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Abstract

The complexity of soil organic matter and the multifunctional role of its components on soil processes make the
characterization of soil ecological status challenging. Due to its ready responsiveness to environmental changes, the soil
microbial community has gained increasing attention for its relationship to the dynamics of C pools and soil chemical and
physical processes. Its activity can be monitored by the enzymatic profile, which enables the detection of early changes in soil
status, supported by direct or indirect measurement — e.g., by double-stranded DNA (dsDNA) — of microbial biomass and
parameters, such as dissolved fractions of C and N, which are linked to soil activity as rapidly available energy sources. This
study analyzed the seasonal response of these indicators in a subalpine ecosystem, using sampling date and vegetation cover
as predictors capable of capturing long-term and short-term changes in the ecosystem, respectively. Most of the bioindicators
showed higher values in the warmest and least rainy summer season. In the cold season, two distinct trends were evident: the
values of dsDNA and enzyme activities decreased to their minimum in early winter and rose to their maximum in late winter,
while those of soil organic matter (SOM), dissolved C, and N continued to decline until the end of winter. The study also found
that the dynamics of SOM in the woodland and meadow ecosystems differed, with the former achieving the highest SOM
content during the summer period of greatest plant and faunal activity. Overall, this study suggests that the use of bioindicators
and high-throughput techniques can contribute to improving soil quality assessment and monitoring. Additionally, they can be
used to characterize humus forms and motivate the preservation of Alpine meadows and surrounding wooded habitats for their

non-wood products.

1 Introduction

Soil monitoring in time has become an important issue since the interest of soil science has focused on the assessment of the
ecological status of soils. Due to the dynamic nature of the processes involved, soil organic matter (SOM) is one of the main
objects of monitoring. At the same time, the multifunctional role of organic components that contribute to shape soil dynamics

requires the determination of numerous, sometimes collinear variables, making the selection of a limited number of them non-
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trivial to address the costs of monitoring (Biinemann et al. 2018). A further aspect to consider is the scale of spatial and
temporal variation of soil processes and the parameters capable of capturing their dynamics. Spatial variation is the result of
the site specificity of often interlinked soil processes, which in turn are a cause and/or consequence of the high diversity of
habitats in the ecosystem (Zornoza et al. 2015; Biinemann et al. 2018; Schloter et al. 2018). Although the spatial variability of
monitoring indicators is well known in soil science, soil monitoring has mainly been planned on a national and regional scale
(see Biinemann et al. 2018 for references), ignoring the issue of variability in soil processes within and between habitats that
even regional-scale monitoring may fail to capture.

When monitoring is aimed at providing early indications of changes taking place in the soil status, a parameter with adequate
sensitivity is soil microbial biomass, which, although accounting for less than 5% of the weight of the SOM (Brookes 2001,
Bhaduri et al. 2022), significantly influences the dynamics of soil C pools (Blagodatskaya and Kuzyakov 2013; Liang et al.
2017; Bhaduri et al. 2022) by releasing extracellular enzymes and behaving as a labile reservoir of N, P and S for plant uptake
(Brookes 2001). Hydrolases acting on biopolymers like cellulases (B-glucosidase) and chitinases (N-acetylglucosaminidase)
are produced by fungi to release simple sugars, thus being respectively involved in C and organic N cycling (Baldrian and
Stursova 2010; Baldrian 2014). Peptidases like leucine aminopeptidase are released to break down small peptides into their
constituent amino acids, therefore influencing the rate of organic N mineralization (Sobucki et al. 2021). Phosphorus and sulfur
cycles are driven by phosphatases (phosphomonoesterase, phosphodiesterase, pyrophosphodiesterase) and sulphatases
(arylsulfatase), the former produced by a broad spectrum of soil organisms, the latter specifically linked to bacterial
communities (Baldrian and Stursova 2010).

Given the need for many sampling points, the use of biochemical indicators in soil monitoring requires that their measurement
should not be expensive and analytically burdensome. Cost reductions have been achieved with assays that characterize soil
enzymes in terms of abundance, catalysed reaction and activity rate (Baldrian 2009; Nannipieri et al. 2018). In contrast, the
time-consuming measurements of microbial biomass — estimated in 1.32 hours per sampling point for sample collection and
analysis by Bragato et al. (2016) — sometimes conflict with the sample size required by soil monitoring activities. Over the last
decade several high-throughput methods were developed for the characterization of the ecological status of the soil system
employing indicators like enzymatic assays (Fornasier and Margon 2007) and double-stranded DNA (dsDNA) (Fornasier et
al. 2014). They were tested to investigate the spatial variability of extracellular enzyme activities (EEAs) (Bardelli et al. 2017,
Nadimi-Goki et al. 2018, Cardelli et al. 2019) and microbial biomass (Bragato et al. 2016; Semenov et al. 2018) in systematic
surveys of different soils and ecosystems. Regarding sampling and analysis times, Bragato et al. (2016) calculated that those
for dsDNA are about a quarter of those for microbial biomass C (0.29-0.33 hours per sample depending on whether the initial
sample was air-dry or field-moist, respectively). Based on our experience, similar times are obtained for the measurement of
enzymatic activities, which have similar extraction procedures and differ in terms of longer measurement times in fluorimetry,
which are largely compensated for by the possibility of measuring a significant number of enzyme activities on the same

extract.
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Our study was intended to be preparatory to the planning of space-time designs for soil health monitoring according to the
hybrid design-based and model-based sampling approach proposed by Brus and de Gruijter (2011). We were specifically
interested in the selection of soil biochemical indicators useful for monitoring mountain ecosystems managed by man, namely
hay meadows and hazel-dominated groves areas, whose ecological equilibria are changing because of depopulation and the
abandonment of mixed crops-livestock farming in the mountain (Mazoyer and Roudart, 2002), with the risk of losing an
ecosystem typical of the Alps. From a soil perspective, hay meadows and forest habitats have provided a continuous supply of
organic material, making the processes linked to the SOM cycle predominant. However, the transformation dynamics of SOM
may change between groves and meadows because, even with comparable physical and chemical conditions, substantial
differences in the composition of litter, soil fauna and microbial communities occur (Stursovéa and Baldrian 2011; Stursova et
al. 2020).

Our aim was to assess how variable were some widely used parameters — namely SOM, total dissolved N (TDN) and dissolved
organic C (DOC) — combined with biochemical indicators of mass and activity of soil microbial population indicators — i.e.
dsDNA and EEAs — little used in soil monitoring over time but capable of providing information on the state of the most active
component of the soil and thus able to respond relatively readily to changes in the soil system over time. Our investigation
considered the vegetation cover and four seasons of a year to define a restricted set of noncollinear parameters with sufficient
readiness for long-term soil monitoring of subalpine ecosystems of meadows and hazel-dominated groves, whose ecological

balance is changing following the abandonment of mountain mixed crops-livestock farming.

2 Materials and methods
2.1 Site description

The investigation was done in an area of about 32 ha near the village of Cimolais (north-eastern Italy; 46.3°N, 12.5°E) at an
elevation of 650 m above sea level. The vegetation of the area is linked to the practice of haymaking which is typical of the
subalpine valleys of north-eastern Italy. Approximately 85% of the area consists of hay meadows dominated by tall oatgrass
(Arrhenatherum elatius (L.) P. Beauv. ex J. & C. Press). Meadows are separated by linear, 10-20m-wide groves dominated by
European hazelnut (Corylus avellana L.) that were widely propagated in the past to obtain branches, nuts and ties.

In the period 1961-2010, the average annual temperature was 9.4°C, with average minimum and maximum values of -1.9°C
and 19.6°C in January and July respectively (ISPRA, 2020). Average annual precipitation is 1613 mm, with peaks in April-
May and October-November. The area was also characterized by a continuous snow cover of 62 days between December and
February in the period 1973-2009 (ARPA FVG, 2020).

The investigated area is located on a Pleistocene-Holocene fluvioglacial cone surrounded by Triassic reliefs belonging to the
Dolomia Principale formation. Soil is a Dolomitic Rendzic Leptosol (Arenic, Hyperhumic) (IUSS Working Group WRB 2014)

with a 18cm-thick A horizon characterized by a gravelly sandy loam texture, pH of 7.3 and 29% organic matter content
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(Bragato et al. 2019). In agreement with Ponge et al. (2014), it is characterized by an Amphi humus system, which occurs on

base-rich soils in cold climates with hot summers and cold winters resulting in prolonged periods of biological inactivity.

2.2 Soil sampling and laboratory analyses

We planned the investigation using Vegetation cover and Sampling date — i.e., seasons — as treatments. The vegetation cover
was either meadow or hazel groves, and Sampling dates were 23 May, 1 August and 6 December 2012, and 27 March 2013.
Sampling locations for each combination of vegetation cover and sampling date were randomly selected with a simple random
sampling design. Sampling sites were located with a Montana 650 pocket GPS detector (Garmin, USA). Soil samples were
collected in the A horizon at a depth of 0-10 cm using a hand-auger for stony soils. Fresh samples were stored in a cooler and
transported in the laboratory, where they sieved at 3 mm and analysed for total dissolved N and organic C. Briefly, aliquots
were shaken for 30 min in a 0.5M K2SO4 solution (1, 4 w/v), centrifuged and analysed with an automated elemental TOC-
VCPN analyser (Shimadzu, Japan) and standard solutions for calibration. The samples were then air-dried and sieved to 2 mm
for all other analyses, which were carried out within a couple of weeks after sample collection. A TGA-601 thermogravimeter
(LECO Corporation, USA) was used to determine SOM as the mass loss at 550 °C (Hoogsteen et al. 2015). The microbial
biomass was quantified by dsDNA content according to the microplate fluorometric method of Fornasier et al. (2014). An
amount of 0.3 g of sample was transferred to a 2-mL Eppendorf tube containing 1.4 mL 0.12 M Na3PO4 buffer at pH 8 and a
mixture of glass beads and ceramic beads. Tubes were bead-beated in a MM 400 beating mill (Retsch, Germany) and
centrifuged at maximum speed. Supernatants were then diluted ninety times and the dsDNA quantified fluorometrically by
using PicoGreen reagent (Thermo Fischer Scientific, USA) following the manufacturer’s instructions.

Similarly, soil enzymatic profiles were determined following Fornasier and Margon (2007). Aliquots of 0.3 g were diluted in
2-mL Eppendorf tube with 1.25 mL solution of Tris-HC1 50mM pH 7.5, 4% lysozyme and a mixture of glass beads and ceramic
beads. Tubes were then bead-beated and centrifuged. The supernatants were directly transferred into microplates and analysed
with fluorogenic 4-methylumbelliferyl-based (MUF) substrates for the determination of acid (ACP) and alkaline phosphatase
(ALP), arylsulfatase (ARYS); B-glucosidase (BG); bis-phosphatase (BISP); chitinase (CHIT); esterase (EST); leucine
aminopeptidase (LAP) and pyro-phosphatase (PYROP).

2.2 Data analysis

Data analysis started with the computation of the statistics of variables per sampling date and vegetation cover. Principal
Component Analysis (PCA) was then performed to assess the degree of correlation between variables and their possible
clustering. The effect of Sampling date and Vegetation cover was in the end assessed with the linear model approach (Venables
and Ripley 2002). As the residuals of the models were homoscedastic, linear models were fitted using ordinary least squares
and the best ones chosen according to Akaike's information criterion. Computations were performed with the version 4.0.3 of
the R software (R Core Team 2020) using the packages Stats for descriptive statistics and PCA; Mass (Venables and Ripley
2002) for linear modelling, and ggplot2 (Wickham 2016) for graphic sessions.

4
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3 Results

The descriptive statistics of SOM, TDN and DOC are reported in Table 1 and in the error bar graphs of Figure 1.

EGUsphere\

Table 1 — Mean and standard errors (in parenthesis) of the data partitioned by Sampling date and Vegetation cover (n = 75 for enzyme

130 activities; n = 79 for the other variables).

Sampling Vegetation SOM DOC TDN dsDNA ARYS ACP ALP BISP PYROP LAP CHIT BG EST
date cover g kgl mg kg-! nM MUF h' g!

May 2012 Meadows 220 41 6.7 60 17.1 192 364 58 34 91 5.4 11.7 3,341
(3) () 0.4) “) a1 (32 (67) “) (2) (3) 06) (1.1) (234

Hazel 236 58 9.5 90 18.0 169 330 51 34 87 3.9 8.4 2,940

groves  (16)  (5) (1.O) (9 (7)) (36 (100 (4 (5) @)  (0.6) (07 (232)

Aug 2012 Meadows 220 44 7.4 101 17.2 189 330 51 33 95 8.5 10.8 3,113
() (3) (0.5) ) 0.7y  (22) (40) (2 (3) (M 09 (7)) (139

Hazel 322 81 11.7 131 23.0 241 362 49 29 121 11.0 9.6 3,244

groves  (31)  (8) (0.8) (13 (14 (35 @45 (3 3) @ 4 (13) (135

Dec 2012  Meadows 203 51 8.5 72 8.2 103 292 34 33 75 7.9 7.6 1,921
14 (3) 05 () (1.6 (50) (142) () 7 (13 (13)  (14) (206

Hazel 258 64 9.4 84 13.6 129 347 40 24 92 6.6 6.3 1,967

groves  (24) () (1.0) (10) (23) (62) (201) (5 G) @) @6 (12 (@37

Mar 2013  Meadows 170 24 4.3 106 16.5 174 347 50 30 92 7.7 9.9 2,764
(12) () 0.4) ) 1.0 (G4 (59) (3) (3) (6) 09 (07 (134

Hazel 206 36 6.0 104 21.0 195 314 50 37 90 7.8 9.4 2,853

groves  (19) (4 (0.8) (12) (4 (62 (I @ 6  (13) (1.8 (15 (237
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Figure 1 — Mean and standard error of SOM and TDN recorded in the two vegetation covers and the four sampling dates.

135 Since TDN and DOC showed the same seasonal trend, we chose former to represent their trend in Fig. 1. The SOM content
was high in August 2012 and low in March 2013, but its values were notably affected by vegetation cover, with hazel groves
having 52 g kg'! more SOM than meadows. Hazel groves also displayed a greater decrease of SOM from summer to winter,
in meadows the mean value of March 2013 — 170 g kg'' — was about 23% lower than that of August 2012, while in hazel
groves the decrease — from 322 g kg! — was in the order of 36%. TDN and DOC showed a trend like SOM, with minimum

140  values in March 2012 equal to 6.0 and 4.3 mg kg™ for hazel groves and meadows, respectively. The highest values, on the
other hand, show a temporal deviation between hazel groves and meadows, with the former persisting in August 2012 and the
latter moving to December 2012.

Table 1 also shows the dSDNA and EEAs data. In addition, the seasonal trends of dsDNA and ACP are shown as error bar
graphs in Figure 2, where ACP was chosen as a reference for the pattern of seasonal variation of ARYS, BG, BISP, EST and

145 LAP.
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Figure 2 — Mean and standard error of dSDNA and ARYS recorded in the two vegetation covers and the four sampling dates.

The dsDNA showed an alternating seasonal trend, with values around 75 mg kg™! in May and December 2012 and higher than
150 100 mg kg in August 2012 and March 2013 (Fig. 2, left side). The ACP also reached a minimum point in December 2012,

but its values remained relatively constant in the other three sampling dates (Fig. 2, right side).

The dsDNA, ACP, ARYS and LAP also showed variations in relation to Vegetation cover, with higher values in hazel groves

on separate dates: dsDNA in May and August 2012; ACP, ARYS and LAP in August 2012. The effect of vegetation cover

reversed in the case of BG, with higher values in meadows and maximum difference in May 2012. Finally, the enzymes ALP,
155 CHIT and PYROP were highly variable, therefore showing no variation in relation to either Sampling date or Vegetation cover.

The relations between variables observed in Tab. 1 are also supported by the results of PCA in Table 2.
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Table 2 — Variance and factor loadings of the Principal Component Analysis. Variables are ordered according to the factor loadings of the

three components.

PC1 PC2 PC3

Variance 5.79 2.50 1.34

Relative variance, % 44.6 19.3 10.3
Factor loadings

ACP 0.90 -0.13  -0.27

EST 0.89 -0.22  -0.09

ARYS 0.88 -0.03  -0.25

LAP 0.86 -0.03  -0.06

BG 0.80 -0.27  -0.10

BISP 0.75 -0.40 0.34

dsDNA 0.66 027  -0.30

DOC 0.22 0.89 0.18

TDN 0.29 0.87 0.26

SOM 0.55 0.71 -0.02

ALP 0.44 -0.21 0.73

PYROP 0.49 -0.15 0.55

CHIT 0.42 0.07 -0.18

The highest loadings in PC1 component concerned six of the nine EEAs and dsDNA, while PC2 was linked to SOM and the
soluble fractions of C and N. Finally, PC3 was mainly connected to ALP and PYROP. The first two components also suggest
the influence of distinct environmental factors, attributable to microbial community dynamics for PC1 and biochemical
processes involving soil organic matter for PC2.

Data analysis ended with linear modelling. Since EEAs are correlated with dsDNA (Tab. 2) as they are at least partly a product

of the soil microbial pool (Moorhead et al., 2013), we have standardised them on dsDNA before linear model analysis. The

resulting statistics are reported in Table 3.

EGUsphere\
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170  Table 3 — Mean and standard errors (in parenthesis) of the enzyme activities standardised to dsDNA partitioned by Sampling
date and Vegetation cover (n ="175).

Sampling Vegetation ARYS  ACP ALP BISP PYROP LAP CHIT BG EST

date cover nM MUF h'! mg"! dsDNA

May 2012 Meadows  0.30 3.32 6.3 1.01 0.61 1.56 0.10 0.21 58
(0.03)  (024) (0.5  (0.08) (0.07) (0.13)  (0.02)  (0.03) 5)

Hazel 0.21 1.99 3.8 0.59 0.37 1.01 0.04 0.10 34

groves (0.02) 0.17)  (0.3)  (0.05) (0.02) (0.08) (0.01) (0.01) )

Aug2012  Meadows  0.18 2.00 35 0.53 0.32 0.99 0.09 0.11 32
(0.01)  (0.17)  (0.3)  (0.04) (0.01) (0.09) (0.01) (0.01) )

Hazel 0.18 1.86 2.8 0.38 0.22 0.94 0.08 0.08 25

groves (0.02) (0200  (0.3)  (0.04) (0.02) (0.10) (0.02) (0.01) 3)

Dec2012  Meadows  0.11 1.41 4.5 0.49 0.58 1.22 0.13 0.12 28
(0.02)  (0.17)  (0.9)  (0.05) (0.23) (0.37) (0.04)  (0.03) 3)

Hazel 0.15 1.46 53 0.61 0.36 0.91 0.05 0.07 24

groves (0.02) (0.12)  (1.9)  (0.20) (0.12)  (0.08)  (0.02)  (0.01) )

Mar 2013 Meadows  0.17 1.73 3.4 0.50 0.30 0.90 0.08 0.10 27
(0.02)  (0.18)  (0.3)  (0.05) (0.04) (0.07) (0.01) (0.01) 3)

Hazel 0.22 2.02 3.4 0.53 0.39 0.90 0.08 0.09 30

groves  (0.01)  (0.07)  (0.3)  (0.03) (0.04) (0.05) (0.01) (0.01)  (2)

The parameters of the best-fitted models are shown in Table 4, where the states of the factors Sampling date and Vegetation
cover are compared with the first one of the series — meadows on May 2012 — which, according to the conventions of the

175 MASS package, are reported as model intercept. Estimates with a p-value <0.01 are marked in bold in the Table.

Table 4 — Linear models relating the variables with Sampling date and Vegetation cover (n =75 for enzyme activities; n = 79 for the other
variables). In bold the estimates of regression parameters significant at p <0.01. Enzyme activities are standardised on dsDNA.

Factor SOM DOC TDN dsDNA ARYS ACP ALP BISP PYROP LAP CHIT BG EST

levels g kg'! mg kg'! nM MUF h'! mg! dsDNA
Intercept 203 40 6.8 66 0.25 2.7 5.1 0.86 0.40 1.4 0.10 0.18 50
(14) ) (0.6) (7 0.01) (0.1 0.6)  (0.07) (0.04) (0.7) (0.01) (0.01) (3)
Aug 2012 41 13 1.8 41 -0.08 -0.8 1.9 -0.35 -0.4 -0.06 -18
(18) (5) (0.8) 9) (0.02) 0.2) 0.9)  (0.10) 0.2) (0.02) (3)
Dec 2012 1 8 0.8 4 -0.12 -1.2 -0.2 -0.26 0.2 -0.06 21
(18) (5) (0.8) 9) (0.02) 0.2) 0.8)  (0.09) 0.2) (0.02) (3)
Mar 2013 -41 -20 -3.0 31 -0.07 -0.8 -1.7 -0.29 -0.4 -0.06 -18
(18) 3) (0.8) 9) 0.02)  (0.1) 0.8)  (0.09) 0.2) (0.02) 3)
Hazel 52 19 2.6 17 -0.04  _0.05 -8
groves (13) “) 0.5) @) (0.01) (0.01) 2)
R2uj 0.29 0.50 0.45 0.29 0.36 0.32 0.06 0.16 - 0.09 0.07 0.30 0.46
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As already suggested by PCA, SOM, DOC, and TDN showed comparable trends, although noticeably different from that of
enzyme activities and dsDNA. They displayed significantly higher values in hazel groves compared to meadows, with the
greatest difference being found in August 2012 (Fig. 1). Linear modelling confirms the link of Sampling date with DOC and
TDN whose values, compared to those of May 2012 and December 2012, are significantly higher in August 2012 and lower
in March 2013. In the case of SOM, the differences between the estimates were less pronounced, with p-value < 0.03.

Also, in the case of DNA, significantly higher values were recorded in hazel groves compared to meadows, with a maximum
difference of +30% in May 2012. Regarding the sampling date, the values for May 2012 (intercept in Tab. 4) and December
2012 were similar and significantly lower than the estimates, also similar between them, of August 2012 and March 2013.
Except for CHIT and PYROP — which were independent from Sampling date — all the other standardised EEAs showed
substantially equivalent seasonal variations, with a significant decrease from May 2012 to August 2012 — from just over -40%
in meadows to less than -20% in hazel groves — followed by relatively constant values, with minima generally recorded in
December 2012 (Tab. 3). This behaviour can be also seen in the error bar graphs in Figure 3, where ACP and EST have been
chosen as the most representative of the EEAs groups influenced or not influenced by vegetation cover throughout the year.
Finally, it is worth noting that according to both Fig. 3 and Tab. 4 all enzymes show in spring an average 40% higher activity

in meadows than in hazel groves.

ACP, nM MUF h-' 1 EST, nM MUF h-' .
3.5- 60 -
3.0 -
50 -
2.5 -
40 -
2.0 -
30 £
1.5 +
May12 Aug12 Dec12 Mar13 May12 Aug12 Dec12 Mar13
-@ Meadows —— Groves
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Figure 3 — Mean and standard error of ARYS and EST recorded in the two vegetation covers and the four sampling dates. Data are

standardized by dsDNA content.

4 Discussion

The factors Vegetation cover and Sampling date were used to investigate the seasonal response of soil biochemical variables
as indicators for the temporal monitoring of meadow and hazel groves habitats in subalpine ecosystems, Vegetation cover
being chosen as indicative of long-term man management of the area, Sampling date as relating to short-term variability driven
by seasonal climate variation.

The selection of a set of indicators for temporal variations in soil processes in the habitats of interest must be based on the type
of information these indicators provide and, all other costs being equal, on their analytical costs. Before selecting the soil
indicators to be monitored, it is therefore crucial to assess the relationships between the potential indicators and the soil
processes that influence SOM and the microbial pool. In our investigation, most variables showed high values in the warmest
and least rainy summer season. In the cold season, instead, two distinct trends appeared. SOM, DOC and TDN continue to
decline until the end of winter, while dsDNA and standardized EEAs decrease to their minimum in early winter and rise to
their maximum in late winter. These trends suggest a partial separation between the overall transformation cycle of organic

matter and the biodegradation of litter by soil microorganisms.

4.1 Soil organic matter, dissolved organic C and total dissolved N

As already observed by Horvath (2007), the soil A horizon in the wooded areas showed a significantly higher content of SOM
than meadows but, despite the homogeneity of climate, humus system and soil type, the SOM dynamics appeared different in
the two habitats. In the hazel groves, the highest SOM content was detected in summer, which corresponds to the period of
greatest faunal activity, particularly that of burrowing earthworm species that fragment the leaf litter and transport organic
materials along the soil profile (Vesterdal et al. 2013). The sharp reduction of SOM in late autumn also suggests that the
incorporation of organic materials into soil is an intense but time-limited process that ends with the arrival of the first snowfall.
In the meadows, where grass litter is more readily decomposable and less variable than leaf litter (Chapman et al. 2006),
incorporation of organic materials is limited because the litter released by roots is already underground, resulting in less marked
variation of SOM. Fluctuations in DOC and TDN are consistent with SOM content across the seasons and their close
relationship — indicated by both Tab. 2 and Tab. 3 — can be explained by the prevalence of organic N in the soluble component
of SOM. From a monitoring point of view, the three variables provide the same type of information, with a higher percentage

of variance explained by DOC and TDN.

11
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4.2 Double stranded DNA

Changes in microbial biomass measured through microbial dsSDNA are likely explainable by seasonal variations in temperature
and moisture, and by nutrient cycles in soil. In their annual life cycle, plants regulate the availability of belowground C and N
through exudation and uptake, inducing shifts in microbial physiology (Koranda et al. 2013). In spring the root systems absorb
nutrients to support the photosynthetic activity (Warren and Adams 2002; Seufert et al. 2019) and the dsDNA minima recorded
in May 2012 suggest a limitation in the growth of microbial biomass caused by the increased competitiveness of plants for N.
On the other hand, the maximum dsDNA abundance is observed while heading to the summer season in concomitance with
high amounts of TOC and TDN.

The second peak of dsDNA at the end of winter and, according to the data of May 2012, its decrease in early spring appears
to be influenced by processes unrelated to plant growth. Comparable peaks in microbial biomass N were recorded in alpine
meadow habitats under late winter snowpack (Lipson et al. 1999; Schmidt and Lipson 2004) and in a beech forest occasionally
covered by snow (Kaiser et al. 2011). All these authors recorded a peak of soluble N in summer and its gradual decrease
towards the winter season and hypothesized that part of the available N would be stored in the soil microbial biomass during
winter and released in spring, when a microbial biomass turnover occurs after snow melt (Schmidt and Lipson 2004). Similar
processes seem to occur in our study, where the peak of dsDNA in late winter coexists with the minimum values of TDN and,
similarly to what we observed in May 2012, we could expect a fast decline in microbial biomass in spring accompanied by an
increase in dissolved N. Based on these considerations, it seems possible to apply to the investigated subalpine meadows and
hazel groves the conceptual model of Schmidt et al. (2007) for seasonal snowed ecosystems, which postulates an autumn/winter
cycle of microbial build-up and immobilization of N into microbial cells fed by plant litter, and a summer cycle mostly fuelled

by plant rhizodeposition.

4.3 Extracellular enzyme activities

In contrast with the variables considered above, the mean values of most EEAs did not change with Vegetation cover and,
according to Tab. 4, only BG, CHIT and EST showed greater activity in meadows than in hazel groves. Differences with the
temporal trend of SOM and soluble C and N also occurred for Sampling date, with relatively constant values in three of them
and a significant reduction in early winter (Figs. 1 and 2).

There are more similarities with the seasonal variation of dsDNA, further supporting indications of PCA that EEAs were linked
to the dynamics of the soil microbial pool, which differed from those governing the SOM cycle. Once the effect of microbial
biomass has been removed through standardisation on dsDNA, EEAs showed a different trend of seasonal change, with
maximum values in spring, a marked decrease in summer and a slight increase in late winter (Fig. 3). This variation support
the hypothesis of Puissant et al. (2015) on a partial decoupling between microbial biomass and enzyme pool attributable to

seasonal changes in soil microbial community structure.
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A second option, which does not exclude the previous one, is that the high values recorded in May 2012 are partly due to an
increased release EEAs by the root systems at a time when plant’s metabolism is at its peak. The sampling strategy we used
did not aim to disaggregate enzyme production of microbial origin from that of the roots, but future research could provide

more detailed answers on this hypothesis.

4.4 Selection of indicators for soil monitoring

The results of the PCA (Tab. 2) provide an initial selection criterion for groups of collinear variables by suggesting a minimum
number of three variables representative of the biochemical and microbiological processes prevalent in subalpine valley floor
soils on coarse alluvium, where meadows are interspersed by hazel-dominated groves.

A further selection within these groups can be based on the results of the linear models shown in Tab. 3, using the effect of
sampling dates and vegetation cover as selection criteria, along with the percentage of explained variance as measured by R?
adjusted (R%qj).

In the case of biochemical variables, DOC and TDN are preferable to SOM because, in addition to responding to the change
in vegetation cover, they are more sensitive to seasonal variations, allowing greater detail on the transformation processes of
organic matter over the course of the year. A further advantage is that they are usually determined sequentially in the same
extract, allowing soluble C and N to be considered together. Regarding costs, instrumentation depreciation and energy
consumption are lower than those for measuring SOM or organic C (if using an elemental C analyser).

As the PCA already suggested, the variables measuring the mass and activity of the soil microbial component show seasonal
trends different between them and distinct from those of the SOM and its soluble fractions. For the soil microbial biomass, we
opted for dsDNA as a proxy for microbial biomass C measured by the fumigation-extraction method of Vance et al. (1987)
because it ensures significantly lower costs by reducing sampling and analysis time by more than 75% (Bragato et al., 2016).
The problem of collinearity with EEAs can then be solved by standardising EEAs on dsDNA — as we have done in the present
investigation — which allows the environmental response of the microbial mass to be separated from the activity of the
extracellular enzymes it produces.

Turning to EEAs, costs are limited because enzyme activities are measured sequentially in the same microplate when using
fluorometric techniques. Costs can be further reduced in the data processing phase by analysing a smaller number of
noncollinear EEAs that can be selected based on the soil nutrient cycles in which they are involved as a further criterion. In
the subalpine ecosystem investigated, the EEAs that best meet this criterion are represented by EST for the C-cycle (higher
R2,qj than BG); LAP for the N-cycle (higher R2,qj than CHIT, which moreover does not vary with the sampling date); ARYS
for the S-cycle; ACP for the P-cycle (higher R%,j than BISP, combined with the lack of variation of ALP and PYROP with the
two variability factors considered).

As regards the most suitable period for sampling, excluding the winter season when snowfall limits access to sites and
lengthens sampling times, the choice depends on the objective pursued by the monitoring: i) analysis of long-term trends with

measures taken annually/every few years; or, ii) shorter-term surveys that also focus on intra-annual variability in soil
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biological and biochemical cycles. Our survey shows that late spring and late summer/early autumn are useful periods, which
also coincide with the two periods of greatest plant activity in continental and humid temperate climates: if the focus is on
intra-annual variations in microbial mass and activity, sampling should be planned for both periods; if, on the other hand, the
main focus is on longer-term trends, it is advisable to choose one of the two periods, taking care to keep the sampling season

constant.

Conclusions

The combination of traditional and most recent biochemical indicators would implement the soil quality assessment in view
of preserving soil from degradation. Although chemical or physical soil indicators remain popular and reliable monitoring
tools of soil threatened by both climatic and anthropogenic activities, an effective and accurate early warning set of indicators
is lacking. The data we have presented would like to illustrate how biochemical indicators could be adopted to investigate the
ecosystem parameters by employing high throughput techniques. They might represent a cost-effective alternative for long-
term longitudinal studies and the space-time monitoring of biological and biochemical processes in pre-alpine and alpine
ecosystems in the future. Such an approach would also be a stimulus to further explore mass-specific enzyme activities to
better understand the dynamics of the microbial pool across the seasons. Moreover, the dsSDNA and enzyme activities could
be used as quantitative parameters for the characterization of humus forms, focusing on their most stable organo-mineral Ah
horizon, therefore partially emancipating the characterization and classification of humus forms from the high inter-annual

variability that characterizes organic horizons.
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