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Abstract.

We employ an updated retrieval of space-based methanol (CH3OH) column measurements from the Infrared Atmospheric

Sounding Interferometer (IASI) and an emission optimisation framework built on the MAGRITTE chemical transport model

to assess terrestrial emissions of methanol to the atmosphere between 2008 and 2019. We first carry out a IASI CH3OH

validation study based on concentration measurements from three airborne campaigns, using the model and the IASI averaging5

kernels to compute aircraft-based columns directly comparable to IASI data. IASI is found to underestimate high columns in

the considered region. A linear regression gives ΩIASI = 0.46Ωairc + 10.6 · 1015 molec.cm−2, with ΩIASI and Ωairc the IASI

and aircraft-derived columns, respectively. Inverse modelling of terrestrial methanol emissions using MAGRITTE and bias-

corrected IASI columns leads to much-improved overall agreement against in situ measurement campaigns and column data at

eight FTIR stations. The optimised global biogenic methanol emissions (∼ 160Tg yr−1) are 22−60% higher than previous top-10

down estimates, due to (1) column enhancements caused by the IASI bias-correction and (2) higher dry deposition velocities

in the model over land, compared to previous model studies, based on a parametrisation constrained by extensive campaign

data. The inversion results are less reliable over boreal forests due to shortcomings of both the bias-correction and the dry

deposition scheme over these regions. The optimisation suggests large changes in the distribution and seasonality of emissions.

Over tropical ecosystems, radiation and temperature appear to exert a stronger control on biogenic emissions than is currently15

accounted for in the MEGAN model.

1 Introduction

Methanol (CH3OH) is, besides methane, the most abundant organic compound present in the atmosphere (e.g., Singh et al.,

2001), due to its fairly long atmospheric lifetime, of the order of 5 days (Millet et al., 2008; Stavrakou et al., 2011; Bates

et al., 2021) and to its large global production dominated by an important biogenic emission flux, of magnitude (∼100 Tg yr−120
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globally) equivalent to 18–23% of the global isoprene source (e.g., Guenther et al., 2012; Wells et al., 2014; Sindelarova et al.,

2022). Other methanol sources include minor contributions from vegetation fires and anthropogenic emissions, each of the

order of 10 Tg yr−1 globally (e.g., Jacob et al., 2005); photochemical production (∼30–60 Tg yr−1, e.g. Stavrakou et al.,

2011; Khan et al., 2014; Bates et al., 2021) from reactions of CH3O2 with organic peroxy radicals (Madronich and Calvert,

1990) and with the hydroxyl radical OH (e.g., Archibald et al., 2009); as well as a large and uncertain marine biospheric25

source (Heikes et al., 2002) of which global magnitude (24–85 Tg yr−1, e.g., Millet et al., 2008; Bates et al., 2021) is more

than offset by ocean uptake (38–101 Tg yr−1).

The importance of methanol for atmospheric chemistry stems primarily from its main atmospheric sink, namely oxidation

by OH (e.g., Millet et al., 2008), which is an important source of carbon monoxide and formaldehyde (Millet et al., 2006; Hu

et al., 2011; Wells et al., 2014) and has minor impacts on tropospheric ozone and the oxidizing capacity of the atmosphere (Tie30

et al., 2003; Read et al., 2015). Methanol is also removed from the atmosphere through wet scavenging and uptake by oceans

(see above) and vegetated areas (Jacob et al., 2005).

The terrestrial biogenic emission of methanol is primarily associated with the growth of cell walls in plant leaves (Fall

and Benson, 1996), while other processes such as grassland cutting (Davison et al., 2008) and plant decay (Warneke et al.,

1999) also contribute but are considered minor. The emissions are dependent on leaf temperature and light, and are higher35

in young and growing leaves than in mature and senescent leaves (Nemecek-Marshall et al., 1995). The estimated global

biogenic source of methanol, of the order of 100 Tg yr−1 according to the Model of Emissions of Gases and Aerosols from

Nature version 2.1 (MEGANv2.1) (Guenther et al., 2012), agrees with top-down estimates constrained by in situ (primarily

airborne) measurements (Millet et al., 2008; Bates et al., 2021) or spaceborne retrievals of CH3OH columns from the Infrared

Atmospheric Sounding Interferometer (IASI, Razavi et al., 2011; Stavrakou et al., 2011). These results are also consistent40

with the total terrestrial surface source of methanol (∼120 Tg yr−1) estimated based on column data from the Tropospheric

Emission Spectrometer (TES, Cady-Pereira et al., 2012; Wells et al., 2014). Nevertheless, the confrontation of models with

satellite data suggest substantial deviations from the MEGANv2.1 distributions, such as large underestimations over semi-arid

regions (shrubland and savannas), overestimations over rainforests over Central Africa and parts of Amazonia, and a shift of

the seasonal peak of biogenic emissions towards the spring at mid-latitudes (Stavrakou et al., 2011; Wells et al., 2012, 2014).45

Top-down emission estimates based on satellite data bear uncertainties for several reasons. Firstly, although the IASI- and

TES-based inverse modelling of emissions improved model comparisons against independent data (Stavrakou et al., 2011;

Wells et al., 2014), significant underestimations persisted in comparisons with aircraft and ground-based measurements, sug-

gesting potential biases in the satellite data. Recent studies showed that satellite retrievals may present biases with respect to

independent datasets, e.g. for HCHO from UV-Visible sensors (e.g., Zhu et al., 2016; Vigouroux et al., 2020; De Smedt et al.,50

2021; Müller et al., 2024) and for several organic compounds from IR sensors including acetone and carboxylic acids from

IASI (Franco et al., 2019, 2020) and methanol and other species from the Cross-track Infrared Sounder (CrIS, Wells et al.,

2025). The characterisation of satellite data biases can be used to derive bias-corrected datasets for use in inverse modelling,

as has been done for HCHO and NO2 (Oomen et al., 2024; Müller et al., 2024; Souri et al., 2025).
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Secondly, potential inconsistencies between the vertical concentration profile from the model and assumed in the satellite55

retrieval might lead to biases in the comparison of total columns, due to vertical variations in the sensitivity of the chemical

compound. This issue can be addressed through the application of averaging kernels (Eskes and Boersma, 2003), which were

however not available in previous works based on methanol IASI retrievals.

Thirdly, the inverse modelling of terrestrial methanol emissions is sensitive to the representation of other key budget com-

ponents. Although very uncertain, marine emissions have little relevance due to their very small impact over land (Bates et al.,60

2021). Of higher importance is the production due to the CH3O2 + OH reaction, which was ignored in the earlier studies,

including Stavrakou et al. (2011) and Wells et al. (2014). Most importantly, the parametrisation of methanol uptake on land

surfaces was based on only few dry deposition data, despite the well-established bidirectional nature of biosphere/atmosphere

exchange of methanol (Wohlfahrt et al., 2015). The adopted dry deposition velocities, typically below 0.6 cm s−1 (Jacob et al.,

2005; Millet et al., 2008; Stavrakou et al., 2011), are significantly lower than average values reported in many field campaigns65

(Wohlfahrt et al., 2015). In some cases, the net methanol flux to the atmosphere is close to zero (Langford et al., 2010) or even

negative during a large part of the year (Laffineur et al., 2012).

The present study aims to address the above issues in several ways. We present a newly developed version of the IASI

CH3OH retrieval, IASIv4, including several methodological advances, among which the provision of averaging kernels. Next,

we validate this product using aircraft measurements of methanol from several campaigns, and we use the results to propose70

a correction formula. The bias-corrected IASI dataset is then used to optimise terrestrial emissions in the global chemistry-

transport model MAGRITTE (Müller et al., 2019). This model incorporates methanol formation due to CH3O2 + OH, as well

as a detailed representation of methanol uptake. The deposition scheme over land is adjusted based on field campaign data.

Finally, the optimisations are evaluated against a broad range of independent observations, including surface and airborne in

situ data as well as Fourier-transform infrared (FTIR) column measurements.75

The manuscript is structured as follows. Sections 2.1–2.4 describe the IASIv4 retrieval, the airborne and surface in situ con-

centration datasets and the network of FTIR data. Section 2.5 provides a brief description of the MAGRITTE model focusing

on the parametrisation of methanol sources and sinks; in particular, Sect. 2.5.5 and Appendix A describe the implementation of

methanol dry deposition, including an evaluation of this scheme against observation-based estimates. Sections 2.6–2.7 present

the methodology used for IASI validation and for emission optimisation based on either aircraft or satellite data. Section 380

presents the evaluation of IASI biases using aircraft data, and proposes a bias-correction formula for use in inverse modelling.

Section 4 presents an assessment of top-down terrestrial emissions based on IASI, while Section 5 provides an evaluation of

the optimised results against independent data; finally, Section 6 presents the conclusions of this study.

2 Data and methods

2.1 IASI methanol columns85

In this study, we use CH3OH column measurements retrieved from infrared spectra recorded by IASI, which operates onboard

the polar-orbiting MetOp series of meteorological satellites: MetOp-A (operational from 2007 to late 2021), MetOp-B (since
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2013), and MetOp-C (since 2019). Each IASI sensor provides global coverage twice per day (∼9:30 local solar time, morning

and evening overpasses) with a circular footprint of 12 km diameter at nadir. The dataset used here has been produced with

version 4 of the artificial neural network retrieval framework for IASI (ANNI). The IASIv4 CH3OH product builds upon the90

previous ANNI-based CH3OH dataset (v3) described in Franco et al. (2018) and incorporates the methodological advances

introduced with the ANNI v4 retrieval framework (Clarisse et al., 2023). While these references provide a full description of

the retrieval approach and resulting product, we summarize below the key aspects relevant for the present study.

First, the ANNI retrieval framework calculates for each IASI observation a hyperspectral range index (HRI), a sensitive met-

ric quantifying the strength of the signature of the target species in the spectrum. In ANNI v4, a regularization procedure in the95

HRI setup allows suppressing discrepancies that are due to changes in the instrument calibration and post-processing (Clarisse

et al., 2023). This ensures HRI consistency throughout the full IASI time series and between the different IASI sounders. In

a second step, for each IASI observation, the corresponding HRI is converted into a single-pixel gas total column (and uncer-

tainty) using an artificial feedforward neural network (NN) trained to emulate the non-linear relationships between the HRI,

atmospheric and surface conditions, and the gas vertical abundance. The meteorological variables used as NN inputs (e.g., tem-100

perature profiles, water vapor content) are sourced from the hourly ERA5 reanalysis of the European Center for Medium-Range

Weather Forecasts (ECMWF; Hersbach et al., 2020), co-located in space and time with the IASI measurements. Cloudy scenes

are excluded from the retrievals, and post-retrieval quality filters reject unphysical results due to poor observational conditions

in which IASI cannot reliably measure the target gas (Franco et al., 2018; Clarisse et al., 2023). The single-pixel cloud flag

used by the ANNI v4 framework is the NN-based cloud product developed specifically for IASI (Whitburn et al., 2022).105

For its baseline retrieval, the ANNI framework assumes constant vertical profile shapes of the target gas, derived from model

simulations, with one representative profile over land and another over sea (Franco et al., 2018). For CH3OH, these profile

shapes have been updated in ANNI v4 to better match the average tropospheric CH3OH vertical distribution inferred from

the aircraft measurements described in Sect. 2.2. The updated ANNI v4 profile shapes are shown in Fig. 1 together with the

globally averaged CH3OH profiles from the MAGRITTE a priori simulation. Because these profile shapes can be a source of110

retrieval errors, particularly when the assumed profile shape differs largely from the true gas vertical distribution, the ANNI v4

framework produces a total-column averaging kernel (AVK) for each retrieved gas column (Clarisse et al., 2023). These AVKs

are useful for harmonizing vertical-profile assumptions when comparing IASI retrievals with independent observations or

atmospheric model outputs. This can be achieved by applying the IASI AVKs to the external dataset to simulate what ANNIv4

would retrieve if it were to observe the modelled distributions. This is the approach adopted in this study. Another way to use115

AVKs is by adjusting the IASI retrievals to match the vertical profile shape from the external dataset (see, e.g., Franco et al.,

2024; Zhai et al., 2024). In addition, the ANNI v4 framework provides random and systematic uncertainty estimates associated

with each retrieved column (Clarisse et al., 2023). It is worth noting that, as applying the AVKs removes the uncertainties

on the assumed vertical CH3OH distribution, the final product includes single-pixel uncertainty values both with and without

accounting for the vertical-profile uncertainty terms. In this study, only the daytime measurements of the IASIv4 CH3OH120

product are used, as these offer enhanced sensitivity to weak infrared absorbers such as CH3OH.
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Figure 1. Average profile shapes of the methanol volume mixing ratio (VMR) and IASI total column averaging kernel (AVK) (a) over land,

and (b) over sea. Red curves: CH3OH mixing ratio profile shape used in the IASI retrieval. Black solid lines: globally-averaged profiles from

the MAGRITTE model, for year 2008 (a priori simulation, see Sect. 2.5). Dotted line: globally-averaged IASI averaging kernel.

2.2 Aircraft concentration data

Table 1 lists the aircraft data used in this study. Three datasets from campaigns conducted over the United States in 2012–2013

are used to evaluate the IASI CH3OH columns, as described in Sect. 2.6. Additional campaign datasets spanning 2008-2018

are used to evaluate the global inverse modelling results constrained by IASI. The campaigns are detailed below.125

The DC3 (Deep Convective Clouds and Chemistry) mission took place over the Central U.S. in May-June 2012 (Barth

et al., 2015). Methanol was measured from two aircraft, the NASA DC8 and the NSF/NCAR Gulfstream V (GV). Proton

Transfer Reaction - Quadrupole Mass Spectrosopy (PTR-Q-MS) was employed on the DC8, whereas the Trace Organic Gas

Analyzer (TOGA) from NCAR was used on the GV. SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and

Climate Coupling by Regional Surveys) was conducted over the southeastern U.S. in August-September 2013 on board the130

NASA DC8 aircraft (Toon et al., 2016). SENEX (Southeast Nexus) (Warneke et al., 2016) used the NOAA WP-3D aircraft to

sample the lower troposphere (below ca. 6 km altitude) over the southeast USA in June 2013. ARCTAS (Arctic Research of the
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Table 1. Aircraft campaign datasets in this work. The first three datasets are used to determine the CH3OH biases through aircraft-based

inversion (Sect. 2.6). All datasets are used to evaluate the emission inversions constrained by IASI. PTR-Q-MS: Proton Transfer Reaction

- Quadrupole Mass Spectrosopy; PTR-ToF-MS: Proton Transfer Reaction - Time-of-Flight Mass Spectrosopy; TOGA: Trace Organic Gas

Analyzer.

Aircraft dataset Period Measurement technique Reference

SEAC4RS Aug-Sep 2013 PTR-Q-MS Wisthaler et al. (2002)

SENEX Jun-Jul 2013 PTR-Q-MS de Gouw and Warneke (2007)

DC3 (DC8) May-Jun 2012 PTR-Q-MS Wisthaler et al. (2002)

DC3 (GV) May-Jun 2012 TOGA Apel et al. (2003, 2010, 2015)

ARCTAS Jun-Jul 2008 PTR-Q-MS de Gouw and Warneke (2007)

ARCTAS Jun-Jul 2008 TOGA Apel et al. (2003, 2010, 2015)

GoAmazon IOP1 Feb-Mar 2014 PTR-Q-MS Lindinger et al. (1998)

KORUS-AQ May-Jun 2016 PTR-ToF-MS Müller et al. (2014)

ATom 1-4 Jul-Aug 2016 TOGA Apel et al. (2003, 2010, 2015)

Jan-Feb 2017

Sep-Oct 2017

Apr-May 2018

Composition of the Troposphere from Aircraft and Satellites) took place in 2008 (Jacob et al., 2010). Two instruments, PTR-

Q-MS and TOGA, were used to measure CH3OH on the same platform. We used the June 2008 campaign, which mostly took

place over California and surrounding oceanic regions, and the July 2008 campaign which mainly took place above Canada135

(Fig. 2). GoAmazon (Observations and Modeling of the Green Ocean Amazon) was conducted around Manaus, Brazil, in the

central Amazon basin in 2014–2015. It included ground measurements at several sites as well as aircraft observations from

a G-159 Gulfstream I (G-1) mostly operated in the boundary layer and a Gulfstream G550 in the free troposphere. CH3OH

was measured on board the G-1 during the first Intensive Operating Period (IOP1) between 22 February and 23 March 2014.

KORUS-AQ (Korea-United States Air quality) investigated air composition with the NASA DC8 aircraft over Korea and140

surrounding areas in May–June 2016 (Crawford et al., 2021). The ATom (Atmospheric Tomography) mission (Brune et al.,

2019; Wofsy et al., 2018) consisted of four separate campaigns, in July–August 2016, January–February 2017, September–

October 2017, and April–May 2018. In each deployment, the NASA DC8 aircraft flew through the full lengths of the Pacific

and Atlantic Oceans, between ca. 200 m and ∼11 km altitude. TOGA was used to measure CH3OH during these flights.

More details on the instrumental techniques are found in the references listed in Table 1. In all campaigns, we exclude data145

from urban plumes (identified as [NO2]> 4 ppbv or [NO]> 0.5 ppbv) and biomass burning plumes ([CH3CN]> 225 pptv).

These filters remove only few data for most campaigns, e.g. 2%, 1% and 6% of measurements from SEAC4RS, SENEX and

DC3, respectively, whereas a larger proportion of measurements (26%) was excluded due to fires from the ARCTAS-July

campaign over Canada. The rationale for this filtering is that the missions often deliberately target urban or fire plumes (e.g.,

6
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Figure 2. (Left) Flight tracks of the SENEX, DC3 (DC8), and SEAC4RS aircraft missions, used as constraints in the aircraft-based inversion

over the U.S. (Right) Flight tracks of the additional aircraft campaigns used for model evaluation: DC3 (GV), GoAmazon, KORUS-AQ,

ARCTAS, and ATom, cf. Table 1.

Jacob et al., 2010), leading to potential biases in comparisons with low-resolution model results. Measurements over ocean are150

also excluded, except for the ATom mission. The reported accuracy of CH3OH measurements is∼20–25% for PTR-Q-MS (de

Gouw and Warneke, 2007; Wisthaler et al., 2002), ∼20% for TOGA (Apel et al., 2003), and ∼5% for PTR-ToF-MS (Müller

et al., 2014; Beaudry et al., 2025). The measurements are publicly available via data archive centers (see “Data availability"

section). The flight tracks are shown in Fig. 2.

2.3 Other in situ methanol data155

The averaged in situ methanol mixing ratios from measurement campaigns reported in 41 literature studies are listed in Ta-

ble S1. The locations of the observations are provided in the Table and displayed on Fig. S1. Measurements conducted after

2019 or before 2008 are compared to climatological monthly values based on 2008-2019 optimisation results, whereas mea-

surements performed within the study period (2008– 2019) are used for evaluation of IASI-based optimisation for the same

year. Various instrumental techniques were used to measure CH3OH mixing ratios, among which PTR-Q-MS is the most160

common.

In addition to the sites of Table S1, we also use monthly CH3OH concentrations measured by PTR-Q-MS at two sites in

Belgium: the forested site of Vielsalm (50.305◦ N, 5.998◦ E) (Laffineur et al., 2012) and the cropland site of Lonzée (50.552◦

N, 4.746◦ E) (Bachy et al., 2018). The datasets of half-hourly mixing ratios and error estimates are publicly available (see “Data

availability" section). The 2-σ uncertainties (including statistical and systematic errors) are typically of the order of ∼7%.165
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2.4 FTIR column data

The Network for the Detection of Atmospheric Composition Change (NDACC) Infrared Working Group (IRWG) operates

a distributed set of more than twenty high-resolution FTIR spectrometers that record mid-infrared solar absorption spectra

at high spectral resolution (De Mazière et al., 2018). Total columns and low-vertical-resolution profiles of many gases are

extracted from each spectrum by fitting modelled absorption to observed features using a radiative transfer forward model and170

an inversion (optimal estimation) retrieval.

Since methanol is not a mandatory NDACC target species, it is currently retrieved at only eight sites, listed in Table S2.

This work uses data from all sites, namely Eureka, Canada, between 2008 and 2019; St Petersburg, Russia (2009–2019);

Toronto, Canada (2008–2019); Jungfraujoch (2008–2019); St Denis, Reunion Island (2009–2011); Maïdo, Reunion Island

(2013–2019); Porto Velho, Brazil (2019); and Kitt Peak Observatory where methanol columns were measured between 1985175

and 2003 (Rinsland et al., 2009). Unlike the official NDACC gases for which harmonized retrieval parameters are used within

the network, individual sites have their own settings for methanol. Details on the retrieval methodology for each station can

be found in Rinsland et al. (2009) for Kitt Peak, Vigouroux et al. (2012) for St Denis (same settings used at Maïdo and Porto

Velho), Viatte et al. (2014) and Wizenberg et al. (2024) for Eureka (same settings used at St Petersburg), Yamanouchi et al.

(2023) for Toronto, and Bader et al. (2014) for Jungfraujoch. In addition to total columns, the FTIR retrievals provide vertical180

profiles. For methanol, the degrees of freedom for signal ranges between 1.0 and 1.8, with a good sensitivity from the ground

up to 15 to 20 km depending on the site (see above references). The estimated random and systematic uncertainties for an

individual methanol retrieval amount to 4–10% and 7–15%, respectively, also depending on the site.

2.5 Chemistry-transport model

2.5.1 General model description185

We use the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emis-

sions (MAGRITTE v1.1), which calculates the distribution of 182 chemical species (Müller et al., 2019). The model is run

globally at 2◦×2.5◦ resolution, with 40 vertical (σ-pressure) levels distributed between the surface and the lower stratosphere.

The model incorporates a detailed description of the oxidation mechanism of biogenic volatile organic compounds (Müller

et al., 2019). The chemical mechanism of anthropogenic and pyrogenic compounds is obtained from the IMAGES model190

(Stavrakou et al., 2009a; Bauwens et al., 2016). The photolysis rates are interpolated from tabulated values calculated using

the TUV photolysis estimation package (Madronich and Flocke, 1998). Meteorological fields are obtained from the ERA5

ECMWF reanalysis (Hersbach et al., 2020). The effect of diurnal variation on the photolysis rates and kinetic rate constants

are considered through correction factors calculated from model simulations with a 20-min time step. These correction factors

are used to calculate the diurnal cycle of CH3OH concentrations required for comparisons with atmospheric measurements.195

Anthropogenic emissions of CO, NOx, SO2, organic carbon and black carbon aerosols are taken from the HTAPv2 (Hemi-

spheric Transport of Air Pollution version 2) inventory (Janssens-Maenhout et al., 2015). The speciated emissions of volatile

organic compounds (VOCs) are obtained from the EDGARv4.3.2 inventory (Huang et al., 2017) between 2005 and 2012, and
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are taken equal to their 2012 values afterwards. The anthropogenic methanol emission is taken equal to 67% of the HTAPv2

total emission of alcohols. The resulting global flux is 10.5 Tg year−1. Vegetation fire emissions are provided from the GFED4s200

database (van der Werf et al., 2017), with vertical injection profiles from Sofiev et al. (2013) and emission factors from Andreae

and Merlet (2001). Biogenic VOC emissions of isoprene, monoterpenes and methanol are calculated using the MEGAN model

(Guenther et al., 2012; Stavrakou et al., 2011) embedded in the MOHYCAN canopy environment model (Müller et al., 2008)

driven by ERA5 meteorological fields and Leaf Area Index (LAI) data from MODIS Collection 6 reprocessed as described in

Yuan et al. (2011).205

Figure 3 displays the distribution of the major sources and sinks of methanol. Their estimation and implementation in

MAGRITTE are described in the following subsections. Wet deposition, a minor methanol sink, is parametrised based on the

cloud and precipitation ERA5 fields (Stavrakou et al., 2009c). This scheme distinguishes washout by convective precipitation,

included in the convective transport scheme, from scavenging in and below large-scale stratiform clouds, which is represented

as a first-order process. As in previous modelling studies, in-cloud oxidation of methanol is ignored, as it is considered very210

small (Jacob et al., 2005).

2.5.2 Photochemical production and sink

Methanol photochemical production proceeds primarily through the reactions of the methylperoxy radical with itself (CH3O2),

with other (primary or secondary) organic peroxy radicals (RO2) or with the hydroxyl radical (OH):

CH3O2 + CH3O2 → 2CH3O +O2 (R1)215

→ CH2O +CH3OH +O2 (R2)

CH3O2 + RO2 → ROH + CH2O +O2 (R3)

→ R−HO +CH3OH (R4)
220

CH3O2 + OH → CH3O +HO2 (R5)

→ CH3OH +O2 (R6)

→ CH3OOOH (R7)

The rate and branching ratios of the self-reaction (R1–R2) are temperature-dependent (Burkholder et al., 2020). For the re-

actions with other peroxy radicals (R3–R4), we follow Müller et al. (2019), the cross reaction rates being taken as twice225

the geometric mean of the self-reaction rates. The methanol-forming branching ratio usually ranges between 0.2 and 0.5 for

primary and secondary peroxy radicals, and is equal to zero for tertiary and acyl peroxy radicals.

The reaction of CH3O2 with OH (R5–R7) is very fast (total rate of 1.6·10−10 cm3molec.−1s−1, Assaf et al., 2016). It

generates an activated trioxide that, for the most part, promptly decomposes into either methoxy and hydroperoxy radicals

(R5) or methanol and O2 (R6). A small fraction of the trioxide is stabilised (R7). The stabilised trioxide (denoted CH3OOOH)230

undergoes atmospheric transport and further reactions, which might partly lead to secondary methanol formation (Müller et al.,
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Figure 3. CH3OH sources and sinks (a priori simulation, 2008–2019 average), in 1010 molec.cm−2 s−1. (a) Biomass burning, (b) biogenic

source, (c) anthropogenic source, (d) marine source (gross flux), (e) photochemical production, (f) photochemical loss, and (g) dry deposition

flux. The global emission or sink is given inset in each panel.

2016, 2019), although its fate is very uncertain. The stabilised fraction (R7) is ∼0.1 near the Earth’s surface, and decreases

rapidly with altitude, due to an expected quadratic dependence on atmospheric pressure (Müller et al., 2016). The experimental
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determinations of the R5 yield (0.9) at low pressure (Assaf et al., 2018) and of the methanol yield (0.06) at near-atmospheric

pressure (Caravan et al., 2018) are consistent with the best theoretical estimate of the yields determined in Müller et al. (2016).235

For further details on the yields and chemical mechanism, we refer to Müller et al. (2019). At global scale, the MAGRITTE-

calculated direct and indirect methanol yields from CH3O2 + OH are 7.5% and 3.9%, respectively. The total average yield,

11.4%, is only slightly lower than the optimal value of 13% determined by Bates et al. (2021) using a global model and airborne

methanol measurements from the ATom campaign. This discrepancy is very small in view of the large uncertainties, notably

the possible role of water complexation on the reactions of CH3O2 radicals (Khan et al., 2015) and the fate of the stabilised240

trioxide (Caravan et al., 2018).

Reaction with OH is by far the main chemical sink of methanol in the atmosphere, proceeding at a rate (k=2.9·10−12 exp(–

345/T) cm3molec.−1s−1, Burkholder et al., 2020) resulting in a global lifetime against this process of about 10 days. Reaction

of methanol with chlorine atoms is also considered (k=5.5·10−11 cm3molec.−1s−1, Burkholder et al., 2020) but is only a very

minor sink globally (Müller et al., 2016; Bates et al., 2021).245

2.5.3 Biogenic emission

The exchange of methanol between the terrestrial biosphere and the atmosphere is bidirectional. The biosphere is generally a

net source under warm and sunny conditions, especially during springtime, while it is often a net sink under cold and humid

conditions, e.g. during nighttime (e.g., Wohlfahrt et al., 2015). The net flux F (µgm−2 h−1) into the atmosphere above the

canopy is expressed as250

F = E−L, (1)

where E the is emission rate, estimated using the MEGANv2.1 algorithm (Guenther et al., 2006; Stavrakou et al., 2011), and

L is the uptake of methanol by vegetation. The uptake is calculated from the MAGRITTE-calculated above-canopy methanol

concentration and a parametrisation of the dry deposition velocity (Sect. 2.5.5).

The emission rate is calculated in MEGANv2.1 as255

E = CCE · γage · γPT ·LAI · ϵ, (2)

where CCE is a normalization factor (=0.58), γage, γSM and γPT are dimensionless activity factors accounting for the emission

dependence on respectively leaf age and environmental conditions, LAI is the leaf area index (m2 m−2), and ϵ is the emission

factor at standard conditions as defined in Guenther et al. (2006). On the basis of whole ecosystem flux measurements, ϵ has

been set to 800 µgm−2 h−1 for northern temperate and boreal broadleaf trees, needleleaf trees, shrubs and crops, and 400260

µgm−2 h−1 for grasses and other broadleaf trees. The distribution of Plant Functional Types (PFTs) is obtained from Guenther

et al. (2006). γage is highest for young leaves, by a factor 3–3.5 relative to mature leaves (Stavrakou et al., 2011), and is

parametrised as function of LAI temporal variations (Guenther et al., 2006). The temperature and light response function γPT

includes the dependence of the emissions on leaf level temperature and visible radiation fluxes. It is expressed as

γPT = (1−LDF) · γT-li + LDF · γP · γT-ld, (3)265
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where the LDF is the light-dependent fraction of the emissions at standard conditions, taken equal to 0.8 for methanol, γT-li and

γT-ld are the temperature responses for respectively the light-independent and light-dependent fractions of the flux, and γP is

the dependence on visible radiation of the light-dependent part. The activity factors for the light-dependent part are calculated

using the isoprene algorithm of the MEGANv2.1 model, except that they do not incorporate a dependence on past temperatures.

Since leaf temperature and radiation fluxes are variable within the canopy, γPT is a weighted average of the expression given in270

Eq. 3, for all leaves. Leaf temperature and radiative fluxes are calculated separately for sunlit and shaded leaves at each of the 8

layers of the multi-layer canopy environmental model (Müller et al., 2008). For further details on biogenic methanol emission

estimation, we refer to Müller et al. (2008) and Stavrakou et al. (2011).

The global biogenic methanol emission flux is here estimated at 130 Tg yr−1, on average between 2008 and 2019. This

agrees well with the MEGAN-MACC estimation (Sindelarova et al., 2014), but is significantly higher than other MEGAN-275

based estimations including Stavrakou et al. (2011) (105 Tg yr−1 for the year 2009) and the CAMS-GLOB-BIOv3.1 dataset

(103 Tg yr−1 for 2000–2019, Sindelarova et al., 2022). Possible reasons include the higher LAI values of the reprocessed

MODIS dataset (Yuan et al., 2011) (also adopted in CAMS-GLOB-BIO) compared to the dataset used by Stavrakou et al.

(2011) and the higher surface areas of low-emitting PFTs (grassland and tropical broadleaf forests) in CAMS-GLOB-BIOv3.1,

compared to the MEGANv2.1 dataset (Guenther et al., 2006) used here.280

2.5.4 Oceanic emission and oceanic uptake

As for the biosphere, the ocean-atmosphere exchange of methanol is bidirectional. The net flux (molec. cm−2 s−1) is written

as a difference between a (gross) emission (E) and an uptake (U ):

F = E−U =Kw(Cw −Cg ·H−1), (4)

where Cw and Cg (molec. cm−3) are the methanol concentrations in water and in air, respectively,285

H−1 =KHRT (5)

with KH (M atm−1) the Henry’s law constant for methanol (Sander, 2015),

KH = 200 · exp(5600(
1
T
− 1

298
)), (6)

R the ideal gas constant (=0.08205 L atmmol−1 K−1), and T the water temperature (in K). The conductance Kw is calculated

by290

Kw
−1 = kw

−1 + (kgH)−1, (7)

where kw and kg are the liquid phase and gas phase transfer velocity, respectively. As in Stavrakou et al. (2011), kw is calculated

as function of wind speed following Nightingale et al. (2000). The gas-phase transfer velocity is calculated using

kg = (Ra +Rb)−1, (8)
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where Ra and Rb are the aerodynamic and quasi-laminar layer resistances (s cm−1), parametrised as discussed in Sect. 2.5.5.295

Note that the choice of Eq. 8 in place of the parametrisation of Johnson (2010) that was used in several previous global

model studies (Millet et al., 2008; Stavrakou et al., 2011; Bates et al., 2021) has little impact on the calculated fluxes, as the

globally-averaged kg calculated using Eq. 8 is only about 3% lower than the corresponding value based on Johnson (2010).

The gross oceanic emission is proportional to the assumed oceanic subsurface concentration of methanol (Cw), for which

we adopt the same value (118 nmol l−1) as in several previous model studies (Millet et al., 2008; Stavrakou et al., 2011; Wells300

et al., 2014). This value was based on a single field study over the tropical Atlantic (Williams et al., 2004). As discussed by

Bates et al. (2021), however, several recent field studies suggest significantly lower values. Furthermore, an average oceanic

concentration of 61 nmol l−1 was inferred from an analysis of airborne CH3OH measurements from the ATom campaign using

the GEOS-Chem model (Bates et al., 2021), supporting the view that the concentration reported by Williams et al. (2004) was

likely not the most representative. This will have to be kept in mind when analyzing the methanol budget based on MAGRITTE.305

As for biosphere-atmosphere exchanges, the oceanic uptake term (U ) is calculated from the modelled near-surface CH3OH

concentration and a deposition velocity (cm s−1) calculated (see Eq. 4) using

vd =Kw ·H−1. (9)

2.5.5 Dry deposition

The dry deposition velocity is expressed (Wesely, 1989) as310

Vd =
1

Ra +Rb +Rc
(10)

withRa the aerodynamic resistance between the surface and the first model level,Rb the quasi-laminar sublayer resistance, and

Rc the bulk surface resistance. The parametrisations of the resistances Ra and Rb are obtained from the ECMWF Integrated

Forecasting System (IFS) (ECMWF, 2021), as detailed in Appendix A. The surface resistance (s m−1) is expressed (Zhang

et al., 2003) using315

Rc = (
1

Rs +Rm
+

1
Rac +Rg

+
1

Rcut
)−1, (11)

where Rs is the stomatal resistance, Rm the mesophyll resistance, Rac the resistance to transfer in the canopy, and Rg is the

resistance to soil uptake. Stomatal resistance being strongly radiation-dependent (Gao and Wesely, 1995), the conductance
1

Rs+Rm
is calculated as a sum of contributions from each of the 8 layers of the canopy environmental model (Müller et al.,

2008). The parametrisation of stomatal resistance is detailed in Appendix A. The parametrisation of the resistanceRac depends320

on friction velocity, LAI and the plant functional type (Zhang et al., 2003).

The parametrisation of the other resistances of Eq. 11 is adapted from Wesely (1989) and Zhang et al. (2002). The conduc-

tances are expressed as linear combinations of the conductances for SO2 (template for water-soluble species) and O3 (for very
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reactive species):

1
Rm

=
KH · f1
3000

+ 100 · f0 (12)325

1
Rg

=
KH · f1

105 ·RSO2
g

+
f0

RO3
g

(13)

1
Rcut

=
KH · f1

105 ·RSO2
cut

+
f0

RO3
cut

(14)

where f0 and f1 are species-dependent parameters, while RSO2
g , RO3

g , RSO2
cut and RO3

cut are soil uptake and cuticular resistances

for SO2 and O3 (see Appendix A). f0 is equal to 1 for very reactive species (e.g. ozone), and takes low values for weakly

reactive compounds. In the original formulation of Wesely (1989), the f1 factor was absent, i.e. their f1 = 1. The formulation330

of Zhang et al. (2002) implies a value of f1 ∼ 300 for methanol at 298 K, whereas their f0 = 0.1. Note that the precise values

of f0 and f1 are unimportant for the mesophyll resistance, as long as f1 is not much lower than 1.

Field measurements of methanol fluxes over vegetated areas generally indicate strong deposition in humid conditions, in-

dicating that methanol is consumed in water films present in the soil and/or on leaves, even though the precise mechanisms

responsible for methanol degradation in water are not fully elucidated (Laffineur et al., 2012; Wohlfahrt et al., 2015). This335

suggests that the high water-solubility of methanol plays a key role in determining its deposition, i.e. that the KH term is

dominant in the resistance expressions of Eqs. 12-14. Here, we adopt a high value of f1 (=600) based on an evaluation of the

dry deposition scheme against deposition velocities estimated from flux measurement campaigns at 13 sites, among which 8

temperate or boreal forest sites, 2 tropical forest sites, and 3 sites at other temperate ecosystems (Table S3). We adopt f0 = 1,

but as expected, this parameter has only a very minor impact within its expected range (0–1).340

At 9 out of the 13 studies, night-time deposition velocities are reported, while 24-hour averages are estimated at the other

sites. The meteorological fields used in the deposition scheme are obtained from hourly ERA5 fields for the months and years

of the campaign measurements, except at one site (Blodgett in 1999) for which 2003–2013 averages are used. We use the

LAI values reported for each site, when available, or from the MODIS Collection 6 dataset (at 0.5◦ spatial resolution) used in

MAGRITTE. Table S3 and Fig. 4 summarize the model evaluation. On average, the model performs very well, with a negative345

bias of only 7% against the average observed vd for all sites (0.82 cm s−1). The model correlates well with the observations

(Pearson’s coefficient of 0.72) and most model predictions fall within 40% of the measurements. One notable exception is a

coniferous forest site in Finland, where the model value (1.34 cm s−1) overestimates the measurement-based vd (0.3 cm s−1)

(Rantala et al., 2015) by a large factor, for reasons unclear. Part of the discrepancy might be due to the model calculating vd at

the first model layer (∼ 10m above the surface), i.e. well below the highest measurement altitude (67m). More work would be350

needed to investigate the reasons for this difference. At the other sites, part of the variability between the sites appears related to

the role of humidity: the highest vd (∼ 1.5cm s−1) are observed (and modelled) at very humid forest sites (Vielsalm, Blodgett

and Duke forest), whereas very low vd values (∼ 0.3cm s−1) are found at drier locations (Bosco Fontana, Italy and Ozarks,

Missouri). The distribution and seasonal variation of the calculated deposition velocities for 2013 are displayed on Fig. S2.
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Figure 4. Scatter plot of observed and modelled CH3OH dry deposition velocity in cm s−1. The locations of the dry deposition measurement

campaigns, dominant plant functional types, site coordinates, leaf area index, observed and simulated dry deposition velocities, and the

corresponding references are summarised in Table S3. The symbols refer to the type of biome, coniferous (red circles), broadleaf deciduous

(brown triangles), tropical forests (green triangles) and grasslands and wetlands (blue diamonds).

2.6 Inversion based on aircraft data355

Similar to our previous work aimed at validating spaceborne HCHO columns using aircraft in situ data, the MAGRITTE

model and its inverse modelling capability are used to generate CH3OH model distribution closely approximating aircraft

observations from three campaign datasets over the U.S. (Table 1). The methanol emissions used in the model are adjusted in

order to minimise a cost function (J) quantifying the discrepancy between model and data,

J(f) =
1
2
[
(H(f)−y)T E−1(H(f)−y) + fT B−1f

]
, (15)360

where f is the vector of emission parameters, H(f) is the model operator acting on f , y is the observation vector, and E and

B are the covariance matrices of the errors on the observations and the emission parameters, respectively. y and H(f) are

campaign-averaged mixing ratios at each model pixel (2◦×2.5◦) for which observations are available. The model averages are

based on model values at the same times and locations as the measurements.

The monthly averaged emission from either anthropogenic, pyrogenic or biogenic category is expressed as365

G(x, t, f) =
m∑

j=1

exp(fj)ϕj(x, t) (16)
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where ϕj denotes the a priori emission at a single pixel and month. The emission at a given pixel is not optimised when its

maximum value over the course of the year is lower than a threshold of 109 molec. cm−2 s−1, which is sufficiently low that the

emission of most pixels are optimised over the contiguous U.S.

The matrix E is assumed diagonal. The total uncertainty is obtained by quadratically adding a 20% relative uncertainty

corresponding to the instrumental uncertainty (see Sect. 2.2) and a 200 pptv absolute error. The latter is higher than the limit370

of detection (100 pptv, Wisthaler et al., 2002) but gives more weight to higher CH3OH abundances in the cost function.

The errors on all emission parameters are assumed to be a factor of 3. Anthropogenic emission parameters from pixels in

the same country are weakly correlated (coefficient of 0.1), whereas parameters for different countries are not correlated. For

biogenic and pyrogenic emissions, a decorrelation length of 500 km is used. The cost function is minimised using an quasi-

Newton optimisation algorithm involving the calculation of the gradient of the cost function by the adjoint of the model. The375

iterative search for the minimum is stopped when the norm of the gradient of the cost J is decreased by a factor of 30. This

criterion is generally reached after 20 iterations.

Simulations start on July 1st 2011 and last 2.5 years. The optimised CH3OH distributions are used to calculate, for each cam-

paign, a campaign-average gridded column distribution accounting for the sampling times and averaging kernels of the IASI

retrievals. Those columns are evaluated against the corresponding IASI columns at the locations of the aircraft measurements380

aggregated onto the model grid. Model pixels with less than 30 IASI measurements, or less than 10 aircraft measurements are

excluded from analysis.

2.7 Inversion based on satellite data

The methodology presented in the previous section is used to optimise terrestrial methanol emissions at the global scale, based

on monthly-average bias-corrected CH3OH columns gridded at the model resolution (2◦×2.5◦). Since our focus is on terres-385

trial emissions, we exclude IASI data over oceans. In addition, we filter out very uncertain data (relative retrieval error larger

than 100%) as well as low CH3OH monthly columns (< 1016 molec. cm−2 after bias correction) for which the IASI bias is not

well characterised (see Sect. 3). Although the fluxes from three emission categories are inferred simultaneously, their distinc-

tion is uncertain. The biogenic flux being strongly dominant, the optimisation is not expected to provide much constraint on the

other categories (anthropogenic and pyrogenic), except at few locations/times such as large fire events. Another limitation of390

the framework stems from uncertainties in methanol losses, in particular the dry deposition sink of which the spatial distribu-

tion over land resembles that of the biogenic emission (Fig. 3). Marine methanol exchanges and the photochemical production

have also their uncertainties, but their impact on top-down terrestrial emissions should be limited due to their minor relevance

for methanol columns over source regions (Bates et al., 2021).

Separate inversions are performed for each year between 2008 and 2019, and each simulation starts on July 1st of the year395

preceding the target year. For consistency between the different years and with the validation exercise, we use only IASI

data from MetOp-A. The IASI column uncertainty is obtained by quadrature addition of the IASI retrieval uncertainty and an

absolute error taken to be 15·1015 molec. cm−2. The retrieval error (for monthly averaged columns at the model resolution) falls

typically within the 5–15% range in tropical regions and in summer at mid-latitudes, but reaches∼ 20% at mid-latitudes during
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Figure 5. Ratio of the seasonally-averaged methanol columns from the prior simulation (2008–2019 average), calculated with averaging

kernels, by the values calculated without averaging kernels. (a) December-January-February, (b) June-July-August.

winter and even higher values over snow-covered areas. The MAGRITTE monthly-averaged columns are calculated from daily400

values accounting for the number of measurements and averaging kernels for each day and for the sampling time (∼9:30 LT)

of observations. Figure 5 illustrates the impact of averaging kernels on the modelled columns. Over tropical regions, the

application of averaging kernels increases the columns, by up to 70%, likely due to the mixing of lower tropospheric methanol

to higher altitudes promoted by deep convection. The opposite effect is evident at mid-latitudes during boreal winter, where

decreases reaching a factor of 2 are found in remote continental areas.405

3 IASIv4 CH3OH evaluation against aircraft-constrained model columns

Here we evaluate IASI against aircraft data, using MAGRITTE as transfer standard. Figure 6 illustrates the geographical

distribution of vertically-averaged CH3OH mixing ratios from the three campaigns. By far the highest values were observed

during SENEX, largely because of the higher proportion of low-altitude measurements in this campaign (72% below 1.5 km)

compared to DC3 (15%) and SEAC4RS (35%). The vertical distribution of methanol (Fig. 7) shows indeed a maximum (ca.410

4–7 ppbv) in the boundary layer, and a substantial decline in the free troposphere, down to 1–2 ppbv above 6 km, a feature

well reproduced by the model. However, the simulation using a priori emissions underestimates the observations by ∼20–

50% during SENEX and DC3. During SEAC4RS, model overestimations are seen over the southeast, and underestimations

elsewhere. The largest underestimations are found over the U.S. midwest, reaching a factor of ∼3 during DC3 and SEAC4RS

(Fig. 6). Similar, or even larger underestimations were obtained in previous model evaluations against aircraft campaigns over415

western U.S. (Stavrakou et al., 2011; Wells et al., 2014; Chen et al., 2019).

The optimised model using adjusted CH3OH emissions reproduces very well the observations (Fig. 6-7), with spatial cor-

relation coefficients of 0.97–0.98 for all campaigns, and negative biases of 1–3% for SENEX and SEAC4RS, and 7.5% for

DC3. This agreement is achieved through a substantial increase of summertime methanol emissions over the western U.S.,
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Optimised       r = 0.978 Optimised       r = 0.982

a. b. c.

d. e. f.
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Figure 6. Campaign-averaged distributions of observed CH3OH concentrations (average below 9 km altitude) from the aircraft campaigns

(a) DC3 (DC8), (b) SENEX, and (c) SEAC4RS, and corresponding model distributions (d-f) from the a priori model simulation and (g-i)

from the aircraft-constrained inversion. Pearson’s coefficients of correlation (r) of the modelled with the observed mixing ratios are also

given.

reaching factors of 2–3 between western Texas and Wyoming (Fig. S3). Small decreases are inferred over large parts of east-420

ern U.S. Since the emission parameters are under-constrained by the inversion due to the poor coverage of the observations,

the optimised emissions have limited reliability and are strongly dependent on the a priori inventories and inversion setup.

Nevertheless, the excellent agreement of the optimised model with not only the observational datasets used as constraint in

the inversion (panels a,c and d in Fig. 7), but also with the TOGA CH3OH measurements on board the GV aircraft during

the DC3 campaign (panel b in Fig. 7) demonstrates that the optimisation successfully derived a methanol distribution closely425

reproducing the airborne observations.
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Figure 7. Campaign-averaged vertical profiles of observed CH3OH concentrations (symbols) from 4 airborne measurement datasets over the

U.S.: (a) DC3 (DC8), (b) DC3 (GV), (c) SENEX, and (d) SEAC4RS. Dotted lines: corresponding profiles from the a priori model simulation;

red lines: aircraft-constrained inversion. The error bars denote the standard deviation of the observations. The number of data per altitude bin

is shown on the right of each plot. The average observed and modelled mixing ratios below 8 km altitude are given for each campaign. Data

from panel b (DC3 GV) were not used as constraint in the emission optimisation.

The linear regression of the observed and simulated concentrations yields a slope of almost 1 (0.98) and a correlation coef-

ficient of 0.98. However, the comparison of IASI and co-located aircraft-constrained model columns (Fig. 8) shows significant

biases. High IASI columns (>∼ 25 · 1015 molec. cm−2) are underestimated by up to a factor of ∼1.4. This underestimation

of high columns is consistent across the three campaigns. The statistics of the comparison are improved when the averaging430

kernels are applied to the model profiles: in particular, the correlation coefficient increases from ∼0.81 to ∼0.85.

An ordinary linear regression of IASI and aircraft-constrained model columns yields

ΩIASI = 0.46 Ωairc + 10.6 · 1015, (17)
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Figure 8. Scatter plots of modelled and observed CH3OH columns from three aircraft campaigns (SENEX, SEAC4RS and DC3 (DC8)).

The modelled values are constrained by the aircraft measurements through an emission optimisation as described in the main text. In panel

(a), the model columns are calculated without applying the averaging kernels (AKs), whereas in (b), the AKs are applied to the model vertical

profiles to compute the columns. Each symbol represents campaign-averaged methanol columns at a model pixel. The correlation coefficients

and regression parameters using the Theil-Sen estimator are given in each panel, as well as the median normalized bias (MNB), defined as

the median of (ΩIASI/ΩModel − 1)× 100.

where ΩIASI and Ωairc are the CH3OH columns (molec. cm−2) from IASI and from the aircraft-constrained model simulation,

respectively. The 1–σ uncertainty is 0.03 for the slope and 1.1 · 1015 molec. cm−2 for the intercept. The regression suggests a435

moderate overestimation of IASI columns in the range (15− 20) · 1015 molec. cm−2, although the data is too limited to draw

firm conclusions. Below that range, the bias remains uncharacterised by the aircraft data used in this study.

The reasons for the IASI biases with respect to aircraft in situ data and for their dependence on the magnitude of the columns

are yet unclear. Qualitatively similar biases were derived from the evaluation of OMI and TROPOMI CH2O columns against

aircraft and FTIR data (Vigouroux et al., 2020; Müller et al., 2024). The estimated in situ measurement uncertainties are clearly440

too low (∼ 20%, see Sect. 2.2) to fully account for the biases derived above, although they could contribute; furthermore, the

model biases against the PTR-Q-MS data of the DC3 campaign are validated by the good consistency between the model

evaluation against PTR-Q-MS (DC8) and TOGA (GV) measurements from this campaign (Fig. 7a-b). Evaluation against

measurements in other regions and using other techniques would be needed to confirm and refine the biases derived in this

work.445
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4 The methanol budget and distribution based on bias-corrected IASI data

Here, we derive top-down methanol emissions based on bias-corrected IASI columns (ΩIASI,BC) calculated (see Eq. 17) with

ΩIASI,BC = (ΩIASI− 10.6 · 1015)/0.46. (18)

Figure 9 displays the seasonally averaged CH3OH columns from IASI (bias-corrected), the a priori model simulation and

the IASI-based emission optimisation. The seasonal cycle of the columns over large regions is shown on Fig. S4. The a450

priori model succeeds in reproducing the general features of the satellite observations, such as high columns (∼ 40− 90 ·
1015 molec.cm−2 s−1) throughout the year over tropical continents, and a pronounced summertime peak at extratropical lat-

itudes, consistent with previous spaceborne methanol distributions (Stavrakou et al., 2011; Cady-Pereira et al., 2012; Wells

et al., 2025). Both the a priori model and the IASI data display a substantial longitudinal gradient of methanol columns over

northern Eurasia during summer, with low values over western Europe and a broad maximum over eastern Siberia. There are455

also important differences between IASI and the a priori model, most notably a large model underestimation at extratropical

northern latitudes during all seasons, reaching a factor of about 2 over Central Asia, Siberia and Canada during summer, and an

overestimation of the columns over Amazonia near the end of the wet season (May–July, see Fig. S4). Furthermore, although

the a priori model columns peak at the same month as the satellite data at mid-latitudes (most often July), the model underesti-

mations are more pronounced during spring and early summer (i.e. May–July) than in the following months (August–October),460

in particular over the U.S., China and Europe (Fig. S4).

The emission optimisation successfully closes the gap between the model and the observations, in particular over tropical

regions and at extratropical latitudes during summer (Fig. 9 and Fig. S4). During winter at high northern latitudes, however,

the large a priori model underestimation remains unchanged after optimisation. This is explained by the weakness of methanol

emissions and by the low number of IASI measurements used in the optimisation at these latitudes during winter, compared465

to other latitudes and seasons (Fig. S5). Similar results were obtained by Wells et al. (2014) in their emission optimisation

based on CH3OH column data from TES. Interestingly, although the focus of our study is on continental areas, the agreement

of MAGRITTE methanol columns with IASI is also substantially improved over oceanic areas (panels p-s on Fig. S4) after

inversion, especially at extratropical latitudes (except in winter).

This improved agreement with IASI data is primarily achieved through changes in the distribution of biogenic methanol470

emissions (Fig. 10). The biogenic emissions are strongly enhanced over North America and most of Eurasia after inversion,

while biogenic emissions due to tropical forests are generally decreased, in particular over Amazonia and Indonesia, and

emissions due to tropical savanna over Africa, Australia and eastern Brazil are increased (Fig. 3). As in previous inversion

studies (Stavrakou et al., 2011; Wells et al., 2014), the strongest enhancements (up to a factor 5) are derived over arid and semi-

arid landscapes such as Central Asia, Western U.S. and the Sahel region (Fig. 10-11). This underestimation might partly result475

from the neglect of soil emissions in MEGAN. Soils (including litter decomposition) are indeed a known methanol source

(Warneke et al., 1999), and although their contribution is generally considered to be small, typically 1–2 orders of magnitude

lower than foliage emissions (Peñuelas et al., 2014), they might be more significant over sparsely vegetated areas characterised

by low LAI.
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A priori model, MAMIASI, MAM Optimisation, MAMd. e. f.

IASI, DJFa. A priori model, DJFb. Optimisation, DJFc.

A priori model, JJAIASI, JJA Optimisation, JJAg. h. i.

A priori model, SONIASI, SON Optimisation, SONj. k. l.

Figure 9. 2008–2019 average of CH3OH columns (1015 molec.cm−2) from (a) IASI (bias-corrected as described in the text), (b) the a

priori model and (c) the model with optimised emissions, for December-January-February. Panels (d-f), (g-i) and (j-l) are as (a-c) but for

March-April-May, June-July-August and September-October-November, respectively.
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a. b.Biomass burning Biogenic

Figure 10. Ratio of top-down to a priori emissions (2008–2019 averages) for (a) pyrogenic and (b) biogenic CH3OH emissions.

The biogenic emission enhancement at mid-latitudes is highest in spring (Fig. S6), and especially in May (Fig. 11). The480

underestimation of springtime emissions was previously noted by e.g. Wells et al. (2012). The resulting top-down biogenic

emissions peak earlier than in the MEGAN inventory, in particular over Europe, Eastern U.S., China and Central Asia. Boreal

regions do not follow this trend, with emission enhancements of similar magnitudes being derived over spring, summer and

fall over these regions (Fig. S6). However, the large emission increase during fall (and to a lesser extent during summer)

inferred over boreal forests is partly explained by the strong deposition sink (Fig. S2). Since the deposition velocities might be485

overestimated over boreal forests (Sect. 2.5.5), the top-down emissions might be also too high, especially during fall. In fact,

in spite of the large emission enhancement derived over Siberia, the net emission flux over this region (Fig. 11) is lower than

the a priori (MEGAN) gross flux.

The seasonal cycle of terrestrial emissions undergoes important changes after optimisation over tropical ecosystems (Fig. 11).

Over both northern Hemisphere (NH) Africa and southern Hemisphere (SH) Africa, the biogenic emissions are decreased (by490

∼25%) at the start of the biomass burning season (November–December in NH, June–July in SH), while these emissions are

strongly enhanced (by up to 70–100%) in the following months (February–June in NH, August–January in SH), until after the

end of the burning season. The optimisation also shifts by one month the seasonal peak of pyrogenic emission over SH Africa

(from July in the a priori to August in the optimisation, see Fig. 11), although, as explained above (Sect.2.7), the dominance of

the biogenic flux makes the top-down results uncertain for biomass burning emissions.495

The top-down biogenic emissions over tropical ecosystems are strongly correlated with temperature and especially solar

radiation. Over each of the 5 tropical regions shown on Fig. 11 (panels f-g), the two least-emitting months according to the

inversion are the months with the lowest visible radiation fluxes, based on the ERA5 reanalysis. For example, over Amazonia,

the lowest monthly biogenic fluxes (0.54 and 0.61 Tg month−1, about a factor of two below the annual average) are derived

in May and June, which are the months with the lowest visible radiation fluxes (∼85 W m−2, 12% below the annual average).500

The same holds for S.-E. Asia and NH Africa (panels f-g), for which the minimum occurs in November-December, and

for Equatorial and Southern Africa (h-i), which have their minimum in June-July. At all 5 tropical regions, the top-down
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Figure 11. Seasonal cycle of emissions (Tg month−1) over large regions (2008–2019 averages). Black and red solid lines: gross total

emission fluxes from the a priori and optimised runs (sum of biogenic, pyrogenic, oceanic and anthropogenic contributions); black and red

dotted lines: net emission fluxes, i.e. dry deposition (including ocean uptake) is subtracted from the gross fluxes; dash-dotted and solid blue

lines: a priori and top-down biomass burning fluxes.
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monthly biogenic emissions correlate strongly with solar visible radiation fluxes, with Pearson’s correlation coefficients ranging

between 0.79 (Amazonia) and 0.94 (SH Africa). A strong correlation is also found between biogenic emissions and near-surface

temperature over NH Africa (0.92) and SH Africa (0.84). At the other regions (panels h-j), the temperature variations are weak505

(standard deviation of ∼ 0.6K) and therefore likely less relevant for biogenic emission variability.

Radiation fluxes and temperature appear to exert a stronger control on biogenic emissions of methanol than is currently

accounted for in MEGAN. This control is likely indirect, i.e. phenological changes associated with the seasonal cycle of me-

teorological variables likely cause variations in the emissions that are currently not represented in the model parametrisations.

Over Amazonia, leaf flushing during the wet-to-dry transition period has been suggested to explain a strong reduction of iso-510

prene emissions around May every year (Barkley et al., 2009), and was also proposed to decrease methanol emissions in July

(Wells et al., 2025). The growth of new leaves after the wet-to-dry transition period might cause an enhancement of methanol

emissions, since young leaves are known to emit at higher rates than mature leaves. However, the MODIS LAI dataset indi-

cates only a moderate and progressive increase of LAI during this period, from ∼4.2 to ∼5.2 m2 m−2 between February and

September. Since the parametrisation of the leaf age response factor in MEGAN (γage) relies on the temporal variation of LAI515

between time steps, the proportion of new or growing leaves calculated in this way is very small, and γage is close to unity.

More work is needed to understand the impact of phenological changes on methanol emissions, and how these changes can be

represented in emission models.

The global top-down biogenic emission flux is 160 Tg yr−1, i.e. 23% higher than our a priori from MEGAN (130 Tg yr−1),

and almost 60% higher than previous top-down estimates based on in situ data (Millet et al., 2008; Bates et al., 2021) or520

spaceborne IASI columns (Stavrakou et al., 2011) (Table 2). The total terrestrial emissions, amounting to 178 Tg yr−1 globally,

are also 46% higher than the top-down best estimate of 122 Tg yr−1 based on TES column retrievals (Wells et al., 2014). The

optimisation leads to very small changes in the anthropogenic and pyrogenic emission categories, not exceeding a few percent

at the global scale (Table 2).

Despite the large enhancement of methanol emissions inferred in this study, the global atmospheric burden of methanol,525

3.4 Tg in our optimisation, is only slightly higher (by 9–17%) than in previous modelling studies constrained by observations

(Table 2). The larger methanol loading (by 17%) compared to the IASI-based inversion by Stavrakou et al. (2011) is largely

due to the bias correction of IASI data (Eq. 18), leading to column increases of the order of 30% over source regions (Sect. 3).

The main reason for the larger enhancement of terrestrial emissions, compared to previous inversion studies, is the sink due

to dry deposition over land, 72 Tg yr−1 globally, about a factor of 2.6 larger than in the inversion studies of Stavrakou et al.530

(2011) and Wells et al. (2014), but very close to a global sink estimate based on in situ CH3OH measurements and a dry

deposition velocity of 0.4 cm s−1 (70 Tg yr−1, Heikes et al., 2002). The global lifetime of atmospheric methanol with respect

to dry deposition over land is ∼17 days, well below the range of reported values, 26–38 days (Jacob et al., 2005; Millet et al.,

2008; Stavrakou et al., 2011; Bates et al., 2021). Due to this strong sink, the net terrestrial source of methanol inferred here is

only slightly (+10%) larger than in the inversion studies of Stavrakou et al. (2011) and Wells et al. (2014). As seen on Fig. 11,535

the gross top-down emission fluxes over forested regions such as Amazonia, Equatorial Africa and Siberia (14.7, 7.3 and 9.4

Tg yr−1, respectively) are up to a factor of 3 higher than the net surface fluxes accounting for dry deposition (5.4, 2.6 and
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Table 2. Global methanol budget (Tg(CH3OH) yr−1) averaged over 2008-2019 in the a priori simulation and after optimisation of emissions

based on bias-corrected IASI data, and comparison with previous budget studies constrained by atmospheric observations. Notes: a: Sum of

biogenic, anthropogenic and biomass burning sources in Wells et al. (2014). b: The oceanic source and atmospheric photochemical production

are not optimised in this study.

Millet et al. Stavrakou et al. Wells et al. Bates et al. This study This study

(2008) (2011) (2014) (2021) (a priori) (optimisation)

Sources

Total source 242 187 225 205 243 271

Biogenic 103 100 101 131 160

Anthropogenic 5 9.3 122a 6.3 10.5 10.6

Biomass burning 12 4.3 13 7.8 7.5

Oceanic 85 43 66 24 47 47b

Secondary production 37 31 37 60 46 46b

Sinks

Atmospheric oxidation 88 108 70 116 119 132

Ocean uptake 101 48 73 38 59 61

Wet deposition 13 3 9.5 11 6.3 6.5

Dry deposition to land 40 28 26 41 59 72

Burden (Tg) 3.1 2.9 3.0 3.1 3.4

Lifetime (days) 4.7 5.7 5.3 4.7 4.5

3.2 Tg yr−1). Over less productive ecosystems, including regions with large biomass burning fluxes, the gross and net fluxes

are more similar, but still significantly different, e.g. by factors of 1.4–1.6 for Central Asia, North Africa and South Africa. At

global scale, dry deposition over land offsets about 45% of the biogenic emission flux (Table 2).540

The deposition velocities computed in this work, typically between 0.2 and 1.6 cm s−1 over vegetated areas (Fig. S2) are

well-supported by measurement-based estimates (Fig. 4), except for a large overestimation at a boreal forest site (Hyytiälä)

(Sect. 2.5.5). The large dry deposition sink inferred by the model over boreal forests is therefore likely overestimated, and the

biogenic emission enhancement at high latitudes (Fig. 10) might also be too high. Elsewhere, however, the strong dry deposition

sink is consistent with available data. Over the tropical forests of Amazonia, Central Africa, Indonesia and southeast Asia, and545

even over Europe and eastern U.S., dry deposition is found to be a stronger sink of methanol than chemical oxidation due to

reaction with OH (Fig. 3).

The optimised methanol budget presented in Table 2 bears uncertainties due to potential errors in the IASI data used as

constraints and because, while terrestrial emissions are optimised, the other productions and the sinks of methanol have their

own uncertainties. In particular, oceanic emissions depend on assumed seawater methanol concentrations for which available550

field campaign data show a very strong variability (Bates et al., 2021). Replacing the seawater concentration adopted in the
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model (Sect. 2.5.4) by the value of 61 nmol l−1 determined by Bates et al. (2021) based on an analysis of ATom data would

decrease the oceanic emission flux from 47 Tg yr−1 globally to 24 Tg yr−1, in excellent agreement with Bates et al. (2021).

The photochemical production of methanol due to the CH3O2 + OH reaction is also uncertain; for example, adoption of a

fixed methanol yield of 13% from the reaction (Bates et al., 2021), in place of the current model assumptions (Sect. 2.5.2),555

would increase the global CH3OH production by ∼5 Tg yr−1. However, the impact of these uncertainties on the optimisation

of continental emissions is very small. A sensitivity inversion performed for one year (2017) for which the marine source and

the methanol yield from CH3O2 + OH both follow the recommendations of Bates et al. (2021) leads to negligible impacts on

top-down terrestrial emissions (+1.1% compared to the standard inversion) and on dry deposition fluxes over land (+0.4%), in

spite of more sizeable impacts on the global CH3OH burden (−4.9%, to 3.25 Tg yr−1) and on global oceanic uptake (−19%,560

to 4.9 Tg yr−1).

5 Model evaluation against in situ and ground-based remote sensing data

5.1 Evaluation against in situ airborne data

The emission optimisations being constrained by IASI columns that are bias-corrected using aircraft data (Sect. 3), the model

evaluation against aircraft observations is expected to improve after optimisation. Figure 12 and Table S4 show that this is565

indeed the case: on average for all campaigns over land (weighted by the number of data below 8 km altitude), the bias is

decreased from -23% in the a priori simulation to -8% after optimisation, and the root-mean-square-deviation (RMSD) is also

decreased (Table S4). The comparison statistics are improved for all but one campaign (ARCTAS-July, see further below).

Over oceans as well, the optimisation of terrestrial emissions improves the model agreement with in situ measurements from

the ATom campaigns (Fig. 2), especially at northern latitudes (> 25◦, see Fig. S7). The comparisons with GoAmazon and570

SEAC4RS measurements support the biogenic emissions decrease over Amazonia as well as over southeastern U.S. in late

summer/early fall (Fig. S6), while the comparisons against the DC3, SENEX, ARCTAS-June and KORUS-AQ campaigns

support the springtime enhancement of methanol emissions over terrestrial ecosystems at mid-latitudes (Fig. 11 and Fig. S6).

The improved model agreement against KORUS-AQ is realized through substantial increases of biogenic emissions, by

factors of up to 3 over Korea and up to 6 over northeastern China. The a priori anthropogenic emissions being very weak575

(Fig. 3), these emissions are essentially unchanged by the inversion (+15% increase over Beijing). Beaudry et al. (2025) showed

that elevated methanol and ethanol near-surface concentrations in urban areas of South Korea and China are likely largely due to

anthropogenic Volatile Chemical Products (VCPs) from the residential sector, currently missing in global emission inventories.

Beaudry et al. (2025) estimated the anthropogenic CH3OH emissions from China alone to be 9.3 Tg yr−1 in 2016, two orders

of magnitude above the inventory estimate used in MAGRITTE. VCP-related methanol emissions are much lower in the U.S.580

due to regulations of their usage as a result of their toxicity. Part of the methanol emission increase inferred by our inversion

might therefore be wrongly attributed to biogenic emissions. In the free troposphere during KORUS-AQ, the strong correlation

of methanol with acetone suggested an important biogenic contribution, however. Furthermore, the seasonal variation of top-

down methanol emissions over northern China (Fig. 11d) shows a much stronger enhancement in spring than in fall, similar
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Figure 12. Averaged vertical profiles of observed CH3OH concentrations (symbols) from aircraft campaigns: (a) ARCTAS June, (b) ARC-

TAS July, (c) DC3 (DC8), (d) DC3 (GV), (e) SENEX, (f) SEAC4RS, (g) GoAmazon, and (h) KORUS. Dotted lines: corresponding profiles

from the prior model simulation; red lines: IASI-based optimisation. The error bars denote the standard deviation of the observations. The

number of measurements per altitude bin is indicated on the right of each plot. The average observed and modelled mixing ratios below 8 km

altitude are given for each campaign. Data over ocean are excluded from all averages. Only measurements over Canada (> 49◦) are retained

in the ARCTAS-July profile.
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to other regions at mid-latitudes and consistent with a predominantly biogenic source. Incorporation of VCP emissions in585

methanol emission inventories will be needed to improve the assessment of biogenic emissions over East Asia.

In contrast with all other campaigns, for which the model performance improves after optimisation (Table S4), the model

agreement with respect to the July ARCTAS dataset deteriorates when optimised emissions are used. The emission increase in-

ferred by the inversion reaches a factor of∼3 in the region, due to the high (bias-corrected) IASI columns (∼ 5·1016 molec. cm−2)

typical of Central Canada during summer (Fig. 9). This leads to overestimated concentrations below 4km altitude in compari-590

son with both TOGA and PTR-MS measurements (Fig. 12b). Important fire events took place in this area during this campaign,

and the CH3CN-based criterion used to filter out pyrogenic influences removed∼ 26% of the data, while also reducing the av-

erage observed mixing ratio by 21%. A test evaluation without this filter (not shown) leads however to similar conclusions. The

model overestimation for the entire methanol column below 10 km, calculated from the vertical profiles shown on Fig. 12b,

amounts to a factor of ∼1.4. This factor is similar to the enhancement of the IASI column due to the bias correction (factor of595

∼1.5, see Eq. 18). Therefore, an emission optimisation constrained by uncorrected IASI columns would likely lead to a closer

agreement with the ARCTAS-July campaign, although it would worsen the comparison with all other campaigns. The reason

for the singularity of ARCTAS-July is unknown.

5.2 Evaluation against in situ surface data

The emission optimisation also significantly improves the model comparison with surface concentrations data, as seen on600

Fig. 13 (also Fig. S1). The Pearson’s correlation coefficient is increased from 0.66 to 0.89 after emission inversion, and the

median bias becomes very small. As detailed in Table S5, the large positive bias of the a priori run at the sites located in tropical

forests (+56% on average for 10 measurement campaigns) is strongly reduced, to 15% after optimisation, providing additional

support to the emission decrease inferred over tropical forests. Over Europe, U.S.A., East Asia and marine sites as well, the

biases are generally reduced, from respectively -16%, -17%, -44% and -17% in the a priori simulations, to -1%, +17%, -19%605

and -7% with optimised emissions.

A further illustration of the model performance against in situ data over temperate ecosystems is provided by the comparison

of modelled methanol against PTR-MS measurements at Vielsalm and Lonzée in 2009–2013 (Fig. 14). At both sites, only a

small bias remains after emission optimisation (7% at Vielsalm and -14% at Lonzée), and the model generally succeeds in

reproducing the shape of the seasonal cycle (overall Pearson correlation r of 0.84).610

5.3 Evaluation against FTIR column data

Figure 15 displays the observed and modelled average seasonal cycle of methanol columns at the 8 FTIR stations, whereas

Fig. S8 shows the full time series of monthly columns and Table S6 provides the summary of comparison statistics. The averag-

ing kernels and sampling times of the measurements are accounted for in the calculation of model columns. At Porto Velho, the

standard optimisation leads to an unrealistic large peak in September 2019 (Fig. 15f) due to the monthly resolution of emission615

increments and to a large temporal variability of methanol columns in the course of the month. The FTIR measurements for

September having been all recorded during the first 12 days of the month, an additional emission inversion was performed for
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Figure 13. Scatter plots of averaged modelled and observed in situ CH3OH mixing ratios at the sites listed in Table S1. Blue: model results

using a priori emissions; red: IASI-based simulations. Pearson’s correlation coefficient (r) and the median bias over all sites are also given.

year 2019, identical to the standard run except that IASI data between 13 and 30 September were excluded. The result of this

inversion (dotted red line on Fig. 15f) differs from the standard run only in September, and leads to a much improved seasonal

cycle against FTIR data.620

At all sites except St Petersburg, the optimisation reduces the model biases and RMSD (Table S6). Furthermore, the opti-

mised model correlates very well with the data at all sites, with Pearson’s correlation coefficients ranging from 0.78 (Eureka) to

∼0.95 (Porto Velho and Kitt Peak). At the three mid-latitudes sites (Toronto, Jungfraujoch and Kitt Peak), the negative biases

of the a priori run with respect to the data (between 20 and 30%) are replaced by moderate biases (±12% or better) and the

improved seasonal cycle at Kitt Peak supports the large emission enhancement in spring and early summer at these latitudes.625

The low biases at Kitt Peak and Jungfraujoch contrast with the evaluation of a previous inverse modelling study constrained

by IASI data at these sites (Stavrakou et al., 2011; Bader et al., 2014). At both stations, the optimised model underestimated

the summertime FTIR columns by up to a factor of 1.5. The probable reasons for the improvement are multiple, including the

IASI retrieval updates, the bias-correction of IASI columns, and the higher spatial resolution and longer time series considered

in this work.630

At St Petersburg, the optimised model overestimate the data (+21%), especially during summer when the columns are high.

The overestimation reaches a factor of 1.44 during May–August, when the bias correction of IASI columns (Eq. 18, for IASI

columns of ∼ 30 ·1015 molec. cm−2) enhances the columns by a factor ∼1.41. Therefore, as for the model comparison with in

situ measurements of the ARCTAS-July campaign (Sect. 5.1), an optimisation constrained by uncorrected IASI columns would

have yielded a better agreement with the FTIR observations than the optimisation presented above. The similar conclusions635
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Figure 14. Time series of monthly-averaged observed CH3OH concentrations (symbols) and corresponding model results from the a priori

run (dotted) and from the IASI-based optimisation (red) at (a) Vielsalm (50.305◦N, 5.999◦E) in 2009–2010 and (b) Lonzée (50.552◦N,

4.745◦E) in 2012–2013. The relative bias and root-mean squared deviation (RMS) are given for each site. The error bars denote the standard

deviation of the monthly averaged data.

drawn from FTIR and airborne campaign data obtained in similar environments, namely the vast area of high columns within

the boreal land masses at around 60◦ N during summer (Fig. 9), strongly suggest that the bias correction derived from airborne

data in Sect. 3 is inappropriate in such environments.

Large model biases are also found at Porto Velho (24% for the 5-month average), especially in September (39%) and October

(59%). However, when taking into account the number of FTIR data recorded per month, lowest in September–October (46640

and 7, respectively) and highest in July (286), the relative bias amounts to only 13%, down from 37% in the a priori simulation.

This small remaining bias is consistent with the model evaluation against surface in situ data in tropical ecosystems (+15%

bias, Sect 5.2) and the GoAmazon campaign (negligible bias, Sect. 5.1). The comparisons at the two Reunion island stations

(St Denis and Maïdo) show also small positive biases (4–11%).

6 Conclusions645

Twelve years of IASIv4 global methanol column data are used in an inverse modelling framework built on the MAGRITTEv1.2

model to propose an updated assessment of CH3OH global distribution and terrestrial emissions. The IASIv4 dataset is gener-
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Figure 15. Monthly CH3OH FTIR columns (1015 molec.cm−2) averaged over 2008–2019 (black lines and diamonds) and corresponding

averages from the a priori simulation (dotted blue) and optimised model (red) at (a) Eureka, (b) St Petersburg, (c) Jungfraujoch, (d) Toronto,

(e) Porto Velho, (f) St Denis, and (g), Maïdo. The FTIR averaging kernels and sampling times are accounted for in the calculation of the

model columns. The dotted red line in panel (e) denotes model columns from a test optimisation in which IASI data between 13 and 30

September 2019 were excluded. Panel (h) displays the average seasonal cycle of FTIR columns (2.09–14 km above sea level) recorded at

Kitt Peak between 1985 and 2003 (Rinsland et al., 2009), compared with the 2008–2019 climatological average from the model. The daily

FTIR averages (Fig. 5 of Rinsland et al., 2009) are also shown. The error bars denote the standard deviations of the monthly data.

ated using the ANNI version 4 retrieval framework, which incorporates several methodological advances compared to previous

versions. In particular, the dataset includes total-column averaging kernels, essential to minimise the impact of vertical-profile

differences in the comparisons between IASI retrievals and MAGRITTE outputs.650

In a first step, in situ methanol observations from three extensive aircraft campaigns over the U.S. (DC3, SENEX and

SEAC4RS) are assimilated into the model to derive aircraft-constrained model distributions used to evaluate the IASI columns.
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The results suggest an underestimation of large IASI columns, reaching a factor of 1.41 for IASI columns of ∼ 30 · 1015

molec.cm−2. The in situ measurement uncertainties are too low to account for these biases, which therefore remain unex-

plained.655

The bias of IASI with respect to aircraft data is tentatively corrected through a linear relationship, and the bias-corrected

IASI columns are used as constraints to optimise the terrestrial CH3OH emissions in the MAGRITTE global model over

2008–2019. Model evaluation against nine aircraft datasets spanning 2008–2018 shows that the emission optimisation leads to

a large reduction of the average bias against aircraft observations over land, from−23% in the prior simulation to−8.4% in the

optimisation; the model agreement is also improved over oceans. Similarly, the model performance against a broad compilation660

of surface in situ data (67 campaigns) is greatly improved, as seen from the resulting high correlation and low biases globally

and regionally (less than 20% bias over tropical forests, U.S., Europe, East Asia and marine areas). The model performance

(bias and RMSD) is also improved at seven of the eight FTIR stations.

Nevertheless, closer examination of the comparisons points to important regional differences. Most noticeably, the opti-

misation leads to substantial model overestimations (by 40%) against summertime measurements over the Canadian boreal665

forest (ARCTAS-July campaign) and in northern European Russia (St Petersburg), suggesting that the bias correction of IASI

columns is unwarranted at these latitudes. Over tropical ecosystems, the comparisons with in situ data (10 campaigns) and

FTIR data (at Porto Velho and Reunion island) suggests a small positive bias (∼ 15%), despite a substantial reduction of bi-

ases, in comparison to the prior simulation. Future work should aim at a better characterisation of IASI biases using aircraft

and surface in situ data (especially over boreal and tropical ecosystems, poorly represented in the present study) and FTIR data670

(in all environments), considering the small number of stations where methanol is being retrieved.

The emission inversion suggests largely increased biogenic emissions over North America and most of Eurasia as well as

decreased emissions over tropical forests. Strong enhancements, by up to a factor 5, are found over semi-arid ecosystems,

consistent with previous inversion studies and possibly due to soil emissions currently overlooked in MEGAN. The seasonal

cycle of biogenic emissions undergoes significant changes. At mid-latitudes, the optimised emissions peak earlier than in the675

MEGAN inventory. Over tropical ecosystems, emission increases are inferred during warm and sunny periods, while decreases

are derived during colder, less sunny months. Temperature and visible radiation fluxes appear to exert a stronger control of

biogenic emissions than can be accounted for in MEGAN, for reasons still unclear. A revision of the parametrisation of the

leaf age response factor is likely needed for tropical environments.

The global top-down biogenic emission flux (160 Tg yr−1) is almost 60% higher than previous top-down estimates (Millet680

et al., 2008; Stavrakou et al., 2011; Bates et al., 2021), due to mainly two reasons. The first reason is the bias correction of

IASI columns, corroborated by the improved model performance against a wide range of observations, except over boreal

continental regions, as noted above. The total biogenic flux due to boreal forests is increased by a factor of 2.4, from 9.4 to

22.8 Tg yr−1. Even without the contribution of boreal forests, the global top-down biogenic flux would therefore still be much

higher than previous estimates. The second reason is the stronger sink due to dry deposition in our model, with a global lifetime685

with respect to this process of 17 days, well below the range of estimates from previous modelling studies. Dry deposition is

estimated here to offset 45% of the global biogenic emission flux. The deposition velocities are calculated using a Wesely-type
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parametrisation adjusted based on estimates from 13 field campaign studies. The calculated values range typically between

0.2 and 1.6 cm s−1 over vegetated areas, in generally good agreement with the field studies. A notable exception is the boreal

forest site of Hyytiälä, where the deposition velocity is largely overestimated. Therefore, the dry deposition sink (and also690

the top-down biogenic gross flux) might be similarly overestimated over these forests. Clearly, more field campaign data are

needed to provide a better assessment of both methanol abundances and dry deposition velocities in this environment, and more

generally over terrestrial ecosystems.

Data availability. The NASA aircraft campaign datasets are available from the Langley Research Center at https://www-air.larc.nasa.gov/

missions/merges (last access: 16 January 2026). The Vielsalm dataset for 2009 and 2010 is available at https://doi.org/10.18758/h659pdrv695

(Amelynck et al., 2024a), while the Lonzée dataset is available at https://doi.org/10.18758/7v20vh47 (for 2012) (Amelynck et al., 2024b)

and https://doi.org/10.18758/7v20vh47 (for 2013) (Amelynck et al., 2024c). The MEGAN-MOHYCAN methanol emissions and the top-

down methanol emissions generated in this study are available at https://emissions.aeronomie.be (Müller et al., 2026). The monthly LAI

distributions from MODIS15A2H collection 6 are available at https://lpdaac.usgs.gov (last access: 15 January 2026).

Appendix A: Details on the dry deposition scheme700

A1 Aerodynamic resistance

The aerodynamic resistance (s m−1) is expressed (ECMWF, 2021) as

Ra =
1
κu∗

[ln(
zl + z0M
z0H

)−ΨH(
zl + z0M

L
) +ΨH(

z0H
L

)] (A1)

with κ von Karman’s constant (0.41), u∗ the friction velocity (m s−1), zl the reference height (here, the altitude of the first

model level), z0M and z0H the roughness lengths for heat and momentum, respectively, ΨH a stability profile for momentum,705

and L (m) the Obukhov length calculated using

L=− u3
∗Tl

κgQ0ν
, (A2)

with Tl (K) the near-surface air temperature, g (m s−2) the gravitational acceleration, andQ0ν (K ms−1) the virtual temperature

flux in the surface layer. The latter depends on the sensible heat flux S (Wm−2) and evaporation E (kg m−2 s−1):

Q0ν =
S+ 0.61CpE

ρCp
(A3)710

with Cp the heat capacity of air (J kg−1 K−1) and ρ the air density (kg m−3). Hourly distributions at 0.25◦×0.25◦ resolution

of near-surface temperature, wind, sensible heat flux and evaporation are obtained from the ERA5 reanalysis (Hersbach et al.,

2020). Friction velocity is calculated using

u∗ =
κ(u2

l + v2
l +w2

∗)
1/2

ln( zl+z0M
z0M

)−ΨM( zl+z0M
L ) +ΨM( z0M

L )
(A4)
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with ul and vl the horizontal wind components at 10 m, and w∗ a free convection velocity scale,715

w∗ = (zi
g

Tl
Q0ν)1/3 (A5)

with zi = 1000m. Since L depends on u∗ (Eq. A2) which is dependent on L (Eq. A4), these quantities are calculated iteratively.

The stability profiles for heat and momentum follow ECMWF (2021).

The roughness lengths over oceans are calculated (ECMWF, 2021) using

z0M = 0.11
ν

u∗
+αC

u2
∗
g

(A6)720

z0H = 0.4
ν

u∗
(A7)

with ν the kinematic viscosity (∼ 1.5 · 10−5 m2 s−1 at 288 K), and αC the Charnock dimensionless coefficient provided by

the ERA5 reanalysis. Over land, the estimation of z0M follows Zhang et al. (2003), i.e., minimum and maximum values are

defined for each plant functional type. The seasonal evolution of the roughness length is based on LAI obtained from monthly

averaged Moderate Resolution Imaging Spectroradiometer (MODIS 15A2H collection 6). z0H is assumed equal to 0.1 · z0M725

(ECMWF, 2021).

A2 Quasi-laminar sublayer resistance

Following Toyota et al. (2016), the quasi-laminar sublayer resistance (s m−1) is written as

Rb =
1

Bu∗
(

ν

0.72Dg,CH3OH
)2/3 (A8)

where the empirical factor B is taken equal to κ
2 and Dg,CH3OH is the gas-phase diffusivity of methanol, obtained from Tang730

et al. (2015) (1.66 · 10−5 m2 s−1 at 298 K). The temperature dependence of the diffusivity follows Tang et al. (2015).

A3 Stomatal resistance

Rs is related to the stomatal resistance to the diffusion of water (RH2O):

Rs = (
Dg,H2O

Dg,CH3OH
) ·RH2O, (A9)

where Dg,H2O is the gas-phase diffusivity of water (2.18 · 10−5 m2 s−1 at 298 K, Massman, 1998). The dependence of the735

stomatal resistance for H2O on environmental parameters is given (Jarvis, 1976; Sellers et al., 1986) by

Rs,H2O = (
as

bs +Q
+ cs))/(f(Tl) · (1− ds δe)) · f(ψl)), (A10)

where Q is the visible radiation flux (W m−2), f(Tl) and f(ψl) are stress factors for temperature (Tl) and the leaf water

potential (ψl), and δe is the water vapour deficit (hPa). The stress functions for every plant functional type are detailed in

Müller et al. (2008). The values of parameters as, bs, cs and ds are given in Table S7.Rs is minimum during daytime, typically740

of the order of 100 s m−1 for ozone (e.g., Baldocchi et al., 1987; Padro, 1996; Val Martin et al., 2016).
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A4 Cuticular and soil uptake resistances for SO2 and O3

The cuticular resistances for SO2 and O3 are calculated (Zhang et al., 2003) with

Rcut = (
1− fwet

Rcutd
+

fwet

Rcutw
)−1 (A11)

where fwet is the frequency of wet conditions, due to either dew or rain, and745

Rcutd =
ffr ·Rcutd0

e0.03·RH LAI0.25u∗
(A12)

Rcutw =
ffr ·Rcutw0

LAI0.5u∗
(A13)

with LAI being relative humidity (in %), ffr a function of temperature, equal to 1 above -1◦ C, and given by

ffr = min(2,e0.2(−1−TC)) (A14)

below that temperature. The reference values for dry and wet conditions (Rcutd0 and Rcutw0) are provided in Table S7 for750

SO2 and O3, except RSO2
cutw0, which is equal to 50 s m−1 for rain and 100 s m−1 for dew conditions. Dew presence is assumed

to occur when u∗ falls below a threshold value dependent on specific humidity and cloud cover (Brook et al., 1999). Rain

frequency is estimated from the ERA5 cloud and precipitation fields (Stavrakou et al., 2009c).

The ground resistance for SO2 is taken equal to 50 s m−1 for rain and 100 s m−1 for dew conditions, and is multiplied by

the factor ffr. In absence of dew or rain, the ground resistance RSO2
g depends on RH and soil pH (Kerkweg et al., 2006). In755

humid conditions (above 60% RH), the resistance, RSO2
g,h is taken equal to 115, 65 and 25 s m−1 for pH < 404, 5.5 < 7.3 and

pH > 7.3, respectively. The soil pH distribution is obtained from Hengl et al. (2017). Below 60% RH, the resistance (s m−1) is

calculated by modifying the values for humid conditions (RSO2
g,h ) according to

RSO2
g = max(25, 3.4RSO2

g,h − 85 +105 ·max(0,(40−RH)/40) +1000 · e269−Ts ) (A15)

with Ts the soil temperature (K).760

The ground resistance for O3 is assumed equal to respectively 200 s m−1 under vegetation and 500 s m−1 for non-vegetated

surfaces (Zhang et al., 2003). These values are multiplied by ffr (Eq. A14) at low temperatures.

Over snow, the ground and cuticular resistance for O3 are assumed equal to 2000 s m−1; the ground resistance for SO2 is

calculated as function of temperature following Kerkweg et al. (2006). The snow fraction is calculated from the ERA5 snow

depth (SD) as the ratio765

fsnow = min(1,
SD

SDmax
) (A16)

where SDmax is taken equal to max(0.02 , 0.2 ·LAI).
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Geng, X., Bauer-Marschallinger, B., Antonio Guevara, M., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Eloi Ribeiro,

R., Wheeler, I., Mantel, S., Kempen, B.: SoilGrids250m: Global gridded soil information based on machine learning, PLoS ONE, 12,

e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons,915

A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biatavi, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee,

D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E.,

Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut,

J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.

Hu, L., Millet, D. B., Mohr, M. J., Wells, K. C., Griffis, T. J., and Helmig, D.: Sources and seasonality of atmospheric methanol based on tall920

tower measurements in the US Upper Midwest, Atmos. Chem. Phys., 11, 11145–11156, doi:10.5194/acp-11-11145-2011, 2011.

Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Muntean, M., Schaaf, E., and Friedrich,

R.: Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012, Atmos.

Chem. Phys., 17, 7683–7701, https://doi.org/10.5194/acp-17-7683-2017, 2017.

Jacob, D. J., Field, B. D., Li, Q., Blake, D. R., de Gouw, J. and Warneke, C., Hansel, A., Wisthaler, A., Singh, H. B., and Guenther, A.: Global925

budget of methanol: Constraints from atmospheric observations, J. Geophys. Res., 110, D08303, https://doi.org/10.1029/2004JD005172,

2005.

Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Hostetler, C. A., Russell, P. B., Singh,

H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson, J. R., and Fisher, J. A.: The Arctic Research of the Composition of the

41

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results, Atmos. Chem. Phys., 10, 5191–5212,930

https://doi.org/10.5194/acp-10-5191-2010, 2010.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller,

R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional

and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432,

https://doi.org/10.5194/acp-15-11411-2015, 2015.935

Jarvis, P.: The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Phil. Trans.

Roy. Soc. London, B, 273, 593–610, https://doi.org/10.1098/rstb.1976.0035, 1976.

Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas, Ocean Sci., 6,

913–932, https://doi.org/10.5194/os-6-913-2010, 2010.

Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical note: An implementation of the dry removal940

processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632,

https://doi.org/10.5194/acp-6-4617-2006, 2006.

Khan, M., Cooke, M., Utembe, S., Xiao, P., Derwent, R., Jenkin, M., Archibald, A. T., Maxwell, P., Morris, W. C., South, N., Percival,

C. J., and Shallcross, D. E.: Reassessing the photochemical production of methanol from peroxy radical self and cross reactions using

the STOCHEM-CRI global chemistry and transport model, Atmos. Environ., 99, 77–84. https://doi.org/10.1016/j.atmosenv.2014.09.056,945

2014.

Khan, M., Cooke, M., Utembe, S., Archibald, A. T., Derwent, R. G. and Jenkin, M. E., Morris, W. C., South, N., Hansen, J. C., Francisco, J. S.,

Percival, C. J., and Shallcross, D. E.: Global analysis of peroxy radicals and peroxy radical-water complexation using the STOCHEM-CRI

global chemistry and transport model, Atmos. Environ., 106, 278–287, https://doi.org/10.1016/j.atmosenv.2015.02.020, 2015.

Laffineur, Q., Aubinet, M., Schoon, N., Amelynck, C., Müller, J.-F., Dewulf, J., Van Langenhove, H., Steppe, K., and Heinesch, B.: Abiotic950

and biotic control of methanol exchanges in a temperate mixed forest, Atmos. Chem. Phys., 12, 577–590, https://doi.org/10.5194/acp-12-

577-2012, 2012.

Langford, B., Misztal, P. K., Nemitz, E., Davison, B., Helfter, C., Pugh, T. A. M., MacKenzie, A. R., Lim, S. F., and Hewitt, C. N.: Fluxes

and concentrations of volatile organic compounds from a South-East Asian tropical rainforest, Atmos. Chem. Phys., 10, 8391–8412,

https://doi.org/10.5194/acp-10-8391-2010, 2010.955

Lindinger, W., Hansel, A., and Jordan, A.: On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-

reaction mass spectrometry (PTR-MS) – Medical applications, food control and environmental research, Int. J. Mass Spectrom., 173,

191–241, https://doi.org/10.1016/S0168-1176(97)00281-4, 1998.

Madronich, S., and Calvert, J. G.: Permutation reactions of organic peroxy radicals in the troposphere, J. Geophys. Res., 95, 5697–5715,

http://dx.doi.org/10.1029/JD095iD05p05697, 1990.960

Madronich, S. and Flocke, S.: The role of solar radiation in atmospheric chemistry, in: Handbook of Environmental Chemistry, edited by:

Boule, P., Springer Verlag, Heidelberg, 1–26, https://doi.org/10.1007/978-3-540-69044-3_1, 1998.

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa,

H. M. J., Fan, J., Disch, J., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch,

M.: Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797,965

https://doi.org/10.5194/acp-16-4785-2016, 2016.

42

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Massman, W. J.: A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near

STP, Atmos. Environ., 32, 1111–1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998.

Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S., Fried, A., Walega, J., Heikes, B. G., Blake, D. R., Singh, H. B., Anderson,

B. E. and Clarke, A. D.: Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and970

isoprene emission, J. Geophys. Res., 111, D24S02, https://doi.org/10.1029/2005JD006853, 2006.

Millet, D. B., Jacob, D. J., Custer, T. G., de Gouw, J. A., Goldstein, A. H., Karl, T., Singh, H. B., Sive, B. C., Talbot, R. W., Warneke,

C., and Williams, J.: New constraints on terrestrial and oceanic sources of atmospheric methanol, Atmos. Chem. Phys., 8, 6887–6905,

https://doi.org/10.5194/acp-8-6887-2008, 2008.

Müller, M., Mikoviny, T., Feil, S., Haidacher, S., Hanel, G., Hartungen, E., Jordan, A., Märk, L., Mutschlechner, P., Schottkowsky, R., Sulzer,975

R., Crawford, J. H., and Wisthaler, A.: A compact PTR-ToF-MS instrument for airborne measurements of volatile organic compounds at

high spatiotemporal resolution, Atmos. Meas. Tech., 7, 3763–3772, https://doi.org/10.5194/amt-7-3763-2014, 2014.

Müller, J.-F., Stavrakou, T., Wallens., S., De Smedt, I., Van Roozendael, M., Rinne, J., Munger, B., Goldstein, A., and Guenther, A.: Global

isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environmental model, Atmos. Chem. Phys., 8,

1329–1341, https://doi.org/10.5194/acp-8-1329-2008, 2008.980

Müller, J.-F., Liu, Z., Nguyen, V. S., Stavrakou, T., Harvey, J. N., and Peeters, J.: The reaction of methyl peroxy and hydroxyl radicals as a

major source of atmospheric methanol, Nat. Commun., 7, 13213. https://doi.org/10.1038/ncomms13213, 2016.

Müller, J.-F., Stavrakou, T., and Peeters, J.: Chemistry and deposition in the Model of Atmospheric composition at Global and Regional

scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1). Part A. Chemical mechanism, Geosci. Model Dev., 12,

2307–2356, https://doi.org/10.5194/gmd-12-2307-2019, 2019.985

Müller, J.-F., Stavrakou, T., Oomen, G.-M., Opacka, B., De Smedt, I., Guenther, A., Vigouroux, C., Langerock, B., Aquino, C. A. B., Grutter,

M., Hannigan, J., Hase, F., Kivi, R., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt,

J., Ortega, I., Palm, M., Röhling, A., Stremme, W., Strong, K., Sussmann, R., Té, Y., and Fried, A.: Bias correction of OMI HCHO

columns based on FTIR and aircraft measurements and impact on top-down emission estimates, Atmos. Chem. Phys., 24, 2207–2237,

https://doi.org/10.5194/acp-24-2207-2024, 2024.990

Müller, J.-F., and Stavrakou, T.: Global top-down methanol emissions based on IASI data (2008-2019) (Version 1) [Data set], Royal Belgian

Institute for Space Aeronomy, https://doi.org/10.18758/5FMK39FW, 2026.

NASA: NASA Tropospheric Chemistry Campaigns – Merged Data Sets, NASA [data set], https://www-air.larc.nasa.gov/missions/merges

(last access: 16 January 2026), 2025.

Nemecek-Marshall M., MacDonald, R. C., Franzen, J. J., Wojciechowski, C. L., and Fall, R.: Methanol emission from leaves (Enzymatic995

detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development), Plant Physiol., 108,

1359–1368, https://doi.org/10.1104/pp.108.4.1359, 1995.

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ eval-

uation of air-sea gas exchange parameterizations using novel conservative, volatile tracers, Global Biogeochem. Cycles, 14, 373–387,

https://doi.org/10.1029/1999GB900091, 2000.1000

Oomen, G.-M., Müller, J.-F., Stavrakou, T., De Smedt, I., Blumenstock, T., Kivi, R., Makarova, M., Palm, M., Röhling, A., Té, Y., Vigouroux,

C., Friedrich, M. M., Frieß, U., Hendrick, F., Merlaud, A., Piters, A., Richter, A., Van Roozendael, M., and Wagner, T.: Weekly derived

top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021, Atmos. Chem. Phys., 24,

449–474, https://doi.org/10.5194/acp-24-449-2024, 2024.

43

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Padro, J.: Summary of ozone dry deposition velocity measurements and model estimates over vineyard, grass and deciduous forest in summer,1005

Atmos. Environ., 30, 2363–2369, https://doi.org/10.1016/1352-2310(95)00352-5, 1996.

Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B., and schnitzler, J. P.: Biogenic volatile emissions from the

soil, Plant Cell Environ., 37, 1866–1891, https://doi.org/10.1111/pce.12340, 2014.

Rantala, P., Aalto, J., Taipale, R., Ruuskanen, T., and Rinne, J.: Annual cycle of volatile organic compound exchange between a boreal pine

forest and the atmosphere, Biogeosciences, 12, 5723–5770, https://doi.org/10.5194/bg-12-5753-2015, 2015.1010

Razavi, A., Karagulian, F., Clarisse, L., Hurtmans, D., Coheur, P.-F., Clerbaux, C., Müller, J.-F., and Stavrakou, T.: Global distributions of

methanol and formic acid retrieved for the first time from the IASI/MetOp thermal infrared sounder, Atmos. Chem. Phys., 11, 857–872,

https://doi.org/10.5194/acp-11-857-20111, 2011.

Read, K. A., Carpenter, L. J., Arnold, S. R., Beale, R., Nightingale, P D., Hopkins, J. R., Lewis, A. C., Lee, J. D., Mendes, L., and Pickering,

S. J.: Multiannual observations of acetone, methanol, and acetaldehyde in remote Tropical Atlantic air: Implications for atmospheric1015

OVOC budgets and oxidative capacity, Environ. Sci. Technol., 46, 11028–11039, https://doi:10.1021/es302082p, 2012.

Rinsland, C. P., Mahieu, E., Chiou, L., and Herbin, H.: First ground-based infrared solar absorption measurements of free tropospheric

methanol (CH3OH): Multidecade infrared time series from Kitt Peak (31.9◦N 111.6◦W): Trend, seasonal cycle, and comparison with

previous measurements, J. Geophys. Res., 114, D04309, https://doi.org/10.1029/2008JD011003, 2009.

Sander, R.: Compilation of Henry’s law constants (version 4.0), Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-1020

2015, 2015.

Sellers, P., Mintz, Y., Sud, Y., and Dalcher, A.: A Simple Biosphere Model (SiB) for Use within General Circulation Models, J. Atmos. Sci.,

43, 505–531, https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2, 1986.

Singh, H. B., Chen, Y., Staudt, A., Jacob, D., Blake, D., Heikes, B., and Snow, J.: Evidence from the Pacific troposphere for large global

sources of oxygenated organic compounds, Nature, 410, 1078–1081, https://doi.org/10.1038/35074067, 2001.1025

Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U., Stefani, P., and Knorr, W.: Global

data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years, Atmos. Chem. Phys., 14, 9317–9341,

https://doi.org/10.5194/acp-14-9317-2014, 2014.

Sindelarova, K., Markova, J., Simpson, D., Huszar, P., Karlicky, J., Darras, S., and Granier, C.: High resolution biogenic global emission

inventory for the time period 2000–2019 for air quality modelling, Earth Syst. Sci. Data, 14, 251–270, https://doi.org/10.5194/essd-14-1030

251-2022, 2022.

Sofiev, M., Vankevich, R., Ermakova, T., and Hakkarainen, J.: Global mapping of maximum emission heights and resulting vertical profiles

of wildfire emissions, Atmos. Chem. Phys., 13, 7039–7052, https://doi.org/10.5194/acp-13-7039-2013, 2013.

Souri, A. H.,Gonález Abad, G., Wolfe, G. M., Verhoelst, T., Vigouroux, C., Pinardi, G., Compernolle, S., Langerock, B., Duncan, B. N., and

Johnson, M. S.: Feasibility of robust estimates of ozone production rates using a synergy of satellite observations, ground-based remote1035

sensing, and models, Atmos. Chem. Phys., 25, 2061–2086, https://doi.org/10.5194/acp-25-2061-2025, 2025.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L/, and Guenther, A.: Evaluating the performance

of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns, Atmos. Chem. Phys., 9, 1037–

1060, https://doi.org/10.5194/acp-9-1037-2009, 2009a.

Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., Kanakidou, M., Vrekoussis, M., Wittrock, F., Richter, A., and Burrows, J.1040

P.: The continental source of glyoxal estimated by the synergistic use of spaceborne measurements and inverse modelling, Atmos. Chem.

Phys., 9, 8431–8446, https://doi.org/10.5194/acp-9-8431-2009, 2009b.

44

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Karagulian, F., De Mazière, M., Vigouroux,

C., Amelynck, C., Schoon, N., Laffineur, Q., Heinesch, B., Aubinet, M., Rinsland, C., and Müller, J.-F.: First space-based derivation of

the global atmospheric methanol emission fluxes, Atmos. Chem. Phys., 11, 4873–4898, https://doi.org/10.5194/acp-11-4873-2011, 2011.1045

Tang, M. J., Shiraiwa, M., Pöschl, U., Cox, R. A., and Kalberer, M.: Compilation and evaluation of gas phase diffusion coefficients of reactive

trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen

numbers for gas uptake calculations, Atmos. Chem. Phys., 15, 5585–5598, https://doi.org/10.5194/acp-15-5585-2015, 2015.

Tie, X. T., Guenther, A., and Holland, E.: Biogenic methanol and its impacts on tropospheric oxidants, Geophys. Res. Lett., 30, 1881,

https://doi.org//10.1029/2003GL017167, 2003.1050

Toyota, K., Dastoor, A. P., and Ryzhkov: A. Parameterization of gaseous dry deposition in atmospheric chemistry mod-

els: Sensitivity to aerodynamic resistance formulations under statically stable conditions, Atmos. Environ., 147, 409–422,

https://doi.org/10.1016/j.atmosenv.2016.09.055, 2016.

Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Mace, G. G., Pan, L. L., Pfister, L., Rosenlof, K. H.,

Redemann, J., Reid, J. S., Singh, H. B., Yokelson, R., Minnis, P., Chen, G., Jucks, K. W., and Pszenny, A.: Planning, implementation and1055

scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Survey (SEAC4RS)

field mission, J. Geophys. Res., 121, 4967–5009, https://doi.org/10.1002/2015JD024297, 2016.

Val Martin, M., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to vegetation phenololgy in the Community Earth System Model:

Implications for the simulations of surface O3, Geophys. Res. Lett., 41, 2988–2996, https//doi.org/10.1002/2014GL059651, 2016.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C.,1060

Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720,

https://doi.org/10.5194/essd-9-697-2017, 2017.

Viatte, C., Strong, K., Walker, K. A., and Drummond, J. R.: Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total

columns measured in the Canadian high Arctic, Atmos. Meas. Tech., 7, 1547–1570, https://doi.org/10.5194/amt-7-1547-2014, 2014.

Vigouroux, C., Stavrakou, T., Whaley, C., Dils, B., Duflot, V., Hermans, C., Kumps, N., Metzger, J.-M., Scolas, F., Vanhaelewyn, G.,1065

Müller, J.-F., Jones, D. B. A., Li, Q., and De Mazière, M.: FTIR time-series of biomass burning products (HCN, C2H6 , C2H2 ,

CH3OH, and HCOOH) at Reunion Island (21◦ S, 55◦ E) and comparisons with model data, Atmos. Chem. Phys., 12, 10367–10385,

https://doi.org/10.5194/acp-12-10367-2012, 2012.

Vigouroux, C., Langerock, B., Aquino, C. A. B., Blumenstock, T., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J., Jones, N.,

Kivi, R., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morin, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M.,1070

Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., Van Roozendael, M., Wang, P., and Winkler, H.:

TROPOMI/S5P formaldehyde validation using an extensive network of ground-based FTIR stations, Atmos. Meas. Tech., 3751–3767,

https://doi.org/10.5194/amt-13-3751-2020, 2020.

Warneke, C., Karl, T., Judmaier, H., Hansel, A., Jordan, A., Lindinger, W., and Crutzen, P.: Acetone, methanol, and other partially oxi-

dized volatile organic emissions from dead plant matter by abiological processes: Significance for atmospheric HOx chemistry, Global1075

Biogeochem. Cy., 13, 9–17, https://doi.org/10.1029/98GB02428, 1999.

Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook, A. M., Brock, C. A., Roberts,

J. M., Brown, S. S., Neuman, J. A., Lerner, B. M., Lack, D., Law, D., Hübler, G., Pollack, I., Sjostedt, S., Ryerson, T. B., Gilman, J. B.,

Liao, J., Holloway, J., Peischl, J., Nowak, J. B., Aikin, K. C., Min, K.-E., Washenfelder, R. A., Graus, M. G., Richardson, M., Markovic,

M. Z., Wagner, N. L., Welti, A., Veres, P. R., Edwards, P., Schwarz, J. P., Gordon, T., Dube, W. P., McKeen, S. A., Brioude, J., Ahmadov,1080

45

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



R., Bougiatioti, A., Lin, J. J., Nenes, A., Wolfe, G. M., Hanisco, T. F., Lee, B. H., Lopez-Hilfiker, F. D., Thornton, J. A., Keutsch, F. N.,

Kaiser, J., Mao, J., and Hatch, C. D.: Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the

Southeast Atmosphere Study 2013, Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, 2016.

Wells, K. C., Millet, D. B., Hu, L., Cady-Pereira, K. E., Xiao, Y., Shephard, M. W., Clerbaux, C. L., Clarisse, L., Coheur, P.-F., Apel, E. C., de

Gouw, J., Warneke, C., Singh, H. B., Goldstein, A. H., and Sive, B. C.: Tropospheric methanol observations from space: retrieval evaluation1085

and constraints on the seasonality of biogenic emissions, Atmos. Chem. Phys., 12, 5897–5912, https://doi.org/10.5194/acp-12-5897-2012,

2012.

Wells, K. C., Millet, D. B., Cady-Pereira, K. E., Shephard, M. W., Henze, D. K., Bousserez, N., Apel, E. C., de Gouw, J. A., Warneck, C., and

Singh, H. B.: Quantifying global terrestrial methanol emissions using observations from the TES satellite sensor, Atmos. Chem. Phys.,

14, 2555–2570, https://doi.org/10.5194/acp-14-2555-2014, 2014.1090

Wells, K. C., Millet, D. B., Brewer, J. F., Payne, V. H., Cady-Pereira, K., Pernak, R., Kulawik, S., Vigouroux, C., Jones, N., Mahieu,

E., Makarova, M., Nagahama, T., Ortega, I., Palm, M., Strong, K., Schneider, M., Smale, D., Sussmann, R., and Zhou, M.:Global

decadal measurements of methanol, ethene, ethyne, and HCN from the Cross-track Infrared Sounder, Atmos. Meas. Tech., 18, 695–716,

https://doi.org/10.5194/amt-18-695-2025, 2025.

Wesely, M. L., Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23,1095

1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.

Whitburn, S., Clarisse, L., Crapeau, M., August, T., Hultberg, T., Coheur, P. F., and Clerbaux, C.: A CO2-independent cloud mask

from Infrared Atmospheric Sounding Interferometer (IASI) radiances for climate applications, Atmos. Meas. Tech., 15, 6653—6668,

https://doi.org/10.5194/amt-15-6653-2022, 2022.

Williams, J., Holzinger, R., Gros, V., Xu, X., Atlas, E., and Wallace, D. W. R.: Measurements of organic species in air and seawater from the1100

tropical Atlantic, Geophys. Res. Lett., 31, L23S06, https://doi.org/10.1029/2004GL020012, 2004.

Wisthaler, A., Hansel, A., Dickerson, R. R., and Crutzen, P. J.: Organic trace gas measurements by PTR-MS during INDOEX 1999, J.

Geophys. Res. Atmos., 107, https://doi.org/10.1029/2001jd000576, 2002.

Wizenberg, T., Strong, K., Jones, D. B. A., Hannigan, J. W., Ortega, I., and Mahieu, E.: Measured and modeled trends of seven tropospheric

pollutants in the high Arctic from 1999 to 2022, J. Geophys. Res., 129, e2023JD040544, https://doi.org/10.1029/2023JD040544, 2024.1105

Wofsy, S. C., Afshar, S., Allen, H. M., Apel, E., Asher, E. C., Barletta, B., Bent, J., Bian, H., Biggs, B. C., Blake, D. R., Blake, N., Bourgeois,

I., Brock, C. A., Brune, W. H., Budney, J. W., Bui, T. P., Butler, A., Campuzano-Jost, P., Chang, C. S., Chin, M., Commane, R., Correa,

G., Crounse, J. D., Cullis, P. D., Daube, B. C., Day, D. A., Dean-Day, J. M., Dibb, J. E., DiGangi, J. P., Diskin, G. S., Dollner, M., Elkins,

J. W., Erdesz, F., Fiore, A. M., Flynn, C. M., Froyd, K., Gesler, D. W., Hall, S. R., Hanisco, T. F., Hannun, R. A., Hills, A. J., Hintsa,

E. J., Hoffman, A., Hornbrook, R. S., Huey, L. G., Hughes, S., Jimenez, J. L., Johnson, B. J., Katich, J. M., Keeling, R. F., Kim, M. J.,1110

Kupc, A., Lait, L. R., Lamarque, J.-F., Liu, J., McKain, K., Mclaughlin, R. J., Meinardi, S., Miller, D. O., Montzka, S. A., Moore, F. L.,

Morgan, E. J., Murphy, D. M., Murray, L. T., Nault, B. A., Neuman, J. A., Newman, P. A., Nicely, J. M., Pan, X., Paplawsky, W., Peischl,

J., Prather, M. J., Price, D. J., Ray, E., Reeves, J. M., Richardson, M., Rollins, A. W., Rosenlof, K. H., Ryerson, T. B., Scheuer, E., Schill,

G. P., Schroder, J. C., Schwarz, J. P., St. Clair, J. M., Steenrod, S. D., Stephens, B. B., Strode, S. A., Sweeney, C., Tanner, D., Teng, A. P.,

Thames, A. B., Thompson, C. R., Ullmann, K., Veres, P. R., Vieznor, N., Wagner, N. L., Watt, A., Weber, R., Weinzierl, B., Wennberg, P.,1115

Williamson, C. J., Wilson, J. C., Wolfe, G. M., Woods, C. T., and Zeng, L. H.: ATom: Merged Atmospheric Chemistry, Trace Gases, and

Aerosols, ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1581, 2018.

46

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Wohlfahrt, G., Amelynck, C., Ammann, C., Arneth, A., Bamberger, I., Goldstein, A. H., Gu, L., Guenther, A., Hansel, A., Heinesch, B.,

Holst, T., Hörtnagel, L., Karl, T., Laffineur, Q., Neftel, A., McKinney, K., Munger, J. W., Pallardy, S. G., Schade, G. W., Seco, R., and

Schoon, N.: An ecosystem-scale perspective of the net land methanol flux: synthesis of micrometeorological flux measurements, Atmos.1120

Chem. Phys., 15, 7413–7427, https://doi.org/10.5194/acp-15-7413-2015, 2015.

Yamanouchi, S., Conway, S., Strong, K., Colebatch, O., Lutsch, E., Roche, S., Taylor, J., Whaley, C. H., and Wiacek, A.: Network for the

Detection of Atmospheric Composition Change (NDACC) Fourier transform infrared (FTIR) trace gas measurements at the University of

Toronto Atmospheric Observatory from 2002 to 2020, Earth Syst. Sci. Data, 15, 3387–3418, https://doi.org/10.5194/essd-15-3387-2023,

2023.1125

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index products for land surface and climate

modelling, Remote Sens. Environ., 115, 1171–1187, https://doi.org/10.1016/j.rse.2011.01.001, 2011.

Zhai, S., Jacob, D. J., Franco, B., Clarisse, L., Coheur, P., Shah, V., Bates, K. H., Lin, H., Sulprizio, M. P., Huey, G., Moore, F. L., Jaffe,

D. A., and Liao, H. Transpacific transport of Asian peroxyacetyl nitrate (PAN) observed from satellite: Implications for ozone, Environ.

Sci. Technol., 58, 9760—9769, https://doi.org/10.1021/acs.est.4c01980, 2024.1130

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S.: Modelling gaseous dry deposition in AURAMS: a unified regional

air-quality modelling system, Atmos. Environ., 36, 537–560, https://doi.org/10.1016/S1352-2310(01)00447-2, 2002.

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3,

2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.

Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Yantosca, R. M., Sulprizio, M. P., De Smedt, I., González1135

Abad, G., Chance, K., Li, C., Ferrare, R., Fried, A., Hair, J. W., Hanisco, T. F., Richter, D., Scarino, A. J., Walega, J., Weibring, P.,

and Wolfe, G. M.: Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four

satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US, Atmos. Chem. Phys., 16,

13477–13490, https://doi.org/10.5194/acp-16-13477-2016, 2016.

47

https://doi.org/10.5194/egusphere-2026-253
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.


