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Abstract 28 

Quantitative reconstruction of ocean surface density during the Last Glacial Maximum (LGM) 29 

offers valuable insights into the ability of climate models to simulate past climate conditions, 30 

when global temperatures were about 4.5°C to 6°C colder than today. We assess the 31 

performance of the LGM climate simulations, as part of the 3rd and 4th phase of the 32 

Paleoclimate Modeling Intercomparisons Project, using a recent ocean surface density 33 

reconstruction based on the δ¹⁸O of foraminiferal calcite (δ¹⁸Oc). We consider the differences 34 

between the LGM and the preindustrial climates and each period separately, at both global 35 

and regional scales. Because surface density reflects the combined effects of temperature and 36 

salinity, we also examined sea surface temperature (SST) to better identify the processes 37 

underlying model–data differences. 38 

Surface density reconstructions show greater variability than simulated surface density. 39 

Models therefore struggle to reproduce the spatial variability of the density difference (LGM 40 

– pre-industrial (PI)), but part of the mismatch may arise from the uneven spatial distribution 41 

of reconstructions, which are mostly located near coastal areas.  42 

Density anomaly (LGM – PI) differences between data and models are largely controlled by 43 

sea surface salinity (SSS), with SST contributing to a lesser extent. This influence of SSS is 44 

directly linked to the reduction in tropical precipitation during the LGM: models that best 45 

match the large-scale density anomalies also simulate the strongest reductions in 46 

reconstructed low-latitude precipitation during the LGM, highlighting the key role of 47 

hydrological cycle changes in shaping surface density. 48 

On a global scale, 100% of model simulations show a statistically significant relationship with 49 

surface density reconstructions, looking at LGM and PI separately. However, on a regional 50 

scale, some features are poorly simulated, leading to weaker agreement between data and 51 

model simulations, particularly in the North Indian and Southern Oceans. Our analysis 52 

concludes with a focus in the Indo-Pacific Warm Pool. Past reconstructions indicate a LGM 53 

weakened Indian ocean west–east surface density gradient, but only 7 out of 14 models (50%) 54 

reproduce this feature. These results highlight the need to better constrain regional 55 

hydrological cycle changes in models, as improving their representation is crucial to reduce 56 

uncertainties in both paleoclimate simulations and future climate projections. 57 
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1. Introduction 68 

Past surface seawater density is a key property for studying ocean dynamics, as it reflects the 69 

combined influence of surface temperature and salinity and is directly linked to circulation 70 

changes through geostrophic balance. In this study, we focus specifically on seawater surface 71 

density, providing a novel perspective in model–data comparisons for the Last Glacial 72 

Maximum (LGM), a variable that has not been explored in previous assessments. 73 

 74 

To simulate future climate change, scientists rely on coupled general circulation models 75 

(GCMs). Yet these models differ in their representation of Sea Surface Temperature (SST), Sea 76 

Surface Salinity (SSS), and in the processes that control density. Differences in changes of SST 77 

and SSS in the future is therefore leading to large uncertainties in the simulation of future 78 

ocean dynamics (Flato et al., 2014 – IPCC AR5; Eyring et al., 2021 – IPCC AR6).  79 

 80 

Since climate models are developed based on present-day conditions and used to project 81 

future climates that may be very different from the present one, it is important to also 82 

evaluate them with reconstructed very different climate conditions from the past, to gain 83 

confidence in their projections. One way to test the response of these models to various 84 

external forcings is to use paleoclimate simulations, which provide an independent evaluation 85 

of model performance (Harrison et al., 2014; Kageyama et al., 2024) against available 86 

reconstructions. This allows us to benchmark models using evidence from past climates, which 87 

is essential for strengthening confidence in their future projections. The Paleoclimate Model 88 

Intercomparison Project (PMIP; Joussaume and Taylor, 1995; Kageyama et al., 2018) tests the 89 

ability of models to simulate paleoclimate reconstructions. Currently in its fourth phase 90 

(PMIP4), with a fifth in preparation, PMIP plays a critical role in evaluating how well models 91 

reproduce past climates. 92 

One of the PMIP reference periods is the Last Glacial Maximum, which occurred between 93 

19,000 and 23,000 years ago, when the ice sheets reached their maximum global volume (Mix 94 

et al., 2001). During this period, the climate was markedly different from pre-industrial 95 

conditions, with significantly colder temperatures (from −4.5 ± 0.9 °C according to Annan et 96 

al. 2022 to −6.1 ± 0.4 °C according to Tierney et al. 2020) and altered hydrological cycles, 97 

making it an interesting benchmark period for evaluating climate models (MARGO project, 98 

2009; Braconnot et al., 2012). 99 

 100 

Evaluating numerical climate models using a data-model comparison allows us to assess their 101 

robustness in simulating key variables such as sea surface temperature (SST) and precipitation 102 

(Brierley et al., 2023). Recent intercomparison studies focusing on SST reconstructions at the 103 

LGM (Tierney et al., 2020; Kageyama et al., 2021) show that models generally capture large-104 

scale cooling patterns but still often exhibit regional biases and differences between PMIP3 105 

and PMIP4 simulations.  106 

 107 

To enable quantitative evaluation of ocean surface density, a new method has been 108 

developed to reconstruct annual seawater surface densities in the past (Caley et al., 2025), 109 

providing a novel tool for model assessment. However, until now, quantitative evaluations of 110 

surface density remain unexplored, which limits our understanding of how well models 111 

capture the combined effects of temperature and salinity on ocean circulation.  112 
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In this study, we make use of this new surface density reconstruction to evaluate the PMIP3 113 

and PMIP4 simulations in terms of annual ocean surface density, both on a global scale 114 

(excluding the Nordic Seas region, Caley et al., 2025) and regionally. We consider simulations 115 

of the Last Glacial Maximum (LGM) and the pre-industrial period (piControl). We focus on 116 

evaluating model performance in simulating surface density, and where there are large 117 

discrepancies between models and past reconstructions, we further investigate SST and, in 118 

combination with density, qualitative changes in SSS. This approach provides a 119 

complementary perspective to previous studies, offering new insights into the coupled role of 120 

temperature and salinity in shaping ocean surface density and allowing for a more integrated 121 

evaluation of model performance.  122 

 123 

Our analysis is structured as follows: we first assess model simulations against past 124 

reconstructions at the global scale in Sect. 3. We then examine regional differences in Sect. 4, 125 

identifying areas where models perform better or worse, with a particular focus on the Indian 126 

Ocean as a case study of regional variability (Sect. 4.3). 127 

 128 

2. Material and methods 129 

2.1. Climate reconstructions 130 

2.1.1. Surface ocean density 131 

To evaluate model simulations on ocean surface density, we use the quantitative past density 132 

reconstruction dataset proposed by Caley et al. (2025). They developed a new Bayesian 133 

calibration model to calculate the annual surface ocean density using the δ18Oc measurements 134 

of several foraminiferal species. Briefly, this probabilistic approach explicitly accounts for 135 

inter-species differences and calibration uncertainties, allowing quantitative density 136 

reconstructions. New and published δ18Oc datasets were compiled to create an extended 137 

database of 474 density reconstructions distributed across all oceanic regions. For each 138 

marine sediment core, reconstructions are available for both the LGM and the Late Holocene 139 

(LH) (Caley et al., 2025). Analyses from the northern region > 40°N of the Atlantic Ocean were 140 

rejected due to potential errors when applying the calibration to the LGM time period (Caley 141 

et al., 2025). We thus also exclude this region for the model-data comparison. Surface density 142 

is expressed in kg/m³. Throughout this work, values are expressed as anomalies relative to 143 

1000 kg/m³. 144 

Concerning the instrumental observations, we used the version 4.2.2 (analyses.g10, 145 

downloaded in 2024) of the EN dataset from the Met Office Hadley Centre (Good et al., 2013), 146 

commonly referred to as EN4. This dataset provides quality-controlled ocean temperature and 147 

salinity profiles globally, as well as monthly gridded fields derived from objective analyses, 148 

covering the period from 1900 to 2022. EN4 is a compilation of temperature and, when 149 

available, salinity measurements from various ocean data sources. Surface seawater density, 150 

which is a non-linear function of temperature and salinity, was calculated from EN4 151 

temperature and salinity fields using the GSW (Gibbs Seawater) formulation implemented in 152 

the gsw Python package (Roquet et al., 2015).  153 
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2.1.2. Sea surface temperature 154 

Since sea surface density and SST are linked, we also performed a data/model comparison in 155 

terms of surface temperature. This provides an additional way to investigate the drivers of 156 

surface density changes. To do this, we used two previously published SST databases (MARGO 157 

Project, 2009; Tierney et al., 2020). These two databases were not combined, as the Tierney 158 

dataset includes some MARGO data but with more recent calibrations. Notably, Tierney et al. 159 

(2020) also recalibrated all age models using the Marine13 radiocarbon calibration curve and 160 

the BACON age modelling software, ensuring a better chronological consistency across 161 

records. The temporal periods differ slightly: Tierney’s data refer to the LGM and the Late 162 

Holocene (LH), while the MARGO data include LGM and “pre-industrial” measurements from 163 

the WOA1998 dataset (NODC, Silver Springs, 1998). Following Tierney et al. (2020), we make 164 

here the approximation that the Late Holocene is considered representative of the pre-165 

industrial climate state. 166 

The MARGO database (MARGO Project, 2009) contains 821 SST reconstructions based on a 167 

diverse range of proxies, including Mg/Ca ratios, Uₖ′₃₇ indices, radiolarians, diatoms, 168 

foraminiferal transfer functions, and the tetraether index TEX₈₆. In contrast, Tierney’s dataset 169 

(Tierney et al., 2020) comprises 244 SST records derived exclusively from Mg/Ca, TEX₈₆, and 170 

Uₖ′₃₇ proxies. We do not use the assimilated SST product developed by Tierney et al. (2020), 171 

but only the raw SST proxy database published in association with their study. This selection 172 

reflects a deliberate choice by Tierney et al. (2020) to exclude assemblage-based proxies such 173 

as foraminiferal transfer functions, due to concerns over “no-analogue” assemblages and the 174 

lack of Bayesian calibration models, which are central to their probabilistic framework. SST 175 

values inferred from δ¹⁸Oc were also excluded from our analysis, as they were already 176 

incorporated into our density reconstructions. Finally, both SST and density datasets were re-177 

gridded onto a common 1° × 1° spatial grid, matching the reference grid to which the model 178 

simulations were also re-gridded, allowing for a direct comparison. 179 

2.2 Climate model simulations 180 

For this study, we used LGM and pre-industrial (hereafter piControl) climate model 181 

simulations from a total of sixteen simulations, including seven from PMIP3 (Braconnot et al., 182 

2012) and nine from PMIP4 (Kageyama et al., 2018) (see Table 1). Two more simulations were 183 

excluded due to inconsistencies in salinity data (e.g. unit or formatting issues), making them 184 

unsuitable for analysis. Some model simulations share the same piControl but differ by their 185 

imposed ice-sheet reconstructions for LGM (e.g., HadCM3-ICE6GC vs. HadCM3-GLAC1D and 186 

iLOVECLIM1-1-1-GLAC1D vs iLOVECLIM-1-1-1-ICE-6G-C). We tested whether simulations from 187 

the same model (within a PMIP phase or across PMIP3/PMIP4 versions) were too similar to 188 

each other. Our analysis showed that all simulations differed in at least one basin and for at 189 

least one of the variables (SSS, SST, density). Based on this, we retained all simulations.  190 

The pre-industrial control simulation uses the constant boundary conditions established for 191 

1850 CE (Eyring et al., 2016). It aims to produce a stable quasi-equilibrium climate under 1850 192 

conditions, characterised by the annual cycle (mean and seasonality) and internal variability 193 

arising from interactions between Earth system components. This simulation serves as a 194 

baseline from which changes in all other experiments are calculated. 195 
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The LGM experimental protocol (Kageyama et al., 2017) considered as boundary conditions 196 

the large continental ice sheets, the associated land-sea mask changes, adjustments to ocean 197 

salinity (as ice sheets store large volumes of freshwater), and reductions in greenhouse gases. 198 

This makes it a challenging experiment for climate models, which explains why only a limited 199 

number of modelling groups have performed it. In two simulations (MIROC-ESM and IPSL-200 

CM5A2), the salinity field was not initialized with the +1 psu offset prescribed in the protocol 201 

to account for freshwater stored in ice sheets. To ensure comparability across models, we 202 

added +1 psu to the LGM salinity of these two simulations before calculating absolute density. 203 

Simulations performed with the iLOVECLIM model found the dynamical effect of that + 1 psu 204 

to be very small, supporting this direct correction (Caley et al., 2025). For the calculation of 205 

surface density changes due to the hydrographic changes in SST and SSS, i.e. corrected for 206 

mean ocean density changes related to ocean volume, we removed this +1 psu from the LGM 207 

simulations and applied a −0.77 kg/m3 density correction to the reconstructions, following 208 

Caley et al. (2025). 209 

We analysed annual mean SSS and SST from these simulations. All outputs were regridded to 210 

a common 1°×1° grid, and monthly data were averaged to obtain climatological annual means. 211 

These means were computed over the full duration of each simulation, which ranges from 100 212 

to 1100 years for the piControl experiments and up to 500 years for the LGM experiments. 213 

The variables used here are salinity (so) and temperature (thetao). To study surface density, 214 

we used salinity and temperature from the first ocean layer. Seawater density was calculated 215 

using the gsw (Gibbs Seawater) Python package, which is based on the TEOS-10 216 

thermodynamic framework and provides thermodynamically consistent equations for 217 

seawater properties. The gsw package requires Absolute Salinity (SA) and Conservative 218 

Temperature (CT) as inputs. CT is a more accurate and thermodynamically sound analog of 219 

Potential Temperature (θ), and SA is derived from Practical Salinity (SP), which is unitless and 220 

not directly usable in thermodynamic calculations. Since the model simulations originally 221 

provided SP and θ, we first converted them to SA and CT using the functions SA_from_SP and 222 

CT_from_pt, respectively. Finally, in-situ seawater density was computed with gsw.rho(SA, CT, 223 

p), using a computationally efficient expression for specific volume as a function of SA, CT, and 224 

pressure (Roquet et al., 2015). 225 
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 226 

Table 1: Model simulations available for this study, with LGM and piControl simulations. Model simulations from PMIP3 (blue) 227 
and PMIP4 (pink). 228 

 229 

2.3 Statistical analysis: 230 

Model–data comparisons were performed on a 1° × 1° grid, restricted to locations where 231 

proxy reconstructions provide valid values. Model anomalies were extracted exactly at the 232 

proxy sites to ensure strict spatial consistency. 233 

Distributional agreement between models and reconstructions was evaluated using three 234 

complementary criteria. First, interquartile range (IQR) overlap was assessed to check 235 

distributional consistency while limiting sensitivity to extreme outliers. Second, the 236 

Kolmogorov–Smirnov (KS) statistic, which quantifies the maximal difference between 237 

cumulative distributions, was compared to basin-specific thresholds to account for differences 238 

in sample size: South Indian 0.240 (n = 35), North Indian 0.254 (n = 27), South Atlantic 0.259 239 

(n = 26), North Atlantic 0.224 (n = 36), Pacific 0.154 (n = 75), and Southern Ocean 0.483 (n = 240 

7). Exceeding these thresholds indicates a substantial difference between model and data 241 

distributions. Third, a two-sample KS test p-value < 0.05 indicates a statistically significant 242 

difference between distributions: a value above 0.05 indicates that the null hypothesis 243 

(distributions are similar) cannot be rejected, while p < 0.05 indicates a significant difference. 244 

For visualization, kernel density estimates (KDEs) provided smoothed, continuous 245 

representations of the distributions, highlighting central tendencies and the most frequent 246 

values. 247 
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For linear relationships, regression analyses were performed separately for PI and LGM 248 

periods. The coefficient of determination (R²) quantifies the proportion of variance in 249 

reconstructions explained by the models, while the slope measures the amplitude of the 250 

model response relative to observations. To account for uncertainties in the reconstructions, 251 

a Monte Carlo procedure (10,000 iterations) added Gaussian noise to the observations, 252 

derived from the 95% confidence intervals. Distributions of R² and slope were then analyzed, 253 

and reported values correspond to mean ± standard deviation.  254 

This framework provides a consistent and rigorous evaluation of model–data agreement, 255 

encompassing both distributional comparisons and linear relationships, and applies globally 256 

as well as regionally across ocean basins. 257 

2.4 Testing spatial representativeness with a pseudo-proxy approach 258 

The spatial distribution of reconstructions is uneven, with a clear concentration of data near 259 

coastal areas (Fig. 2). To assess whether the proxy data locations are representative of broader 260 

basin-scale conditions, a “pseudo-proxy” approach (Ayache et al., 2018) was performed, in 261 

order to compare the mean local values with basin-wide means derived from the models (Fig. 262 

1, Fig. S1). This analysis evaluates the spatial representativeness of proxy locations at the basin 263 

scale. However, it does not address differences between coastal and open-ocean 264 

environments, since climate models do not explicitly represent coastal processes and 265 

therefore cannot accurately simulate nearshore dynamics. Details on the basin definition and 266 

spatial masks used for this analysis are provided in Appendix A. 267 

 268 

Figure 1: Pseudo-proxy test for global ocean surface density. Comparison between the mean density anomalies (kg/m3) 269 
averaged across all model grid points (x-axis) and the mean density anomalies (kg/m3) averaged over proxy reconstruction 270 
sites (y-axis). PMIP3 simulations are shown in blue, and PMIP4 simulations in red. The purple regression line and R² represent 271 
the fit across all model simulations combined (PMIP3 + PMIP4). Results for individual basins are provided in Supplementary 272 
Fig.S1. 273 

https://doi.org/10.5194/egusphere-2026-254
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



9 
 

For this purpose, we compare the average of density simulated by PMIP3 and PMIP4 model 274 

simulations over a given basin with the average density only at locations where proxy data are 275 

available (Fig. 1). A near-linear relationship is found at the global scale (Fig.1) and across most 276 

basins (Fig. S1), with regression slopes ranging from 0.78 in the Southern Ocean to 1.32 in the 277 

South Atlantic, and coefficients of determination (R²) between 0.40 (South Indian) to 0.98 278 

(North Indian), when compiling PMIP3 and PMIP4. These regressions indicate how well the 279 

mean over proxy sites reproduces the true basin-wide mean in the model simulations. The 280 

slopes being close to one and the high R² values indicate that the mean anomalies at the proxy 281 

sites capture the basin-wide means simulated by the models reasonably well. This suggests 282 

that, within the models, the uneven proxy distribution does not strongly bias the large-scale 283 

signal. However, when analyzing PMIP3 and PMIP4 separately (Fig. S1, individual points in blue 284 

and red), significant relationships are not found in the South Indian and Southern Ocean 285 

basins. This suggests that the smaller number of models in each ensemble, combined with the 286 

limited proxy coverage in these basins, reduces the robustness of the relationship. When 287 

pooling PMIP3 and PMIP4 simulations, all basins show statistically significant relationships (p-288 

value < 0.05), confirming that the signal emerges when sample size is increased. These results 289 

therefore support using specific proxy locations as representative of larger signal at basin 290 

scale. 291 

 292 

3. Evaluate model simulations at the global scale 293 

Before investigating regional features, we first assess the large-scale behaviour of model 294 

simulations. A global-scale evaluation allows us to assess the overall ability of PMIP3 and 295 

PMIP4 simulations to reproduce the reconstructed large-scale signal of surface density 296 

changes between the LGM and the pre-industrial period. Evaluating models at this integrated 297 

scale also helps reduce the influence of local reconstruction uncertainties and highlights the 298 

dominant climatic drivers of density variations, such as global temperature and hydrological 299 

cycle changes. 300 

3.1. Sea surface density anomaly (LGM-PI) 301 

 302 

We first analyse absolute surface density anomalies between the LGM and the Pre-Industrial 303 

period (LGM–PI), in order to reduce the impact of potential systematic model-specific biases 304 

that may persist across time periods. All models simulate positive anomalies, i.e. they agree 305 

on the sign of the change. However, both the spatial patterns and the amplitude of the 306 

simulated anomalies vary considerably from one model simulation to another (Fig. 2). When 307 

averaged over space, simulated mean density anomalies typically range from 0.6 to 1.6, with 308 

an average value close to 1.0. In contrast, the proxy-based reconstructions exhibit a slightly 309 

higher mean, approximately 1.5. 310 
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 311 

 312 

Figure 2: Absolute surface density (kg/m3) anomaly map (LGM - piControl). The dots represent the surface density anomaly 313 
database reconstructions (Caley et al., 2025) and the background map is the anomaly mean for each model simulations in 314 
the study.  315 
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When zonally averaged, the density anomaly (LGM-PI) in the observations (Fig. 3, grey dots) 316 

is stronger in the low latitudes than in the mid-latitudes, as already discussed in Caley et al., 317 

2025. The observed increase in density during the LGM, both in the simulations and in the 318 

reconstructions, is consistent with the SST cooling (MARGO project, 2009; Tierney et al., 2020) 319 

and with a weaker hydrological cycle at low latitudes, in which precipitation decreased more 320 

than evaporation. This reduction in precipitation leads to saltier and denser surface waters 321 

(Kageyama et al., 2021), as already discussed in Caley et al., 2025.  322 

Some model simulations fail to reproduce the full latitudinal structure, such as CNRM-CM5 323 

and MPI-ESM-P, while others do not capture the shape but match the density anomaly well at 324 

low latitudes, for instance iLOVECLIM-ICE-6G-C and iLOVECLIM-GLAC-1D. Some model 325 

simulations, such as IPSL-CM5A and HadCM3-PMIP3, are in good agreement with the data 326 

across all latitudes, especially between 0 and 40°N, considering the uncertainties on the 327 

reconstructions (Fig. 3). The same type of zonally averaged analysis was performed for SSTs, 328 

and the corresponding results are shown in Figs. B2 and B3. 329 

 330 

Figure 3: Density anomaly (kg/m3) as a function of latitude for each model simulation (colored dots) compared with the 331 
observational data (grey dots) and the 68% confidence interval (grey shading). Model outliers, identified using the 332 
interquartile range (IQR) method (values outside 1.5×IQR), were excluded to reduce the influence of extreme values. This 333 
filtering highlights the main structure and latitudinal patterns of the modelled density anomalies while retaining all available 334 
latitude points. 335 

We next investigated the physical drivers of the density differences between reconstructions 336 

and simulations by decomposing the total density anomaly into temperature and salinity 337 

components. Model outputs and proxy datasets were collocated at common sampling points 338 

without additional interpolation, ensuring a strict one-to-one correspondence between 339 

density and SST observations. This procedure yielded 80 common points for the MARGO 340 
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database (MARGO Project, 2009) and 92 points for the SST dataset from Tierney et al. (2020). 341 

No outlier filtering was applied. 342 

Before computing the salinity contribution, the global density related to sea-level–induced 343 

salinity increase (−1 g/kg in models, −0.77 kg/m3 in reconstructions; Caley et al., 2025) was 344 

removed to isolate density changes linked to hydrographic changes in SST and SSS. Because 345 

this correction is applied consistently to both reconstructions and model outputs, and since 346 

the analysis is based on model–data differences, it has no effect on the results presented here. 347 

To quantify the relative influence of temperature and salinity on the model–data density 348 

anomaly differences, we decomposed the total density anomaly difference (model 349 

simulations minus reconstruction) into two components. We first isolated the temperature 350 

effect by calculating how density would change keeping salinity fixed to isolate the thermal 351 

contribution. The remaining difference, attributed to salinity, was computed as the residual 352 

between the total density bias and the temperature-only component.  353 

Figure 4 shows the relative contributions (%) of SST and salinity to the density anomaly for 354 

each model. In most models, salinity (red bars) is the dominant contributor to the density 355 

anomaly difference between reconstructions and simulations. Only a few simulations, such as 356 

HadCM3-GLAC and CESM1.2, exhibit larger SST contributions (orange bars), but these are 357 

exceptions rather than the rule. Note that this figure shows relative contributions (%) and does 358 

not indicate the absolute magnitude of the total density bias.  359 

Overall, these results demonstrate a clear pattern: SST effects alone are insufficient to explain 360 

the observed density anomaly differences between reconstructions and models, whereas SSS 361 

differences account for the majority of the model–data discrepancy (Fig. 4) in most 362 

simulations. Furthermore, it is important to note that Figure 4 shows an average, which 363 

“smooths” the variability observed across latitudes. Looking at Figure B2, we see that salinity 364 

anomalies explain the variability in density anomalies. The variability is largely dominated by 365 

salinity. Very little variability is observed in SST in model simulations. 366 

 367 

Figure 4: Relative contributions (%) of SST (orange) and SSS (red) to the model-data density anomaly (LGM-PI) differences. 368 
Contributions are shown as percentages of the total absolute density difference between model simulations and 369 
reconstructions. Solid bars:  MARGO SST dataset (MARGO Project, 2009); hatched bars: Tierney et al. (2020) SST dataset. The 370 
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decomposition was performed by first calculating the temperature-only density anomaly (using model LGM temperatures 371 
with PI salinity), then attributing the residual to salinity effects. Density calculations use TEOS-10 GSW routines.  372 

 373 

Given that the hydrological cycle influences surface salinity and that salinity anomalies 374 

strongly influence the difference in data/model density anomalies, we explored the link 375 

between density anomalies and large-scale precipitation changes. Using the PMIP3 and PMIP4 376 

ensembles, Kageyama et al. (2021) showed that nearly all models simulate substantial 377 

decreases in precipitation in high-rainfall regions during the LGM, particularly across the 378 

tropics and monsoon zones, although the magnitude varies between models. Models that best 379 

reproduce the reconstructed density anomalies found in reconstructions also tend to exhibit 380 

the largest reductions in tropical precipitation. In contrast, models with smaller precipitation 381 

decreases fail to reproduce the observed density structure. Figure 5 illustrates the relationship 382 

between density anomalies and mean annual precipitation anomalies for both the tropics 383 

(30°S–30°N, circle) and the global ocean (square). A clear linear relationship emerges between 384 

density anomalies and precipitation anomalies, with R² = 0.67 in the tropics and R² = 0.64 385 

globally, highlighting the robustness of this connection (p-value < 0.05). This analysis 386 

emphasizes that accurately representing low-latitude hydrological feedbacks is critical for 387 

capturing the full magnitude of glacial ocean density changes.  388 

 389 
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 390 

Figure 5: Mean annual precipitation anomalies (LGM – PI, mm.yr⁻¹, over land and ocean) as a function of seawater density 391 
anomalies corrected for mean ocean density changes (kg/m3) relative to sea level-induced salinity increase at LGM. Scatter 392 
points show the relationship for the tropics (30°S–30°N, circle) and the global ocean (square). Dashed lines indicate linear 393 
regressions for each region, with the corresponding slope, intercept, and R². Precipitation anomalies are from Kageyama et 394 
al. (2021). Grey dashed lines indicate the mean tropical and global reconstructions. No linear relationship is found between 395 
SST anomalies and mean annual precipitation anomalies (not shown), indicating that the link between density anomalies and 396 
precipitation is primarily driven by salinity changes. 397 

In summary, our results indicate that SST effects alone cannot explain the density anomaly 398 

differences between reconstructions and simulations. Instead, salinity differences account for 399 

most of the model–data anomaly density discrepancy (Fig. 4) and are directly linked to 400 

reductions in tropical precipitation. Models that simulate stronger tropical precipitation 401 

decreases reproduce the observed LGM surface density anomalies more accurately, 402 

emphasizing the importance of representing low-latitude hydrological feedbacks to capture 403 

the full magnitude of glacial ocean density changes. 404 

 405 

 406 

 407 
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3.2. Comparison of global distribution of surface density anomalies 408 

 409 

Before analysing regional contrasts, we first evaluate model performances considering the 410 

global distribution of absolute surface density anomalies (LGM-PI) by aggregating data from 411 

all selected ocean basins (Fig. 6 & Fig. 7, Fig. C1).  412 

This approach allows us to assess whether models reproduce both the magnitude and 413 

variability of the reconstructed anomalies at the global scale.  414 

As shown in Section 3.1, reconstruction-based anomalies have a median value of 415 

approximately 1.5, whereas the values obtained from model simulations vary widely, ranging 416 

from 0.6 to 1.7 (Fig. 6). Interquartile ranges (IQRs) support this divergence: the proxy data 417 

exhibit a broader spread (IQR ~0.8), while models show smaller variability (IQR between 0.31 418 

and 0.77), indicating that most models underestimate both the mean anomaly and its 419 

variability (Fig. 7). For example, CNRM-CM5 strongly underestimates the median (0.60 vs. 420 

1.57), while iLOVECLIM-ICE-6G-C overestimates it (1.72 vs. 1.58) (Fig. 6 and Fig. 7).  421 

 422 

 423 

Figure 6: Distribution histograms of surface density anomalies (LGM-PI, kg/m3) for an example of four model simulations. 424 
Density reconstructions are shown in black, model simulations in blue. Kernel Density Estimates (KDEs) illustrate the central 425 
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tendency and overall shape of the distributions. Vertical lines indicate the median of each distribution, and shaded envelopes 426 
represent the interquartile ranges (IQRs), providing a measure of data spread that is independent of extreme values. The 427 
histograms display the frequency of values, complementing the KDEs and IQRs to give an integrated view of distribution 428 
characteristics. Note that uncertainties associated with reconstructions and model heterogeneity are not shown, as the figure 429 
focuses on distributional comparison. Colored indicators on the right side of each panel highlight whether the comparison 430 
fails to meet any of the following criteria: p-value < 0.05, KS statistic ≥ 0.13, or non-overlapping IQRs between data and model 431 
distributions. A colored flag indicates that the corresponding criterion is not satisfied. 432 

 433 

Figure 7: Comparison of observed and simulated density anomaly (kg/m3) statistics at the global scale. The shaded grey band 434 
indicates the interquartile range (IQR) of the reconstructions data, and the dashed black line marks the median of the 435 
reconstructions. For each model simulation, the blue vertical bars represent the modelled IQR, while the circular markers 436 
denote the model median. Blue markers indicate model simulations with IQR values consistent with reconstructions (IQR 437 
compatible), whereas orange markers highlight models with larger deviations (IQR non compatible). 438 

 439 

Model-data agreement was evaluated using three complementary statistical criteria (see Sect. 440 

2.2): a p-value > 0.05 from a two-sample Kolmogorov-Smirnov (KS) test, a KS statistic below 441 

0.13 and overlapping interquartile ranges (IQRs) between data and model distributions, 442 

indicating consistent variability. Together, these criteria evaluate whether models reproduce 443 

not only the central value but also the overall shape of the reconstructed distribution.  444 

As shown in Fig. 6 and Fig. 7, 14 of the 16 model simulations (87.5%) satisfy one criterion, and 445 

none meet all three simultaneously. In all cases, only the IQR criterion is fulfilled, while KS 446 

statistics and p-values remain outside thresholds, confirming that global model-data 447 

agreement remains limited.  448 

Because density anomalies depend on both temperature and salinity, we also compared the 449 

distribution of SST anomalies between models and reconstructions using the MARGO (MARGO 450 

project, 2009) and Tierney et al. (2020) datasets (Fig. S2 and S3). Using the MARGO (MARGO 451 

project, 2009) reconstructions, 13 out of 16 simulations (81%) meet the IQR criterion, 452 

indicating that model and proxy interquartile ranges overlap substantially despite systematic 453 

offsets. None of the simulations meet the KS or p-value criteria, suggesting that although the 454 

overall spread of modelled and reconstructed SST anomalies is comparable, their detailed 455 

distribution shapes remain statistically different. 456 
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In contrast, for the Tierney et al. (2020) dataset, 87.5% (14/16) satisfy the IQR criterion, and 2 457 

of them also meet the p-value criterion, indicating that a few model simulations (IPSL-CM5A 458 

and IPSL-CM5A2) reproduce both amplitude and overall distribution of reconstructed SST 459 

anomalies.  460 

Finally, part of the mismatch may arise from the uneven spatial distribution of reconstructions, 461 

which are mostly located near coastal areas (Fig. 2). These coastal regions are particularly 462 

complex to simulate due to influences such as continental runoff and oceanic upwelling, which 463 

are often poorly captured by global climate models. Consequently, kernel density estimates 464 

derived from reconstructions appear flatter, suggesting greater variability not captured by the 465 

models. Additionally, reconstructions in some key upwelling zones remain problematic, as 466 

highlighted by Caley et al. (2025), further complicating the comparison and evaluation of 467 

model outputs against data. 468 

 469 

3.3. Global evaluation of surface density: models vs. reconstructions (PI & LGM) 470 

One limitation of working with anomalies is that any observed difference between data and 471 

models in absolute surface density cannot be directly linked to either the LGM or the PI 472 

baseline. To address this, we analysed the two periods separately, the LGM and the PI, as 473 

shown in Fig. 8 and Fig 9. For each period, model surface density values were extracted at the 474 

grid points corresponding to the reconstruction sites, allowing a direct model–data 475 

comparison. In these figures, we compare the surface density values in the simulations to the 476 

surface density values in the reconstructions, for both LGM and PI, at the global scale (all 477 

basins combined). If the data–model agreement were perfect, a 1:1 linear relationship would 478 

be expected (see Sect. 2.2 for statistical details). 479 
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 480 

 481 

Figure 8: Linear regressions between absolute surface density (kg/m3) from proxy-based reconstructions (x-axis) and model 482 
simulations (y-axis), aggregated at the global scale (across all selected basins) for an example of four simulations. Results are 483 
shown for the LGM period (blue) and the piControl period (orange). Error bars on the x-axis represent the 95% confidence 484 
intervals of the reconstructed values. The slope and R² values correspond to standard linear regressions, without accounting 485 
for uncertainties on the x-axis (the Monte Carlo method was not applied here). All regressions shown are statistically 486 
significant (p < 0.05).  487 
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 488 

Figure 9: Coefficients of determination (R²) and regression at the global scale, for each model simulations, evaluated 489 
separately for the LGM (blue) and PI (orange) periods. Values are shown for both standard (Ref, empty circles) least-squares 490 
regression and uncertainty-aware estimates using Monte Carlo (MC) simulations (n = 10,000 iterations), which propagate 491 
reconstruction uncertainties. The error bars for MC estimates represent variability across iterations (±1σ). All regressions 492 
shown are statistically significant (p < 0.05).  493 

Across all simulations, the regressions are statistically significant (p-value < 0.05), both for 494 

standard regressions and for those including uncertainties through Monte Carlo (MC) 495 

simulations. This confirms the existence of a strong and robust relationship between 496 

reconstructed and simulated surface densities at the grid points where reconstructions are 497 

available, for PI and LGM periods. 498 

Among these significant regressions, the R² value and slope are then used to identify the 499 

model simulations that best match the reconstructions. During the LGM (blue empty circles in 500 

Fig. 9), 8 out of 16 simulations (50 %) have R² values above ~0.5, and 3 simulations (~19 %) 501 

exceed 0.6. In terms of the slope, 75 % of the LGM simulations (12/16) fall between 0.8 and 502 

1.2, indicating good reproduction of the amplitude of the reconstructed density changes. We 503 

also note in Fig. 8 and Fig. D1 a shift at the LGM for certain simulations (e.g., intercept not at 504 

0, closer to −1), indicating that some models do not have sufficient density compared to the 505 

data. This is particularly evident in CNRM-CM5, MIROC-ES2L and HadCM3-ICE simulations. For 506 

the piControl period (orange empty circles on Fig. 9), the proportions are ~75 % for R² > 0.5 507 

and ~75 % for slopes within the 0.8–1.2 range.  508 

When examining SST, model–data agreement is generally good with the MARGO dataset (Fig. 509 

S4 (a)). However, comparison with the Tierney et al. (2020) dataset (Fig. S4 (b)) suggests that 510 

some models are slightly too warm. SST biases may therefore explain part of the shift, but the 511 

dominant contribution likely comes from salinity, through biases in the representation of the 512 

hydrological cycle. 513 

However, in areas with lower density (between 21 and 25 in the data), some model 514 

simulations (e.g. MIROC-ES2L, Fig. 8) tend to underestimate density, showing values between 515 

16 and 20 in most cases. This underestimation is also observed during the PI period. In these 516 
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areas, not all models exhibit this behaviour, and show highly divergent results, leading to a 517 

large inter-model spread.  518 

 519 

The LGM global comparison shows a statistical agreement between model simulations and 520 

proxy-based reconstructions. While all regressions are significant, R² and slopes highlight the 521 

models with the best performance: 50 % of the models achieve R² above 0.5, and 75 % display 522 

regression slopes between 0.8 and 1.2. This indicates that most simulations capture the 523 

general variability and amplitude of surface densities reasonably well, when looking the LGM 524 

and the PI period separately. It is therefore important to examine whether this agreement 525 

persists at the regional scale.  526 

 527 

4. Evaluate model simulations at regional scale 528 

Despite significant global-scale correlations, the mismatch in the statistical distributions 529 

between models and reconstructions reveals that key spatial patterns are not captured 530 

uniformly. This motivates a basin-by-basin analysis to better understand the regional origins 531 

of these discrepancies. 532 

4.1. Comparison of regional distribution of surface density anomalies 533 

To assess whether model simulations differ significantly from proxy-based reconstructions in 534 

terms of absolute surface density anomalies (LGM – PI), we performed statistical comparisons 535 

across six ocean basins, based on three complementary criteria (see Sect. 2.2). 536 

Across all basins, a total of 96 model–data comparisons were performed (16 model 537 

simulations x 6 basins) (Fig. 10). Among them, 49 comparisons (51%) satisfy at least one of the 538 

three criteria, while only 11 comparisons (11%) meet all three criteria simultaneously, 539 

indicating that strong regional agreement remains rare. Overall, the most robust multi-basin 540 

performance is achieved by IPSL-CM5A, while other model simulations show mixed or basin-541 

dependent skill. 542 

At the basin scale, the Southern Ocean shows the most encouraging agreement. Multiple 543 

models (e.g., CNRM-CM5, CESM1.2) pass at least one test, and notably, 6 of the 11 cases 544 

meeting all three criteria occur in this basin, reflecting relatively high model-data consistency. 545 

However, the Southern Ocean is also characterized by sparse data coverage and a limited 546 

number of observations. By contrast, the North Indian and South Atlantic basins display 547 

systematic mismatches across nearly all models with very few passing any of the criteria (2-5 548 

model simulations depending on the test), reflecting broader difficulties in reproducing 549 

regional distributions in these areas. The Pacific, North Atlantic and South Indian basins show 550 

intermediate performance, with some models capturing IQRs but fewer passing KS or p-value 551 

tests. 552 
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Figure 10: Comparison of model simulations medians, of surface density anomaly (kg/m3), with observational data at the 554 
regional scale. For each ocean, the grey shaded band represents the observed median ± IQR, with the dashed line indicating 555 
the median. Model medians are shown as colored markers: blue circles indicate model simulations with IQR compatible with 556 
observations, while orange circles indicate IQR not compatible. Squares mark model simulations with a KS statistic above the 557 
basin-specific threshold, and crosses denote models with significant differences from observations (p-value ≤ 0.05). Vertical 558 
lines show the model IQR, with dashed lines highlighting cases where distributions are statistically similar (p-value > 0.05). 559 

Overall, these results suggest that only a minority of current PMIP3 and PMIP4 model 560 

simulations reproduce proxy-based regional distributions of absolute surface density 561 

anomalies with acceptable skill, define here as simultaneously satisfying all three criteria. In 562 

our dataset, only 11 out of 96 model-basin comparisons (~11%) meet all three conditions, 563 

highlighting the difficulty of reproducing past regional ocean dynamics. However, some 564 

model–data differences may reflect spatial sampling biases, as proxy sites are mainly coastal 565 

while model outputs represent open-ocean conditions, and in several regions, simulations 566 

remain close to observational ranges despite marginal statistical mismatches. 567 

4.2. Regional evaluation of surface density: models vs. reconstructions (PI & LGM) 568 

To test whether the strong global agreement between model simulations and proxy-derived 569 

surface density truly holds at the regional scale, we repeated the regression analysis of Sect. 570 

3.3 for each model simulation and for each of the six oceanic basins, producing a total of 96 571 

model-period regressions. The complete results, including Monte Carlo (MC) uncertainty 572 

estimates, are provided in the Supplementary Material (Fig. S5 and Table S1). For clarity, only 573 

regressions with statistically significant R² or slope (p ≤ 0.05 from the standard analysis) are 574 

shown, ensuring that the supplementary tables summarize only robust model-data 575 

relationships. 576 

In the South Indian Ocean, agreement is consistently strong for both periods. During the LGM, 577 

all 16 model regressions are statistically significant, with a mean R² of 0.82 ± 0.05, MC R² of 578 

0.71 ± 0.06 (Fig. 11), and all slopes falling within the acceptable range of 0.8–1.2 (Table S1). 579 

The region emerges as the most reliably simulated basin. However, a shift is observed in some 580 

simulations, with simulated densities being too low compared to the observations. SST 581 

regressions (not shown) do not reveal trends large enough to explain this shift, suggesting 582 

instead a bias in salinity linked to the hydrological cycle. 583 

The Pacific Ocean also exhibits consistently good agreement. All regressions are statistically 584 

robust, with MC R² exceeding 0.5 in 84.4% of the cases (mainly during the PI) (Table S1). 585 

However, only 59.4% of simulations produce slopes within the 0.8-1.2 range. For the LGM, all 586 

16 regressions are significant, with mean R² 0.57 ± 0.21 (Fig. 11). This indicates that spatial 587 

patterns are generally well reproduced, but the magnitude of reconstructed density 588 

anomalies is not always correctly captured. The Pacific can nevertheless be considered one of 589 

the more reliably simulated regions. 590 

The South Atlantic, shows mixed performance. All regressions are statistically robust, but low 591 

R² values suggest that poorly reproduced points along the African coast reduce the overall fit. 592 

For the LGM, 6 model simulations out of 16 (37.5%) achieves R² > 0.5. Regarding slope, 62.5% 593 

of simulations (10/16) fall within the acceptable 0.8–1.2 range, compared to 56.25% (9/16) 594 

during the PI (Table S1). 595 
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The North Atlantic shows moderate agreement. All regressions are statistically robust, yet only 596 

2 model simulations achieve R² > 0.5 for the PI, none for the LGM. However, 53% of 597 

simulations display slopes between 0.8 and 1.2 (Table S1). During the LGM, the mean R² is 598 

only 0.26 ± 0.08, MC R² 0.17 ± 0.08. This indicates that while some models reproduce the 599 

magnitude of density, spatial coherence with the reconstructions remains weak. 600 

In contrast, the North Indian Ocean shows poor agreement between surface density model 601 

simulations and reconstructions. Fewer than half of regressions are statistically robust, most 602 

of them corresponding to the LGM (Table S1). During the LGM, 12 regressions are significant, 603 

yet the mean R² is only 0.21 ± 0.08, MC R² 0.17 ± 0.07 (Fig. 11), and only 4 models show slopes 604 

within the 0.8–1.2 range. For the remaining cases, R² values are close to 0.1, reflecting very 605 

weak spatial coherence. Weak agreement is also observed for temperature reconstructions 606 

(not show). This basin therefore stands out as one of the least reliably simulated regions. 607 

The Southern Ocean exhibits complex and limited agreement. Standard regressions for the 608 

LGM yield a mean R² of 0.64 ± 0.25 (Fig. 11), suggesting reasonable fits in some cases, but the 609 

corresponding MC-adjusted R² drops to 0.35 ± 0.22, highlighting the high uncertainty due to 610 

sparse observational coverage. In addition, the number of regressions that remain statistically 611 

significant (p-value ≤ 0.05) decrease sharply when considering the Monte Carlo p-values, 612 

further emphasizing the lack of robust fits. Only 3 of the LGM slopes fall within the acceptable 613 

0.8–1.2 range. For the PI, standard R² values are higher (0.87 ± 0.07), yet MC R² remains low 614 

(0.36 ± 0.24) (Fig. 11). These results indicate that, despite apparently good fits in some 615 

regressions, the Southern Ocean’s performance is not robust, and the limited observational 616 

constraints dominate the MC uncertainty rather than systematic model biases. 617 

 618 

To summarize, across the 16 simulations and six oceanic basins, 83 % of the regressions are 619 

statistically significant when considering both LGM and PI periods. In detail, 92 % of LGM 620 

simulations (88/96) and 75 % of PI simulations (72/96) show p-values below 0.05 (Table S1), 621 

confirming a generally strong and robust relationship between reconstructed and simulated 622 

surface densities at the regional scale. When further considering model performance in terms 623 

of both R² > 0.5 and slopes within the 0.8–1.2 range, only 33.3 % of regressions during the 624 

LGM (32/96) and 33.3 % during the PI (31/96) meet these criteria, with the majority of 625 

successful regressions occurring in the South Indian Ocean (Table S1). The North Indian Ocean 626 

and Southern Ocean remain the most challenging regions to simulate, but for different 627 

reasons: in the North Indian Ocean, models struggle to reproduce spatial coherence, whereas 628 

in the Southern Ocean, the lack of robust fits is primarily due to limited data coverage. These 629 

same basins also exhibit the poorest agreement in SST regressions for both the MARGO 630 

(MARGO project, 2009) and Tierney et al. (2020) reconstructions (not shown here), suggesting 631 

that model biases in these regions are at least partly related to temperature 632 

misrepresentation. 633 

 634 
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 635 

Figure 11: Average R² of model–data regressions by ocean and period. Top panel shows the mean R² (ref) across all climate 636 
model simulations for each oceanic basin, with standard deviation as error bars. Bottom panel shows the mean Monte-Carlo 637 
R² (MC R²) and its standard deviation. Blue bars correspond to the Last Glacial Maximum (LGM) period, and orange bars 638 
correspond to the pre-industrial (PI) period. Higher R² values indicate better agreement between model simulations and 639 
proxy data. 640 

 641 

To further explore regional model–data agreement and better understand the sources of 642 

spatial discrepancies highlighted in the previous section, we focus on the Indian Ocean as a 643 

case study. This basin is a key component of the global climate system, in particular because 644 

of its strong connection with the monsoon hydrological cycle, the influence of large river fluxes 645 

on salinity, and the resulting impact on surface density which depends on both temperature 646 

and salinity.  647 

4.3. Evaluation of models at regional scale: focus on the Indian Ocean 648 

The Indian Ocean region, including part of the Indo-Pacific Warm Pool (IPWP), plays a critical 649 

role in the global climate system due to strong coupling between ocean and atmosphere, 650 

particularly through the Indo-Pacific Walker circulation. This circulation influences the zonal 651 

distribution of SST and thermocline depth, providing the background conditions for 652 

phenomena such as the Indian Ocean Dipole (IOD) (Saji et al., 1999; Abram et al., 2020). The 653 
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Indian Ocean is also closely linked to the monsoon hydrological cycle, with precipitation 654 

patterns affecting surface salinity and, consequently, density, making it particularly sensitive 655 

to both temperature and salinity variations. However, climate models often misrepresent the 656 

mean state of the IOD, leading to biases in simulating climate variability (Weller and Cai, 2013; 657 

Cai and Cowan, 2013). Notably, Abram et al. (2020) report that many models produce an 658 

overly strong thermocline-SST feedback due to a misrepresentation of the mean state, 659 

particularly an exaggerated zonal thermocline slope, which artificially increases the strength 660 

and frequency of simulated IOD events. Although research on the IOD has expanded over the 661 

past two decades, uncertainties remain regarding the controls and long-term evolution of the 662 

Indian Ocean’s mean state, especially under different climate boundary conditions. The 663 

limited timeframe of the instrumental record and persistent model biases make paleoclimate 664 

reconstructions essential for investigating past mean states and for testing model 665 

performance beyond the range of modern variability (Abram et al., 2020). To date, 666 

paleoclimate data of SST suggest that past periods, such as during the LGM, mid-Holocene or 667 

17th century, tend to have a mean state that is more typical of a positive IOD-like, which is 668 

systematically associated with elevated IOD variability. This indicates a tight coupling between 669 

the mean state and interannual dynamics (Abram et al., 2020).  670 

We now focus on the Indian Ocean sector to assess the degree of model-data agreement in 671 

the reconstructed west-east surface density gradient. SST and precipitation driving SSS 672 

changes create a west-east surface salinity gradient (Fig. 12) and therefore a density gradient. 673 

Recent observations show that, at interannual timescales, SSS variability is strongly linked to 674 

the IOD and ENSO, and can interact with SST anomalies through a SST–precipitation–SSS 675 

feedback. This suggests that SSS may at times amplify rather than offset SST-related changes 676 

(Zhang et al., 2016). 677 

 678 

In this section, the 'iLOVECLIM-ICE-6G-C' and 'iLOVECLIM-GLAC-1D' simulations have been 679 

excluded due to a salinity bias in the northern Indian Ocean region caused by excess 680 

precipitation that reduces salinity in the iLOVECLIM model in comparison to reconstructions 681 

as shown by Roche and Caley (2013). 682 

We focus on the LGM mean state of the Indian Ocean, using a West-East gradient. For this, 683 

two boxes were defined: "Indian West", which contains 6 density reconstructions and "Indian 684 

East", which contains 5. These boxes were chosen based on the definition of the IOD by Saji 685 

et al. (1999), and slightly adjusted to ensure sufficient points within each box. The "Indian 686 

West" box is defined as 50°E-70°E, 12°S-12°N, corresponding to the tropical western Indian 687 

Ocean. The "Indian East" box is defined as 90°E-110°E, 10°S-2°N, corresponding to the tropical 688 

south-eastern Indian Ocean. For model–data comparisons, model values are extracted at the 689 

exact grid cells where reconstructions are available. The SST points used by Tierney et al. 690 

(2020) in the “Indian East” box are geographically close to the density reconstructions, which 691 

favours a tighter spatial match between SST and density data. In contrast, reconstructions 692 

from the MARGO (MARGO project, 2009) database in the "Indian West" box are located 693 

farther offshore, showing less spatial overlap with the available density reconstructions. 694 

 695 
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Before analyzing the LGM–piControl difference, we verified that models reproduce the West–696 

East gradient observed during the pre-industrial period. To do this we compared the West–697 

East gradient of SST, salinity, and surface density from each piControl simulation with EN4 698 

observational data (1900–1999) extracted at the same grid cells as LGM reconstructions (Fig. 699 

E1). We find that all model simulations agree with the observations in terms of the gradient's 700 

sign: a negative West–East gradient for temperature, and positive gradients for salinity and 701 

density. 702 

Temperature shows greater inter-model spread, while for salinity and density, the model 703 

median almost matches the gradient value from EN4 observations (Fig. E1). The proxy-based 704 

reconstructions West–East density gradient closely matches the EN4 observations, confirming 705 

consistency between modern observations and Late Holocene reconstructions. Regarding SST, 706 

we find a significant difference of around 1°C between the EN4 SST and the Tierney et al. 707 

(2020) SST reconstructions in the same locations (Fig. E1). Thus, using the West–East surface 708 

density gradient as a temporal difference (LGM–piControl) allows model evaluation to focus 709 

on LGM performance, as piControl simulations are consistent with observations. 710 

We examine the surface density difference between the LGM and PI periods across the two 711 

boxes (Fig. 12 (a)). The proxy-based reconstruction shows a negative west–east density 712 

anomaly, with a value close to -1 (Fig. 12 (a)). About half of the model simulations reproduce 713 

the correct sign, with CNRM-CM5, MRI-CGCM3, GISS-E2-R, HadCM3-GLAC1D, HadCM3-ICE-714 

6G_C, HadCM3-PMIP3 and CESM1.2 falling within the 68% uncertainty range of the 715 

reconstruction. HadCM3-ICE-6G_C and CESM1.2 best capture both magnitude and sign. 716 

 717 

These model–data mismatches are consistent with known CMIP-class biases: many models 718 

fail to reproduce the LGM west–east density anomaly due to errors in Walker circulation, 719 

monsoon dynamics, and regional precipitation (Feng et al., 2023; McKenna et al., 2024). Such 720 

atmospheric circulation biases propagate into the ocean (thermocline slope, zonal SST 721 

gradients) and thereby affect both temperature and salinity-driven contributions to surface 722 

density. In this light, the spread of model outcomes at the LGM can be partly attributed to 723 

differing model responses to LGM boundary conditions and to systematic CMIP biases in 724 

tropical atmospheric circulation. 725 

 726 

To investigate whether temperature and/or salinity biases could be responsible for the 727 

model–data mismatch, we first examine the west–east gradient anomaly in temperature. On 728 

the temperature side (Fig. 12 (b) and (c)), the two datasets show differing patterns: the 729 

MARGO (MARGO project, 2009) database reports a small West–East gradient (–0.28), whereas 730 

the Tierney et al. (2020) dataset shows a positive anomaly (1.33). The SST reconstructions in 731 

MARGO (MARGO project, 2009) in this zone are mainly based on foraminiferal assemblages, 732 

whereas the reconstructions in the Tierney et al. (2020) database are mainly based on Mg/Ca 733 

proxies. As the Tierney reconstructions are geographically closer to the density records, we 734 

use them (Fig. 12 (b)) for interpreting the SST anomaly. The positive West–East gradient in 735 

Tierney et al. (2020) does not imply the western Indian Ocean was warmer than the east 736 

during the LGM; rather, it indicates a relative reduction in the zonal SST gradient compared to 737 
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preindustrial conditions. This is consistent with the observed west–east density anomaly, 738 

where relatively weaker cooling in the west would contribute to lower density than in the 739 

east. SST anomalies exhibit smaller inter-model spread than density anomalies. The 740 

simulations that most closely reproduce the observed SST anomaly pattern between LGM and 741 

piControl are HadCM3-GLAC-1D, HadCM3-ICE-6G_C, HadCM3-PMIP3, and CESM1.2.  742 
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Figure 12: Model–data comparison of West–East anomalies (LGM – piControl) in the Indian Ocean. Stars denote 744 
reconstruction-based anomalies, while shaded areas indicate model uncertainties (±1σ, light shading ±2σ). All model values 745 
are extracted at the same grid cells as the observational sites to ensure a spatially consistent comparison. Regional 746 
uncertainties are obtained by combining uncertainties from all sediment cores from each box (West and East). For each core, 747 
the uncertainty is represented by a Gaussian standard deviation derived from its reported confidence interval. We construct 748 
inverse-variance reliability weights using two components: the within-core variance (from the CI-based σ) and the 749 
between-core spatial variance (the variance of core-specific means). The regional mean is the weighted average of the core 750 
means, and its uncertainty follows the law of total variance, ensuring that both local reconstruction uncertainty and spatial 751 
variability are preserved. To obtain smooth uncertainty bands, we then generate Monte-Carlo draws from this mixture. 752 
Uncertainty on the West–East anomaly is then obtained by standard error propagation, assuming independent regional 753 
means (square root of the sum of squared standard deviations). (a) Surface density anomaly (kg/m³). Density reconstructions 754 
are derived from δ¹⁸Oc measurements of planktonic foraminifera and converted into density estimates using the Bayesian 755 
calibration method of Caley et al. (2025). Observational uncertainty is shown by the 68% (dark green) and 95% (light green) 756 
confidence intervals. (b) Sea surface temperature (SST) anomaly (°C) based on Tierney et al. (2020). Observational 757 
uncertainties are shown as 68% (dark blue) and 95% (blue). (c) Same as (b), but using the MARGO database (MARGO Project, 758 
2009). (d) Sea surface salinity (SSS) anomaly (g/kg). 759 

 760 

DiNezio et al. (2018) investigated the LGM–piControl SST anomaly in this part of the Indian 761 

Ocean using the CESM1 model, revealing a West–East SST gradient in this region. Their study 762 

showed that two main mechanisms drive the observed glacial-interglacial climate changes: 763 

first, the exposure of the Sahul shelf enhances ocean-atmosphere feedbacks that alter rainfall 764 

and temperature gradients across the Indian Ocean; second, Northern Hemisphere cooling 765 

weakens monsoonal systems by reducing moisture supply, especially over the Arabian Sea. 766 

This sensitivity is also dependent on how the newly exposed continental shelf is represented 767 

in the model. Factors such as the prescribed surface roughness, vegetation type, or albedo in 768 

the now-exposed Indonesian region can significantly impact the simulated atmospheric 769 

circulation (DiNezio and Tierney, 2013; Dinezio et al., 2018). In particular, the ability of the 770 

convection scheme to respond differently to land versus ocean surfaces plays a critical role in 771 

shaping regional precipitation patterns (Chemel et al., 2014). These model design choices 772 

likely contribute to the spread of results across PMIP3 and PMIP4 models and their varying 773 

skill in reproducing observed SST and surface density gradients. 774 

 775 

Salinity biases were also assessed using LGM–PI anomalies and West–East gradients (Fig. 12 776 

(d)). Without direct LGM salinity reconstructions, this relies on model outputs. Inter-model 777 

spread in salinity is comparable to density and larger than SST, emphasizing the role of 778 

freshwater fluxes and hydrological processes in shaping density changes. Models with the 779 

most negative salinity anomalies (MRI-CGCM3, GISS-E2-R, HadCM3-GLAC-1D, HadCM3-ICE-780 

6G_C, HadCM3-PMIP3 and CESM1.2) best reproduce the observed west–east density 781 

gradient. Models failing to produce sufficiently negative salinity anomalies often have biases 782 

in monsoon precipitation location and intensity, directly affecting surface salinity. Dinezio and 783 

Tierney (2013) showed that accurate West–East salinity gradients require correct precipitation 784 

patterns. This underscores the importance of correctly simulating the Indian Ocean 785 

hydrological cycle (including major rivers) and atmospheric circulation to reproduce salinity-786 

driven density gradients and associated climate impacts. 787 

 788 
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All HadCM3 simulations follow the PMIP4 protocol for implementing LGM boundary 789 

conditions. This protocol ensures that the differences between ice-sheet reconstructions are 790 

consistently applied—not only in terms of ice-sheet mask and elevation, but also land–sea 791 

distribution, bathymetry, and far-field topography. Among them, the HadCM3-ICE-6G_C 792 

simulation provides the best agreement with the observed west–east surface density 793 

gradient. This improved performance is consistent with previous results (Izumi et al., 2023), 794 

who showed that the ICE-6G_C ice-sheet configuration induces distinct atmospheric 795 

circulation responses compared to other reconstructions. These include shifts in jet structure 796 

and stationary waves, as well as differences in surface albedo forcing and sea-ice expansion. 797 

Such large-scale circulation adjustments feedback onto the Indo-Pacific climate, which likely 798 

explains the slightly more realistic simulation of the west–east density gradient in HadCM3-799 

ICE-6G_C. 800 

Marine sediment core reconstructions provide robust support for a distinct pattern of SST and 801 

density changes in the Indian Ocean during the LGM. Our results confirm a strong cooling in 802 

the eastern Indian Ocean contrasted with milder cooling in the western basin, leading to a 803 

reduction of the zonal SST gradient compared to preindustrial conditions (DiNezio et al., 2018).  804 

We also demonstrate that this zonal SST changes is associated with zonal salinity and density 805 

changes. This pattern supports the interpretation that the LGM Indian Ocean mean state was 806 

marked by a weakened zonal SST gradient, primarily due to intensified cooling in the eastern 807 

basin and a shallower thermocline. Such mean state changes, as shown by Abram et al. (2020), 808 

likely enhanced interannual variability across the basin. This underscores the value of 809 

palaeoclimate for improving our understanding Indian Ocean mean state under varying 810 

boundary conditions.  811 

Of the 14 model simulations, only 7 (50%) successfully reproduce the observed West–East 812 

tropical gradient both in SST and density during the LGM, when accounting for the 68% 813 

uncertainty range of the reconstructions. This highlights current climate model limitations, 814 

indicating that key processes are insufficiently represented or that boundary condition 815 

choices, especially ice-sheet reconstructions, could influence model–data agreement. 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

https://doi.org/10.5194/egusphere-2026-254
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



31 
 

5. Conclusion:  825 

The quantitative density reconstruction method based on δ¹⁸Oc, developed by Caley et al. 826 

(2025), provides a valuable dataset for evaluating climate model simulations from PMIP3 and 827 

PMIP4 in terms of LGM density changes. Instead of comparing ensemble means, our analysis 828 

evaluates each model simulation individually, revealing a wide range of behaviours in both the 829 

amplitude and spatial structure of simulated density anomalies. Overall, models tend to 830 

slightly underestimate the magnitude of density anomalies compared to proxy-based 831 

reconstructions, which exhibit a mean anomaly of ~1.5 kg/m³, while model simulations 832 

average around 1.0 kg/m³. Despite this, at the global scale, 100% of simulations show 833 

statistically significant correlations with reconstructions (p < 0.05) for LGM and PI periods, and 834 

~50% reach R² > 0.5, with ~75% reproducing regression slopes within 0.8–1.2, indicating that 835 

large-scale patterns are generally captured. 836 

The comparison between model outputs and paleodata suggests that models reproduce the 837 

sign of density changes and broad latitudinal patterns, but notable regional discrepancies 838 

remain. Across six ocean basins, only ~33% of model–basin combinations achieve robust 839 

agreement simultaneously, highlighting limitations at finer scales. For instance, in the Indian 840 

Ocean, while mean density anomalies are reasonably reproduced, only 7 out of 14 models 841 

(50%) capture the weakened West–East density gradient. This misrepresentation of the mean 842 

state of the IOD could lead to biases in climate variability. Discrepancies are linked to biases 843 

in SST and salinity changes, and to insufficient representation of low-latitude precipitation 844 

reductions, which are critical for reproducing density anomalies in tropical regions. 845 

These results emphasize that evaluating individual simulations rather than ensemble means 846 

is essential, as ensemble averaging can mask inter-model differences and region-specific 847 

biases. They also highlight the need to expand LGM density reconstructions, particularly in 848 

poorly sampled open-ocean regions, to provide stronger observational constraints on models. 849 

In the future, integrating these datasets within statistical observational-constraint 850 

frameworks and data assimilation approaches could help identify models that most accurately 851 

reproduce past climate states and could ultimately improve confidence in future climate 852 

projections. 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 
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Appendices:  862 

A. Study basins:  863 

 864 

We first considered the major oceanic basins: The Atlantic, Indian, and Pacific Oceans, the 865 

circumpolar Southern Ocean. To better capture regional processes and analyze these regions 866 

more precisely, some of these large basins were subdivided into northern and southern parts, 867 

resulting in a total of six ocean basins. The Atlantic and Indian Oceans were split with updated 868 

latitudinal boundaries. Specifically, the North Atlantic, following the density reconstruction 869 

method of Caley et al. (2025), extends from 0° to 40°N, while the South Atlantic is restricted 870 

to 0°N. Similarly, the North Indian Basin extends from 0°S northward, and the South Indian 871 

Basin is restricted to 0°S.  872 

The Mediterranean Sea was excluded from the analysis, as this region is particularly difficult 873 

for climate models to simulate and the limited number of proxy data points resulted in 874 

statistically insignificant regressions. 875 

The Pacific and the Southern Ocean retain their original boundaries. The study basins were 876 

defined using the NOAA WOA23 mask file (1°×1° grid: 877 

https://www.ncei.noaa.gov/data/oceans/woa/WOA23/MASKS/basinmask_01.msk), with 878 

modifications applied to create these six final regions (Fig. A1). 879 

 880 

Figure A1: Map of selected basins in this study. The study basins were created from the NOAA WOA23 mask file (which has 881 
a 1°x1° grid) (website https://www.ncei.noaa.gov/data/oceans/woa/WOA23/MASKS/basinmask_01.msk) then some basins 882 
were modified, in particular to divide them into North and South. 6 basins were defined and studied: North Indian (latitudinal 883 
limit at 0° S), South Indian (latitudinal limit at 0° S), North Atlantic (between 0° and 40° N), South Atlantic (latitudinal limit at 884 
0° N), Pacific, and Southern Ocean. North Atlantic is cropped at 40°N following the Caley et al. (2025) density-reconstruction 885 
method. 886 
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B. Latitudinal profiles of surface density, SSS and SST anomalies (LGM-PI):  887 

 888 

Figure B1: Density anomaly (kg/m3) as a function of latitude for each model simulation (colored dots), compared with 889 
observational data (grey dots) and the 68% confidence interval (grey shading). Model outliers, identified using the 890 
interquartile range (IQR) method (values outside 1.5×IQR), were excluded to minimize the influence of extreme values and 891 
highlight robust spatial patters. This filtering enhances the main latitudinal structure and modelled density anomalies while  892 
preserving all available latitude sampling points. 893 
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 894 

Figure B2: Zonal distribution of salinity anomalies (LGM–PI) simulated by each model (colored dots). Model outliers, 895 
identified using the interquartile range (IQR) method (values outside 1.5×IQR), were excluded to minimize the influence of 896 
extreme values and highlight consistent spatial patterns. This filtering emphasizes the latitudinal structure of simulated 897 
salinity anomalies across models while preserving all available sampling points. 898 

 899 

Figure B3: Zonal distribution of SST anomalies (LGM–PI) from the MARGO (MARGO project, 2009) reconstruction (grey dots) 900 
and ± 1σ uncertainties (grey shading), compared with model simulations (colored dots). Model outliers, identified using the 901 

https://doi.org/10.5194/egusphere-2026-254
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



35 
 

interquartile range (IQR) method (values outside 1.5×IQR), were excluded to minimize the impact of extreme values and 902 
highlight robust latitudinal patterns. This filtering enhances the readability of the large-scale SST anomaly structure while 903 
preserving all available latitude points. 904 

 905 

Figure B4: Zonal distribution of SST anomalies (LGM–PI) from Tierney et al. (2020) reconstruction (grey dots) and ± 1σ 906 
uncertainties (grey shading), compared with model simulations (colored dots). Model outliers, identified using the 907 
interquartile range (IQR) method (values outside 1.5×IQR), were excluded to minimize the impact of extreme values and 908 
highlight consistent spatial patterns. This filtering clarifies the latitudinal structure of simulated SST anomalies while 909 
preserving all available observation–model comparison points. 910 
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C. Comparison of global distribution of surface density anomalies:  911 

 912 

Figure C1: Distribution histograms of surface density anomalies (LGM-PI, kg/m3) at the global scale. Density reconstructions 913 
are shown in black, model simulations in blue. Kernel Density Estimates (KDEs) illustrate the central tendency and overall 914 
shape of the distributions. Vertical lines indicate the median of each distribution, and shaded envelopes represent the 915 
interquartile ranges (IQRs), providing a measure of data spread that is independent of extreme values. The histograms display 916 
the frequency of values, complementing the KDEs and IQRs to give an integrated view of distribution characteristics. Note 917 
that uncertainties associated with reconstructions and model heterogeneity are not shown, as the figure focuses on 918 
distributional comparison. Colored indicators on the right side of each panel highlight whether the comparison fails to meet 919 
any of the following criteria: p-value < 0.05, KS statistic ≥ 0.13, or non-overlapping IQRs between data and model distributions. 920 
A colored flag indicates that the corresponding criterion is not satisfied. 921 
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D. Global Evaluation of Surface Density: Models vs. Reconstructions (PI & LGM): 922 

 923 

 924 

 925 

Figure D1: Linear regressions between absolute surface density (kg/m3) from proxy-based reconstructions (x-axis) and model 926 
simulations (y-axis), aggregated at the global scale (across all selected basins). Results are shown for the LGM period (blue) 927 
and the piControl period (orange). Error bars on the x-axis represent the 95% confidence intervals of the reconstructed values. 928 
The slope and R² values correspond to standard linear regressions, without accounting for uncertainties on the x-axis (the 929 
Monte Carlo method was not applied here). All regressions shown are statistically significant (p < 0.05).  930 
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E. Focus on the Indian Ocean: 931 

 932 

Figure E1: Boxplots showing West–East anomalies (Indian_East – Indian_West) in Sea Surface Temperature (°C), (from the 933 
MARGO and Tierney datasets, separately), Sea Surface Salinity (g/kg), and sea surface density (kg/m3) during the pre-934 
industrial period. The boxplots represent the distribution of anomalies from climate model simulations only. Each colored 935 
dot corresponds to the anomaly from an individual model simulation. Red stars indicate observed values from the EN4 dataset 936 
(Good et al., 2013), averaged over the period 1900–1999 to provide a historical reference. Orange stars indicate 937 
reconstructions from databases (PI from WOA18 for MARGO (MARGO project, 2009), LH for Tierney et al. (2020) and LH for 938 
density (Caley et al.2025)). 939 

 940 

 941 

 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 
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Data availability: 955 

Most of the CMIP5/PMIP3 and CMIP6/PMIP4 climate model simulations used in this study are 956 

publicly available through the Earth System Grid Federation (ESGF). The simulations IPSL-957 

CM5A2, HadCM3-GLAC-1D, HadCM3-ICE-6G_C, HadCM3-PMIP3, iLOVECLIM-GLAC-1D, 958 

iLOVECLIM-ICE-6G_C, and CESM1.2 are not available via ESGF. CESM1.2 simulation outputs 959 

are openly available from Zenodo (https://zenodo.org/records/14957995). The HadCM3 960 

model simulations can be accessed at 961 

https://www.paleo.bristol.ac.uk/ummodel/scripts/papers/. iLOVECLIM simulations outputs 962 

are available upon request from Nathalie Bouttes, and IPSL-CM5A2 data can be obtained by 963 

contacting Masa Kageyama. References for all simulations are provided in Table 1.  964 

The δ18Oc database and the Python code to compute surface ocean density are related to 965 

Caley et al. 2025 and can be found at 966 

https://github.com/nicrie/density_uncertainty/tree/main/data 967 
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