b)
1.01×10^{-13}	298		FP-LIF (b)
$(1.06 \pm 0.30) \times 10^{-13}$	300	Kovacs et al. (2005)	PLP-RF (c)
$(1.23 \times 10^{-12} \exp[-(760 \pm 340)/T]$	298-363	Indulkar et al. (2011)	LP-LIF (d)
$(1.03 \pm 0.11) \times 10^{-13}$	298		
$2.48 \times 10^{-14} (T/298)^{4.03} \exp(418/T)$	220-370	Orkin et al. (2011)	FP-RF (e)
$(1.01 \pm 0.01) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$(1.31 \pm 0.05) \times 10^{-13}$	298	Sellevåg et al. (2004)	RR (f)
$(9.4 \pm 0.8) \times 10^{-14}$	296	Hurley et al. (2004)	RR (g)

Comments

- (a) HO radicals were generated by the photolysis ($\lambda \geq 165$ nm) of H₂O in 25-50 Torr (33-67 mbar) of argon diluent at 298 K.
- (b) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the 193 nm photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 15-70 Torr (20-93 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda < 180$ nm) of H₂O in argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 4-6 Torr (5-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.
- (c) HO radicals were produced by the photolysis of HNO₃ at 248 nm in 105 ± 5 mbar of helium diluent.
- (d) HO radicals were produced by the photolysis of H₂O₂ at 248 nm.
- (e) HO radicals were generated by the flash photolysis of H₂O in 1.33-26.7 kPa (10-200 Torr) of argon diluent. The rate coefficient was independent of the H₂O concentration, flash energy, flash repetition rate, residence time of the mixture in the reactor, reactant concentration in the storage bulb, and residence time of the reactant mixture in the delivery volume.
- (f) HO radicals were generated by the photolysis of O₃ in the presence of H₂O in 1013 mbar of air diluent at 298 K. A rate coefficient ratio of $k(\text{HO} + \text{CF}_3\text{CH}_2\text{OH})/k(\text{HO} + \text{C}_2\text{H}_6) = 0.547 \pm 0.019$ was measured. Placing this on an absolute basis using $k(\text{HO} + \text{C}_2\text{H}_6) = 2.4 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CH}_2\text{OH}) = (1.31 \pm 0.05) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (g) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. A rate coefficient ratio of $k(\text{HO} + \text{CF}_3\text{CH}_2\text{OH})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.12 \pm 0.01$ was reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{CH}_2\text{OH}) = (9.4 \pm 0.8) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.00×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.25 \times 10^{-12} \exp(-754/T)$	220-300
<i>Reliability</i>		
$\Delta \log k$	0.06	298
$\Delta E/R$	± 100	220-300

Comments on Preferred Values

Except for the measurement by Sellevåg et al. (2004), there is excellent agreement in the room temperature rate coefficients reported for this reaction. The preferred value at 298 K is an average of the results from the remaining six studies. The rate coefficients reported by Indulkar et al. (2011) at 318 and 333 K are approximately 20% below those reported by Tokuhashi et al. (1999) and Orkin et al. (2011) but are within the likely combined uncertainties of the studies. The rate coefficients reported by Indulkar et al. (2011) at 348 and 363 K are in excellent agreement with those expected based on the studies by Tokuhashi et al. (1999) and Orkin et al. (2011). The temperature dependencies reported by Tokuhashi et al. (1999), Indulkar et al. (2011), and Orkin et al. (2011) over the range 250-370 K are in good agreement. There is evidence or curvature in the Arrhenius plot in the results from Orkin et al. (2011) particularly below 250 K. A fit of the modified Arrhenius expression $k = CT^2 \exp(-D/T)$, to the combined data set from Tokuhashi et al. (1999) and Orkin et al. (2011) gives $k = 2.41 \times 10^{-18} T^2 \exp(-224/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 220-430 K. The preferred Arrhenius expression $k = A \exp(-B/T)$ is centered at 265 K and was derived using $B = D + 2T$ with the value of A adjusted to give the preferred $k(298\text{K})$ value; $k = 1.25 \times 10^{-12} \exp(-754/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Hurley et al. (2004) have reported the formation of CF_3CHO in a molar yield of $97 \pm 3\%$ following the chlorine-atom-initiated oxidation of $\text{CF}_3\text{CH}_2\text{OH}$ in 700 Torr of air. HO and chlorine atom reaction with $\text{CF}_3\text{CH}_2\text{OH}$ are expected to proceed via the same mechanism; hydrogen abstraction from the $-\text{CH}_2-$ group. The HO radical initiated oxidation of $\text{CF}_3\text{CH}_2\text{OH}$ is expected to lead to quantitative conversion of $\text{CF}_3\text{CH}_2\text{OH}$ into CF_3CHO (Calvert et al., 2011).

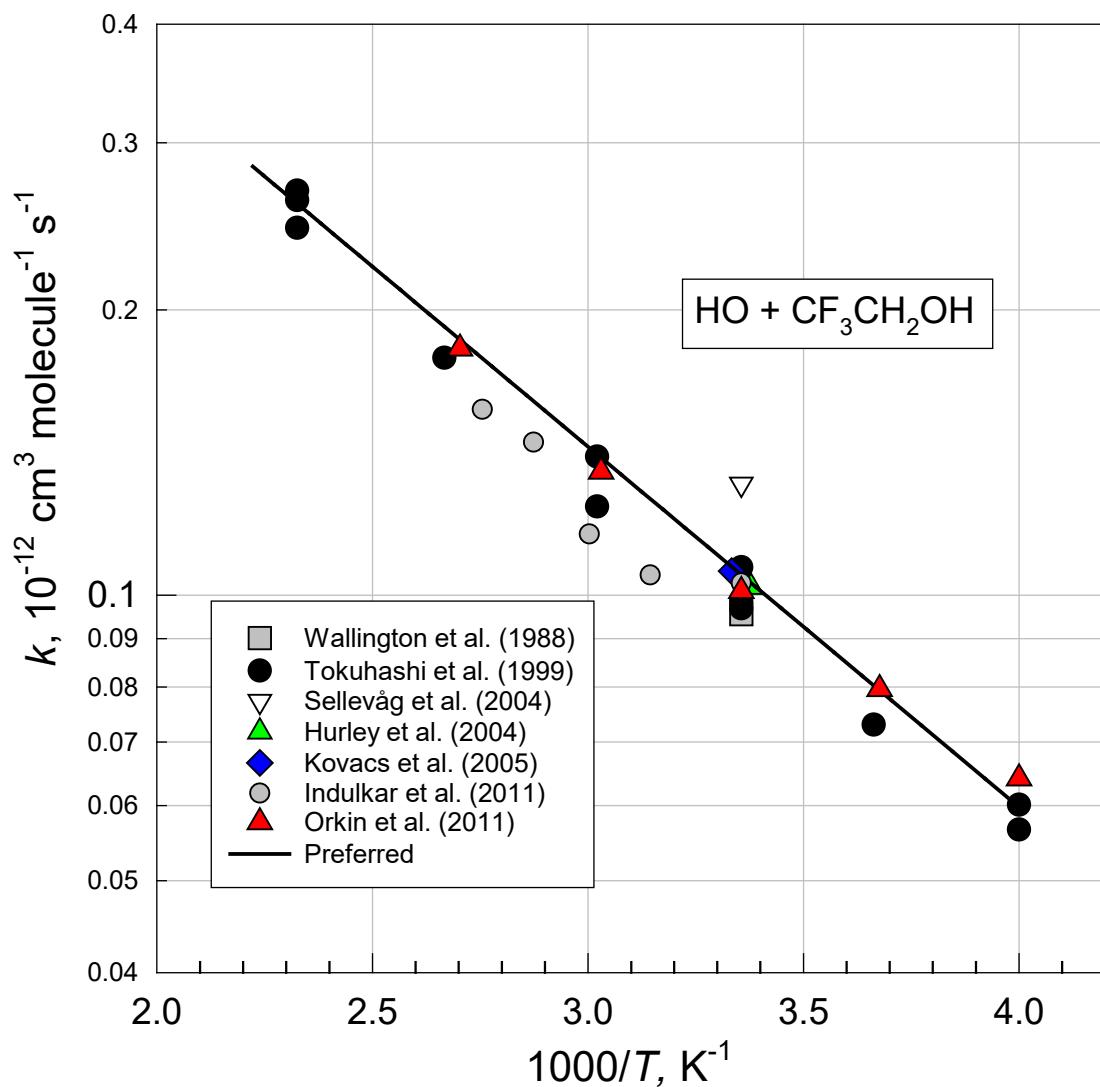
References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

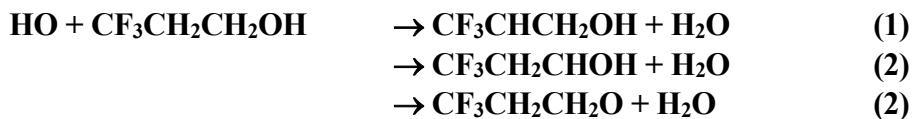
Hurley, M. D., Wallington, T. J., Andersen, M. P. S., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 1973, 2004.

Indulkar, Y. N., SenGupta, S., Waghmode, S. B., Kumar, A., Dhanya, S., and Naik, P. D.: Atmos. Environ., 45, 6973, 2011.


Kovacs, G., Szasz-Vadasz, T., Papadimitriou, V. C., Dóbé, S., Bérces, T., and Marta F.: React. Kinet. Catal. Lett., 87, 129, 2005.

Orkin, V. L., Khamaganov, V. G., Martynova, L. E., and Kurylo, M. J.: J. Phys. Chem. A, 115, 8556, 2011.

Sellevåg, S. R., Nielsen, C. J., Søvde, O. A., Myhre, G., Sundet, J. K., Stordal, F., and Isaksen, I. S. A.: Atmos. Environ., 38, 6725, 2004.


Tokuhashi, K., Nagai, H., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Takahashi, M., Gotoh, Y.,

and Suga, A.: J. Phys. Chem. A, 103, 2664, 1999.
Wallington, T. J., Dagaut, P., and Kurylo, M. J.: J. Phys. Chem., 92, 5024, 1988.

oFOx87: HO + CF₃CH₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2014.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(0.89 \pm 0.03) \times 10^{-12}$	298	Kelly et al. (2005)	PLP-LIF (a)
$(0.97 \pm 0.11) \times 10^{-12}$	298	Jimenez et al. (2010)	PLP-LIF (b)
$2.82 \times 10^{-12} \exp[-(302 \pm 139)/T]$	263-358	Antinolo et al. (2011)	PLP-LIF (c)
$(1.03 \pm 0.11) \times 10^{-12}$	287		
<i>Relative Rate Coefficients</i>			
$(1.06 \pm 0.04) \times 10^{-12}$	298	Kelly et al. (2005)	RR (d)
$(1.05 \pm 0.05) \times 10^{-12}$			RR (d)
$(1.43 \pm 0.03) \times 10^{-12}$			RR (d)
$(0.68 \pm 0.07) \times 10^{-13}$	296	Hurley et al (2005)	RR (e)
$(0.70 \pm 0.08) \times 10^{-13}$			RR (e)

Comments

- (a) HO radicals were generated by the 248 nm photolysis of H₂O₂ in 100 Torr (133 mbar) of helium diluent at 298 K.
- (b) HO radicals were produced by 248 nm photolysis of H₂O₂ in 47-211 Torr (63-281 mbar) of helium diluent at 298 K.
- (c) HO radicals were produced by 248 nm photolysis of H₂O₂ in 46-95 Torr (61-127 mbar) of helium diluent at 263-358 K.
- (d) HO radicals were generated by the 254 nm (Hg lamp) photolysis of either H₂O₂ or O₃ (in the presence of H₂O vapor) in one atmosphere of air. Rate coefficient ratios of $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{HC(O)OC}_4\text{H}_9) = 0.30 \pm 0.01$, $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+n\text{-hexane}) = 0.20 \pm 0.01$, and $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{CF}_3\text{CH}_2\text{OH}) = 0.95 \pm 0.02$ were determined. Placing these ratios on an absolute basis using $k(\text{HO}+\text{HC(O)OC}_4\text{H}_9) = 3.54 \times 10^{-12}$ (Le Calvé et al., 1997), $k(\text{HO}+n\text{-hexane}) = 5.27 \times 10^{-12}$ (Calvert et al., 2008), and $k(\text{HO}+\text{CF}_3\text{CH}_2\text{OH}) = 1.5 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (present recommendation) gives $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH}) = (1.06 \pm 0.04) \times 10^{-12}$, $(1.05 \pm 0.05) \times 10^{-12}$, and $(1.43 \pm 0.03) \times 10^{-12}$, respectively.
- (e) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Rate coefficient ratios of $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 0.87 \pm 0.09$ and $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.089 \pm 0.010$ were reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CH}_2\text{OH}) = (6.79 \pm 0.70) \times 10^{-13}$ and $(7.03 \pm 0.79) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	9.6×10^{-13}	298
	132	

$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$2.72 \times 10^{-12} \exp(-305/T)$	260-360
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 200	260-360

Comments on Preferred Values

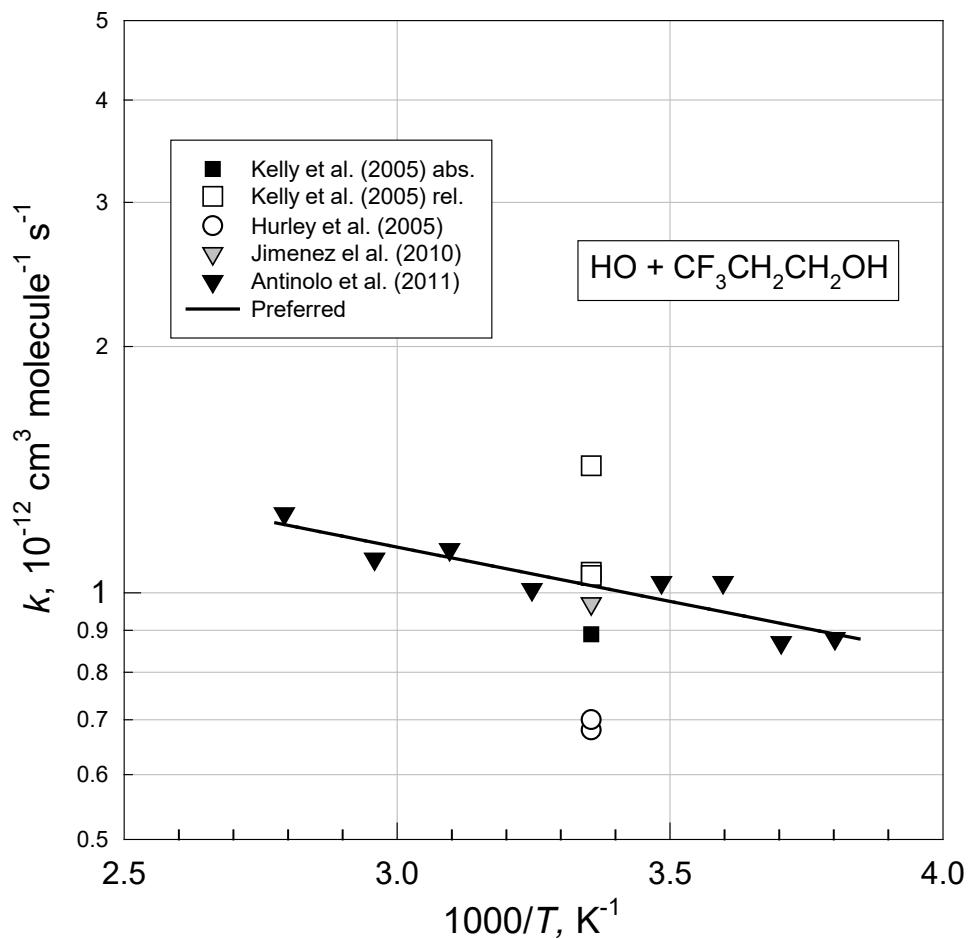
There is significant scatter in the room temperature rate coefficients reported in the relative rate studies by Kelly et al. (2005) and Hurley et al. (2005). The room temperature rate coefficients reported in the absolute rate studies by Kelly et al. (2005) and Jiménez et al. (2010) are in good agreement. The absolute rate determinations at 298 K by Kelly et al. (2005) and Jiménez et al. (2010) lie in the center of the scatter in the results from the relative rate studies of Kelly et al. (2005) and Hurley et al. (2005). The preferred rate coefficient at 298 K is an average from the results of the absolute rate studies by Kelly et al. (2005) and Jiménez et al. (2010). An interpolation of the absolute rate data at 263 – 358 K reported by Antinolo et al. (2011) is in good agreement with the preferred rate coefficient at 298 K. The preferred temperature dependence is taken from a fit to the data from Antinolo et al. (2011) with the pre-exponential factor adjusted to be consistent with the preferred rate coefficient at 298K. The majority of reaction is believed to occur via hydrogen abstraction from the $-\text{CH}_2-$ group bearing the alcohol functionality (Calvert et al., 2010). Subsequent reaction of the $\text{CF}_3\text{CH}_2\text{CHOH}$ with O_2 will give $\text{CF}_3\text{CH}_2\text{CHO}$. The HO radical initiated oxidation of $\text{CF}_3\text{CH}_2\text{CH}_2\text{OH}$ is expected to give $\text{CF}_3\text{CH}_2\text{CHO}$ in a yield close to 100%. Consistent with this expectation, Hurley et al. (2005) observed the formation of $\text{CF}_3\text{CH}_2\text{CHO}$ as the sole product of the chlorine-atom-initiated oxidation of $\text{CF}_3\text{CH}_2\text{CH}_2\text{OH}$ in one atmosphere of air.

References

Antinolo, M., Jiménez, E., and Albaladejo, J.: Environ. Sci. Technol., 45, 4323, 2011.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S. and Wallington T. J.: Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York, NY, 2008.


Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Hurley, M. D., Misner, J. A., Ball, J. C., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 109, 9816, 2005.

Jiménez, E., Antinolo, M., Ballesteros, B., Martinez, E., and Albaladejo, J.: ChemPhysChem, 11, 4079, 2010.

Kelly, T., Bossoutrot, V., Magneron, I., Wirtz, K., Treacy, J., Mellouki, A., Sidebottom, H., and Le Bras, G.: J. Phys. Chem. A, 109, 347, 2005.

Le Calvé, S., Le Bras, G., and Mellouki, A.: J. Phys. Chem. A, 101, 5489, 1997.

oFOx88: HO + C₂F₅CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.40 \pm 0.27) \times 10^{-12} \exp[-(780 \pm 60)/T]$	250-430	Tokuhashi et al. (1999)	LP-LIF (a)
1.00×10^{-13}	298		FP-LIF (a)
$1.36 \times 10^{-12} \exp[-(730 \pm 43)/T]$	263-358	Antinolo et al. (2012)	DF-LIF (a)
$(1.19 \pm 0.03) \times 10^{-13}$	287		PLP-LIF (b)
<i>Relative Rate Coefficients</i>			
$1.5 \times 10^{-12} \exp[-(818)/T]$	298-356	Chen et al. (2000)	RR(c)
9.84×10^{-14}	298		
$(9.4 \pm 0.8) \times 10^{-14}$	296	Hurley et al. (2004)	RR (d)

Comments

- (a) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the 193 nm photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 15-70 Torr (20-93 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda \geq 180$ nm) of H₂O in argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 4-6 Torr (5-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.
- (b) HO radicals were produced by 248 nm photolysis of H₂O₂ in 43-214 Torr (57-285 mbar) of helium diluent at 263-358 K. No effect of total pressure was reported over the range studied.
- (c) HO radicals were generated by the photolysis of O₃ in the presence of water vapor in 1 bar of O₂ diluent. The decay of C₂F₅CH₂OH was monitored relative to that of CH₂Cl₂. Chen et al. (2000) used the expression $k(\text{HO} + \text{CH}_2\text{Cl}_2) = 3.8 \times 10^{-12} \exp(-1050/T)$ to place their results on an absolute basis. Rescaling using $k(\text{HO} + \text{CH}_2\text{Cl}_2) = 1.8 \times 10^{-12} \exp(-860/T)$ (Atkinson et al., 2008) and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH}) = 1.5 \times 10^{-12} \exp(-818/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. A rate coefficient ratio of $k(\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.12 \pm 0.01$ was reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH}) = (9.4 \pm 0.8) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.05×10^{-13}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.28 \times 10^{-12} \exp(-748/T)$	250-430
<i>Reliability</i>		
$\Delta \log k$	0.06	298
$\Delta E/R$	± 200	250-430

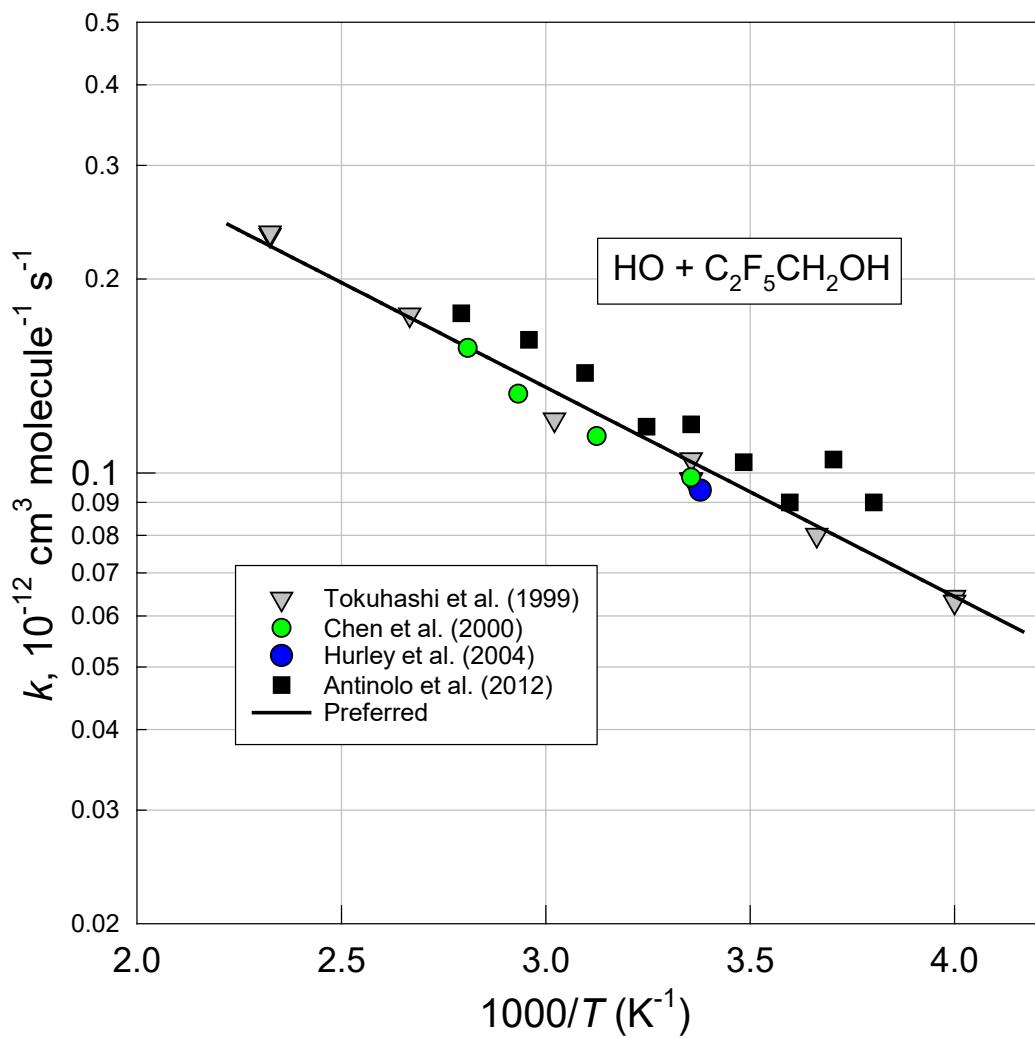
Comments on Preferred Values

The rate coefficients reported in the absolute rate studies by Tokuhashi et al. (1997) and Antinolo et al. (2012) and the relative rate studies by Chen et al. (2000) and Hurley et al. (2004) are in good agreement. Taking an average of the determinations by Tokuhashi et al. (1997) and Antinolo et al. (2012) gives $k(\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH}) = 1.05 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. Fitting the Arrhenius expression to the data from Tokuhashi et al. (1997) and Antinolo et al. (2012) and adjusting the pre-exponential factor to reproduce the preferred value at 298 K gives $k(\text{HO} + \text{C}_2\text{F}_5\text{CH}_2\text{OH}) = 1.28 \times 10^{-12} \exp(-748/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The HO radical initiated oxidation of $\text{C}_2\text{F}_5\text{CH}_2\text{OH}$ is expected to lead to quantitative conversion into $\text{C}_2\text{F}_5\text{CHO}$ (Calvert et al., 2011).

References

Antinolo, M., Gonzalez, S., Ballesteros, B., Albaladejo, J., and Jiménez, E.: J. Phys. Chem. A, 116, 6041, 2012.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Chen, L., Fukuda, K., Takenaka, N., Bandow, H., Maeda, Y.: Int. J. Chem. Kinet., 32, 73, 2000.

Hurley, M. D., Wallington, T. J., Andersen, M. P. S., Ellis, D. A., Martin, J. W., and Mabury, S.A.: J. Phys. Chem. A, 108, 1973, 2004.

Tokuhashi, K., Nagai, H., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Takahashi, M., Gotoh, Y., and Suga, A.: J. Phys. Chem. A, 103, 2664, 1999.

oFOx89: HO + CF₃CH(OH)CF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

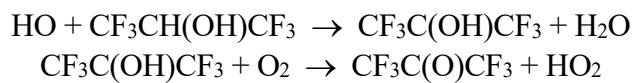
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(6.99 \pm 1.56) \times 10^{-13} \exp[-(990 \pm 70)/T]$	250-430	Tokuhashi et al. (1999)	LP-LIF (a)
2.52×10^{-14}	298		FP-LIF (a)
$1.19 \times 10^{-12} \exp(-1207/T) + 7.85 \times 10^{-16} \exp(502/T)$	220-370	Orkin et al. (2012)	DF-LIF (a)
$(2.47 \pm 0.03) \times 10^{-14}$	298		FP-RF (b)

Comments

(a) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the 193 nm photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 15-70 Torr (20-93 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda \geq 180$ nm) of H₂O in argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 4-6 Torr (5-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.

(b) HO radicals were generated using the flash photolysis of H₂O vapor in 30 Torr (40 mbar) of argon.

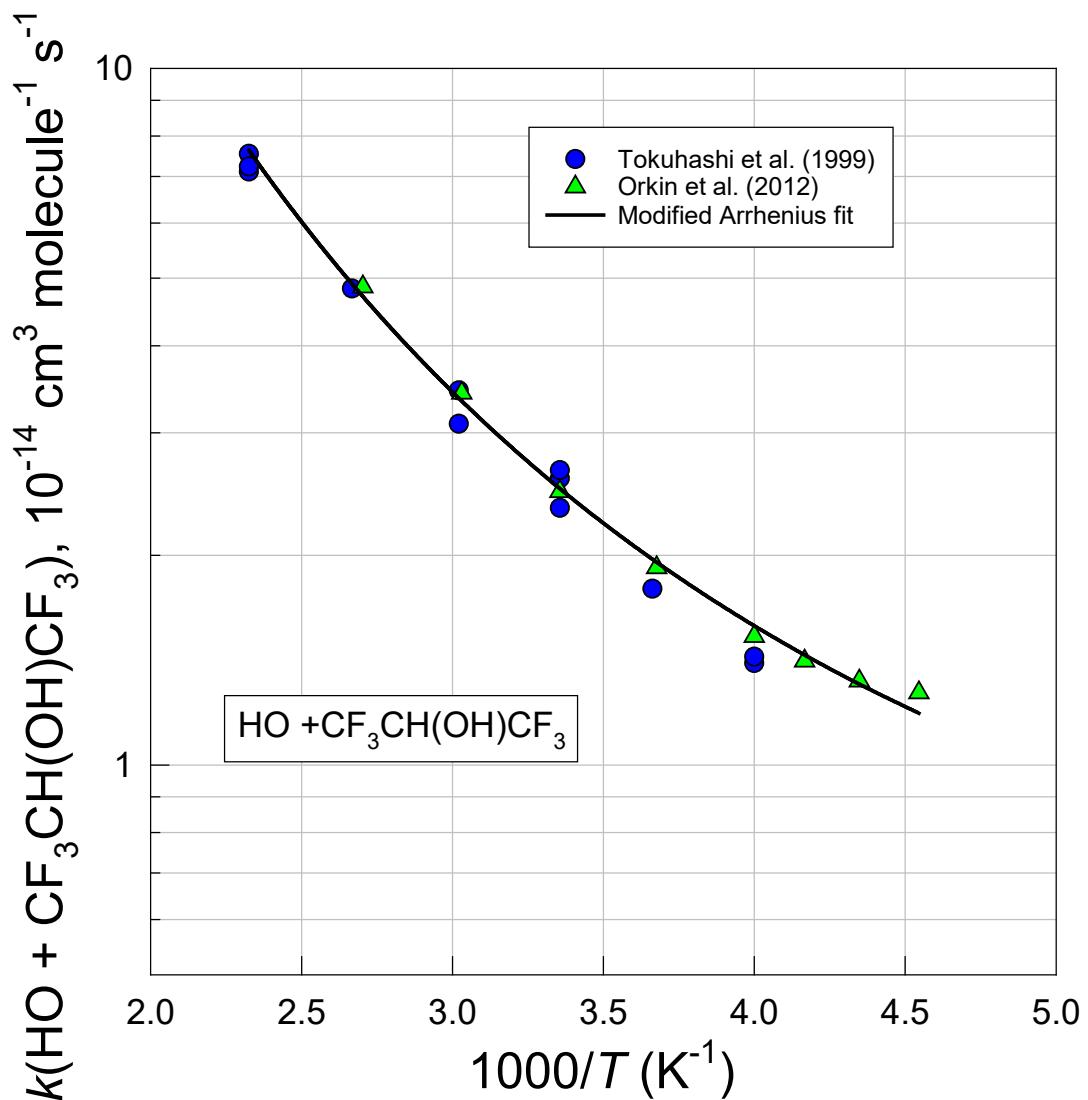

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.43×10^{-14}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$3.94 \times 10^{-15} (T/298)^{4.57} \exp(542/T)$	220-430
<i>Reliability</i>		
$\Delta \log k$	0.12	298

Comments on Preferred Values

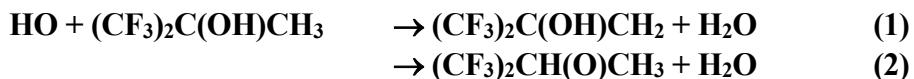
The results from Tokuhashi et al. (1997) and Orkin et al. (2012) are in excellent agreement. The preferred value at 298 K is an average of the values from Tokuhashi et al. (1997) and Orkin et al. (2012). There is significant curvature in the Arrhenius plot which is particularly evident in the data below 250 K. A fit of the modified Arrhenius expression to the combined data set from Tokuhashi et al. (1997) and Orkin et al. (2012) with the first term adjusted so the expression returns the preferred value at 298 K gives $k(\text{HO} + \text{CF}_3\text{CH(OH)CF}_3) = 3.94 \times 10^{-15} (T/298)^{4.57} \exp(542/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ which fits the data over the temperature range 220-430 K.

The HO radical initiated oxidation of $\text{CF}_3\text{CH(OH)CF}_3$ is expected to lead to quantitative conversion into $\text{CF}_3\text{C(O)CF}_3$ (Calvert et al., 2011).



References

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.


Orkin, V. L., Khanaganov, V. G., Kurylo, M. J.: J. Phys. Chem. A, 116, 6188, 2012.

Tokuhashi, K., Nagai, H., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Takahashi, M., Gotoh, Y., and Suga, A.: J. Phys. Chem. A, 103, 2664, 1999.

oFOx158: HO + (CF₃)₂C(OH)CH₃

Last evaluated: June 2025; Last change in preferred values: September 2019.

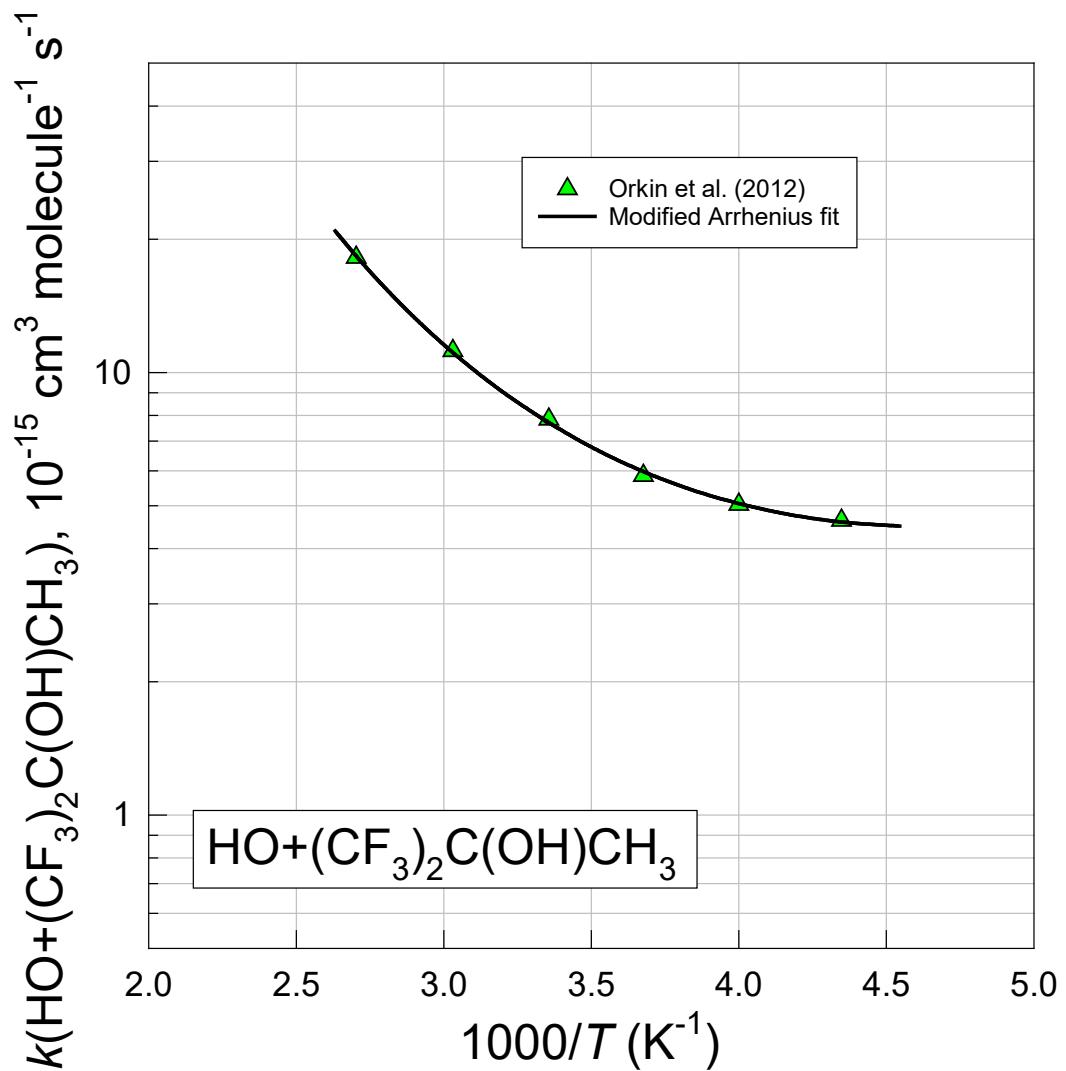
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.68 \times 10^{-12} \exp(-1718/T) + 7.32 \times 10^{-16} \exp(371/T)$ $(7.84 \pm 0.12) \times 10^{-15}$	230-370 298	Orkin et al. (2012)	FP-RF (b)

Comments

(a) HO radicals were generated using the flash photolysis of H₂O vapor in 30 Torr (40 mbar) of argon diluent and monitored using resonance fluorescence.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	7.71×10^{-15}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.90 \times 10^{-18} (T/298)^{11.5} \exp(2476/T)$	230-370
<i>Reliability</i>		
$\Delta \log k$	0.12	298

Comments on Preferred Values

The preferred value at 298 K is taken from Orkin et al. (2012). There is significant curvature in the Arrhenius plot which is particularly evident in the data below 250 K. A fit of the modified Arrhenius expression to the data set from Orkin et al. (2012) gives $k(\text{HO} + (\text{CF}_3)_2\text{C(OH)CH}_3) = 1.90 \times 10^{-18} (T/298)^{11.5} \exp(2476/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ over the temperature range 230-370 K.

References

Orkin, V. L., Khamaganov, V. G., and Kurylo, M. J.: J. Phys. Chem. A, 116, 6188, 2012.

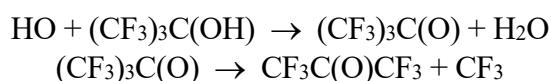
oFOx159: HO + (CF₃)₃C(OH)

Last evaluated: June 2025; Last change in preferred values: June 2019.

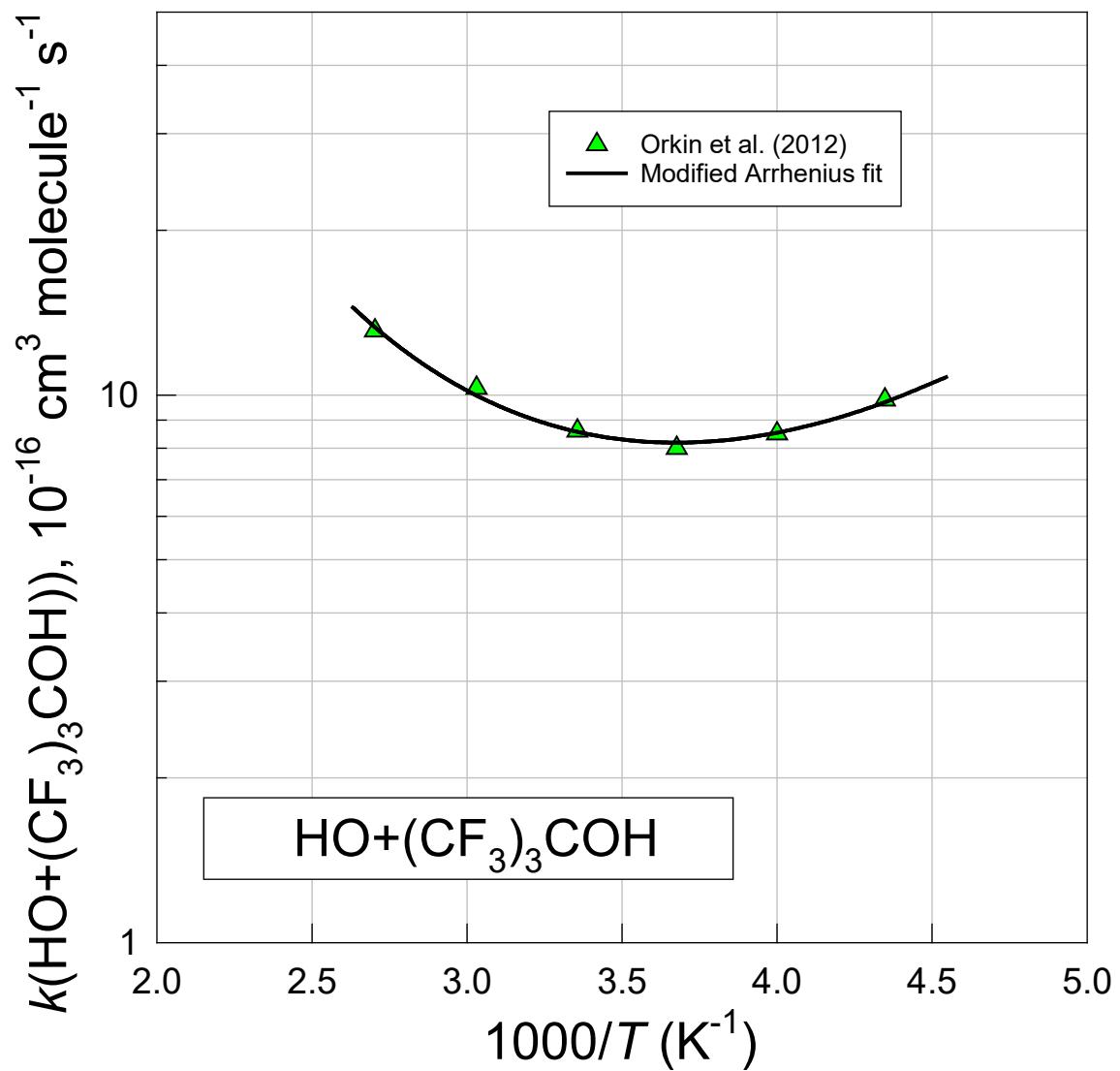
Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$3.0 \times 10^{-20} (T/298)^{11.3} \exp(3060/T)$ $(8.6 \pm 0.2) \times 10^{-16}$	230-370 298	Orkin et al. (2012)	FP-RF (b)

Comments

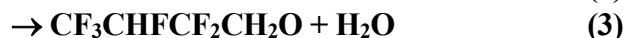

(a) HO radicals were generated using the flash photolysis of H₂O vapor in 30 Torr (40 mbar) of argon diluent and monitored using resonance fluorescence.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	8.6×10^{-16}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$3.0 \times 10^{-20} (T/298)^{11.3} \exp(3060/T)$	230-370
<i>Reliability</i>		
$\Delta \log k$	0.12	298

Comments on Preferred Values

There is significant curvature in the Arrhenius plot. The *k*(298K) value and modified Arrhenius expression from Orkin et al. (2012) are preferred. The HO radical initiated oxidation of (CF₃)₃C(OH) is expected to lead to quantitative conversion into CF₃C(O)CF₃ (Calvert et al., 2011).


References

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.
 Orkin, V. L., Khamaganov, V. G., and Kurylo, M. J.: J. Phys. Chem. A, 116, 6188, 2012.

oFOx90: HO + CF₃CHFCF₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.46 \pm 0.26) \times 10^{-12} \exp[-(880 \pm 40)/T]$	250-430	Chen et al. (2003)	LP-LIF (a)
1.3×10^{-13}	298		FP-LIF (a)
<i>Relative Rate Coefficients</i>			
$6.03 \times 10^{-13} \exp(-510/T)$	230-308	Chen et al. (2003)	RR (b)
$(1.04 \pm 0.04) \times 10^{-13}$	298		
$9.41 \times 10^{-13} \exp(-591/T)$	230-308	Chen et al. (2003)	RR (b)
$(1.27 \pm 0.03) \times 10^{-13}$	298		

Comments

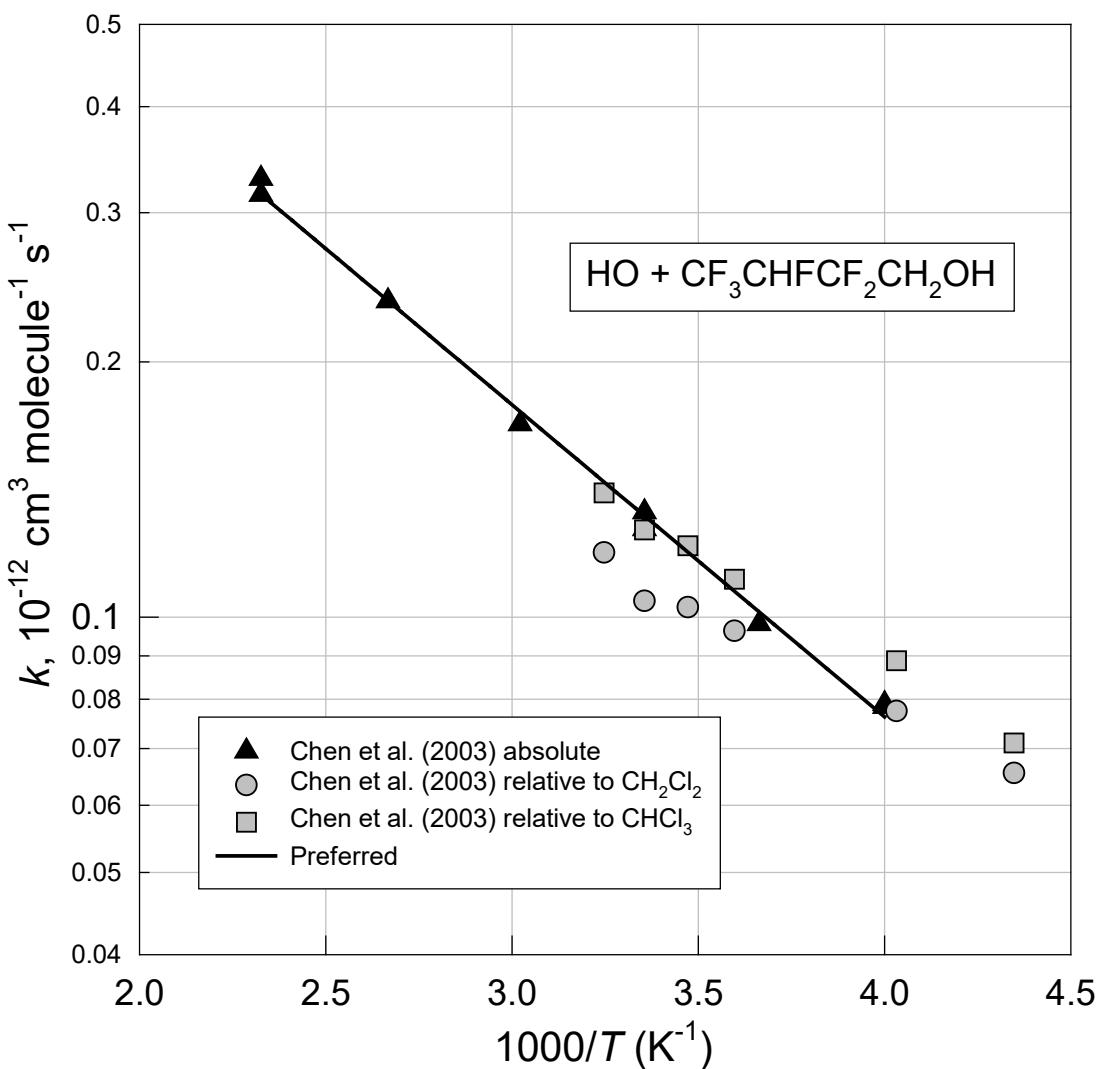
(a) Two different absolute rate methods were employed by Chen et al. (2003): LP-LIF and FP-LIF. HO radicals in the LP-LIF experiments were generated by the 193 nm photolysis of N₂O to produce O(¹D) atoms in the presence of H₂O in 20-80 Torr (27-107 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp) of H₂O in 20-80 Torr (27-107 mbar) of argon diluent. There was good agreement between the results from experiments using the two different techniques. The Arrhenius expression is from a fit to the combined data set from both sets of absolute rate experiments. The value at 298 K cited above is the average obtained using the different techniques.

(b) HO radicals were generated by the photolysis of O₃ at $\lambda \geq 260$ nm using the output from Xe arc lamps in the presence of H₂O vapor in 100 Torr (133 mbar) of helium diluent. CH₂Cl₂ and CHCl₃ were used as reference compounds. Arrhenius fits to the rate coefficient ratios reported by Chen et al. (2003) give $k(\text{HO}+\text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{CH}_2\text{Cl}_2) = 0.335 \exp(350/T)$ and $k(\text{HO}+\text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{CHCl}_3) = 0.523 \exp(259/T)$. Placing these ratios on an absolute basis using $k(\text{HO}+\text{CH}_2\text{Cl}_2) = 1.8 \times 10^{-12} \exp(-860/T)$ and $k(\text{HO}+\text{CHCl}_3) = 1.8 \times 10^{-12} \exp(-850/T)$ (Atkinson et al., 2008) gives $k(\text{HO}+\text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH}) = 6.03 \times 10^{-13} \exp(-510/T)$ and $9.41 \times 10^{-13} \exp(-591/T) \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$, respectively. Over the temperature range where comparison is possible, the results from the relative rate studies are consistent with those from the absolute study.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	1.3×10^{-13}	298
$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	$2.26 \times 10^{-12} \exp(-848/T)$	250-430
<i>Reliability</i>		
$\Delta \log k$	0.12	298
$\Delta E/R$	± 200	250-430

Comments on Preferred Values


The results from the absolute (two different techniques) and the relative rate experiments (two different references) of Chen et al. (2003) are in good agreement. A fit to the absolute rate data set gives $k(\text{HO} + \text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH}) = 2.26 \times 10^{-12} \exp(-848/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The HO radical initiated oxidation of $\text{CF}_3\text{CHFCF}_2\text{CH}_2\text{OH}$ is expected to proceed mainly via abstraction from the $-\text{CH}_2-$ group leading to essentially quantitative conversion into $\text{CF}_3\text{CHFCF}_2\text{CHO}$ as discussed by Calvert et al. (2011).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Chen, L., Tokuhashi, K., Kutsuna, S., Sekiya, A., Yonei, Y., and Yamamoto, A.: Chem. Phys. Lett., 382, 277, 2003.

oFOx91: HO + *n*-C₃F₇CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2025.

(1)

(2)

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.4^{+0.3}_{-0.2}) \times 10^{-11} \exp [-(1460 \pm 120)/T]$	290-368	Bravo et al. (2010)	DF-MS (a)
$(1.07 \pm 0.05) \times 10^{-13}$	298		
$(1.54 \times 10^{-12} \exp [-(765 \pm 170)/T]$	298-363	Indulkar et al. (2011)	LP-LIF (b)
$(1.15 \pm 0.12) \times 10^{-13}$	298		
<i>Relative Rate Coefficients</i>			
$(9.4 \pm 0.8) \times 10^{-14}$	296	Hurley et al. (2004)	RR (c)

Comments

- (a) F atoms produced in a microwave discharge of F₂/He mixtures were reacted with H₂O to generate HO radicals. Experiments were conducted in a flow tube at a pressure of 1 Torr of helium diluent. HO radicals were monitored by mass spectroscopy by adding I₂ and detecting the HOI product.
- (b) HO radicals were produced by the photolysis of H₂O₂ at 248 nm and monitored by laser induced fluorescence in 55 Torr of helium diluent.
- (c) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. A rate coefficient ratio of $k(\text{HO} + \text{C}_3\text{F}_7\text{CH}_2\text{OH})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.12 \pm 0.01$ was reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{C}_3\text{F}_7\text{CH}_2\text{OH}) = (9.4 \pm 0.8) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

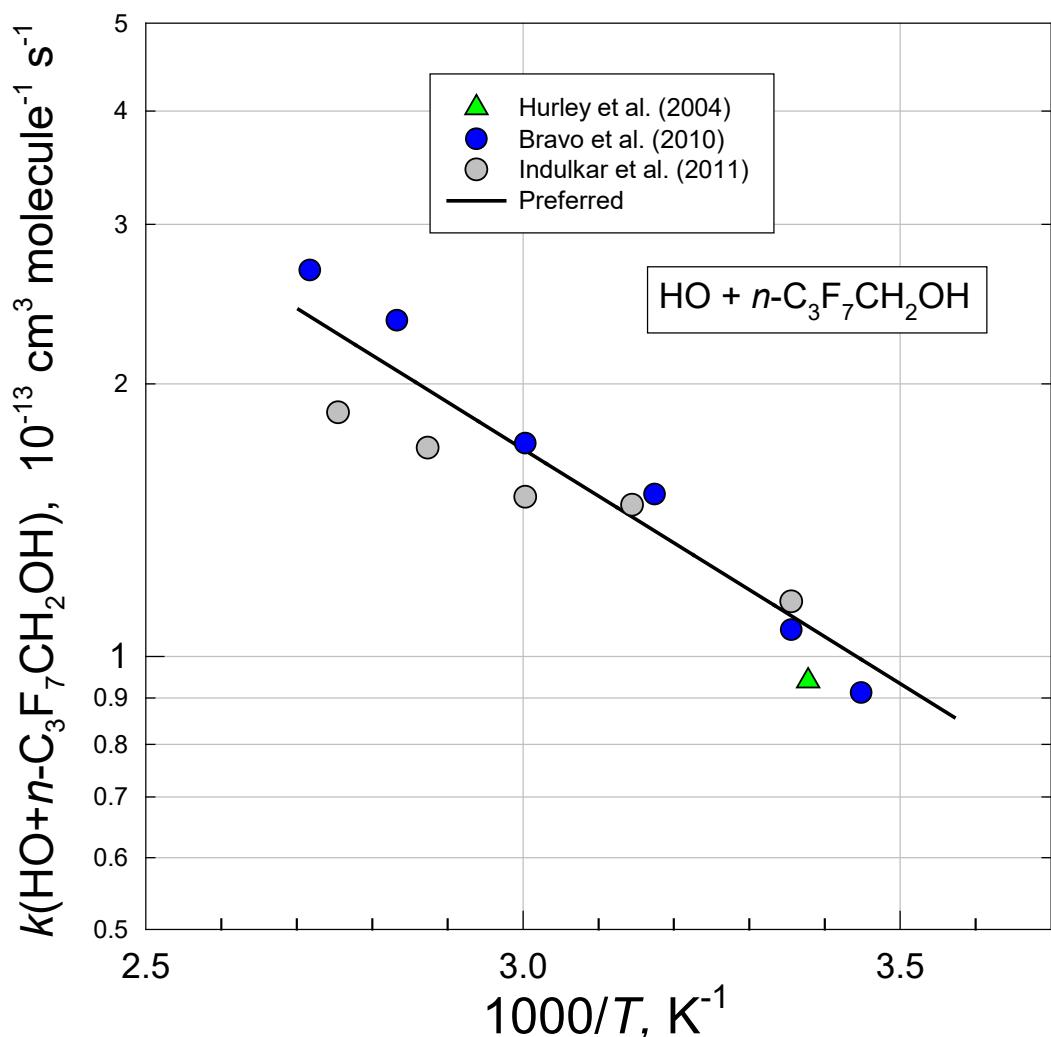
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.11×10^{-13}	298
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$6.06 \times 10^{-12} \exp(-1192/T)$	280-370
<i>Reliability</i>		
$\Delta \log k$	± 0.10	298
$\Delta E/R$	± 200	280-370

Comments on Preferred Values

The results from the absolute rate studies by Bravo et al. (2010), Indulkar et al. (2011), and the relative rate study by Hurley et al. (2005) at ambient temperature are in good agreement. The preferred rate coefficient at 298 K is an average from the two absolute rate studies. The Arrhenius expression was obtained using the temperature dependence derived from fitting an Arrhenius expression to the combined data set from Bravo et al. (2010) and Indulkar et al. (2011) and adjusting the pre-exponential factor to

match the preferred rate coefficient at 298 K.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Bravo, I., Diaz-de-Mera, Y., Aranda, A., Smith, K., Shine, K. P., and Marston, G.: Phys. Chem. Chem. Phys., 12, 5115, 2010.

Hurley, M. D., Wallington, T. J., Andersen, M. P. S., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 1973, 2004.

Indulkar, Y. N., SenGupta, S., Waghmode, S. B., Kumar, A., Dhanya, S., and Naik, P. D.: Atmos. Environ., 45, 6973, 2011.

oFOx92: HO + *n*-C₄F₉CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(9.4 \pm 0.8) \times 10^{-14}$	296	Hurley et al. (2004)	RR (a)

Comments

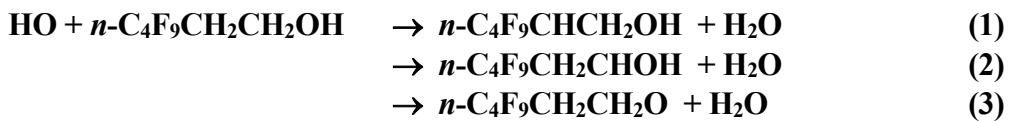
(a) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Experiments were performed with C_xF_{2x+1}CH₂OH (x= 1, 2, 3, and 4). There was no discernable difference in the reactivity of C_xF_{2x+1}CH₂OH molecules investigated and the composite data set was analyzed together. A rate coefficient ratio of $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 0.12 \pm 0.01$ was reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{C}_4\text{F}_9\text{CH}_2\text{OH}) = (9.4 \pm 0.8) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	9.4×10^{-14}	298
<i>Reliability</i>		
$\Delta \log k$	± 0.15	298

Comments on Preferred Values

The preferred value is based upon the sole study of this reaction by Hurley et al. (2004).


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Hurley, M. D., Wallington, T. J., Andersen, M. P. S., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 1973, 2004.

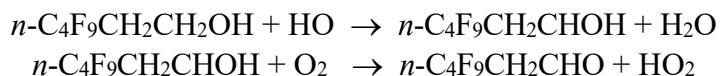
oFOx93: HO + *n*-C₄F₉CH₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(0.92 \pm 0.12) \times 10^{-12}$	296	Ellis et al. (2003)	RR (a)
$(1.03 \pm 0.14) \times 10^{-12}$	296		

Comments


(a) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Experiments were performed with *n*-C₄F₉CH₂CH₂OH, *n*-C₆F₁₃CH₂CH₂OH, and *n*-C₈F₁₇CH₂CH₂OH. There was no discernable difference in the reactivity of the three alcohols and the composite data set was analyzed together. Rate coefficient ratios of $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 1.18 \pm 0.15$ and $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.131 \pm 0.018$ were reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{n-C}_4\text{F}_9\text{CH}_2\text{CH}_2\text{OH}) = (0.92 \pm 0.12) \times 10^{-12}$ and $(1.03 \pm 0.14) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.0×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

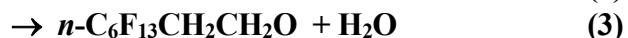
The preferred value is based upon the average of the two determinations by Ellis et al. (2003). As discussed by Calvert et al. (2011), HO radicals are approximately an order of magnitude less reactive towards C_xF_{2x+1}CH₂OH than towards C_xF_{2x+1}CH₂CH₂OH and presumably the majority (>90%) of reaction of HO with *n*-C₄F₉CH₂CH₂OH proceeds via attack on the terminal –CH₂– group. As with other α -hydroxy alkyl radicals, the atmospheric fate of *n*-C₄F₉CH₂CHOH radicals will be reaction with O₂ to give the corresponding aldehyde.

Product studies of the chlorine atom initiated oxidation of *n*-C₄F₉CH₂CH₂OH in 700 Torr of air at 296 K by Hurley et al. (2004) and Andersen et al. (2005) have shown that *n*-C₄F₉CH₂CH₂OH is oxidized to give *n*-C₄F₉CH₂CHO in a yield which is indistinguishable from 100%.

References

Andersen, M. P. S., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: *J. Phys. Chem. A*, 109, 1849, 2005.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.


Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: *The Mechanisms of Atmospheric Oxidation of the Oxygenates*, Oxford University Press, New York, NY, 2011.

Ellis, D. A., Martin, J. W., Mabury, S. A., Hurley, M. D., Andersen, M. P. S., and Wallington, T. J.: *Environ. Sci. Technol.*, 37, 3816, 2003.

Hurley, M. D., Ball, J. C., Wallington, T. J., Andersen, M. P. S., Ellis, D. A., Martin, J. W. and Mabury, S. A.: *J. Phys. Chem. A*, 108, 5635, 2004.

oFOx94: HO + *n*-C₆F₁₃CH₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

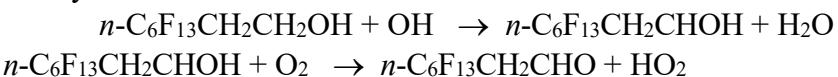
Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(9.2 \pm 1.2) \times 10^{-13}$	296	Ellis et al. (2003)	RR (a)
$(7.79 \pm 0.35) \times 10^{-13}$	298	Kelly et al. (2005)	RR (b)
$(7.91 \pm 0.53) \times 10^{-13}$	298		RR (b)

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Experiments were performed with *n*-C₄F₉CH₂CH₂OH, *n*-C₆F₁₃CH₂CH₂OH, and *n*-C₈F₁₇CH₂CH₂OH. There was no discernable difference in the reactivity of the three alcohols and the composite data set was analyzed together. A rate coefficient ratio of $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 1.18 \pm 0.15$ was reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{n-C}_6\text{F}_{13}\text{CH}_2\text{CH}_2\text{OH}) = (9.2 \pm 1.2) \times 10^{-13} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$.

(b) HO radicals were generated by the photolysis of either H₂O₂ or O₃ (in the presence of H₂O vapor) in one atmosphere of air. Experiments were performed using two different reference compounds; HC(O)OC₄H₉ and *n*-C₆H₁₄. Rate coefficient ratios of $k(\text{HO}+\text{C}_6\text{F}_{13}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{HC(O)OC}_4\text{H}_9) = 0.22 \pm 0.01$ and $k(\text{HO}+\text{C}_6\text{F}_{13}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{n-C}_6\text{H}_{14}) = 0.15 \pm 0.01$ were reported. Using $k(\text{HO}+\text{HC(O)OC}_4\text{H}_9) = 3.54 \times 10^{-12}$ (Le Calvé et al., 1997) and $k(\text{HO}+\text{n-C}_6\text{H}_{14}) = 3.27 \times 10^{-12} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ (Calvert et al., 2008) gives $k(\text{HO}+\text{n-C}_6\text{F}_{13}\text{CH}_2\text{CH}_2\text{OH}) = (7.79 \pm 0.35) \times 10^{-13}$ and $(7.91 \pm 0.53) \times 10^{-13} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$.


Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	8.3×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The rate coefficients reported in the relative rate studies by Ellis et al. (2003) and Kelly et al. (2005) are in agreement and an average gives our preferred value. As discussed by Calvert et al. (2011), HO radicals are approximately an order of magnitude less reactive towards C_xF_{2x+1}CH₂OH than towards C_xF_{2x+1}CH₂CH₂OH and it seems likely that the majority (>90%) of reaction of HO with *n*-C₆F₁₃CH₂CH₂OH proceeds via attack on the terminal –CH₂– group. As with other α -hydroxy alkyl

radicals, the atmospheric fate of *n*-C₆F₁₃CH₂CHOH radicals will be reaction with O₂ to give the corresponding aldehyde.

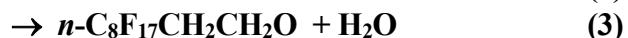
References

Andersen, M. P. S., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 109, 1849, 2005.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J.G., R.G. Derwent, J.J. Orlando, G.S. Tyndall, and T.J. Wallington, (2008), The Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.


Ellis, D. A., Martin, J. W., Mabury, S. A., Hurley, M. D., Andersen, M. P. S., and Wallington, T. J.: Environ. Sci. Technol., 37, 3816, 2003.

Kelly, T., Bossoutrot, V., Magneron, I., Wirtz, K., Treacy, J., Mellouki, A., Sidebottom, H., and Le Bras, G.: J. Phys. Chem. A, 109, 347, 2005.

Le Calvé, S., Le Bras, G., and Mellouki, A.: J. Phys. Chem. A 101, 5489, 1997.

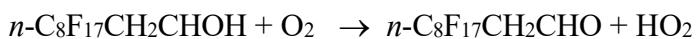
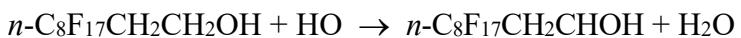
oFOx95: HO + *n*-C₆F₁₃CH₂CH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(9.2 \pm 1.2) \times 10^{-13}$	296	Ellis et al. (2003)	RR (a)

Comments



(a) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Experiments were performed with *n*-C₄F₉CH₂CH₂OH, *n*-C₆F₁₃CH₂CH₂OH, and *n*-C₈F₁₇CH₂CH₂OH. There was no discernable difference in the reactivity of the three alcohols and the composite data set was analyzed together. A rate coefficient ratio of $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CH}_2\text{CH}_2\text{OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 1.18 \pm 0.15$ was reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{n-C}_8\text{F}_{17}\text{CH}_2\text{CH}_2\text{OH}) = (9.2 \pm 1.2) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	9.2×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

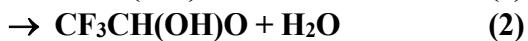
Comments on Preferred Values

The rate coefficient reported by Ellis et al. (2003) is adopted as the preferred value. As discussed by Calvert et al. (2011), HO radicals are approximately an order of magnitude less reactive towards C_xF_{2x+1}CH₂OH than towards C_xF_{2x+1}CH₂CH₂OH and it seems likely that the majority (>90%) of reaction of HO with *n*-C₈F₁₇CH₂CH₂OH proceeds via attack on the terminal –CH₂– group. As with other α -hydroxy alkyl radicals, the atmospheric fate of *n*-C₈F₁₇CH₂CHOH radicals will be reaction with O₂ to give the corresponding aldehyde.

It is expected that the HO radical initiated oxidation of *n*-C₈F₁₇CH₂CH₂OH will lead to the formation of *n*-C₈F₁₇CH₂CHO in a yield of essentially 100%. Consistent with this expectation, Chiappero et al. (2008) measured a $92 \pm 7\%$ yield of *n*-C₈F₁₇CH₂CHO in the chlorine-atom initiated oxidation of *n*-C₈F₁₇CH₂CH₂OH (8:2 FTOH) in 700 Torr of air.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.


Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: *The Mechanisms of Atmospheric Oxidation of the Oxygenates*, Oxford University Press, New York, NY, 2011.

Chiappero, M. S., Argüello, G. A., Hurley, M. D., and Wallington, T. J.: *Chem. Phys. Lett.*, 461, 198, 2008.

Ellis, D. A., Martin, J. W., Mabury, S. A., Hurley, M. D., Andersen, M. P. S., and Wallington, T. J.: *Environ. Sci. Technol.*, 37, 3816, 2003.

oFOx96: HO + CF₃CH(OH)₂

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.18 \pm 0.11) \times 10^{-12}$	296	Andersen et al. (2006)	RR (a)
$(1.14 \pm 0.12) \times 10^{-12}$	296		

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air. Separate experiments were performed using C₂H₂ and C₂H₄ as references. Rate coefficient ratios of $k(\text{HO}+\text{CF}_3\text{CH}(\text{OH})_2)/k(\text{HO}+\text{C}_2\text{H}_2) = 0.146 \pm 0.015$ and $k(\text{HO}+\text{CF}_3\text{CH}(\text{OH})_2)/k(\text{HO}+\text{C}_2\text{H}_4) = 0.0149 \pm 0.0014$ were reported. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CF}_3\text{CH}(\text{OH})_2) = (1.14 \pm 0.12) \times 10^{-13}$ and $(1.18 \pm 0.11) \times 10^{-13} \text{ cm}^3 \text{molecule}^{-1} \text{s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	1.2×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.20	298

Comments on Preferred Values

The preferred value is based upon the average of the two determinations by Andersen et al. (2006). Andersen et al. (2006) reported that the chlorine atom initiated oxidation of CF₃CH(OH)₂ in 700 Torr (933 mbar) of air gives CF₃C(O)OH in a molar yield of 101 ± 6%. The HO radical initiated of CF₃CH(OH)₂ is expected to give CF₃C(O)OH in essentially 100% yield.

References

Andersen, M. P. S., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 109, 1849, 2005.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

oClOx90: HO + CH₂ClCH₂OH

Last evaluated: June 2025; Last change in preferred values: June 2009

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.28 \pm 0.09) \times 10^{-12}$	298	Wallington et al. (1988)	FP-RF (a)

Comments

(a) HO radicals were generated by the photolysis ($\lambda \geq 165$ nm) of H₂O in 25-50 Torr (33-67 mbar) of argon at 298 K.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.3×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.20	298

Comments on Preferred Values

The absolute rate coefficient reported by Wallington et al. (1988) is adopted as the preferred value. The enhanced uncertainty reflects the fact that there is only one study available.

References

Wallington, T. J., Dagaut, P., and Kurylo, M. J.: J. Phys. Chem., 92, 5024, 1988.

oClOx91: HO + CCl₃CH₂OH

Last evaluated: June 2023; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.45 \pm 0.24) \times 10^{-13}$	298	Wallington et al. (1988)	FP-RF (a)

Comments

(a) HO radicals were generated by the photolysis ($\lambda \geq 165 \text{ nm}$) of H₂O in 25-50 Torr (33-67 mbar) of argon at 298 K.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.45×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.20	298

Comments on Preferred Values

The absolute rate coefficient reported by Wallington et al. (1988) forms the basis of the preferred value. The enhanced uncertainty reflects the fact that there is only one study available.

References

Wallington, T. J., Dagaut, P., and Kurylo, M. J.: J. Phys. Chem., 92, 5024, 1988.

oFOx97: HO + CHF₂CHO

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.7 \pm 0.2) \times 10^{-12}$	298	Scollard et al. (1993)	PLP-RF (a)
<i>Relative Rate Coefficients</i>			
$(1.32 \pm 0.28) \times 10^{-12}$	298	Scollard et al. (1993)	RR (b)
$(1.79 \pm 0.05) \times 10^{-12}$	298	Sellevåg et al. (2005)	RR (c)

Comments

(a) HO radicals were generated by the 248 nm photolysis of nitric acid in argon at 15-100 Torr (20 - 133 mbar) pressure.

(b) HO radicals were generated by the photolysis of CH₃ONO (or C₂H₅ONO) in CH₃ONO (or C₂H₅ONO)-NO-CHF₂CHO-toluene-air mixtures at 730-750 Torr (973 - 1000 mbar) pressure. The concentrations of CHF₂CHO and toluene were measured by GC and/or FTIR spectroscopy. Scollard et al. (1993) did not report a value for the rate coefficient ratio $k(\text{HO} + \text{CHF}_2\text{CHO})/k(\text{HO} + \text{toluene})$. Dividing the reported value of $k(\text{HO} + \text{CHF}_2\text{CHO})$ by the value of $k(\text{HO} + \text{toluene})$ used by Scollard et al. (1993) gives $k(\text{HO} + \text{CHF}_2\text{CHO})/k(\text{HO} + \text{toluene}) = 0.235 \pm 0.005$ which is placed on an absolute basis in the table above using $k(\text{HO} + \text{toluene}) = 5.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K (Mellouki et al., 2022).

(c) HO radicals were generated by the photolysis of O₃ in the presence of H₂ in 1013 mbar of air diluent. Propane was used as the reference compound. The concentrations of CHF₂CHO and propane were measured by FTIR spectroscopy and a rate coefficient ratio of $k(\text{HO} + \text{CHF}_2\text{CHO})/k(\text{HO} + \text{propane}) = 1.626 \pm 0.042$ was reported. Placing this result on an absolute basis using $k(\text{HO} + \text{propane}) = 1.1 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CHF}_2\text{CHO}) = (1.79 \pm 0.05) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

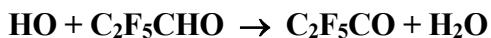
Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.6×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The results from the relative and absolute rate studies by Scollard et al. (1993) and Sellevåg et al. (2005) are in agreement within the combined experimental uncertainties. An average of the results from Scollard et al. (1993) and Sellevåg et al. (2005) gives the preferred value of $k(\text{HO} + \text{CHF}_2\text{CHO}) = 1.6 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K. The reaction probably proceeds predominately via abstraction of the aldehydic hydrogen (channel 1) to give CHF₂C(O) radicals.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.


Mellouki, A., Ammann, M., Cox, R. A., Crowley, J. N., Herrmann, H., Jenkin, M. E., McNeill, V. F., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VII - gas phase reactions of organic species with four, or more, carbon atoms (\geq C4), Atmos. Chem. Phys., 21, 4797-4808, 2021; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Scollard, D. J., Treacy, J. J., Sidebottom, H. W., Balestra-Garcia, C., Laverdet, G., Le Bras, G., MacLeod, H., and Téton, S.: J. Phys. Chem., 97, 4683, 1993.

Sellevåg, S.R., Stenstrøm, V., Helgaker, T., and Nielsen, C.J.: J. Phys. Chem. A 109, 3652, 2005.

oFOx98: HO + C₂F₅CHO

Last evaluated: June 2025; Last change in preferred values: June 2014.

Rate coefficient data

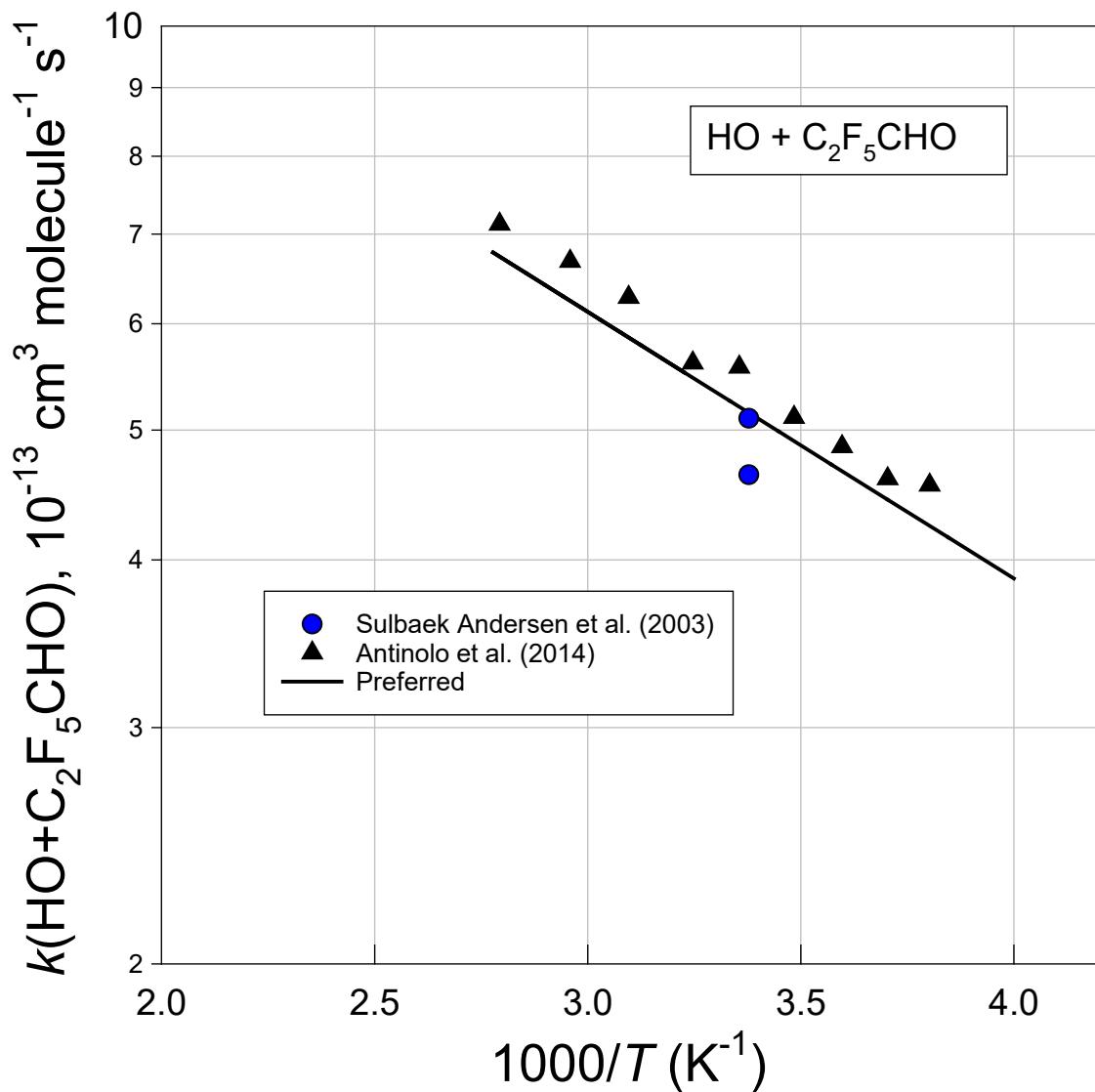
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
$2.56 \times 10^{-12} \exp[-(458 \pm 36)/T]$ $(5.57 \pm 0.14) \times 10^{-13}$	263-358	Antinolo et al. (2014)	PLP-LIF (a)
<i>Relative Rate Coefficients</i> $(4.63 \pm 0.51) \times 10^{-13}$ $(5.10 \pm 0.29) \times 10^{-13}$	298	Sulbaek Andersen et al. (2003)	RR (b)

Comments

(a) HO radicals were produced by 248 nm (KrF eximer laser) photolysis of HNO₃ in 50-205 Torr (67-273 mbar) of helium diluent at 263-358 K. HO radicals were monitored by LIF. No effect of total pressure was reported over the range studied

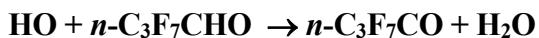
(b) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air in the presence of NO. C₂H₂ and C₂H₄ were used in separate experiments as reference compounds. The loss of C₂F₅CHO and the reference compounds were monitored using FTIR spectroscopy. Rate coefficient ratios of $k(\text{HO}+\text{C}_2\text{F}_5\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_2) = 0.593 \pm 0.065$ and $k(\text{HO}+\text{C}_2\text{F}_5\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.0646 \pm 0.0037$ were reported. Scaling these ratios using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{C}_2\text{F}_5\text{CHO}) = (4.63 \pm 0.51) \times 10^{-13}$ and $(5.10 \pm 0.29) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values


Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	5.2×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.42 \times 10^{-12} \exp(-458/T)$	250-360
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 200	250-360

Comments on Preferred Values

The results reported by Sulbaek Andersen et al. (2003) and Antinolo et al. (2014) near room temperature are in agreement within the likely experimental uncertainties. Taking an average of the results from the two studies gives the preferred value of $k(\text{OH}+\text{C}_2\text{F}_5\text{CHO}) = 5.2 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ at 298 K. Taking the temperature dependence from Antinolo et al. (2014) and adjusting the A factor to reproduce the preferred rate coefficient at 298 K gives $k(\text{OH}+\text{C}_2\text{F}_5\text{CHO}) = 2.42 \times 10^{-12} \exp(-458/T)$ cm³ molecule⁻¹ s⁻¹. The reaction proceeds via abstraction of the aldehydic hydrogen to give C₂F₅C(O) radicals.


References

Antinolo, M., Jiménez, E., Gonzalez, S., and Albaladejo, J.: J. Phys. Chem. A, 118, 178, 2014.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E.,
Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic
Data Evaluation, <https://iupac.aeris-data.fr/>.
Sulbaek Andersen, M. P., Hurley, M. D., Wallington, T.J., Ball, J. C., Martin, J. W., Ellis, D.A., Mabury,
S. A., and Nielsen, O. J.: Chem. Phys. Lett., 379, 28, 2003.

oFOx99: HO + *n*-C₃F₇CHO

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(2.0 ± 0.6) × 10 ⁻¹² exp[-(369 ± 90)/ <i>T</i>]	252 - 373	Solignac et al. (2007)	PLP-LIF (a)
5.55 × 10 ⁻¹³	297		(b)
<i>Relative Rate Coefficients</i>			
(5.68 ± 0.74) × 10 ⁻¹³	296	Sulbaek Andersen et al. (2004)	RR (c)
(6.42 ± 0.75) × 10 ⁻¹³			

Comments

(a) HO radicals were generated by the photolysis of H₂O₂ at 248 nm in the presence of C₃F₇CHO in 100 Torr (133 mbar) of helium diluent.

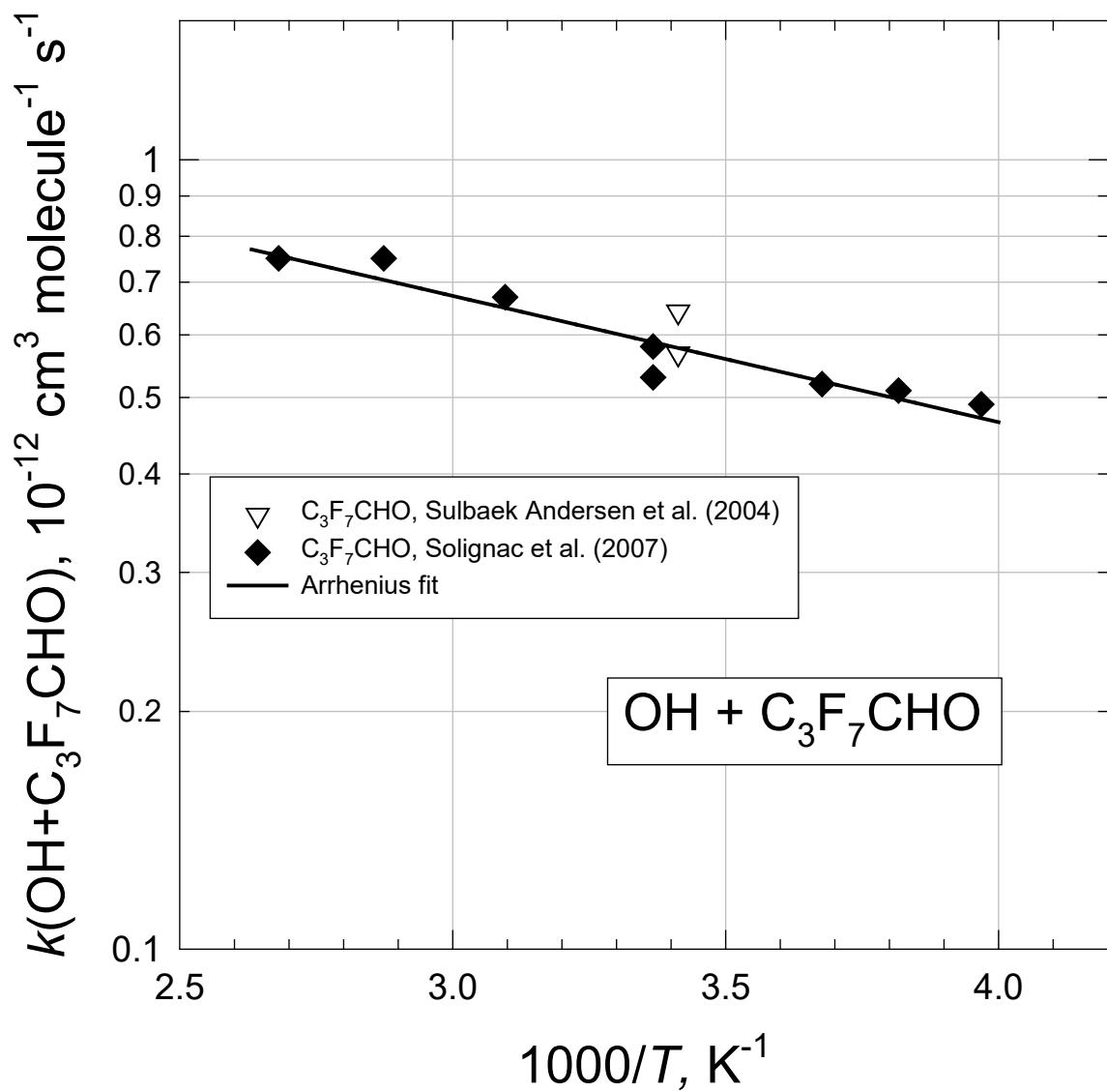
(b) Average of values given at 297 K

(c) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air in the presence of NO, C₂H₂ and C₂H₄ were used as reference compounds in separate experiments. The loss of C₃F₇CHO and the reference compounds were monitored using FTIR spectroscopy. Experiments were performed using CF₃CHO, C₃F₇CHO, and C₄F₉CHO. There was no discernable difference in reactivity of the three fluorinated aldehydes. An analysis of the combined data set gave rate coefficient ratios of $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.73 \pm 0.10$ and $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO})/k(\text{HO} + \text{C}_2\text{H}_4) = 0.0813 \pm 0.0095$. Scaling these ratios using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO}) = (5.68 \pm 0.74) \times 10^{-13}$ and $(6.42 \pm 0.75) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

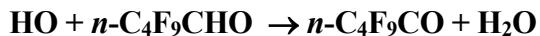
Parameter	Value	<i>T</i> /K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	5.8×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.0 \times 10^{-12} \exp(-369/T)$	250-380
<i>Reliability</i>		
Δ log <i>k</i>	0.08	298
Δ E/R	± 200	250-380

Comments on Preferred Values


There is excellent agreement between the absolute rate data reported by Solignac et al. (2007) and the relative rate data reported by Sulbaek Andersen et al. (2004) at temperatures near 298K. The Arrhenius expression $k(\text{HO} + \text{C}_3\text{F}_7\text{CHO}) = 2.0 \times 10^{-12} \exp(-369/T)$ from Solignac et al. (2007) is preferred and gives 5.8×10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K. As shown by Sulbaek Andersen et al. (2004), the reaction proceeds via abstraction of the aldehydic hydrogen to give C₃F₇C(O) radicals.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.


Solignac, G., Mellouki, A., Le Bras, G., Mu, Y., and Sidebottom, H.: Phys. Chem. Chem. Phys., 9, 4200, 2007.

Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Stevens, J. E., Martin, J. W., Ellis, D. A., and Mabury, S.A.: J. Phys. Chem. A, 108, 5189, 2004.

oFOx100: HO + *n*-C₄F₉CHO

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.0 \pm 0.5) \times 10^{-12} \exp[-(356 \pm 70)/T]$	253 – 373	Solignac et al. (2007)	PLP-LIF (a)
$(6.4 \pm 0.3) \times 10^{-13}$	299		
<i>Relative Rate Coefficients</i>			
$(5.68 \pm 0.74) \times 10^{-13}$	296	Sulbaek Andersen et al. (2004)	RR (b)
$(6.42 \pm 0.75) \times 10^{-13}$			

Comments

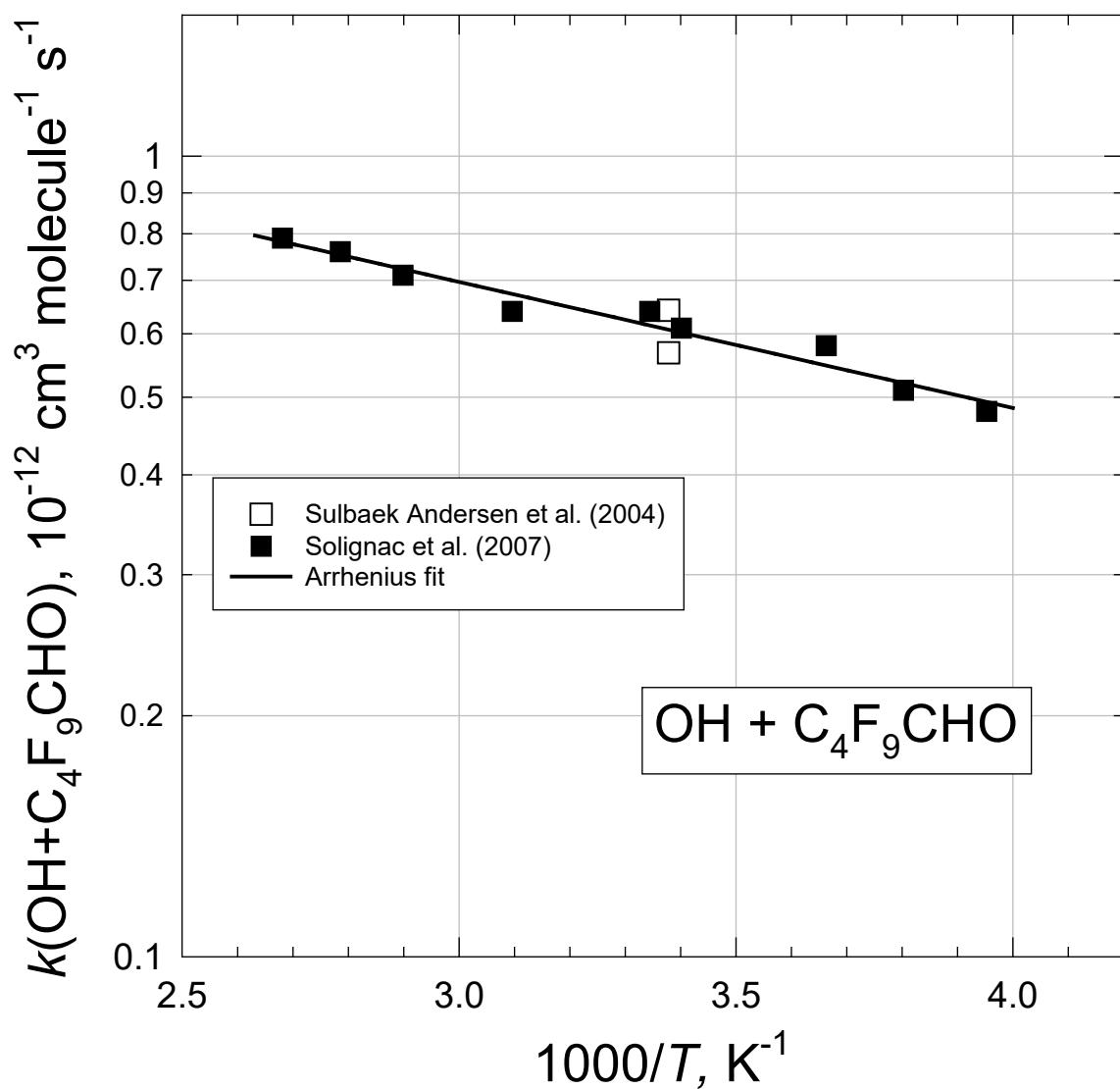
(a) HO radicals were generated by the photolysis of H₂O₂ at 248 nm in the presence of C₄F₉CHO in 100 Torr (133 mbar) of helium diluent.

(b) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air in the presence of NO. In separate experiments C₂H₂ and C₂H₄ were used as reference compounds. The loss of C₄F₉CHO and the reference compounds were monitored using FTIR spectroscopy. Experiments were performed using CF₃CHO, C₃F₇CHO, and C₄F₉CHO. There was no discernable difference in reactivity of the three fluorinated aldehydes. An analysis of the combined data set gave rate coefficient ratios of $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.73 \pm 0.10$ and $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO})/k(\text{HO} + \text{C}_2\text{H}_4) = 0.0813 \pm 0.0095$. Scaling these ratios using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO}) = (5.68 \pm 0.74) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ and $(6.42 \pm 0.75) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	6.1×10^{-13}	298
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	$2.0 \times 10^{-12} \exp(-356/T)$	250-380
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	± 150	250-380

Comments on Preferred Values


There is excellent agreement between the absolute rate data reported by Solignac et al. (2007) and the relative rate data reported by Sulbaek Andersen et al. (2004) at temperatures near 298 K. The Arrhenius expression $k(\text{HO} + \text{C}_4\text{F}_9\text{CHO}) = 2.0 \times 10^{-12} \exp(-365/T)$ from Solignac et al. (2007) is preferred and gives 6.1×10^{-13} cm³ molecule⁻¹ s⁻¹ at 298 K. As shown by Sulbaek Andersen et al. (2004), the reaction proceeds via abstraction of the aldehydic hydrogen to give C₄F₉C(O) radicals.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Solignac, G., Mellouki, A., Le Bras, G., Mu, Y., and Sidebottom, H.: Phys. Chem. Chem. Phys., 9, 4200, 2007.

Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Stevens, J. E., Martin, J. W., Ellis, D. A., and Mabury, S. A.: J. Phys. Chem. A, 108, 5189, 2004.

oFOx101: HO + CF₃CH₂CHO

Last evaluated: June 2025; Last change in preferred values: June 2014.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.96 \pm 0.04) \times 10^{-12}$	298	Kelly et al. (2005)	PLP-LIF (a)
$(7.8 \pm 2.2) \times 10^{-12} \exp(-314 \pm 90)/T$	263-358	Antinolo et al. (2010)	PLP-LIF (b)
$(2.59 \pm 0.50) \times 10^{-12}$	298		
<i>Relative Rate Coefficients</i>			
$(3.87 \pm 0.16) \times 10^{-12}$	298	Sellevåg et al. (2004)	RR (c)
$(3.07 \pm 0.08) \times 10^{-12}$			
$(2.48 \pm 0.27) \times 10^{-12}$	296	Hurley et al. (2005)	RR (d)
$(2.65 \pm 0.36) \times 10^{-12}$			

Comments

- (a) HO radicals were generated by the 248 nm photolysis of H₂O₂ in 100 Torr (133 mbar) of helium diluent at 298 K.
- (b) HO radicals were generated by the 248 nm photolysis of H₂O₂ in 50-215 Torr (67-286 mbar) of helium diluent at 263-358 K.
- (c) Experiments were performed in 1013 mbar of air diluent. HO radicals were generated by the photolysis of O₃ at $\lambda \approx 310$ nm in the presence of H₂O vapor. The loss of CF₃CH₂CHO was monitored relative to C₂H₅OH and HC(O)OC₂H₅ in separate experiments using FTIR spectroscopy and rate coefficient ratios of $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_5\text{OH}) = 1.21 \pm 0.05$ and $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO})/k(\text{HO}+\text{HC(O)OC}_2\text{H}_5) = 3.51 \pm 0.09$ were reported. Scaling these ratios using $k(\text{HO}+\text{C}_2\text{H}_5\text{OH}) = 3.2 \times 10^{-12}$ (Atkinson et al., 2006) and $k(\text{HO}+\text{HC(O)OC}_2\text{H}_5) = 8.74 \times 10^{-13}$ (Calvert et al., 2011) gives $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO}) = (3.87 \pm 0.16) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $(3.07 \pm 0.08) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr (933 mbar) of air in the presence of NO. C₂H₂ and C₂H₄ were used as reference compounds in separate experiments. The loss of CF₃CH₂CHO and the reference compounds were monitored using FTIR spectroscopy. Rate coefficient ratios of $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_2) = 3.18 \pm 0.35$ and $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.336 \pm 0.045$. Scaling these ratios using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CF}_3\text{CH}_2\text{CHO}) = (2.48 \pm 0.27) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and $(2.65 \pm 0.36) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

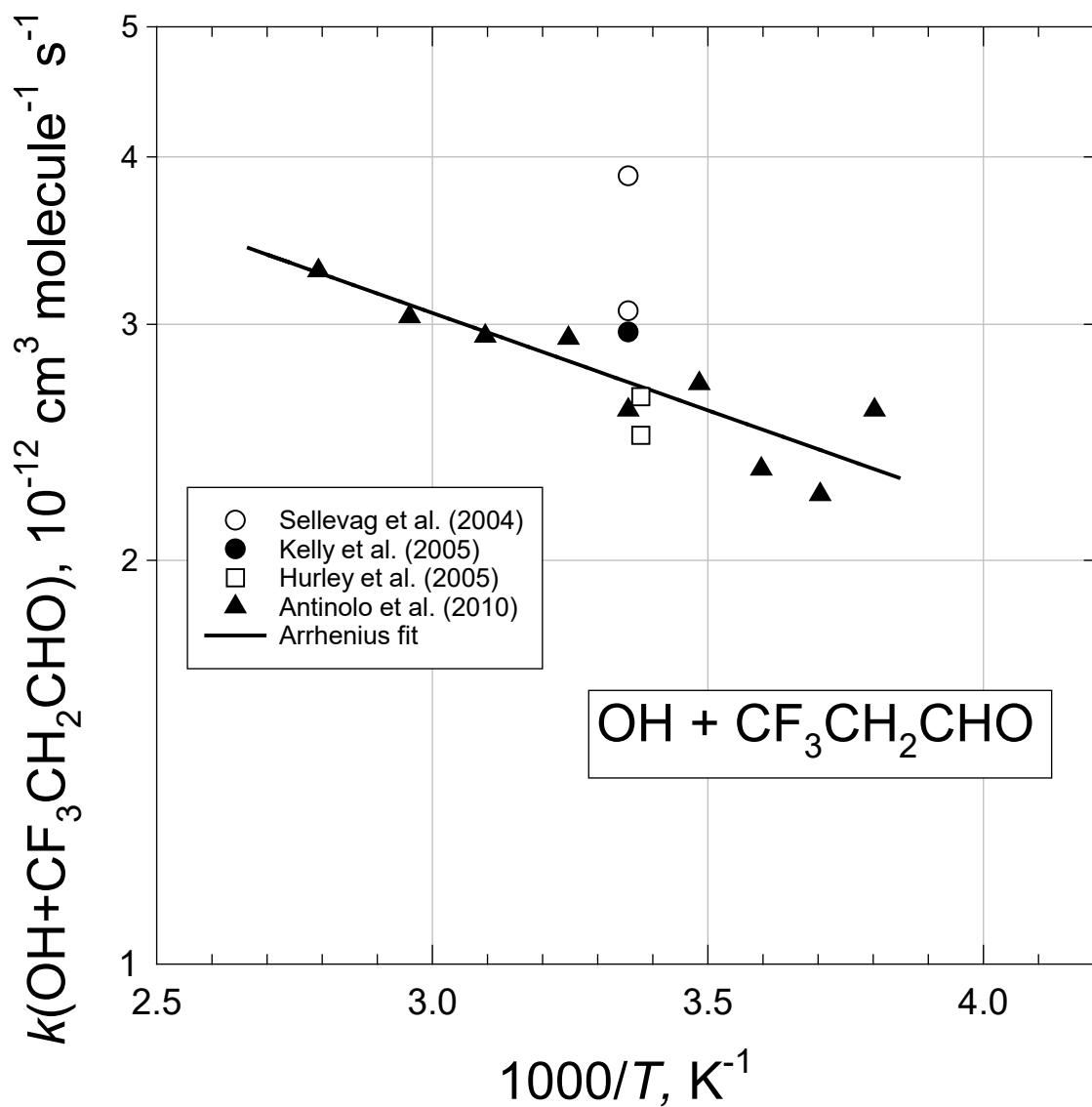
Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.7×10^{-12}	298
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$7.74 \times 10^{-12} \exp(-314/T)$	260-360
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta (E/R)$	± 150	260-360

Comments on Preferred Values

Except for one of the two relative rate determinations by Sellevåg et al. (2004), the data from the relative and absolute rate studies by Antinolo et al. (2010), Hurley et al. (2005), Kelly et al. (2005), and Sellevåg et al. (2004) are consistent within the combined experimental uncertainties. Taking an average of the data from Antinolo et al. (2010), Hurley et al. (2005), and Kelly et al. (2005) gives the preferred value at 298 K. The preferred Arrhenius expression is derived from taking the temperature dependence from Antinolo et al. (2010) and adjusting the pre-exponential factor to match the preferred value at 298 K. The reaction is expected to proceed predominantly via abstraction of the aldehydic hydrogen giving $\text{CF}_3\text{CH}_2\text{C}(\text{O})$ radicals.

References

Antinolo, M., Jiménez, E., Notario, A., Martínez, E., and Aldaladejo, J.: *Atmos. Chem. Phys.*, 10, 1911, 2010.


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M., and Wallington T. J.: *The Mechanisms of Atmospheric Oxidation of the Oxygenates*, Oxford University Press, New York, NY, 2011.

Hurley, M. D., Misner, J. A., Ball, J. C., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: *J. Phys. Chem. A*, 109, 9816, 2005.

Kelly, T., Bossoutrot, V., Magneron, I., Wirtz, K., Treacy, J., Mellouki, A., Sidebottom, H., and Le Bras, G.: *J. Phys. Chem. A*, 109, 347, 2005.

Sellevåg, S. R., Kelly, T., Sidebottom, H., and Nielsen, C. J.: *Phys. Chem. Chem. Phys.*, 6, 1243, 2004.

oFOx102: HO + *n*-C₆F₁₃CH₂CHO

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.98 \pm 0.24) \times 10^{-12}$	296	Chiappero et al. (2010)	RR (a)

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in *n*-C₆F₁₃CH₂CHO/C₂H₄/CH₃ONO mixtures in 700 Torr (933 mbar) of air diluent. The loss of C₆F₁₃CH₂CHO and C₂H₄ were monitored using FTIR spectroscopy and a rate coefficient ratio of $k(\text{HO}+\text{C}_6\text{F}_{13}\text{CH}_2\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.25 \pm 0.03$ was obtained. Using $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{C}_6\text{F}_{13}\text{CH}_2\text{CHO}) = (1.98 \pm 0.24) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.0×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the sole study of this reaction by Chiappero et al. (2010). The reaction is expected to proceed predominantly via abstraction of the aldehydic hydrogen giving C₆F₁₃CH₂C(O) radicals.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chiappero, M. S., Argüello, G. A., Hurley, M. D., and Wallington, T. J.: J. Phys. Chem. A, 114, 6131, 2010.

oFOx103: HO + *n*-C₈F₁₇CH₂CHO

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.82 \pm 0.32) \times 10^{-12}$	296	Chiappero et al. (2008)	RR (a)

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in *n*-C₈F₁₇CH₂CHO/C₂H₄/CH₃ONO mixtures in 700 Torr (933 mbar) of air diluent. The loss of C₈F₁₇CH₂CHO and C₂H₄ were monitored using FTIR spectroscopy and a rate coefficient ratio of $k(\text{HO}+\text{C}_8\text{F}_{17}\text{CH}_2\text{CHO})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.23 \pm 0.04$ was obtained. Using $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{C}_8\text{F}_{17}\text{CH}_2\text{CHO}) = (1.82 \pm 0.32) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.8×10^{-12}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the sole study of this reaction by Chiappero et al. (2008). The reaction is expected to proceed predominantly via abstraction of the aldehydic hydrogen giving C₈F₁₇CH₂C(O) radicals.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.
Chiappero, M. S., Argüello, G. A., Hurley, M. D., and Wallington, T. J.: Chem. Phys. Lett., 461, 198, 2008.

oFOx104: HO + C₂F₅C(O)CF(CF₃)₂

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data ($k = k_1$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$< 5 \times 10^{-16}$	296	Taniguchi et al. (2003)	RR (a)

Comments

(a) HO radicals were generated by photolysis of ozone at 254 nm in the presence of water vapor in 200 Torr (266 mbar) of helium diluent. The loss of C₂F₅C(O)CF(CF₃)₂ was measured relative to CH₄ and CH₃Cl. Following the generation of OH radicals in the system, CH₄ and CH₃Cl were observed to decay, but there was no discernible loss (<2%) of C₂F₅C(O)CF(CF₃)₂ (over and above that ascribed to photolysis). Using $k(\text{HO} + \text{CH}_4) = 6.4 \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) an upper limit of $k(\text{HO} + \text{C}_2\text{F}_5\text{C(O)CF(CF}_3)_2) < 5 \times 10^{-16} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ was derived.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$< 5 \times 10^{-16}$	298

Comments on Preferred Values

The preferred value is based on the study by Taniguchi et al. (2008).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Taniguchi, N., Wallington, T. J., Hurley, M. D., Guschin, A. G., Molina, L. T., and Molina, M. J.: J. Phys. Chem. A., 107, 2674, 2003.

oClOx92: OH + CH₂ClC(O)CH₃

Last evaluated: June 2025; Last change in preferred values: June 2010

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(4.38 \pm 0.29) \times 10^{-13}$	298	Carr et al. (2003)	RR (a)

Comments

(a) OH radicals were generated by the photolysis of O₃ at 254 nm in the presence of H₂O vapour in 1 bar of O₂ diluent. CH₂ClCH₂Cl was used as the reference compound. Chemical analysis was achieved using FTIR spectroscopy and GC techniques and a rate coefficient ratio of $k(\text{HO}+\text{CH}_2\text{ClC(O)CH}_3)/k(\text{HO}+\text{CH}_2\text{ClCH}_2\text{Cl}) = 1.81 \pm 0.12$ was obtained. Using $k(\text{HO}+\text{CH}_2\text{ClCH}_2\text{Cl}) = 2.42 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Calvert et al., 2008) gives $k(\text{HO}+\text{CH}_2\text{ClC(O)CH}_3) = (4.38 \pm 0.29) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.4×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the study by Carr et al. (2003). The chlorine atom initiated oxidation of CH₂ClC(O)CH₃ was studied by Carr et al. (2003) in one atmosphere of O₂ and the formation of CO, CO₂, and HC(O)Cl products were reported. The products of the HO-initiated oxidation are expected to be the same. Carr et al (2003) did not provide any information on the magnitude of the consumption of CH₂ClC(O)CH₃ and the precise mechanism by which these products form is not clear. As discussed by Calvert et al. (2011), photolysis leading to the formation of CO, CO₂, and HC(O)Cl is probably the major atmospheric fate of CH₂ClC(O)CH₃.

References

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S., and Wallington T. J.: Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York, NY, 2008.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Carr, S., Shallcross, D.E., Canosa-Mas, C.E., Wenger, J.C., Sidebottom, H.W., Treacy, J.J., and Wayne, R.P.: Phys. Chem. Chem. Phys., 5, 3874, 2003.

oClOx93: HO + CHCl₂C(O)CH₃

Last evaluated: June 2025; Last change in preferred values: June 2010.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(4.02 \pm 0.27) \times 10^{-13}$	298	Carr et al. (2003)	RR (a)

Comments

(a) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of H₂O vapour in 1 bar of O₂ diluent. CH₂ClCH₂Cl was used as the reference compound. Chemical analysis was achieved using FTIR spectroscopy and GC techniques and a rate coefficient ratio of $k(\text{HO}+\text{CHCl}_2\text{C(O)CH}_3)/k(\text{HO}+\text{CH}_2\text{ClCH}_2\text{Cl}) = 1.66 \pm 0.11$ was obtained. Using $k(\text{HO}+\text{CH}_2\text{ClCH}_2\text{Cl}) = 2.42 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Calvert et al., 2008) gives $k(\text{HO}+\text{CHCl}_2\text{C(O)CH}_3) = (4.02 \pm 0.27) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.0×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	± 0.15	298

Comments on Preferred Values

The preferred value is based on the study by Carr et al. (2003). The chlorine-atom initiated oxidation of CHCl₂C(O)CH₃ was studied by Carr et al. (2003) in one atmosphere of O₂ and the formation of CO, CO₂, and COCl₂ products were reported. The products of the HO-initiated oxidation are expected to be the same. Carr et al (2003) did not provide any information on the magnitude of the consumption of CHCl₂C(O)CH₃ and the precise mechanism by which these products form is not clear. As discussed by Calvert et al. (2011), photolysis leading to the formation of CO, CO₂, and COCl₂ is probably the major atmospheric fate of CHCl₂C(O)CH₃.

References

Calvert, J. G., Derwent, R. G., Orlando, J. J., Tyndall, G. S., and Wallington T. J.: Mechanisms of Atmospheric Oxidation of the Alkanes, Oxford University Press, New York, NY, 2008.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Carr, S., Shallcross, D.E., Canosa-Mas, C.E., Wenger, J.C., Sidebottom, H.W., Treacy, J.J., and Wayne, R.P.: *Phys. Chem. Chem. Phys.*, 5, 3874, 2003.

oClOx94: OH + CCl₃C(O)CH₃

Last evaluated: June 2025; Last change in preferred values: June 2010.

Rate coefficient data ($k = k_1$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.54 \pm 0.15) \times 10^{-14}$	298	Carr et al. (2003)	RR (a)

Comments

(a) OH radicals were generated by the photolysis of O₃ at 254 nm in the presence of H₂O vapour in 1 bar of O₂ diluent. CH₃CN was used as the reference compound. Chemical analysis was achieved using FTIR spectroscopy and GC techniques and a rate coefficient ratio of $k(\text{HO}+\text{CCl}_3\text{C(O)CH}_3)/k(\text{HO}+\text{CH}_3\text{CN}) = 0.70 \pm 0.07$ was obtained. Using $k(\text{HO}+\text{CH}_3\text{CN}) = 2.2 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006) gives $k(\text{HO}+\text{CCl}_3\text{C(O)CH}_3) = (1.54 \pm 0.15) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

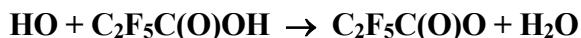
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.5×10^{-14}	298
<i>Reliability</i>		
$\Delta \log k$	± 0.15	298

Comments on Preferred Values

The preferred value is based on the study by Carr et al. (2003). The chlorine-atom initiated oxidation of CCl₃C(O)CH₃ was studied by Carr et al. (2003) in one atmosphere of O₂ and the formation of CO, CO₂, and COCl₂ products were reported. The products of the HO-initiated oxidation are expected to be the same. Carr et al. (2003) did not provide any information on the magnitude of the consumption of CCl₃C(O)CH₃ and the precise mechanism by which these products form is not clear. As discussed by Calvert et al. (2010), photolysis leading to the formation of CO, CO₂, and COCl₂ is probably the major atmospheric fate of CCl₃C(O)CH₃.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, 2011.

Carr, S., Shallcross, D. E., Canosa-Mas, C. E., Wenger, J. C., Sidebottom, H. W., Treacy, J. J., and Wayne, R. P.: Phys. Chem. Chem. Phys., 5, 3874, 2003.

oFOx105: HO + C₂F₅C(O)OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	<i>T</i> /K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$(1.54 \pm 0.17) \times 10^{-13}$	296	Hurley et al. (2004)	RR (a)
$(1.56 \pm 0.11) \times 10^{-13}$			

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in C₂F₅C(O)OH/CH₃ONO/NO/(C₂H₂ or C₂H₄) mixtures in 700 Torr (933 mbar) of air. The loss of the reference compounds (C₂H₂ or C₂H₄) was monitored by FTIR spectroscopy. The loss of C₂F₅C(O)OH was small and difficult to observe directly. The loss of C₂F₅C(O)OH was calculated from the formation of COF₂ observed by FTIR spectroscopy with a molar yield assumed to be 193% (CF₃ONO₂ and C₂F₅ONO₂ are formed in small amounts). Experiments performed using C₂F₅C(O)OH, C₃F₇C(O)OH, and C₄F₉C(O)OH gave indistinguishable values of the rate coefficient ratio $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO} + \text{reference})$. Analysis of the composite data set gave $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO} + \text{C}_2\text{H}_2) = 0.197 \pm 0.022$ and $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO} + \text{C}_2\text{H}_4) = 0.0198 \pm 0.0014$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) gives the values of $k(\text{HO} + \text{C}_x\text{F}_{2x+1}\text{CHO})$ listed in the table above.

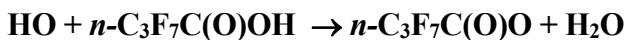
Preferred Values

Parameter	Value	T/K
k /cm ³ molecule ⁻¹ s ⁻¹	1.5×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the study by Hurley et al. (2004). The C₂F₅C(O)O radical decomposes rapidly to give CO₂ and a C₂F₅ radical. As discussed by Ellis et al. (2004), in the atmosphere the C₂F₅ radical will be converted mainly into COF₂ with CF₃C(O)OH formed as a minor product following reaction of C₂F₅O₂ radicals with CH₃O₂ radicals. As might be expected from their similar molecular structure, the reactivity of C₂F₅C(O)OH, C₃F₇C(O)OH, and C₄F₉C(O)OH towards HO radicals are indistinguishable.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Ellis, D. A., Martin, J. W., De Silva, A. O., Mabury, S. A., Hurley, M. D., Sulbaek Andersen, M. P., and Wallington, T. J.: Environ. Sci. Tech., 38, 3316, 2004.

Hurley, M. D., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 615, 2004.

oFOx106: HO + *n*-C₃F₇C(O)OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(1.54 ± 0.17) × 10 ⁻¹³	296	Hurley et al. (2004)	RR (a)
(1.56 ± 0.11) × 10 ⁻¹³			

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in C₃F₇C(O)OH/CH₃ONO/NO/(C₂H₂ or C₂H₄) mixtures in 700 Torr (933 mbar) of air. The loss of the reference compounds C₂H₂ or C₂H₄ was monitored by FTIR spectroscopy. The loss of C₃F₇C(O)OH was small and difficult to observe directly. The loss of C₃F₇C(O)OH was calculated from the formation of COF₂ observed by FTIR spectroscopy with a molar yield assumed to be 290% (CF₃ONO₂, C₂F₅ONO₂, and C₃F₇ONO₂ are formed in small amounts). Experiments performed using C₂F₅C(O)OH, C₃F₇C(O)OH, and C₄F₉C(O)OH gave indistinguishable values of the rate coefficient ratio *k*(HO+C_xF_{2x+1}C(O)OH)/*k*(HO+reference). Analysis of the composite data set gave *k*(HO+C_xF_{2x+1}C(O)OH)/*k*(HO+C₂H₂) = 0.197 ± 0.022 and *k*(HO+C_xF_{2x+1}C(O)OH)/*k*(HO+C₂H₄) = 0.0198 ± 0.0014. Using *k*(HO+C₂H₂) = 7.8 × 10⁻¹³ and *k*(HO+C₂H₄) = 7.9 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) gives the values of *k*(HO+C_xF_{2x+1}CHO) listed in the table above.

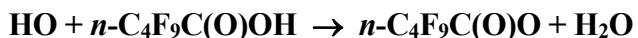
Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.5 × 10 ⁻¹³	298
<i>Reliability</i>		
Δ log <i>k</i>	0.15	298

Comments on Preferred Values

The preferred value is based on the study by Hurley et al. (2004). The C₃F₇C(O)O radical decomposes rapidly to give CO₂ and a C₃F₇ radical. As discussed by Ellis et al. (2004), the C₃F₇ radical will be converted mainly into COF₂ with CF₃C(O)OH and C₂F₅C(O)OH formed as minor products following reactions of C₂F₅O₂ and C₃F₇O₂ radicals with CH₃O₂ radicals. As might be expected from their similar molecular structure, the reactivity of C₂F₅C(O)OH, C₃F₇C(O)OH, and C₄F₉C(O)OH towards HO radicals are indistinguishable.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Ellis, D. A., Martin, J. W., De Silva, A. O., Mabury, S. A., Hurley, M. D., Sulbaek Andersen, M. P., and Wallington, T. J.: Environ. Sci. Tech., 38, 3316, 2004.

Hurley, M. D., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 615, 2004.

oFOx107: HO + *n*-C₄F₉C(O)OH

Last evaluated: June 2025; Last change in preferred values: June 2009.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	T/K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
(1.54 ± 0.17) × 10 ⁻¹³	296	Hurley et al. (2004)	RR (a)
(1.56 ± 0.11) × 10 ⁻¹³			

Comments

(a) HO radicals were generated by the photolysis of CH₃ONO in C₄F₉C(O)OH/CH₃ONO/NO/(C₂H₂ or C₂H₄) mixtures in 700 Torr (933 mbar) of air. The loss of the reference compounds C₂H₂ or C₂H₄ was monitored by FTIR spectroscopy. The loss of C₄F₉C(O)OH was small and difficult to observe directly. The loss of C₄F₉C(O)OH was calculated from the formation of COF₂ observed by FTIR spectroscopy, with a molar yield assumed to be 384% (nitrates are formed in small amounts). Experiments performed using C₂F₅C(O)OH, C₃F₇C(O)OH, and C₄F₉C(O)OH gave indistinguishable values of the rate coefficient ratio $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO}+\text{reference})$. Analysis of the composite data set gave $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO}+\text{C}_2\text{H}_2) = 0.197 \pm 0.022$ and $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{C(O)OH})/k(\text{HO}+\text{C}_2\text{H}_4) = 0.0198 \pm 0.0014$. Using $k(\text{HO}+\text{C}_2\text{H}_2) = 7.8 \times 10^{-13}$ and $k(\text{HO}+\text{C}_2\text{H}_4) = 7.9 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ (Atkinson et al., 2006) gives the values of $k(\text{HO}+\text{C}_x\text{F}_{2x+1}\text{CHO})$ listed in the table above.

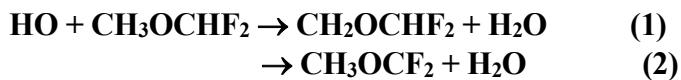
Preferred Values

Parameter	Value	T/K
k /cm ³ molecule ⁻¹ s ⁻¹	1.5×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.15	298

Comments on Preferred Values

The preferred value is based on the study by Hurley et al. (2004). The C₄F₉C(O)O radical decomposes rapidly to give CO₂ and a C₄F₉ radical. As discussed by Ellis et al. (2005), the C₄F₉ radical will be converted mainly into COF₂ with CF₃C(O)OH, C₂F₅C(O)OH, and C₃F₇C(O)OH formed as minor products from reactions involving CH₃O₂ radicals. As might be expected from their similar molecular structure, C₄F₉C(O)OH has a reactivity towards HO radicals which is indistinguishable from those of C₂F₅C(O)OH and C₃F₇C(O)OH.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Ellis, D. A., Martin, J. W., De Silva, A. O., Mabury, S. A., Hurley, M. D., Sulbaek Andersen, M. P., and Wallington, T. J.: Environ. Sci. Tech., 38, 3316, 2004.

Hurley, M. D., Wallington, T. J., Ellis, D. A., Martin, J. W., and Mabury, S. A.: J. Phys. Chem. A, 108, 615, 2004.

oFOx137: HO + CH₃OCHF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

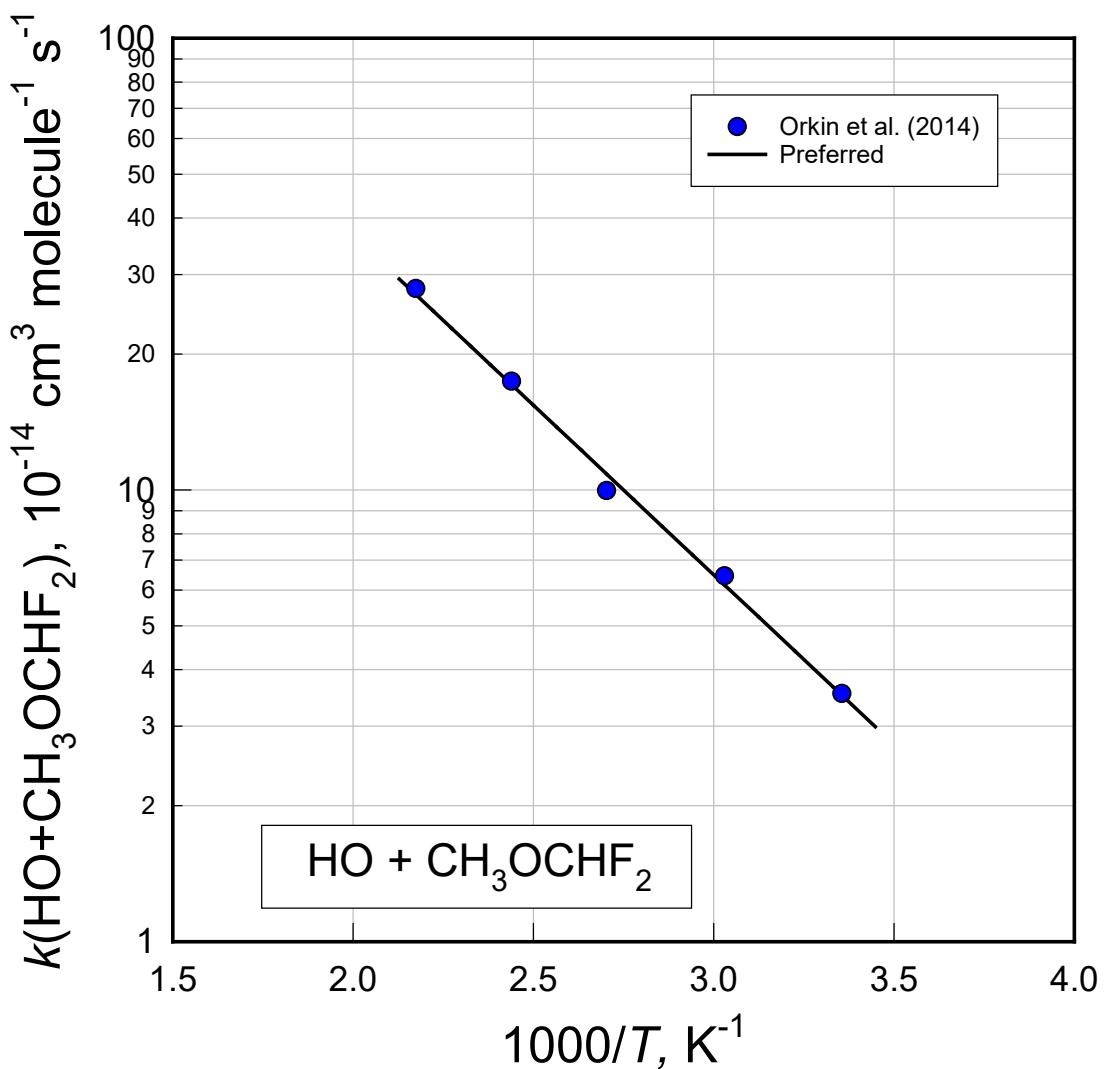
Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.16 \pm 0.42) \times 10^{-11} \exp[(-1728 \pm 133)/T]$	298-460	Orkin et al. (2014)	DF-EPR (a)
$(3.54 \pm 0.65) \times 10^{-14}$	298		

Comments

(a) HO radicals were generated by the reaction of H atoms with NO₂ in 2.5 Torr of helium diluent.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.52×10^{-14}	298
	$1.16 \times 10^{-11} \exp(-1728/T)$	290-470
<i>Reliability</i>		
$\Delta \log k$	0.15	298
$\Delta E/R$	± 100	290-470

Comments on Preferred Values

The preferred Arrhenius expression and rate coefficient at 298 K are taken from a fit to the data reported by Orkin et al. (2014).

References

Orkin, V. L., Khamaganov, V. G., and Guschin, A. G.: J. Phys. Chem. A, 118, 10770, 2014.

oFOx138: HO + CH₃OCF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.14 \pm 0.15) \times 10^{-14}$	296	Zhang et al. (1992)	FP-RF (a)
$(1.10 \pm 0.20) \times 10^{-12} \exp[(-1324 \pm 61)/T]$	298-460	Orkin et al. (2014)	DF-EPR (b)
$(1.30 \pm 0.06) \times 10^{-14}$	298		
<i>Relative Rate Coefficients</i>			
$1.18 \times 10^{-12} \exp(-1381/T)$	298-381	Hsu and DeMore (1995)	RR (c)
1.15×10^{-14}	298		
$4.19 \times 10^{-12} \exp[(-1742)/T]$	268-308	Chen et al. (2001)	RR (d)
1.17×10^{-14}	298		

Comments

(a) HO radicals were generated by the photolysis of water vapor in 35 Torr (47 mbar) of argon diluent and monitored by resonance fluorescence.

(b) HO radicals were generated by the reaction of H atoms with NO₂ in 2.5 Torr of helium diluent.

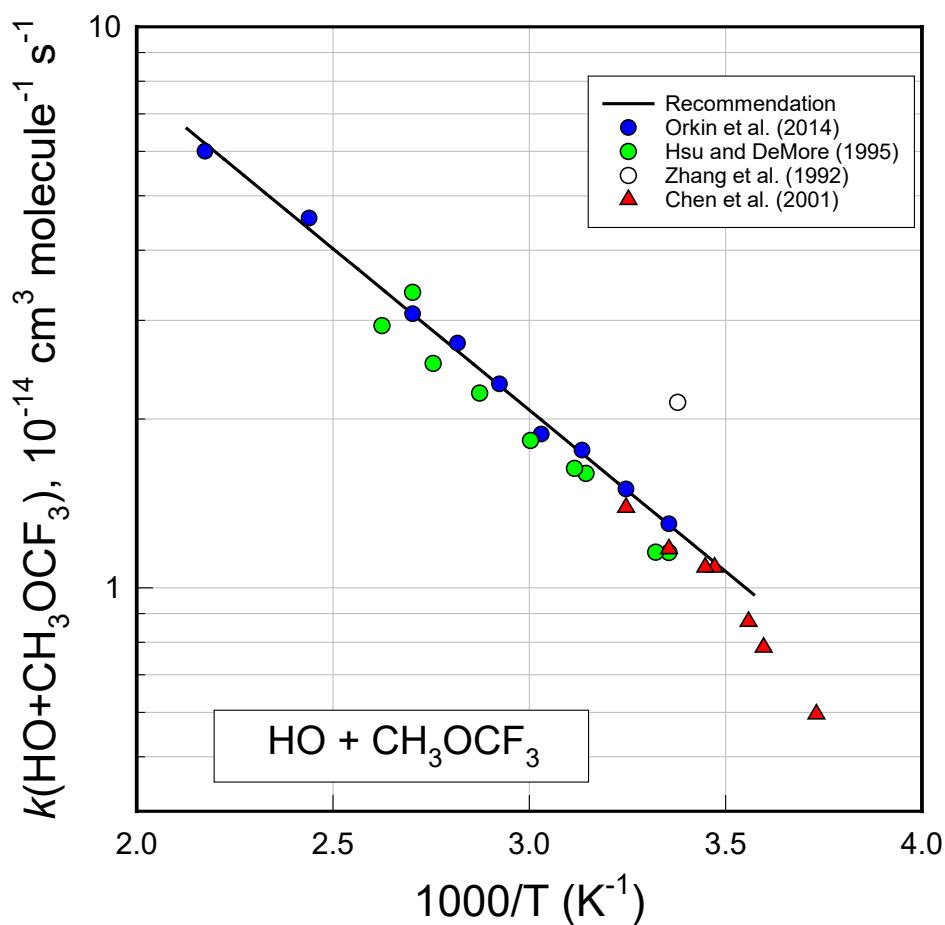
(c) HO radicals were generated by the UV photolysis of O₃ in the presence of water vapor. Experiments were conducted in which the loss of CF₃OCH₃ was measured relative to either CH₃CHF₂ or CHF₂Cl. The concentrations of CF₃OCH₃, CH₃CHF₂, and CH₂F₂ were measured by FTIR spectroscopy. The measured rate coefficient ratios of $k(\text{HO} + \text{CF}_3\text{OCH}_3)/k(\text{HO} + \text{CH}_3\text{CHF}_2) = (0.65 \pm 0.08) \exp[(190 \pm 43)/T]$ and $k(\text{HO} + \text{CF}_3\text{OCH}_3)/k(\text{HO} + \text{CH}_2\text{F}_2) = (1.55 \pm 0.10) \exp[(136 \pm 43)/T]$ are placed on an absolute basis using $k(\text{HO} + \text{CH}_3\text{CHF}_2) = 1.25 \times 10^{-12} \exp(-1070/T)$ and $k(\text{HO} + \text{CH}_2\text{F}_2) = 2.3 \times 10^{-12} \exp(-1590/T)$ (Atkinson et al., 2008) to give $k(\text{HO} + \text{CF}_3\text{OCH}_3) = (8.1 \pm 1.0) \times 10^{-13} \exp[(-880 \pm 43)/T]$ and $(3.6 \pm 1.0) \times 10^{-12} \exp[(-1454 \pm 43)/T]$ cm³ molecule⁻¹ s⁻¹. A fit to the combined data set (scaled using reference rate coefficients from Atkinson et al. 2008) gives $k(\text{HO} + \text{CF}_3\text{OCH}_3) = 1.18 \times 10^{-12} \exp(-1381/T)$ cm³ molecule⁻¹ s⁻¹.

(d) HO radicals were generated by the photolysis of ozone in the presence of water vapor in 100 Torr of helium diluent. Separate experiments were performed in which the loss CF₃OCH₃ was measured relative to either CH₄ or CH₃CCl₃. Placing the reported rate coefficient ratios on an absolute basis using $k(\text{HO} + \text{CH}_4) = 1.85 \times 10^{-12} \exp(-1690/T)$ and $k(\text{HO} + \text{CH}_3\text{CCl}_3) = 1.2 \times 10^{-12} \exp(-1440/T)$ (Atkinson et al., 2008) and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{CH}_3\text{OCF}_3) = (3.6 \pm 1.0) \times 10^{-12} \exp[(-1454 \pm 43)/T]$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

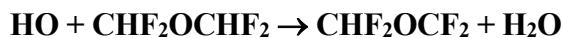
Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.29×10^{-14}	298
	$1.10 \times 10^{-12} \exp(-1324/T)$	290-470

Reliability


$\Delta \log k$	0.10	298
	180	

Comments on Preferred Values

There is excellent agreement in the results from the relative rate study by Hsu and DeMore (1995), the absolute study by Orkin et al. (2014), and the $T > 285$ K results from the relative rate study by Chen et al. (2001). The rate coefficient reported by Zhang et al. (1992) at 296 K is substantially higher (by a factor of 1.6 to 1.9) than the results from Hsu and DeMore (1995), Chen et al. (2001), and Orkin et al. (2014). The origin of the discrepancy is probably the presence of reactive impurities in the sample used by Zhang et al. (1992). For reasons which are unclear, the low temperature ($T < 285$ K) results from Chen et al. (2001) appear to be anomalously low. Further work is needed to investigate the kinetics of the reaction at temperatures below 285 K. The preferred Arrhenius expression and rate coefficient at 298 K are taken from Orkin et al. (2014).


References

Chen, L., Kutsuna, S., Nohara, K., Takeuchi, K., and Ibusuki, T.: J. Phys. Chem. A: 105, 10854, 2001.
Hsu, K.-J. and DeMore, W. B.: J. Phys. Chem., 99, 11141, 1995.
Orkin, V. L., Khamaganov, V. G., and Guschin, A. G.: J. Phys. Chem. A, 118, 10770, 2014.
Zhang, Z., Saini, R. D., Kurylo, M. J., and Huie, R. E.: J. Phys. Chem., 96, 9301, 1992.

oFOx139: HO + CHF₂OCHF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(2.53 \pm 0.24) \times 10^{-14}$	296	Zhang et al. (1992)	FP-RF (a)
$(2.41 \pm 0.16) \times 10^{-14}$	296		
$(5.4 \pm 3.5) \times 10^{-13} \exp[-(1560 \pm 201)/T]$	269-312	Garland et al. (1993)	PLP-LIF (b)
$(3.0 \pm 0.7) \times 10^{-15}$	295		
$(6.3^{+0.20}_{-0.16}) \times 10^{-12} \exp[-(1646 \pm 76)/T]$	277-370	Orkin et al. (1999)	FP-RF (c)
$(2.47 \pm 0.12) \times 10^{-15}$	298		
<i>Relative Rate Coefficients</i>			
$1.26 \times 10^{-12} \exp[(-1896)/T]$	298-381	Hsu and DeMore (1995)	RR (d)
2.23×10^{-15}	298		
$1.01 \times 10^{-12} \exp[(-1825)/T]$	268-308	Wilson et al. (2001)	RR (e)
2.18×10^{-15}	298		

Comments

(a) HO radicals were generated by the photolysis of water vapor in 35 Torr (47 mbar) of argon and monitored by resonance fluorescence. Two sets of experiments were performed using different threshold voltages (3.3 kV or 4.6 kV) for the Xe flash lamp giving the values in the table.

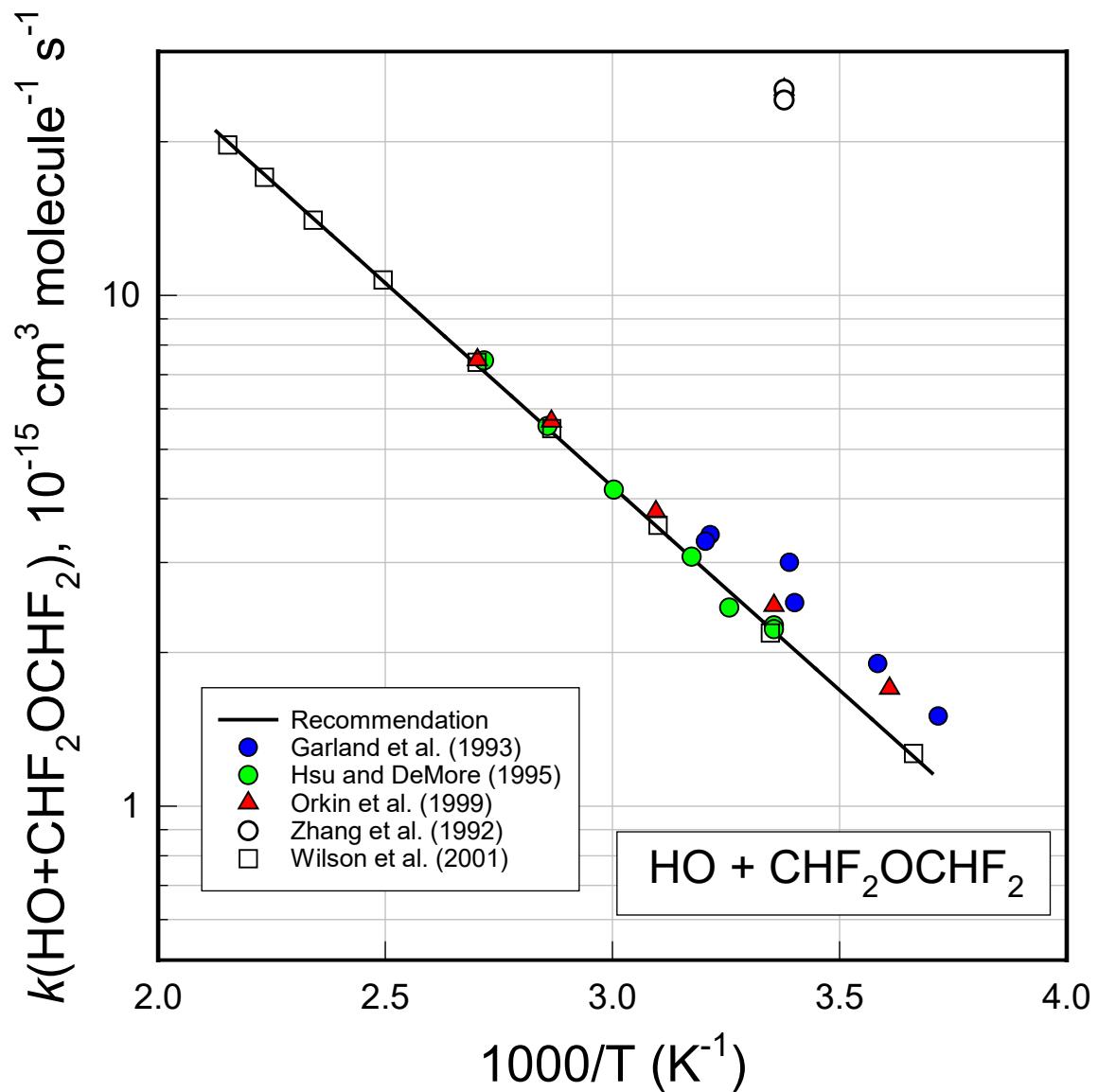
(b) HO radicals were generated by the 248 nm photolysis of HNO₃ water vapor in 20 Torr (27 mbar) of argon or helium diluent and monitored by LIF.

(c) HO radicals were generated by the photolysis of water vapor in 100 Torr (133 mbar) of argon diluent.

(d) HO radicals were generated by the UV photolysis of O₃ in the presence of water vapor. FTIR spectroscopy was used to follow the loss of CHF₂OCHF₂ measured relative to CH₃CCl₃. The measured rate coefficient ratio of $k(\text{HO} + \text{CHF}_2\text{OCHF}_2)/k(\text{HO} + \text{CH}_3\text{CCl}_3) = (1.05 \pm 0.20) \exp[(-456 \pm 62)/T]$ is placed on an absolute basis using $k(\text{HO} + \text{CH}_3\text{CCl}_3) = 1.2 \times 10^{-12} \exp(-1440/T)$ (Atkinson et al., 2008) to give $k(\text{HO} + \text{CHF}_2\text{OCHF}_2) = 1.26 \times 10^{-12} \exp[(-1896)/T]$ cm³ molecule⁻¹ s⁻¹.

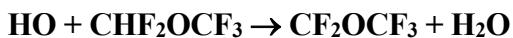
(e) HO radicals were generated by the photolysis of water vapor in helium diluent and the loss of CHF₂OCHF₂ was measured relative to that of CF₃CF₂H by GC-MS. Placing the reported rate coefficient ratios on an absolute basis using $k(\text{HO} + \text{CF}_3\text{CF}_2\text{H}) = 4.40 \times 10^{-13} \exp(-1630/T)$ (Atkinson et al., 2008) and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{CHF}_2\text{OCHF}_2) = (3.6 \pm 1.0) \times 10^{-12} \exp[(1454 \pm 43)/T]$ cm³ molecule⁻¹ s⁻¹.

Preferred Values


Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.20×10^{-15} $1.04 \times 10^{-12} \exp(-1836/T)$	298 270-470
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	270-470

Comments on Preferred Values

There is excellent agreement in the results at 298 K and higher temperatures from the relative rate studies of Hsu and DeMore (1995) and Wilson et al. (2001) and the absolute rate study by Orkin et al. (1999). The results at 298 K from the absolute rate study by Garland et al. (1993) lie approximately 20-30% above those from Orkin et al. (1999) and the relative rate studies. The results from the absolute study by Zhang et al. (1992) are approximately an order of magnitude greater than from the other studies and probably reflect the presence of reactive impurities. The results from the absolute studies by Orkin et al. (1999) and Garland et al. (1993) at temperatures below 298 K lie substantially above those from the relative rate studies. This discrepancy may indicate the effect of small amounts of reactive impurities in these studies whose effects would be more pronounced at the lower temperatures. The preferred values are based on an Arrhenius fit to the data from Hsu and DeMore (1995) and Wilson et al. (2001).


References

Garland, N. L., Medhurst, L. J. and Nelson, H. H.: J. Geophys. Res. 98, 23107, 1993.
 Hsu, K.-J., and DeMore, W. B.: J. Phys. Chem., 99, 11141, 1995.
 Orkin, V. L., Villenave, E., Huie, R. E., and Kurylo, M. J.: J. Phys. Chem. A, 103, 9770, 1999.
 Wilson, E. W., Sawyer, A. A., and Sawyer, H. A.: J. Phys. Chem. A, 105, 1445, 2001.
 Zhang, Z., Saini, R. D., Kurylo, M. J., and Huie, R. E.: J. Phys. Chem.: 96, 9301, 1992.

oFOx140: HO + CHF₂OCF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
3.47×10^{-15}	296	Zhang et al. (1992)	FP-RF (a)
<i>Relative Rate Coefficients</i>			
$3.09 \times 10^{-13} \exp[(-1942)/T]$	298-381	Hsu and DeMore (1995)	RR (b)
4.57×10^{-16}	298		

Comments

(a) HO radicals were generated by the photolysis of water vapor in 35 Torr (47 mbar) of argon diluent and monitored by resonance fluorescence.

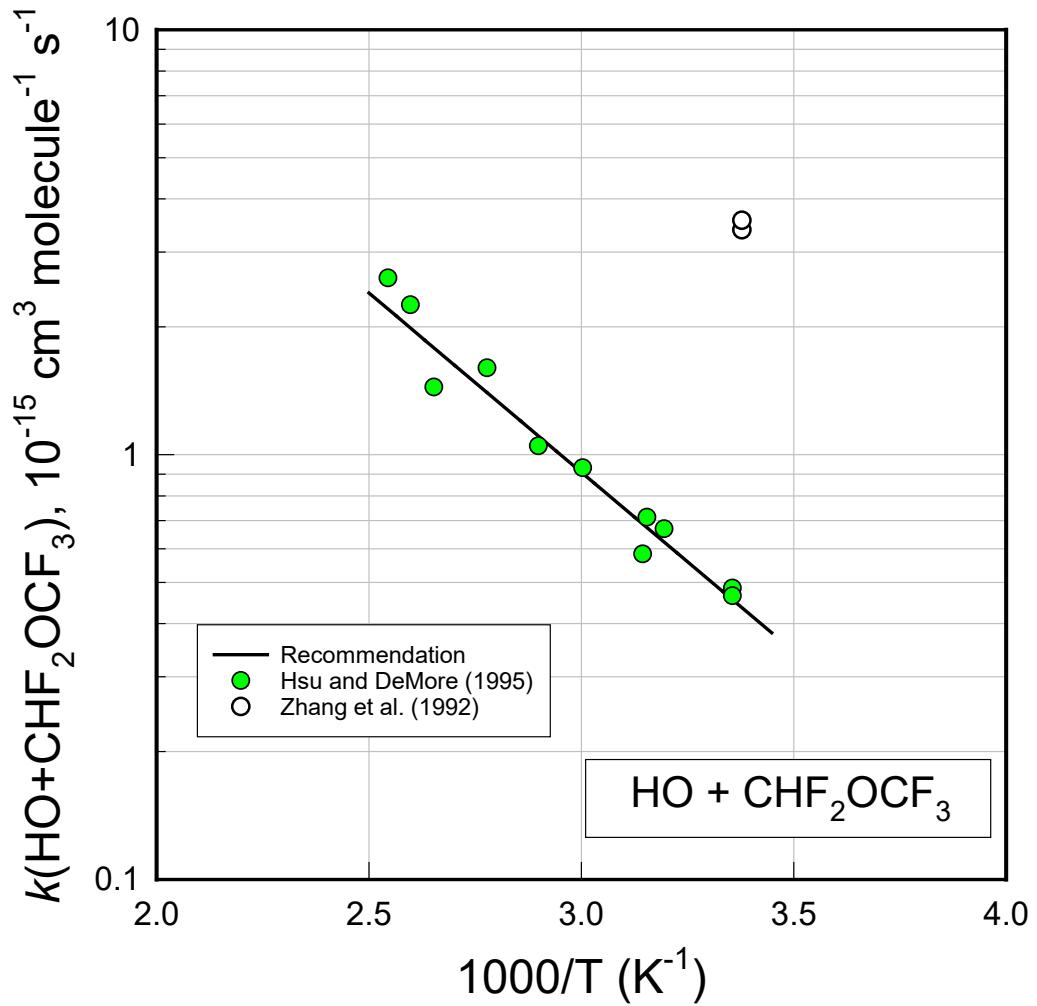
(b) HO radicals were generated by the UV photolysis of O₃ in the presence of water vapor. FTIR spectroscopy was used to follow the loss of CHF₂OCF₃ and the reference compounds CF₃H, CH₄, and CHF₂CF₃. Placing the measured rate coefficient ratios on an absolute basis using $k(\text{HO} + \text{CF}_3\text{H}) = 6.90 \times 10^{-13} \exp(-2340/T)$, $k(\text{HO} + \text{CH}_4) = 1.85 \times 10^{-12} \exp(-1690/T)$, and $k(\text{HO} + \text{CHF}_2\text{CF}_3\text{H}) = 4.40 \times 10^{-13} \exp(-1630/T)$ $\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006, 2008) and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{CHF}_2\text{OCF}_3) = 3.09 \times 10^{-13} \exp[(-1942)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.57×10^{-16} $3.09 \times 10^{-13} \exp(-1942/T)$	298 290-400
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	290-400

Comments on Preferred Values

The preferred values are based on a fit to the results from the relative rate study of Hsu and DeMore (1995). The results from the absolute study by Zhang et al. (1992) at 296 K are approximately a factor of 8 greater than from Hsu and DeMore (1995) probably reflecting the presence of reactive impurities.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Hsu, K.-J. and DeMore, W. B.: J. Phys. Chem., 99, 11141, 1995.

Zhang, Z., Saini, R. D., Kurylo, M. J., and Huie, R. E.: J. Phys. Chem., 96, 9301, 1992.

oFOx141: HO + CH₃OCHFCF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Relative Rate Coefficients</i>			
$1.74 \times 10^{-12} \exp[(-716)/T]$	253-328	Chen et al. (2006)	RR (a)
1.57×10^{-13}	298		

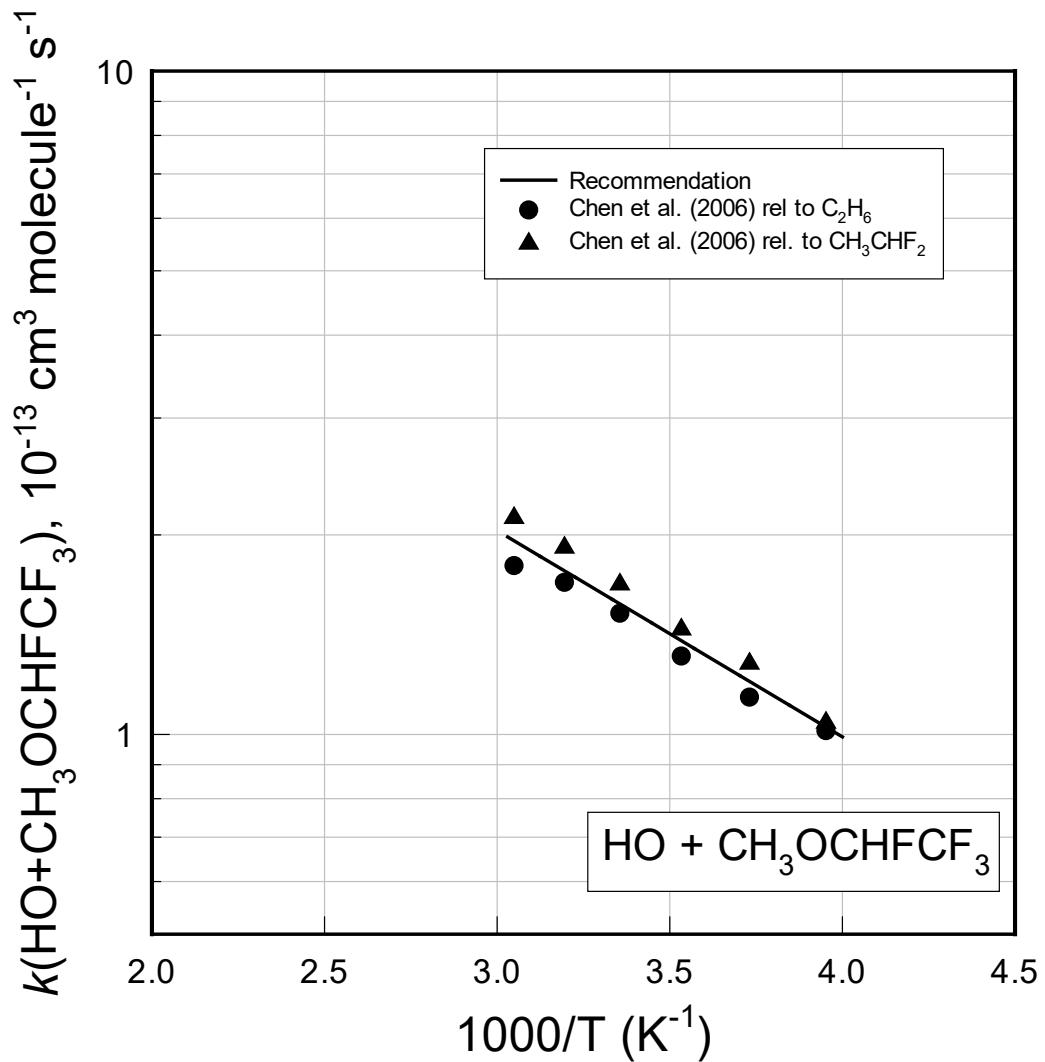
Comments

(a) HO radicals were generated by the photolysis of ozone in the presence of water vapor in 200 Torr of helium diluent. Separate experiments were performed in which the loss CH₃OCHFCF₃ was measured relative to either C₂H₆ or CH₃CHF₂. Placing the reported rate coefficient ratios on an absolute basis using $k(\text{HO} + \text{C}_2\text{H}_6) = 6.9 \times 10^{-12} \exp(-1000/T)$ and $k(\text{HO} + \text{CH}_3\text{CHF}_2) = 1.25 \times 10^{-12} \exp(-1070/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al. 2006, 2008) and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{CH}_3\text{OCHFCF}_3) = 1.74 \times 10^{-12} \exp[(-716)/T] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

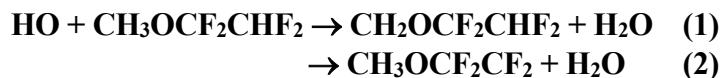
Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.57×10^{-13}	298
	$1.74 \times 10^{-12} \exp(-716/T)$	250-330
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	250-330

Comments on Preferred Values


The preferred value is based on a fit to the results from the relative rate study of Chen et al. (2006).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Subcommittee for Gas Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chen, L., Kutsuna, S., Tokuhashi, K., and Sekiya, A.: J. Phys. Chem., 110, 12845, 2006.

oFOx142: HO + CH₃OCF₂CHF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data ($k = k_1 + k_2$)

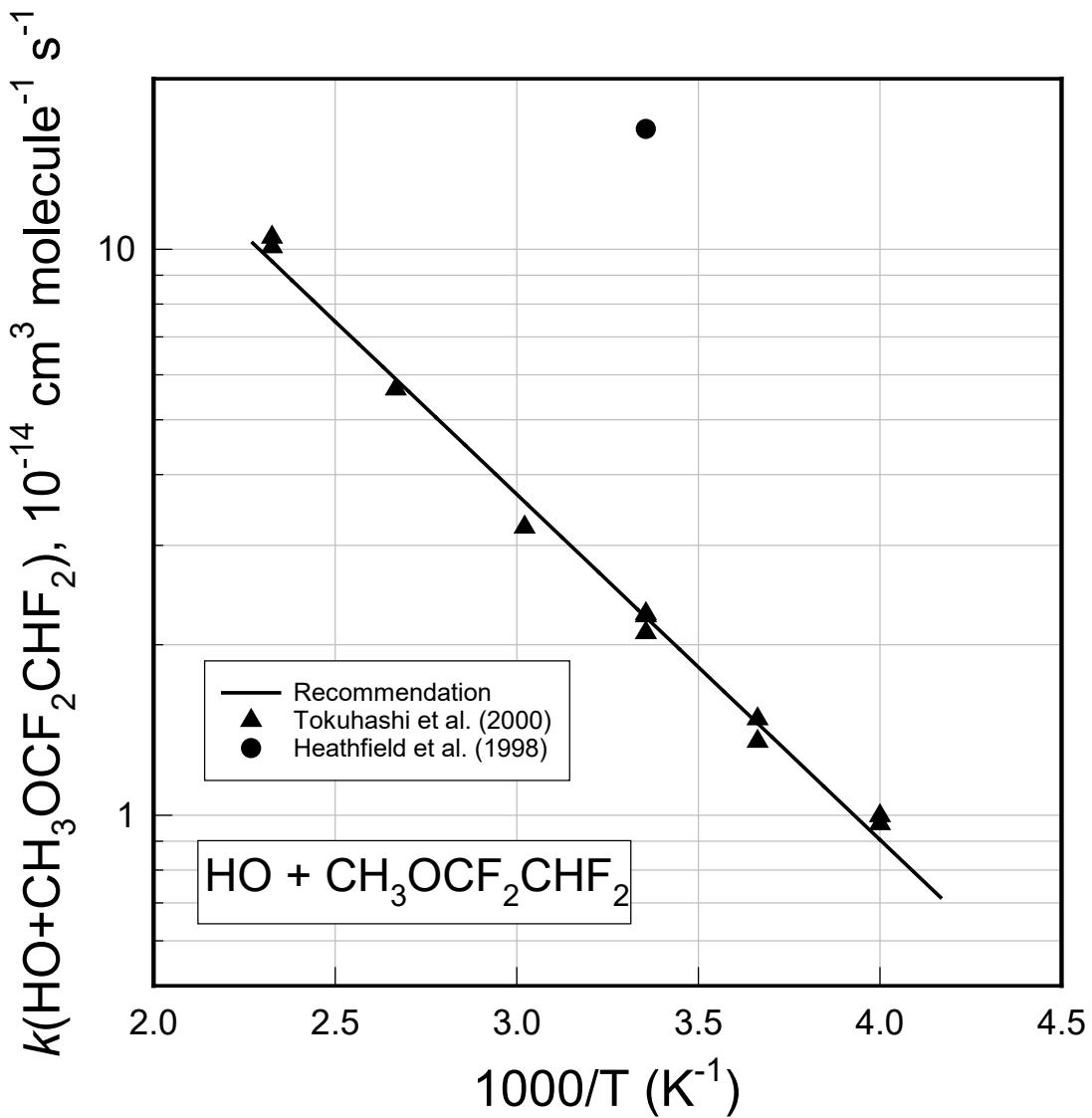
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.63 \pm 0.32) \times 10^{-13}$	298	Heathfield et al. (1998)	PR-UVA (a)
$2.60 \times 10^{-12} \exp[(-1420)/T]$	250-430	Tokuhashi et al. (2000)	LP/FP/DF-LIF (b)
2.56×10^{-14}	298		

Comments

(a) HO radicals were generated by the pulsed radiolysis of 1000 mbar of argon in the presence of 18 mbar of water vapor. The decay of HO radicals was monitored using UV absorption at 309 nm.

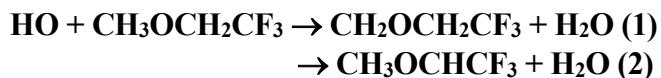
(b) Three different absolute rate methods were employed by Tokuhashi et al. (2000): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the photolysis (ArF laser) of N₂O to produce O(¹D) atoms in the presence of H₂O in 20-60 Torr (27-80 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda < 180$ nm) of H₂O in 20-40 Torr (27-53 mbar) argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 5-6 Torr (7-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.

Preferred Values


Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.24×10^{-14}	298
	$2.50 \times 10^{-12} \exp(-1405/T)$	240-440
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	240-440

Comments on Preferred Values

The preferred values are based on a fit to the results from the comprehensive study of Tokuhashi et al. (2000) in which three different absolute rate techniques were applied and extra care was taken in purifying the samples. The results from the study by Heathfield et al. (1998) at 298 K are approximately a factor of 6 higher than from Tokuhashi et al. (2000) and probably reflect the presence of reactive impurities in the samples used.


References

Heathfield, A. E., Anastasi, C., McCulloch, A., and Nicolaisen, F. M.: *Atmos. Environ.*, 32, 2825, 1998.
Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Yamashita, S., and Ito, H.: *J. Phys. Chem.*, 104, 1165, 2000.

oFOx143: HO + CH₃OCH₂CF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(6.24 \pm 0.67) \times 10^{-13}$	296	Zhang et al. (1992)	FP-RF (a)
<i>Relative Rate Coefficients</i>			
$(6.4 \pm 0.5) \times 10^{-13}$	298	Nolan et al. (1999)	RR (b)
$(6.24 \pm 0.33) \times 10^{-13}$	298	Oyaro et al. (2005)	RR (c)
$(5.17 \pm 0.54) \times 10^{-13}$			
$(4.71 \pm 0.37) \times 10^{-13}$	296	Østerstrøm et al. (2011)	RR (d)
$(4.16 \pm 0.39) \times 10^{-13}$			

Comments

- (a) HO radicals were generated by the photolysis of water vapor in 35 Torr (47 mbar) of argon diluent.
- (b) HO radicals were generated by the 254 nm photolysis of ozone in the presence of water vapor in 1 atmosphere of air diluent. The reference compound was not specified.
- (c) HO radicals were produced by the photolysis of O₃ at 254 nm in the presence of H₂ in 1013 mbar of air diluent. The loss of CH₃OCH₂CF₃ was monitored relative to those of CHCl₃ and CH₃C(O)OCH₃ by GC/MS. Rate coefficient ratios of $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3)/k(\text{HO} + \text{CHCl}_3) = 5.94 \pm 0.31$ and $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3)/k(\text{HO} + \text{CH}_3\text{C(O)OCH}_3) = 2.87 \pm 0.305$ were reported. Using $k(\text{HO} + \text{CHCl}_3) = 1.05 \times 10^{-13}$ and $k(\text{HO} + \text{CH}_3\text{C(O)OCH}_3) = 1.8 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K (Atkinson et al., 2006, 2008) gives $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3) = (6.24 \pm 0.33) \times 10^{-13}$ and $(5.17 \pm 0.54) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (d) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr of air diluent in the presence of NO. The loss of CH₃OCH₂CF₃ was monitored indirectly by the formation of its oxidation product COF₂ and was measured relative to that of C₂H₂ and C₂H₄. Rate coefficient ratios of $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3)/k(\text{HO} + \text{C}_2\text{H}_2) = 0.63 \pm 0.05$ and $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3)/k(\text{HO} + \text{C}_2\text{H}_4) = 0.053 \pm 0.005$ were reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ in 700 Torr of air at 296 K (Atkinson et al., 2006) gives $k(\text{HO} + \text{CH}_3\text{OCH}_2\text{CF}_3) = (4.71 \pm 0.37) \times 10^{-13}$ and $(4.16 \pm 0.39) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	6.24×10^{-13}	298
<i>Reliability</i>		
$\Delta \log k$	0.10	298

Comments on Preferred Values

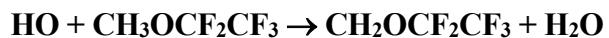
The preferred value is based on the absolute rate measurement by Zhang et al. (1992). The results from the relative rate studies by Nolan et al. (1999) and Oyaro et al. (2005) are in good agreement while those from Østerstøm et al. (2012) are approximately 30% lower. Østerstøm et al. (2012) measured the loss of $\text{CH}_3\text{OCH}_2\text{CF}_3$ indirectly by the formation of its oxidation product COF_2 and assuming a molar yield of 45% which was determined in separate experiments. Given the good agreement of the results from the relative rate studies of Nolan et al. (1999) and Oyaro et al. (2005) with the absolute rate study by Zhang et al. (1992), it appears there were problems associated with the indirect method of monitoring loss of $\text{CH}_3\text{OCH}_2\text{CF}_3$ used by Østerstøm et al. (2012).

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 9, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Nolan, S., O'Sullivan, N., Wenger, J., Sidebottom, H., and Treacy, J.: in: R. Djahjhs (Ed.), Proceedings of EUROTRAC Symposium '98: Transport and Chemical Transformation in the Troposphere, Garmisch-Partenkirchen, Germany, March 23-27, 1998, WIT Press, Ashurst, Southampton, UK, 1999, pp. 1-120.


Østerstøm, F. F., Nielsen, O. J., Sulbæk Andersen, M. P., and Wallington, T. J.: Chem. Phys. Lett, 524, 32, 2012.

Oyaro, N., Sellevåg, S. R., and Nielsen, C. J.: J. Phys. Chem. A, 109, 337, 2005.

Zhang, Z., Saini, R. D., Kurylo, M. J., and Huie, R. E.: J. Phys. Chem., 96, 9301, 1992.

oFOx144: HO + CH₃OCF₂CF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.90^{+0.90}_{-0.61} \times 10^{-12}) \exp[(-1510 \pm 120)/T]$	250-430	Tokuhashi et al. (1999)	LP/FP/DF-LIF (a)
1.12×10^{-14}	298		
<i>Relative Rate Coefficients</i>			
$(1.12 \pm 0.15) \times 10^{-14}$	296	Østerstrøm et al. (2016)	RR (b)

Comments

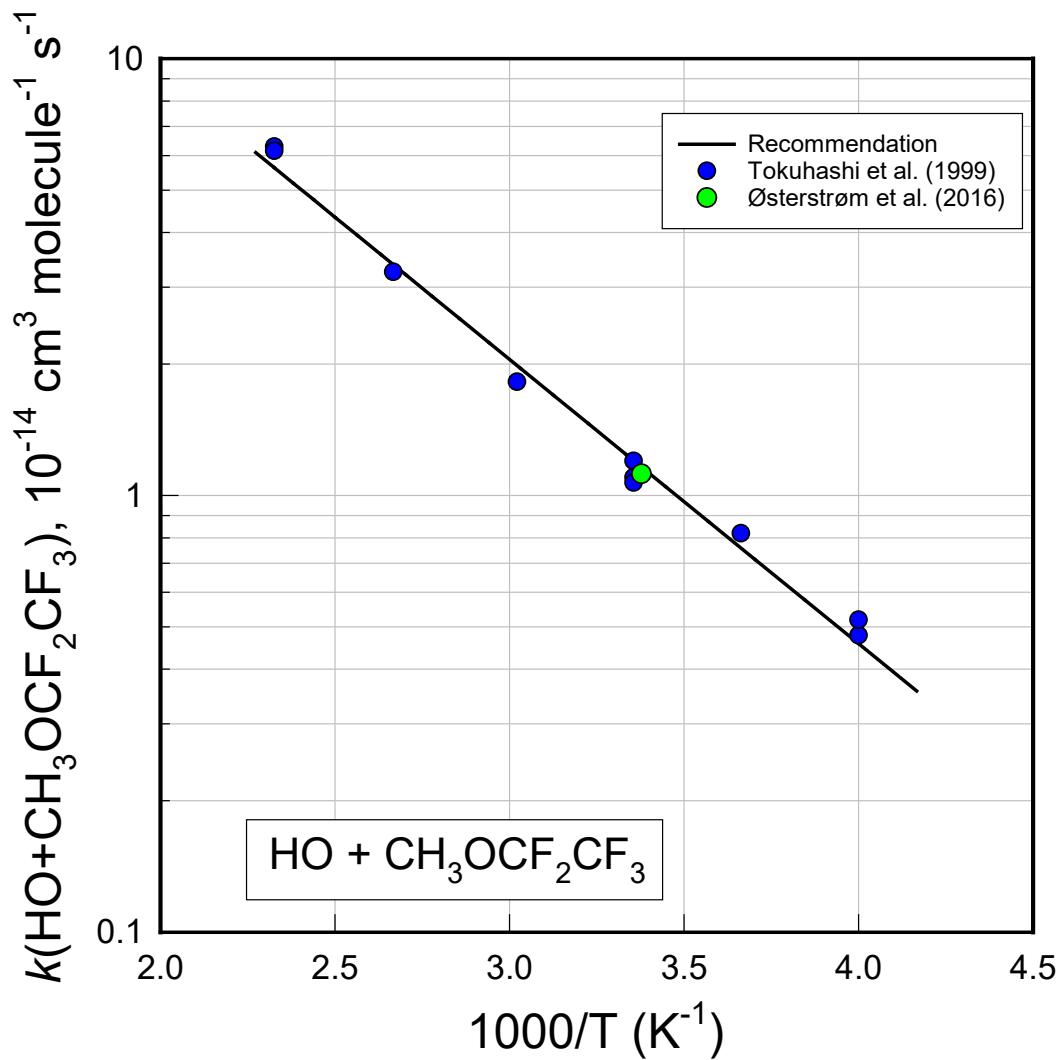
(a) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the photolysis (ArF laser) of N₂O to produce O(¹D) atoms in the presence of H₂O in 20-60 Torr (27-80 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda < 180$ nm) of H₂O in 10-40 Torr (13-53 mbar) argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 5-6 Torr (7-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.

(b) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of CH₃OC₂F₅ was measured indirectly by measuring the formation of the product C₂F₅OCHO. C₂H₂ was used as the reference and a rate coefficient ratio $k(\text{CH}_3\text{OC}_2\text{F}_5)/k(\text{C}_2\text{H}_2) = 0.015 \pm 0.002$ was reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CH}_3\text{OC}_2\text{F}_5) = (1.12 \pm 0.15) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

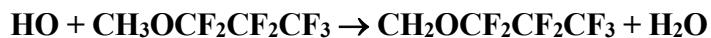
Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.20×10^{-14}	298
	$1.84 \times 10^{-12} \exp(-1499/T)$	240-440
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	240-440

Comments on Preferred Values


The preferred values are based on a fit to the results from the comprehensive study of Tokuhashi et al. (2000) in which three different absolute rate techniques were applied and extra care was taken in purifying the samples. The results reported in the relative rate study by Østerstrøm are consistent with the preferred values.

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>


Østerstrøm, F. F., Nielsen, O. J., and Wallington, T. J.: Chem. Phys. Lett., 653, 149, 2016.

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Yamashita, S., and Ito, H.: Int. J. Chem. Kinet., 31, 846, 1999.

oFOx145: HO + CH₃OCF₂CF₂CF₃

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(2.06 ^{+0.58} _{-0.45} × 10 ⁻¹²) exp[(-1540±80)/ <i>T</i>]	250-430	Tokuhashi et al. (1999)	LP/FP/DF-LIF (a)
1.13 × 10 ⁻¹⁴	298		
(2.0 ^{+1.2} _{-0.7}) × 10 ⁻¹¹ exp [(-2130±290)/ <i>T</i>]	288-368	Bravo et al. (2010)	DF-MS (b)
(1.54±0.05) × 10 ⁻¹⁴	298		
<i>Relative Rate Coefficients</i>			
1.11 × 10 ⁻¹⁴	295	Ninomiya et al. (2000)	RR (c)

Comments

(a) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the photolysis (ArF laser) of N₂O to produce O(¹D) atoms in the presence of H₂O in 20-60 Torr (27-80 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda < 180$ nm) of H₂O in 20-40 Torr (27-53 mbar) argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 5-6 Torr (7-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.

(b) F atoms produced in a microwave discharge of F₂/He mixtures were reacted with H₂O to generate HO radicals. Experiments were conducted in a flow tube at a pressure of 1 Torr of helium diluent. HO radicals were monitored by mass spectroscopy by adding I₂ and detecting the HOI product.

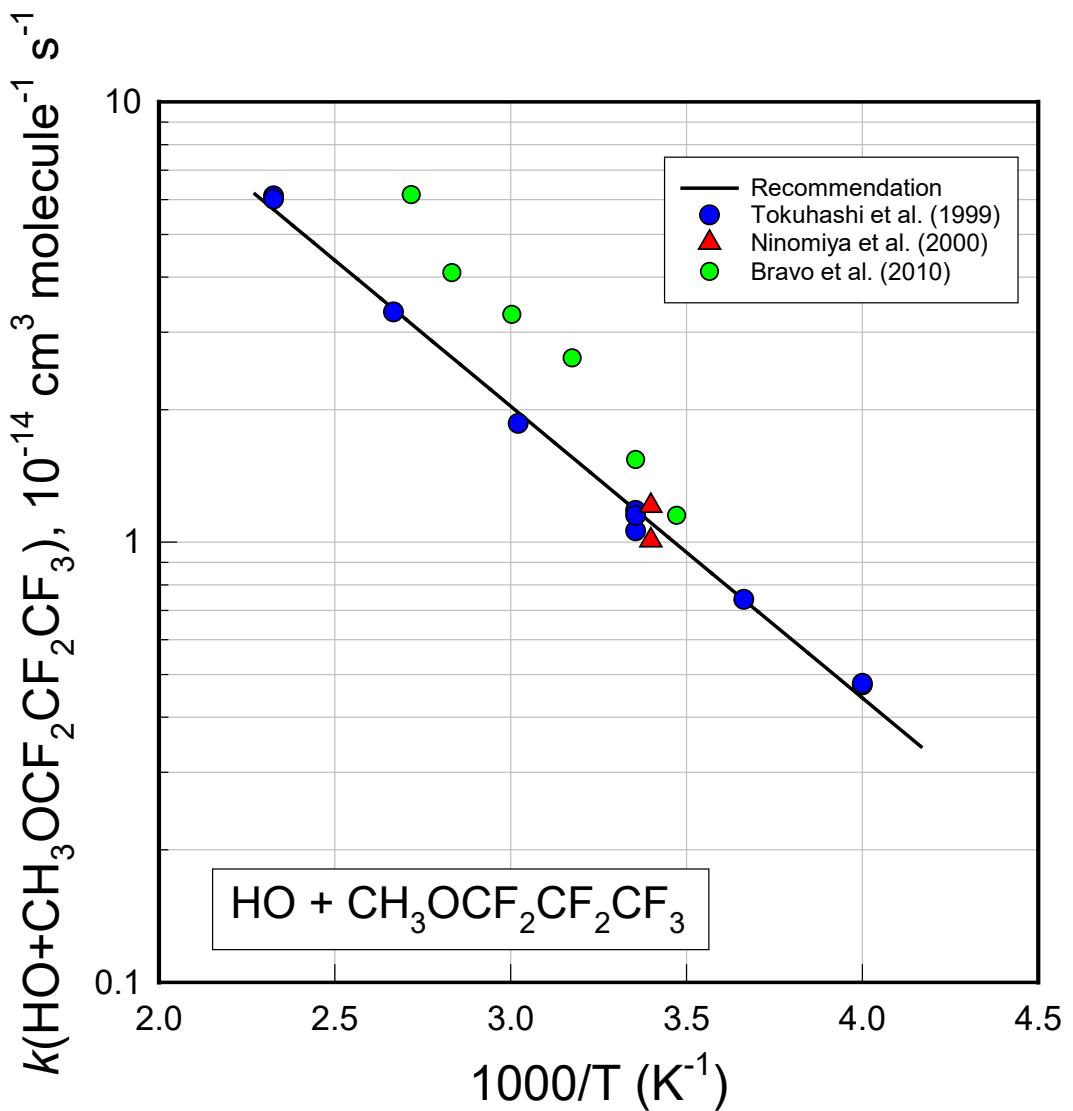
(c) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of water vapor. Experiments were performed in approximately 200 Torr of helium diluent in the presence of 3-5 Torr of ozone and 2-3 Torr of water vapor. The loss of CH₃OC₃F₇ was measured relative to those of CH₄ and CH₃Cl and rate coefficient ratios of $k(\text{HO} + \text{CH}_3\text{OC}_3\text{F}_7)/k(\text{HO} + \text{CH}_4) = 1.68 \pm 0.20$ and $k(\text{HO} + \text{CH}_3\text{OC}_3\text{F}_7)/k(\text{HO} + \text{CH}_3\text{Cl}) = 0.35 \pm 0.03$ were reported. Using $k(\text{HO} + \text{CH}_4) = 6.01 \times 10^{-15}$ and $k(\text{HO} + \text{CH}_3\text{Cl}) = 3.47 \times 10^{-14}$ at 295 K (Atkinson et al., 2006) gives $k(\text{HO} + \text{CH}_3\text{OC}_3\text{F}_7) = (1.01 \pm 0.12) \times 10^{-14}$ and $(1.21 \pm 0.10) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.18 × 10 ⁻¹⁴	298
	1.98 × 10 ⁻¹² exp(-1526/ <i>T</i>)	240-440
<i>Reliability</i>		
Δ log <i>k</i>	0.10	298
Δ E/R	±100	240-440

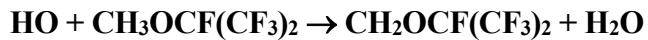
Comments on Preferred Values

The preferred values are based on a fit to the results from the comprehensive study of Tokuhashi et al. (1999) in which three different absolute rate techniques were applied and care was taken in purifying the samples. The results from the relative rate study by Ninomiya et al. (2000) are in excellent agreement with the results from the absolute study by Tokuhashi et al. (1999). The results from the study by Bravo et al. (2010) are approximately 40-60% higher than those from Tokuhashi et al. (1999). Tokuhashi et al. (1999) showed that reactive impurities can be a complication and purified their sample of $\text{CH}_3\text{OCF}_2\text{CF}_2\text{CF}_3$ before use. Bravo et al. (2010) did not purify their sample and the presence of reactive impurities may explain the larger rate coefficients observed in their study.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Bravo, I., Diaz-de-Mera, Y., Aranda, A., Smith, K., Shine, K. P., and Marston, G.: Phys. Chem. Chem. Phys., 12, 5115, 2010.


Ninomiya, Y., Kawasaki, M., Guschin, A., Molina, L. T., Molina, M. J., and Wallington, T. J.: Environ. Sci. Tech., 34, 2973, 2000.

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Yamashita, S., and Ito, H.: Int. J. Chem. Kinet., 31, 846, 1999.

oFOx146: HO + CH₃OCF(CF₃)₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(1.94^{+0.48}_{-0.38} \times 10^{-12}) \exp[(-1450 \pm 70)/T]$ 1.48×10^{-14}	250-430 298	Tokuhashi et al. (1999)	LP/FP/DF-LIF (a)
<i>Relative Rate Coefficients</i>			
$(1.37 \pm 0.13) \times 10^{-14}$	296	Andersen et al. (2014)	RR (b)

Comments

(a) Three different absolute rate methods were employed by Tokuhashi et al. (1999): LP-LIF, FP-LIF, and DF-LIF. HO radicals in the LP-LIF experiments were generated by the photolysis (ArF laser) of N₂O to produce O(¹D) atoms in the presence of H₂O in 20-60 Torr (27-80 mbar) of helium diluent. HO radicals in the FP-LIF experiments were generated by the photolysis (Xe flash lamp, $\lambda < 180$ nm) of H₂O in 20-40 Torr (27-53 mbar) argon diluent. HO radicals in the DF-LIF experiments were generated by the reaction of H atoms with NO₂ in 4-6 Torr (5-8 mbar) of argon diluent. There was good agreement between the results from experiments using the three different techniques. The value at 298 K cited above is the average obtained using the different techniques.

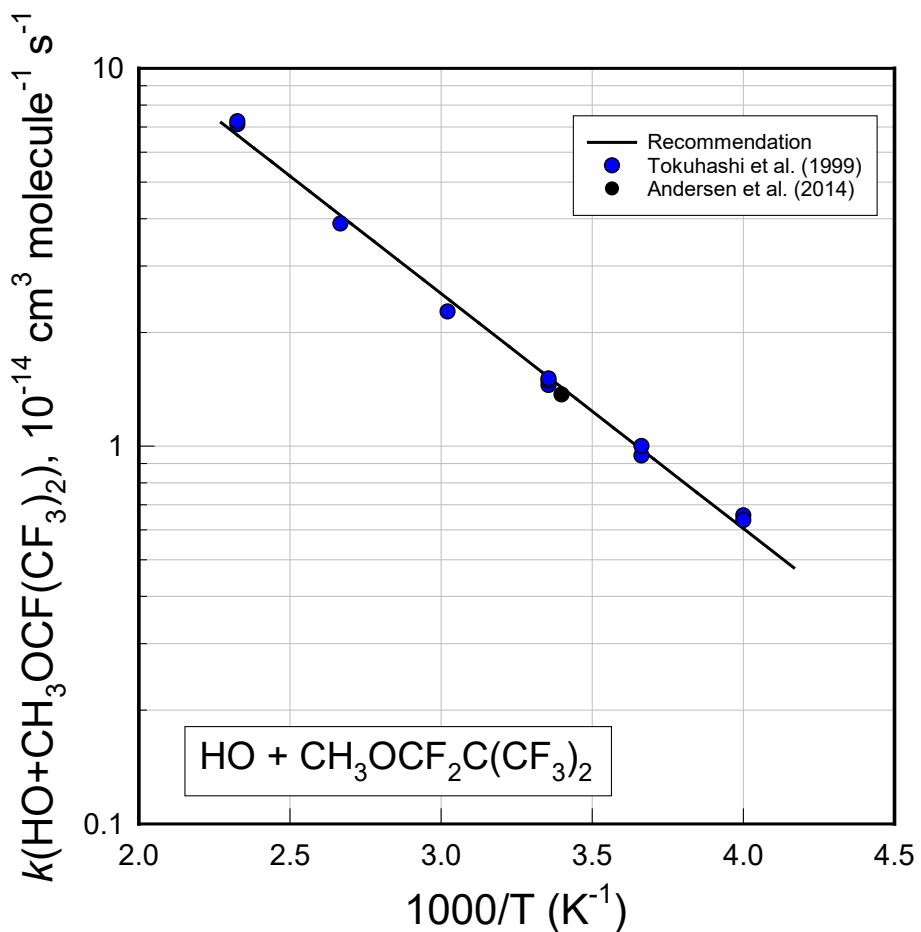
(b) HO radicals were generated by the photolysis of CH₃ONO in 700 Torr of air diluent. The loss of CH₃OCF(CF₃)₂ was monitored indirectly by the formation of its oxidation product (CF₃)₂CFOCHO and was measured relative to that of C₂H₂. A rate coefficient ratio of $k(\text{HO} + \text{CH}_3\text{OCF}(\text{CF}_3)_2)/k(\text{HO} + \text{C}_2\text{H}_2) = 0.0183 \pm 0.0017$ was reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ in 700 Torr of air diluent at 296 K (Atkinson et al., 2006) gives $k(\text{HO} + \text{CH}_3\text{OCF}(\text{CF}_3)_2) = (1.37 \pm 0.13) \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹.

Preferred Values

Parameter	Value	T/K
<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	1.52×10^{-14} $1.86 \times 10^{-12} \exp(-1432/T)$	298 240-440
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	240-440

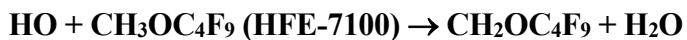
Comments on Preferred Values

The preferred values are based on a fit to the results from the comprehensive study of Tokuhashi et al. (1999) in which three different absolute rate techniques were applied and care was taken in purifying the samples. The results from the relative rate study by Andersen et al. (2014) are in


excellent agreement with the results from the absolute study by Tokuhashi et al. (1999).

References

Andersen, L. L., Østerstrøm, F. F., Nielsen, O. J., Sulbaek Andersen, M. P., and Wallington, T. J. *Chem. Phys. Lett.*, 607, 5, 2014.


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: *Atmos. Chem. Phys.*, 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Yamashita, S., and Ito, H.: *Int. J. Chem. Kinet.*, 31, 846, 1999.

oFOx147: HO + CH₃OC₄F₉ (HFE-7100)

Last evaluated: June 2025; Last change in preferred values: June 2023.

Rate coefficient data

<i>k</i> /cm ³ molecule ⁻¹ s ⁻¹	Temp./ K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
(2.8 ^{+3.2} _{-1.5}) × 10 ⁻¹¹ exp(-2200±490/ <i>T</i>)	288-368	Bravo et al. (2010)	DF-MS (a)
(1.49 ± 0.13) × 10 ⁻¹⁴	298		
<i>Relative Rate Coefficients</i>			
~1.2 × 10 ⁻¹⁴	295	Wallington et al. (1997)	RR (b)
(6.9 ± 1.5) × 10 ⁻¹⁵	295	Cavalli et al. (1998)	RR (c)
(1.30±0.09) × 10 ⁻¹⁴	298	Nolan et al. (1999)	RR (d)
(1.53±0.10) × 10 ⁻¹⁴	298	Oyaro and Nielsen (2003)	RR (e)
1.10 × 10 ⁻¹² exp(-1347/ <i>T</i>)	253-328	Chen et al. (2011) <i>n</i> -C ₄ F ₉ OCH ₃	RR (f)
(1.19±0.12) × 10 ⁻¹⁴	298		
1.21 × 10 ⁻¹² exp(-1377/ <i>T</i>)	253-328	Chen et al. (2011) <i>i</i> -C ₄ F ₉ OCH ₃	RR (f)
(1.19±0.12) × 10 ⁻¹⁴	298		

Comments

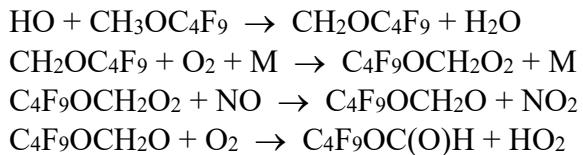
- (a) F atoms produced in a microwave discharge of F₂/He mixtures were reacted with H₂O to generate HO radicals. Experiments were conducted in a flow tube at a pressure of 1 Torr of helium diluent. HO radicals were monitored by mass spectroscopy by adding I₂ and detecting the HOI product.
- (b) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of water vapor. Experiments were performed in approximately 200 Torr of helium diluent in the presence of ~1 Torr of ozone. The sample of CH₃OC₄F₉ was a mixture of 95% *n*-C₄F₉OCH₃ (CF₃CF₂CF₂OCH₃) and 5% *i*-C₄F₉OCH₃ ((CF₃)₂CFCF₂OCH₃). The loss of CH₃OC₄F₉ was measured relative to those of CH₄ and CH₃Cl. Two experiments with CH₃Cl gave rate coefficient ratios of *k*(HO + CH₃OC₄F₉)/*k*(HO + CH₃Cl) = 0.35 and 0.32. Using *k*(HO + CH₃Cl) = 3.47 × 10⁻¹⁴ at 295 K (Atkinson et al., 2006) gives *k*(HO + CH₃OC₄F₉) = 1.2 × 10⁻¹⁴ and 1.1 × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹. Results from experiments using CH₄ were more scattered, but consistent with, those using CH₃Cl as reference.
- (c) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of water vapor in 740 Torr (986 mbar) of air diluent. The sample of CH₃OC₄F₉ was a mixture of 25% *n*-C₄F₉OCH₃ (CF₃CF₂CF₂OCH₃) and 75% *i*-C₄F₉OCH₃ ((CF₃)₂CFCF₂OCH₃). The loss of CH₃OC₄F₉ was measured relative to that of CH₄. Rescaling the result using *k*(HO + CH₄) = 6.01 × 10⁻¹⁵ at 295 K (Atkinson et al., 2006) gives *k*(HO + CH₃OC₄F₉) = (6.9 ± 1.5) × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹.
- (d) HO radicals were generated by the 254 nm photolysis of ozone in the presence of water vapor in 1 atmosphere of air diluent. Neither the isomeric composition of CH₃OC₄F₉, nor the reference compound used, was specified.
- (e) HO radicals were generated by the photolysis of ozone in the presence of hydrogen in 1 atmosphere of air diluent. The loss of CH₃OC₄F₉ was measured relative to CH₃CN and CHCl₃ using GC-MS and rate coefficient ratios of 0.663 ± 0.009 and 0.151 ± 0.004 were reported, respectively. Using *k*(HO+CH₃CN) = 2.2 × 10⁻¹⁴ and *k*(HO+CHCl₃) = 1.05 × 10⁻¹³ (IUPAC 2024) gives *k*(HO+CH₃OC₄F₉) = (1.46 ± 0.02) × 10⁻¹⁴ and (1.59 ± 0.04) × 10⁻¹⁴ cm³ molecule⁻¹ s⁻¹. The average with

uncertainties that encompass the extremes of the ranges is $k(\text{HO}+\text{CH}_3\text{OC}_4\text{F}_9) = (1.53 \pm 0.10) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The commercial sample of $\text{CH}_3\text{OC}_4\text{F}_9$ used was an approximately 50:50 mixture of the *n*- and *i*- isomers. The isomers could not be resolved, and the measured rate coefficient is for the mixture.

(f) HO radicals were produced by the 254 nm photolysis of ozone in the presence of water vapor. The commercial sample of $\text{C}_4\text{F}_9\text{OCH}_3$ obtained for the experiments was a mixture of 36% *n*- $\text{C}_4\text{F}_9\text{OCH}_3$ and 64% *i*- $\text{C}_4\text{F}_9\text{OCH}_3$. GC-FID was used to monitor the decay of $\text{C}_4\text{F}_9\text{OCH}_3$ and the reference compounds (CF_3OCH_3 and $\text{C}_2\text{F}_5\text{OCH}_3$). The two isomers were resolved and rate coefficient ratios for both isomers were reported. Scaling the reported ratios using the IUPAC preferred values of $k(\text{HO}+\text{CF}_3\text{OCH}_3) = 1.15 \times 10^{-12} \exp(-1324/T)$ and $k(\text{HO}+\text{C}_2\text{F}_5\text{OCH}_3) = 1.84 \times 10^{-12} \exp(-1499/T)$ (IUPAC, 2023) and fitting the Arrhenius expression to the results gives $k(\text{HO}+\text{n-C}_4\text{F}_9\text{OCH}_3) = 1.10 \times 10^{-12} \exp(-1347/T)$ and $k(\text{HO}+\text{i-C}_4\text{F}_9\text{OCH}_3) = 1.21 \times 10^{-12} \exp(-1377/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. As shown in the figure below, there is no observable difference in the reactivity of the different isomers. A fit to the combined data set gives $k(\text{HO}+\text{C}_4\text{F}_9\text{OCH}_3) = 1.15 \times 10^{-12} \exp(-1362/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	$1.15 \times 10^{-12} \exp(-1362/T)$	250-330
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	1.19×10^{-14}	298
<i>Reliability</i>		
$\Delta \log k$	0.08	298
$\Delta E/R$	100	250-330


Comments on Preferred Values

Commercial samples of $\text{C}_4\text{F}_9\text{OCH}_3$ are supplied as mixtures of the *n*- and *i*- isomers. All studies except that of Chen et al. (2011) did not resolve the reactivity of the individual isomers and hence report results for the mixture of isomers. Chen et al. (2011) were able to distinguish the two isomers in their relative rate study and reported separate kinetic data for each isomer; $k(\text{HO}+\text{n-C}_4\text{F}_9\text{OCH}_3) = 1.10 \times 10^{-12} \exp(-1347/T)$ and $k(\text{HO}+\text{i-C}_4\text{F}_9\text{OCH}_3) = 1.21 \times 10^{-12} \exp(-1377/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. At 298 K the isomers have the same rate coefficient; $1.19 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. A fit to the combined data set gives $k(\text{HO}+\text{C}_4\text{F}_9\text{OCH}_3) = 1.15 \times 10^{-12} \exp(-1362/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ and is the preferred value. The 298 K rate coefficients reported by Wallington et al. (1997), Nolan et al. (1999), Oyaro and Nielsen (2003), and Bravo et al. (2010) for the mixtures of *n*- and *i*-isomers used in the different studies agree, within the likely combined experimental uncertainties, with that measured by Chen et al. (2011). For reasons which are unclear, the rate coefficient reported by Cavalli et al. (1997) is approximately 40% lower.

Bravo et al. (2010) used an absolute rate technique to study the reaction over the temperature range 288-368 K. The rate coefficients results reported by Bravo et al. (2010) are 25-100% larger than those from Chen et al. (2011). Tokuhashi et al. (1999) showed that the presence of reactive impurities can be problematic in studies of HO reactions with fluorinated ethers. Bravo et al. (2010) did not purify their sample and the presence of reactive impurities may explain the larger rate coefficients observed in their study.

The reaction of HO with $\text{CH}_3\text{OC}_4\text{F}_9$ proceeds via H-abstraction from the CH_3 - which then leads to the

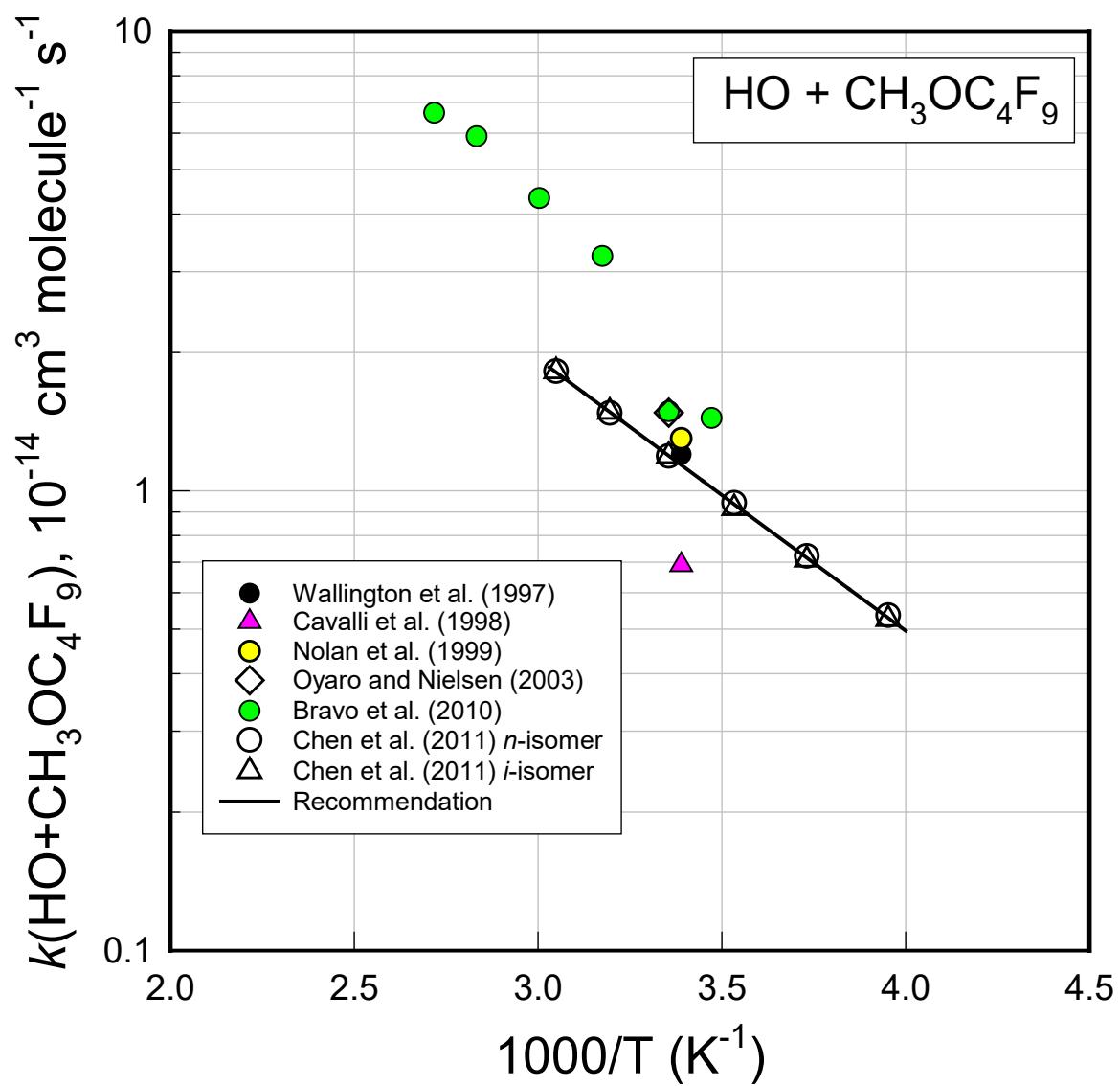
formation of the formate:

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Bravo, I., Diaz-de-Mera, Y., Aranda, A., Smith, K., Shine, K. P., and Marston, G.: Phys. Chem. Chem. Phys., 12, 5115, 2010.

Cavalli, F., Glasius, M., Hjorth, J., Rindone, B., and Jensen, N. R.: Atmos. Environ., 32, 3767, 1998.


Chen, L., Uchimaru, T., Kutsuna, S., Tokuhashi, K., and Sekiya, A.: Chem. Phys. Lett., 514, 207, 2011.

Nolan, S., O'Sullivan, N., Wenger, J., Sidebottom, H., and Treacy, J.: in: R. Djahjhs (Ed.), Proceedings of EUROTRAC Symposium '98: Transport and Chemical Transformation in the Troposphere, Garmisch-Partenkirchen, Germany, March 23-27, 1998, WIT Press, Ashurst, Southampton, UK, 1999, pp. 1-120.

Oyaro, N., and Nielsen, C. J.: Asian Chem. Lett., 7, 119, 2003

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., Yamashita, S., and Ito, H.: Int. J. Chem. Kinet., 31, 846, 1999.

Wallington, T. J., Schneider, W. F., Sehested, J., Bilde, M., Platz, J., Nielsen, O. J., Christensen, L. K., Molina, M. J., Molina, L. T., and Wooldridge, P. W.: J. Phys. Chem. A, 101, 8264, 1997.

oFOx148: HO + CH₃OCH(CF₃)₂

Last evaluated: June 2025; Last change in preferred values: June 2023.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$7.69 \times 10^{-14} \times (T/298)^{2.99} \times \exp(342/T)$ (2.38 ± 0.03) $\times 10^{-13}$	230-370	Orkin et al. (2017)	FP-RF (a)
<i>Relative Rate Coefficients</i>			
$(1.40 \pm 0.28) \times 10^{-12} \exp[(-550 \pm 60)/T]$ 2.25×10^{-13}	253-328 295	Chen et al. (2005)	RR (b)

Comments

- (a) HO radicals were generated by the flash photolysis of H₂O in 4 and 13.3 kPa (30 and 100 Torr) of argon diluent and monitored by resonance fluorescence at 308 nm. The sample of CH₃OCH(CF₃)₂ was purified using a preparative scale gas chromatograph before use.
- (b) HO radicals were generated by the photolysis of O₃ at 254 nm in the presence of water vapor in 200 Torr (267 mbar) of O₂ diluent. The loss of CH₃OCH(CF₃)₂ was measured relative to those of C₂H₆ and CH₂Cl₂. The results obtained using the two different reference compounds were in excellent agreement. Using $k(\text{HO} + \text{C}_2\text{H}_6) = 6.90 \times 10^{-12} \exp(-1000/T)$ and $k(\text{HO} + \text{CH}_2\text{Cl}_2) = 1.80 \times 10^{-12} \exp(-860/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ (Atkinson et al., 2006; 2008) places the reported rate coefficient ratios on an absolute basis and fitting an Arrhenius expression to the results gives $k(\text{HO} + \text{CH}_3\text{OCH}(\text{CF}_3)_2) = 1.22 \times 10^{-12} \exp(-508/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

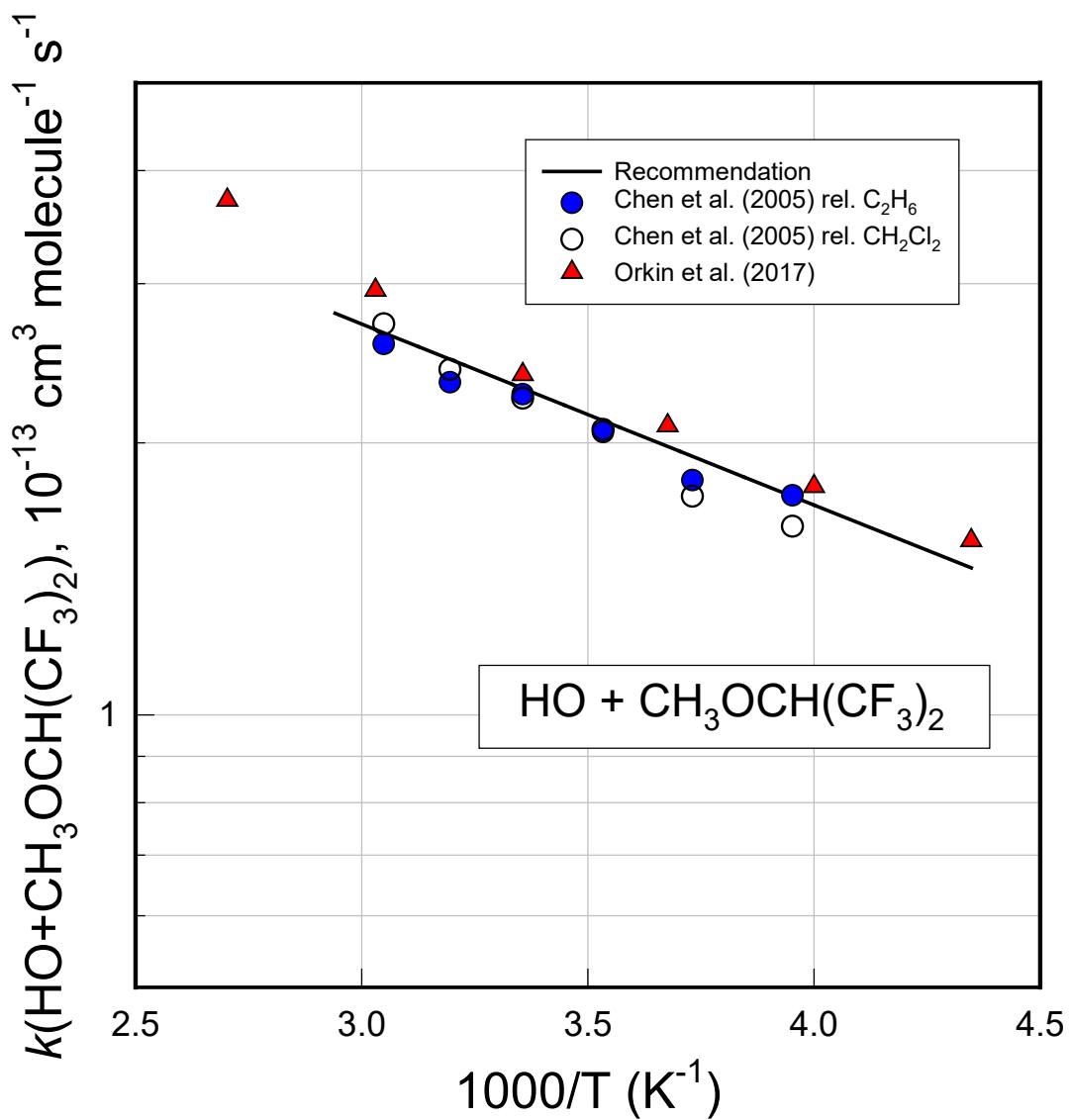
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.29×10^{-13} $1.08 \times 10^{-12} \exp(-461/T)$	298 230-340
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta \log E/R$	± 100	250-340

Comments on Preferred Values

There is excellent agreement between the results from the relative rate study by Chen et al. (2005) and the absolute study by Orkin et al. (2017). Curvature in the Arrhenius plot is evident in the data from Orkin et al. (2017). Taking an average of the values reported by Chen et al. (2005) and Orkin et al. (2017) gives the preferred value at 298 K. A fit to the combined data set from Chen et al. (2005) and Orkin et al. (2017) below 340 K and adjusting the pre-exponential factor to match the

preferred rate coefficient at 298 K gives the preferred Arrhenius expression.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T.J.: Atmos. Chem. Phys., 8, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Chen, L.; Kutsuna, S., Tokushashi, K.; Sekiya, A., Tamai, R., and Hibino, Y.: J. Phys. Chem. A, 109, 4766, 2005.

Orkin, V. L., Martynova, L. E., and Kurylo, M. J.: J. Phys. Chem, 121, 5675, 2017.

oFOx149: HO + CH₂FOCH(CF₃)₂ (Sevoflurane)

Last evaluated: September 2025; Last change in preferred values: September 2019.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$1.53 \times 10^{-12} \exp(-900/T)$	299-422	Brown et al. (1990)	DF-RF (a)
$(7.3 \pm 2.2) \times 10^{-14}$	299		
$(2.7 \pm 0.5) \times 10^{-14}$	298	Langbein et al. (1999)	PLP-UVA (b)
$(9.98 \pm 3.24) \times 10^{-12} \exp[(-969 \pm 82)/T]$	243-298	Sulbaek Andersen et al. (2012)	PLP-LIF (c)
$(3.94 \pm 0.30) \times 10^{-14}$	298		
<i>Relative Rate Coefficients</i>			
$(2.98 \pm 0.18) \times 10^{-14}$	296	Sulbaek Andersen et al. (2012)	RR (d)
$(3.31 \pm 0.22) \times 10^{-14}$	296		

Comments

- (a) HO radicals were generated by the reaction of H atoms with NO₂ in 1.8 – 6.3 Torr of helium diluent.
- (b) HO radicals were produced by 248 nm photolysis of HNO₃ and monitored by laser long-path absorption at 308.42 nm. Experiments were performed in N₂ diluent, the total pressure was not specified, but judging from the conditions specified for the HO detection limit, it was probably 50 mbar.
- (c) HO radicals were generated by the 248 nm photolysis of O₃ to give O^{1D} atoms which react with CH₄. GC analysis of the sevoflurane sample indicated a purity of >99.98%. There was no discernable effect of total pressure over the range 111 - 300 Torr of argon diluent.
- (d) HO radicals were generated by the photolysis of CH₃ONO in the presence of NO in 700 Torr of air diluent. The loss of CH₂FOCH(CF₃)₂ was inferred from the formation of its oxidation product FC(O)OCH(CF₃)₂ measured using FTIR spectroscopy. C₂H₂ and C₂H₄ were used as reference compounds and rate coefficient ratios $k(\text{HO} + \text{CH}_2\text{FOCH}(\text{CF}_3)_2)/k(\text{HO} + \text{C}_2\text{H}_2) = (0.0399 \pm 0.0024)$ and $k(\text{HO} + \text{CH}_2\text{FOCH}(\text{CF}_3)_2)/k(\text{HO} + \text{C}_2\text{H}_4) = (4.22 \pm 0.28) \times 10^{-3}$ were reported. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CH}_2\text{FOCH}(\text{CF}_3)_2) = (2.98 \pm 0.18) \times 10^{-14}$ and $(3.31 \pm 0.22) \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

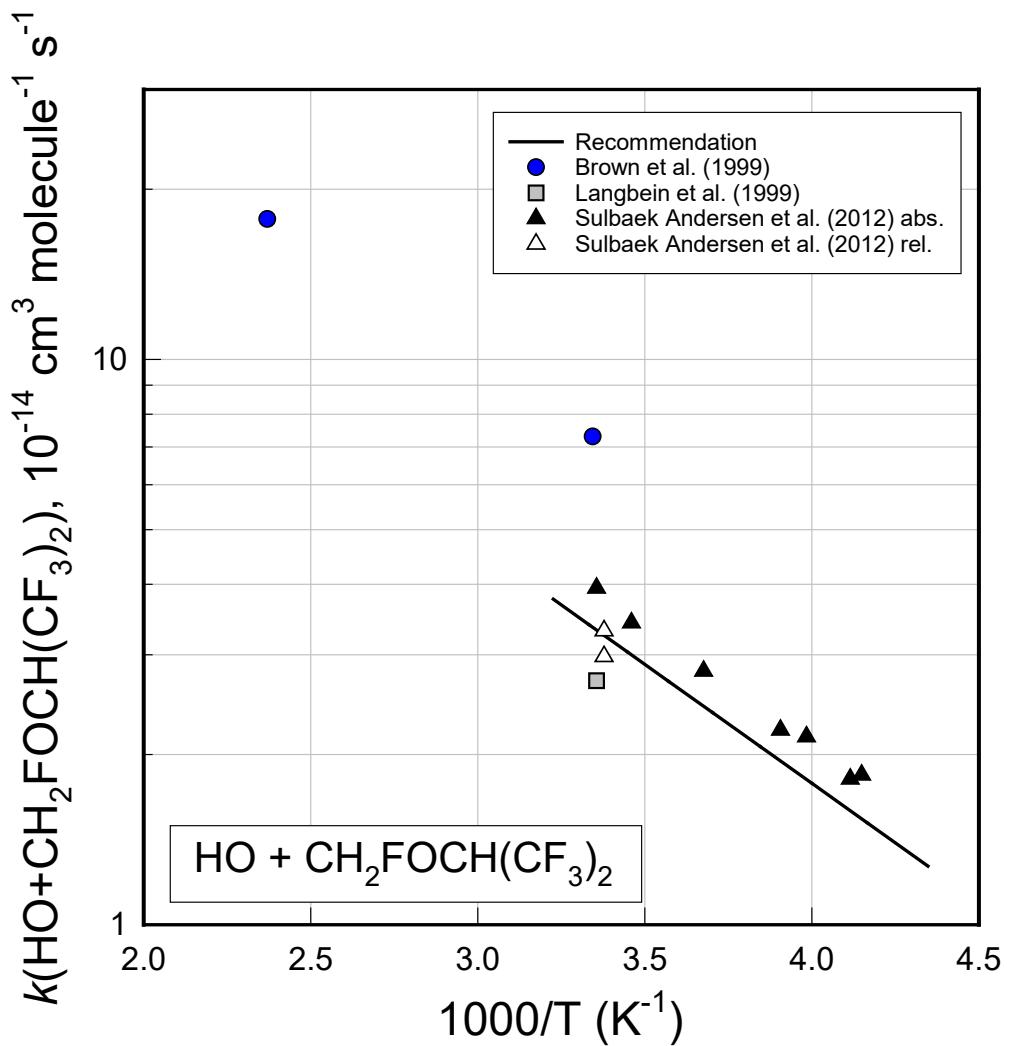
Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.32×10^{-14} $8.58 \times 10^{-13} \exp(-969/T)$	298 230-310

Reliability

$\Delta \log k$	0.15	298
-----------------	------	-----

Comments on Preferred Values

The rate coefficient reported by Brown et al. (1990) at 299 K is approximately a factor of 2-3 higher than those reported by Langbein et al. (1999) and Sulbaek Andersen et al. (2012). As noted elsewhere (e.g., Calvert et al. 2008), for several of the compounds investigated by Brown et al. (1990) substantially higher rate coefficients were reported than in subsequent studies. It seems likely that the presence of reactive impurities was a complicating factor in the study by Brown et al. (1990). The result from Langbein et al. (1999) at 298 K is approximately 30% lower than reported by Sulbaek Andersen et al. (2012) but consistent within the extremes of the likely uncertainties in both studies. The preferred rate coefficient at 298 K is the average of the absolute rate determinations by Langbein et al. (1999) and Sulbaek Andersen et al. (2012). The preferred temperature dependence is taken from Sulbaek Andersen et al. (2012), the pre-exponential factor A was chosen to return the preferred rate coefficient at 298 K. Results from the relative rate measurements by Sulbaek Andersen et al. (2012) at ambient temperature are consistent with the preferred data.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Brown, A. C.; Canosa-Mas, C. E.; Parr, A. D.; and Wayne, R. P.: Atmos. Environ., 24A, 2499, 1990.

Langbein, T., Sonntag, H., Trapp, D., Hoffmann, A., Malms, W., Röth, E.-P., Mörs, V., and Zellner, R.: British J. Anaest., 82, 66, 1999.

Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J., and Sander, S. P.: J. Phys. Chem. A, 116, 5806, 2012.

oFOx150: HO + CHF₂OCHFCF₃ (Desflurane)

Last evaluated June 2025; Last change in preferred values: September 2019.

Rate coefficient data ($k = k_1 + k_2$)

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$(4.4 \pm 0.8) \times 10^{-15}$	298	Langbein et al. (1999)	PLP-UVA (a)
$(7.05 \pm 1.80) \times 10^{-13} \exp[(-1551 \pm 72)/T]$	239-296	Sulbaek Andersen et al. (2012)	PLP-LIF (b)
$(3.73 \pm 0.08) \times 10^{-15}$	296		
<i>Relative Rate Coefficients</i>			
$(6.37 \pm 0.23) \times 10^{-15}$	298	Orayo et al. (2005)	RR (c)
$(5.40 \pm 0.17) \times 10^{-15}$	298		

Comments

(a) HO radicals were produced by 248 nm photolysis of HNO₃ and monitored by laser long-path absorption at 308.42 nm. Experiments were performed in N₂ diluent, the total pressure was not specified, but judging from the conditions specified for the HO detection limit, it was probably 50 mbar.

(b) HO radicals were generated by the 248 nm photolysis of O₃ to give O(¹D) atoms which react with CH₄. GC analysis of the desflurane sample indicated a purity of >99.998%. Experiments were conducted in 111 Torr of argon diluent.

(c) HO radicals were produced by the photolysis of O₃ at 254 nm in the presence of H₂ in 1013 mbar of air diluent. The loss of CHF₂OCHFCF₃ was monitored relative to those of CH₃CCl₃ and CHF₂CH₂F by GC/MS. Rate coefficient ratios of $k(\text{HO} + \text{CHF}_2\text{OCHFCF}_3)/k(\text{HO} + \text{CH}_3\text{CCl}_3) = 0.67 \pm 0.024$ and $k(\text{HO} + \text{CHF}_2\text{OCHFCF}_3)/k(\text{HO} + \text{CHF}_2\text{CH}_2\text{F}) = 0.36 \pm 0.04$ were reported. Using $k(\text{HO} + \text{CH}_3\text{CCl}_3) = 9.5 \times 10^{-15}$ and $k(\text{HO} + \text{CHF}_2\text{CH}_2\text{F}) = 1.5 \times 10^{-14} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K (Atkinson et al., 2006, 2008) gives $k(\text{HO} + \text{CHF}_2\text{OCHFCF}_3) = (6.37 \pm 0.23) \times 10^{-15}$ and $(5.40 \pm 0.17) \times 10^{-15} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

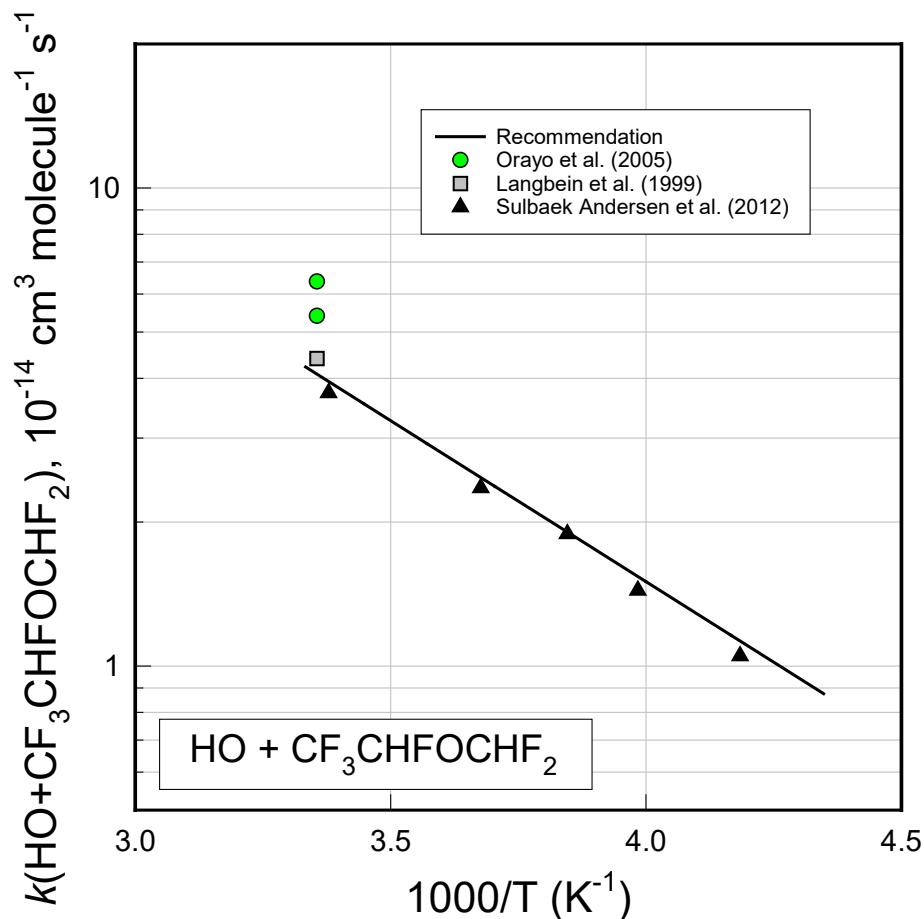
Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	4.08×10^{-15}	298
	$7.43 \times 10^{-13} \exp(-1551/T)$	230-300
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta \log E/R$	± 200	230-300

Comments on Preferred Values

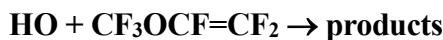
The rate coefficients measured at 298 K in the absolute rate studies by Langbein et al. (1999) and Sulbaek Andersen et al. (2012) are in good agreement and are averaged to provide the preferred value. The preferred Arrhenius expression is based on the temperature dependence reported by Sulbaek Andersen et al. (2012) with the pre-exponential factor adjusted to return the preferred value at 298 K. The results from the relative rate study by Orayo et al. (2005) are consistent within the uncertainties with the preferred values.

References


Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Wallington, T. J.: Atmos. Chem. Phys., 9, 4141, 2008; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>.

Langbein, T., Sonntag, H., Trapp, D., Hoffmann, A., Malms, W., Röth, E.-P., Mörs, V., and Zellner, R.: British J. Anaest., 82, 66, 1999.


Oyaro, N., Sellevag, S. R., and Nielsen, C. J.: J. Phys. Chem. A, 109, 337, 2005.

Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J., and Sander, S. P.: J. Phys. Chem. A, 116, 5806, 2012.

oFOx133: HO + CF₃OCF=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$6.41 \times 10^{-11} \exp(-868/T)$	253-348	Li et al. (2000)	DF-RF (a)
$(3.58 \pm 0.42) \times 10^{-12}$	298		
$1.01 \times 10^{-12} \exp(320/T)$	250-430	Tokuhashi et al. (2000)	LFP-RF (b)
$(2.98 \pm 0.03) \times 10^{-12}$	298		
<i>Relative Rate Coefficients</i>			
$(2.16 \pm 0.19) \times 10^{-12}$	296	Mashino et al. (2000)	RR (c)
$(2.28 \pm 0.16) \times 10^{-12}$			

Comments

- (a) HO radicals were produced by the reaction of F atoms with H₂O or by the reaction of H atoms with NO₂ in 1 Torr of He diluent at 298 K.
- (b) HO radicals were produced by the pulsed xenon flash lamp photolysis of H₂O, or pulsed ArF eximer laser photolysis of N₂O to produce O(¹D) atoms which were then reacted with either H₂O or CH₄ to give HO radicals, or pulsed laser photolysis of H₂O₂. Experiments were conducted in 5-200 Torr of helium, or argon, diluent. There was no discernible effect of pressure or diluent gas over the range studied. Results from experiments using four different sources of HO radicals were indistinguishable.
- (c) Photolysis of CH₃ONO in 700 Torr (933 mbar) of air diluent was used to generate HO radicals. The loss of CF₃OCF=CF₂ was measured relative to those of C₂H₂ and C₂H₄ and used to measure the rate coefficient ratios $k(\text{HO} + \text{C}_2\text{H}_2)/k(\text{C}_2\text{H}_2) = 2.89 \pm 0.25$ and $k(\text{HO} + \text{C}_2\text{H}_4)/k(\text{C}_2\text{H}_4) = 0.29 \pm 0.02$. Using $k(\text{HO} + \text{C}_2\text{H}_2) = 7.47 \times 10^{-13}$ and $k(\text{HO} + \text{C}_2\text{H}_4) = 7.85 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{CF}_3\text{OCF=CF}_2) = (2.16 \pm 0.19) \times 10^{-12}$ and $(2.28 \pm 0.16) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

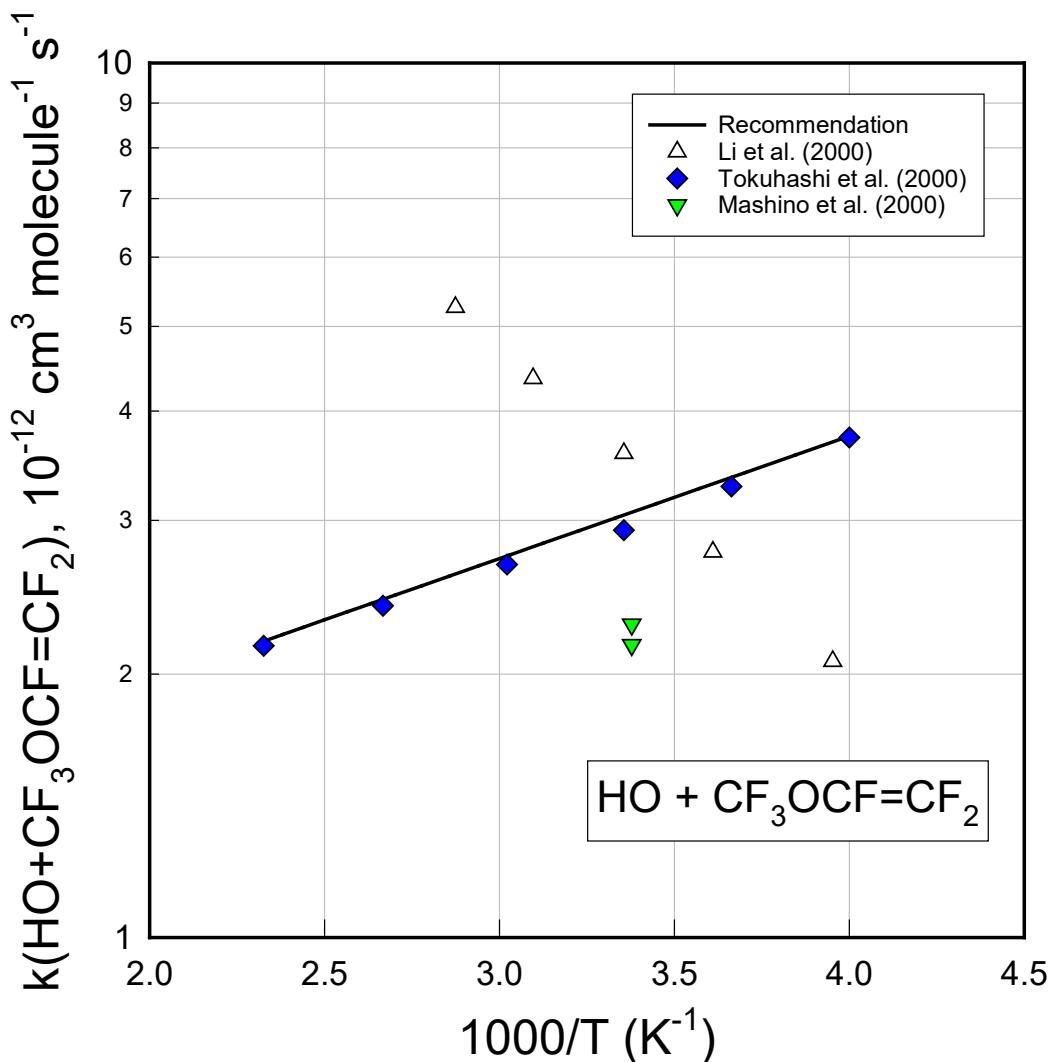
Preferred Values

Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.96×10^{-12}	298
	$1.01 \times 10^{-12} \exp(320/T)$	250-430
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	250-430

Comments on Preferred Values

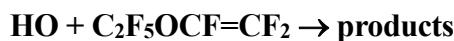
While the rate coefficients measured at 298 K in the absolute rate studies by Li et al. (2000) and Tokuhashi et al. (2000) differ by only approximately 20%, the temperature dependencies measured in the two studies are strikingly different. It is well established that the mechanism of the reaction of HO radicals with alkenes is addition to the >C=C< bond and the temperature dependence reported by Li et

al. (2000) is not physically plausible. The results from the relative rate study by Mashino et al. (2000) at 296 K are approximately 25% lower than the rate coefficient reported by Tokuhashi et al. (2000) at 298 K. Such a difference lies at the extreme end of the likely combined experimental uncertainties from the two studies. The preferred expression is taken from Tokuhashi et al. (2000) and gives $k(\text{HO} + \text{CF}_3\text{OCF}=\text{CF}_2) = 2.96 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K.


References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>

Li, Z., Tao, Z., Naik, V., Good, D. A., Hansen, J. C., Jeong, G.-R., Francisco, J. S., Jain, A. K., and Wuebbles, D. J., J. Geophys. Res., 105, 4019, 2000.


Mashino, M., Ninomiya, Y., Kawasaki, M., Wallington, T. J., and Hurley, M. D.: J. Phys. Chem. A 104, 7255, 2000.

Tokuhashi, K., Takahashi, A., Kaise, M., Kondo, S., Sekiya, A., and Fujimoto, E.: Chem. Phys. Lett., 325, 189, 2000.

oFOx134: HO + C₂F₅OCF=CF₂

Last evaluated: June 2025; Last change in preferred values: June 2019.

Rate coefficient data

$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
<i>Absolute Rate Coefficients</i>			
$6.0 \times 10^{-13} \exp(480 \pm 38/T)$	207-300	Srinivasulu et al. (2018)	PLP-LIF (a)
$(3.0 \pm 0.3) \times 10^{-12}$	298		
<i>Relative Rate Coefficients</i>			
$(3.08 \pm 0.07) \times 10^{-12}$	298	Srinivasulu et al. (2018)	RR (b)
$(2.82 \pm 0.05) \times 10^{-12}$	298	Bunkan et al. (2018)	RR (c)

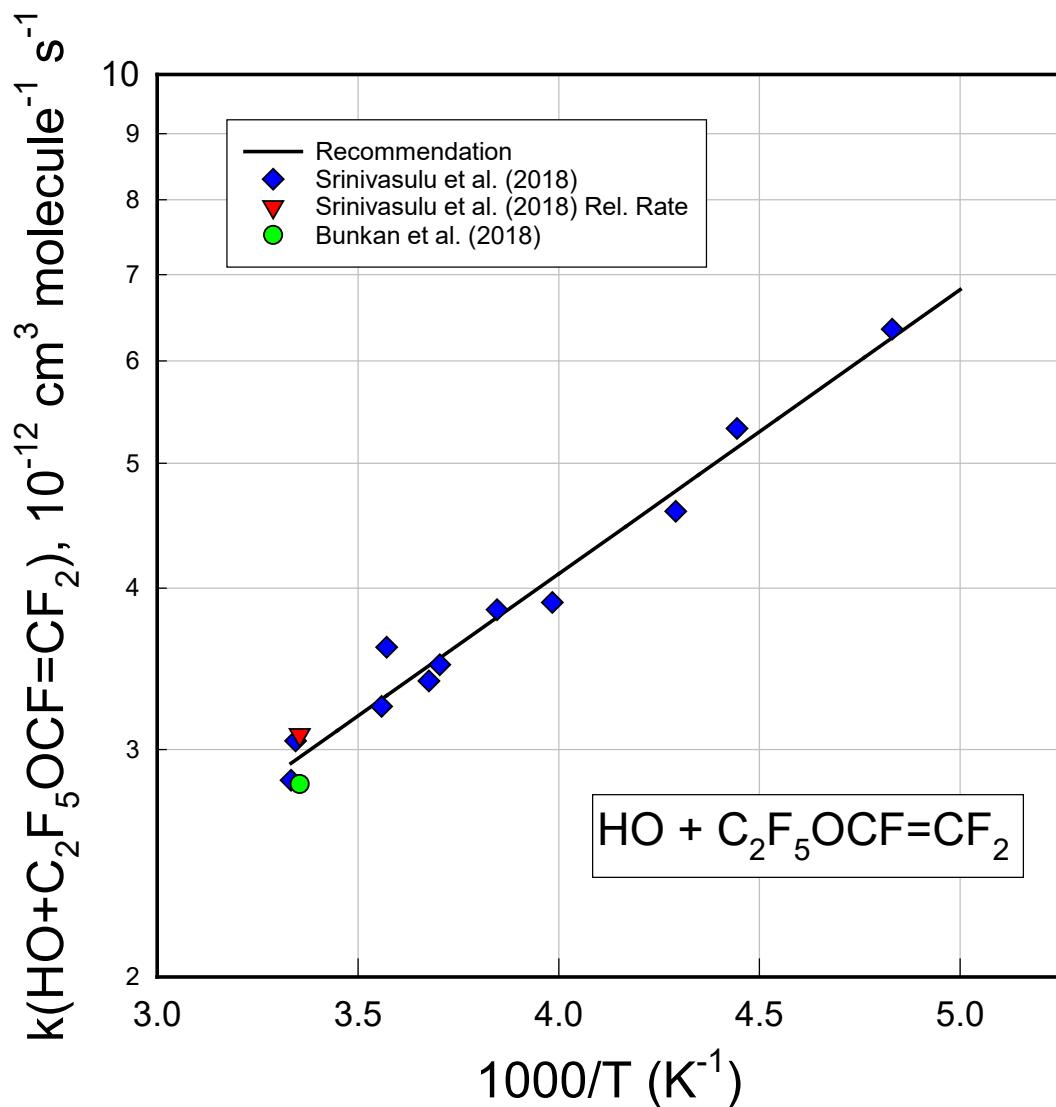
Comments

- (a) HO radicals were produced by the photolysis of H₂O₂ or HNO₃ at 248 nm in 50 or 100 Torr of N₂ diluent. The pseudo first order loss of HO radicals was measured in the presence of an excess of C₂F₅OCF=CF₂.
- (b) HO radicals were produced by the photolysis of O₃ in the presence of H₂ in 1 atmosphere of air diluent. The loss of C₂F₅OCF=CF₂ was measured relative to that of C₃H₈ and a rate coefficient ratio of $k(\text{C}_2\text{F}_5\text{OCF=CF}_2)/k(\text{C}_3\text{H}_8) = 2.802 \pm 0.061$ was reported. Using $k(\text{HO} + \text{C}_3\text{H}_8) = 1.1 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{C}_2\text{F}_5\text{OCF=CF}_2) = (3.08 \pm 0.07) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
- (c) Photolysis of CH₃ON0.6O in 1 bar of air diluent was used to generate HO radicals. The loss of C₂F₅OCF=CF₂ was measured relative to that of C₂H₄ and used to measure the rate coefficient ratio $k(\text{C}_2\text{F}_5\text{OCF=CF}_2)/k(\text{C}_2\text{H}_4) = 0.361 \pm 0.006$. Using $k(\text{HO} + \text{C}_2\text{H}_4) = 7.8 \times 10^{-12}$ (Atkinson et al., 2006) gives $k(\text{HO} + \text{C}_2\text{F}_5\text{OCF=CF}_2) = (2.82 \pm 0.05) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

Preferred Values

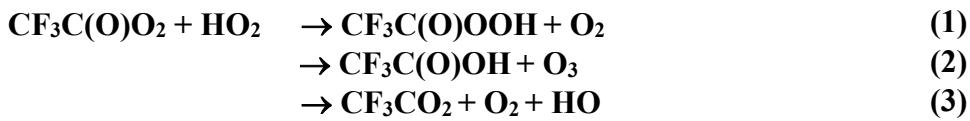
Parameter	Value	T/K
$k/\text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	3.0×10^{-12}	298
	$6.0 \times 10^{-13} \exp(480/T)$	200-300
<i>Reliability</i>		
$\Delta \log k$	0.10	298
$\Delta E/R$	± 100	200-300

Comments on Preferred Values


There is excellent agreement in the results from the absolute and relative rate studies by Srinivasula et al. (2018) and Bunkan et al. (2018) at 298-300 K. The preferred Arrhenius expression is taken from Srinivasula et al. (2018) which gives $k(\text{HO} + \text{C}_2\text{F}_5\text{OCF=CF}_2) = 3.0 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ at 298 K

References

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Atmos. Chem. Phys., 6, 3625, 2006; IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, <https://iupac.aeris-data.fr/>


Bunkan, A. J. C., Srinivasulu, G., Amedro, D., Wallington, T. J., and Crowley, J. N.: Phys. Chem. Chem. Phys., 20, 11306, 2018.

Srinivasulu, G., Bunkan, A. J. C., Amedro, D., and Crowley, J. N. : Phys. Chem. Chem. Phys., 20, 3761, 2018.

oFOx160: $\text{CF}_3\text{C(O)O}_2 + \text{HO}_2$

Last evaluated: June 2025; Last change in preferred values: November 2022.

Rate coefficient data ($k = k_1 + k_2 + k_3$)

$k / \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	Temp./K	Reference	Technique/ Comments
Branching ratios			
$k_1/k = 0.09 \pm 0.04$	296 ± 2	Sulbaek Andersen et al., 2004	S-FTIR (a)
$k_2/k = 0.38 \pm 0.04$			
$k_3/k = 0.56 \pm 0.05$			

Comments

(a) Experiments were carried out in a 140 L static reactor with reactants and products analysed by FTIR. $\text{CF}_3\text{C(O)O}_2$ and HO_2 radicals were generated by the broad-band photolysis of Cl_2 in the presence of CF_3CHO and H_2 in air or O_2 . The initial relative production rate of HO_2 to $\text{CF}_3\text{C(O)O}_2$ was varied from 0 to ~ 13 ; at the high end of the scale all $\text{CF}_3\text{C(O)O}_2$ radicals are expected to react with HO_2 . The loss of CF_3CHO and the formation of $\text{CF}_3\text{C(O)OOH}$, $\text{CF}_3\text{C(O)OH}$ and COF_2 were used to derive branching ratios for k_1 , k_2 and k_3 respectively. O_3 , (co-produced with $\text{CF}_3\text{C(O)OH}$) was also observed and its yield was indistinguishable from that of $\text{CF}_3\text{C(O)OH}$.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{molecule}^{-1} \text{s}^{-1}$	2e-11	298
k_1/k	0.09	296
k_2/k	0.38	296
k_3/k	0.56	296
<i>Reliability</i>		
$\Delta \log k$	± 0.3	298
$\Delta \log(k_1/k)$	± 0.2	298
$\Delta \log(k_2/k)$	± 0.15	298
$\Delta \log(k_3/k)$	± 0.15	298

Comments on Preferred Values

There is very little experimental data on the reaction between $\text{CF}_3\text{C(O)O}_2$ and HO_2 and the rate coefficient has not been studied. The relative importance of the three reaction pathways has been determined (at room temperature only) by Sulbaek Andersen et al., 2004, who showed that the formation of trifluoro acetic acid ($\text{CF}_3\text{C(O)OH}$) with a branching ratio of 0.38 ± 0.04 is preferred over the peroxide (or peroxyacid $\text{CF}_3\text{C(O)OOH}$) with a branching ratio 0.09 ± 0.04 . The most important pathway at room temperature is however formation of $\text{CF}_3\text{CO}_2 + \text{O}_2 + \text{HO}$ with a branching ratio of 0.56 ± 0.05 . The initially formed CF_3CO_2 product decomposes to $\text{CF}_3 + \text{CO}_2$. By comparison with the larger experimental dataset on the analogous reaction of the non-fluorinated peroxy radical

$\text{CH}_3\text{C(O)O}_2$ (see IUPAC Data-Sheet HOx_VOC54) we may expect that the acid forming pathway (k_2) will gain in relative importance at the cost of k_1 and k_3 as the temperature decreases, but this requires experimental / theoretical confirmation.

In the absence of a direct measurement of k , we list the value for the non-fluorinated analogue $\text{CH}_3\text{C(O)O}_2$. This value and its temperature dependence need to be determined experimentally.

References

Sulbaek Andersen, M. P., Stenby, C., Nielsen, O. J., Hurley, M. D., Ball, J. C., Wallington, T. J., Martin, J. W., Ellis, D. A., and Mabury, S. A.: J. Phys. Chem. A, 108, 63252004.

oFOx161: CF₃C(O)O₂ + NO

Last evaluated: June 2025; Last change in preferred values: November 2022.

Rate coefficient data

$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	Temp./K	Reference	Technique/ Comments
Absolute rate coefficients			
$> 9 \times 10^{-12}$	296 ± 2	Wallington et al., 1994	PR-UV (a)
$4.0 \times 10^{-12} \exp(563/T)$		Maricq et al., 1994	FP-IR (b)
$2.8 \pm 0.6 \times 10^{-11}$	220-324		

Comments

(a) CF₃C(O)O₂ radicals were generated in the pulsed radiolysis of SF₆/CF₃CHO/O₂ mixtures. The conditions were chosen so that the fate of the initially formed CF₃CO radicals was reaction with O₂ to form CF₃C(O)O₂. By adding NO to the mixture (0-1 mbar), the rate coefficient for CF₃C(O)O₂ + NO was derived by monitoring the rate of formation of the NO₂ product via absorption spectroscopy at 400 nm.

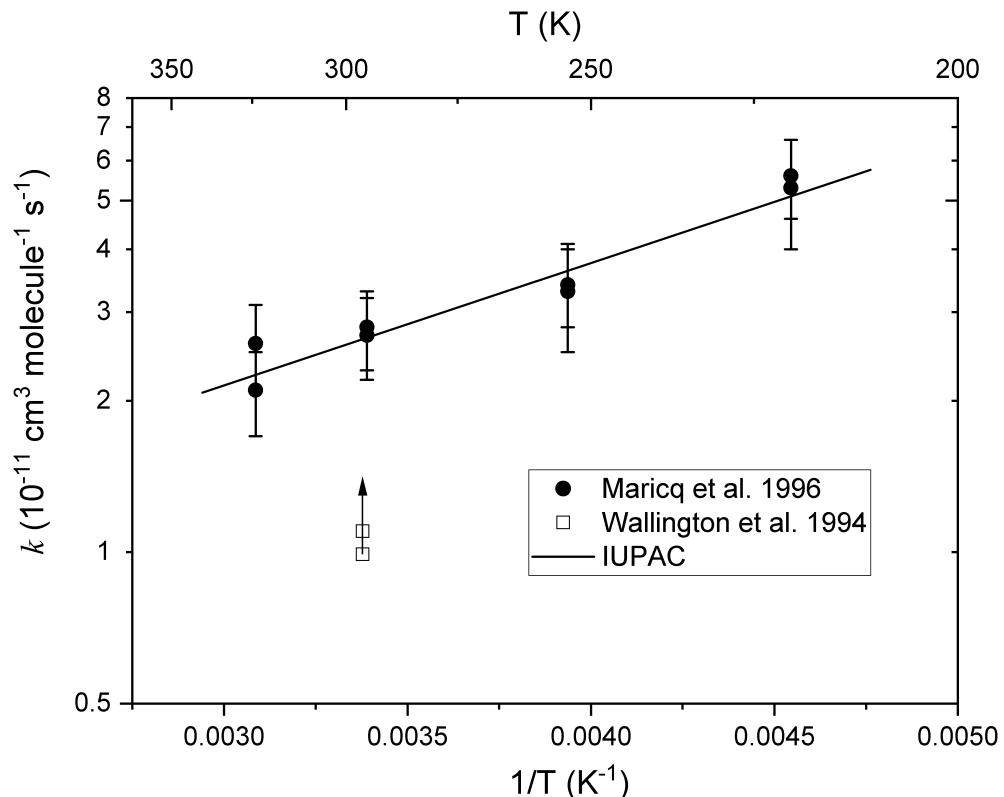
(b) CF₃C(O)O₂ radicals were generated in the 351 nm flash photolysis of either Cl₂ or F₂ in the presence of CF₃CHO/N₂/O₂/NO mixtures. The rate coefficient for CF₃C(O)O₂ + NO was derived by monitoring the rate of loss of NO and formation of NO₂ via infra-red absorption spectroscopy.

Preferred Values

Parameter	Value	T/K
$k / \text{cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$	2.8×10^{-11}	298
	$4.0 \times 10^{-12} \exp(560/T)$	220-340
<i>Reliability</i>		
$\Delta \log k$	± 0.2	298
$\Delta \log (E/R)$	± 200	220-340

Comments on Preferred Values

There are two kinetic studies on the reaction between CF₃C(O)O₂ and NO which (at the common temperature) are not in good agreement despite the use of similar methods. The rate coefficient was derived by analysis of NO₂ formation (Wallington et al, 1994; Maricq et al., 1996) or NO loss (Maricq et al., 1996). In both cases, the analyses were complicated by reactions of NO_x with other radicals in the system.


Wallington et al. (1994) derived a room-temperaure rate coefficient of $1.1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ from a plot of the NO₂ formation rate-constant versus NO. However a large positive intercept and a NO₂ yield of 173 % indicated that other peroxy radicals (e.g. CF₃O₂) also converted NO to NO₂ and the authors preferred to report a lower limit of $k > 9.9 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Maricq et al. (1996) found that the time profiles of both NO and NO_x were impacted by reactions of NO with CF₃O₂ (to form NO₂) and with CF₃CO₂ and CF₃O (to remove NO) thus complicating the kinetic analysis. They found a much larger (factor 2.5) rate coefficient at room temperature than Wallington et al.

As the result of Maricq et al. (1996) is consistent with the lower limit of Wallngton et al. and is

similar to the large rate coefficient for reaction of the non-fluorinated analogue ($\text{CH}_3\text{C(O)O}_2$) with NO, we adopt this as our preferred value, albeit with expanded uncertainty. Maricq et al (1996) observed a negative temperature dependence, which is consistent with the kinetic data on $\text{CH}_3\text{C(O)O}_2$ with NO and we adopt their measurement of the temperature dependence of k .

References

Maricq, M. M., Szente, J. J., Khitrov, G. A., and Francisco, J. S.: *J. Phys. Chem.*, 100, 4514, 1996.
 Wallington, T. J., Hurley, M. D., Nielsen, O. J., and Sehested, J.: *J. Phys. Chem.*, 98, 5686, 1994.

Rate coefficients for $\text{CF}_3\text{CO}_3 + \text{NO}$. The arrow indicates that the (lower) value of Wallington et al. is a lower limit. The upper value is their actual measurement (see text for details).

oFOx162: CF₃C(O)O₂ + NO₂ + M

Last evaluated: June 2025; Last change in preferred values: November 2022.

Rate coefficient data

<i>k</i> / cm ³ molecule ⁻¹ s ⁻¹	Temp./K	Reference	Technique/ Comments
Absolute rate coefficients (6.6 ± 1.3) × 10 ⁻¹²	296 ± 2	Wallington et al., 1994	PR-UV (a)

Comments

(a) CF₃C(O)O₂ radicals were generated in the pulsed radiolysis of SF₆/CF₃CHO/O₂ mixtures. The conditions were chosen so that the initially formed CF₃CO radicals were converted to CF₃C(O)O₂ in < 2 μs. The rate coefficient for CF₃C(O)O₂ + NO₂ was derived by monitoring the rate of loss of NO₂ via absorption spectroscopy at 400 nm.

Preferred Values

Parameter	Value	T/K
<i>k</i> / cm ³ molecule ⁻¹ s ⁻¹	6.6 × 10 ⁻¹²	296
<i>Reliability</i>		
Δ log <i>k</i>	± 0.3	296

Comments on Preferred Values

The pulsed radiolysis experiments of Wallington et al. (1994) represent the only kinetic study of the reaction between CF₃C(O)O₂ and NO₂ which was limited to room temperature and a total pressure of 1 bar SF₆. Although pseudo first-order kinetics appeared to be followed, the NO₂ concentration was significantly depleted during the reaction and corrections (≤ 12 %) were applied to take this into account. In addition, ≈ 15% of the initially formed CF₃C(O) radicals decomposed to CF₃ (+ CO) with subsequent formation of CF₃O₂ which may also react with NO₂ thus complicating the analysis. The uncertainty listed in the preferred value of *k* reflect the fact that there is only one study of the reaction and the potential complications involving the presence of peroxy radicals other than CF₃C(O)O₂.

In line with other termolecular reactions between organic peroxy radicals NO₂, the reaction is likely to be in the high-pressure limit in the experiments of Wallington et al. (1994) at one bar SF₆.

References

Wallington, T. J., Sehested, J., and Nielsen, O. J.: Chem. Phys. Lett., 226, 563, 1994.

oFOx163: $\text{CF}_3\text{C(O)O}_2\text{NO}_2 + \text{M}$

Last evaluated: June 2025; Last change in preferred values: November 2022.

Rate coefficient data

k / s^{-1}	Temp./K	Reference	Technique/ Comments
Absolute rate coefficients			
$1.75 \times 10^{14} \exp(-12600/T)^a$	285-303	Wallington et al., 1994	P-IR (a)
$6.16 \times 10^{16} \exp(-14500/T)^b$	314-321	Zabel et al., 1994	P-IR (b)
$1.94 \times 10^{17} \exp(-14800/T)^c$	315-319		
$6.0 \times 10^{16} \exp(-14325/T)^d$	314-321		

^aExpression derived by fitting to data listed at 933 mbar, ^b Expression derived by fitting to data listed at 8 mbar, ^cExpression derived by fitting to data listed at 30 mbar, ^dValue reported at 1000 mbar.

Comments

- (a) $\text{CF}_3\text{C(O)O}_2$ radicals were generated in the broad-band (300-400 nm) photolysis of Cl_2 in the presence of CF_3CHO , O_2 and N_2 at a total pressure of 100 or 700 Torr (133 or 933 mbar) and converted to $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ via addition of NO_2 . When the NO_2 was completely depleted, NO was added and the first-order rate of loss of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ monitored via IR-absorption features. Corrections (9-21%) were applied to the rate constants to take into account reformation of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ through recombination of the $\text{CF}_3\text{C(O)O}_2$ and NO_2 products.
- (b) $\text{CF}_3\text{C(O)O}_2$ radicals were generated in the broad-band ($\lambda > 300$ nm) photolysis of Cl_2 in the presence of CF_3CHO , O_2 and N_2 at a total pressure of 100 or 700 Torr (133 or 933 mbar) and converted to $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ via addition of NO_2 . When the NO_2 was completely depleted, NO was added and the first-order rate of loss of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ monitored via IR-absorption features. Corrections (10-25 %) were applied to the rate constants to take into account reformation of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ through recombination of the $\text{CF}_3\text{C(O)O}_2$ and NO_2 products.

Preferred Values

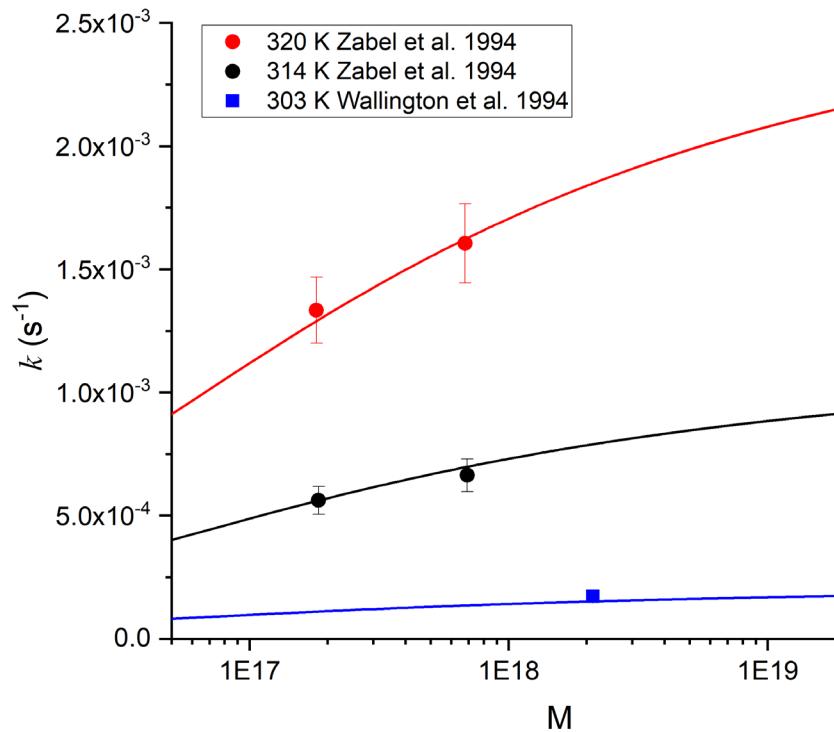
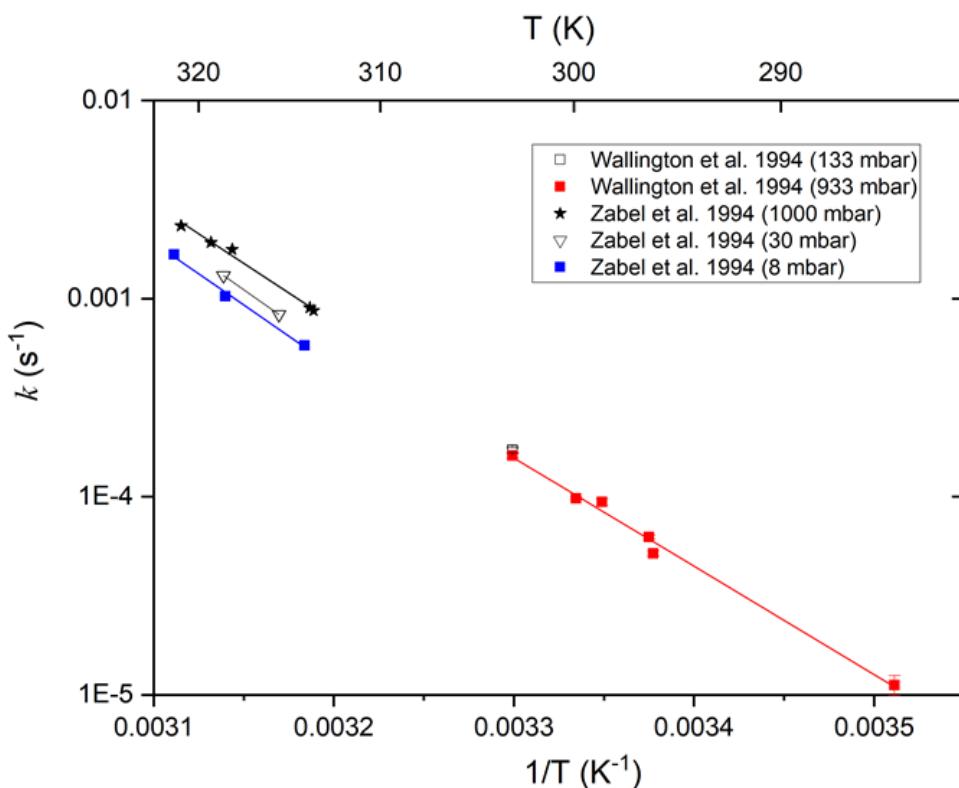
Parameter	Value	T/K
$k (\text{s}^{-1}) (1\text{bar})$	7.95×10^{-5}	298
$k_0 (\text{cm}^3 \text{molecule}^{-1} \text{s}^{-1})$	$5.0 \times 10^{-20} \exp(-12350/T)$	290 – 330
$k_\infty (\text{s}^{-1})$	$1.1 \times 10^{17} \exp(-14440/T)$	290 – 330
F_c	0.2	290 – 330
<i>Reliability</i>		
$\Delta \log k$	± 0.3	296

Comments on Preferred Values

The two studies of the thermal decomposition of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$ cover a limited ranges of pressures and temperatures. While the experiments of Zabel et al. (1994) show a clear pressure dependence (8-1000 mbar) at temperatures between ~ 314 and 320 K, the experiments of Wallington et al. (1994) at 303 K are independent of pressure between 100 and 933 mbar. Both studies indicate a strong dependence on temperature at all pressures (see Figure 1). In order to parameterise this

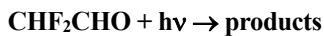
termolecular reaction, rate coefficients at temperatures of exactly 303 K, 314 K and 320 K were calculated for each pressure studied using temperature dependent expressions (see parameters in the table above) derived by fitting to the individual datasets at single pressures. The results are shown in Figure 2. The solid lines are Troe-type fits to the data in which the temperature dependence of k_0 and k_∞ were taken from Zabel et al. (1994) as was the broadening factor, F_c , which they calculated using vibrational frequencies of $\text{CF}_3\text{C(O)O}_2\text{NO}_2$. The pre-exponential factor for k_0 was adjusted to best fit all datasets.

While the parameterisation adequately reproduces the experimental data, extrapolation beyond the temperature range of the two studies should be performed with caution.



The following text-line combines the preferred values for the high and low pressure limiting rate coefficients to generate a single, cut-and-paste expression for calculation of k :

$$=((5e-2*\exp(-12350/T))*M*(1.1e17*\exp(-14440/T)))/((5e-2*\exp(-12350/T))*M+(1.1e17*\exp(-14440/T)))*10^{(\log10(0.2)/(1+(\log10((5e-2*\exp(-12350/T))*M/(1.1e17*\exp(-14440/T)))/(0.75-1.27*\log10(0.2))))^2)}$$

The molecular density, $M = 7.243 \times 10^{21} \text{ P(bar)}/\text{T(K)}$


References

Wallington, T. J., Hurley, M. D., Nielsen, O. J., and Sehested, J.: *J. Phys. Chem.*, 98, 5686, 1994.
 Zabel, F., Kirchner, F., and Becker, K. H.: *Int. J. Chem. Kinet.*, 26, 827, 1994.

PF5: CHF₂CHO + hν

Last evaluated: June 2025; last change in preferred values: June 2010.

Primary photochemical transitions

Reaction	
CHF ₂ CHO + hν → CHF ₂ + HCO	(1)
→ CHF ₂ CO + H	(2)
→ CH ₂ F ₂ + CO	(3)

Absorption cross-section data

Wavelength range/nm	References	Comments
190-400	Sellevåg et al. (2005)	(a)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
$\Phi = 0.30 \pm 0.05$	295–400	Sellevåg et al., 2005	(b)

Comments

- (a) Absolute absorption cross-sections were measured using a diode array spectrometer at 298 K. The UV spectrum of difluoroacetaldehyde shows a broad band, centered at 310 nm and extending out to approximately 355 nm. Values of σ were given at 1 nm intervals.
- (b) Photolysis of CHF₂CHO in pure dry air in the presence of an inert tracer (SF₆) added to monitor leakage from the chamber and an OH radical tracer (di-*n*-butyl ether) in the ~200 m³ EUPHORE chamber facility under natural sunlight conditions. The measured loss rate of CHF₂CHO during a ~5 hr period around solar noon was corrected for loss via leakage from the chamber and reaction with OH radicals to yield $J_{\text{obs}} = (2.91 \pm 0.09) \times 10^{-5} \text{ s}^{-1}$. This was compared to the maximum photolysis rate of $9.8 \times 10^{-5} \text{ s}^{-1}$ calculated using a unit quantum yield for photodissociation, the measured actinic flux within the chamber, and the measured UV absorption spectrum. Taking a ratio of $J_{\text{obs}}/J_{\text{calc}} = 2.9 \times 10^{-5}/9.8 \times 10^{-5}$ gives the effective photolysis quantum yield from wavelengths relevant to the troposphere of 0.30 ± 0.05 .

Preferred Values

Absorption cross-sections of CHF₂CHO at 298 K

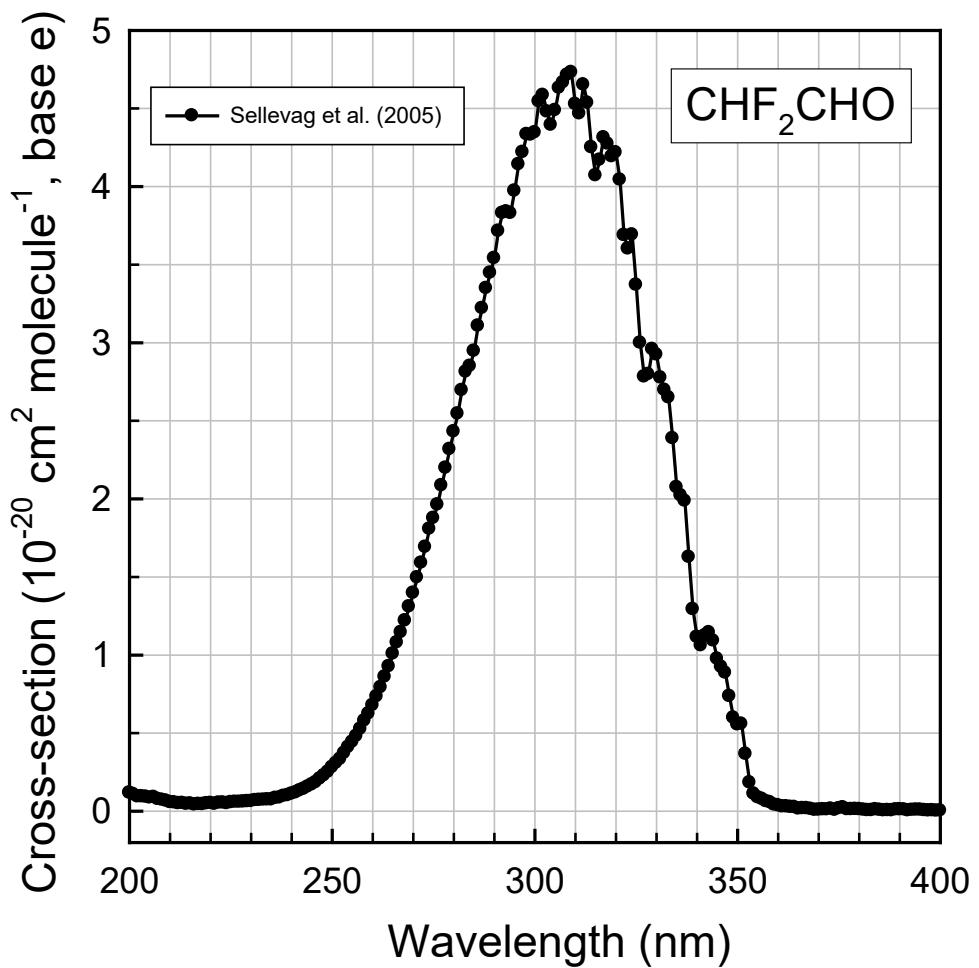
λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
190	0.27	300	4.34
195	0.20	305	4.49
200	0.12	310	4.53
205	0.08	315	4.07
210	0.06	320	4.22
215	0.05	325	3.37
220	0.05	330	2.92
225	0.06	335	2.07
230	0.06	340	1.11
235	0.07	345	0.97
240	0.11	350	0.55
245	0.17	355	0.09
250	0.28	360	0.04
255	0.44	365	0.01
260	0.68	370	0.01
265	1.01	375	0.02
270	1.40	380	0.01
275	1.87	385	0.01
280	2.43	390	0.01
285	2.95	395	0.01
290	3.54	400	0.00
295	3.97		

Quantum Yields of CHF₂CHO

$$\Phi_1 = 0.30 \text{ at 295- 360 nm}$$

Reliability

$$\Delta\Phi_1 = \pm 0.10$$


Comments on Preferred Values

The preferred values for the cross-sections and quantum yield are taken from the study by Sellevåg et al. (2005). The photolysis of CHF₂CHO, presumably in air diluent (although this was not specified), at 310 nm was investigated by Sellevåg et al. (2005) and the formation of COF₂ and CO products was reported. There was no observable formation of CH₂F₂ consistent with the photolysis occurring via channel (1) to give CHF₂ and HCO radicals.

Calvert et al. (2010) assumed a wavelength independent quantum yield of 0.30 and estimated a photolysis lifetime for CHF₂CHO of 6 hours for overhead sun at 40°N latitude at 500 m altitude with an ozone column of 350 DU.

References

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington T. J.: The Mechanisms of Atmospheric Oxidation of the Oxygenates, Oxford University Press, New York, NY, in press, 2010.
 Sellevåg, S. R., Stenstrom, Y., Helgaker, T., and Nielsen, C. J.: J. Phys. Chem. A 109, 3652, 2005,

PF6: C₂F₅CHO + hν

Last evaluated: June 2025; last change in preferred values: June 2014.

C₂F₅CHO + hν → products

Primary photochemical transitions

Reaction
C ₂ F ₅ CHO + hν → C ₂ F ₅ + HCO (1)
→ C ₂ F ₅ CO + H (2)
→ C ₂ F ₅ H + CO (3)

Absorption cross-section data

Wavelength range/nm	References	Comments
265-334	Borkowski and Ausloss, (1962)	(a)
319	Pritchard et al. (1962)	(b)
185-500	Hashikawa et al. (2004)	(c)
230-400	Chiappero et al. (2006)	(d)
230-376	Antinolo et al. (2014)	(e)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
Φ ₁ = 0.38±0.08	254	Chiappero et al. (2006)	(f)
Φ ₃ = 0.43±0.08	254	Chiappero et al. (2006)	(f)
Φ ₁ = 0.30±0.02	308	Antinolo et al. (2014)	(g)

Comments

- (a) Absolute absorption cross-sections at 334, 313, 280.4, and 265.2 nm were measured using a UV spectrometer with the sample at 305 K.
- (b) An absolute absorption cross-section at 319 nm was measured using a UV spectrometer
- (c) Absolute absorption cross-sections were measured using a diode array spectrometer at 298 K. The UV spectrum of C₂F₅CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals.
- (d) Absolute absorption cross-sections were measured using a diode array spectrometer at 269-297 K. The UV spectrum of C₂F₅CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals. There was no discernible effect of temperature over the range 248-297 K on the UV spectrum, however for reasons which are unclear the UV spectra at 308 K and 323 K reported in the supporting information are approximately 10% more intense than that at 298 K.
- (e) Absolute absorption cross-sections were measured using a 0.5-m spectrograph with a coupled-charge device (CCD) detector with 0.5–9.8 Torr of C₂F₅CHO. The temperature range specified in the text of the paper is 269 – 298 K, but

data in the supporting information cover the range 269 – 323 K. The spectrum had a peak at 308.13 ± 0.76 nm. Values of σ were given at 1 nm intervals.

(f) Photolysis quantum yield measured using perfluoroacetic anhydride as a chemical actinometer. Mixtures of 0.5-5.5 mbar of $\text{C}_2\text{F}_5\text{CHO}$ and 20-70 mbar of NO (added as radical scavenger) were irradiated using a low-pressure ozone free Hg lamp and the rate of loss of $\text{C}_2\text{F}_5\text{CHO}$ was compared to that of perfluoroacetic anhydride in similar experiments. The formation of $\text{C}_2\text{F}_5\text{NO}$ and $\text{C}_2\text{F}_5\text{H}$ were measured by IR spectroscopy and used to derive quantum yields for processes (1) and (3).

(g) Photolysis quantum yield measured using acetaldehyde as a chemical actinometer with pulsed laser photolysis of $\text{C}_2\text{F}_5\text{CHO}$ at 308 nm in 75 – 760 Torr (100 – 1013 mbar) of air at 298 K. The quantum yield at $\lambda=308$ nm was pressure dependent, ranging from (0.94 ± 0.28) at 75 Torr to (0.30 ± 0.02) at 760 Torr. The pressure dependence is characterized by the Stern–Volmer expression with a Stern–Volmer constant of $(1.22 \pm 0.52) \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1}$. FTIR spectroscopy was used to identify the products following photolysis of $\text{C}_2\text{F}_5\text{CHO}$ in air. From the observed product distribution, it was concluded that photolysis at 308 nm occurs predominantly, if not exclusively, via channel (1) to give $\text{C}_2\text{F}_5 + \text{HCO}$ radicals.

Preferred Values

Absorption cross-sections of $\text{C}_2\text{F}_5\text{CHO}$ at 298 K

λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
230	0.15	305	5.64
235	0.15	310	5.78
240	0.21	315	5.38
245	0.29	320	5.36
250	0.40	325	4.47
255	0.60	330	3.64
260	0.89	335	3.16
265	1.26	340	2.01
270	1.75	345	1.37
275	2.34	350	1.05
280	2.99	355	0.44
285	3.68	360	0.14
290	4.36	365	0.08
295	4.97	370	0.07
300	5.41	375	0.05

Quantum Yields of $\text{C}_2\text{F}_5\text{CHO}$

$$\Phi_1 = 0.38 \text{ at } 254 \text{ nm}$$

$$\Phi_3 = 0.43 \text{ at } 254 \text{ nm}$$

$$\Phi_1 = 0.30 \text{ at } 308 \text{ nm}$$

Reliability

$$\Delta\Phi_1 = \pm 0.10$$

$$\Delta\Phi_3 = \pm 0.10$$

Comments on Preferred Values

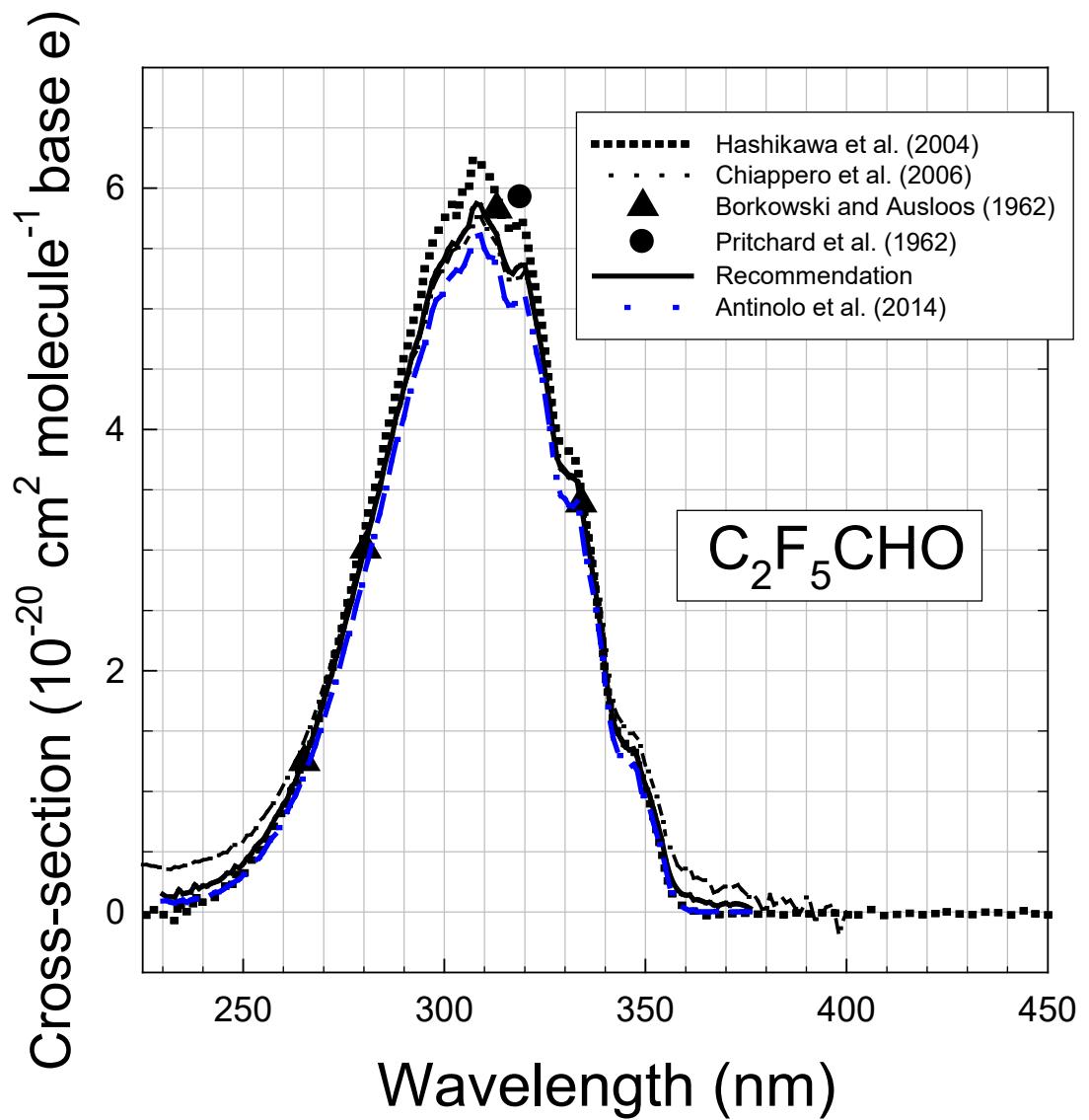
There is good agreement in the absorption cross sections measured at 298 K by Borkowski and Ausloss, (1962), Pritchard et al. (1962), Hashikawa et al. (2004), Chiappero et al. (2006), and Antinolo et al. (2014). Taking an average of the results from Hashikawa et al. (2004), Chiappero et al. (2006), and Antinolo et al. (2014) gives the recommended values. The quantum yield measurements at 254 nm reported by Chiappero et al. (2006) and at 308 nm by Antinolo et al. (2014) are recommended.

Chiappero et al. (2006) assumed a wavelength independent photolysis quantum yield of 0.14 for $\text{C}_2\text{F}_5\text{CHO}$ (based upon a linear interpolation of the measured quantum yields for CF_3CHO and $\text{C}_4\text{F}_9\text{CHO}$) at 308 nm and estimated the photolysis lifetimes in the summer and winter solstices and the fall and spring equinoxes. Chiappero et al. (2006) averaged the lifetimes to give annual averages of approximately 0.9 days at 11 km altitude and 2.5 days at 0 km. Antinolo

et al. (2014) assumed an exponential decrease of photolysis quantum yield with increasing wavelength from 0.81 at 254 nm (Chiappero et al., 2006) to 0.30 at 308 nm (Antinolo et al., 2014) and lower for wavelengths longer than 308 nm. Antinolo et al. (2014) estimated a photolysis lifetime of 3.5 hours at an altitude of 3.5 km and solar zenith angle of 16° (local noon in Ciudad Real, Spain, in summer). Photolysis is the dominant atmospheric fate of C₂F₅CHO.

References

Antinolo, M., Jiménez, E., Gonzalez, S., and Albaladejo, J.: *J. Phys. Chem. A*, 118, 178, 2014.


Borkowski, R. P., and Ausloss, P.: *J. Am. Chem. Soc.*, 84, 4044, 1962.

Calvert, J. G., Mellouki, A., Orlando, J. J., Pilling, M. J., and Wallington T. J.: *The Mechanisms of Atmospheric Oxidation of the Oxygenates*, Oxford University Press, New York, NY, 2010.

Chiappero M. S., Malanca, F. E., Argüello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: *J. Phys. Chem. A*, 110, 11944, 2006.

Hashikawa, Y., Kawasaki, M., Waterland, R. L., Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D.; Ball, J. C.; and Wallington, T. J.: *J. Fluorine Chem.*, 125, 1925, 2004.

Pritchard, G. O., Miller, G. H., and Foote, J. K.: *Can. J. Chem.*, 40, 1830, 1962.

PF7: *n*-C₃F₇CHO + hν

Last evaluated: June 2025; last change in preferred values: June 2010.

n-C₃F₇CHO + hν → products

Primary photochemical transitions

Reaction
C ₂ F ₅ CHO + hν → C ₂ F ₅ + HCO (1)
→ C ₂ F ₅ CO + H (2)
→ C ₂ F ₅ H + CO (3)

Absorption cross-section data

Wavelength range/nm	References	Comments
265-334	Borkowski and Ausloss (1962)	(a)
185-500	Hashikawa et al. (2004)	(b)
230-400	Chiappero et al. (2006)	(c)
230-390	Solignac et al. (2007)	(d)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
Φ ₁ = 0.31±0.07	254	Chiappero et al. (2006)	(e)
Φ ₃ = 0.32±0.07	254	Chiappero et al. (2006)	(e)
Φ _{total} = 0.023±0.012	290-400	Solignac et al. (2007)	(f)

Comments

- (a) The absolute absorption cross-section at 319 nm was measured using a UV spectrometer.
- (b) Absolute absorption cross-sections were measured using a diode array spectrometer at 298 K. The UV spectrum of *n*-C₃F₇CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals.
- (c) Absolute absorption cross-sections were measured using a diode array spectrometer at 248-297 K. The UV spectrum of *n*-C₃F₇CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals. There was no discernible effect of temperature on the UV spectrum.
- (d) Absolute absorption cross-sections were measured with a resolution of 0.1 nm using a diode array spectrometer for 1.4–8.0 Torr (1.9–10.7 mbar) samples of *n*-C₃F₇CHO at 298 K. The UV spectrum of *n*-C₃F₇CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals.
- (e) Photolysis quantum yield measured using perfluoroacetic anhydride as a chemical actinometer. Mixtures of 0.5–5.5 mbar of *n*-C₃F₇CHO and 20–70 mbar of NO (added as radical scavenger) were irradiated using a low-pressure ozone free Hg lamp and the rate of loss of *n*-C₃F₇CHO was compared to that of perfluoroacetic anhydride in similar experiments. The formation of *n*-C₃F₇NO and *n*-C₃F₇H were measured by IR spectroscopy and used to derive quantum yields for processes (1) and (3).
- (f) Photolysis of *n*-C₃F₇CHO in one atmosphere of pure dry air in the presence of an OH radical tracer (di-*n*-butyl ether)

in the ~ 200 m³ EUPHORE chamber facility under natural sunlight conditions. The measured rate of photolysis of *n*-C₃F₇CHO was $(1.3 \pm 0.6) \times 10^{-5}$ s⁻¹. When compared to the maximum photolysis rate calculated using unit quantum yield for photodissociation across the atmospheric range of absorption of *n*-C₃F₇CHO a quantum yield of 0.023 ± 0.012 was derived.

Preferred Values

Absorption cross-sections of *n*-C₃F₇CHO at 298 K

λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
200	0.34	305	7.97
205	0.12	310	8.29
210	0.21	315	7.77
215	0.16	320	7.83
220	0.11	325	6.40
225	0.14	330	5.32
230	0.09	335	4.74
235	0.10	340	2.91
240	0.15	345	1.98
245	0.24	350	1.52
250	0.41	355	0.65
255	0.68	360	0.13
260	1.03	365	0.04
265	1.54	370	0.00
270	2.18		
275	2.97		
280	3.87		
285	4.87		
290	5.83		
295	6.79		
300	7.45		

Quantum Yields of *n*-C₃F₇CHO

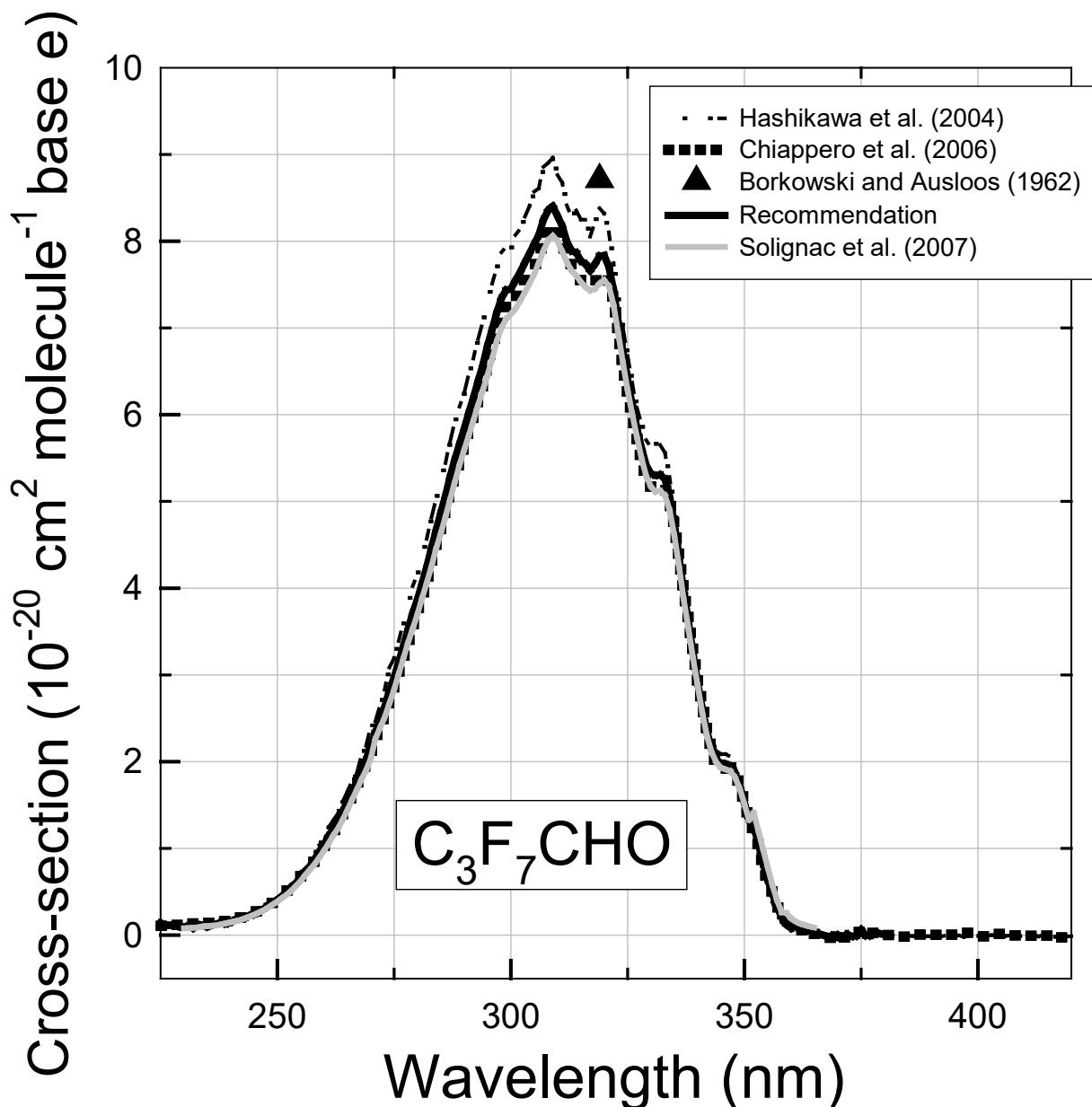
$$\Phi_1 = 0.31 \text{ at } 254 \text{ nm}$$

$$\Phi_3 = 0.32 \text{ at } 254 \text{ nm}$$

Reliability

$$\Delta\Phi_1 = \pm 0.10$$

$$\Delta\Phi_3 = \pm 0.10$$


Comments on Preferred Values

There is good agreement between the absorption cross sections measured by Borkowski and Ausloss, (1962), Hashikawa et al. (2004), Chiappero et al. (2006), and Solignac et al. (2007). Taking an average of the results from Hashikawa et al. (2004), Chiappero et al. (2006), and Solignac et al. (2007) gives the recommended values. The quantum yield measurements at 254 nm reported by Chiappero et al. (2006) and at 290-400 nm are recommended.

Chiappero et al. (2006) assumed a wavelength independent photolysis quantum yield of 0.11 for *n*-C₃F₇CHO (based upon a linear interpolation of the measured quantum yields for CF₃CHO and C₄F₉CHO) at 308 nm and estimated the photolysis lifetimes in the summer and winter solstices and the fall and spring equinoxes. Chiappero et al. (2006) averaged the lifetimes to give annual averages of approximately 0.75 days at 11 km altitude and 2 days at 0 km. Use of the recommended quantum yield of 0.023 in place of the value of 0.11 used by Chiappero et al. (2006) will increase the photolytic lifetimes by approximately a factor of 5. In either case, photolysis is the dominant atmospheric fate of *n*-C₃F₇CHO.

References

Borkowski, R. P., and Ausloss, P.: J. Am. Chem. Soc., 84, 4044, 1962.
Chiappero M. S., Malanca, F. E., Argüello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: J. Phys. Chem. A, 110, 11944, 2006.
Hashikawa, Y., Kawasaki, M., Waterland, R. L., Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D.; Ball, J. C.; and Wallington, T. J.: J. Fluorine Chem., 125, 1925, 2004.
Pritchard, G. O., Miller, G. H., Foote, J. K.: Can. J. Chem., 40, 1830, 1962.
Solignac, G., Mellouki, A., Le Bras, G., Yujing, M., and Sidebottom, H.: Phys. Chem. Chem. Phys., 9, 4200, 2007.

PF8: *n*-C₄F₉CHO + hν

Last evaluated: June 2025; last change in preferred values: June 2010.

***n*-C₄F₉CHO + hν → products**

Primary photochemical transitions

Reaction	
$n\text{-C}_4\text{F}_9\text{CHO} + \text{h}\nu \rightarrow n\text{-C}_4\text{F}_9 + \text{HCO}$	(1)
$\rightarrow n\text{-C}_4\text{F}_9\text{CO} + \text{H}$	(2)
$\rightarrow n\text{-C}_4\text{F}_9\text{H} + \text{CO}$	(3)

Absorption cross-section data

Wavelength range/nm	References	Comments
185-500	Hashikawa et al. (2004)	(a)
230-400	Chiappero et al. (2006)	(b)
230-390	Solignac et al. (2007)	(c)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
$\Phi_1 = 0.31 \pm 0.08$	254	Chiappero et al. (2006)	(d)
$\Phi_3 = 0.29 \pm 0.07$	254	Chiappero et al. (2006)	(d)
$\Phi_{\text{Total}} = 0.08 \pm 0.02$	308	Chiappero et al. (2006)	(e)
$\Phi_{\text{Total}} = 0.029 \pm 0.015$	290-390	Solignac et al. (2007)	(f)

Comments

(a) Absolute absorption cross-sections were measured using a diode array spectrometer at 298 K. The UV spectrum of *n*-C₄F₉CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals.

(b) Absolute absorption cross-sections were measured using a diode array spectrometer at 248-297 K. The UV spectrum of *n*-C₄F₉CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals. There was no discernable effect of temperature over the range studied on the UV spectrum.

(c) Absolute absorption cross-sections were measured with a resolution of 0.1 nm using a diode array spectrometer for 1.5–11.0 Torr (2.0–14.7 mbar) samples of *n*-C₄F₉CHO at 298 K. The UV spectrum of *n*-C₄F₉CHO shows a broad band, centered at 310 nm and extending out to approximately 360 nm. Values of σ were given at 1 nm intervals.

(d) Photolysis quantum yield measured using perfluoroacetic anhydride as a chemical actinometer. Mixtures of 0.5–5.5 mbar of *n*-C₄F₉CHO and 20–70 mbar of NO (added as radical scavenger) were irradiated using a low-pressure ozone free Hg lamp and the rate of loss of *n*-C₄F₉CHO was compared to that of perfluoroacetic anhydride in similar experiments. The formation of *n*-C₄F₉NO and *n*-C₄F₉H were measured by IR spectroscopy and used to derive quantum yields for processes (1) and (3).

(e) Photolysis quantum yield measured using CH₃CHO as a chemical actinometer. Mixtures of *n*-C₄F₉CHO and NO (added as radical scavenger) in 700 Torr of N₂ diluent were irradiated using the 308 nm output of an excimer

laser. The rate of loss of *n*-C₄F₉CHO was compared to that of CH₃CHO in back-to-back experiments. There was no evidence for the formation of *n*-C₄F₉H (<5% yield) following the irradiation of *n*-C₄F₉CHO–NO–N₂ mixtures showing that process (3) is not significant.

(f) Photolysis of *n*-C₄F₉CHO in one atmosphere of pure dry air in the presence of an OH radical tracer (di-*n*-butyl ether) in the ~200 m³ EUPHORE chamber facility under natural sunlight conditions. The measured rate of photolysis of *n*-C₄F₉CHO was $(1.9 \pm 0.8) \times 10^{-5} \text{ s}^{-1}$. When compared to the maximum photolysis rate calculated using unit quantum yield for photodissociation across the atmospheric range of absorption of *n*-C₄F₉CHO a quantum yield of 0.029 ± 0.015 was derived.

Preferred Values

Absorption cross-sections of *n*-C₄F₉CHO at 298 K

λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
200	0.41	305	9.44
205	0.30	310	9.87
210	-0.03	315	9.22
215	0.11	320	9.32
220	-0.02	325	7.59
225	-0.03	330	6.31
230	-0.02	335	5.61
235	-0.02	340	3.46
240	0.05	345	2.33
245	0.19	350	1.80
250	0.40	355	0.69
255	0.73	360	0.08
260	1.19	365	0.00
265	1.79	370	-0.08
270	2.53	375	-0.05
275	3.47	380	-0.04
280	4.52	385	-0.05
285	5.69	390	-0.05
290	6.84	395	-0.03
295	8.01	400	-0.04
300	8.82		

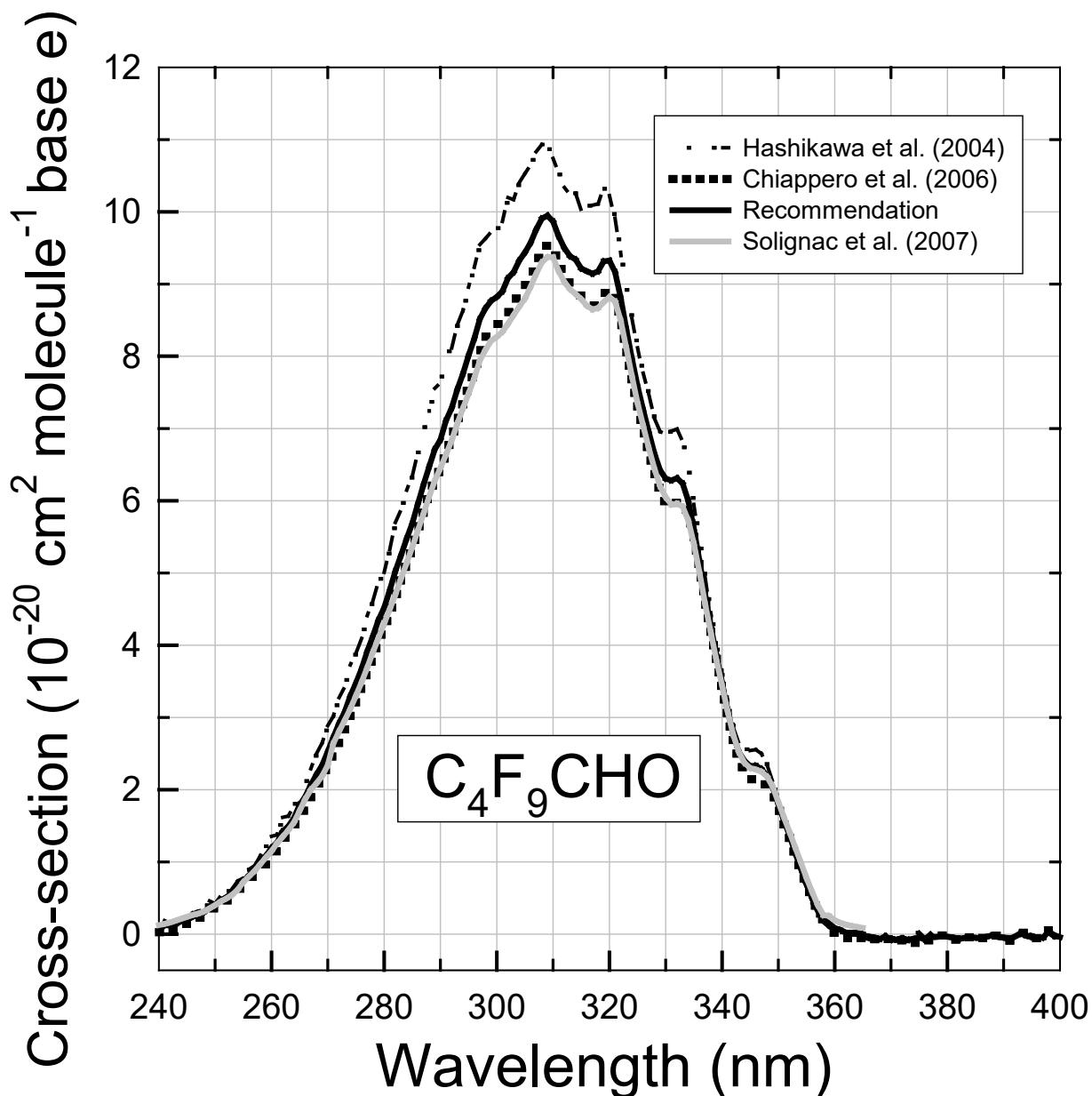
Quantum Yields of *n*-C₄F₉CHO

$$\begin{aligned}\Phi_1 &= 0.31 \text{ at } 254 \text{ nm} \\ \Phi_3 &= 0.29 \text{ at } 254 \text{ nm} \\ \Phi_{\text{Total}} &= 0.08 \text{ at } 308 \text{ nm} \\ \Phi_{\text{Total}} &= 0.03 \text{ at } 290\text{--}390 \text{ nm}\end{aligned}$$

Reliability

$$\begin{aligned}\Delta\Phi_1 &= \pm 0.10 \text{ at } 254 \text{ nm} \\ \Delta\Phi_3 &= \pm 0.10 \text{ at } 254 \text{ nm} \\ \Delta\Phi_{\text{Total}} &= \pm 0.04 \text{ at } 308 \text{ nm} \\ \Delta\Phi_{\text{Total}} &= 0.02 \text{ at } 290\text{--}390 \text{ nm}\end{aligned}$$

Comments on Preferred Values


There is agreement between the absorption cross sections measured by Hashikawa et al. (2004), Chiappero et al. (2006), and Solignac et al. (2007). Taking an average of the results from Hashikawa et al. (2004), Chiappero et al. (2006), and Solignac et al. (2007) gives the recommended values. The quantum yield measurements at 254 and 308 nm reported by Chiappero et al. (2006) are recommended.

Chiappero et al. (2006) assumed a wavelength independent photolysis quantum yield of 0.08 for *n*-C₄F₉CHO (based on their data measured at 308 nm) and estimated the photolysis lifetimes in the summer and winter solstices and the fall and spring equinoxes. Chiappero et al. (2006) averaged the

lifetimes to give annual averages of approximately 0.75 days at 11 km altitude and 2 days at 0 km. Use of the recommended quantum yield of 0.03 in place of the value of 0.11 used by Chiappero et al. (2006) will increase the photolytic lifetimes by approximately a factor of 4. In either case, photolysis is the dominant atmospheric fate of *n*-C₄F₉CHO.

References

Chiappero M. S., Malanca, F. E., Argüello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: J. Phys. Chem. A, 110, 11944, 2006.
 Hashikawa, Y., Kawasaki, M., Waterland, R. L., Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D.; Ball, J. C., and Wallington, T. J.: J. Fluorine Chem., 125, 1925, 2004.
 Solignac, G., Mellouki, A., Le Bras, G., Yujing, M., and Sidebottom, H.: Phys. Chem. Chem. Phys., 9, 4200, 2007.

PF9: $\text{CF}_3\text{CH}_2\text{CHO} + \text{h}\nu$

Last evaluated: June 2025; last change in preferred values: June 2014.

$\text{CF}_3\text{CH}_2\text{CHO} + \text{h}\nu \rightarrow \text{products}$

Primary photochemical transitions

Reaction
$\text{CF}_3\text{CH}_2\text{CHO} + \text{h}\nu \rightarrow \text{CF}_3\text{CH}_2 + \text{HCO}$ (1)
$\rightarrow \text{CF}_3\text{CH}_2\text{CO} + \text{H}$ (2)
$\rightarrow \text{CF}_3\text{CH}_3 + \text{CO}$ (3)

Absorption cross-section data

Wavelength range/nm	References	Comments
185-500	Sellevåg et al. (2004)	(a)
230-400	Chiappero et al. (2006)	(b)
230-350	Antinolo et al. (2011)	(c)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
$\Phi < 0.04$	290-400	Sellevåg et al. (2004)	(d)
$\Phi_1 = 0.38 \pm 0.09$	254	Chiappero et al. (2006)	(e)
$\Phi_3 = 0.36 \pm 0.07$	254	Chiappero et al. (2006)	(e)
$\Phi_{\text{Total}} = 0.04 \pm 0.01$	308	Chiappero et al. (2006)	(f)
$\Phi_{\text{Total}} = 0.023 \pm 0.012$	308	Antinolo et al. (2011)	(g)

Comments

(a) Absolute absorption cross-sections were measured using a diode array spectrometer at 298 K. The UV spectrum of $\text{CF}_3\text{CH}_2\text{CHO}$ shows a broad band, centered at 295 nm and extending out to approximately 350 nm. Values of σ were given at 1 nm intervals.

(b) Absolute absorption cross-sections were measured using a diode array spectrometer at 248-297 K. The UV spectrum of $\text{CF}_3\text{CH}_2\text{CHO}$ shows a broad band, centered at 295 nm and extending out to approximately 350 nm. Values of σ were given at 1 nm intervals. There was no discernable effect of temperature over the range studied on the UV spectrum.

(c) Absolute absorption cross-sections were measured using a 0.5-m spectrograph with a coupled-charge device (CCD) detector with 1.0–7.4 Torr of $\text{CF}_3\text{CH}_2\text{CHO}$ at 269 – 323 K. The spectrum had a peak at 290.82 ± 0.22 nm. Values of σ were given at 1 nm intervals.

(d) Photolysis of $\text{CF}_3\text{CH}_2\text{CHO}$ in pure dry air in the presence of an OH radical tracer (di-*n*-butyl ether) in the ~ 200 m³ EUPHORE chamber facility under natural sunlight conditions. The

measured first-order loss rate of $\text{CF}_3\text{CH}_2\text{CHO}$ during a ~ 3 hr period around solar noon was $7.74 \times 10^{-6} \text{ s}^{-1}$, essentially identical to the leak rate obtained from monitoring the decay of SF_6 . After correction for the leak rate and reaction with OH radicals, the observed first-order loss rate of $\text{CF}_3\text{CH}_2\text{CHO}$ ascribed to photolysis during this ~ 3 hr period was $J_{\text{obs}} < 1.5 \times 10^{-6} \text{ s}^{-1}$. This was compared to the maximum photolysis rate of $3.4 \times 10^{-5} \text{ s}^{-1}$ calculated using a unit quantum yield for photodissociation, the measured actinic flux within the chamber, and the measured UV absorption spectrum. Taking a ratio of $J_{\text{obs}}/J_{\text{calc}} = 1.5 \times 10^{-6}/3.4 \times 10^{-5}$ gives an upper limit for the photolysis quantum yield of < 0.04 . Solignac et al. (2007) reported quantum yields $J_{\text{obs}}/J_{\text{calc}} = (0.023 \pm 0.012)$, (0.029 ± 0.015) , and (0.046 ± 0.028) for the photodissociation of $\text{C}_3\text{F}_7\text{CHO}$, $\text{C}_4\text{F}_9\text{CHO}$ and $\text{CF}_3(\text{CF}_2)_5\text{CHO}$ in the EUPHORE chamber across the atmospheric range of absorption of the aldehydes. Solignac et al. (2007) suggested that the photolytic loss of $\text{CF}_3\text{CH}_2\text{CHO}$ may have been underestimated by Sellevåg et al. (2004).

- (e) Photolysis quantum yield measured using perfluoroacetic anhydride as a chemical actinometer. Mixtures of 0.5-5.5 mbar of $\text{CF}_3\text{CH}_2\text{CHO}$ and 20-70 mbar of NO (added as radical scavenger) were irradiated using a low pressure Hg lamp and the rate of loss of $\text{CF}_3\text{CH}_2\text{CHO}$ was compared to that of perfluoroacetic anhydride in similar experiments. The formation of $\text{CF}_3\text{CH}_2\text{NO}$ and CF_3CH_3 were measured by IR spectroscopy and used to derive quantum yields for processes (1) and (3).
- (f) Photolysis quantum yield measured using CH_3CHO as a chemical actinometer. Mixtures of *n*- $\text{CF}_3\text{CH}_2\text{CHO}$ and NO (added as radical scavenger) in 700 Torr of N_2 diluent were irradiated using the 308 nm output of an eximer laser. The rate of loss of $\text{CF}_3\text{CH}_2\text{CHO}$ was compared to that of CH_3CHO in back-to-back experiments. There was no evidence for the formation of CF_3CH_3 ($< 5\%$ yield) following the irradiation of $\text{CF}_3\text{CH}_2\text{CHO}$ –NO– N_2 mixtures showing that process (3) is not significant.
- (g) Photolysis quantum yield measured using NO_2 and acetaldehyde as chemical actinometers with pulsed laser photolysis of $\text{CF}_3\text{CH}_2\text{CHO}$ at 308 nm in 25.4 – 760 Torr (34 – 1013 mbar) of air at 298 K. The quantum yield at $\lambda=308$ nm was pressure dependent, ranging from (0.142 ± 0.098) at 75 Torr to (0.023 ± 0.006) at 760 Torr. The pressure dependence is characterized by the Stern–Volmer expression with a Stern–Volmer constant of $(3.25 \pm 0.48) \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1}$. FTIR spectroscopy was used to identify the products following photolysis of $\text{CF}_3\text{CH}_2\text{CHO}$ in air. From the observed product distribution it was concluded that photolysis at 308 nm occurs predominantly via channel (1) to give $\text{CF}_3\text{CH}_2 + \text{HCO}$ radicals.

Preferred Values

Absorption cross-sections of $\text{CF}_3\text{CH}_2\text{CHO}$ at 298 K

λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
225	0.26	300	3.59
230	0.27	305	3.02
235	0.35	310	3.00
240	0.49	315	2.12
245	0.68	320	1.82
250	0.95	325	1.44
255	1.34	330	0.69
260	1.78	335	0.67
265	2.14	340	0.24
270	2.74	345	0.07
275	3.01	350	0.04
280	3.39	355	0.04
285	3.59	360	0.01
290	3.52	365	0.00
295	3.59	370	

Quantum Yields of $\text{CF}_3\text{CH}_2\text{CHO}$

$\Phi_1 = 0.38$ at 254 nm

$\Phi_3 = 0.36$ at 254 nm

$\Phi_{\text{Total}} = 0.03$ at 308 nm

Reliability

$\Delta\Phi_1 = \pm 0.10$ at 254 nm

$\Delta\Phi_3 = \pm 0.10$ at 254 nm

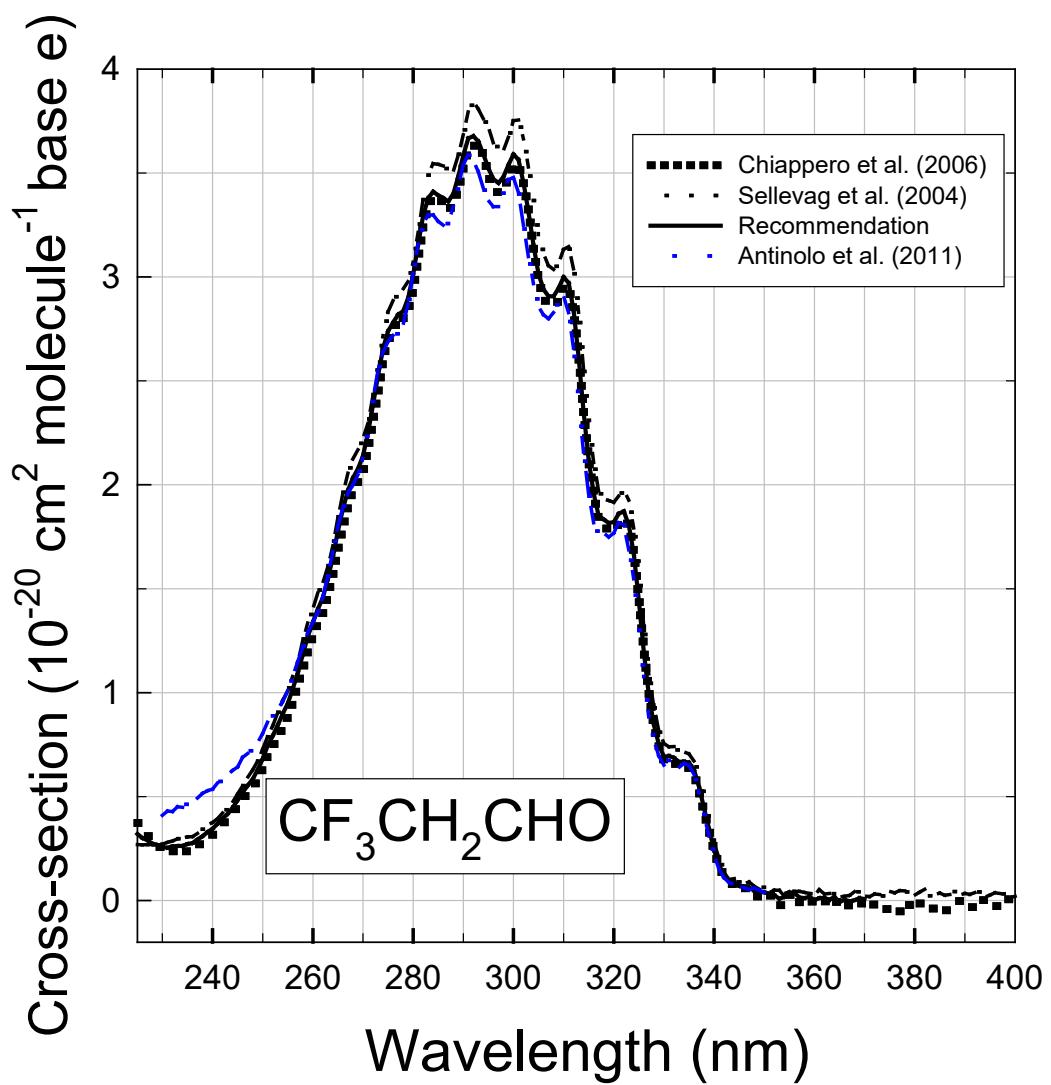
$\Delta\Phi_{\text{Total}} = \pm 0.01$ at 308 nm

Comments on Preferred Values

There is good agreement between the absorption cross sections measured by Sellevåg et al. (2004), Chiappero et al. (2006), and Antinolo et al. (2011) for $\lambda > 260$ nm. At wavelengths below 260 nm the absorption cross sections reported by Antinolo et al. (2011) are substantially larger than those reported by Sellevåg et al. (2004) and Chiappero et al. (2006). Taking an average of the results from Sellevåg et al. (2004), Chiappero et al. (2006), and those from Antinolo et al. (2011) for $\lambda > 260$ nm gives the recommended values. The quantum yield measurements at 254 nm reported by Chiappero et al. (2006) are recommended. The recommended quantum yield at 308 nm is an average of the results from Chiappero et al. (2006) and Antinolo et al. (2011). The product identified by Antinolo et al. (2011) indicate that photolysis at 308 nm proceeds predominately, if not exclusively, via channel (1).

Chiappero et al. (2006) assumed a wavelength and pressure independent photolysis quantum yield of 0.04 for $\text{CF}_3\text{CH}_2\text{CHO}$ (based on their data measured at 308 nm) and estimated the photolysis lifetimes in the summer and winter solstices and the fall and spring equinoxes. Chiappero et al. (2006) averaged the lifetimes to give annual averages of approximately 11 days at 11 km altitude and 40 days at 0 km. Antinolo et al. (2011) assumed a wavelength independent but pressure dependent photolysis quantum yield (based on their data measured at 308 nm) for $\text{CF}_3\text{CH}_2\text{CHO}$ and reported photolysis rates of $2.83 \times 10^{-6} \text{ s}^{-1}$ and $1.0 \times 10^{-5} \text{ s}^{-1}$ at 0 km and 10 km altitude, respectively, for Ciudad Real, Spain (the solar zenith angle was unspecified, but it probably reflects noon in summer). The results from Chiappero et al. (2006) and Antinolo et al. (2011) indicate that photolysis is an important atmospheric fate of $\text{CF}_3\text{CH}_2\text{CHO}$.

References


Antinolo, M., Jiménez, E., and Albaladejo, J.: *Phys. Chem. Chem. Phys.* 13, 15936, 2011.

Chiappero M. S., Malanca, F. E., Argüello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: *J. Phys. Chem. A*, 110, 11944, 2006.

Hashikawa, Y., Kawasaki, M., Waterland, R. L., Sulbaek Andersen, M. P., Nielsen, O. J., Hurley, M. D.; Ball, J. C.; and Wallington, T. J.: *J. Fluorine Chem.*, 125, 1925, 2004.

Sellevåg, S. R., Kelly, T., Sidebottom, H., and Nielsen, C. J.: *Phys. Chem. Chem. Phys.*, 6, 1243, 2004.

Solignac, G., Mellouki, A., Le Bras, G., Yujing, M., Sidebottom, H.: *Phys. Chem. Chem. Phys.* 9, 4200, 2007.

PF10: *n*-C₆F₁₃CH₂CHO + hν

Last evaluated: June 2025; last change in preferred values: June 2010.

n-C₆F₁₃CH₂CHO + hν → products

Primary photochemical transitions

Reaction	
$n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CHO} + \text{h}\nu \rightarrow n\text{-C}_6\text{F}_{13}\text{CH}_2 + \text{HCO}$	(1)
$\rightarrow n\text{-C}_6\text{F}_{13}\text{CH}_2\text{CO} + \text{H}$	(2)
$\rightarrow n\text{-C}_6\text{F}_{13}\text{CH}_3 + \text{CO}$	(3)

Absorption cross-section data

Wavelength range/nm	References	Comments
230-400	Chiappero et al. (2006)	(a)
230-350	Solignac et al. (2007)	(b)

Quantum yield data

Measurement	Wavelength/nm	References	Comments
$\Phi_{\text{Total}} = 0.55 \pm 0.09$	254	Chiappero et al. (2006)	(c)

Comments

(a) The UV absorption spectrum was recorded using a single sample of 1.5 mbar of *n*-C₆F₁₃CH₂CHO in a 10 cm quartz cell using a diode array spectrometer at 297 K. The reported UV spectrum of *n*-C₆F₁₃CH₂CHO shows a broad band centered at 295 nm and extending out to approximately 350 nm. Values of σ were given at 1 nm intervals.

(b) Absolute absorption cross-sections were measured with a resolution of 0.1 nm using a diode array spectrometer for 0.6–2.0 Torr (0.8–2.7 mbar) samples of *n*-C₆F₁₃CH₂CHO in a 100 cm cell at 298 K. The UV spectrum of *n*-C₆F₁₃CH₂CHO shows a broad band centered at 285 nm and extending out to approximately 350 nm. Values of σ were given at 1 nm intervals.

(c) Photolysis quantum yield measured using perfluoroacetic anhydride as a chemical actinometer. Mixtures of *n*-C₆F₁₃CH₂CHO and NO (added as radical scavenger) were irradiated using a low pressure Hg lamp and the rate of loss of *n*-C₆F₁₃CH₂CHO was compared to that of perfluoroacetic anhydride in similar experiments.

Preferred Values

Absorption cross-sections of *n*-C₆F₁₃CH₂CHO at 298 K

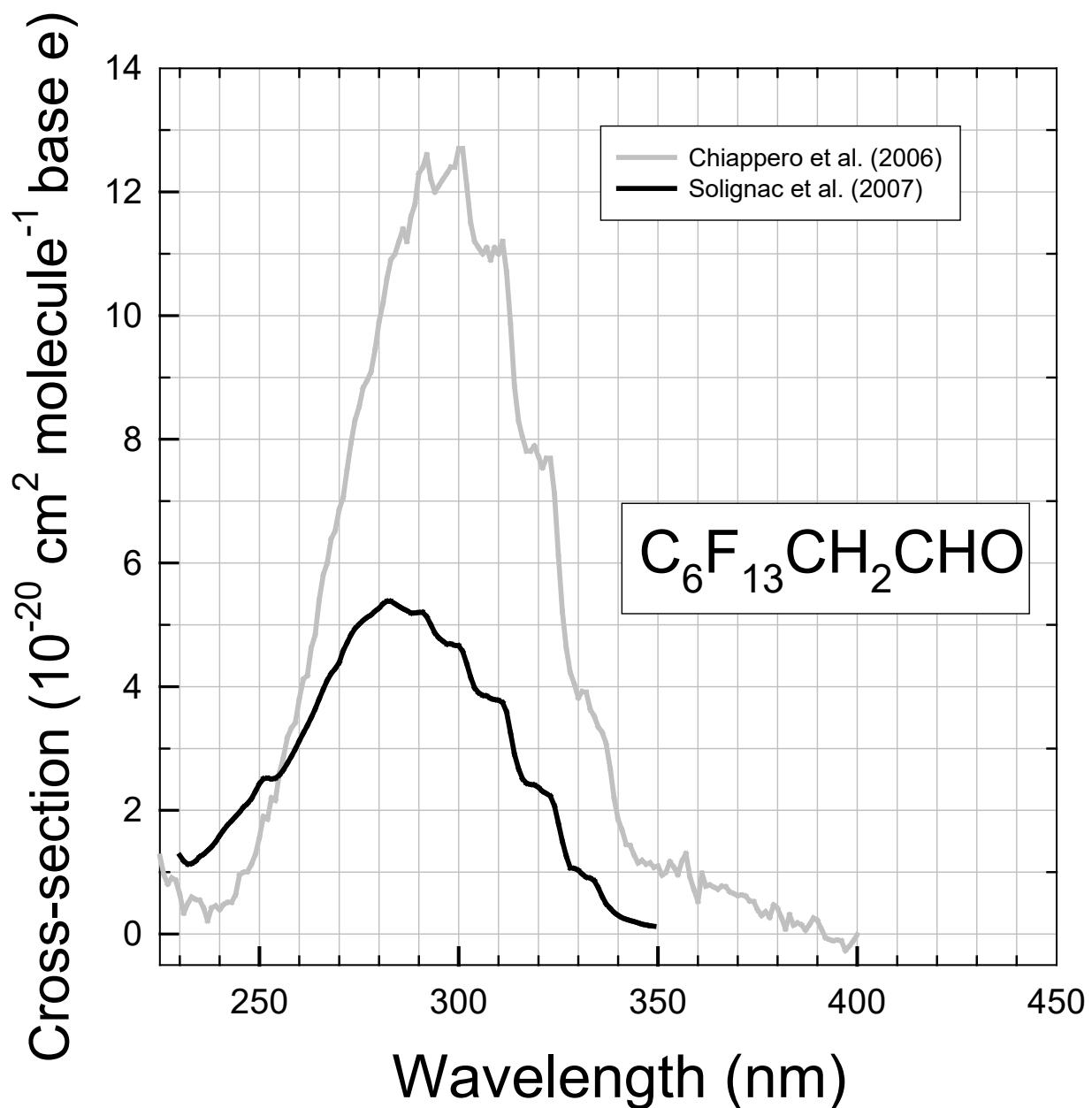
λ/nm	$10^{20} \sigma/\text{cm}^2$	λ/nm	$10^{20} \sigma/\text{cm}^2$
230	1.27	290	5.20
235	1.25	295	4.79
240	1.59	300	4.66
245	1.97	305	3.90
250	2.43	310	3.78
255	2.57	315	2.67
260	3.12	320	2.37
265	3.80	325	1.79
270	4.39	330	1.03
275	5.01	335	0.75
280	5.27	340	0.30
285	5.30	345	0.18
		350	0.00

Quantum Yields of *n*-C₆F₁₃CH₂CHO

$$\Phi_{\text{Total}} = 0.55 \text{ at } 254 \text{ nm}$$

Reliability

$$\Delta\Phi_{\text{Total}} = \pm 0.10 \text{ at } 254 \text{ nm}$$


Comments on Preferred Values

The absorption spectrum reported by Chiappero et al. (2006) is based upon the measured absorption by one sample using a 10 cm pathlength and is considered less reliable than that measured by Solignac et al. (2007) using a range of sample partial pressures in a 100 cm absorption cell. The absorption spectrum from Solignac et al. (2007) is recommended.

Chiappero et al. (2006) assumed a wavelength independent photolysis quantum yield of 0.01 for *n*-C₆F₁₃CH₂CHO (based on an assumption that the quantum yield depends inversely on the molecular size of the fluorinated aldehyde and that the quantum yield for photolysis of *n*-C₆F₁₃CH₂CHO is approximately one quarter less than that for CF₃CH₂CHO measured at 308 nm) and estimated the photolysis lifetimes in the summer and winter solstices and the fall and spring equinoxes. Chiappero et al. (2006) averaged the lifetimes to give annual averages of approximately 8 days at 11 km altitude and 20 days at 0 km. Measurements of the photolysis quantum yield at atmospherically relevant wavelengths are needed to better understand the role of photolysis in the atmospheric chemistry of this molecule.

References

Chiappero M. S., Malanca, F. E., Argüello, G. A., Wooldridge, S. T., Hurley, M. D., Ball, J. C., Wallington, T. J., Waterland, R. L., and Buck, R. C.: J. Phys. Chem. A, 110, 11944, 2006.
Solignac, G., Mellouki, A., Le Bras, G., Yujing, M., and Sidebottom, H.: Phys. Chem. Chem. Phys., 9, 4200, 2007.

