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Abstract.

We employ an updated retrieval of space-based methanol (CH3OH) column measurements from the Infrared Atmospheric
Sounding Interferometer (IASI) and an emission optimisation framework built on the MAGRITTE chemical transport model
to assess terrestrial emissions of methanol to the atmosphere between 2008 and 2019. We first carry out a IASI CH3OH
validation study based on concentration measurements from three airborne campaigns, using the model and the IASI averaging
kernels to compute aircraft-based columns directly comparable to IASI data. IASI is found to underestimate high columns in
the considered region. A linear regression gives Qqasi = 0.46 Qqire + 10.6 - 1019 molec.cm ™2, with Qiast and Q. the TASI
and aircraft-derived columns, respectively. Inverse modelling of terrestrial methanol emissions using MAGRITTE and bias-
corrected IASI columns leads to much-improved overall agreement against in situ measurement campaigns and column data at
eight FTIR stations. The optimised global biogenic methanol emissions (~ 160 Tg yr ') are 22—60% higher than previous top-
down estimates, due to (1) column enhancements caused by the IASI bias-correction and (2) higher dry deposition velocities
in the model over land, compared to previous model studies, based on a parametrisation constrained by extensive campaign
data. The inversion results are less reliable over boreal forests due to shortcomings of both the bias-correction and the dry
deposition scheme over these regions. The optimisation suggests large changes in the distribution and seasonality of emissions.
Over tropical ecosystems, radiation and temperature appear to exert a stronger control on biogenic emissions than is currently

accounted for in the MEGAN model.

1 Introduction

Methanol (CH30H) is, besides methane, the most abundant organic compound present in the atmosphere (e.g., Singh et al.,

2001), due to its fairly long atmospheric lifetime, of the order of 5 days (Millet et al., 2008; Stavrakou et al., 2011; Bates

et al., 2021) and to its large global production dominated by an important biogenic emission flux, of magnitude (~100 Tgyr "
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globally) equivalent to 18-23% of the global isoprene source (e.g., Guenther et al., 2012; Wells et al., 2014; Sindelarova et al.,
2022). Other methanol sources include minor contributions from vegetation fires and anthropogenic emissions, each of the
order of 10 Tgyr~' globally (e.g., Jacob et al., 2005); photochemical production (~30-60 Tgyr—', e.g. Stavrakou et al.,
2011; Khan et al., 2014; Bates et al., 2021) from reactions of CH3O5 with organic peroxy radicals (Madronich and Calvert,
1990) and with the hydroxyl radical OH (e.g., Archibald et al., 2009); as well as a large and uncertain marine biospheric
source (Heikes et al., 2002) of which global magnitude (24-85 Tgyr ™, e.g., Millet et al., 2008; Bates et al., 2021) is more
than offset by ocean uptake (38—101 Tgyr ).

The importance of methanol for atmospheric chemistry stems primarily from its main atmospheric sink, namely oxidation
by OH (e.g., Millet et al., 2008), which is an important source of carbon monoxide and formaldehyde (Millet et al., 2006; Hu
etal., 2011; Wells et al., 2014) and has minor impacts on tropospheric ozone and the oxidizing capacity of the atmosphere (Tie
et al., 2003; Read et al., 2015). Methanol is also removed from the atmosphere through wet scavenging and uptake by oceans
(see above) and vegetated areas (Jacob et al., 2005).

The terrestrial biogenic emission of methanol is primarily associated with the growth of cell walls in plant leaves (Fall
and Benson, 1996), while other processes such as grassland cutting (Davison et al., 2008) and plant decay (Warneke et al.,
1999) also contribute but are considered minor. The emissions are dependent on leaf temperature and light, and are higher
in young and growing leaves than in mature and senescent leaves (Nemecek-Marshall et al., 1995). The estimated global
biogenic source of methanol, of the order of 100 Tgyr~* according to the Model of Emissions of Gases and Aerosols from
Nature version 2.1 (MEGANv2.1) (Guenther et al., 2012), agrees with top-down estimates constrained by in situ (primarily
airborne) measurements (Millet et al., 2008; Bates et al., 2021) or spaceborne retrievals of CH3OH columns from the Infrared
Atmospheric Sounding Interferometer (IASI, Razavi et al., 2011; Stavrakou et al., 2011). These results are also consistent
with the total terrestrial surface source of methanol (~120 Tgyr~') estimated based on column data from the Tropospheric
Emission Spectrometer (TES, Cady-Pereira et al., 2012; Wells et al., 2014). Nevertheless, the confrontation of models with
satellite data suggest substantial deviations from the MEGANV2.1 distributions, such as large underestimations over semi-arid
regions (shrubland and savannas), overestimations over rainforests over Central Africa and parts of Amazonia, and a shift of
the seasonal peak of biogenic emissions towards the spring at mid-latitudes (Stavrakou et al., 2011; Wells et al., 2012, 2014).

Top-down emission estimates based on satellite data bear uncertainties for several reasons. Firstly, although the IASI- and
TES-based inverse modelling of emissions improved model comparisons against independent data (Stavrakou et al., 2011;
Wells et al., 2014), significant underestimations persisted in comparisons with aircraft and ground-based measurements, sug-
gesting potential biases in the satellite data. Recent studies showed that satellite retrievals may present biases with respect to
independent datasets, e.g. for HCHO from UV-Visible sensors (e.g., Zhu et al., 2016; Vigouroux et al., 2020; De Smedt et al.,
2021; Miiller et al., 2024) and for several organic compounds from IR sensors including acetone and carboxylic acids from
IASI (Franco et al., 2019, 2020) and methanol and other species from the Cross-track Infrared Sounder (CrIS, Wells et al.,
2025). The characterisation of satellite data biases can be used to derive bias-corrected datasets for use in inverse modelling,
as has been done for HCHO and NO5 (Oomen et al., 2024; Miiller et al., 2024; Souri et al., 2025).
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Secondly, potential inconsistencies between the vertical concentration profile from the model and assumed in the satellite
retrieval might lead to biases in the comparison of total columns, due to vertical variations in the sensitivity of the chemical
compound. This issue can be addressed through the application of averaging kernels (Eskes and Boersma, 2003), which were
however not available in previous works based on methanol IASI retrievals.

Thirdly, the inverse modelling of terrestrial methanol emissions is sensitive to the representation of other key budget com-
ponents. Although very uncertain, marine emissions have little relevance due to their very small impact over land (Bates et al.,
2021). Of higher importance is the production due to the CH3O5 + OH reaction, which was ignored in the earlier studies,
including Stavrakou et al. (2011) and Wells et al. (2014). Most importantly, the parametrisation of methanol uptake on land
surfaces was based on only few dry deposition data, despite the well-established bidirectional nature of biosphere/atmosphere
exchange of methanol (Wohlfahrt et al., 2015). The adopted dry deposition velocities, typically below 0.6 cms~! (Jacob et al.,
2005; Millet et al., 2008; Stavrakou et al., 2011), are significantly lower than average values reported in many field campaigns
(Wohlfahrt et al., 2015). In some cases, the net methanol flux to the atmosphere is close to zero (Langford et al., 2010) or even
negative during a large part of the year (Laffineur et al., 2012).

The present study aims to address the above issues in several ways. We present a newly developed version of the IASI
CHj3OH retrieval, IASIv4, including several methodological advances, among which the provision of averaging kernels. Next,
we validate this product using aircraft measurements of methanol from several campaigns, and we use the results to propose
a correction formula. The bias-corrected IASI dataset is then used to optimise terrestrial emissions in the global chemistry-
transport model MAGRITTE (Miiller et al., 2019). This model incorporates methanol formation due to CH3O5 + OH, as well
as a detailed representation of methanol uptake. The deposition scheme over land is adjusted based on field campaign data.
Finally, the optimisations are evaluated against a broad range of independent observations, including surface and airborne in
situ data as well as Fourier-transform infrared (FTIR) column measurements.

The manuscript is structured as follows. Sections 2.1-2.4 describe the IASIv4 retrieval, the airborne and surface in situ con-
centration datasets and the network of FTIR data. Section 2.5 provides a brief description of the MAGRITTE model focusing
on the parametrisation of methanol sources and sinks; in particular, Sect. 2.5.5 and Appendix A describe the implementation of
methanol dry deposition, including an evaluation of this scheme against observation-based estimates. Sections 2.6-2.7 present
the methodology used for IASI validation and for emission optimisation based on either aircraft or satellite data. Section 3
presents the evaluation of IASI biases using aircraft data, and proposes a bias-correction formula for use in inverse modelling.
Section 4 presents an assessment of top-down terrestrial emissions based on IASI, while Section 5 provides an evaluation of

the optimised results against independent data; finally, Section 6 presents the conclusions of this study.

2 Data and methods
2.1 TASI methanol columns

In this study, we use CH3OH column measurements retrieved from infrared spectra recorded by IASI, which operates onboard

the polar-orbiting MetOp series of meteorological satellites: MetOp-A (operational from 2007 to late 2021), MetOp-B (since
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2013), and MetOp-C (since 2019). Each IASI sensor provides global coverage twice per day (~9:30 local solar time, morning
and evening overpasses) with a circular footprint of 12 km diameter at nadir. The dataset used here has been produced with
version 4 of the artificial neural network retrieval framework for IAST (ANNI). The IASIv4 CH30OH product builds upon the
previous ANNI-based CH3OH dataset (v3) described in Franco et al. (2018) and incorporates the methodological advances
introduced with the ANNI v4 retrieval framework (Clarisse et al., 2023). While these references provide a full description of
the retrieval approach and resulting product, we summarize below the key aspects relevant for the present study.

First, the ANNI retrieval framework calculates for each IASI observation a hyperspectral range index (HRI), a sensitive met-
ric quantifying the strength of the signature of the target species in the spectrum. In ANNI v4, a regularization procedure in the
HRI setup allows suppressing discrepancies that are due to changes in the instrument calibration and post-processing (Clarisse
et al., 2023). This ensures HRI consistency throughout the full IASI time series and between the different IASI sounders. In
a second step, for each IASI observation, the corresponding HRI is converted into a single-pixel gas total column (and uncer-
tainty) using an artificial feedforward neural network (NN) trained to emulate the non-linear relationships between the HRI,
atmospheric and surface conditions, and the gas vertical abundance. The meteorological variables used as NN inputs (e.g., tem-
perature profiles, water vapor content) are sourced from the hourly ERAS reanalysis of the European Center for Medium-Range
Weather Forecasts (ECMWF; Hersbach et al., 2020), co-located in space and time with the IASI measurements. Cloudy scenes
are excluded from the retrievals, and post-retrieval quality filters reject unphysical results due to poor observational conditions
in which IASI cannot reliably measure the target gas (Franco et al., 2018; Clarisse et al., 2023). The single-pixel cloud flag
used by the ANNI v4 framework is the NN-based cloud product developed specifically for IASI (Whitburn et al., 2022).

For its baseline retrieval, the ANNI framework assumes constant vertical profile shapes of the target gas, derived from model
simulations, with one representative profile over land and another over sea (Franco et al., 2018). For CH3OH, these profile
shapes have been updated in ANNI v4 to better match the average tropospheric CH3OH vertical distribution inferred from
the aircraft measurements described in Sect. 2.2. The updated ANNI v4 profile shapes are shown in Fig. 1 together with the
globally averaged CH3OH profiles from the MAGRITTE a priori simulation. Because these profile shapes can be a source of
retrieval errors, particularly when the assumed profile shape differs largely from the true gas vertical distribution, the ANNI v4
framework produces a total-column averaging kernel (AVK) for each retrieved gas column (Clarisse et al., 2023). These AVKs
are useful for harmonizing vertical-profile assumptions when comparing IASI retrievals with independent observations or
atmospheric model outputs. This can be achieved by applying the IASI AVKs to the external dataset to simulate what ANNIv4
would retrieve if it were to observe the modelled distributions. This is the approach adopted in this study. Another way to use
AVKs is by adjusting the IASI retrievals to match the vertical profile shape from the external dataset (see, e.g., Franco et al.,
2024; Zhai et al., 2024). In addition, the ANNI v4 framework provides random and systematic uncertainty estimates associated
with each retrieved column (Clarisse et al., 2023). It is worth noting that, as applying the AVKs removes the uncertainties
on the assumed vertical CH3OH distribution, the final product includes single-pixel uncertainty values both with and without
accounting for the vertical-profile uncertainty terms. In this study, only the daytime measurements of the IASIv4 CH30H

product are used, as these offer enhanced sensitivity to weak infrared absorbers such as CH3OH.
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Figure 1. Average profile shapes of the methanol volume mixing ratio (VMR) and IASI total column averaging kernel (AVK) (a) over land,
and (b) over sea. Red curves: CH3z OH mixing ratio profile shape used in the IASI retrieval. Black solid lines: globally-averaged profiles from

the MAGRITTE model, for year 2008 (a priori simulation, see Sect. 2.5). Dotted line: globally-averaged IASI averaging kernel.

2.2 Aircraft concentration data

Table 1 lists the aircraft data used in this study. Three datasets from campaigns conducted over the United States in 2012—-2013
are used to evaluate the IASI CH3OH columns, as described in Sect. 2.6. Additional campaign datasets spanning 2008-2018
are used to evaluate the global inverse modelling results constrained by IASI. The campaigns are detailed below.

The DC3 (Deep Convective Clouds and Chemistry) mission took place over the Central U.S. in May-June 2012 (Barth
et al., 2015). Methanol was measured from two aircraft, the NASA DC8 and the NSF/NCAR Gulfstream V (GV). Proton
Transfer Reaction - Quadrupole Mass Spectrosopy (PTR-Q-MS) was employed on the DCS8, whereas the Trace Organic Gas
Analyzer (TOGA) from NCAR was used on the GV. SEAC*RS (Studies of Emissions, Atmospheric Composition, Clouds and
Climate Coupling by Regional Surveys) was conducted over the southeastern U.S. in August-September 2013 on board the
NASA DCR8 aircraft (Toon et al., 2016). SENEX (Southeast Nexus) (Warneke et al., 2016) used the NOAA WP-3D aircraft to
sample the lower troposphere (below ca. 6 km altitude) over the southeast USA in June 2013. ARCTAS (Arctic Research of the
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Table 1. Aircraft campaign datasets in this work. The first three datasets are used to determine the CH3z OH biases through aircraft-based
inversion (Sect. 2.6). All datasets are used to evaluate the emission inversions constrained by IASI. PTR-Q-MS: Proton Transfer Reaction

- Quadrupole Mass Spectrosopy; PTR-ToF-MS: Proton Transfer Reaction - Time-of-Flight Mass Spectrosopy; TOGA: Trace Organic Gas

Analyzer.

Aircraft dataset

Period

Measurement technique

Reference

SEAC*RS Aug-Sep 2013 PTR-Q-MS Wisthaler et al. (2002)
SENEX Jun-Jul 2013 PTR-Q-MS de Gouw and Warneke (2007)
DC3 (DC8) May-Jun 2012 PTR-Q-MS Wisthaler et al. (2002)

DC3 (GV) May-Jun 2012 TOGA Apel et al. (2003, 2010, 2015)
ARCTAS Jun-Jul 2008 PTR-Q-MS de Gouw and Warneke (2007)
ARCTAS Jun-Jul 2008 TOGA Apel et al. (2003, 2010, 2015)
GoAmazon IOP1  Feb-Mar 2014 PTR-Q-MS Lindinger et al. (1998)
KORUS-AQ May-Jun 2016 PTR-ToF-MS Miiller et al. (2014)

ATom 1-4 Jul-Aug 2016 TOGA Apel et al. (2003, 2010, 2015)

Jan-Feb 2017
Sep-Oct 2017
Apr-May 2018

Composition of the Troposphere from Aircraft and Satellites) took place in 2008 (Jacob et al., 2010). Two instruments, PTR-
Q-MS and TOGA, were used to measure CH3OH on the same platform. We used the June 2008 campaign, which mostly took
place over California and surrounding oceanic regions, and the July 2008 campaign which mainly took place above Canada
(Fig. 2). GoAmazon (Observations and Modeling of the Green Ocean Amazon) was conducted around Manaus, Brazil, in the
central Amazon basin in 2014-2015. It included ground measurements at several sites as well as aircraft observations from
a G-159 Gulfstream I (G-1) mostly operated in the boundary layer and a Gulfstream G550 in the free troposphere. CH;OH
was measured on board the G-1 during the first Intensive Operating Period (IOP1) between 22 February and 23 March 2014.
KORUS-AQ (Korea-United States Air quality) investigated air composition with the NASA DCS8 aircraft over Korea and
surrounding areas in May—June 2016 (Crawford et al., 2021). The ATom (Atmospheric Tomography) mission (Brune et al.,
2019; Wofsy et al., 2018) consisted of four separate campaigns, in July—August 2016, January—February 2017, September—
October 2017, and April-May 2018. In each deployment, the NASA DCS aircraft flew through the full lengths of the Pacific
and Atlantic Oceans, between ca. 200 m and ~11 km altitude. TOGA was used to measure CH3OH during these flights.
More details on the instrumental techniques are found in the references listed in Table 1. In all campaigns, we exclude data
from urban plumes (identified as [NOs]> 4 ppbv or [NO]> 0.5 ppbv) and biomass burning plumes ([CH3CN]> 225 pptv).
These filters remove only few data for most campaigns, e.g. 2%, 1% and 6% of measurements from SEAC“RS, SENEX and
DC3, respectively, whereas a larger proportion of measurements (26%) was excluded due to fires from the ARCTAS-July

campaign over Canada. The rationale for this filtering is that the missions often deliberately target urban or fire plumes (e.g.,
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Figure 2. (Left) Flight tracks of the SENEX, DC3 (DCS8), and SEAC*RS aircraft missions, used as constraints in the aircraft-based inversion
over the U.S. (Right) Flight tracks of the additional aircraft campaigns used for model evaluation: DC3 (GV), GoAmazon, KORUS-AQ,
ARCTAS, and ATom, cf. Table 1.

Jacob et al., 2010), leading to potential biases in comparisons with low-resolution model results. Measurements over ocean are
also excluded, except for the ATom mission. The reported accuracy of CH3OH measurements is ~20-25% for PTR-Q-MS (de
Gouw and Warneke, 2007; Wisthaler et al., 2002), ~20% for TOGA (Apel et al., 2003), and ~5% for PTR-ToF-MS (Miiller
et al., 2014; Beaudry et al., 2025). The measurements are publicly available via data archive centers (see “Data availability"

section). The flight tracks are shown in Fig. 2.
2.3 Other in situ methanol data

The averaged in situ methanol mixing ratios from measurement campaigns reported in 41 literature studies are listed in Ta-
ble S1. The locations of the observations are provided in the Table and displayed on Fig. S1. Measurements conducted after
2019 or before 2008 are compared to climatological monthly values based on 2008-2019 optimisation results, whereas mea-
surements performed within the study period (2008— 2019) are used for evaluation of IASI-based optimisation for the same
year. Various instrumental techniques were used to measure CH3OH mixing ratios, among which PTR-Q-MS is the most
common.

In addition to the sites of Table S1, we also use monthly CH3OH concentrations measured by PTR-Q-MS at two sites in
Belgium: the forested site of Vielsalm (50.305° N, 5.998° E) (Laffineur et al., 2012) and the cropland site of Lonzée (50.552°
N, 4.746° E) (Bachy et al., 2018). The datasets of half-hourly mixing ratios and error estimates are publicly available (see “Data

availability" section). The 2-¢ uncertainties (including statistical and systematic errors) are typically of the order of ~7%.
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2.4 FTIR column data

The Network for the Detection of Atmospheric Composition Change (NDACC) Infrared Working Group (IRWG) operates
a distributed set of more than twenty high-resolution FTIR spectrometers that record mid-infrared solar absorption spectra
at high spectral resolution (De Maziere et al., 2018). Total columns and low-vertical-resolution profiles of many gases are
extracted from each spectrum by fitting modelled absorption to observed features using a radiative transfer forward model and
an inversion (optimal estimation) retrieval.

Since methanol is not a mandatory NDACC target species, it is currently retrieved at only eight sites, listed in Table S2.
This work uses data from all sites, namely Eureka, Canada, between 2008 and 2019; St Petersburg, Russia (2009-2019);
Toronto, Canada (2008-2019); Jungfraujoch (2008-2019); St Denis, Reunion Island (2009-2011); Maido, Reunion Island
(2013-2019); Porto Velho, Brazil (2019); and Kitt Peak Observatory where methanol columns were measured between 1985
and 2003 (Rinsland et al., 2009). Unlike the official NDACC gases for which harmonized retrieval parameters are used within
the network, individual sites have their own settings for methanol. Details on the retrieval methodology for each station can
be found in Rinsland et al. (2009) for Kitt Peak, Vigouroux et al. (2012) for St Denis (same settings used at Maido and Porto
Velho), Viatte et al. (2014) and Wizenberg et al. (2024) for Eureka (same settings used at St Petersburg), Yamanouchi et al.
(2023) for Toronto, and Bader et al. (2014) for Jungfraujoch. In addition to total columns, the FTIR retrievals provide vertical
profiles. For methanol, the degrees of freedom for signal ranges between 1.0 and 1.8, with a good sensitivity from the ground
up to 15 to 20 km depending on the site (see above references). The estimated random and systematic uncertainties for an

individual methanol retrieval amount to 4—10% and 7-15%, respectively, also depending on the site.
2.5 Chemistry-transport model
2.5.1 General model description

We use the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emis-
sions (MAGRITTE vl1.1), which calculates the distribution of 182 chemical species (Miiller et al., 2019). The model is run
globally at 2°x2.5° resolution, with 40 vertical (o-pressure) levels distributed between the surface and the lower stratosphere.
The model incorporates a detailed description of the oxidation mechanism of biogenic volatile organic compounds (Miiller
et al., 2019). The chemical mechanism of anthropogenic and pyrogenic compounds is obtained from the IMAGES model
(Stavrakou et al., 2009a; Bauwens et al., 2016). The photolysis rates are interpolated from tabulated values calculated using
the TUV photolysis estimation package (Madronich and Flocke, 1998). Meteorological fields are obtained from the ERAS
ECMWEF reanalysis (Hersbach et al., 2020). The effect of diurnal variation on the photolysis rates and kinetic rate constants
are considered through correction factors calculated from model simulations with a 20-min time step. These correction factors
are used to calculate the diurnal cycle of CH3OH concentrations required for comparisons with atmospheric measurements.
Anthropogenic emissions of CO, NOx, SO, organic carbon and black carbon aerosols are taken from the HTAPv2 (Hemi-
spheric Transport of Air Pollution version 2) inventory (Janssens-Maenhout et al., 2015). The speciated emissions of volatile

organic compounds (VOCs) are obtained from the EDGARv4.3.2 inventory (Huang et al., 2017) between 2005 and 2012, and
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are taken equal to their 2012 values afterwards. The anthropogenic methanol emission is taken equal to 67% of the HTAPv2
total emission of alcohols. The resulting global flux is 10.5 Tg year—!. Vegetation fire emissions are provided from the GFED4s
database (van der Werf et al., 2017), with vertical injection profiles from Sofiev et al. (2013) and emission factors from Andreae
and Merlet (2001). Biogenic VOC emissions of isoprene, monoterpenes and methanol are calculated using the MEGAN model
(Guenther et al., 2012; Stavrakou et al., 2011) embedded in the MOHY CAN canopy environment model (Miiller et al., 2008)
driven by ERAS meteorological fields and Leaf Area Index (LAI) data from MODIS Collection 6 reprocessed as described in
Yuan et al. (2011).

Figure 3 displays the distribution of the major sources and sinks of methanol. Their estimation and implementation in
MAGRITTE are described in the following subsections. Wet deposition, a minor methanol sink, is parametrised based on the
cloud and precipitation ERAS fields (Stavrakou et al., 2009¢). This scheme distinguishes washout by convective precipitation,
included in the convective transport scheme, from scavenging in and below large-scale stratiform clouds, which is represented
as a first-order process. As in previous modelling studies, in-cloud oxidation of methanol is ignored, as it is considered very

small (Jacob et al., 2005).
2.5.2 Photochemical production and sink

Methanol photochemical production proceeds primarily through the reactions of the methylperoxy radical with itself (CH3053),
with other (primary or secondary) organic peroxy radicals (RO3) or with the hydroxyl radical (OH):

CH305 + CH305 — 2CH30 + O R1)
— CH3;0 + CH30H + O, (R2)

CH3052 + ROy — ROH+ CH50 + Oy (R3)
—R_gO+ CH3;0H (R4)

CH30,+0OH — CH30+HO, (RS)
— CH3000H R7)

The rate and branching ratios of the self-reaction (R1-R2) are temperature-dependent (Burkholder et al., 2020). For the re-
actions with other peroxy radicals (R3-R4), we follow Miiller et al. (2019), the cross reaction rates being taken as twice
the geometric mean of the self-reaction rates. The methanol-forming branching ratio usually ranges between 0.2 and 0.5 for
primary and secondary peroxy radicals, and is equal to zero for tertiary and acyl peroxy radicals.

The reaction of CH3O5 with OH (R5-R7) is very fast (total rate of 1.6-:107 1% cm®molec.~'s™!, Assaf et al., 2016). It
generates an activated trioxide that, for the most part, promptly decomposes into either methoxy and hydroperoxy radicals
(R5) or methanol and O5 (R6). A small fraction of the trioxide is stabilised (R7). The stabilised trioxide (denoted CH3OOOH)

undergoes atmospheric transport and further reactions, which might partly lead to secondary methanol formation (Miiller et al.,
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Figure 3. CH3OH sources and sinks (a priori simulation, 2008-2019 average), in 10'° molec.cm™2s™*. (a) Biomass burning, (b) biogenic

source, (c) anthropogenic source, (d) marine source (gross flux), (e) photochemical production, (f) photochemical loss, and (g) dry deposition

flux. The global emission or sink is given inset in each panel.

2016, 2019), although its fate is very uncertain. The stabilised fraction (R7) is ~0.1 near the Earth’s surface, and decreases

rapidly with altitude, due to an expected quadratic dependence on atmospheric pressure (Miiller et al., 2016). The experimental
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determinations of the RS yield (0.9) at low pressure (Assaf et al., 2018) and of the methanol yield (0.06) at near-atmospheric
pressure (Caravan et al., 2018) are consistent with the best theoretical estimate of the yields determined in Miiller et al. (2016).
For further details on the yields and chemical mechanism, we refer to Miiller et al. (2019). At global scale, the MAGRITTE-
calculated direct and indirect methanol yields from CH3042 + OH are 7.5% and 3.9%, respectively. The total average yield,
11.4%, is only slightly lower than the optimal value of 13% determined by Bates et al. (2021) using a global model and airborne
methanol measurements from the ATom campaign. This discrepancy is very small in view of the large uncertainties, notably
the possible role of water complexation on the reactions of CH3O5 radicals (Khan et al., 2015) and the fate of the stabilised
trioxide (Caravan et al., 2018).

Reaction with OH is by far the main chemical sink of methanol in the atmosphere, proceeding at a rate (k=2.9-10~'2 exp(—
345/T) cm®molec.~'s~!, Burkholder et al., 2020) resulting in a global lifetime against this process of about 10 days. Reaction
of methanol with chlorine atoms is also considered (k=5.5-10"!! cm3molec.1s~!, Burkholder et al., 2020) but is only a very

minor sink globally (Miiller et al., 2016; Bates et al., 2021).
2.5.3 Biogenic emission

The exchange of methanol between the terrestrial biosphere and the atmosphere is bidirectional. The biosphere is generally a
net source under warm and sunny conditions, especially during springtime, while it is often a net sink under cold and humid
conditions, e.g. during nighttime (e.g., Wohlfahrt et al., 2015). The net flux F' (ugm~2h~") into the atmosphere above the

canopy is expressed as
F=E—-1L, (1)

where F the is emission rate, estimated using the MEGANV2.1 algorithm (Guenther et al., 2006; Stavrakou et al., 2011), and
L is the uptake of methanol by vegetation. The uptake is calculated from the MAGRITTE-calculated above-canopy methanol
concentration and a parametrisation of the dry deposition velocity (Sect. 2.5.5).

The emission rate is calculated in MEGANV2.1 as
E = CCE * Yage - vp7 - LAl - ¢, (2

where Ccg is a normalization factor (=0.58), Y,ec, Ysm and 7pr are dimensionless activity factors accounting for the emission
dependence on respectively leaf age and environmental conditions, LAI is the leaf area index (m?m™2), and € is the emission
factor at standard conditions as defined in Guenther et al. (2006). On the basis of whole ecosystem flux measurements, € has
been set to 800 pygm~2h~! for northern temperate and boreal broadleaf trees, needleleaf trees, shrubs and crops, and 400
pugm~2h~! for grasses and other broadleaf trees. The distribution of Plant Functional Types (PFTs) is obtained from Guenther
et al. (2006). vaee is highest for young leaves, by a factor 3-3.5 relative to mature leaves (Stavrakou et al., 2011), and is
parametrised as function of LAI temporal variations (Guenther et al., 2006). The temperature and light response function ~pr

includes the dependence of the emissions on leaf level temperature and visible radiation fluxes. It is expressed as

e = (1 — LDF) - v + LDF - 9p - y114, 3)
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where the LDF is the light-dependent fraction of the emissions at standard conditions, taken equal to 0.8 for methanol, yr.;; and
714 are the temperature responses for respectively the light-independent and light-dependent fractions of the flux, and ~p is
the dependence on visible radiation of the light-dependent part. The activity factors for the light-dependent part are calculated
using the isoprene algorithm of the MEGANV2.1 model, except that they do not incorporate a dependence on past temperatures.
Since leaf temperature and radiation fluxes are variable within the canopy, pr is a weighted average of the expression given in
Eq. 3, for all leaves. Leaf temperature and radiative fluxes are calculated separately for sunlit and shaded leaves at each of the 8
layers of the multi-layer canopy environmental model (Miiller et al., 2008). For further details on biogenic methanol emission
estimation, we refer to Miiller et al. (2008) and Stavrakou et al. (2011).

The global biogenic methanol emission flux is here estimated at 130 Tgyr~', on average between 2008 and 2019. This
agrees well with the MEGAN-MACC estimation (Sindelarova et al., 2014), but is significantly higher than other MEGAN-
based estimations including Stavrakou et al. (2011) (105 Tgyr™* for the year 2009) and the CAMS-GLOB-BIOv3.1 dataset
(103 Tg yf1 for 2000-2019, Sindelarova et al., 2022). Possible reasons include the higher LAI values of the reprocessed
MODIS dataset (Yuan et al., 2011) (also adopted in CAMS-GLOB-BIO) compared to the dataset used by Stavrakou et al.
(2011) and the higher surface areas of low-emitting PFTs (grassland and tropical broadleaf forests) in CAMS-GLOB-BIOv3.1,
compared to the MEGANV2.1 dataset (Guenther et al., 2006) used here.

2.5.4 Oceanic emission and oceanic uptake

As for the biosphere, the ocean-atmosphere exchange of methanol is bidirectional. The net flux (molec. cm 2 s™1) is written

as a difference between a (gross) emission (£) and an uptake (U):

F=E-U=K,(C,—Cy-H"), 4
where C, and Cy (molec. cm73) are the methanol concentrations in water and in air, respectively,

H '=KyRT )

with K g (M atmfl) the Henry’s law constant for methanol (Sander, 2015),

1

- @))v (6)

1
Ky =200 -exp(5600 (f

R the ideal gas constant (=0.08205 L atm mol ' K1), and T the water temperature (in K). The conductance K, is calculated
by

Ky ' =k + (kgH) (7)

where k,, and &, are the liquid phase and gas phase transfer velocity, respectively. As in Stavrakou et al. (2011), k,, is calculated

as function of wind speed following Nightingale et al. (2000). The gas-phase transfer velocity is calculated using
kg:(Ra+Rb)_17 (8)

12
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where R, and Ry, are the aerodynamic and quasi-laminar layer resistances (s cm 1), parametrised as discussed in Sect. 2.5.5.
Note that the choice of Eq. 8 in place of the parametrisation of Johnson (2010) that was used in several previous global
model studies (Millet et al., 2008; Stavrakou et al., 2011; Bates et al., 2021) has little impact on the calculated fluxes, as the
globally-averaged k, calculated using Eq. 8 is only about 3% lower than the corresponding value based on Johnson (2010).
The gross oceanic emission is proportional to the assumed oceanic subsurface concentration of methanol (C,), for which
we adopt the same value (118 nmol 171) as in several previous model studies (Millet et al., 2008; Stavrakou et al., 2011; Wells
et al., 2014). This value was based on a single field study over the tropical Atlantic (Williams et al., 2004). As discussed by
Bates et al. (2021), however, several recent field studies suggest significantly lower values. Furthermore, an average oceanic
concentration of 61 nmol1~" was inferred from an analysis of airborne CHs OH measurements from the ATom campaign using
the GEOS-Chem model (Bates et al., 2021), supporting the view that the concentration reported by Williams et al. (2004) was
likely not the most representative. This will have to be kept in mind when analyzing the methanol budget based on MAGRITTE.
As for biosphere-atmosphere exchanges, the oceanic uptake term (U) is calculated from the modelled near-surface CH3OH

concentration and a deposition velocity (cm s~!) calculated (see Eq. 4) using
vg =K, -H ' )
2.5.5 Dry deposition

The dry deposition velocity is expressed (Wesely, 1989) as

1

Vim——
4 Ra+ Ry +R.

(10)

with R, the aerodynamic resistance between the surface and the first model level, R}, the quasi-laminar sublayer resistance, and
R, the bulk surface resistance. The parametrisations of the resistances R, and Ry, are obtained from the ECMWEF Integrated
Forecasting System (IFS) (ECMWEF, 2021), as detailed in Appendix A. The surface resistance (sm™') is expressed (Zhang
et al., 2003) using

1 1 1

R, —
(i T Rt By T Bom

) (11)

where R, is the stomatal resistance, R, the mesophyll resistance, I, the resistance to transfer in the canopy, and R, is the
resistance to soil uptake. Stomatal resistance being strongly radiation-dependent (Gao and Wesely, 1995), the conductance
m is calculated as a sum of contributions from each of the 8 layers of the canopy environmental model (Miiller et al.,
2008). The parametrisation of stomatal resistance is detailed in Appendix A. The parametrisation of the resistance R,. depends
on friction velocity, LAI and the plant functional type (Zhang et al., 2003).

The parametrisation of the other resistances of Eq. 11 is adapted from Wesely (1989) and Zhang et al. (2002). The conduc-

tances are expressed as linear combinations of the conductances for SO4 (template for water-soluble species) and O3 (for very
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reactive species):

1 Kg-fi
= 100 - 12
R 3000 100+ fo (12)
1 Kg-fi fo
= 13
R, 105 - RSOz +R§)3 )
1 Kg-fi fo
- 14
Rcut 105~RSOZ +ROS ( )

cut cut

where fo and f; are species-dependent parameters, while R502, RO2, RS0 and R

ot o are soil uptake and cuticular resistances

for SOz and O3 (see Appendix A). fy is equal to 1 for very reactive species (e.g. ozone), and takes low values for weakly
reactive compounds. In the original formulation of Wesely (1989), the f; factor was absent, i.e. their f; = 1. The formulation
of Zhang et al. (2002) implies a value of f; ~ 300 for methanol at 298 K, whereas their fy = 0.1. Note that the precise values
of fp and f; are unimportant for the mesophyll resistance, as long as f; is not much lower than 1.

Field measurements of methanol fluxes over vegetated areas generally indicate strong deposition in humid conditions, in-
dicating that methanol is consumed in water films present in the soil and/or on leaves, even though the precise mechanisms
responsible for methanol degradation in water are not fully elucidated (Laffineur et al., 2012; Wohlfahrt et al., 2015). This
suggests that the high water-solubility of methanol plays a key role in determining its deposition, i.e. that the Ky term is
dominant in the resistance expressions of Eqs. 12-14. Here, we adopt a high value of f; (=600) based on an evaluation of the
dry deposition scheme against deposition velocities estimated from flux measurement campaigns at 13 sites, among which 8
temperate or boreal forest sites, 2 tropical forest sites, and 3 sites at other temperate ecosystems (Table S3). We adopt f, =1,
but as expected, this parameter has only a very minor impact within its expected range (0-1).

At 9 out of the 13 studies, night-time deposition velocities are reported, while 24-hour averages are estimated at the other
sites. The meteorological fields used in the deposition scheme are obtained from hourly ERAS fields for the months and years
of the campaign measurements, except at one site (Blodgett in 1999) for which 2003-2013 averages are used. We use the
LATI values reported for each site, when available, or from the MODIS Collection 6 dataset (at 0.5° spatial resolution) used in
MAGRITTE. Table S3 and Fig. 4 summarize the model evaluation. On average, the model performs very well, with a negative
bias of only 7% against the average observed v, for all sites (0.82 cms™!). The model correlates well with the observations
(Pearson’s coefficient of 0.72) and most model predictions fall within 40% of the measurements. One notable exception is a
coniferous forest site in Finland, where the model value (1.34 cm s—!) overestimates the measurement-based v4 (0.3 cms™1)
(Rantala et al., 2015) by a large factor, for reasons unclear. Part of the discrepancy might be due to the model calculating v, at
the first model layer (~ 10m above the surface), i.e. well below the highest measurement altitude (67 m). More work would be
needed to investigate the reasons for this difference. At the other sites, part of the variability between the sites appears related to
the role of humidity: the highest vg (~ 1.5cms™!) are observed (and modelled) at very humid forest sites (Vielsalm, Blodgett
and Duke forest), whereas very low v, values (~ 0.3cms ™) are found at drier locations (Bosco Fontana, Italy and Ozarks,

Missouri). The distribution and seasonal variation of the calculated deposition velocities for 2013 are displayed on Fig. S2.
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Figure 4. Scatter plot of observed and modelled CH3 OH dry deposition velocity in cm s 1. The locations of the dry deposition measurement
campaigns, dominant plant functional types, site coordinates, leaf area index, observed and simulated dry deposition velocities, and the
corresponding references are summarised in Table S3. The symbols refer to the type of biome, coniferous (red circles), broadleaf deciduous

(brown triangles), tropical forests (green triangles) and grasslands and wetlands (blue diamonds).

2.6 Inversion based on aircraft data

Similar to our previous work aimed at validating spaceborne HCHO columns using aircraft in situ data, the MAGRITTE
model and its inverse modelling capability are used to generate CH3OH model distribution closely approximating aircraft
observations from three campaign datasets over the U.S. (Table 1). The methanol emissions used in the model are adjusted in

order to minimise a cost function (J) quantifying the discrepancy between model and data,

J(E) = [(H(f)—y)"E~'(H(f) —y)+f"B~'f], (15)

NN

where f is the vector of emission parameters, H (f) is the model operator acting on f, y is the observation vector, and E and
B are the covariance matrices of the errors on the observations and the emission parameters, respectively. y and H (f) are
campaign-averaged mixing ratios at each model pixel (2°x2.5°) for which observations are available. The model averages are
based on model values at the same times and locations as the measurements.

The monthly averaged emission from either anthropogenic, pyrogenic or biogenic category is expressed as

G(x,t,£) = exp(f;);(x,1) (16)

j=1
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where ¢; denotes the a priori emission at a single pixel and month. The emission at a given pixel is not optimised when its

25=1, which is sufficiently low that the

maximum value over the course of the year is lower than a threshold of 10° molec. cm™
emission of most pixels are optimised over the contiguous U.S.

The matrix E is assumed diagonal. The total uncertainty is obtained by quadratically adding a 20% relative uncertainty
corresponding to the instrumental uncertainty (see Sect. 2.2) and a 200 pptv absolute error. The latter is higher than the limit
of detection (100 pptv, Wisthaler et al., 2002) but gives more weight to higher CH3 OH abundances in the cost function.

The errors on all emission parameters are assumed to be a factor of 3. Anthropogenic emission parameters from pixels in
the same country are weakly correlated (coefficient of 0.1), whereas parameters for different countries are not correlated. For
biogenic and pyrogenic emissions, a decorrelation length of 500 km is used. The cost function is minimised using an quasi-
Newton optimisation algorithm involving the calculation of the gradient of the cost function by the adjoint of the model. The
iterative search for the minimum is stopped when the norm of the gradient of the cost J is decreased by a factor of 30. This
criterion is generally reached after 20 iterations.

Simulations start on July 15¢ 2011 and last 2.5 years. The optimised CH3 OH distributions are used to calculate, for each cam-
paign, a campaign-average gridded column distribution accounting for the sampling times and averaging kernels of the TASI
retrievals. Those columns are evaluated against the corresponding IASI columns at the locations of the aircraft measurements
aggregated onto the model grid. Model pixels with less than 30 IASI measurements, or less than 10 aircraft measurements are

excluded from analysis.
2.7 Inversion based on satellite data

The methodology presented in the previous section is used to optimise terrestrial methanol emissions at the global scale, based
on monthly-average bias-corrected CH3OH columns gridded at the model resolution (2° x2.5°). Since our focus is on terres-
trial emissions, we exclude IASI data over oceans. In addition, we filter out very uncertain data (relative retrieval error larger
than 100%) as well as low CH3; OH monthly columns (< 10'6 molec. cm 2 after bias correction) for which the IASI bias is not
well characterised (see Sect. 3). Although the fluxes from three emission categories are inferred simultaneously, their distinc-
tion is uncertain. The biogenic flux being strongly dominant, the optimisation is not expected to provide much constraint on the
other categories (anthropogenic and pyrogenic), except at few locations/times such as large fire events. Another limitation of
the framework stems from uncertainties in methanol losses, in particular the dry deposition sink of which the spatial distribu-
tion over land resembles that of the biogenic emission (Fig. 3). Marine methanol exchanges and the photochemical production
have also their uncertainties, but their impact on top-down terrestrial emissions should be limited due to their minor relevance
for methanol columns over source regions (Bates et al., 2021).

Separate inversions are performed for each year between 2008 and 2019, and each simulation starts on July 1%¢ of the year
preceding the target year. For consistency between the different years and with the validation exercise, we use only TASI
data from MetOp-A. The IASI column uncertainty is obtained by quadrature addition of the IASI retrieval uncertainty and an
absolute error taken to be 15-10'® molec. cm ™ 2. The retrieval error (for monthly averaged columns at the model resolution) falls

typically within the 5-15% range in tropical regions and in summer at mid-latitudes, but reaches ~ 20% at mid-latitudes during
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Figure 5. Ratio of the seasonally-averaged methanol columns from the prior simulation (2008-2019 average), calculated with averaging

kernels, by the values calculated without averaging kernels. (a) December-January-February, (b) June-July-August.

winter and even higher values over snow-covered areas. The MAGRITTE monthly-averaged columns are calculated from daily
values accounting for the number of measurements and averaging kernels for each day and for the sampling time (~9:30 LT)
of observations. Figure 5 illustrates the impact of averaging kernels on the modelled columns. Over tropical regions, the
application of averaging kernels increases the columns, by up to 70%, likely due to the mixing of lower tropospheric methanol
to higher altitudes promoted by deep convection. The opposite effect is evident at mid-latitudes during boreal winter, where

decreases reaching a factor of 2 are found in remote continental areas.

3 IASIv4 CH3OH evaluation against aircraft-constrained model columns

Here we evaluate TASI against aircraft data, using MAGRITTE as transfer standard. Figure 6 illustrates the geographical
distribution of vertically-averaged CH3 OH mixing ratios from the three campaigns. By far the highest values were observed
during SENEX, largely because of the higher proportion of low-altitude measurements in this campaign (72% below 1.5 km)
compared to DC3 (15%) and SEAC*RS (35%). The vertical distribution of methanol (Fig. 7) shows indeed a maximum (ca.
4-7 ppbv) in the boundary layer, and a substantial decline in the free troposphere, down to 1-2 ppbv above 6 km, a feature
well reproduced by the model. However, the simulation using a priori emissions underestimates the observations by ~20—
50% during SENEX and DC3. During SEAC*RS, model overestimations are seen over the southeast, and underestimations
elsewhere. The largest underestimations are found over the U.S. midwest, reaching a factor of ~3 during DC3 and SEAC*RS
(Fig. 6). Similar, or even larger underestimations were obtained in previous model evaluations against aircraft campaigns over
western U.S. (Stavrakou et al., 2011; Wells et al., 2014; Chen et al., 2019).

The optimised model using adjusted CH3OH emissions reproduces very well the observations (Fig. 6-7), with spatial cor-
relation coefficients of 0.97-0.98 for all campaigns, and negative biases of 1-3% for SENEX and SEAC*RS, and 7.5% for

DC3. This agreement is achieved through a substantial increase of summertime methanol emissions over the western U.S.,
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Figure 6. Campaign-averaged distributions of observed CH3OH concentrations (average below 9 km altitude) from the aircraft campaigns
(a) DC3 (DC8), (b) SENEX, and (c) SEAC*RS, and corresponding model distributions (d-f) from the a priori model simulation and (g-i)
from the aircraft-constrained inversion. Pearson’s coefficients of correlation () of the modelled with the observed mixing ratios are also

given.

420 reaching factors of 2—-3 between western Texas and Wyoming (Fig. S3). Small decreases are inferred over large parts of east-
ern U.S. Since the emission parameters are under-constrained by the inversion due to the poor coverage of the observations,
the optimised emissions have limited reliability and are strongly dependent on the a priori inventories and inversion setup.
Nevertheless, the excellent agreement of the optimised model with not only the observational datasets used as constraint in
the inversion (panels a,c and d in Fig. 7), but also with the TOGA CH3OH measurements on board the GV aircraft during

425 the DC3 campaign (panel b in Fig. 7) demonstrates that the optimisation successfully derived a methanol distribution closely

reproducing the airborne observations.
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Figure 7. Campaign-averaged vertical profiles of observed CH3OH concentrations (symbols) from 4 airborne measurement datasets over the
U.S.: (a) DC3 (DC8), (b) DC3 (GV), (c) SENEX, and (d) SEAC*RS. Dotted lines: corresponding profiles from the a priori model simulation;
red lines: aircraft-constrained inversion. The error bars denote the standard deviation of the observations. The number of data per altitude bin
is shown on the right of each plot. The average observed and modelled mixing ratios below 8 km altitude are given for each campaign. Data

from panel b (DC3 GV) were not used as constraint in the emission optimisation.

The linear regression of the observed and simulated concentrations yields a slope of almost 1 (0.98) and a correlation coef-
ficient of 0.98. However, the comparison of IASTI and co-located aircraft-constrained model columns (Fig. 8) shows significant
biases. High IASI columns (>~ 25 - 10'® molec. cm™?) are underestimated by up to a factor of ~1.4. This underestimation
of high columns is consistent across the three campaigns. The statistics of the comparison are improved when the averaging
kernels are applied to the model profiles: in particular, the correlation coefficient increases from ~0.81 to ~0.85.

An ordinary linear regression of IASI and aircraft-constrained model columns yields

Quast = 0.46 Quire +10.6 - 1015, (17)
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Figure 8. Scatter plots of modelled and observed CH3OH columns from three aircraft campaigns (SENEX, SEAC*RS and DC3 (DCS8)).
The modelled values are constrained by the aircraft measurements through an emission optimisation as described in the main text. In panel
(a), the model columns are calculated without applying the averaging kernels (AKs), whereas in (b), the AKs are applied to the model vertical
profiles to compute the columns. Each symbol represents campaign-averaged methanol columns at a model pixel. The correlation coefficients
and regression parameters using the Theil-Sen estimator are given in each panel, as well as the median normalized bias (MNB), defined as

the median of (Qias1/moder — 1) x 100.

where Qqasr and Qi are the CH3;OH columns (molec. cm~2) from IASI and from the aircraft-constrained model simulation,
respectively. The 1-¢ uncertainty is 0.03 for the slope and 1.1 - 10'® molec. cm~2 for the intercept. The regression suggests a
moderate overestimation of IASI columns in the range (15 — 20) - 10'° molec. cm ™2, although the data is too limited to draw
firm conclusions. Below that range, the bias remains uncharacterised by the aircraft data used in this study.

The reasons for the IASI biases with respect to aircraft in situ data and for their dependence on the magnitude of the columns
are yet unclear. Qualitatively similar biases were derived from the evaluation of OMI and TROPOMI CH5O columns against
aircraft and FTIR data (Vigouroux et al., 2020; Miiller et al., 2024). The estimated in situ measurement uncertainties are clearly
too low (~ 20%, see Sect. 2.2) to fully account for the biases derived above, although they could contribute; furthermore, the
model biases against the PTR-Q-MS data of the DC3 campaign are validated by the good consistency between the model
evaluation against PTR-Q-MS (DC8) and TOGA (GV) measurements from this campaign (Fig. 7a-b). Evaluation against
measurements in other regions and using other techniques would be needed to confirm and refine the biases derived in this

work.
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4 The methanol budget and distribution based on bias-corrected IASI data

Here, we derive top-down methanol emissions based on bias-corrected IASI columns (as15c) calculated (see Eq. 17) with
Qastac = (Quast — 10.6 - 10'°) /0.46. (18)

Figure 9 displays the seasonally averaged CH3OH columns from IASI (bias-corrected), the a priori model simulation and
the IASI-based emission optimisation. The seasonal cycle of the columns over large regions is shown on Fig. S4. The a
priori model succeeds in reproducing the general features of the satellite observations, such as high columns (~ 40 —90 -
10' molec.cm ™ ?s~1) throughout the year over tropical continents, and a pronounced summertime peak at extratropical lat-
itudes, consistent with previous spaceborne methanol distributions (Stavrakou et al., 2011; Cady-Pereira et al., 2012; Wells
et al., 2025). Both the a priori model and the TASI data display a substantial longitudinal gradient of methanol columns over
northern Eurasia during summer, with low values over western Europe and a broad maximum over eastern Siberia. There are
also important differences between IASI and the a priori model, most notably a large model underestimation at extratropical
northern latitudes during all seasons, reaching a factor of about 2 over Central Asia, Siberia and Canada during summer, and an
overestimation of the columns over Amazonia near the end of the wet season (May—July, see Fig. S4). Furthermore, although
the a priori model columns peak at the same month as the satellite data at mid-latitudes (most often July), the model underesti-
mations are more pronounced during spring and early summer (i.e. May—July) than in the following months (August—October),
in particular over the U.S., China and Europe (Fig. S4).

The emission optimisation successfully closes the gap between the model and the observations, in particular over tropical
regions and at extratropical latitudes during summer (Fig. 9 and Fig. S4). During winter at high northern latitudes, however,
the large a priori model underestimation remains unchanged after optimisation. This is explained by the weakness of methanol
emissions and by the low number of IASI measurements used in the optimisation at these latitudes during winter, compared
to other latitudes and seasons (Fig. S5). Similar results were obtained by Wells et al. (2014) in their emission optimisation
based on CH3OH column data from TES. Interestingly, although the focus of our study is on continental areas, the agreement
of MAGRITTE methanol columns with IASI is also substantially improved over oceanic areas (panels p-s on Fig. S4) after
inversion, especially at extratropical latitudes (except in winter).

This improved agreement with IASI data is primarily achieved through changes in the distribution of biogenic methanol
emissions (Fig. 10). The biogenic emissions are strongly enhanced over North America and most of Eurasia after inversion,
while biogenic emissions due to tropical forests are generally decreased, in particular over Amazonia and Indonesia, and
emissions due to tropical savanna over Africa, Australia and eastern Brazil are increased (Fig. 3). As in previous inversion
studies (Stavrakou et al., 2011; Wells et al., 2014), the strongest enhancements (up to a factor 5) are derived over arid and semi-
arid landscapes such as Central Asia, Western U.S. and the Sahel region (Fig. 10-11). This underestimation might partly result
from the neglect of soil emissions in MEGAN. Soils (including litter decomposition) are indeed a known methanol source
(Warneke et al., 1999), and although their contribution is generally considered to be small, typically 1-2 orders of magnitude
lower than foliage emissions (Pefiuelas et al., 2014), they might be more significant over sparsely vegetated areas characterised

by low LAL
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a. IASI, DJF b. A priori model, DJF C. Optimisation, DJF
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Figure 9. 2008-2019 average of CH3OH columns (10*® molec.cm™2) from (a) IASI (bias-corrected as described in the text), (b) the a
priori model and (c) the model with optimised emissions, for December-January-February. Panels (d-f), (g-i) and (j-1) are as (a-c) but for

March-April-May, June-July-August and September-October-November, respectively.
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Figure 10. Ratio of top-down to a priori emissions (2008-2019 averages) for (a) pyrogenic and (b) biogenic CH3 OH emissions.

The biogenic emission enhancement at mid-latitudes is highest in spring (Fig. S6), and especially in May (Fig. 11). The
underestimation of springtime emissions was previously noted by e.g. Wells et al. (2012). The resulting top-down biogenic
emissions peak earlier than in the MEGAN inventory, in particular over Europe, Eastern U.S., China and Central Asia. Boreal
regions do not follow this trend, with emission enhancements of similar magnitudes being derived over spring, summer and
fall over these regions (Fig. S6). However, the large emission increase during fall (and to a lesser extent during summer)
inferred over boreal forests is partly explained by the strong deposition sink (Fig. S2). Since the deposition velocities might be
overestimated over boreal forests (Sect. 2.5.5), the top-down emissions might be also too high, especially during fall. In fact,
in spite of the large emission enhancement derived over Siberia, the net emission flux over this region (Fig. 11) is lower than
the a priori (MEGAN) gross flux.

The seasonal cycle of terrestrial emissions undergoes important changes after optimisation over tropical ecosystems (Fig. 11).
Over both northern Hemisphere (NH) Africa and southern Hemisphere (SH) Africa, the biogenic emissions are decreased (by
~25%) at the start of the biomass burning season (November—-December in NH, June—July in SH), while these emissions are
strongly enhanced (by up to 70—-100%) in the following months (February—June in NH, August—January in SH), until after the
end of the burning season. The optimisation also shifts by one month the seasonal peak of pyrogenic emission over SH Africa
(from July in the a priori to August in the optimisation, see Fig. 11), although, as explained above (Sect.2.7), the dominance of
the biogenic flux makes the top-down results uncertain for biomass burning emissions.

The top-down biogenic emissions over tropical ecosystems are strongly correlated with temperature and especially solar
radiation. Over each of the 5 tropical regions shown on Fig. 11 (panels f-g), the two least-emitting months according to the
inversion are the months with the lowest visible radiation fluxes, based on the ERAS reanalysis. For example, over Amazonia,
the lowest monthly biogenic fluxes (0.54 and 0.61 Tgmonth !, about a factor of two below the annual average) are derived
in May and June, which are the months with the lowest visible radiation fluxes (~85 W m_g, 12% below the annual average).
The same holds for S.-E. Asia and NH Africa (panels f-g), for which the minimum occurs in November-December, and

for Equatorial and Southern Africa (h-i), which have their minimum in June-July. At all 5 tropical regions, the top-down
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Figure 11. Seasonal cycle of emissions (Tg month™!) over large regions (2008-2019 averages). Black and red solid lines: gross total
emission fluxes from the a priori and optimised runs (sum of biogenic, pyrogenic, oceanic and anthropogenic contributions); black and red
dotted lines: net emission fluxes, i.e. dry deposition (including ocean uptake) is subtracted from the gross fluxes; dash-dotted and solid blue

lines: a priori and top-down biomass burning fluxes.
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monthly biogenic emissions correlate strongly with solar visible radiation fluxes, with Pearson’s correlation coefficients ranging
between 0.79 (Amazonia) and 0.94 (SH Africa). A strong correlation is also found between biogenic emissions and near-surface
temperature over NH Africa (0.92) and SH Africa (0.84). At the other regions (panels h-j), the temperature variations are weak
(standard deviation of ~ 0.6K) and therefore likely less relevant for biogenic emission variability.

Radiation fluxes and temperature appear to exert a stronger control on biogenic emissions of methanol than is currently
accounted for in MEGAN. This control is likely indirect, i.e. phenological changes associated with the seasonal cycle of me-
teorological variables likely cause variations in the emissions that are currently not represented in the model parametrisations.
Over Amazonia, leaf flushing during the wet-to-dry transition period has been suggested to explain a strong reduction of iso-
prene emissions around May every year (Barkley et al., 2009), and was also proposed to decrease methanol emissions in July
(Wells et al., 2025). The growth of new leaves after the wet-to-dry transition period might cause an enhancement of methanol
emissions, since young leaves are known to emit at higher rates than mature leaves. However, the MODIS LAI dataset indi-
cates only a moderate and progressive increase of LAI during this period, from ~4.2 to ~5.2 m?m~2 between February and
September. Since the parametrisation of the leaf age response factor in MEGAN (7,4 ) relies on the temporal variation of LAI
between time steps, the proportion of new or growing leaves calculated in this way is very small, and 7,ge is close to unity.
More work is needed to understand the impact of phenological changes on methanol emissions, and how these changes can be
represented in emission models.

The global top-down biogenic emission flux is 160 Tgyr ™", i.e. 23% higher than our a priori from MEGAN (130 Tgyr™1),
and almost 60% higher than previous top-down estimates based on in situ data (Millet et al., 2008; Bates et al., 2021) or
spaceborne IASI columns (Stavrakou et al., 2011) (Table 2). The total terrestrial emissions, amounting to 178 Tg yrt globally,
are also 46% higher than the top-down best estimate of 122 Tg yr~! based on TES column retrievals (Wells et al., 2014). The
optimisation leads to very small changes in the anthropogenic and pyrogenic emission categories, not exceeding a few percent
at the global scale (Table 2).

Despite the large enhancement of methanol emissions inferred in this study, the global atmospheric burden of methanol,
3.4 Tg in our optimisation, is only slightly higher (by 9-17%) than in previous modelling studies constrained by observations
(Table 2). The larger methanol loading (by 17%) compared to the IASI-based inversion by Stavrakou et al. (2011) is largely
due to the bias correction of IASI data (Eq. 18), leading to column increases of the order of 30% over source regions (Sect. 3).
The main reason for the larger enhancement of terrestrial emissions, compared to previous inversion studies, is the sink due
to dry deposition over land, 72 Tgyr~ ' globally, about a factor of 2.6 larger than in the inversion studies of Stavrakou et al.
(2011) and Wells et al. (2014), but very close to a global sink estimate based on in situ CH3OH measurements and a dry
deposition velocity of 0.4 cms~! (70 Tgyr~", Heikes et al., 2002). The global lifetime of atmospheric methanol with respect
to dry deposition over land is ~17 days, well below the range of reported values, 26-38 days (Jacob et al., 2005; Millet et al.,
2008; Stavrakou et al., 2011; Bates et al., 2021). Due to this strong sink, the net terrestrial source of methanol inferred here is
only slightly (+10%) larger than in the inversion studies of Stavrakou et al. (2011) and Wells et al. (2014). As seen on Fig. 11,
the gross top-down emission fluxes over forested regions such as Amazonia, Equatorial Africa and Siberia (14.7, 7.3 and 9.4

Tgyr !, respectively) are up to a factor of 3 higher than the net surface fluxes accounting for dry deposition (5.4, 2.6 and
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Table 2. Global methanol budget (Tg(CH3 OH) yr~ ') averaged over 2008-2019 in the a priori simulation and after optimisation of emissions
based on bias-corrected IASI data, and comparison with previous budget studies constrained by atmospheric observations. Notes: “: Sum of
biogenic, anthropogenic and biomass burning sources in Wells et al. (2014). ®: The oceanic source and atmospheric photochemical production

are not optimised in this study.

Milletetal.  Stavrakouetal. Wellsetal. Batesetal. This study This study

(2008) (2011) (2014) (2021) (a priori) (optimisation)
Sources
Total source 242 187 225 205 243 271
Biogenic 103 100 101 131 160
Anthropogenic 5 9.3 122¢ 6.3 10.5 10.6
Biomass burning 12 4.3 13 7.8 7.5
Oceanic 85 43 66 24 47 47°
Secondary production 37 31 37 60 46 46°
Sinks
Atmospheric oxidation 88 108 70 116 119 132
Ocean uptake 101 48 73 38 59 61
Wet deposition 13 3 9.5 11 6.3 6.5
Dry deposition to land 40 28 26 41 59 72
Burden (Tg) 3.1 29 3.0 3.1 3.4
Lifetime (days) 4.7 5.7 53 4.7 4.5

3.2 Tgyr~ ). Over less productive ecosystems, including regions with large biomass burning fluxes, the gross and net fluxes
are more similar, but still significantly different, e.g. by factors of 1.4-1.6 for Central Asia, North Africa and South Africa. At
global scale, dry deposition over land offsets about 45% of the biogenic emission flux (Table 2).

The deposition velocities computed in this work, typically between 0.2 and 1.6 cms™!

over vegetated areas (Fig. S2) are
well-supported by measurement-based estimates (Fig. 4), except for a large overestimation at a boreal forest site (Hyytiéla)
(Sect. 2.5.5). The large dry deposition sink inferred by the model over boreal forests is therefore likely overestimated, and the
biogenic emission enhancement at high latitudes (Fig. 10) might also be too high. Elsewhere, however, the strong dry deposition
sink is consistent with available data. Over the tropical forests of Amazonia, Central Africa, Indonesia and southeast Asia, and
even over Europe and eastern U.S., dry deposition is found to be a stronger sink of methanol than chemical oxidation due to
reaction with OH (Fig. 3).

The optimised methanol budget presented in Table 2 bears uncertainties due to potential errors in the IASI data used as
constraints and because, while terrestrial emissions are optimised, the other productions and the sinks of methanol have their

own uncertainties. In particular, oceanic emissions depend on assumed seawater methanol concentrations for which available

field campaign data show a very strong variability (Bates et al., 2021). Replacing the seawater concentration adopted in the
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model (Sect. 2.5.4) by the value of 61 nmol 17! determined by Bates et al. (2021) based on an analysis of ATom data would
decrease the oceanic emission flux from 47 Tgyr~" globally to 24 Tgyr—', in excellent agreement with Bates et al. (2021).
The photochemical production of methanol due to the CH30, + OH reaction is also uncertain; for example, adoption of a
fixed methanol yield of 13% from the reaction (Bates et al., 2021), in place of the current model assumptions (Sect. 2.5.2),
would increase the global CH3OH production by ~5 Tgyr~'. However, the impact of these uncertainties on the optimisation
of continental emissions is very small. A sensitivity inversion performed for one year (2017) for which the marine source and
the methanol yield from CH304, + OH both follow the recommendations of Bates et al. (2021) leads to negligible impacts on
top-down terrestrial emissions (41.1% compared to the standard inversion) and on dry deposition fluxes over land (+0.4%), in
spite of more sizeable impacts on the global CH3OH burden (—4.9%, to 3.25 Tgyr~') and on global oceanic uptake (—19%,
t0 4.9 Tgyr1).

5 Model evaluation against in situ and ground-based remote sensing data
5.1 Evaluation against in situ airborne data

The emission optimisations being constrained by IASI columns that are bias-corrected using aircraft data (Sect. 3), the model
evaluation against aircraft observations is expected to improve after optimisation. Figure 12 and Table S4 show that this is
indeed the case: on average for all campaigns over land (weighted by the number of data below 8 km altitude), the bias is
decreased from -23% in the a priori simulation to -8% after optimisation, and the root-mean-square-deviation (RMSD) is also
decreased (Table S4). The comparison statistics are improved for all but one campaign (ARCTAS-July, see further below).
Over oceans as well, the optimisation of terrestrial emissions improves the model agreement with in situ measurements from
the ATom campaigns (Fig. 2), especially at northern latitudes (> 25°, see Fig. S7). The comparisons with GoAmazon and
SEAC*RS measurements support the biogenic emissions decrease over Amazonia as well as over southeastern U.S. in late
summer/early fall (Fig. S6), while the comparisons against the DC3, SENEX, ARCTAS-June and KORUS-AQ campaigns
support the springtime enhancement of methanol emissions over terrestrial ecosystems at mid-latitudes (Fig. 11 and Fig. S6).
The improved model agreement against KORUS-AQ is realized through substantial increases of biogenic emissions, by
factors of up to 3 over Korea and up to 6 over northeastern China. The a priori anthropogenic emissions being very weak
(Fig. 3), these emissions are essentially unchanged by the inversion (+15% increase over Beijing). Beaudry et al. (2025) showed
that elevated methanol and ethanol near-surface concentrations in urban areas of South Korea and China are likely largely due to
anthropogenic Volatile Chemical Products (VCPs) from the residential sector, currently missing in global emission inventories.
Beaudry et al. (2025) estimated the anthropogenic CH3OH emissions from China alone to be 9.3 Tg yr~* in 2016, two orders
of magnitude above the inventory estimate used in MAGRITTE. VCP-related methanol emissions are much lower in the U.S.
due to regulations of their usage as a result of their toxicity. Part of the methanol emission increase inferred by our inversion
might therefore be wrongly attributed to biogenic emissions. In the free troposphere during KORUS-AQ), the strong correlation
of methanol with acetone suggested an important biogenic contribution, however. Furthermore, the seasonal variation of top-

down methanol emissions over northern China (Fig. 11d) shows a much stronger enhancement in spring than in fall, similar
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Figure 12. Averaged vertical profiles of observed CH3s OH concentrations (symbols) from aircraft campaigns: (a) ARCTAS June, (b) ARC-
TAS July, (¢c) DC3 (DC8), (d) DC3 (GV), (e) SENEX, (f) SEAC'RS, (g) GoAmazon, and (h) KORUS. Dotted lines: corresponding profiles
from the prior model simulation; red lines: IASI-based optimisation. The error bars denote the standard deviation of the observations. The
number of measurements per altitude bin is indicated on the right of each plot. The average observed and modelled mixing ratios below 8 km
altitude are given for each campaign. Data over ocean are excluded from all averages. Only measurements over Canada (> 49°) are retained
in the ARCTAS-July profile.
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to other regions at mid-latitudes and consistent with a predominantly biogenic source. Incorporation of VCP emissions in
methanol emission inventories will be needed to improve the assessment of biogenic emissions over East Asia.

In contrast with all other campaigns, for which the model performance improves after optimisation (Table S4), the model
agreement with respect to the July ARCTAS dataset deteriorates when optimised emissions are used. The emission increase in-
ferred by the inversion reaches a factor of ~3 in the region, due to the high (bias-corrected) IASI columns (~ 5-106 molec. cm™
typical of Central Canada during summer (Fig. 9). This leads to overestimated concentrations below 4 km altitude in compari-
son with both TOGA and PTR-MS measurements (Fig. 12b). Important fire events took place in this area during this campaign,
and the CH3CN-based criterion used to filter out pyrogenic influences removed ~ 26% of the data, while also reducing the av-
erage observed mixing ratio by 21%. A test evaluation without this filter (not shown) leads however to similar conclusions. The
model overestimation for the entire methanol column below 10 km, calculated from the vertical profiles shown on Fig. 12b,
amounts to a factor of ~1.4. This factor is similar to the enhancement of the IASI column due to the bias correction (factor of
~1.5, see Eq. 18). Therefore, an emission optimisation constrained by uncorrected IASI columns would likely lead to a closer
agreement with the ARCTAS-July campaign, although it would worsen the comparison with all other campaigns. The reason

for the singularity of ARCTAS-July is unknown.
5.2 Evaluation against in situ surface data

The emission optimisation also significantly improves the model comparison with surface concentrations data, as seen on
Fig. 13 (also Fig. S1). The Pearson’s correlation coefficient is increased from 0.66 to 0.89 after emission inversion, and the
median bias becomes very small. As detailed in Table S5, the large positive bias of the a priori run at the sites located in tropical
forests (+56% on average for 10 measurement campaigns) is strongly reduced, to 15% after optimisation, providing additional
support to the emission decrease inferred over tropical forests. Over Europe, U.S.A., East Asia and marine sites as well, the
biases are generally reduced, from respectively -16%, -17%, -44% and -17% in the a priori simulations, to -1%, +17%, -19%
and -7% with optimised emissions.

A further illustration of the model performance against in situ data over temperate ecosystems is provided by the comparison
of modelled methanol against PTR-MS measurements at Vielsalm and Lonzée in 2009-2013 (Fig. 14). At both sites, only a
small bias remains after emission optimisation (7% at Vielsalm and -14% at Lonzée), and the model generally succeeds in

reproducing the shape of the seasonal cycle (overall Pearson correlation 7 of 0.84).
5.3 Evaluation against FTIR column data

Figure 15 displays the observed and modelled average seasonal cycle of methanol columns at the 8 FTIR stations, whereas
Fig. S8 shows the full time series of monthly columns and Table S6 provides the summary of comparison statistics. The averag-
ing kernels and sampling times of the measurements are accounted for in the calculation of model columns. At Porto Velho, the
standard optimisation leads to an unrealistic large peak in September 2019 (Fig. 15f) due to the monthly resolution of emission
increments and to a large temporal variability of methanol columns in the course of the month. The FTIR measurements for

September having been all recorded during the first 12 days of the month, an additional emission inversion was performed for
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Figure 13. Scatter plots of averaged modelled and observed in situ CH3OH mixing ratios at the sites listed in Table S1. Blue: model results

using a priori emissions; red: IASI-based simulations. Pearson’s correlation coefficient (r) and the median bias over all sites are also given.

year 2019, identical to the standard run except that IASI data between 13 and 30 September were excluded. The result of this
inversion (dotted red line on Fig. 15f) differs from the standard run only in September, and leads to a much improved seasonal
cycle against FTIR data.

At all sites except St Petersburg, the optimisation reduces the model biases and RMSD (Table S6). Furthermore, the opti-
mised model correlates very well with the data at all sites, with Pearson’s correlation coefficients ranging from 0.78 (Eureka) to
~0.95 (Porto Velho and Kitt Peak). At the three mid-latitudes sites (Toronto, Jungfraujoch and Kitt Peak), the negative biases
of the a priori run with respect to the data (between 20 and 30%) are replaced by moderate biases (+12% or better) and the
improved seasonal cycle at Kitt Peak supports the large emission enhancement in spring and early summer at these latitudes.
The low biases at Kitt Peak and Jungfraujoch contrast with the evaluation of a previous inverse modelling study constrained
by TASI data at these sites (Stavrakou et al., 2011; Bader et al., 2014). At both stations, the optimised model underestimated
the summertime FTIR columns by up to a factor of 1.5. The probable reasons for the improvement are multiple, including the
IASI retrieval updates, the bias-correction of IASI columns, and the higher spatial resolution and longer time series considered
in this work.

At St Petersburg, the optimised model overestimate the data (+21%), especially during summer when the columns are high.
The overestimation reaches a factor of 1.44 during May—August, when the bias correction of IASI columns (Eq. 18, for IASI
columns of ~ 30 - 10'5 molec. cm™?) enhances the columns by a factor ~1.41. Therefore, as for the model comparison with in
situ measurements of the ARCTAS-July campaign (Sect. 5.1), an optimisation constrained by uncorrected IASI columns would

have yielded a better agreement with the FTIR observations than the optimisation presented above. The similar conclusions
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Figure 14. Time series of monthly-averaged observed CH3 OH concentrations (symbols) and corresponding model results from the a priori
run (dotted) and from the IASI-based optimisation (red) at (a) Vielsalm (50.305°N, 5.999°E) in 2009-2010 and (b) Lonzée (50.552°N,
4.745°E) in 2012-2013. The relative bias and root-mean squared deviation (RMS) are given for each site. The error bars denote the standard

deviation of the monthly averaged data.

drawn from FTIR and airborne campaign data obtained in similar environments, namely the vast area of high columns within
the boreal land masses at around 60° N during summer (Fig. 9), strongly suggest that the bias correction derived from airborne
data in Sect. 3 is inappropriate in such environments.

Large model biases are also found at Porto Velho (24% for the 5-month average), especially in September (39%) and October
(59%). However, when taking into account the number of FTIR data recorded per month, lowest in September—October (46
and 7, respectively) and highest in July (286), the relative bias amounts to only 13%, down from 37% in the a priori simulation.
This small remaining bias is consistent with the model evaluation against surface in situ data in tropical ecosystems (+15%
bias, Sect 5.2) and the GoAmazon campaign (negligible bias, Sect. 5.1). The comparisons at the two Reunion island stations

(St Denis and Maido) show also small positive biases (4—11%).

6 Conclusions

Twelve years of IASIv4 global methanol column data are used in an inverse modelling framework built on the MAGRITTEv1.2

model to propose an updated assessment of CH3OH global distribution and terrestrial emissions. The IASIv4 dataset is gener-
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Figure 15. Monthly CH3OH FTIR columns (10'® molec.cm™?) averaged over 2008-2019 (black lines and diamonds) and corresponding
averages from the a priori simulation (dotted blue) and optimised model (red) at (a) Eureka, (b) St Petersburg, (c) Jungfraujoch, (d) Toronto,
(e) Porto Velho, (f) St Denis, and (g), Maido. The FTIR averaging kernels and sampling times are accounted for in the calculation of the
model columns. The dotted red line in panel (e) denotes model columns from a test optimisation in which IASI data between 13 and 30
September 2019 were excluded. Panel (h) displays the average seasonal cycle of FTIR columns (2.09-14 km above sea level) recorded at
Kitt Peak between 1985 and 2003 (Rinsland et al., 2009), compared with the 2008-2019 climatological average from the model. The daily
FTIR averages (Fig. 5 of Rinsland et al., 2009) are also shown. The error bars denote the standard deviations of the monthly data.

ated using the ANNI version 4 retrieval framework, which incorporates several methodological advances compared to previous
versions. In particular, the dataset includes total-column averaging kernels, essential to minimise the impact of vertical-profile
differences in the comparisons between IASI retrievals and MAGRITTE outputs.

In a first step, in situ methanol observations from three extensive aircraft campaigns over the U.S. (DC3, SENEX and

SEAC*RS) are assimilated into the model to derive aircraft-constrained model distributions used to evaluate the TASI columns.
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The results suggest an underestimation of large IASI columns, reaching a factor of 1.41 for IASI columns of ~ 30-10'5
molec.cm™2. The in situ measurement uncertainties are too low to account for these biases, which therefore remain unex-
plained.

The bias of IASI with respect to aircraft data is tentatively corrected through a linear relationship, and the bias-corrected
IASI columns are used as constraints to optimise the terrestrial CH3OH emissions in the MAGRITTE global model over
2008-2019. Model evaluation against nine aircraft datasets spanning 2008—2018 shows that the emission optimisation leads to
a large reduction of the average bias against aircraft observations over land, from —23% in the prior simulation to —8.4% in the
optimisation; the model agreement is also improved over oceans. Similarly, the model performance against a broad compilation
of surface in situ data (67 campaigns) is greatly improved, as seen from the resulting high correlation and low biases globally
and regionally (less than 20% bias over tropical forests, U.S., Europe, East Asia and marine areas). The model performance
(bias and RMSD) is also improved at seven of the eight FTIR stations.

Nevertheless, closer examination of the comparisons points to important regional differences. Most noticeably, the opti-
misation leads to substantial model overestimations (by 40%) against summertime measurements over the Canadian boreal
forest (ARCTAS-July campaign) and in northern European Russia (St Petersburg), suggesting that the bias correction of IASI
columns is unwarranted at these latitudes. Over tropical ecosystems, the comparisons with in situ data (10 campaigns) and
FTIR data (at Porto Velho and Reunion island) suggests a small positive bias (~ 15%), despite a substantial reduction of bi-
ases, in comparison to the prior simulation. Future work should aim at a better characterisation of IASI biases using aircraft
and surface in situ data (especially over boreal and tropical ecosystems, poorly represented in the present study) and FTIR data
(in all environments), considering the small number of stations where methanol is being retrieved.

The emission inversion suggests largely increased biogenic emissions over North America and most of Eurasia as well as
decreased emissions over tropical forests. Strong enhancements, by up to a factor 5, are found over semi-arid ecosystems,
consistent with previous inversion studies and possibly due to soil emissions currently overlooked in MEGAN. The seasonal
cycle of biogenic emissions undergoes significant changes. At mid-latitudes, the optimised emissions peak earlier than in the
MEGAN inventory. Over tropical ecosystems, emission increases are inferred during warm and sunny periods, while decreases
are derived during colder, less sunny months. Temperature and visible radiation fluxes appear to exert a stronger control of
biogenic emissions than can be accounted for in MEGAN, for reasons still unclear. A revision of the parametrisation of the
leaf age response factor is likely needed for tropical environments.

The global top-down biogenic emission flux (160 Tgyr ') is almost 60% higher than previous top-down estimates (Millet
et al., 2008; Stavrakou et al., 2011; Bates et al., 2021), due to mainly two reasons. The first reason is the bias correction of
IASI columns, corroborated by the improved model performance against a wide range of observations, except over boreal
continental regions, as noted above. The total biogenic flux due to boreal forests is increased by a factor of 2.4, from 9.4 to
22.8 Tgyr~ . Even without the contribution of boreal forests, the global top-down biogenic flux would therefore still be much
higher than previous estimates. The second reason is the stronger sink due to dry deposition in our model, with a global lifetime
with respect to this process of 17 days, well below the range of estimates from previous modelling studies. Dry deposition is

estimated here to offset 45% of the global biogenic emission flux. The deposition velocities are calculated using a Wesely-type
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parametrisation adjusted based on estimates from 13 field campaign studies. The calculated values range typically between
0.2 and 1.6 cms~—! over vegetated areas, in generally good agreement with the field studies. A notable exception is the boreal
forest site of Hyytidld, where the deposition velocity is largely overestimated. Therefore, the dry deposition sink (and also
the top-down biogenic gross flux) might be similarly overestimated over these forests. Clearly, more field campaign data are
needed to provide a better assessment of both methanol abundances and dry deposition velocities in this environment, and more

generally over terrestrial ecosystems.

Data availability. The NASA aircraft campaign datasets are available from the Langley Research Center at https://www-air.larc.nasa.gov/
missions/merges (last access: 16 January 2026). The Vielsalm dataset for 2009 and 2010 is available at https://doi.org/10.18758/h659pdrv
(Amelynck et al., 2024a), while the Lonzée dataset is available at https://doi.org/10.18758/7v20vh47 (for 2012) (Amelynck et al., 2024b)
and https://doi.org/10.18758/7v20vh47 (for 2013) (Amelynck et al., 2024c). The MEGAN-MOHYCAN methanol emissions and the top-
down methanol emissions generated in this study are available at https://emissions.aeronomie.be (Miiller et al., 2026). The monthly LAI

distributions from MODIS15A2H collection 6 are available at https://Ipdaac.usgs.gov (last access: 15 January 2026).

Appendix A: Details on the dry deposition scheme
Al Aerodynamic resistance

The aerodynamic resistance (s m~1) is expressed (ECMWF, 2021) as

1
[ln(zl +ZOM) B \I/H(Zl 1 Zom

Z0H
e, o 7 ) Va()] (A1)

R, = T

with x von Karman’s constant (0.41), u, the friction velocity (ms™1'), z; the reference height (here, the altitude of the first
model level), zon and zopr the roughness lengths for heat and momentum, respectively, Wy a stability profile for momentum,
and L (m) the Obukhov length calculated using

w} T

_K’gQOV7

(A2)

with T} (K) the near-surface air temperature, g (m s~2) the gravitational acceleration, and Qq, (Km s~ 1) the virtual temperature
flux in the surface layer. The latter depends on the sensible heat flux S (Wm ~2) and evaporation E (kg m 2s~! ):

_ S+061C,E

Qov
0 pCyp

(A3)

with C), the heat capacity of air (J kg~ ' K~1) and p the air density (kg m ™). Hourly distributions at 0.25° x0.25° resolution

of near-surface temperature, wind, sensible heat flux and evaporation are obtained from the ERAS reanalysis (Hersbach et al.,

2020). Friction velocity is calculated using
(07 4 )2

ln( Zl+zoMm ) _ ‘I’M( ZL+LZOM ) + \I,M(ZOLM )

Z0M

(A4)

Uy =
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with u; and v; the horizontal wind components at 10 m, and w, a free convection velocity scale,
— (L 1/3 A5
Wy = (Zz T QOU) ( )
l

with z; = 1000m. Since L depends on u. (Eq. A2) which is dependent on L (Eq. A4), these quantities are calculated iteratively.
The stability profiles for heat and momentum follow ECMWF (2021).
The roughness lengths over oceans are calculated (ECMWEF, 2021) using

2

om= 0112 fac: (A6)
Uy g
son= 042 (A7)
U

with v the kinematic viscosity (~ 1.5-1075m?s~! at 288 K), and ac the Charnock dimensionless coefficient provided by
the ERAS reanalysis. Over land, the estimation of zgy; follows Zhang et al. (2003), i.e., minimum and maximum values are
defined for each plant functional type. The seasonal evolution of the roughness length is based on LAI obtained from monthly
averaged Moderate Resolution Imaging Spectroradiometer (MODIS 15A2H collection 6). zop is assumed equal to 0.1 - zonm
(ECMWEF, 2021).

A2 Quasi-laminar sublayer resistance

Following Toyota et al. (2016), the quasi-laminar sublayer resistance (s m ') is written as

1 v
Ry = 2/3 A8
b Bu* (0'72DQ,CH30H) ( )

where the empirical factor B is taken equal to 5 and Dy cn,0# is the gas-phase diffusivity of methanol, obtained from Tang

etal. (2015) (1.66- 10~>m?s~! at 298 K). The temperature dependence of the diffusivity follows Tang et al. (2015).
A3 Stomatal resistance

R, is related to the stomatal resistance to the diffusion of water (R,0):

D
R, = (=229 ). Ry,o, (A9)
Dy cazon

where D, 1,0 is the gas-phase diffusivity of water (2.18-10"°m?s~! at 298 K, Massman, 1998). The dependence of the
stomatal resistance for H,O on environmental parameters is given (Jarvis, 1976; Sellers et al., 1986) by

Qs

bs +@Q

+¢s))/(f(T1)- (1 =dsde)) - f(31)), (A10)

RS,HQO = (

where @ is the visible radiation flux (W m™?2), f(T}) and f(v;) are stress factors for temperature (7}) and the leaf water
potential (¢;), and J. is the water vapour deficit (hPa). The stress functions for every plant functional type are detailed in
Miiller et al. (2008). The values of parameters as, bs, ¢s and dg are given in Table S7. R, is minimum during daytime, typically

of the order of 100 sm~! for ozone (e.g., Baldocchi et al., 1987; Padro, 1996; Val Martin et al., 2016).
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A4 Cuticular and soil uptake resistances for SO; and O3

The cuticular resistances for SO5 and O3 are calculated (Zhang et al., 2003) with

1- we we —
Rews = ( thdu}{ : )~ (A11)

where fyet is the frequency of wet conditions, due to either dew or rain, and

- ffr . RcutdO
Rewta = ¢0-03-RHT, AT0-25 U o
ffr : RcutwO
Rcutw = m (A13)

with LAT being relative humidity (in %), f a function of temperature, equal to 1 above -1° C, and given by
fee = min (2,021 7T)) (Al4)

below that temperature. The reference values for dry and wet conditions (Rcutq0 and Reutwo) are provided in Table S7 for
SO, and O3, except R592 , which is equal to 50 sm~! for rain and 100 sm~" for dew conditions. Dew presence is assumed
to occur when wu, falls below a threshold value dependent on specific humidity and cloud cover (Brook et al., 1999). Rain
frequency is estimated from the ERAS cloud and precipitation fields (Stavrakou et al., 2009¢).

The ground resistance for SOs is taken equal to 50 sm~! for rain and 100 sm~! for dew conditions, and is multiplied by
the factor fi.. In absence of dew or rain, the ground resistance R§O2 depends on RH and soil pH (Kerkweg et al., 2006). In
humid conditions (above 60% RH), the resistance, Ri%’ is taken equal to 115, 65 and 25 s m~! for pH < 404,5.5 < 7.3 and
pH > 7.3, respectively. The soil pH distribution is obtained from Hengl et al. (2017). Below 60% RH, the resistance (sm™") is

calculated by modifying the values for humid conditions (R?C,)f) according to
RO = max(25, 3.4 RS2 — 85 4 10° - max(0, (40 — RH)/40) + 1000 - ¢*%9~ %) (A15)

with T the soil temperature (K).

The ground resistance for O3 is assumed equal to respectively 200 s m~! under vegetation and 500 s m~! for non-vegetated
surfaces (Zhang et al., 2003). These values are multiplied by fi (Eq. A14) at low temperatures.

Over snow, the ground and cuticular resistance for O3 are assumed equal to 2000 sm™~?; the ground resistance for SO, is
calculated as function of temperature following Kerkweg et al. (2006). The snow fraction is calculated from the ERAS snow
depth (SD) as the ratio

SD
SDmax

where SDy,.x is taken equal to max(0.02, 0.2 - LAT).

) (A16)

fsnow = min(l,
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