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Abstract. Sediment yields from fluvial networks to the global oceans impact land carbon and nutrient cycles and are susceptible

to climate, population, and vegetation changes. The Congo River Basin is a frontier for population and land use change, but

sediment yield dynamics are poorly constrained within its basin, in particular within its largest tributary, the Kasaï River. To

address this, we aimed to (1) introduce a spatially flexible methodology for estimating sediment yield from remote sensing

monitoring, (2) establish a budget for the Congo and Kasaï river basins from both major and secondary tributaries, and (3)5

better constrain depositional losses of sediment during transit in the mainstem. A random forest model was calibrated on

Landsat-8 spectral data, and total suspended sediment was accurately predicted (measured vs. predicted R2 = 0.79), though

predictions degraded in highly turbid waters due to spectral saturation. A sediment budget of the Congo River revealed that

33.0 Tg yr−1 are exported to the coastal ocean. Most sediment is derived from Congo River headwaters, the Kasaï River, the

Oubangui River, and the Aruwimi River, whereas lower-order tributaries contributed 10% of all sediment inputs. Meanwhile,10

major contributors to the Kasaï budget (export = 11.1 Tg yr−1) were the Kasaï headwaters, Sankuru, and Kwango-Kwilu rivers.

Finally, we found the Cuvette Centrale, a peatland-dominated depression, to be a depositional hotspot, and we estimated its net

sediment deposition to be between 5.96 Tg yr−1 and 9.4 Tg yr−1. By monitoring Congo River Basin sediment transport, we

aim to provide a better understanding of the Earth-surface processes occurring in a globally significant and rapidly changing

watershed that lacks crucial baseline information on its sediment and carbon cycles.15

1 Introduction

The movement of sediment through the land system involves multiple processes including soil erosion, mass wasting, channel

erosion, and floodplain storage (de Vente and Poesen, 2005; de Vente et al., 2007). The complex dynamics of these processes

are integrated into fluvial networks as sediment yield, which (per geomorphological convention) refers to the total mass of

sediment exported from a catchment per unit time. Sediment export is tightly linked to the carbon balance, because sediments20
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transport and transform carbon across the land–water continuum (Regnier et al., 2013; Van Oost and Six, 2023). As such,

sediment yield is an indicator of the land’s soil and water health, and carbon and nutrient balances (Lal, 2003; Syvitski et al.,

2005). Sediment yield from global fluvial systems to the oceans is estimated at 17.3 (13.6-20) Pg yr−1 (Syvitski et al., 2022).

Total export of carbon to the oceans is estimated to be 1.02 Pg yr−1 while particulate organic carbon (POC) is estimated to be

exported at a rate of 0.18 Pg yr−1 and is associated with sediment dynamics (Ludwig et al., 1996; Liu et al., 2024). Sediment25

yield is controlled by multiple factors including lithology and geology, basin topography, vegetation, rainfall, and human

impacts (Syvitski and Milliman, 2007). Moreover, anthropogenically induced erosion has increased global sediment yield by

∼200% (1950-2010), a major part of which is caused by agriculture, because erosion within croplands is on average 4 times

faster than global erosion (Borrelli et al., 2017; Syvitski et al., 2005, 2022). While sediment yield has increased, anthropogenic

impacts have decreased fluvial sediment delivery to the oceans (15.7 to 8.5 Pg yr−1 from 1950 to 2010) as building dams and30

reservoirs favors deposition within river networks (Syvitski and Milliman, 2007; Syvitski et al., 2022; Walling and Fang, 2003).

Despite these global trends, several areas remain understudied because in situ studies are both costly and difficult to imple-

ment. Of particular interest here is the Congo River Basin (CRB); it is the second largest basin in the world, draining a globally

significant tropical forest (Xu et al., 2017) and extensive peatlands (Dargie et al., 2017), while being largely unimpacted by

dams and reservoirs (Grill et al., 2019). Furthermore, it is undergoing a demographic explosion that is projected to increase35

the population five-fold within 100 years (United Nations Department of Economic and Social Affairs, 2024); this will drive a

rapid land-use transition to agriculture, which in turn will increase soil erosion and is likely to substantially impact sediment

yields. Assessing the future evolution of sediment dynamics (and consequently nutrient and carbon dynamics) in the CRB re-

quires a quantified baseline understanding of different sediment transport pathways. We identified three key gaps in the current

body of knowledge on sediment transport.40

First, in contrast to sediment yield at the mouth of the CRB—which is well monitored since the 1980s (Moukandi N’kaya

et al., 2020)—relatively little is known about the magnitude of particulate export from the diverse tropical landscapes within the

interior of the CRB. Still, CRB sediment budgets have estimated contributions of three major Congo River tributaries (Kasaï,

Oubangui, Sangha) from in situ monitoring data (Laraque et al., 2009; Coynel et al., 2005; Bouillon et al., 2014) and from a

soil erosion model (Datok et al., 2021). Additional monitoring data reveals contributions from other tributaries such as the Ruki45

(Drake et al., 2023), the Aruwimi, and the Lomami rivers (Tshimanga et al., 2022). Moreover, sediment yield data is patchy

and lacking in temporal consistency, both in duration and observation period. This lack of source-to-sink understanding of how

various geomorphic processes operate on diverse landscapes within the basin hinders our ability to assess how future changes

may affect sediment and carbon storage within the CRB.

Second, the Kasaï River Basin is virtually unstudied in terms of sediment yields (Laraque et al., 2009; Tshimanga et al.,50

2022) despite being the largest tributary of the Congo River and a frontier of anthropogenic impact (Center For International

Earth Science Information Network, 2017; Hansen et al., 2013). Furthermore, thanks to its clear gradient of sediment yield

drivers (i.e., land cover, human impact, and precipitation) and its simplified sediment transport dynamics (i.e., a single flood

wave and no large depositional hotspot in the middle of its course), the Kasaï River provides an ideal study site for disentangling

sediment yield controls in the African tropics.55
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Finally, there likely exist depositional hotspots along the sediment pathway of the Congo River mainstem. Two depositional

hotspots have been proposed: first, a smaller hotspot at the widening of Malebo Pool near Kinshasa (proposed deposition rate of

2.53 Tg yr−1; Coynel et al., 2005) and second, a larger hotspot in the depression of the Cuvette Centrale (proposed deposition

rate of 23 Tg yr−1; Datok et al., 2021). However, both studies’ estimates of deposition are based on monitoring in the middle

of the Cuvette Centrale (Ruki confluence with the Congo River), thereby missing a significant upstream chunk of river from a60

hypothesized major depositional hotspot.

Recent advances in remote sensing and machine learning models now allow spatially explicit estimates of sediment yield

dynamics, bypassing many limitations of on-site monitoring. Visible and infrared spectra may be used to predict total suspended

sediment (TSS) concentrations in water (Novo et al., 1989), which can be done from Earth-observation satellites using methods

ranging from site-specific relationships (Doxaran et al., 2003) to regionally (Narayanan et al., 2024; Overeem et al., 2017)65

and globally applicable workflows (Dethier et al., 2020; Hou et al., 2024; Sun et al., 2025). TSS monitoring is an essential

component in estimating fluvial sediment yields, and despite leaving out the bedload transport component of total sediment

yield (generally assumed to be of low importance), sediment yield monitoring from remote sensing has successfully been

applied to identify sedimentation hotspots (Li et al., 2024), to quantify anthropogenically driven sediment transport changes

(Dethier et al., 2022), and to map sedimentary interactions between a river and its floodplain (Fassoni-Andrade and Paiva,70

2019). Globally applicable models have been used to predict TSS at the Congo River outlet, but calibration data from the

African continent is underrepresented, if present at all (e.g., Sun et al., 2025), and a regionally applicable model for the CRB

has never been published.

To address the lack of unified, cohesive, long-term records of sediment transport in the CRB, we first aimed to leverage

state-of-the-art techniques in remote sensing and machine learning to calibrate a region-specific predictive model of TSS. We75

then employed the predictive TSS model to investigate sources and sinks of sediment dynamics; we specifically expanded

on an already existing but restrictive sediment budget for the Congo River and built the first ever budget for the regionally

representative Kasaï River. Finally, we attempted to better constrain depositional sediment losses during mainstem transit, both

in terms of location and deposition rates.

2 Materials and methods80

2.1 Study area

The Congo River, located in Central Africa, has a discharge of approximately 1300 km3 yr−1 and a drainage basin area of

3.7× 106 km2. The discharge at the most downstream gauging station (Kinshasa) exhibits little seasonal and interannual vari-

ability because of alternating wet seasons in southern-hemisphere (e.g., Upper Congo, Kasaï) and northern-hemisphere (e.g.,

Oubangui, Sangha) tributaries (Fig. 1) (Laraque et al., 2009, 2013; Alsdorf et al., 2016; Mushi et al., 2022). The Congo River85

flows through varied geomorphological environments (Runge, 2007; Spencer et al., 2012), from the tectonically influenced

Central African Rift in its headwaters and upper section, to a middle section dominated by gentle anastomosing morphology

(from Kisangani to the exit of the Cuvette Centrale), and a lower, deeply incised section of cataracts after a widening (Malebo
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Pool) near Kinshasa. Mean precipitation in the CRB is 1511 mm yr−1 (Fick and Hijmans, 2017), while vegetation cover is

65% forest, 20% grassland, and 11% shrubland (Zanaga et al., 2022). High mean precipitation and flat terrain in the anasto-90

mosing region of the basin leads to the development of vast peatlands, which cover 0.17× 106 km2 (4.7% of the total CRB

area) (Crezee et al., 2022) (Fig. 1).

The Kasaï River, located in the south of the CRB, has a discharge of 280 km3 yr−1, a drainage area of 0.9 106 km2 and is

the largest tributary of the Congo River (Laraque et al., 2009). It contributes approximately 25% of the CRB’s drainage area

and 22% of its discharge (Mushi et al., 2019). The Kasaï River’s discharge is defined by a single seasonal peak, and its course95

is generally anastomosing or braided from its source in Angola to its confluence with the Congo River at Kwamouth (Fig. 1).

The precipitation within the basin is 1520 mm yr−1 (Fick and Hijmans, 2017), and its vegetation cover is 64% forest (mainly

in the North of the basin), 15% shrubland, and 33% grassland (Zanaga et al., 2022).

2.2 Calibration of a predictive model for TSS

2.2.1 In situ data100

TSS monitoring data was compiled from multiple sources to create a spatially representative dataset for the CRB. Only surface

samples were retained to homogenize sample collection schemes. The first dataset came from a cruise sampling expedition

along the Congo mainstem and its tributaries (2013-2015) which yielded 221 TSS samples (Lambert et al., 2016). A second

dataset came from a monitoring campaign of the Ruki River, with 27 data points which were collected between 2019 and 2020

(Drake et al., 2023). Finally, 161 samples from a Congo River monitoring station in Kisangani were collected by the Centre de105

Surveillance de la Biodiviersité (CSB, Université de Kisangani) from 2012 to 2019.

2.2.2 Satellite data

Landsat-8 (L8) surface reflectance (Tier 1) was retrieved with Google Earth Engine (GEE). Spectral bands were selected from

the visible spectrum (red, green, blue), near infrared (NIR), and short-wave infrared (SWIR) 1 & 2 (Gorelick et al., 2017).

The shape of the spectral curve was also computed from normalized differences of each band combination. Using L8 image110

metadata, images were only retained if cloud cover < 85%, and cloud and cloud shadow pixels were masked out. Non-water

pixels were also masked out using a normalized difference water index (NDWI) (McFeeters, 1996) with a threshold of -0.1

(i.e., NDWI > -0.1 is considered water) (Fig. 2a). Median reflectance for each band was then extracted for each in situ data

point, with a buffer (500 m or 100 m for large and small rivers respectively) around each point.

To ensure a high-quality dataset suitable for model calibration and validation, strict filtering steps were applied to the in situ115

TSS observations prior to analysis. First, 40 observations (from smaller-order tributaries) could not be spatially resolved due to

the coarse resolution of L8. Second, a maximum time window of 11 days (Fig. A1) for matches between in situ observations and

their closest L8 image was allowed. Thus, 149 observations were removed as they lacked an L8 image match due to persistent

cloud cover over the tropics (Potapov et al., 2012). Third, 3 observations with high TSS were removed (a priori threshold of

TSS > 100 mg L−1) due to spectral saturation within highly turbid waters (see below for further discussion) (Balasubramanian120
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et al., 2020; Han et al., 2016). Finally, 2 observations displayed abnormally high residuals following model calibration (see

Section 2.2.4) and were thus removed. The final dataset comprised 184 observations (i.e., 45% of the original dataset) of which

86 points were published by Lambert et al. (2016), 12 points by Drake et al. (2023), and the last 86 points from the CSB’s

monitoring efforts (Fig. A2).

2.2.3 Contextual covariables125

Contextual covariables were added to the spectral variables in the model calibration (Fig. 2) to help negate the effects of con-

founding factors (e.g., mineralogy, grain size distribution, chlorophyll-a) (Dethier et al., 2020; Sagan et al., 2020). Contextual

covariables include: latitude and longitude of the in situ observation, Euclidean distance from the Congo River’s outlet, dis-

charge on the day of the in situ observation (Wongchuig et al., 2023), average silt content (Poggio et al., 2021) from the major

subbasins (level 4 of HydroBASINs; Lehner and Grill, 2013) of the Congo River, day number of the year of in situ observation,130

and 6 binary variables for the river Strahler order (one variable per order number from 4 to 9).

2.2.4 Model calibration, validation, errors

The following analyses were performed in the R statistical computing environment (v 4.3.3; R Core Team, 2024), leveraging

the libraries caret (Kuhn, 2008) and ranger (Wright and Ziegler, 2017). The dataset was randomly partitioned into 2 parts.

The first part (hereafter termed “training dataset”), which contained 80% of all in situ data (n = 148; mean = 33.6 mg L−1;135

standard deviation = 22.7 mg L−1), was used for model calibration. The remaining 20% of all in situ data (n = 36; mean =

33.0 mg L−1; standard deviation = 21.9 mg L−1) were used for independent model validation (hereafter termed “independent

validation dataset”).

For analysis, training data were first normalized by subtracting its mean and dividing by standard deviation. Then, a ran-

dom forest (RF) regression algorithm was selected as the best performing algorithm for predicting TSS (Section A2) thanks140

to its effectiveness with non-linear relationships and interaction effects between predictive variables (Cutler et al., 2007). Hy-

perparameter tuning of the random forest (using a default 500 trees) was conducted in caret, and the best combination of

hyperparameters was selected as that which minimizes root mean square error (RMSE). Model performance was evaluated

using the proportion of total variation of predicted values explained by the model (R2), mean absolute error (MAE), RMSE,

relative error (%) (Dethier et al., 2020), and % bias defined as145

Bias =
∑N

i=1(TSSpred,i−TSSobs,i)∑N
i=1 TSSobs,i

× 100%, (1)

where TSSpred is predicted TSS, TSSobs is in situ observed TSS, and N is the size of the dataset. Performance was cross-

validated with 5 repetitions of a 10-fold cross-validation, and standard error of predictions was computed from infinitesimal

jackknifing (Wager et al., 2014).

Resulting RF model complexity was then optimized with the recursive feature elimination (RFE) algorithm, in which new150

RF models were calibrated with subsets of variables (5, 10, 15, and 20) selected based on their importance from the previous
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step’s RF model. The RFE algorithm prioritized model simplicity at a minimal cost of performance by selecting the model

which contained the smallest number of variables while remaining within 2% of the original RF model’s RMSE.

Finally, performance of the TSS predictive model was assessed using the metrics defined above (R2, MAE, RMSE, relative

error, and % bias) between in situ observations and predicted TSS of the independent validation dataset.155

2.3 Sediment budgets of the Congo and Kasaï

Ten major tributaries were selected as inputs of the Congo River sediment budget (Fig. 1), for which “virtual” monitoring

stations were placed near their confluence with the Congo River. A single output, downstream of all inputs and along the

Congo River’s mainstem, was placed near Kinshasa (hereafter named Congo-Kinshasa) to match previous monitoring records

(Laraque et al., 2009; Spencer et al., 2012; Hemingway et al., 2017). For the Kasaï River sediment budget, 7 major tributaries160

were identified and selected as inputs, whereas the confluence of the Kasaï River with the Congo River was selected as the

output. TSS was predicted for the satellite time series (2015-2019) at each virtual monitoring station using our calibrated RF

model (satellite data was collected using the same methodology as in Section 2.2.2).

2.3.1 From TSS to sediment yield

Predicted TSS concentrations were temporally interpolated to obtain daily predictions (assuming TSS concentrations exhibit165

low weekly to monthly variability) and converted to daily yields as

SYdaily = Q×TSSpred× (8.64× 10−8), (2)

where Q (m3 s−1) is daily discharge obtained from Wongchuig et al. (2023), SYdaily is daily sediment yield (Tg day−1), and

the last numerical term is a unit conversion factor. Daily sediment yields were then summed to obtain yearly sediment yields

(Tg yr−1). Coefficients of variation (CVs) (the quotient of mean sediment yield of each virtual station to its corresponding170

standard deviation) were computed to investigate intra- and inter-annual variations of sediment yield. Intra-annual CVs were

computed as

CVintra =
1
n

N∑

i=1

SY dailyσ,i

SY dailyµ,i
, (3)

where CVintra is intra-annual CV, n is the observation time window (i.e., 5 years from 2015 to 2019), SYdailyσ,i is the

standard deviation of daily sediment yield for an individual year, and SYdailyµ,i is the average daily sediment yield for an175

individual year. Furthermore, inter-annual CVs were computed as

CVinter =
SY yearlyσ

SY yearlyµ
, (4)
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where CVinter is inter-annual CV, SYyearlyσ is the standard deviation of yearly sediment yield (2015-2019) and SYyearlyµ

is the mean yearly sediment yield for the same observation period. Finally, yearly trends were statistically tested for monotonic

increasing or decreasing patterns using a Mann-Kendall test (Libiseller and Grimvall, 2002).180

Finally, a 95% confidence interval (CI) for TSS predictions was computed from predicted standard errors (Section 2.2.4),

and discharge CIs were simulated following the method described in Section A3.

2.4 Estimating sediment deposition within the Cuvette Centrale

Two approaches were used to estimate sediment accumulation rates within the Cuvette Centrale. First, using the sediment

budget of the Congo River (Section 2.3), a sediment balance showed net sediment yield differences between the output (Congo-185

Kinshasa) and all the inputs (upstream Congo and all tributaries). A deficit of sediment yield at the output compared to inputs

was considered as net accumulation/deposition during transit. In the second approach, virtual monitoring stations were set up

every 10 km on a transect along the mainstem of the Congo River from headwaters to the outlet. Yearly sediment yields were

computed for each virtual monitoring station (Section 2.3), and changes in sediment yields along the transect could then be

interpreted as net gains or losses.190

3 Results

3.1 Predictions of total suspended sediment

3.1.1 Random forest model calibration and validation

RF model performance was improved by including contextual covariables and by the RFE variable reduction algorithm (Ta-

ble 1), leading to RMSE = 11.5 mg L−1, MAE = 8.61 mg L−1, and R2 = 0.76 from the training dataset. In total, 15 variables195

were retained by the RFE algorithm (out of 33 spectral and contextual variables). Ten variables were satellite derived, with

variables involving visible bands (unique spectral bands and normalized differences) exhibiting a high model importance

(Fig. A3), and five variables were contextual (discharge, day number of the year, longitude, Euclidean distance to Congo out-

let, and Strahler order 8).

3.1.2 TSS predictions of the major subbasins of the Congo and Kasaï Rivers200

Our predicted TSS time series (2015-2019) exhibit values ranging from a minimum of 2.72 mg L−1 (outlet of the Lulonga

River) to a maximum of 66.4 mg L−1 (Congo River). Between the Congo River stations of Kisangani (Congo headwaters) and

Kinshasa (near the outlet), mean TSS declined from 42.8 to 25.6 mg L−1, a 40% decrease. A 19% decrease was also observed

between the Kasaï River upstream station and the outlet. Subbasins exhibiting extreme TSS values (i.e., TSS < 10 mg L−1 and

TSS > 40 mg L−1) tended to display narrower distributions (standard deviation < 4.5 mg L−1) than subbasins with intermediate205

TSS values (average standard deviation = 7.9 mg L−1) (Fig. 3), with the exception of the Aruwimi River and Congo headwaters

(i.e., high TSS but high standard deviation).
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In addition to predicting TSS time series in virtual stations, predictions can also be performed over open waters in the CRB,

in a gridded format. We compiled composite images of spectral variables by taking median values from a 3-year collection

(2018-2020) of images from Kinshasa’s wet season (September to April) and applying our predictive model over the resulting210

grid (a small part of the CRB was chosen for visualization purposes). The gridded range of TSS predictions for the Congo-

Kasaï confluence was 2-66 mg L−1 (Fig. 4). Furthermore, high cross-sectional variability could be observed within rivers, such

as the braided river section of the Congo River, or downstream of confluences such as Kwango-Kwilu, Kwango-Kasaï, and

Kasaï-Fimi.

3.2 Sediment spatio-temporal dynamics of the Congo and Kasaï215

3.2.1 Sediment budgets

Average yearly sediment yield for the Congo River in the years 2015-2019 was 33.0 Tg yr−1 at the Congo-Kinshasa station.

Main contributors to this budget were from the mainstem (Congo headwaters) with 51% of inputs, as well as the Kasaï (34%),

Oubangui (13%), and Aruwimi rivers (11%) (Fig. 5a). The combined contribution of all other tributaries represented 10% of

total inputs. Over the same time period, the average sediment yield for the Kasaï River at its outlet was 11.1 Tg yr−1, with220

major contributions from the Kasaï mainstem headwaters (28%), the Sankuru (17%), and the Kwango-Kwilu (32%) rivers.

Other tributaries contributed 14% of the total input (Fig. 5b).

3.2.2 Seasonal and annual variability

For most CRB river basins, intra-annual sediment yield cycled seasonally between low and high values due to wet- and dry-

season cycles (Fig. 6). Intra-annual coefficients of variations (CVs) ranged from 0.21 to 0.88, with the lowest CV occurring at225

the Congo-Kinshasa station and the highest CV occurring in the Oubangui River. Meanwhile, inter-annual CV ranged from a

minimum of 0.06 in the Aruwimi and Lwange rivers to a maximum of 0.2 in multiple rivers (Fig. 7). Two rivers (Lulua and

Lomami) both displayed a significant monotonic positive trend (Mann-Kendall test) from 2015 to 2019, whereas all other rivers

did not display any statistically significant trend.

3.3 Deposition rates within the Cuvette Centrale230

3.3.1 Sediment budget balance

Congo River sediment budget results (Fig. 5) indicate that inputs exceeded outputs. Specifically, we observed a mass-balance

sediment deficit of 5.96 Tg yr−1 (CI = -5.6, 18), representing 15% of all inputs. In contrast, a sediment balance for the Kasaï

River showed that an extra 8% (0.916 Tg yr−1, CI = -4.2, 6.1) of sediment was exported by the system compared to its inputs.
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3.3.2 Sediment yield evolution along a transect235

Predicted sediment yield at the most upstream point of the Congo River (i.e.,∼2900 km from the outlet) was 1.60 Tg yr−1 (CI

= 1.2, 2.0); this slowly increased over 600 km of transit, reaching 5.57 Tg yr−1 (CI = 3.6, 7.6) just before the confluence with

the Lowa River (Fig. 8). Sediment yield jumped to 11.8 Tg yr−1 (CI = 8.1, 15) due to contributions from the Lowa River, then

remained relatively stable until reaching Kisangani (∼2100 km from outlet). After Kisangani, where the Congo River becomes

more braided (Runge, 2007), sediment yield, as well as spatial variability, began to increase further. Past the confluence with240

the Aruwimi River (∼1800 km from outlet), sediment yields plateaued near 20.2 Tg yr−1 (CI = 16, 25) before beginning to

decrease near the onset of the Cuvette Centrale (∼1600 km from outlet). From there, sediment yields further decreased to

a local minimum of 10.8 Tg yr−1 (CI = 6.0, 16; ∼1100 km from outlet) before rebounding to 26.1 Tg yr−1 (CI = 19, 33)

due to inputs from the Oubangui, Sangha, and Kasaï rivers (900-600 km from outlet). This increase was accompanied by a

marked increase in spatial variability. Between the Kasaï River confluence and Kinshasa (∼400 km from outlet), sediment yield245

increased and spatial variability decreased, as the geomorphological regime of the mainstem transitions from anastomosing to

meandering. The final section of the Congo River, downstream of Kinshasa, is characterized by waterfalls and rapids (Runge,

2007); sediment yield again plateaued in this region, although spatial variability increased drastically (Fig. 8).

4 Discussion

4.1 RF model performance250

Challenges when building a predictive model for the CRB included regionally variable confounding factors (e.g., grain size

distribution, mineralogy, sediment color, clorohpyll-a) (Dethier et al., 2020; Sagan et al., 2020) and the fact that our in situ TSS

dataset is significantly smaller than that used in similar published works. For example, previous studies (Gardner et al., 2023;

Li et al., 2024; Narayanan et al., 2024) used upwards of 1000–10,000 calibration samples for the Mississippi Basin, the Tibetan

Plateau, and the Amazon Basin. Nevertheless, our model achieved similar predictive accuracy as others when quantified using255

regression R2 values (i.e., R2 = 0.73 in this study; R2 = 0.62-0.94 in previous studies) (Park and Latrubesse, 2014; Fassoni-

Andrade and Paiva, 2019; Pereira et al., 2018; Peterson et al., 2018; Wang et al., 2009; Sun et al., 2025). Such results have been

observed previously; for example, both Overeem et al. (2017) and Yepez et al. (2017) similarly achieved high accuracy (R2 =

0.9) despite using smaller datasets (i.e., 300 training samples). However, in contrast to our dataset from throughout the basin,

those studies extrapolated their models from 1-3 monitoring stations to entire regions, which can introduce bias due to lack of260

spatial representativity.

Despite high accuracy, our model was subject to spectral saturation while predicting TSS, which involves the degradation

of correlation between highly turbid waters and surface reflectance (Balasubramanian et al., 2020; Han et al., 2016). We

first hypothesized that TSS > 100 mg, L−1 would suffer from spectral saturation, so observations above this threshold were

removed a priori (Section 2.2.2). However, error assessment on our predictive model (Fig.2) revealed a heteroskedasticity at265

TSS ≥ 70 mg, L−1, which we interpreted as spectral saturation. Moreover, while this spectral saturation threshold may hold
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true for the Congo mainstem, abnormally low TSS prediction standard deviations were observed in the Lwange River and Kasaï

headwaters despite TSS values near 45 mg, L−1 (Fig. 3); this may be evidence for a lower saturation threshold in the Kasaï

River Basin and/or smaller-order rivers. While previous studies have managed to mitigate spectral saturation (Martinez et al.,

2015; Novoa et al., 2017; Balasubramanian et al., 2020; Dethier et al., 2019, 2020), our RF model strongly relies on variables270

involving visible color (Fig. A3), and the model’s response (i.e., the change in predictions in reaction to a variable’s variation)

is low in large zones of some spectral variables’ ranges (Fig. A4), meaning that variations in reflectance do not lead to a change

in predictions from the model. The hypothesized presence of two spectral saturation thresholds (i.e., 70 and 45 mg, L−1 for the

Congo and its tributaries, respectively) is symptomatic of an underrepresentation of highly turbid conditions in the calibration

data, especially in tributaries of the CRB.275

Beyond spectral saturation, persistent cloud cover over the CRB (Potapov et al., 2012) hindered our ability to match in situ

observations to L8 observations, thus reducing the training dataset size. To mitigate this, a large time window between L8

and in situ observations (11 days) and a wide buffer (500 m) were used when possible. These mitigation strategies represent

a compromise, since within-river temporal and spatial variability may introduce errors in TSS predictions. However, a higher

buffer size has previously been shown to increase model performance (Dethier et al., 2020) and temporal TSS variability is low280

in the CRB (Coynel et al., 2005). A final potential prediction bias could derive from the exclusive retention of surface samples

in our in situ TSS dataset (i.e., depth samples were excluded for data consistency); indeed, depth-integrated TSS may change

results (Laraque et al., 2009; Coynel et al., 2005). While a site-specific correction exists for the Kinshasa monitoring station

(Moukandi N’kaya et al., 2020), this was not scaled to the entire CRB as this would likely add large, unconstrained errors.

4.2 Sediment budgets of the Congo and Kasaï rivers285

Sediment yield errors are attributable to both TSS prediction errors (as described in Section 4.1) and the discharge product

(Wongchuig et al., 2023). Indeed, discharge is estimated by a physically constrained model which has higher uncertainties than

in situ discharge data, thus propagated to sediment yield estimates. However, this higher uncertainty was compensated by the

product’s applicability to a large array of rivers in the CRB, a long observation time scale, and high performance compared to

worldwide products.290

Sediment yield at the Congo-Kinshasa virtual station during the 2015-2019 period was predicted to be 33.0 Tg yr−1, which

was broadly consistent with previously reported values (29–47 Tg yr−1; Table 2). In contrast, substantial discrepancies were

observed for the Oubangui River, where our prediction was systematically higher than prior estimates. This bias is likely caused

by an inconsistency in monitoring station location as our virtual station (near the outlet) is 550 km downstream of the in situ

monitoring station in Bangui; most basins are not monitored in situ at the confluence with the main stem, which leads to mass-295

balance uncertainty. In contrast, our study provides the first estimates of sediment yields for regionally significant tributaries

based on a consistent methodology and frequent sampling of TSS at each station.

Inter-annual trends revealed no change in sediment yield between 2015 and 2019 (except in the smaller-order rivers of

Lulua and Lomami rivers), which could only be verified from a published 30-year analysis of the Congo-Kinshasa station

(Moukandi N’kaya et al., 2020). For CRB tributaries, no comparable measurement could be found. The inter-annual variability300
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of sediment yields which we observed is probably attributable to differing precipitation patterns between years, as a 5-year

time window of observation is too short to observe anthropogenically driven changes in sediment yield (Dethier et al., 2022;

Li et al., 2024). Moreover, any temporal changes in erosion that may be occurring within the studied basins over this period is

likely muted due to their large catchment areas (Walling, 1983).

4.3 Deposition rates in the Cuvette Centrale305

Our Congo River sediment budget analysis (Fig. 5) reveals that inputs exceed outputs, implying a substantial net deposition

along the mainstem. Despite this difference not being significantly different to 0 in the overall sediment budget (5.96 Tg yr−1;

CI = -5.6, 18), the sediment yield transect (Fig.8) displays statistically significant deposition (9.40 Tg yr−1; CI = 3.0, 16)

within the Cuvette Centrale, a long flat stretch of anastomosing river, where reduced stream power limits sediment transport

capacity and promotes deposition in the river channel (Runge, 2007). Moreover, lateral incursions of water into floodplains310

during the high-flow season may also contribute to trapping sediment (Georgiou et al., 2023).

Both deposition rates (5.96 and 9.40 Tg yr−1) calculated here are higher than a previous sediment budget balance estimate,

where deposition rates were estimated at 2.53 Tg yr−1 (Coynel et al., 2005). However, a key methodological difference is the

location of the “upstream Congo” station (i.e, the onset of net deposition), as Coynel et al. (2005) assumed this to be near

the confluence of the Ruki River with the Congo River, 550 km downstream of the onset of sediment yield decrease in our315

model. In contrast, an erosion modelling approach estimated 23 Tg yr−1 of deposition in the Cuvette Centrale (Datok et al.,

2021), roughly double the values calculated here. This higher estimate seems to be linked again to methodological differences,

as Datok et al. (2021) estimated deposition rates within the entire river network, whereas our computation only considers net

losses along the mainstem. Additionally, a large discrepancy between the sediment yield estimates at the Cuvette Centrale exit

reported in Datok et al. (2021) (7.6 Tg yr−1) and in this study (15.4 Tg yr−1) may further contribute to explaining this offset320

in net depositional flux.

In contrast to the Congo River, our results indicate that the Kasaï River experiences no large-scale net deposition, as evi-

denced by the minor differences between modelled inputs and outputs (Fig. 5). Indeed, we see a small net increase in yields

from inputs to outputs, although this value is not significantly different from 0. However, we may be underestimating inputs

due to spectral saturation in some turbid rivers (e.g., Kasaï headwaters, Kwango, and Lwange rivers). Thus, any increase (if325

indeed present) could come from smaller tributaries or bank erosion (Langhorst and Pavelsky, 2023).

Sediment budget balances for both the Congo and Kasaï rivers provide information regarding net deposition as opposed

to total/gross deposition. Indeed, concurrent processes of channel and floodplain deposition with other processes (e.g., bank

erosion) serve to mask internal sediment dynamics of fluvial systems (Walling, 1999). A more in-depth look into the sediment

budget and processes would require field-based investigations such as sedimentary records sampling.330

4.4 Perspectives

Our methodology could be adapted to extend to other satellites, such as the Enhanced Thematic Mapper (ETM) aboard Landsat

5 and 7, which would increase the temporal coverage of TSS monitoring to 40 years (1984 onwards), assuming reasonable
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cloud pollution and a locally adapted spectral matching between sensors. The combination of satellites would permit a more

thorough study of the temporal evolution of sediment yields within the basin. Additionally, smaller basins across the CRB335

and Kasaï River Basin could be investigated as erosional drivers of sediment yields could be more easily separated, thanks to

clearly defined gradients of these basins.

The prediction of TSS was most hindered by the lack of data within the CRB. Especially for highly turbid rivers, spectral

saturation prevented us from accurately predicting some lower-order tributaries. Nevertheless, spectral saturation was a minor

problem for the present study, since major tributaries of the CRB tended to exhibit lower TSS concentrations. However, through340

the integration of local data to global datasets, accuracy could potentially be increased, and highly turbid rivers could be

investigated (Dethier et al., 2020).

Finally, evidence shows that both particulate and dissolved organic carbon (POC, DOC) can be predicted from surface

reflectance (Liu et al., 2019; Cao et al., 2018; Tian et al., 2025). The literature remains scarcer for remote sensing of OC

compared to TSS (Topp et al., 2020) due to the relationship between OC and surface reflectance being less direct. However, a345

successfully calibrated model for POC and DOC would lead to a better understanding and OC budgets and transport pathways

in the CRB.

5 Conclusions

Using a well-performing TSS prediction model (R2 = 0.73), we generated a new sediment budget for the understudied CRB.

We updated a previous budget that only considered the main tributaries (i.e., Oubangui, Sangha, Kasaï) by adding 6 new inputs350

from smaller tributaries; these accounted for 17% of the total 33.0 Tg yr−1 sediment yield at the Congo-Kinshasa station.

We additionally generated the first-ever sediment budget for the Kasaï Basin (sediment yield of 11.1 Tg yr−1 at its outlet),

including 6 major tributaries, of which the Kwango-Kwilu, Sankuru, and the Kasaï headwaters were the largest contributors.

Seasonal and interannual variations were also computed for each river, displaying yearly sediment yield stability for most

rivers, along with a marked diversity in seasonality between rivers. These results provided previously unknown information for355

many of the Congo River’s tributaries.

By studying sediment processes within the CRB, we estimated that a net deposition of 9.40 Tg yr−1 (CI = 3.0, 16) occurred

along the mainstem of the Congo River between the cities of Kisangani and Kinshasa. Hypothesizing that the net deposition

of sediment occurred within the Cuvette Centrale thanks to its flat terrain and low flow velocities, we showed that sediment

yield decreased within the Cuvette Centrale. Moreover, we highlighted a crucial lack of understanding of sediment dynamics360

occurring along the Congo River, as previous published estimates of net sediment deposition ranged from 2.53 Tg yr−1 to

23 Tg yr−1, which reflect a poor constraint on deposition rates.

By monitoring a globally significant but understudied tropical basin—i.e., the Congo River—these results contribute to

understanding the source-to-sink transport of sediment in a globally significant but understudied tropical basin. By monitoring

fluvial sediment transport, we aimed to provide a better understanding of the Earth-surface processes occurring within this365

watershed. Moreover, in the Congolese context of intense land-use change linked to a demographic expansion, we provided a
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baseline assessment of the sediment cycle, bringing to light a better knowledge of the sediment cycle which is necessary for

anticipating its anthropogenically-driven modification to sediment and carbon regimes.
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Figure 1. Map of the Congo Basin (black line), Kasaï Basin (red line), and their main tributaries (numbered 1-9 for Congo and 10-16 for

Kasaï). The main fluvial network is in light blue, lakes are dark blue and the Cuvette Centrale peatland extent is in dark green (Crezee et al.,

2022). Purple stars are the cities of A) Kinshasa-Brazzaville , B) Mbandaka, C) Kisangani, D) Kwamouth, and E) Ilebo.
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a.
b.

c.

Figure 2. Satellite data collection and model calibration workflow (a), scatterplot of in situ measured TSS and predicted TSS for training

data (b) and validation data (c). Dashed gray line in panels b. and c. is 1:1 line.

21

https://doi.org/10.5194/egusphere-2026-247
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Table 1. Comparison of different RF model calibrations (training dataset, n = 148), with/without RFE, and with/without spatial and temporal

covariables. The RF model used for all TSS predictions in this article is in italics.

R2 MAE (mg L−1) RMSE (mg L−1)

RF (with covariables & RFE) 0.79 8.15 10.9

RF (no covariables & RFE) 0.76 8.61 11.5

RF (with covariables, no RFE) 0.78 8.29 11.1

RF (no covariables, with RFE) 0.77 8.52 11.5
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Figure 3. Boxplot of predicted TSS (2015-2019) in mg L−1 by basin outlet, where boxes are the quartile range, whiskers are the 5%-95%

range (outliers not plotted) and the black bar is the median. Dots correspond to TSS time series means from the literature (Bouillon et al.,

2012, 2014; Drake et al., 2023; Hemingway et al., 2016; HYBAM Observatory; Lambert et al., 2016; Laraque et al., 2009; Mariotti et al.,

1991; Mushi et al., 2022; Spencer et al., 2016, and CSB monitoring), and dashed horizontal lines are hypothesized thresholds of spectral

saturation in the prediction for 45 mg L−1 and 70 mg L−1.
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Figure 6. Line plot of daily sediment yield evolution (Tg yr−1) from 2015-2019 (individual gray lines for each year), for each basin. Dotted

black lines are mean sediment yield, and CV is mean yearly coefficient of variation for each basin.
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Figure 7. Barplot of sediment yield evolution (Tg yr−1) for each year from 2015 to 2019 for each basin (stars next to basin name signify

a statistically significant monotonic evolution). Mean is the mean sediment yield of all years, CV is the coefficient of variation of yearly

sediment yields and bars are colored by % deviation from each basin’s mean (red is positive difference and blue is negative difference from

mean).
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Figure 8. Evolution of yearly sediment yields (Tg yr−1) along the Congo River mainstem as a median from 2015-2019. River confluences

are indicated in blue, cities in red, and notable sections in black text. Black crosses and line are predicted sediment yield, confidence interval

in gray, and the blue line is smoothed sediment yield until Kinshasa (loess method), then mean sediment yield until the outlet. Yellow strip

is the Cuvette Centrale.
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Table 2. Median sediment yields from 2015-2019 (in Tg yr−1) compared to published literature. This study’s results are written in bold.

Note overlapping datasets from Moukandi N’kaya et al. (2020), Laraque et al. (2009), and Coynel et al. (2005). Rows are in italics when

sampling station are different to ours, and a star signifies sediment yield was recomputed from the published dataset.

River Sediment yield Source Sampling year

Congo-Kinshasa

33.0 This study 2015-2019

48 Martins and Probst (1991) 1980-1981

30.34 Moukandi N’kaya et al. (2020) 1987-1993

30.7 Coynel et al. (2005) 1990-1993

28.94 Laraque et al. (2009) 1993

37.1 Datok et al. (2021) 2000-2012

33 Laraque et al. (2013) 2006-2010

34.41 Moukandi N’kaya et al. (2020) 2006-2017

29.21 Spencer et al. (2016) 2009-2010

Oubangui

4.38 This study 2015-2019

2.5 Coynel et al. (2005) 1990-1996

2.72 Laraque et al. (2009) 1993

1.5 Datok et al. (2021) 2000-2012

2.45 Bouillon et al. (2012) 2010-2011

1.63 Bouillon et al. (2014) 2011-2012

Sangha

1.19 This study 2015-2019

1.0 Coynel et al. (2005) 1991

1.64 Laraque et al. (2009) 1993

0.94 Datok et al. (2021) 2000-2012

Kasaï

11.1 This study 2015-2019

8.06 Laraque et al. (2009) 1993

10.50 Datok et al. (2021) 2000-2012

Ruki

0.726 This study 2015-2019

1.60 Datok et al. (2021) 2000-2012

0.4* Drake et al. (2023) 2019-2020

Upstream Congo

16.7 This study 2015-2019

12.94 Laraque et al. (2009) 1993

26.98 Datok et al. (2021) 2000-2012
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Appendix A600

A1 Time window choice

The time window of matches between in situ TSS observation and satellite spectral data was optimized thanks to repeated

calibrations of an RF model with increasing time window (from 1-15 days) as well as keeping all matches without a limit

on time window. Models were compared in terms of MAE, relative error, RMSE, and R2, where the optimal time window

maximized R2 and minimized MAE, relative error, and RMSE (Fig. A1).605

A2 Machine learning algorithm selection

Linear and machine learning algorithms were tuned and fit to the training dataset using spectral variables and 5 repetitions

of a 10-fold cross-validation. Mean RMSE, MAE, R2, and relative error, were computed and the algorithm with the lowest

errors (RMSE) was selected. Algorithms, selected from the caret library (Kuhn, 2008), were a linear model (LM), support

vector machines with linear kernel (SVML), support vector machines with polynomial kernel (SVMP), lasso and elastic-610

net regularized generalized linear models (GLMNET), multivariate adaptive regression spline (MARS), partial least squares

regression (PLS), k-nearest neighbors regression (KNN), random forest (RF), extreme gradient boosting (XGBM), cubist

regression (CUBIST), and stochastic gradient boosting (GBM). The RF algorithm had the lowest RMSE, MAE and relative

error, and had the highest R2 of all the algorithms (Fig. A5) and was therefore chosen for use in the prediction model.

A3 Discharge errors estimation615

Daily discharge data for the entire Congo River Basin was acquired from a published dataset (Wongchuig et al., 2023), who

used a combined approach of physical constraints (including satellite altimetry) and hydrological modelling to obtain a daily

time series (1984-2020) of river discharge for large and small rivers throughout the basin. However, little information was

provided on errors, so confidence intervals for the dataset were simulated, under the assumptions of a normal distribution of

errors centered around 0, homoscedasticity, and that the Kling-Gupta Efficiency (KGE) was 0.84. This value was taken from620

Wongchuig et al. (2023) and it is the median value of their 6 independent validations (i.e., comparisons to in situ time series).

The KGE was chosen as the error parameter with the least amount of variation between the different validations.

For each virtual monitoring station, a time series was extracted. From that time series, a new dataset was simulated with

a random normal distribution for each data point. These normal distributions had a size of 10,000, and they were centered

around the observation point. The spread of the distribution (i.e., its standard deviation) was optimized to obtain a KGE of 0.84625

between the time series and the entire simulated data. Finally, for each observation, the normal distribution’s 2.5% and 97.5%

quantiles were taken as the confidence interval.
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Figure A1. Accuracy of RF model calibration using increasing time windows for matches between in situ observation and satellite spectral

data (1-15 days and no time window limit) for MAE ( mg L−1), percent bias (PBIAS, %), relative error (RELERR), RMSE ( mg L−1)

and R2 (RSQUARED). Box-and-whisker plots correspond to the cross-validation for the quartile of errors (boxes) and 5%-95% percentile

(whiskers) (values outside 5-95% range were not plotted), while colored dots are the mean of the error, colored by the sample size upon

which the model was calibrated.
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CSB monitoring (n = 86) Drake et al., 2023 (n = 12) Lambert et al., 2016 (n = 86)
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Figure A2. Maps of in situ sample locations which were used in the calibration of the RF model, where each map of the Congo Basin (black

outline) and Kasaï Basin (red outline) corresponds to each data source (n = the number of observations used in each dataset). Triangles

signify a time series whereas circles signify single point sampling. Triangles were colored by mean TSS ( mg L−1) and circles were colored

by single TSS value. Blue lines represent the main river network of the Congo River Basin.
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(highest standard deviation) on top to least important at the bottom. Colors (red positive, blue negative) and numbers correspond to the

correlation (Spearman’s rho) between TSS and corresponding variable.
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Figure A4. Partial dependence plots of variables included in our random forest model, where the horizontal axis corresponds to each

variable’s range of values and the vertical axis (centered y-hat) is the response of the RF model to the evolution of each variable. The blue

lines are response curves for each individual observation of the training dataset, and the red line is the mean of all responses curves.
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Figure A5. Boxplots of model calibration accuracy (cross-validation of calibration yielded interquartile range as a box, 5%-95% quantiles

for the whiskers, blue circles for outliers (outside 5-95% quanrtile range), and black dots as mean) for TSS. Accuracy is measured as

RMSE ( mg L−1), R2 (RSQUARED), MAE ( mg L−1), and relative error (RELERR). Algorithms which were tested are a linear model

(LM), support vector machines with linear kernel (SVML), support vector machines with polynomial kernel (SVMP), lasso and elastic-net

regularized generalized linear models (GLMNET), multivariate adaptive regression spline (MARS), partial least squares regression (PLS),

k-nearest neighbors regression (KNN), random forest (RF), extreme gradient boosting (XGBM), cubist regression (CUBIST), and stochastic

gradient boosting (GBM). Algorithms are sorted by increasing median RMSE (top is highest and bottom is lowest).
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