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28  Abstract

29  Quantitative reconstruction of ocean surface density during the Last Glacial Maximum (LGM)
30 offers valuable insights into the ability of climate models to simulate past climate conditions,
31  when global temperatures were about 4.5°C to 6°C colder than today. We assess the
32 performance of the LGM climate simulations, as part of the 3™ and 4™ phase of the
33  Paleoclimate Modeling Intercomparisons Project, using a recent ocean surface density
34  reconstruction based on the 60 of foraminiferal calcite (§'0c). We consider the differences
35 between the LGM and the preindustrial climates and each period separately, at both global
36  and regional scales. Because surface density reflects the combined effects of temperature and
37 salinity, we also examined sea surface temperature (SST) to better identify the processes
38 underlying model—-data differences.

39  Surface density reconstructions show greater variability than simulated surface density.
40 Models therefore struggle to reproduce the spatial variability of the density difference (LGM
41  —pre-industrial (Pl)), but part of the mismatch may arise from the uneven spatial distribution
42  of reconstructions, which are mostly located near coastal areas.

43  Density anomaly (LGM — PI) differences between data and models are largely controlled by
44  sea surface salinity (SSS), with SST contributing to a lesser extent. This influence of SSS is
45  directly linked to the reduction in tropical precipitation during the LGM: models that best
46  match the large-scale density anomalies also simulate the strongest reductions in
47  reconstructed low-latitude precipitation during the LGM, highlighting the key role of
48  hydrological cycle changes in shaping surface density.

49  On a global scale, 100% of model simulations show a statistically significant relationship with
50 surface density reconstructions, looking at LGM and Pl separately. However, on a regional
51 scale, some features are poorly simulated, leading to weaker agreement between data and
52 model simulations, particularly in the North Indian and Southern Oceans. Our analysis
53  concludes with a focus in the Indo-Pacific Warm Pool. Past reconstructions indicate a LGM
54  weakened Indian ocean west—east surface density gradient, but only 7 out of 14 models (50%)
55 reproduce this feature. These results highlight the need to better constrain regional
56  hydrological cycle changes in models, as improving their representation is crucial to reduce
57 uncertainties in both paleoclimate simulations and future climate projections.
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68 1. Introduction

69  Past surface seawater density is a key property for studying ocean dynamics, as it reflects the
70  combined influence of surface temperature and salinity and is directly linked to circulation
71  changes through geostrophic balance. In this study, we focus specifically on seawater surface
72 density, providing a novel perspective in model-data comparisons for the Last Glacial
73 Maximum (LGM), a variable that has not been explored in previous assessments.

74

75 To simulate future climate change, scientists rely on coupled general circulation models
76  (GCMs). Yet these models differ in their representation of Sea Surface Temperature (SST), Sea
77  Surface Salinity (SSS), and in the processes that control density. Differences in changes of SST
78 and SSS in the future is therefore leading to large uncertainties in the simulation of future
79  ocean dynamics (Flato et al., 2014 — IPCC ARS5; Eyring et al., 2021 — IPCC AR®6).

80

81  Since climate models are developed based on present-day conditions and used to project
82  future climates that may be very different from the present one, it is important to also
83  evaluate them with reconstructed very different climate conditions from the past, to gain
84  confidence in their projections. One way to test the response of these models to various
85  external forcings is to use paleoclimate simulations, which provide an independent evaluation
86 of model performance (Harrison et al., 2014; Kageyama et al., 2024) against available
87  reconstructions. This allows us to benchmark models using evidence from past climates, which
88 s essential for strengthening confidence in their future projections. The Paleoclimate Model
89 Intercomparison Project (PMIP; Joussaume and Taylor, 1995; Kageyama et al., 2018) tests the
90 ability of models to simulate paleoclimate reconstructions. Currently in its fourth phase
91  (PMIP4), with a fifth in preparation, PMIP plays a critical role in evaluating how well models
92  reproduce past climates.

93  One of the PMIP reference periods is the Last Glacial Maximum, which occurred between
94 19,000 and 23,000 years ago, when the ice sheets reached their maximum global volume (Mix
95 et al.,, 2001). During this period, the climate was markedly different from pre-industrial
96  conditions, with significantly colder temperatures (from -4.5 + 0.9 °C according to Annan et
97 al. 2022 to -6.1 + 0.4 °C according to Tierney et al. 2020) and altered hydrological cycles,
98  making it an interesting benchmark period for evaluating climate models (MARGO project,
99  2009; Braconnot et al., 2012).
100
101  Evaluating numerical climate models using a data-model comparison allows us to assess their
102 robustness in simulating key variables such as sea surface temperature (SST) and precipitation
103  (Brierley et al., 2023). Recent intercomparison studies focusing on SST reconstructions at the
104 LGM (Tierney et al., 2020; Kageyama et al., 2021) show that models generally capture large-
105  scale cooling patterns but still often exhibit regional biases and differences between PMIP3
106  and PMIP4 simulations.
107
108 To enable quantitative evaluation of ocean surface density, a new method has been
109 developed to reconstruct annual seawater surface densities in the past (Caley et al., 2025),
110  providing a novel tool for model assessment. However, until now, quantitative evaluations of
111 surface density remain unexplored, which limits our understanding of how well models
112  capture the combined effects of temperature and salinity on ocean circulation.
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113 In this study, we make use of this new surface density reconstruction to evaluate the PMIP3
114  and PMIP4 simulations in terms of annual ocean surface density, both on a global scale
115  (excluding the Nordic Seas region, Caley et al., 2025) and regionally. We consider simulations
116  of the Last Glacial Maximum (LGM) and the pre-industrial period (piControl). We focus on
117  evaluating model performance in simulating surface density, and where there are large
118  discrepancies between models and past reconstructions, we further investigate SST and, in
119 combination with density, qualitative changes in SSS. This approach provides a
120 complementary perspective to previous studies, offering new insights into the coupled role of
121  temperature and salinity in shaping ocean surface density and allowing for a more integrated
122 evaluation of model performance.

123

124  Our analysis is structured as follows: we first assess model simulations against past
125  reconstructions at the global scale in Sect. 3. We then examine regional differences in Sect. 4,
126  identifying areas where models perform better or worse, with a particular focus on the Indian
127  Ocean as a case study of regional variability (Sect. 4.3).

128

129 2. Material and methods

130 2.1. Climate reconstructions

131 2.1.1. Surface ocean density

132 To evaluate model simulations on ocean surface density, we use the quantitative past density
133 reconstruction dataset proposed by Caley et al. (2025). They developed a new Bayesian
134  calibration model to calculate the annual surface ocean density using the §'80c measurements
135  of several foraminiferal species. Briefly, this probabilistic approach explicitly accounts for
136  inter-species differences and calibration uncertainties, allowing quantitative density
137  reconstructions. New and published §0c datasets were compiled to create an extended
138  database of 474 density reconstructions distributed across all oceanic regions. For each
139  marine sediment core, reconstructions are available for both the LGM and the Late Holocene
140  (LH) (Caley et al., 2025). Analyses from the northern region > 40°N of the Atlantic Ocean were
141  rejected due to potential errors when applying the calibration to the LGM time period (Caley
142  etal., 2025). We thus also exclude this region for the model-data comparison. Surface density
143 is expressed in kg/m3. Throughout this work, values are expressed as anomalies relative to
144 1000 kg/m3.

145  Concerning the instrumental observations, we used the version 4.2.2 (analyses.gl0,
146  downloaded in 2024) of the EN dataset from the Met Office Hadley Centre (Good et al., 2013),
147  commonly referred to as EN4. This dataset provides quality-controlled ocean temperature and
148  salinity profiles globally, as well as monthly gridded fields derived from objective analyses,
149  covering the period from 1900 to 2022. EN4 is a compilation of temperature and, when
150 available, salinity measurements from various ocean data sources. Surface seawater density,
151  which is a non-linear function of temperature and salinity, was calculated from EN4
152  temperature and salinity fields using the GSW (Gibbs Seawater) formulation implemented in
153  the gsw Python package (Roquet et al., 2015).



https://doi.org/10.5194/egusphere-2026-254
Preprint. Discussion started: 2 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

154 2.1.2. Sea surface temperature

155  Since sea surface density and SST are linked, we also performed a data/model comparison in
156  terms of surface temperature. This provides an additional way to investigate the drivers of
157  surface density changes. To do this, we used two previously published SST databases (MARGO
158  Project, 2009; Tierney et al., 2020). These two databases were not combined, as the Tierney
159  dataset includes some MARGO data but with more recent calibrations. Notably, Tierney et al.
160  (2020) also recalibrated all age models using the Marinel3 radiocarbon calibration curve and
161 the BACON age modelling software, ensuring a better chronological consistency across
162  records. The temporal periods differ slightly: Tierney’s data refer to the LGM and the Late
163  Holocene (LH), while the MARGO data include LGM and “pre-industrial” measurements from
164  the WOA1998 dataset (NODC, Silver Springs, 1998). Following Tierney et al. (2020), we make
165 here the approximation that the Late Holocene is considered representative of the pre-
166  industrial climate state.

167 The MARGO database (MARGO Project, 2009) contains 821 SST reconstructions based on a
168 diverse range of proxies, including Mg/Ca ratios, Ui's; indices, radiolarians, diatoms,
169 foraminiferal transfer functions, and the tetraether index TEXge. In contrast, Tierney’s dataset
170  (Tierney et al., 2020) comprises 244 SST records derived exclusively from Mg/Ca, TEXgs, and
171  Uy's; proxies. We do not use the assimilated SST product developed by Tierney et al. (2020),
172 but only the raw SST proxy database published in association with their study. This selection
173 reflects a deliberate choice by Tierney et al. (2020) to exclude assemblage-based proxies such
174  as foraminiferal transfer functions, due to concerns over “no-analogue” assemblages and the
175  lack of Bayesian calibration models, which are central to their probabilistic framework. SST
176  values inferred from &8'®0c were also excluded from our analysis, as they were already
177  incorporated into our density reconstructions. Finally, both SST and density datasets were re-
178  gridded onto a common 1° x 1° spatial grid, matching the reference grid to which the model
179  simulations were also re-gridded, allowing for a direct comparison.

180 2.2 Climate model simulations

181  For this study, we used LGM and pre-industrial (hereafter piControl) climate model
182  simulations from a total of sixteen simulations, including seven from PMIP3 (Braconnot et al.,
183  2012) and nine from PMIP4 (Kageyama et al., 2018) (see Table 1). Two more simulations were
184  excluded due to inconsistencies in salinity data (e.g. unit or formatting issues), making them
185  unsuitable for analysis. Some model simulations share the same piControl but differ by their
186  imposed ice-sheet reconstructions for LGM (e.g., HadCM3-ICE6GC vs. HadCM3-GLAC1D and
187  iLOVECLIM1-1-1-GLAC1D vs iLOVECLIM-1-1-1-ICE-6G-C). We tested whether simulations from
188  the same model (within a PMIP phase or across PMIP3/PMIP4 versions) were too similar to
189  each other. Our analysis showed that all simulations differed in at least one basin and for at
190 least one of the variables (SSS, SST, density). Based on this, we retained all simulations.

191  The pre-industrial control simulation uses the constant boundary conditions established for
192 1850 CE (Eyring et al., 2016). It aims to produce a stable quasi-equilibrium climate under 1850
193  conditions, characterised by the annual cycle (mean and seasonality) and internal variability
194  arising from interactions between Earth system components. This simulation serves as a
195  baseline from which changes in all other experiments are calculated.
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196  The LGM experimental protocol (Kageyama et al., 2017) considered as boundary conditions
197 the large continental ice sheets, the associated land-sea mask changes, adjustments to ocean
198  salinity (as ice sheets store large volumes of freshwater), and reductions in greenhouse gases.
199  This makes it a challenging experiment for climate models, which explains why only a limited
200 number of modelling groups have performed it. In two simulations (MIROC-ESM and IPSL-
201 CM5A2), the salinity field was not initialized with the +1 psu offset prescribed in the protocol
202  to account for freshwater stored in ice sheets. To ensure comparability across models, we
203  added +1 psu to the LGM salinity of these two simulations before calculating absolute density.
204  Simulations performed with the iLOVECLIM model found the dynamical effect of that + 1 psu
205  to be very small, supporting this direct correction (Caley et al., 2025). For the calculation of
206  surface density changes due to the hydrographic changes in SST and SSS, i.e. corrected for
207 mean ocean density changes related to ocean volume, we removed this +1 psu from the LGM
208  simulations and applied a -0.77 kg/m3 density correction to the reconstructions, following
209 Caley et al. (2025).

210  We analysed annual mean SSS and SST from these simulations. All outputs were regridded to
211  acommon 1°x1° grid, and monthly data were averaged to obtain climatological annual means.
212 These means were computed over the full duration of each simulation, which ranges from 100
213  to 1100 years for the piControl experiments and up to 500 years for the LGM experiments.

214  The variables used here are salinity (so) and temperature (thetao). To study surface density,
215  we used salinity and temperature from the first ocean layer. Seawater density was calculated
216  using the gsw (Gibbs Seawater) Python package, which is based on the TEOS-10
217  thermodynamic framework and provides thermodynamically consistent equations for
218 seawater properties. The gsw package requires Absolute Salinity (SA) and Conservative
219  Temperature (CT) as inputs. CT is a more accurate and thermodynamically sound analog of
220  Potential Temperature (8), and SA is derived from Practical Salinity (SP), which is unitless and
221 not directly usable in thermodynamic calculations. Since the model simulations originally
222  provided SP and 6, we first converted them to SA and CT using the functions SA_from_SP and
223 CT_from_pt, respectively. Finally, in-situ seawater density was computed with gsw.rho(SA, CT,
224  p), using a computationally efficient expression for specific volume as a function of SA, CT, and
225  pressure (Roquet et al., 2015).
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Model simulation PMIP/CMIP - Spin-up References
phase and rip (f)
CNRM-CM5 PMIP3-CMIP5 Voldoire et al. (2013)
rlilpl
CCSM4 PMIP3-CMIP5 Gent et al. (2011) and Brady et al. (2013)
rlilpl
GISS-E2-R PMIP3-CMIP5 Schmidt et al. (2014) and Ullman et al. (2014)
rlilp150
IPSL-CM5A-LR PMIP3-CMIP5 Dufresne et al. (2013)
rlilpl
MIROC-ESM PMIP3-CMIP5 Sueyoshi et al. (2013)
rlilpl
MPI-ESM-P PMIP3-CMIP5 Adloff et al. (2018)
rlilpl
MRI-CGCM3 PMIP3-CMIP5 Yukimoto et al. (2012)
rlilpl
HadCM3-GLAC1D PMIP4-CMIP6 Izumi et al. (2023)
HadCM3-ICE6GC PMIP4-CMIP6 Izumi et al. (2023)
HadCM3-PMIP3 PMIP4-CMIP6 Izumi et al. (2023)
iLOVECLIM1-1-1-GLAC1D PMIP4-CMIP6 Lhardy et al. (2021) and Bouttes et al. (2023)
iLOVECLIM1-1-1-ICE-6G-C PMIP4-CMIP6 Lhardy et al. (2021) and Bouttes et al. (2023)
IPSL-CM5A2 PMIP4-CMIP6 Sepulchre et al. (2020)
MIROC-ES2L PMIP4-CMIP6 Hajima et al. (2020)
rlilp1f2
MPI-ESM1.2-LR PMIP4-CMIP6 Mauritsen et al. (2019)
rlilp1fl
CESM1-2 PMIP4-CMIP6 Tierney et al. (2020)

226

227 Table 1: Model simulations available for this study, with LGM and piControl simulations. Model simulations from PMIP3 (blue)
228 and PMIP4 (pink).

229

230 2.3 Statistical analysis:

231  Model-data comparisons were performed on a 1° x 1° grid, restricted to locations where
232 proxy reconstructions provide valid values. Model anomalies were extracted exactly at the
233 proxy sites to ensure strict spatial consistency.

234  Distributional agreement between models and reconstructions was evaluated using three
235  complementary criteria. First, interquartile range (IQR) overlap was assessed to check
236  distributional consistency while limiting sensitivity to extreme outliers. Second, the
237  Kolmogorov-Smirnov (KS) statistic, which quantifies the maximal difference between
238  cumulative distributions, was compared to basin-specific thresholds to account for differences
239  in sample size: South Indian 0.240 (n = 35), North Indian 0.254 (n = 27), South Atlantic 0.259
240  (n = 26), North Atlantic 0.224 (n = 36), Pacific 0.154 (n = 75), and Southern Ocean 0.483 (n =
241 7). Exceeding these thresholds indicates a substantial difference between model and data
242  distributions. Third, a two-sample KS test p-value < 0.05 indicates a statistically significant
243  difference between distributions: a value above 0.05 indicates that the null hypothesis
244  (distributions are similar) cannot be rejected, while p < 0.05 indicates a significant difference.
245 For visualization, kernel density estimates (KDEs) provided smoothed, continuous
246  representations of the distributions, highlighting central tendencies and the most frequent
247  values.
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248  For linear relationships, regression analyses were performed separately for Pl and LGM
249  periods. The coefficient of determination (R?) quantifies the proportion of variance in
250 reconstructions explained by the models, while the slope measures the amplitude of the
251  model response relative to observations. To account for uncertainties in the reconstructions,
252 a Monte Carlo procedure (10,000 iterations) added Gaussian noise to the observations,
253  derived from the 95% confidence intervals. Distributions of R? and slope were then analyzed,
254  and reported values correspond to mean + standard deviation.

255  This framework provides a consistent and rigorous evaluation of model-data agreement,
256  encompassing both distributional comparisons and linear relationships, and applies globally
257  as well as regionally across ocean basins.

258 2.4 Testing spatial representativeness with a pseudo-proxy approach

259  The spatial distribution of reconstructions is uneven, with a clear concentration of data near
260  coastal areas (Fig. 2). To assess whether the proxy data locations are representative of broader
261  basin-scale conditions, a “pseudo-proxy” approach (Ayache et al., 2018) was performed, in
262  order to compare the mean local values with basin-wide means derived from the models (Fig.
263 1, Fig.S1). This analysis evaluates the spatial representativeness of proxy locations at the basin
264  scale. However, it does not address differences between coastal and open-ocean
265  environments, since climate models do not explicitly represent coastal processes and
266  therefore cannot accurately simulate nearshore dynamics. Details on the basin definition and
267  spatial masks used for this analysis are provided in Appendix A.

Global
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269 Figure 1: Pseudo-proxy test for global ocean surface density. Comparison between the mean density anomalies (kg/m3)
270 averaged across all model grid points (x-axis) and the mean density anomalies (kg/m3) averaged over proxy reconstruction

271 sites (y-axis). PMIP3 simulations are shown in blue, and PMIP4 simulations in red. The purple regression line and R? represent
272 the fit across all model simulations combined (PMIP3 + PMIP4). Results for individual basins are provided in Supplementary
273 Fig.S1.
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274  For this purpose, we compare the average of density simulated by PMIP3 and PMIP4 model
275  simulations over a given basin with the average density only at locations where proxy data are
276  available (Fig. 1). A near-linear relationship is found at the global scale (Fig.1) and across most
277  basins (Fig. S1), with regression slopes ranging from 0.78 in the Southern Ocean to 1.32 in the
278  South Atlantic, and coefficients of determination (R?) between 0.40 (South Indian) to 0.98
279  (North Indian), when compiling PMIP3 and PMIP4. These regressions indicate how well the
280 mean over proxy sites reproduces the true basin-wide mean in the model simulations. The
281  slopes being close to one and the high R? values indicate that the mean anomalies at the proxy
282  sites capture the basin-wide means simulated by the models reasonably well. This suggests
283  that, within the models, the uneven proxy distribution does not strongly bias the large-scale
284  signal. However, when analyzing PMIP3 and PMIP4 separately (Fig. S1, individual points in blue
285  and red), significant relationships are not found in the South Indian and Southern Ocean
286  basins. This suggests that the smaller number of models in each ensemble, combined with the
287 limited proxy coverage in these basins, reduces the robustness of the relationship. When
288  pooling PMIP3 and PMIP4 simulations, all basins show statistically significant relationships (p-
289  value < 0.05), confirming that the signal emerges when sample size is increased. These results
290 therefore support using specific proxy locations as representative of larger signal at basin
291  scale.

292

293 3. Evaluate model simulations at the global scale

294  Before investigating regional features, we first assess the large-scale behaviour of model
295  simulations. A global-scale evaluation allows us to assess the overall ability of PMIP3 and
296  PMIP4 simulations to reproduce the reconstructed large-scale signal of surface density
297  changes between the LGM and the pre-industrial period. Evaluating models at this integrated
298  scale also helps reduce the influence of local reconstruction uncertainties and highlights the
299  dominant climatic drivers of density variations, such as global temperature and hydrological
300 cycle changes.

301 3.1. Sea surface density anomaly (LGM-PI)
302

303  We first analyse absolute surface density anomalies between the LGM and the Pre-Industrial
304 period (LGM-PI), in order to reduce the impact of potential systematic model-specific biases
305 that may persist across time periods. All models simulate positive anomalies, i.e. they agree
306 on the sign of the change. However, both the spatial patterns and the amplitude of the
307 simulated anomalies vary considerably from one model simulation to another (Fig. 2). When
308 averaged over space, simulated mean density anomalies typically range from 0.6 to 1.6, with
309 an average value close to 1.0. In contrast, the proxy-based reconstructions exhibit a slightly
310  higher mean, approximately 1.5.
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database reconstructions (Caley et al., 2025) and the background map is the anomaly mean for each model simulations in

Figure 2: Absolute surface density (kg/m3) anomaly map (LGM - piControl). The dots represent the surface density anomaly
the study.
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316  When zonally averaged, the density anomaly (LGM-PI) in the observations (Fig. 3, grey dots)
317  is stronger in the low latitudes than in the mid-latitudes, as already discussed in Caley et al.,
318  2025. The observed increase in density during the LGM, both in the simulations and in the
319 reconstructions, is consistent with the SST cooling (MARGO project, 2009; Tierney et al., 2020)
320 and with a weaker hydrological cycle at low latitudes, in which precipitation decreased more
321  than evaporation. This reduction in precipitation leads to saltier and denser surface waters
322  (Kageyama et al., 2021), as already discussed in Caley et al., 2025.
323  Some model simulations fail to reproduce the full latitudinal structure, such as CNRM-CM5
324  and MPI-ESM-P, while others do not capture the shape but match the density anomaly well at
325 low latitudes, for instance iLOVECLIM-ICE-6G-C and iLOVECLIM-GLAC-1D. Some model
326  simulations, such as IPSL-CM5A and HadCM3-PMIP3, are in good agreement with the data
327  across all latitudes, especially between 0 and 40°N, considering the uncertainties on the
328 reconstructions (Fig. 3). The same type of zonally averaged analysis was performed for SSTs,
329 and the corresponding results are shown in Figs. B2 and B3.
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331 Figure 3: Density anomaly (kg/m3) as a function of latitude for each model simulation (colored dots) compared with the
332 observational data (grey dots) and the 68% confidence interval (grey shading). Model outliers, identified using the
333 interquartile range (IQR) method (values outside 1.5xIQR), were excluded to reduce the influence of extreme values. This
334 filtering highlights the main structure and latitudinal patterns of the modelled density anomalies while retaining all available
335 latitude points.
336  We next investigated the physical drivers of the density differences between reconstructions
337 and simulations by decomposing the total density anomaly into temperature and salinity
338 components. Model outputs and proxy datasets were collocated at common sampling points
339  without additional interpolation, ensuring a strict one-to-one correspondence between
340 density and SST observations. This procedure yielded 80 common points for the MARGO
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341  database (MARGO Project, 2009) and 92 points for the SST dataset from Tierney et al. (2020).
342  No outlier filtering was applied.

343  Before computing the salinity contribution, the global density related to sea-level-induced
344  salinity increase (-1 g/kg in models, -0.77 kg/m3 in reconstructions; Caley et al., 2025) was
345 removed to isolate density changes linked to hydrographic changes in SST and SSS. Because
346  this correction is applied consistently to both reconstructions and model outputs, and since
347  theanalysisis based on model—data differences, it has no effect on the results presented here.

348  To quantify the relative influence of temperature and salinity on the model-data density
349 anomaly differences, we decomposed the total density anomaly difference (model
350 simulations minus reconstruction) into two components. We first isolated the temperature
351  effect by calculating how density would change keeping salinity fixed to isolate the thermal
352  contribution. The remaining difference, attributed to salinity, was computed as the residual
353  between the total density bias and the temperature-only component.

354  Figure 4 shows the relative contributions (%) of SST and salinity to the density anomaly for
355 each model. In most models, salinity (red bars) is the dominant contributor to the density
356 anomaly difference between reconstructions and simulations. Only a few simulations, such as
357 HadCM3-GLAC and CESM1.2, exhibit larger SST contributions (orange bars), but these are
358  exceptionsrather than the rule. Note that this figure shows relative contributions (%) and does
359 not indicate the absolute magnitude of the total density bias.

360 Overall, these results demonstrate a clear pattern: SST effects alone are insufficient to explain
361 the observed density anomaly differences between reconstructions and models, whereas SSS
362 differences account for the majority of the model-data discrepancy (Fig. 4) in most
363  simulations. Furthermore, it is important to note that Figure 4 shows an average, which
364  “smooths” the variability observed across latitudes. Looking at Figure B2, we see that salinity
365 anomalies explain the variability in density anomalies. The variability is largely dominated by
366  salinity. Very little variability is observed in SST in model simulations.
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368 Figure 4: Relative contributions (%) of SST (orange) and SSS (red) to the model-data density anomaly (LGM-PI) differences.
369 Contributions are shown as percentages of the total absolute density difference between model simulations and
370 reconstructions. Solid bars: MARGO SST dataset (MARGO Project, 2009); hatched bars: Tierney et al. (2020) SST dataset. The
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371 decomposition was performed by first calculating the temperature-only density anomaly (using model LGM temperatures
372 with Pl salinity), then attributing the residual to salinity effects. Density calculations use TEOS-10 GSW routines.

373

374  Given that the hydrological cycle influences surface salinity and that salinity anomalies
375  strongly influence the difference in data/model density anomalies, we explored the link
376  between density anomalies and large-scale precipitation changes. Using the PMIP3 and PMIP4
377 ensembles, Kageyama et al. (2021) showed that nearly all models simulate substantial
378  decreases in precipitation in high-rainfall regions during the LGM, particularly across the
379  tropics and monsoon zones, although the magnitude varies between models. Models that best
380 reproduce the reconstructed density anomalies found in reconstructions also tend to exhibit
381 the largest reductions in tropical precipitation. In contrast, models with smaller precipitation
382  decreases fail to reproduce the observed density structure. Figure 5 illustrates the relationship
383  between density anomalies and mean annual precipitation anomalies for both the tropics
384  (30°S—30°N, circle) and the global ocean (square). A clear linear relationship emerges between
385 density anomalies and precipitation anomalies, with R? = 0.67 in the tropics and R? = 0.64
386 globally, highlighting the robustness of this connection (p-value < 0.05). This analysis
387 emphasizes that accurately representing low-latitude hydrological feedbacks is critical for
388  capturing the full magnitude of glacial ocean density changes.

389
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391 Figure 5: Mean annual precipitation anomalies (LGM — PI, mm.yr™, over land and ocean) as a function of seawater density
392 anomalies corrected for mean ocean density changes (kg/m3) relative to sea level-induced salinity increase at LGM. Scatter
393 points show the relationship for the tropics (30°S—30°N, circle) and the global ocean (square). Dashed lines indicate linear
394 regressions for each region, with the corresponding slope, intercept, and R2. Precipitation anomalies are from Kageyama et
395 al. (2021). Grey dashed lines indicate the mean tropical and global reconstructions. No linear relationship is found between
396 SST anomalies and mean annual precipitation anomalies (not shown), indicating that the link between density anomalies and
397 precipitation is primarily driven by salinity changes.
398 In summary, our results indicate that SST effects alone cannot explain the density anomaly
399  differences between reconstructions and simulations. Instead, salinity differences account for
400 most of the model-data anomaly density discrepancy (Fig. 4) and are directly linked to
401 reductions in tropical precipitation. Models that simulate stronger tropical precipitation
402  decreases reproduce the observed LGM surface density anomalies more accurately,
403 emphasizing the importance of representing low-latitude hydrological feedbacks to capture
404  the full magnitude of glacial ocean density changes.
405
406
407
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408 3.2. Comparison of global distribution of surface density anomalies
409

410 Before analysing regional contrasts, we first evaluate model performances considering the
411  global distribution of absolute surface density anomalies (LGM-PI) by aggregating data from
412  all selected ocean basins (Fig. 6 & Fig. 7, Fig. C1).

413  This approach allows us to assess whether models reproduce both the magnitude and
414  variability of the reconstructed anomalies at the global scale.

415 As shown in Section 3.1, reconstruction-based anomalies have a median value of
416  approximately 1.5, whereas the values obtained from model simulations vary widely, ranging
417  from 0.6 to 1.7 (Fig. 6). Interquartile ranges (IQRs) support this divergence: the proxy data
418  exhibit a broader spread (IQR ~0.8), while models show smaller variability (IQR between 0.31
419 and 0.77), indicating that most models underestimate both the mean anomaly and its
420  variability (Fig. 7). For example, CNRM-CMS5 strongly underestimates the median (0.60 vs.
421  1.57), while iLOVECLIM-ICE-6G-C overestimates it (1.72 vs. 1.58) (Fig. 6 and Fig. 7).

422
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424 Figure 6: Distribution histograms of surface density anomalies (LGM-PI, kg/m3) for an example of four model simulations.
425 Density reconstructions are shown in black, model simulations in blue. Kernel Density Estimates (KDEs) illustrate the central
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426 tendency and overall shape of the distributions. Vertical lines indicate the median of each distribution, and shaded envelopes
427 represent the interquartile ranges (IQRs), providing a measure of data spread that is independent of extreme values. The
428 histograms display the frequency of values, complementing the KDEs and IQRs to give an integrated view of distribution
429 characteristics. Note that uncertainties associated with reconstructions and model heterogeneity are not shown, as the figure
430 focuses on distributional comparison. Colored indicators on the right side of each panel highlight whether the comparison
431 fails to meet any of the following criteria: p-value < 0.05, KS statistic 2 0.13, or non-overlapping IQRs between data and model
432 distributions. A colored flag indicates that the corresponding criterion is not satisfied.
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434 Figure 7: Comparison of observed and simulated density anomaly (kg/m3) statistics at the global scale. The shaded grey band
435 indicates the interquartile range (IQR) of the reconstructions data, and the dashed black line marks the median of the
436 reconstructions. For each model simulation, the blue vertical bars represent the modelled IQR, while the circular markers
437 denote the model median. Blue markers indicate model simulations with IQR values consistent with reconstructions (IQR
438 compatible), whereas orange markers highlight models with larger deviations (IQR non compatible).

439

440 Model-data agreement was evaluated using three complementary statistical criteria (see Sect.
441  2.2): a p-value > 0.05 from a two-sample Kolmogorov-Smirnov (KS) test, a KS statistic below
442  0.13 and overlapping interquartile ranges (IQRs) between data and model distributions,
443  indicating consistent variability. Together, these criteria evaluate whether models reproduce
444  not only the central value but also the overall shape of the reconstructed distribution.

445  Asshown in Fig. 6 and Fig. 7, 14 of the 16 model simulations (87.5%) satisfy one criterion, and
446  none meet all three simultaneously. In all cases, only the IQR criterion is fulfilled, while KS
447  statistics and p-values remain outside thresholds, confirming that global model-data
448  agreement remains limited.

449  Because density anomalies depend on both temperature and salinity, we also compared the
450  distribution of SST anomalies between models and reconstructions using the MARGO (MARGO
451  project, 2009) and Tierney et al. (2020) datasets (Fig. S2 and S3). Using the MARGO (MARGO
452  project, 2009) reconstructions, 13 out of 16 simulations (81%) meet the IQR criterion,
453  indicating that model and proxy interquartile ranges overlap substantially despite systematic
454  offsets. None of the simulations meet the KS or p-value criteria, suggesting that although the
455  overall spread of modelled and reconstructed SST anomalies is comparable, their detailed
456  distribution shapes remain statistically different.
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457  In contrast, for the Tierney et al. (2020) dataset, 87.5% (14/16) satisfy the IQR criterion, and 2
458  of them also meet the p-value criterion, indicating that a few model simulations (IPSL-CM5A
459  and IPSL-CM5A2) reproduce both amplitude and overall distribution of reconstructed SST
460  anomalies.

461  Finally, part of the mismatch may arise from the uneven spatial distribution of reconstructions,
462  which are mostly located near coastal areas (Fig. 2). These coastal regions are particularly
463  complex to simulate due to influences such as continental runoff and oceanic upwelling, which
464  are often poorly captured by global climate models. Consequently, kernel density estimates
465  derived from reconstructions appear flatter, suggesting greater variability not captured by the
466  models. Additionally, reconstructions in some key upwelling zones remain problematic, as
467  highlighted by Caley et al. (2025), further complicating the comparison and evaluation of
468  model outputs against data.

469

470 3.3. Global evaluation of surface density: models vs. reconstructions (Pl & LGM)

471  One limitation of working with anomalies is that any observed difference between data and
472  models in absolute surface density cannot be directly linked to either the LGM or the PI
473  baseline. To address this, we analysed the two periods separately, the LGM and the PI, as
474  shown in Fig. 8 and Fig 9. For each period, model surface density values were extracted at the
475  grid points corresponding to the reconstruction sites, allowing a direct model-data
476  comparison. In these figures, we compare the surface density values in the simulations to the
477  surface density values in the reconstructions, for both LGM and PI, at the global scale (all
478  basins combined). If the data—_model agreement were perfect, a 1:1 linear relationship would
479  be expected (see Sect. 2.2 for statistical details).
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Figure 8: Linear regressions between absolute surface density (kg/m3) from proxy-based reconstructions (x-axis) and model
simulations (y-axis), aggregated at the global scale (across all selected basins) for an example of four simulations. Results are
shown for the LGM period (blue) and the piControl period (orange). Error bars on the x-axis represent the 95% confidence
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significant (p < 0.05).
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489 Figure 9: Coefficients of determination (R?) and regression at the global scale, for each model simulations, evaluated
490 separately for the LGM (blue) and Pl (orange) periods. Values are shown for both standard (Ref, empty circles) least-squares
491 regression and uncertainty-aware estimates using Monte Carlo (MC) simulations (n = 10,000 iterations), which propagate
492 reconstruction uncertainties. The error bars for MC estimates represent variability across iterations (+1c). All regressions
493 shown are statistically significant (p < 0.05).

494  Across all simulations, the regressions are statistically significant (p-value < 0.05), both for
495  standard regressions and for those including uncertainties through Monte Carlo (MC)
496  simulations. This confirms the existence of a strong and robust relationship between
497  reconstructed and simulated surface densities at the grid points where reconstructions are
498  available, for Pl and LGM periods.

499  Among these significant regressions, the R? value and slope are then used to identify the
500 model simulations that best match the reconstructions. During the LGM (blue empty circles in
501  Fig. 9), 8 out of 16 simulations (50 %) have R? values above ~0.5, and 3 simulations (~19 %)
502  exceed 0.6. In terms of the slope, 75 % of the LGM simulations (12/16) fall between 0.8 and
503 1.2, indicating good reproduction of the amplitude of the reconstructed density changes. We
504 also note in Fig. 8 and Fig. D1 a shift at the LGM for certain simulations (e.g., intercept not at
505 O, closer to —-1), indicating that some models do not have sufficient density compared to the
506 data. Thisis particularly evident in CNRM-CM5, MIROC-ES2L and HadCM3-ICE simulations. For
507 the piControl period (orange empty circles on Fig. 9), the proportions are ~75 % for R > 0.5
508 and ~75 % for slopes within the 0.8—1.2 range.

509  When examining SST, model—data agreement is generally good with the MARGO dataset (Fig.
510 S4 (a)). However, comparison with the Tierney et al. (2020) dataset (Fig. S4 (b)) suggests that
511  some models are slightly too warm. SST biases may therefore explain part of the shift, but the
512  dominant contribution likely comes from salinity, through biases in the representation of the
513  hydrological cycle.

514 However, in areas with lower density (between 21 and 25 in the data), some model
515  simulations (e.g. MIROC-ES2L, Fig. 8) tend to underestimate density, showing values between
516 16 and 20 in most cases. This underestimation is also observed during the Pl period. In these
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517  areas, not all models exhibit this behaviour, and show highly divergent results, leading to a
518 large inter-model spread.

519

520 The LGM global comparison shows a statistical agreement between model simulations and
521  proxy-based reconstructions. While all regressions are significant, R? and slopes highlight the
522  models with the best performance: 50 % of the models achieve R? above 0.5, and 75 % display
523  regression slopes between 0.8 and 1.2. This indicates that most simulations capture the
524  general variability and amplitude of surface densities reasonably well, when looking the LGM
525 and the PI period separately. It is therefore important to examine whether this agreement
526  persists at the regional scale.

527

528 4. Evaluate model simulations at regional scale

529  Despite significant global-scale correlations, the mismatch in the statistical distributions
530 between models and reconstructions reveals that key spatial patterns are not captured
531 uniformly. This motivates a basin-by-basin analysis to better understand the regional origins
532  of these discrepancies.

533 4.1. Comparison of regional distribution of surface density anomalies

534  To assess whether model simulations differ significantly from proxy-based reconstructions in
535 terms of absolute surface density anomalies (LGM — PI), we performed statistical comparisons
536  across six ocean basins, based on three complementary criteria (see Sect. 2.2).

537 Across all basins, a total of 96 model-data comparisons were performed (16 model
538  simulations x 6 basins) (Fig. 10). Among them, 49 comparisons (51%) satisfy at least one of the
539 three criteria, while only 11 comparisons (11%) meet all three criteria simultaneously,
540 indicating that strong regional agreement remains rare. Overall, the most robust multi-basin
541  performance is achieved by IPSL-CM5A, while other model simulations show mixed or basin-
542  dependent skill.

543 At the basin scale, the Southern Ocean shows the most encouraging agreement. Multiple
544  models (e.g., CNRM-CM5, CESM1.2) pass at least one test, and notably, 6 of the 11 cases
545  meeting all three criteria occur in this basin, reflecting relatively high model-data consistency.
546  However, the Southern Ocean is also characterized by sparse data coverage and a limited
547  number of observations. By contrast, the North Indian and South Atlantic basins display
548  systematic mismatches across nearly all models with very few passing any of the criteria (2-5
549  model simulations depending on the test), reflecting broader difficulties in reproducing
550 regional distributions in these areas. The Pacific, North Atlantic and South Indian basins show
551 intermediate performance, with some models capturing IQRs but fewer passing KS or p-value
552 tests.
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554 Figure 10: Comparison of model simulations medians, of surface density anomaly (kg/m3), with observational data at the
555 regional scale. For each ocean, the grey shaded band represents the observed median * IQR, with the dashed line indicating
556 the median. Model medians are shown as colored markers: blue circles indicate model simulations with IQR compatible with
557 observations, while orange circles indicate IQR not compatible. Squares mark model simulations with a KS statistic above the
558 basin-specific threshold, and crosses denote models with significant differences from observations (p-value < 0.05). Vertical
559 lines show the model IQR, with dashed lines highlighting cases where distributions are statistically similar (p-value > 0.05).

560 Overall, these results suggest that only a minority of current PMIP3 and PMIP4 model
561 simulations reproduce proxy-based regional distributions of absolute surface density
562 anomalies with acceptable skill, define here as simultaneously satisfying all three criteria. In
563  our dataset, only 11 out of 96 model-basin comparisons (~11%) meet all three conditions,
564  highlighting the difficulty of reproducing past regional ocean dynamics. However, some
565 model-data differences may reflect spatial sampling biases, as proxy sites are mainly coastal
566  while model outputs represent open-ocean conditions, and in several regions, simulations
567 remain close to observational ranges despite marginal statistical mismatches.

568 4.2. Regional evaluation of surface density: models vs. reconstructions (Pl & LGM)

569 To test whether the strong global agreement between model simulations and proxy-derived
570  surface density truly holds at the regional scale, we repeated the regression analysis of Sect.
571 3.3 for each model simulation and for each of the six oceanic basins, producing a total of 96
572  model-period regressions. The complete results, including Monte Carlo (MC) uncertainty
573  estimates, are provided in the Supplementary Material (Fig. S5 and Table S1). For clarity, only
574  regressions with statistically significant R? or slope (p < 0.05 from the standard analysis) are
575 shown, ensuring that the supplementary tables summarize only robust model-data
576  relationships.

577 Inthe South Indian Ocean, agreement is consistently strong for both periods. During the LGM,
578 all 16 model regressions are statistically significant, with a mean R? of 0.82 + 0.05, MC R? of
579  0.71 £ 0.06 (Fig. 11), and all slopes falling within the acceptable range of 0.8—1.2 (Table S1).
580 The region emerges as the most reliably simulated basin. However, a shift is observed in some
581  simulations, with simulated densities being too low compared to the observations. SST
582  regressions (not shown) do not reveal trends large enough to explain this shift, suggesting
583 instead a bias in salinity linked to the hydrological cycle.

584  The Pacific Ocean also exhibits consistently good agreement. All regressions are statistically
585  robust, with MC R? exceeding 0.5 in 84.4% of the cases (mainly during the PI) (Table S1).
586  However, only 59.4% of simulations produce slopes within the 0.8-1.2 range. For the LGM, all
587 16 regressions are significant, with mean R? 0.57 + 0.21 (Fig. 11). This indicates that spatial
588  patterns are generally well reproduced, but the magnitude of reconstructed density
589  anomalies is not always correctly captured. The Pacific can nevertheless be considered one of
590 the more reliably simulated regions.

591  The South Atlantic, shows mixed performance. All regressions are statistically robust, but low
592  R?values suggest that poorly reproduced points along the African coast reduce the overall fit.
593  Forthe LGM, 6 model simulations out of 16 (37.5%) achieves R? > 0.5. Regarding slope, 62.5%
594  of simulations (10/16) fall within the acceptable 0.8—1.2 range, compared to 56.25% (9/16)
595  during the PI (Table S1).

22



https://doi.org/10.5194/egusphere-2026-254
Preprint. Discussion started: 2 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

596  The North Atlantic shows moderate agreement. All regressions are statistically robust, yet only
597 2 model simulations achieve R? > 0.5 for the PI, none for the LGM. However, 53% of
598  simulations display slopes between 0.8 and 1.2 (Table S1). During the LGM, the mean R? is
599  only 0.26 + 0.08, MC R? 0.17 % 0.08. This indicates that while some models reproduce the
600 magnitude of density, spatial coherence with the reconstructions remains weak.

601 In contrast, the North Indian Ocean shows poor agreement between surface density model
602 simulations and reconstructions. Fewer than half of regressions are statistically robust, most
603  of them corresponding to the LGM (Table S1). During the LGM, 12 regressions are significant,
604  yetthe mean R%isonly0.21 +0.08, MC R?0.17 + 0.07 (Fig. 11), and only 4 models show slopes
605  within the 0.8—1.2 range. For the remaining cases, R? values are close to 0.1, reflecting very
606  weak spatial coherence. Weak agreement is also observed for temperature reconstructions
607  (not show). This basin therefore stands out as one of the least reliably simulated regions.

608 The Southern Ocean exhibits complex and limited agreement. Standard regressions for the
609 LGM yield a mean R? of 0.64 + 0.25 (Fig. 11), suggesting reasonable fits in some cases, but the
610 corresponding MC-adjusted R? drops to 0.35 + 0.22, highlighting the high uncertainty due to
611  sparse observational coverage. In addition, the number of regressions that remain statistically
612  significant (p-value < 0.05) decrease sharply when considering the Monte Carlo p-values,
613  further emphasizing the lack of robust fits. Only 3 of the LGM slopes fall within the acceptable
614  0.8-1.2 range. For the PI, standard R? values are higher (0.87 + 0.07), yet MC R? remains low
615 (0.36 + 0.24) (Fig. 11). These results indicate that, despite apparently good fits in some
616  regressions, the Southern Ocean’s performance is not robust, and the limited observational
617  constraints dominate the MC uncertainty rather than systematic model biases.

618

619 To summarize, across the 16 simulations and six oceanic basins, 83 % of the regressions are
620 statistically significant when considering both LGM and PI periods. In detail, 92 % of LGM
621  simulations (88/96) and 75 % of Pl simulations (72/96) show p-values below 0.05 (Table S1),
622  confirming a generally strong and robust relationship between reconstructed and simulated
623  surface densities at the regional scale. When further considering model performance in terms
624  of both R?2 > 0.5 and slopes within the 0.8-1.2 range, only 33.3 % of regressions during the
625 LGM (32/96) and 33.3 % during the Pl (31/96) meet these criteria, with the majority of
626  successful regressions occurring in the South Indian Ocean (Table S1). The North Indian Ocean
627 and Southern Ocean remain the most challenging regions to simulate, but for different
628  reasons: in the North Indian Ocean, models struggle to reproduce spatial coherence, whereas
629 in the Southern Ocean, the lack of robust fits is primarily due to limited data coverage. These
630 same basins also exhibit the poorest agreement in SST regressions for both the MARGO
631 (MARGO project, 2009) and Tierney et al. (2020) reconstructions (not shown here), suggesting
632 that model biases in these regions are at least partly related to temperature
633  misrepresentation.

634
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636 Figure 11: Average R? of model—data regressions by ocean and period. Top panel shows the mean R? (ref) across all climate
637 model simulations for each oceanic basin, with standard deviation as error bars. Bottom panel shows the mean Monte-Carlo
638 R? (MC R?) and its standard deviation. Blue bars correspond to the Last Glacial Maximum (LGM) period, and orange bars
639 correspond to the pre-industrial (Pl) period. Higher R? values indicate better agreement between model simulations and
640 proxy data.

641

642 To further explore regional model-data agreement and better understand the sources of
643  spatial discrepancies highlighted in the previous section, we focus on the Indian Ocean as a
644  case study. This basin is a key component of the global climate system, in particular because
645  ofits strong connection with the monsoon hydrological cycle, the influence of large river fluxes
646  on salinity, and the resulting impact on surface density which depends on both temperature
647  and salinity.

648 4.3. Evaluation of models at regional scale: focus on the Indian Ocean

649  The Indian Ocean region, including part of the Indo-Pacific Warm Pool (IPWP), plays a critical
650 role in the global climate system due to strong coupling between ocean and atmosphere,
651  particularly through the Indo-Pacific Walker circulation. This circulation influences the zonal
652  distribution of SST and thermocline depth, providing the background conditions for
653  phenomena such as the Indian Ocean Dipole (I0D) (Saji et al., 1999; Abram et al., 2020). The
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654 Indian Ocean is also closely linked to the monsoon hydrological cycle, with precipitation
655  patterns affecting surface salinity and, consequently, density, making it particularly sensitive
656  to both temperature and salinity variations. However, climate models often misrepresent the
657  mean state of the 10D, leading to biases in simulating climate variability (Weller and Cai, 2013;
658  Cai and Cowan, 2013). Notably, Abram et al. (2020) report that many models produce an
659  overly strong thermocline-SST feedback due to a misrepresentation of the mean state,
660  particularly an exaggerated zonal thermocline slope, which artificially increases the strength
661 and frequency of simulated 10D events. Although research on the 10D has expanded over the
662  past two decades, uncertainties remain regarding the controls and long-term evolution of the
663 Indian Ocean’s mean state, especially under different climate boundary conditions. The
664 limited timeframe of the instrumental record and persistent model biases make paleoclimate
665 reconstructions essential for investigating past mean states and for testing model
666  performance beyond the range of modern variability (Abram et al.,, 2020). To date,
667  paleoclimate data of SST suggest that past periods, such as during the LGM, mid-Holocene or
668  17th century, tend to have a mean state that is more typical of a positive I0D-like, which is
669  systematically associated with elevated 10D variability. This indicates a tight coupling between
670  the mean state and interannual dynamics (Abram et al., 2020).

671  We now focus on the Indian Ocean sector to assess the degree of model-data agreement in
672 the reconstructed west-east surface density gradient. SST and precipitation driving SSS
673  changes create a west-east surface salinity gradient (Fig. 12) and therefore a density gradient.
674  Recent observations show that, at interannual timescales, SSS variability is strongly linked to
675 the 10D and ENSO, and can interact with SST anomalies through a SST—precipitation—SSS
676  feedback. This suggests that SSS may at times amplify rather than offset SST-related changes
677 (Zhangetal., 2016).

678

679 In this section, the 'ILOVECLIM-ICE-6G-C' and 'iLOVECLIM-GLAC-1D' simulations have been
680 excluded due to a salinity bias in the northern Indian Ocean region caused by excess
681  precipitation that reduces salinity in the iLOVECLIM model in comparison to reconstructions
682  asshown by Roche and Caley (2013).

683  We focus on the LGM mean state of the Indian Ocean, using a West-East gradient. For this,
684  two boxes were defined: "Indian West", which contains 6 density reconstructions and "Indian
685  East", which contains 5. These boxes were chosen based on the definition of the I0OD by Saji
686 et al. (1999), and slightly adjusted to ensure sufficient points within each box. The "Indian
687  West" box is defined as 50°E-70°E, 12°S-12°N, corresponding to the tropical western Indian
688  Ocean. The "Indian East" box is defined as 90°E-110°E, 10°S-2°N, corresponding to the tropical
689  south-eastern Indian Ocean. For model-data comparisons, model values are extracted at the
690  exact grid cells where reconstructions are available. The SST points used by Tierney et al.
691  (2020) in the “Indian East” box are geographically close to the density reconstructions, which
692  favours a tighter spatial match between SST and density data. In contrast, reconstructions
693 from the MARGO (MARGO project, 2009) database in the "Indian West" box are located
694 farther offshore, showing less spatial overlap with the available density reconstructions.

695
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696 Before analyzing the LGM—piControl difference, we verified that models reproduce the West—
697  East gradient observed during the pre-industrial period. To do this we compared the West—
698  East gradient of SST, salinity, and surface density from each piControl simulation with EN4
699  observational data (1900-1999) extracted at the same grid cells as LGM reconstructions (Fig.
700  E1). We find that all model simulations agree with the observations in terms of the gradient's
701  sign: a negative West—East gradient for temperature, and positive gradients for salinity and
702  density.

703  Temperature shows greater inter-model spread, while for salinity and density, the model
704  median almost matches the gradient value from EN4 observations (Fig. E1). The proxy-based
705  reconstructions West—East density gradient closely matches the EN4 observations, confirming
706  consistency between modern observations and Late Holocene reconstructions. Regarding SST,
707  we find a significant difference of around 1°C between the EN4 SST and the Tierney et al.
708  (2020) SST reconstructions in the same locations (Fig. E1). Thus, using the West—East surface
709  density gradient as a temporal difference (LGM—piControl) allows model evaluation to focus
710  on LGM performance, as piControl simulations are consistent with observations.

711  We examine the surface density difference between the LGM and PI periods across the two
712 boxes (Fig. 12 (a)). The proxy-based reconstruction shows a negative west—east density
713  anomaly, with a value close to -1 (Fig. 12 (a)). About half of the model simulations reproduce
714  the correct sign, with CNRM-CMS5, MRI-CGCM3, GISS-E2-R, HadCM3-GLAC1D, HadCM3-ICE-
715 6G_C, HadCM3-PMIP3 and CESM1.2 falling within the 68% uncertainty range of the
716  reconstruction. HadCM3-ICE-6G_C and CESM1.2 best capture both magnitude and sign.

717

718 These model—-data mismatches are consistent with known CMIP-class biases: many models
719  fail to reproduce the LGM west—east density anomaly due to errors in Walker circulation,
720  monsoon dynamics, and regional precipitation (Feng et al., 2023; McKenna et al., 2024). Such
721  atmospheric circulation biases propagate into the ocean (thermocline slope, zonal SST
722  gradients) and thereby affect both temperature and salinity-driven contributions to surface
723  density. In this light, the spread of model outcomes at the LGM can be partly attributed to
724  differing model responses to LGM boundary conditions and to systematic CMIP biases in
725  tropical atmospheric circulation.

726

727  To investigate whether temperature and/or salinity biases could be responsible for the
728  model-data mismatch, we first examine the west—east gradient anomaly in temperature. On
729  the temperature side (Fig. 12 (b) and (c)), the two datasets show differing patterns: the
730 MARGO (MARGO project, 2009) database reports a small West—East gradient (—0.28), whereas
731  the Tierney et al. (2020) dataset shows a positive anomaly (1.33). The SST reconstructions in
732 MARGO (MARGO project, 2009) in this zone are mainly based on foraminiferal assemblages,
733 whereas the reconstructions in the Tierney et al. (2020) database are mainly based on Mg/Ca
734  proxies. As the Tierney reconstructions are geographically closer to the density records, we
735  use them (Fig. 12 (b)) for interpreting the SST anomaly. The positive West—East gradient in
736  Tierney et al. (2020) does not imply the western Indian Ocean was warmer than the east
737  during the LGM; rather, it indicates a relative reduction in the zonal SST gradient compared to
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738  preindustrial conditions. This is consistent with the observed west—east density anomaly,
739  where relatively weaker cooling in the west would contribute to lower density than in the
740  east. SST anomalies exhibit smaller inter-model spread than density anomalies. The
741 simulations that most closely reproduce the observed SST anomaly pattern between LGM and
742  piControl are HadCM3-GLAC-1D, HadCM3-ICE-6G_C, HadCM3-PMIP3, and CESM1.2.
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744 Figure 12: Model-data comparison of West—East anomalies (LGM — piControl) in the Indian Ocean. Stars denote
745 reconstruction-based anomalies, while shaded areas indicate model uncertainties (+1g, light shading +20). All model values
746 are extracted at the same grid cells as the observational sites to ensure a spatially consistent comparison. Regional
747 uncertainties are obtained by combining uncertainties from all sediment cores from each box (West and East). For each core,
748 the uncertainty is represented by a Gaussian standard deviation derived from its reported confidence interval. We construct
749 inverse-variance reliability weights using two components: the within-core variance (from the Cl-based o) and the
750 between-core spatial variance (the variance of core-specific means). The regional mean is the weighted average of the core
751 means, and its uncertainty follows the law of total variance, ensuring that both local reconstruction uncertainty and spatial

752 variability are preserved. To obtain smooth uncertainty bands, we then generate Monte-Carlo draws from this mixture.
753 Uncertainty on the West—East anomaly is then obtained by standard error propagation, assuming independent regional
754 means (square root of the sum of squared standard deviations). (a) Surface density anomaly (kg/m?3). Density reconstructions
755 are derived from 6'®0c measurements of planktonic foraminifera and converted into density estimates using the Bayesian
756 calibration method of Caley et al. (2025). Observational uncertainty is shown by the 68% (dark green) and 95% (light green)
757 confidence intervals. (b) Sea surface temperature (SST) anomaly (°C) based on Tierney et al. (2020). Observational

758 uncertainties are shown as 68% (dark blue) and 95% (blue). (c) Same as (b), but using the MARGO database (MARGO Project,
759 2009). (d) Sea surface salinity (SSS) anomaly (g/kg).

760

761  DiNezio et al. (2018) investigated the LGM—piControl SST anomaly in this part of the Indian
762  Ocean using the CESM1 model, revealing a West—East SST gradient in this region. Their study
763  showed that two main mechanisms drive the observed glacial-interglacial climate changes:
764  first, the exposure of the Sahul shelf enhances ocean-atmosphere feedbacks that alter rainfall
765  and temperature gradients across the Indian Ocean; second, Northern Hemisphere cooling
766  weakens monsoonal systems by reducing moisture supply, especially over the Arabian Sea.
767  This sensitivity is also dependent on how the newly exposed continental shelf is represented
768 in the model. Factors such as the prescribed surface roughness, vegetation type, or albedo in
769  the now-exposed Indonesian region can significantly impact the simulated atmospheric
770  circulation (DiNezio and Tierney, 2013; Dinezio et al., 2018). In particular, the ability of the
771  convection scheme to respond differently to land versus ocean surfaces plays a critical role in
772  shaping regional precipitation patterns (Chemel et al., 2014). These model design choices
773  likely contribute to the spread of results across PMIP3 and PMIP4 models and their varying
774  skill in reproducing observed SST and surface density gradients.

775

776  Salinity biases were also assessed using LGM—P| anomalies and West—East gradients (Fig. 12
777  (d)). Without direct LGM salinity reconstructions, this relies on model outputs. Inter-model
778  spread in salinity is comparable to density and larger than SST, emphasizing the role of
779  freshwater fluxes and hydrological processes in shaping density changes. Models with the
780  most negative salinity anomalies (MRI-CGCM3, GISS-E2-R, HadCM3-GLAC-1D, HadCM3-ICE-
781 6G_C, HadCM3-PMIP3 and CESM1.2) best reproduce the observed west—east density
782  gradient. Models failing to produce sufficiently negative salinity anomalies often have biases
783  in monsoon precipitation location and intensity, directly affecting surface salinity. Dinezio and
784  Tierney (2013) showed that accurate West—East salinity gradients require correct precipitation
785  patterns. This underscores the importance of correctly simulating the Indian Ocean
786  hydrological cycle (including major rivers) and atmospheric circulation to reproduce salinity-
787  driven density gradients and associated climate impacts.

788
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789  All HadCM3 simulations follow the PMIP4 protocol for implementing LGM boundary
790  conditions. This protocol ensures that the differences between ice-sheet reconstructions are
791  consistently applied—not only in terms of ice-sheet mask and elevation, but also land—sea
792  distribution, bathymetry, and far-field topography. Among them, the HadCM3-ICE-6G_C
793  simulation provides the best agreement with the observed west—east surface density
794  gradient. This improved performance is consistent with previous results (Ilzumi et al., 2023),
795 who showed that the ICE-6G_C ice-sheet configuration induces distinct atmospheric
796  circulation responses compared to other reconstructions. These include shifts in jet structure
797  and stationary waves, as well as differences in surface albedo forcing and sea-ice expansion.
798  Such large-scale circulation adjustments feedback onto the Indo-Pacific climate, which likely
799  explains the slightly more realistic simulation of the west—east density gradient in HadCM3-
800 ICE-6G_C.

801  Marine sediment core reconstructions provide robust support for a distinct pattern of SST and
802  density changes in the Indian Ocean during the LGM. Our results confirm a strong cooling in
803  the eastern Indian Ocean contrasted with milder cooling in the western basin, leading to a
804  reduction of the zonal SST gradient compared to preindustrial conditions (DiNezio et al., 2018).

805 We also demonstrate that this zonal SST changes is associated with zonal salinity and density
806  changes. This pattern supports the interpretation that the LGM Indian Ocean mean state was
807 marked by a weakened zonal SST gradient, primarily due to intensified cooling in the eastern
808  basin and a shallower thermocline. Such mean state changes, as shown by Abram et al. (2020),
809 likely enhanced interannual variability across the basin. This underscores the value of
810 palaeoclimate for improving our understanding Indian Ocean mean state under varying
811  boundary conditions.

812  Of the 14 model simulations, only 7 (50%) successfully reproduce the observed West—East
813  tropical gradient both in SST and density during the LGM, when accounting for the 68%
814  uncertainty range of the reconstructions. This highlights current climate model limitations,
815 indicating that key processes are insufficiently represented or that boundary condition
816  choices, especially ice-sheet reconstructions, could influence model-data agreement.

817

818
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825 5. Conclusion:

826 The quantitative density reconstruction method based on §'®0c, developed by Caley et al.
827  (2025), provides a valuable dataset for evaluating climate model simulations from PMIP3 and
828  PMIP4 in terms of LGM density changes. Instead of comparing ensemble means, our analysis
829  evaluates each model simulation individually, revealing a wide range of behaviours in both the
830 amplitude and spatial structure of simulated density anomalies. Overall, models tend to
831  slightly underestimate the magnitude of density anomalies compared to proxy-based
832  reconstructions, which exhibit a mean anomaly of ~1.5 kg/m3, while model simulations
833 average around 1.0 kg/m3. Despite this, at the global scale, 100% of simulations show
834  statistically significant correlations with reconstructions (p < 0.05) for LGM and PI periods, and
835  ~50% reach R?> 0.5, with ~75% reproducing regression slopes within 0.8—1.2, indicating that
836  large-scale patterns are generally captured.

837  The comparison between model outputs and paleodata suggests that models reproduce the
838  sign of density changes and broad latitudinal patterns, but notable regional discrepancies
839  remain. Across six ocean basins, only ~33% of model-basin combinations achieve robust
840  agreement simultaneously, highlighting limitations at finer scales. For instance, in the Indian
841  Ocean, while mean density anomalies are reasonably reproduced, only 7 out of 14 models
842  (50%) capture the weakened West—East density gradient. This misrepresentation of the mean
843  state of the IOD could lead to biases in climate variability. Discrepancies are linked to biases
844  in SST and salinity changes, and to insufficient representation of low-latitude precipitation
845  reductions, which are critical for reproducing density anomalies in tropical regions.

846  These results emphasize that evaluating individual simulations rather than ensemble means
847 is essential, as ensemble averaging can mask inter-model differences and region-specific
848  biases. They also highlight the need to expand LGM density reconstructions, particularly in
849  poorly sampled open-ocean regions, to provide stronger observational constraints on models.
850 In the future, integrating these datasets within statistical observational-constraint
851 frameworks and data assimilation approaches could help identify models that most accurately
852 reproduce past climate states and could ultimately improve confidence in future climate
853  projections.

854
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862 Appendices:

863 A. Study basins:
864

865  We first considered the major oceanic basins: The Atlantic, Indian, and Pacific Oceans, the
866  circumpolar Southern Ocean. To better capture regional processes and analyze these regions
867  more precisely, some of these large basins were subdivided into northern and southern parts,
868  resulting in a total of six ocean basins. The Atlantic and Indian Oceans were split with updated
869 latitudinal boundaries. Specifically, the North Atlantic, following the density reconstruction
870  method of Caley et al. (2025), extends from 0° to 40°N, while the South Atlantic is restricted
871  to O°N. Similarly, the North Indian Basin extends from 0°S northward, and the South Indian
872  Basin is restricted to 0°S.

873  The Mediterranean Sea was excluded from the analysis, as this region is particularly difficult
874  for climate models to simulate and the limited number of proxy data points resulted in
875  statistically insignificant regressions.

876  The Pacific and the Southern Ocean retain their original boundaries. The study basins were
877  defined using the NOAA WOA23 mask file (1°x1° grid:
878  https://www.ncei.noaa.gov/data/oceans/woa/WOA23/MASKS/basinmask_01.msk), with
879  modifications applied to create these six final regions (Fig. Al).

Basins
North Atlantic
B South Atlantic
North Indian
B south Indian
Pacific
Southern Ocean

180°W 120°W 60°W 0 60°E 120°E 180°E
880

881 Figure Al: Map of selected basins in this study. The study basins were created from the NOAA WOA23 mask file (which has
882 a 1°x1° grid) (website https://www.ncei.noaa.gov/data/oceans/woa/WOA23/MASKS/basinmask_01.msk) then some basins
883 were modified, in particular to divide them into North and South. 6 basins were defined and studied: North Indian (latitudinal

884 limit at 0° S), South Indian (latitudinal limit at 0° S), North Atlantic (between 0° and 40° N), South Atlantic (latitudinal limit at
885 0° N), Pacific, and Southern Ocean. North Atlantic is cropped at 40°N following the Caley et al. (2025) density-reconstruction
886 method.
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887 B. Latitudinal profiles of surface density, SSS and SST anomalies (LGM-PI):
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889 Figure B1: Density anomaly (kg/m3) as a function of latitude for each model simulation (colored dots), compared with
890 observational data (grey dots) and the 68% confidence interval (grey shading). Model outliers, identified using the
891 interquartile range (IQR) method (values outside 1.5xIQR), were excluded to minimize the influence of extreme values and
892 highlight robust spatial patters. This filtering enhances the main latitudinal structure and modelled density anomalies while
893 preserving all available latitude sampling points.
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895 Figure B2: Zonal distribution of salinity anomalies (LGM—PI) simulated by each model (colored dots). Model outliers,

896 identified using the interquartile range (IQR) method (values outside 1.5xIQR), were excluded to minimize the influence of
897 extreme values and highlight consistent spatial patterns. This filtering emphasizes the latitudinal structure of simulated
898 salinity anomalies across models while preserving all available sampling points.
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900 Figure B3: Zonal distribution of SST anomalies (LGM—PI) from the MARGO (MARGO project, 2009) reconstruction (grey dots)
901 and + 1o uncertainties (grey shading), compared with model simulations (colored dots). Model outliers, identified using the
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interquartile range (IQR) method (values outside 1.5xIQR), were excluded to minimize the impact of extreme values and
highlight robust latitudinal patterns. This filtering enhances the readability of the large-scale SST anomaly structure while
preserving all available latitude points.
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Figure B4: Zonal distribution of SST anomalies (LGM-PI) from Tierney et al. (2020) reconstruction (grey dots) and * 1o
uncertainties (grey shading), compared with model simulations (colored dots). Model outliers, identified using the
interquartile range (IQR) method (values outside 1.5xIQR), were excluded to minimize the impact of extreme values and
highlight consistent spatial patterns. This filtering clarifies the latitudinal structure of simulated SST anomalies while
preserving all available observation—model comparison points.
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911 C. Comparison of global distribution of surface density anomalies:
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912

913 Figure C1: Distribution histograms of surface density anomalies (LGM-PI, kg/m3) at the global scale. Density reconstructions
914 are shown in black, model simulations in blue. Kernel Density Estimates (KDEs) illustrate the central tendency and overall
915 shape of the distributions. Vertical lines indicate the median of each distribution, and shaded envelopes represent the

916 interquartile ranges (IQRs), providing a measure of data spread that is independent of extreme values. The histograms display
917 the frequency of values, complementing the KDEs and IQRs to give an integrated view of distribution characteristics. Note
918 that uncertainties associated with reconstructions and model heterogeneity are not shown, as the figure focuses on
919 distributional comparison. Colored indicators on the right side of each panel highlight whether the comparison fails to meet

920 any of the following criteria: p-value < 0.05, KS statistic >0.13, or non-overlapping IQRs between data and model distributions.
921 A colored flag indicates that the corresponding criterion is not satisfied.
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Figure D1: Linear regressions between absolute surface density (kg/m?3) from proxy-based reconstructions (x-axis) and model
simulations (y-axis), aggregated at the global scale (across all selected basins). Results are shown for the LGM period (blue)
and the piControl period (orange). Error bars on the x-axis represent the 95% confidence intervals of the reconstructed values.
The slope and R? values correspond to standard linear regressions, without accounting for uncertainties on the x-axis (the
Monte Carlo method was not applied here). All regressions shown are statistically significant (p < 0.05).
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Figure E1: Boxplots showing West—East anomalies (Indian_East — Indian_West) in Sea Surface Temperature (°C), (from the
MARGO and Tierney datasets, separately), Sea Surface Salinity (g/kg), and sea surface density (kg/m3) during the pre-
industrial period. The boxplots represent the distribution of anomalies from climate model simulations only. Each colored
dot corresponds to the anomaly from an individual model simulation. Red stars indicate observed values from the EN4 dataset
(Good et al.,, 2013), averaged over the period 1900-1999 to provide a historical reference. Orange stars indicate
reconstructions from databases (PI from WOA18 for MARGO (MARGO project, 2009), LH for Tierney et al. (2020) and LH for
density (Caley et al.2025)).
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955  Data availability:

956  Most of the CMIP5/PMIP3 and CMIP6/PMIP4 climate model simulations used in this study are
957  publicly available through the Earth System Grid Federation (ESGF). The simulations IPSL-
958 CM5A2, HadCM3-GLAC-1D, HadCM3-ICE-6G_C, HadCM3-PMIP3, iLOVECLIM-GLAC-1D,
959  iLOVECLIM-ICE-6G_C, and CESM1.2 are not available via ESGF. CESM1.2 simulation outputs
960 are openly available from Zenodo (https://zenodo.org/records/14957995). The HadCM3
961 model simulations can be accessed at
962  https://www.paleo.bristol.ac.uk/ummodel/scripts/papers/. iLOVECLIM simulations outputs
963  are available upon request from Nathalie Bouttes, and IPSL-CM5A2 data can be obtained by
964  contacting Masa Kageyama. References for all simulations are provided in Table 1.

965 The 6'®0c database and the Python code to compute surface ocean density are related to
966 Caley et al. 2025 and can be found at
967 https://github.com/nicrie/density_uncertainty/tree/main/data
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