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Abstract 

The complexity of soil organic matter and the multifunctional role of its components on soil processes make the 

characterization of soil ecological status challenging. Due to its ready responsiveness to environmental changes, the soil 10 

microbial community has gained increasing attention for its relationship to the dynamics of C pools and soil chemical and 

physical processes. Its activity can be monitored by the enzymatic profile, which enables the detection of early changes in soil 

status, supported by direct or indirect measurement – e.g., by double-stranded DNA (dsDNA) – of microbial biomass and 

parameters, such as dissolved fractions of C and N, which are linked to soil activity as rapidly available energy sources. This 

study analyzed the seasonal response of these indicators in a subalpine ecosystem, using sampling date and vegetation cover 15 

as predictors capable of capturing long-term and short-term changes in the ecosystem, respectively. Most of the bioindicators 

showed higher values in the warmest and least rainy summer season. In the cold season, two distinct trends were evident: the 

values of dsDNA and enzyme activities decreased to their minimum in early winter and rose to their maximum in late winter, 

while those of soil organic matter (SOM), dissolved C, and N continued to decline until the end of winter. The study also found 

that the dynamics of SOM in the woodland and meadow ecosystems differed, with the former achieving the highest SOM 20 

content during the summer period of greatest plant and faunal activity. Overall, this study suggests that the use of bioindicators 

and high-throughput techniques can contribute to improving soil quality assessment and monitoring. Additionally, they can be 

used to characterize humus forms and motivate the preservation of Alpine meadows and surrounding wooded habitats for their 

non-wood products. 

1 Introduction 25 

Soil monitoring in time has become an important issue since the interest of soil science has focused on the assessment of the 

ecological status of soils. Due to the dynamic nature of the processes involved, soil organic matter (SOM) is one of the main 

objects of monitoring. At the same time, the multifunctional role of organic components that contribute to shape soil dynamics 

requires the determination of numerous, sometimes collinear variables, making the selection of a limited number of them non-
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trivial to address the costs of monitoring (Bünemann et al. 2018). A further aspect to consider is the scale of spatial and 30 

temporal variation of soil processes and the parameters capable of capturing their dynamics. Spatial variation is the result of 

the site specificity of often interlinked soil processes, which in turn are a cause and/or consequence of the high diversity of 

habitats in the ecosystem (Zornoza et al. 2015; Bünemann et al. 2018; Schloter et al. 2018). Although the spatial variability of 

monitoring indicators is well known in soil science, soil monitoring has mainly been planned on a national and regional scale 

(see Bünemann et al. 2018 for references), ignoring the issue of variability in soil processes within and between habitats that 35 

even regional-scale monitoring may fail to capture. 

When monitoring is aimed at providing early indications of changes taking place in the soil status, a parameter with adequate 

sensitivity is soil microbial biomass, which, although accounting for less than 5% of the weight of the SOM (Brookes 2001, 

Bhaduri et al. 2022), significantly influences the dynamics of soil C pools (Blagodatskaya and Kuzyakov 2013; Liang et al. 

2017; Bhaduri et al. 2022) by releasing extracellular enzymes and behaving as a labile reservoir of N, P and S for plant uptake 40 

(Brookes 2001). Hydrolases acting on biopolymers like cellulases (β-glucosidase) and chitinases (N-acetylglucosaminidase) 

are produced by fungi to release simple sugars, thus being respectively involved in C and organic N cycling (Baldrian and 

Štursová 2010; Baldrian 2014). Peptidases like leucine aminopeptidase are released to break down small peptides into their 

constituent amino acids, therefore influencing the rate of organic N mineralization (Sobucki et al. 2021). Phosphorus and sulfur 

cycles are driven by phosphatases (phosphomonoesterase, phosphodiesterase, pyrophosphodiesterase) and sulphatases 45 

(arylsulfatase), the former produced by a broad spectrum of soil organisms, the latter specifically linked to bacterial 

communities (Baldrian and Štursová 2010). 

Given the need for many sampling points, the use of biochemical indicators in soil monitoring requires that their measurement 

should not be expensive and analytically burdensome. Cost reductions have been achieved with assays that characterize soil 

enzymes in terms of abundance, catalysed reaction and activity rate (Baldrian 2009; Nannipieri et al. 2018). In contrast, the 50 

time-consuming measurements of microbial biomass – estimated in 1.32 hours per sampling point for sample collection and 

analysis by Bragato et al. (2016) – sometimes conflict with the sample size required by soil monitoring activities. Over the last 

decade several high-throughput methods were developed for the characterization of the ecological status of the soil system 

employing indicators like enzymatic assays (Fornasier and Margon 2007) and double-stranded DNA (dsDNA) (Fornasier et 

al. 2014). They were tested to investigate the spatial variability of extracellular enzyme activities (EEAs) (Bardelli et al. 2017, 55 

Nadimi-Goki et al. 2018, Cardelli et al. 2019) and microbial biomass (Bragato et al. 2016; Semenov et al. 2018) in systematic 

surveys of different soils and ecosystems. Regarding sampling and analysis times, Bragato et al. (2016) calculated that those 

for dsDNA are about a quarter of those for microbial biomass C (0.29-0.33 hours per sample depending on whether the initial 

sample was air-dry or field-moist, respectively). Based on our experience, similar times are obtained for the measurement of 

enzymatic activities, which have similar extraction procedures and differ in terms of longer measurement times in fluorimetry, 60 

which are largely compensated for by the possibility of measuring a significant number of enzyme activities on the same 

extract. 
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Our study was intended to be preparatory to the planning of space-time designs for soil health monitoring according to the 

hybrid design-based and model-based sampling approach proposed by Brus and de Gruijter (2011). We were specifically 

interested in the selection of soil biochemical indicators useful for monitoring mountain ecosystems managed by man, namely 65 

hay meadows and hazel-dominated groves areas, whose ecological equilibria are changing because of depopulation and the 

abandonment of mixed crops-livestock farming in the mountain (Mazoyer and Roudart, 2002), with the risk of losing an 

ecosystem typical of the Alps. From a soil perspective, hay meadows and forest habitats have provided a continuous supply of 

organic material, making the processes linked to the SOM cycle predominant. However, the transformation dynamics of SOM 

may change between groves and meadows because, even with comparable physical and chemical conditions, substantial 70 

differences in the composition of litter, soil fauna and microbial communities occur (Štursová and Baldrian 2011; Štursová et 

al. 2020). 

Our aim was to assess how variable were some widely used parameters ‒ namely SOM, total dissolved N (TDN) and dissolved 

organic C (DOC) ‒ combined with  biochemical indicators of mass and activity of soil microbial population indicators – i.e. 

dsDNA and EEAs – little used in soil monitoring over time but capable of providing information on the state of the most active 75 

component of the soil and thus able to respond relatively readily to changes in the soil system over time. Our investigation 

considered the vegetation cover and four seasons of a year to define a restricted set of noncollinear parameters with sufficient 

readiness for long-term soil monitoring of subalpine ecosystems of meadows and hazel-dominated groves, whose ecological 

balance is changing following the abandonment of mountain mixed crops-livestock farming.  

2 Materials and methods 80 

2.1 Site description 

The investigation was done in an area of about 32 ha near the village of Cimolais (north-eastern Italy; 46.3°N, 12.5°E) at an 

elevation of 650 m above sea level. The vegetation of the area is linked to the practice of haymaking which is typical of the 

subalpine valleys of north-eastern Italy. Approximately 85% of the area consists of hay meadows dominated by tall oatgrass 

(Arrhenatherum elatius (L.) P. Beauv. ex J. & C. Press). Meadows are separated by linear, 10-20m-wide groves dominated by 85 

European hazelnut (Corylus avellana L.) that were widely propagated in the past to obtain branches, nuts and ties. 

In the period 1961-2010, the average annual temperature was 9.4°C, with average minimum and maximum values of -1.9°C 

and 19.6°C in January and July respectively (ISPRA, 2020). Average annual precipitation is 1613 mm, with peaks in April-

May and October-November. The area was also characterized by a continuous snow cover of 62 days between December and 

February in the period 1973-2009 (ARPA FVG, 2020).  90 

The investigated area is located on a Pleistocene-Holocene fluvioglacial cone surrounded by Triassic reliefs belonging to the 

Dolomia Principale formation. Soil is a Dolomitic Rendzic Leptosol (Arenic, Hyperhumic) (IUSS Working Group WRB 2014) 

with a 18cm-thick A horizon characterized by a gravelly sandy loam texture, pH of 7.3 and 29% organic matter content 
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(Bragato et al. 2019). In agreement with Ponge et al. (2014), it is characterized by an Amphi humus system, which occurs on 

base-rich soils in cold climates with hot summers and cold winters resulting in prolonged periods of biological inactivity. 95 

2.2 Soil sampling and laboratory analyses 

We planned the investigation using Vegetation cover and Sampling date – i.e., seasons – as treatments. The vegetation cover 

was either meadow or hazel groves, and Sampling dates were 23 May, 1 August and 6 December 2012, and 27 March 2013. 

Sampling locations for each combination of vegetation cover and sampling date were randomly selected with a simple random 

sampling design. Sampling sites were located with a Montana 650 pocket GPS detector (Garmin, USA). Soil samples were 100 

collected in the A horizon at a depth of 0-10 cm using a hand-auger for stony soils. Fresh samples were stored in a cooler and 

transported in the laboratory, where they sieved at 3 mm and analysed for total dissolved N and organic C. Briefly, aliquots 

were shaken for 30 min in a 0.5M K2SO4 solution (1, 4 w/v), centrifuged and analysed with an automated elemental TOC-

VCPN analyser (Shimadzu, Japan) and standard solutions for calibration. The samples were then air-dried and sieved to 2 mm 

for all other analyses, which were carried out within a couple of weeks after sample collection. A TGA-601 thermogravimeter 105 

(LECO Corporation, USA) was used to determine SOM as the mass loss at 550 °C (Hoogsteen et al. 2015). The microbial 

biomass was quantified by dsDNA content according to the microplate fluorometric method of Fornasier et al. (2014). An 

amount of 0.3 g of sample was transferred to a 2-mL Eppendorf tube containing 1.4 mL 0.12 M Na3PO4 buffer at pH 8 and a 

mixture of glass beads and ceramic beads. Tubes were bead-beated in a MM 400 beating mill (Retsch, Germany) and 

centrifuged at maximum speed. Supernatants were then diluted ninety times and the dsDNA quantified fluorometrically by 110 

using PicoGreen reagent (Thermo Fischer Scientific, USA) following the manufacturer’s instructions. 

Similarly, soil enzymatic profiles were determined following Fornasier and Margon (2007). Aliquots of 0.3 g were diluted in 

2-mL Eppendorf tube with 1.25 mL solution of Tris-HCl 50mM pH 7.5, 4% lysozyme and a mixture of glass beads and ceramic 

beads. Tubes were then bead-beated and centrifuged. The supernatants were directly transferred into microplates and analysed 

with fluorogenic 4-methylumbelliferyl-based (MUF) substrates for the determination of acid (ACP) and alkaline phosphatase 115 

(ALP), arylsulfatase (ARYS); β-glucosidase (BG); bis-phosphatase (BISP); chitinase (CHIT); esterase (EST); leucine 

aminopeptidase (LAP) and pyro-phosphatase (PYROP). 

2.2 Data analysis 

Data analysis started with the computation of the statistics of variables per sampling date and vegetation cover. Principal 

Component Analysis (PCA) was then performed to assess the degree of correlation between variables and their possible 120 

clustering. The effect of Sampling date and Vegetation cover was in the end assessed with the linear model approach (Venables 

and Ripley 2002). As the residuals of the models were homoscedastic, linear models were fitted using ordinary least squares 

and the best ones chosen according to Akaike's information criterion. Computations were performed with the version 4.0.3 of 

the R software (R Core Team 2020) using the packages Stats for descriptive statistics and PCA; Mass (Venables and Ripley 

2002) for linear modelling, and ggplot2 (Wickham 2016) for graphic sessions. 125 
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3 Results 

The descriptive statistics of SOM, TDN and DOC are reported in Table 1 and in the error bar graphs of  Figure 1.  

 
Table 1 – Mean and standard errors (in parenthesis) of the data partitioned by Sampling date and Vegetation cover (n = 75 for enzyme 

activities; n = 79 for the other variables).  130 
Sampling 

date 

Vegetation 

cover 

SOM DOC TDN dsDNA ARYS ACP ALP BISP PYROP LAP CHIT BG EST 

g kg-1 mg kg-1 nM MUF h-1 g-1 

May 2012 Meadows 220 41 6.7 60 17.1 192 364 58 34 91 5.4 11.7 3,341 

  (8) (2) (0.4) (4) (1.1) (32) (67) (4) (2) (8) (0.6) (1.1) (234) 

 Hazel 236 58 9.5 90 18.0 169 330 51 34 87 3.9 8.4 2,940 

 groves (16) (5) (1.0) (9) (1.7) (36) (70) (4) (5) (8) (0.6) (0.7) (232) 

Aug 2012 Meadows 220 44 7.4 101 17.2 189 330 51 33 95 8.5 10.8 3,113 

  (7) (3) (0.5) (9) (0.7) (22) (40) (2) (3) (7) (0.9) (0.7) (139) 

 Hazel 322 81 11.7 131 23.0 241 362 49 29 121 11.0 9.6 3,244 

 groves (31) (8) (0.8) (13) (1.4) (35) (45) (3) (3) (4) (2.4) (1.3) (135) 

Dec 2012 Meadows 203 51 8.5 72 8.2 103 292 34 33 75 7.9 7.6 1,921 

  (14) (3) (0.5) (5) (1.6) (50) (142) (4) (7) (13) (1.3) (1.4) (206) 

 Hazel 258 64 9.4 84 13.6 129 347 40 24 92 6.6 6.3 1,967 

 groves (24) (7) (1.0) (10) (2.3) (62) (201) (5) (3) (21) (2.6) (1.2) (237) 

Mar 2013 Meadows 170 24 4.3 106 16.5 174 347 50 30 92 7.7 9.9 2,764 

  (12) (2) (0.4) (9) (1.0) (34) (59) (3) (3) (6) (0.9) (0.7) (134) 

 Hazel 206 36 6.0 104 21.0 195 314 50 37 90 7.8 9.4 2,853 

 groves (19) (4) (0.8) (12) (2.4) (62) (77) (4) (6) (13) (1.8) (1.5) (237) 
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Figure 1 – Mean and standard error of SOM and TDN recorded in the two vegetation covers and the four sampling dates.  

 

Since TDN and DOC showed the same seasonal trend, we chose former to represent their trend in Fig. 1. The SOM content 135 

was high in August 2012 and low in March 2013, but its values were notably affected by vegetation cover, with hazel groves 

having 52 g kg-1 more SOM than meadows. Hazel groves also displayed a greater decrease of SOM from summer to winter,  

in meadows the mean value of March 2013 – 170 g kg-1 – was about 23% lower than that of August 2012, while in hazel 

groves the decrease – from 322 g kg-1 – was in the order of 36%. TDN and DOC showed a trend like SOM, with minimum 

values in March 2012 equal to 6.0 and 4.3 mg kg-1 for hazel groves and meadows, respectively. The highest values, on the 140 

other hand, show a temporal deviation between hazel groves and meadows, with the former persisting in August 2012 and the 

latter moving to December 2012. 

Table 1 also shows the dsDNA and EEAs data. In addition, the seasonal trends of dsDNA and ACP are shown as error bar 

graphs in Figure 2, where ACP was chosen as a reference for the pattern of seasonal variation of ARYS, BG, BISP, EST and 

LAP.  145 

 

150

200

250

300

350

SOM, g kg-1

May12 Aug12 Dec12 Mar13

5.0

7.5

10.0

12.5

TDN, mg kg-1

May12 Aug12 Dec12 Mar13

Meadows Groves

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



7 

 

 

Figure 2 – Mean and standard error of dsDNA and ARYS recorded in the two vegetation covers and the four sampling dates.  

The dsDNA showed an alternating seasonal trend, with values around 75 mg kg-1 in May and December 2012 and higher than 

100 mg kg-1 in August 2012 and March 2013 (Fig. 2, left side). The ACP also reached a minimum point in December 2012, 150 

but its values remained relatively constant in the other three sampling dates (Fig. 2, right side).  

The dsDNA, ACP, ARYS and LAP also showed variations in relation to Vegetation cover, with higher values in hazel groves 

on separate dates: dsDNA in May and August 2012; ACP, ARYS and LAP in August 2012. The effect of vegetation cover 

reversed in the case of BG, with higher values in meadows and maximum difference in May 2012. Finally, the enzymes ALP, 

CHIT and PYROP were highly variable, therefore showing no variation in relation to either Sampling date or Vegetation cover. 155 

The relations between variables observed in Tab. 1 are also supported by the results of PCA in Table 2.  
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Table 2 – Variance and factor loadings of the Principal Component Analysis. Variables are ordered according to the factor loadings of the 

three components. 160 

 PC1 PC2 PC3 

Variance 5.79 2.50 1.34 

Relative variance, % 44.6 19.3 10.3 

Factor loadings  

ACP 0.90 -0.13 -0.27 

EST 0.89 -0.22 -0.09 

ARYS 0.88 -0.03 -0.25 

LAP 0.86 -0.03 -0.06 

BG 0.80 -0.27 -0.10 

BISP 0.75 -0.40  0.34 

dsDNA 0.66  0.27 -0.30 

DOC 0.22  0.89  0.18 

TDN 0.29  0.87  0.26 

SOM 0.55  0.71 -0.02 

ALP 0.44 -0.21  0.73 

PYROP 0.49 -0.15  0.55 

CHIT 0.42  0.07 -0.18 

 

The highest loadings in PC1 component concerned six of the nine EEAs and dsDNA, while PC2 was linked to SOM and the 

soluble fractions of C and N. Finally, PC3 was mainly connected to ALP and PYROP. The first two components also suggest 

the influence of distinct environmental factors, attributable to microbial community dynamics for PC1 and biochemical 

processes involving soil organic matter for  PC2. 165 

Data analysis ended with linear modelling. Since EEAs are correlated with dsDNA (Tab. 2) as they are at least partly a product 

of the soil microbial pool (Moorhead et al., 2013), we have standardised them on dsDNA before linear model analysis. The 

resulting statistics are reported in Table 3.  
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Table 3 – Mean and standard errors (in parenthesis) of the enzyme activities standardised to dsDNA partitioned by Sampling  170 
date and Vegetation cover (n = 75).  

Sampling 

date 

Vegetation 

cover 

ARYS ACP ALP BISP PYROP LAP CHIT BG EST 

nM MUF h-1 mg-1 dsDNA 

May 2012 Meadows 0.30 3.32 6.3 1.01 0.61 1.56 0.10 0.21 58 

  (0.03) (0.24) (0.5) (0.08) (0.07) (0.13) (0.02) (0.03) (5) 

 Hazel 0.21 1.99 3.8 0.59 0.37 1.01 0.04 0.10 34 

 groves (0.02) 0.17) (0.3) (0.05) (0.02) (0.08) (0.01) (0.01) (2) 

Aug 2012 Meadows 0.18 2.00 3.5 0.53 0.32 0.99 0.09 0.11 32 

  (0.01) (0.17) (0.3) (0.04) (0.01) (0.09) (0.01) (0.01) (2) 

 Hazel 0.18 1.86 2.8 0.38 0.22 0.94 0.08 0.08 25 

 groves (0.02) (0.20) (0.3) (0.04) (0.02) (0.10) (0.02) (0.01) (3) 

Dec 2012 Meadows 0.11 1.41 4.5 0.49 0.58 1.22 0.13 0.12 28 

  (0.02) (0.17) (0.9) (0.05) (0.23) (0.37) (0.04) (0.03) (3) 

 Hazel 0.15 1.46 5.3 0.61 0.36 0.91 0.05 0.07 24 

 groves (0.02) (0.12) (1.9) (0.20) (0.12) (0.08) (0.02) (0.01) (2) 

Mar 2013 Meadows 0.17 1.73 3.4 0.50 0.30 0.90 0.08 0.10 27 

  (0.02) (0.18) (0.3) (0.05) (0.04) (0.07) (0.01) (0.01) (3) 

 Hazel 0.22 2.02 3.4 0.53 0.39 0.90 0.08 0.09 30 

 groves (0.01) (0.07) (0.3) (0.03) (0.04) (0.05) (0.01) (0.01) (2) 

 

The parameters of the best-fitted models are shown in Table 4, where the states of the factors Sampling date and Vegetation 

cover are compared with the first one of the series – meadows on May 2012 – which, according to the conventions of the 

MASS package, are reported as model intercept. Estimates with a p-value <0.01 are marked in bold in the Table. 175 

 

Table 4 – Linear models relating the variables with Sampling date and Vegetation cover (n = 75 for enzyme activities; n = 79 for the other 

variables). In bold the estimates of regression parameters significant at p < 0.01. Enzyme activities are standardised on dsDNA. 

Factor  

levels 

SOM DOC TDN dsDNA ARYS ACP ALP BISP PYROP LAP CHIT BG EST 

g kg-1 mg kg-1 nM MUF h-1 mg-1 dsDNA 

Intercept 203 40 6.8 66  0.25  2.7 5.1  0.86 0.40 1.4 0.10  0.18 50 

 (14) (4)  (0.6) (7)  (0.01)  (0.1)  (0.6)  (0.07) (0.04)  (0.7) (0.01)  (0.01)  (3) 

Aug 2012  41   13  1.8 41  -0.08   -0.8   -1.9 -0.35    -0.4  -0.06 -18 

  (18)   (5)  (0.8) (9)  (0.02)   (0.2)   (0.9)  (0.10)    (0.2)   (0.02)  (3) 

Dec 2012    1   8  0.8 4 -0.12 -1.2 -0.2 -0.26  -0.2  -0.06 -21 

  (18)   (5)  (0.8) (9)  (0.02)   (0.2)   (0.8)  (0.09)    (0.2)   (0.02)  (3) 

Mar 2013 -41 -20 -3.0 31  -0.07  -0.8  -1.7  -0.29   -0.4   -0.06 - 18 

  (18)   (5)  (0.8) (9)  (0.02)  (0.1)  (0.8)  (0.09)   (0.2)   (0.02)  (3) 

Hazel   52   19  2.6 17       -0.04 -0.05 -8 

groves  (13)   (4)  (0.5) (7)       (0.01)  (0.01)  (2) 

R2
adj 0.29 0.50 0.45 0.29 0.36 0.32 0.06 0.16 - 0.09 0.07 0.30 0.46 
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 180 

As already suggested by PCA, SOM, DOC, and TDN showed comparable trends, although noticeably different from that of 

enzyme activities and dsDNA. They displayed significantly higher values in hazel groves compared to meadows, with the 

greatest difference being found in August 2012 (Fig. 1). Linear modelling confirms the link of Sampling date with DOC and 

TDN whose values, compared to those of May 2012 and December 2012, are significantly higher in August 2012 and lower 

in March 2013. In the case of SOM, the differences between the estimates were less pronounced, with p-value < 0.03. 185 

Also, in the case of DNA, significantly higher values were recorded in hazel groves compared to meadows, with a maximum 

difference of +30% in May 2012. Regarding the sampling date, the values for May 2012 (intercept in Tab. 4) and December 

2012 were similar and significantly lower than the estimates, also similar between them, of August 2012 and March 2013. 

Except for CHIT and PYROP – which were independent from Sampling date – all the other standardised EEAs showed 

substantially equivalent seasonal variations, with a significant decrease from May 2012 to August 2012 – from just over -40% 190 

in meadows to less than -20% in hazel groves – followed by relatively constant values, with minima generally recorded in 

December 2012 (Tab. 3). This behaviour can be also seen in the error bar graphs in Figure 3, where ACP and EST have been 

chosen as the most representative of the EEAs groups influenced or not influenced by vegetation cover throughout the year. 

Finally, it is worth noting that according to both Fig. 3 and Tab. 4 all enzymes show in spring an average 40% higher activity 

in meadows than in hazel groves. 195 
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Figure 3 – Mean and standard error of ARYS and EST recorded in the two vegetation covers and the four sampling dates. Data are 

standardized by dsDNA content. 

4 Discussion 200 

The factors Vegetation cover and Sampling date were used to investigate the seasonal response of soil biochemical variables 

as indicators for the temporal monitoring of meadow and hazel groves habitats in subalpine ecosystems, Vegetation cover 

being chosen as indicative of long-term man management of the area, Sampling date as relating to short-term variability driven 

by seasonal climate variation.  

The selection of a set of indicators for temporal variations in soil processes in the habitats of interest must be based on the type 205 

of information these indicators provide and, all other costs being equal, on their analytical costs. Before selecting the soil 

indicators to be monitored, it is therefore crucial to assess the relationships between the potential indicators and the soil 

processes that influence SOM and the microbial pool. In our investigation, most variables showed high values in the warmest 

and least rainy summer season. In the cold season, instead, two distinct trends appeared. SOM, DOC and TDN continue to 

decline until the end of winter, while dsDNA and standardized EEAs decrease to their minimum in early winter and rise to 210 

their maximum in late winter. These trends suggest a partial separation between the overall transformation cycle of organic 

matter and the biodegradation of litter by soil microorganisms. 

4.1 Soil organic matter, dissolved organic C and total dissolved N 

As already observed by Horvath (2007), the soil A horizon in the wooded areas showed a significantly higher content of SOM 

than meadows but, despite the homogeneity of climate, humus system and soil type, the SOM dynamics appeared different in 215 

the two habitats. In the hazel groves, the highest SOM content was detected in summer, which corresponds to the period of 

greatest faunal activity, particularly that of burrowing earthworm species that fragment the leaf litter and transport organic 

materials along the soil profile (Vesterdal et al. 2013). The sharp reduction of SOM in late autumn also suggests that the 

incorporation of organic materials into soil is an intense but time-limited process that ends with the arrival of the first snowfall. 

In the meadows, where grass litter is more readily decomposable and less variable than leaf litter (Chapman et al. 2006), 220 

incorporation of organic materials is limited because the litter released by roots is already underground, resulting in less marked 

variation of SOM. Fluctuations in DOC and TDN are consistent with SOM content across the seasons and their close 

relationship – indicated by both Tab. 2 and Tab. 3 – can be explained by the prevalence of organic N in the soluble component 

of SOM. From a monitoring point of view, the three variables provide the same type of information, with a higher percentage 

of variance explained by DOC and TDN. 225 
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4.2 Double stranded DNA 

Changes in microbial biomass measured through microbial dsDNA are likely explainable by seasonal variations in temperature 

and moisture, and by nutrient cycles in soil. In their annual life cycle, plants regulate the availability of belowground C and N 

through exudation and uptake, inducing shifts in microbial physiology (Koranda et al. 2013). In spring the root systems absorb 

nutrients to support the photosynthetic activity (Warren and Adams 2002; Seufert et al. 2019) and the dsDNA minima recorded 230 

in May 2012 suggest a limitation in the growth of microbial biomass caused by the increased competitiveness of plants for N. 

On the other hand, the maximum dsDNA abundance is observed while heading to the summer season in concomitance with 

high amounts of TOC and TDN. 

The second peak of dsDNA at the end of winter and, according to the data of May 2012, its decrease in early spring appears 

to be influenced by processes unrelated to plant growth. Comparable peaks in microbial biomass N were recorded in alpine 235 

meadow habitats under late winter snowpack (Lipson et al. 1999; Schmidt and Lipson 2004) and in a beech forest occasionally 

covered by snow (Kaiser et al. 2011). All these authors recorded a peak of soluble N in summer and its gradual decrease 

towards the winter season and hypothesized that part of the available N would be stored in the soil microbial biomass during 

winter and released in spring, when a microbial biomass turnover occurs after snow melt (Schmidt and Lipson 2004). Similar 

processes seem to occur in our study, where the peak of dsDNA in late winter coexists with the minimum values of TDN and, 240 

similarly to what we observed in May 2012, we could expect a fast decline in microbial biomass in spring accompanied by an 

increase in dissolved N. Based on these considerations, it seems possible to apply to the investigated subalpine meadows and 

hazel groves the conceptual model of Schmidt et al. (2007) for seasonal snowed ecosystems, which postulates an autumn/winter 

cycle of microbial build-up and immobilization of N into microbial cells fed by plant litter, and a summer cycle mostly fuelled 

by plant rhizodeposition. 245 

4.3 Extracellular enzyme activities 

In contrast with the variables considered above, the mean values of most EEAs did not change with Vegetation cover and, 

according to Tab. 4, only BG, CHIT and EST showed greater activity in meadows than in hazel groves. Differences with the 

temporal trend of SOM and soluble C and N also occurred for Sampling date, with relatively constant values in three of them 

and a significant reduction in early winter (Figs. 1 and 2).  250 

There are more similarities with the seasonal variation of dsDNA, further supporting indications of PCA that EEAs were linked 

to the dynamics of the soil microbial pool, which differed from those governing the SOM cycle. Once the effect of microbial 

biomass has been removed through standardisation on dsDNA, EEAs showed a different trend of seasonal change, with 

maximum values in spring, a marked decrease in summer and a slight increase in late winter (Fig. 3). This variation support 

the hypothesis of Puissant et al. (2015) on a partial decoupling between microbial biomass and enzyme pool attributable to 255 

seasonal changes in soil microbial community structure. 
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A second option, which does not exclude the previous one, is that the high values recorded in May 2012 are partly due to an 

increased release EEAs by the root systems at a time when plant’s metabolism is at its peak. The sampling strategy we used 

did not aim to disaggregate enzyme production of microbial origin from that of the roots, but future research could provide 

more detailed answers on this hypothesis. 260 

4.4 Selection of indicators for soil monitoring 

The results of the PCA (Tab. 2) provide an initial selection criterion for groups of collinear variables by suggesting a minimum 

number of three variables representative of the biochemical and microbiological processes prevalent in subalpine valley floor 

soils on coarse alluvium, where meadows are interspersed by hazel-dominated groves. 

A further selection within these groups can be based on the results of the linear models shown in Tab. 3, using the effect of 265 

sampling dates and vegetation cover as selection criteria, along with the percentage of explained variance as measured by R2 

adjusted (R2
adj). 

In the case of biochemical variables, DOC and TDN are preferable to SOM because, in addition to responding to the change 

in vegetation cover, they are more sensitive to seasonal variations, allowing greater detail on the transformation processes of 

organic matter over the course of the year. A further advantage is that they are usually determined sequentially in the same 270 

extract, allowing soluble C and N to be considered together. Regarding costs, instrumentation depreciation and energy 

consumption are lower than those for measuring SOM or organic C (if using an elemental C analyser). 

As the PCA already suggested, the variables measuring the mass and activity of the soil microbial component show seasonal 

trends different between them and distinct from those of the SOM and its soluble fractions. For the soil microbial biomass, we 

opted for dsDNA as a proxy for microbial biomass C measured by the fumigation-extraction method of Vance et al. (1987) 275 

because it ensures significantly lower costs by reducing sampling and analysis time by more than 75% (Bragato et al., 2016). 

The problem of collinearity with EEAs can then be solved by standardising EEAs on dsDNA – as we have done in the present 

investigation – which allows the environmental response of the microbial mass to be separated from the activity of the 

extracellular enzymes it produces. 

Turning to EEAs, costs are limited because enzyme activities are measured sequentially in the same microplate when using 280 

fluorometric techniques. Costs can be further reduced in the data processing phase by analysing a smaller number of 

noncollinear EEAs that can be selected based on the soil nutrient cycles in which they are involved as a further criterion. In 

the subalpine ecosystem investigated, the EEAs that best meet this criterion are represented by EST for the C-cycle (higher 

R2
adj than BG); LAP for the N-cycle (higher R2

adj than CHIT, which moreover does not vary with the sampling date); ARYS 

for the S-cycle; ACP for the P-cycle (higher R2
adj than BISP, combined with the lack of variation of ALP and PYROP with the 285 

two variability factors considered). 

As regards the most suitable period for sampling, excluding the winter season when snowfall limits access to sites and 

lengthens sampling times, the choice depends on the objective pursued by the monitoring: i) analysis of long-term trends with 

measures taken annually/every few years; or, ii) shorter-term surveys that also focus on intra-annual variability in soil 
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biological and biochemical cycles. Our survey shows that late spring and late summer/early autumn are useful periods, which 290 

also coincide with the two periods of greatest plant activity in continental and humid temperate climates: if the focus is on 

intra-annual variations in microbial mass and activity, sampling should be planned for both periods; if, on the other hand, the 

main focus is on longer-term trends, it is advisable to choose one of the two periods, taking care to keep the sampling season 

constant.  

Conclusions 295 

The combination of traditional and most recent biochemical indicators would implement the soil quality assessment in view 

of preserving soil from degradation. Although chemical or physical soil indicators remain popular and reliable monitoring 

tools of soil threatened by both climatic and anthropogenic activities, an effective and accurate early warning set of indicators 

is lacking. The data we have presented would like to illustrate how biochemical indicators could be adopted to investigate the 

ecosystem parameters by employing high throughput techniques. They might represent a cost-effective alternative for long-300 

term longitudinal studies and the space-time monitoring of biological and biochemical processes in pre-alpine and alpine 

ecosystems in the future. Such an approach would also be a stimulus to further explore mass-specific enzyme activities to 

better understand the dynamics of the microbial pool across the seasons. Moreover, the dsDNA and enzyme activities could 

be used as quantitative parameters for the characterization of humus forms, focusing on their most stable organo-mineral Ah 

horizon, therefore partially emancipating the characterization and classification of humus forms from the high inter-annual 305 

variability that characterizes organic horizons. 

Data availability 

All raw data can be provided by the corresponding author upon rerquest. 

Author contributions 

NG: investigation, validation, writing (original draft – equal, review and editing – equal). FF: investigation. GB: 310 

conceptualization, methodology, supervision, formal analysis, writing (original draft – equal, review and editing – equal). All 

authors read, commented and approved the final manuscript. 

Competing interests 

The authors declare that they have no conflict of interest. 

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



15 

 

Acknowledgements 315 

We thank Ms. Emanuela Vida for her help with all laboratory measurements. We are also grateful to Prof. M. De Nobili, 

University of Udine, for her helpful comments on the draft version of the manuscript. 

Financial support 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. 

References 320 

ARPA FVG: Clima FVG https://www.meteo.fvg.it/clima.php?In= (last access: 12 March 2020), 2020. 

Baldrian, P.: Microbial enzyme-catalyzed processes in soils and their analysis, Plant, Soil Environ., 55, 370–378. 

https://doi.org/10.17221/134/2009-PSE, 2009. 

Baldrian, P.: Distribution of Extracellular Enzymes in Soils,  Spatial heterogeneity and determining factors at various scales, 

Soil Sci. Soc. Am. J., 78, 11–18, https://doi.org/10.2136/sssaj2013.04.0155dgs, 2014. 325 

Baldrian, P. and Štursová M.: Enzymes in Forest Soils, in: Soil Enzymology, edited by Shukla, G. and Varma, A., Soil Biol., 

vol 22, Springer, https://doi.org/10.1007/978-3-642-14225-3_4, 2010. 

Bardelli, T., Gómez-Brandón, M., Ascher-Jenull, J., Fornasier, F., Arfaioli, P., Francioli, D., Egli, M., Sartori, G., Insam, H. 

and Pietramellara, G.: Effects of slope exposure on soil physico-chemical and microbiological properties along an altitudinal 

climosequence in the Italian Alps, Sci. Total Environ., 575, 1041–1055, https://doi.org/10.1016/j.scitotenv.2016.09.176, 2017. 330 

Bhaduri, D., Sihi, D., Bhowmik, A., Verma, B.C., Munda, S. and Dari, B.: A review on effective soil health bio-indicators for 

ecosystem restoration and sustainability, Front. Microbiol., 13, 938481, https://doi.org/10.3389/fmicb.2022.938481, 2022. 

Blagodatskaya E. and Kuzyakov Y.: Active microorganisms in soil,  critical review of estimation criteria and approaches, Soil 

Biol. Biochem., 67, 192–211, https://doi.org/10.1016/j.soilbio.2013.08.024, 2013. 

Bragato, G., Fornasier, F. and Brus, D.J.: Characterization of soil fertility and soil biodiversity with dsDNA as a covariate in 335 

a regression estimator for mean microbial biomass C, Eur. J. Soil Sci., 67, 827–834, https://doi.org/10.1111/ejss.12387, 2016. 

Brookes, P.: The Soil Microbial Biomass,  Concept, Measurement and Applications in Soil Ecosystem Research. Microbes 

Environ., 16, 131–140, https://doi.org/10.1264/jsme2.2001.131, 2001. 

Brus, D.J., de Gruijter, J.J: Design-based Generalized Least Squares estimation of status and trend of soil properties from 

monitoring data, Geoderma, 164, 172–180, https://doi.org/10.1016/j.geoderma.2011.06.001, 2011. 340 

Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T.W., 

Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W. and Brussaard, L.: Soil quality – A critical review. Soil Biol. 

Biochem., 120, 105–125, https://doi.org/10.1016/j.soilbio.2018.01.030, 2018. 

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



16 

 

Cardelli, V., De Feudis, M., Fornasier, F., Massaccesi, L., Cocco, S., Agnelli, A., Weindorf, D.C. and Corti, G.: Changes of 

topsoil under Fagus sylvatica along a small latitudinal-altitudinal gradient, Geoderma, 344, 164–178, 345 

https://doi.org/10.1016/j.geoderma.2019.01.043, 2019. 

Chapman, S.K., Langley, J.A., Hart, S.C. and Koch, G.W.: Plants actively control nitrogen cycling,  Uncorking the microbial 

bottleneck, New Phytol., 169, 27–34, https://doi.org/10.1111/j.1469-8137.2005.01571.x, 2006. 

Fornasier, F. and Margon, A.: Bovine serum albumin and Triton X-100 greatly increases phosphomonoesterases and 

arylsulphatase extraction yield from soil. Soil Biol. Biochem., 39, 2682–2684, https://doi.org/10.1016/j.soilbio.2007.04.024, 350 

2007. 

Fornasier, F., Ascher, J., Ceccherini, M.T., Tomat, E. and Pietramellara, G.: A simplified rapid, low-cost and versatile DNA-

based assessment of soil microbial biomass. Ecol. Indic., 45, 75–82, https://doi.org/10.1016/j.ecolind.2014.03.028, 2014. 

Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, J.C.J. and Tittonell, P.A.: Estimating soil organic carbon through loss 

on ignition,  effects of ignition conditions and structural water loss, Eur. J. Soil Sci., 66, 320–328, 355 

https://doi.org/10.1111/ejss.12224, 2015. 

Horwath, W.: Carbon cycling and formation of soil organic matter, in: Soil microbiology, ecology and biochemistry, third ed., 

edited by: Paur E.A., Elsevier, Amsterdam. pp. 303–339, https://doi.org/10.1016/B978-0-08-047514-1.50016-0, 2007. 

ISPRA: Sistema nazionale per l'elaborazione e diffusione di dati climatici, Serie temporali, 

https://scia.isprambiente.it/servertsutm/serietemporali400.php (last access: 12 March 2020), 2020. 360 

IUSS Working Group WRB: World Reference Base for Soil Resources 2014. International soil classification system for 

naming soils and creating legends for soil maps, World Soil Resources Reports No. 106, FAO, Rome, 2014. 

Kaiser, C., Fuchslueger, L., Koranda, M., Gorfer, M., Stange, C.F., Kitzler, B., Rasche, F., Strauss, J., Sessitsch, A., 

Zechmeister-Boltenstern, S. and Richter, A.: Plants control the seasonal dynamics of microbial N cycling in a beech forest soil 

by belowground C allocation, Ecology, 92, 1036–1051, https://doi.org/10.1890/10-1011.1, 2011. 365 

Koranda, M., Kaiser, C., Fuchslueger, L., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S. and Richter, A.: Seasonal 

variation in functional properties of microbial communities in beech forest soil, Soil Biol. Biochem., 60, 95–104, 

https://doi.org/10.1016/j.soilbio.2013.01.025, 2013. 

Liang, C., Schimel, J.P. and Jastrow, J.D.: The importance of anabolism in microbial control over soil carbon storage, Nat. 

Microbiol., 2, 17105, https://doi.org/10.1038/nmicrobiol.2017.105, 2017. 370 

Lipson, D.A., Schmidt, S.K. and Monson, R.K.: Links between microbial population dynamics and nitrogen availability in an 

alpine ecosystem, Ecology, 80, 1623–1631, https://doi.org/10.1890/0012-9658(1999)080[1623:LBMPDA]2.0.CO;2, 1999. 

Mazoyer, M. and Roudart: Histoire des agricultures du monde: du néolithique à la crise contemporaine, Histoire, Éditions du 

Seuil, 2002. 

Moorhead, D.L., Rinkes, Z.L., Sinsabaugh, R.L. and Weintraub, M.N.: Dynamic relationships between microbial biomass, 375 

respiration, inorganic nutrients and enzyme activities,  Informing enzyme-based decomposition models, Front. Microbiol. 4, 

1–12, https://doi.org/10.3389/fmicb.2013.00223, 2013. 

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



17 

 

Nadimi-Goki, M., Bini, C., Wahsha, M., Kato, Y., Fornasier, F., 2018. Enzyme dynamics in contaminated paddy soils under 

different cropping patterns (NE Italy). J. Soils Sediments 18, 2157–2171, https://doi.org/10.1007/s11368-017-1830-1 

Nannipieri, P., Trasar-Cepeda, C. and Dick, R.P.: Soil enzyme activity,  a brief history and biochemistry as a basis for 380 

appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19, https://doi.org/10.1007/s00374-017-1245-6, 2018. 

Ponge, J.F., Sartori, G., Garlato, A., Ungaro, F., Zanella, A., Jabiol, B. and Obber, S.: The impact of parent material, climate, 

soil type and vegetation on Venetian forest humus forms, A direct gradient approach, Geoderma, 226–227, 290–299, 

https://doi.org/10.1016/j.geoderma.2014.02.022, 2014. 

Puissant, J., Cécillon, L., Mills, R.T.E., Robroek, B.J.M., Gavazov, K., De Danieli, S., Spiegelberger, T., Buttler, A. and Brun, 385 

J.J.: Seasonal influence of climate manipulation on microbial community structure and function in mountain soils. Soil Biol. 

Biochem., 80, 296–305, https://doi.org/10.1016/j.soilbio.2014.10.013, 2015. 

R Core Team: R, A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, 

Austria, URL https://www.R-project.org/, 2020. 

Schloter, M., Nannipieri, P., Sørensen, S.J. and van Elsas, J.D.: Microbial indicators for soil quality, Biol. Fertil. Soils, 54, 1–390 

10, https://doi.org/10.1007/s00374-017-1248-3, 2018. 

Schmidt, S.K., Lipson, D.A.: Microbial growth under the snow,  Implications for nutrient and allelochemical availability in 

temperate soils, Plant Soil, 259, 1–7, https://doi.org/10.1023/B, PLSO.0000020933.32473.7e, 2004. 

Schmidt, S.K., Costello, E.K., Nemergut, D.R., Cleveland, C.C., Reed, S.C., Weintraub, M.N., Meyer, A.F. and Martin, A.M.: 

Biogeochemical consequences of rapid microbial turnover. Ecology, 88, 1379–1385, https://doi.org/10.1890/06-0164, 2007. 395 

Semenov, M., Blagodatskaya, E., Stepanov, A. and Kuzyakov, Y.: DNA-based determination of soil microbial biomass in 

alkaline and carbonaceous soils of semi-arid climate, J. Arid Environ., 150, 54–61, 

https://doi.org/10.1016/j.jaridenv.2017.11.013, 2018. 

Seufert, V., Granath, G. and Müller, C.: A meta-analysis of crop response patterns to nitrogen limitation for improved model 

representation, PLoS ONE, 14, 1–25, https://doi.org/10.1371/journal.pone.0223508, 2019. 400 

Sobucki, L., Ramos, R.F., Meireles, L.A., Antoniolli, Z.I. and Jacques, R.J.S.: Contribution of enzymes to soil quality and the 

evolution of research in Brazil, Rev. Bras. Ciência do Solo, 45, 1–18, https://doi.org/10.36783/18069657rbcs20210109, 2021. 

Štursová, M. and Baldrian, P.: Effects of soil properties and management on the activity of soil organic matter transforming 

enzymes and the quantification of soil-bound and free activity, Plant Soil, 338, 99–110, https://doi.org/10.1007/s11104-010-

0296-3, 2011. 405 

Štursová, M., Kohout, P., Human, Z.R. and Baldrian, P.: Production of fungal mycelia in a temperate coniferous forest shows 

distinct seasonal patterns, J. Fungi, 6, 1–14, https://doi.org/10.3390/jof6040190, 2020. 

Vance, E.D., Brookes, P.C. and Jenkinson, D.S.: An extraction method for measuring soil microbial biomass C, Soil Biol. 

Biochem., 19, 703–707, https://doi.org/10.1016/0038-0717(87)90051-4, 1987. 

Venables, W.N. and Ripley, B.D.: Linear statistical models, in: Modern Applied Statistics with S, edited by: Venables, W.N., 410 

Ripley, B.D., Statistics and Computing, Springer, pp. 139–181, https://doi.org/10.1007/978-0-387-21706-2_6, 2002. 

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.



18 

 

Vesterdal, L., Clarke, N., Sigurdsson, B.D. and Gundersen, P.: Do tree species influence soil carbon stocks in temperate and 

boreal forests? For. Ecol. Manage., 309, 4–18, https://doi.org/10.1016/j.foreco.2013.01.017, 2013. 

Warren, C.R. and Adams, M.A.: Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster, Tree 

Physiol., 22, 11–19, https://doi.org/10.1093/treephys/22.1.11, 2002. 415 

Wickham, H.: ggplot2,  elegant graphics for data analysis. Springer Verlag, New York, https://ggplot2.tidyverse.org, 2016. 

Zornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G, Toledo, D.M. and Faz, A.: Identification of sensitive indicators to 

assess the interrelationship between soil quality, management practices and human health, Soil, 1, 173–185, 

https://doi.org/10.5194/soil-1-173-2015, 2015. 

 420 

https://doi.org/10.5194/egusphere-2026-250
Preprint. Discussion started: 6 February 2026
c© Author(s) 2026. CC BY 4.0 License.


