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1 Extreme temperatures

In this section we include the figures analogous to Figs. 3, 4 and 5 of the main text, but for SSWJan19 (Figs. S1, S2, and S3)
and SSWSep19 (Figs. S4, S5, and S6). Again, we use IFS as the representative model.
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Figure S1. As Fig. 3 of the main text, but for SSWJan19. Statistical summary maps of surface temperature minima in the interval from 15-27

January. (a) Shows ‘normal’ statistics over the ‘ensemble’ of years from 1980-2020 in ERAS, (b) shows GEV statistics from ERAS, (c) and

(d) show normal and GEV statistics respectively for the early initialization free experiment of the IFS model.
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Figure S2. Same as Fig. 4 of the main text, but for SSWJan19. Shown are severity distributions (i) and timeseries (ii) of daily-minimum
surface temperature, 7', averaged over the full spatial region in Fig. S1. Left (a,c,e) and right (b,d,f) columns show early and late forecast

dates. Top (a,b), middle (c,d), and bottom (e,f) rows show free, nudged, and control experiments.
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Figure S3. Same as Fig. 5 of the main text, but for SSWJan19. Summary of experimental effects according to IFS for SSWJan19, for both

early (a) and late (b) initialization dates. Panels (i) show severities S™ vs. risk, meaning the probability of an event of even greater severity.

Crosses represent empirical risks, solid lines represent GEV-fitted risks, and shaded bands represent 50% confidence intervals of GEV fits

based on 1000 bootstrap resamplings. Panels (ii) show RR of the control and nudged distributions relative to free, as a function of severity.

Panels (iii) show QSs of the control and nudged distributions relative to the free, as a function of risk, as well as empirical differences

between curves in panels (i). In panels (iv), we summarize each response as a single ordered pair (relative risk, quantile shift), where the

reference severity is that observed in ERAS and the reference quantile is that fitted from the ERAS GEV at its reference severity. Any ratios

< i or > 4 would be clipped to the gray shading at the margins.
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Figure S4. As Fig. S1 and Fig. 3 of the main text, but for SSWSep19, for which temperature maxima are condsidered over the period 2
October-15 November. (a) and (b) show ERAS ‘normal’ and GEV statistics respectively, (c) and (d) show normal and GEV statistics from

the early initialization free IFS experiment.
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Figure SS5. Same as Fig. 4 of the main text, but for SSWSep19. Shown are severity distributions (i) and timeseries (ii) of daily-maximum
surface temperature, 7', averaged over the full spatial region in Fig. S4. Left (a,c,e) and right (b,d,f) columns show early and late forecast

dates. Top (a,b), middle (c,d), and bottom (e,f) rows show free, nudged, and control experiments.
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Figure S6. Same as Fig. S3 and Fig. 5 of the main text but for SSWSep19. Note that temperature maxima are considered in this case.
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Figure S7. Multi-model mean RR of southern UK and Ireland snow, as Fig. 9 of the main text, but for varying snow depth thresholds. Shown
for both early and late initializations of SSWFeb18.

2 Extreme snow

Figure S7 illustrates the sensitivity of the multi-model mean RR for snow accumulation (Fig. 9 of the main text) to the selection

of threshold snow depth (0.8 cm shown in the main text.)



