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Abstract. The JATAC2022 campaign in Cape Verde provided a unique opportunity to collect mineral dust aerosols from mul-

tiple Saharan source regions and characterize their composition. Mineral dust aerosols comprise a complex assemblage of

minerals with distinct physico-chemical properties, leading to differentiated climatic impacts through interactions with radia-

tion, cloud microphysics, and atmospheric chemistry. A crucial physical property governing these interactions is the particle

size distribution (PSD), which strongly influences aerosol optical properties, transport, and deposition. Although contempo-5

rary atmospheric models have begun integrating mineralogical data into their dust aerosol representations, implementation

faces complications due to variations in dust emission parameterizations, making some models more compatible with existing

soil mineralogical databases than others.

This work addresses the challenges encountered when incorporating mineralogical information into the COSMO5.05-

MUSCAT atmospheric model, which employs a dust emission scheme based on Marticorena and Bergametti (1995). We10

present an improved approach that refines the translation of mineralogical soil PSDs into emitted aerosol PSDs. The re-

vised implementation is evaluated using historical Saharan dust measurements and new mineralogical observations from the

JATAC2022 and DUSTRISK2022 campaigns. Model performance is assessed using a dual validation framework consider-

ing both mineral-resolved and elemental composition. The elemental validation approach provides complementary constraints

that expose discrepancies in internal mixing assumptions and reveal limitations invisible to mineral-only comparisons. Results15

indicate that the proposed modification substantially improves representation of phyllosilicates, quartz, and feldspar, while

biases in iron, calcium, and magnesium highlight fundamental challenges in representing the heterogeneous internal structure

of natural dust particles.
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1 Introduction

Mineral dust aerosol is the most abundant atmospheric aerosol type by mass (Kinne et al., 2006) and exerts widespread in-20

fluence on the Earth system. By scattering and absorbing solar and terrestrial radiation, dust modifies atmospheric heating

rates, alters cloud microphysical processes, and perturbs the surface energy balance (Stocker et al., 2013; Kok et al., 2023).

Despite this recognized role, large uncertainties remain in quantifying the net radiative forcing by dust. These uncertainties

arise from the complex variability of dust properties during emission and transport, including particle size distribution (PSD),

morphology, mixing state, and mineralogical composition (Huneeus et al., 2011; Mahowald et al., 2014; Di Biagio et al., 2020).25

Mineralogical composition has emerged as a key factor in constraining dust–climate interactions. Different minerals govern

how dust interacts with radiation, clouds, and other atmospheric constituents. For instance, small variations in the abundance

of iron oxide bearing minerals can strongly amplify shortwave absorption and alter dust’s radiative properties (Balkanski et al.,

2007; Gómez Maqueo Anaya et al., 2025; Li et al., 2024; Miffre et al., 2023; Obiso et al., 2024; Sokolik and Toon, 1999; Zhang

et al., 2024), while silicate minerals differ in their potential to act as ice-nucleating particles (INPs) or cloud condensation30

nuclei (CCN) under varying conditions (Chatziparaschos et al., 2023; Harrison et al., 2019; Kelly et al., 2007; Murray et al.,

2012). Yet, most chemistry transport models treat dust as homogeneous with respect to its composition, neglecting the strong

spatial and temporal variability of mineral fractions. This simplification introduces biases in estimates of dust absorption, cloud

interactions, and downstream impacts such as nutrient deposition (Kok et al., 2023).

Incorporating mineralogical detail into models is therefore essential, but it depends critically on how the PSD of individual35

minerals in soils is represented. The PSD controls not only transport and deposition but also the mineral dust particles’ inter-

action with radiation. A central challenge is that the PSD of airborne dust does not directly reflect the PSD of the parent soil:

during emission, processes such as soil texture effects, interparticle cohesion, wind friction velocity, and fragmentation and

saltation dynamics reshape the particle size distribution (Marticorena and Bergametti, 1995; Kok, 2011). These nonlinear pro-

cesses lead to size-dependent shifts in mineralogical composition, making the link between soil and atmospheric mineralogy40

far from trivial.

The particle size distribution of mineral dust fundamentally governs its atmospheric residence time and transport dynamics.

Coarse-grained minerals such as quartz, feldspars, and calcite tend to be removed quickly by gravitational settling, resulting

in higher concentrations near source regions. In contrast, finer clay-sized phyllosilicates remain suspended for longer periods

and thus constitute a major fraction of the dust transported to remote areas (Lawrence and Neff, 2009). The Soil Mineral45

Atlases (SMAs), a generic term for databases describing the mineralogical composition of soils that are currently employed

in atmospheric models, however, classify minerals into only two size fractions, clay (defined as particles with diameters up

to 2.5 µm) and silt (particles with diameters between 2.5 to 50 µm), which introduces biases in model simulations. As a

result, models tend to overestimate quartz mass fractions in coarser size bins and underestimate them in finer fractions. This

discrepancy stems from the assumption of a constant quartz proportion across a wide size range, which does not reflect its50

reported measured distribution (Kandler et al., 2007, 2009, 2018; Panta et al., 2023).
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To address this, some models apply mineral-specific PSD transformations based on the brittle fragmentation theory (BFT)

(Kok, 2011), which offers a semi-direct framework for predicting size-resolved emission fluxes of mineral dust particles (e.g.,

Gonçalves Ageitos et al., 2023; Scanza et al., 2015; Perlwitz et al., 2015a, b). However, many models still rely on emission

parameterizations from the scheme developed by Marticorena and Bergametti (1995), which is based on bulk soil properties55

and cannot directly provide mineral-specific fluxes, particularly given the incomplete mineralogical information in the SMAs

commonly used for atmospheric modeling. Assessing the implications of these contrasting approaches is critical for mineral-

resolved simulations, yet systematic evaluations remain limited.

In a previous study, Gómez Maqueo Anaya et al. (2024) implemented a mineralogical composition module in Saharan

dust simulations within COSMO5.05–MUSCAT. Building on that work, this article addresses a central methodological ques-60

tion: how should the transformation of the particle size distribution (PSD) from soil to atmosphere be represented within the

COSMO5.05–MUSCAT dust emission framework to ensure a realistic reproduction of mineralogy-based dust properties? To

this end, we evaluate two PSD transformation approaches based on the Marticorena and Bergametti (1995) emission scheme,

coupled with the mineralogical database, GMINER (Nickovic et al., 2012). Model results are systematically compared with

in-situ measurements of airborne Saharan dust mineralogical composition under different atmospheric transport conditions.65

Specifically, we contrast two modeling schemes, hereafter referred to as the ‘original’ and ‘modified’ approaches. The

‘original’ scheme, following Gómez Maqueo Anaya et al. (2024), maps the mineral soil PSD directly onto the aerosol size

distribution. While this method adequately represents clay-sized minerals, it shows marked discrepancies for silt-sized frac-

tions when compared with observations. To improve this representation, the ‘modified’ scheme introduces refinements to the

treatment of mineral soil PSD via a redistribution of mineral fractions informed by applications of the BFT, as described in70

Section 3.2.

The performance of the two schemes is assessed against a compilation of regional North African measurements and con-

current in-situ observations at Cabo Verde from the DUSTRISK (January–February 2022) and Joint Aeolus Tropical Atlantic

Campaign (JATAC, June 2022). DUSTRISK provides size-resolved elemental composition, while JATAC offers mineral- and

elemental-specific measurements. The observational datasets used for these evaluations are summarized in Section 4.75

Through these multi-level comparisons, we evaluate both schemes at the mineral and elemental scales, quantify the impact of

the proposed modifications, and explore how seasonal variability (Section 2) in dust source regions influences airborne mineral

composition. Results are presented in Section 5.1 for the regional compilation, Section 5.2 for DUSTRISK 2022 campaign,

and Section 5.3 for JATAC 2022.

2 Meteorological drivers of dust seasonality80

Seasonal variations in meteorological conditions not only control the vertical and horizontal transport of mineral dust but also

influence its mineralogical composition by modulating source activation and emission pathways (Kumar et al., 2018). The

shifting wind regimes, surface moisture conditions, and boundary-layer dynamics determine which soil types are mobilized

and how mineral fractions are mixed during transport. These processes, in turn, shape the composition of dust sampled at
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different locations and altitudes. A key contrast in North African dust transport is the altitude of plumes: during the Northern85

Hemispheric (NH) winter, dust remains largely confined to the lower troposphere, whereas in summer it is frequently lofted

into mid-tropospheric layers. These seasonal variations are primarily driven by large-scale shifts in atmospheric circulation

patterns over the Sahel and western Sahara (Kalu, 1979; Schepanski et al., 2009).

In NH summer, the northward migration of the Hadley cell shifts the Intertropical Discontinuity (ITD) into the northern

Sahel and southern Sahara. The ITD marks the boundary between hot, dry desert air and moist monsoonal inflow from the90

south. Strong solar heating over the Sahara deepens the planetary boundary layer (PBL), enhancing vertical mixing and dust

uplift (Schepanski et al., 2009). At night, an elevated dust layer develops above the monsoonal flow, where geostrophic winds,

driven by the pressure gradient between the Saharan Heat Low and the subtropical Atlantic, entrain dust and lift it into the

free troposphere (Parker et al., 2005). These elevated plumes are transported westward within the African Easterly Jet and

modulated by African Easterly Waves, enabling long-range transport across the Atlantic. Summer dust layers commonly reach95

altitudes of 5–7 km, facilitating efficient export toward the Caribbean and the Americas (Chiapello et al., 1997; Engelstaedter

et al., 2006; Harr et al., 2024).

In contrast, NH winter is characterized by weaker solar heating, a shallower PBL, and a southward retreat of the ITD. Dust

sources shift deeper into the southern Sahel, and transport occurs predominantly at lower altitudes (1.5–3 km), carried westward

by northeasterly trade winds (Barkan et al., 2004; Chiapello et al., 1997; Kalu, 1979; Harr et al., 2024). This shallow transport100

regime reduces the vertical extent of plumes, limiting their detectability in satellite retrievals and reducing the likelihood of

transatlantic export. This season also coincides with the Sahelian biomass-burning period, during which substantial amounts of

anthropogenic aerosols are emitted and frequently mix with the dust layer which complicates remote sensing retrievals of pure

dust particles (Gebauer et al., 2025; Heinold et al., 2011; Tesche et al., 2011). Overall, seasonal circulation patterns not only

control the altitude and transport pathways of dust but also shape the composition and representativeness of samples collected105

at receptor sites, such as the Cape Verde archipelago.

3 Methodology

3.1 Model description and parametrizations

The chemistry transport model used in this study is the MUltiScale Chemistry Aerosol Transport (MUSCAT) coupled online

with the COnsortium for Small-scale MOdelling (COSMO) v5.05 model. COSMO, developed by the German Weather Service110

(Deutscher Wetterdienst, DWD), is a non-hydrostatic regional weather prediction model that solves the fundamental equations

of atmospheric dynamics on a terrain-following grid (Baldauf et al., 2011). MUSCAT is the online-coupled chemistry trans-

port component, computing the atmospheric transport of aerosols through time-dependent mass balance equations driven by

COSMO meteorological fields (Heinold et al., 2011; Wolke et al., 2012). In this work, mineral dust aerosols are represented as

passive tracers, i.e., they are not subject to chemical aging or chemically reactive transformations.115

The coupled atmosphere-aerosol model system, COSMO-MUSCAT, has been widely applied and evaluated for Saharan dust

studies. Previous validation efforts have demonstrated its capability to reproduce dust source activation, transatlantic transport,
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and regional dust transport under different meteorological conditions (Heinold et al., 2011; Schepanski et al., 2009; Tegen et al.,

2013; Schepanski et al., 2016, 2017). The specific configuration used here has been further evaluated against atmospheric dust

loading observations in Gómez Maqueo Anaya et al. (2024) and Gómez Maqueo Anaya et al. (2025).120

The atmospheric life cycle of dust aerosols in MUSCAT is represented through a set of physical parameterizations dynam-

ically coupled to COSMO meteorology and updated at every advection step. The main processes include: (1) dust emission,

parameterized following Tegen et al. (2002) with modifications to incorporate mineralogical soil fractions as described in

Gómez Maqueo Anaya et al. (2024); (2) aerosol transport, solved using a third-order upwind advection scheme with time-

splitting integration (Wolke and Knoth, 2000); and (3) aerosol deposition, accounting for both dry and wet removal processes.125

Dry deposition is parameterized following the formulations of Seinfeld and Pandis (2016) and Zhang et al. (2001), while wet

deposition (including in-cloud scavenging or rainout, and below-cloud scavenging or washout) follows the approaches of Berge

(1997) and Jakobsen et al. (1997), with detailed implementation described in Heinold et al. (2011).

3.1.1 Dust emission scheme

Dust emission is a non-linear process initiated when near-surface wind velocity generate sufficient vertical shear stress at130

the soil surface to initiate particle mobilization. In COSMO-MUSCAT, threshold friction velocities are calculated following

the parameterization of Marticorena and Bergametti (1995), which accounts for size-resolved soil particle mobilization and

depends on soil texture, surface roughness, vegetation, and soil moisture.

Emission fluxes are then computed interactively using the scheme of Tegen et al. (2002), first implemented in COSMO-

MUSCAT by Heinold et al. (2007). Fluxes scale with the cube of the wind friction velocity, derived from COSMO-simulated135

near-surface winds, and are further modulated by vegetation cover and soil moisture. Particle uplift occurs when the effective

friction velocity exceeds the size-dependent threshold (U∗t ), which is controlled by the erodible particle diameter (Dp), the

aerodynamic roughness length of the total surface (Z0), and the smoother, erodible fraction roughness length (z0s).

The effective friction velocity is obtained from a drag partitioning approach that reduces the wind’s erosive potential by

accounting for the sheltering effect of roughness elements. The size-dependent threshold friction velocity is expressed as:140

U∗t (Dp,Z0,z0s) =
U∗ts(Dp)

feff(Z0,z0s)
, (1)

where U∗ts represents the part of U∗t that is available to the erodible soil, called the smooth surface threshold friction velocity,

and feff is the effective drag partition factor:

feff(Z0,z0s) = 1−
[

ln
(

Z0

z0s

)
/ln

(
0.35

(
10
z0s

)0.8
)]

. (2)

For bare desert surfaces, the aerodynamic roughness length (Z0) is prescribed as 0.001 cm, following the recommendation of145

Darmenova et al. (2009), while z0s is obtained from global satellite-derived dataset (Prigent et al., 2005). The smooth-surface

threshold friction velocity (U∗ts ) is estimated from COSMO’s 10-meter wind speed output, providing an approximation of the

near-surface wind forcing relevant for dust emission.
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Dust emission occurs when the surface friction velocity exceeds the size-dependent threshold necessary to mobilize soil

particles, provided that soil conditions (e.g., moisture, roughness) are favorable. Once this condition is met, the emitted flux150

is represented as the horizontal particle flux (G), which scales with the cube of the friction velocity and accounts for the soil

particle size distribution:

G =
ρa

g
·U∗3 ·

∑

i

[(
1 +

U∗t (Dpi,Z0,z0s)
U∗

)(
1− U∗2t (Dpi,Z0,z0s)

U∗2

)
·Brel-i

]
for U∗ ≥ U∗t , (3)

where ρa is air density, g is gravitational acceleration, U∗ is the surface friction velocity, U∗t is the threshold friction velocity

for each particle diameter (Dpi), and Brel-i represents the relative basal surface area of size fraction i. In MUSCAT, the soil is155

represented by 196 discrete size fractions (i = 196).

Because threshold friction velocity does not scale linearly with particle diameter, an accurate representation of the soil size

distribution is required. In the Marticorena and Bergametti (1995) parametrization, the soil particle size distribution (PSD) is

modeled using a multi-modal log-normal distribution:

dm(Dpi)
d ln(Dpi)

=
n∑

j=1

mj√
2πln(σj)

exp

(
(lnDpi− lnMMDj)

2

−2ln2σ

)
. (4)160

where j denotes the size mode (clay, silt, sand in the present MUSCAT setup) mj is the mass fraction of mode j, σ is the

geometric standard deviation (set to 2.0 independent of the mode), and MMDj are the mass median diameters, set to 2.0 µm

(clay), 15.0 µm (silt), and 150.0 µm (sand), respectively.

To determine the basal (projected) surface area distribution, the PSD is transformed assuming spherical particles of uniform

density:165

dBt(Dpi) =
dm(Dpi)

2
3ρDpi

. (5)

The total basal surface area (Bt) is obtained by integrating Eq. (5) across all particle sizes. Normalizing dBt(Dpi) by Bt

yields the relative basal surface area distribution Brel-i, which is used in Eq. (3) to allocate the horizontal flux across particle

sizes.

Saltation and particle bombardment processes (Marticorena and Bergametti, 1995) are incorporated by iteratively adjusting170

Brel-i for each size class, accounting for the momentum transfer from saltating particles to finer dust grains. Following this

adjustment, the total horizontal flux is computed.

The fraction of the horizontal flux that becomes airborne is parameterized as a vertical dust flux (F ):

F = ω ·Aeff ·G · (1−Asnow) · Iθ, (6)

where ω is the sandblasting efficiency, prescribed per soil type based on the local clay, silt, and sand fractions (Tegen et al.,175

2002). Aeff denotes the erodible surface area, modulated by vegetation cover and aerodynamic roughness, while Asnow accounts

for the fraction of this area that is snow-covered. The factor Iθ represents a soil moisture correction following Fécan et al.

(1999).
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Table 1. Definition of MUSCAT five independent size classes for mineral dust aerosol transport. Their size limits are indicated.

Bin name Diameter range

BIN 01 0.2 - 1 µm

BIN 03 1 - 3 µm

BIN 09 3 - 9 µm

BIN 26 9 - 26 µm

BIN 80 26 - 80 µm

The vertical flux is then partitioned into five transport-relevant size bins (Table 1) to generate size-resolved dust fluxes for

atmospheric injection. The overall magnitude and spatial variability of emissions are further influenced by surface conditions.180

Soil moisture reduces emissions linearly above a critical threshold (Fécan et al., 1999), while vegetation cover suppresses fluxes

beyond a biome-dependent threshold (0.5 fractional cover in desert regions) and scales them linearly below it (Tegen et al.,

2002). Snow cover also inhibits dust emissions; however, its parametrization is deactivated in this model configuration, as its

influence over the Sahara Desert is considered negligible. Together with the particle size distribution and surface roughness,

these factors control the efficiency and spatial heterogeneity of dust emissions in COSMO-MUSCAT.185

3.1.2 Input files and simulation setup

The mineralogical composition simulations in this study were performed using the COSMO5.05-MUSCAT model with a con-

sistent configuration. The only variations among the simulation experiments lie in the time periods considered, some (DUS-

TRISK) focus on January–February 2022, while for the JATAC 2022 comparisons simulations from June–July 2022 are used.

For each of these periods, simulations were performed using two different mineralogical composition approaches, which dif-190

ferences are detailed in the following section.

The COSMO5.05-MUSCAT model domain is set up to cover the majority of the Sahara Desert and extend westward over

the Atlantic Ocean to include the Cape Verde archipelago. The domain is bounded by 30.75°W to 39.32°E and 38.49°N to

0.38°S. Simulations are conducted at a horizontal resolution of 0.25° (approximately 28 km), with a vertical discretization of

40 layers. The lowest, surface level, model layer has a thickness of 20 m.195

Meteorological initial and boundary conditions for COSMO5.05-MUSCAT are provided by the DWD in the form of 3-hourly

meteorological fields. To maintain realistic atmospheric conditions, the model is re-initialized every 48 hours using overlapping

cycles. Each 48-hour cycle begins with a 24-hour spin-up phase, during which only the COSMO5.05 meteorological model is

active. Following this spin-up, MUSCAT is coupled to COSMO5.05 for the remaining 24 hours to simulate aerosol transport

and interactions. Only the output from these second-day simulations, when both COSMO5.05 and MUSCAT are fully coupled,200

is used for analysis. Continuity between cycles is ensured by starting each new COSMO5.05 run 24 hours prior to the end

of the previous MUSCAT simulation, while MUSCAT continues using its own prognostic fields from the preceding cycle as

initial conditions.
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The MUSCAT dust emission scheme is controlled by external soil-related datasets. Vegetation cover is prescribed using

the FCOVER product from the Copernicus Global Land Service (Fuster et al., 2020), which provides fractional green vegeta-205

tion coverage. Soil moisture input is taken from ERA5-Land hourly reanalysis data (Muñoz Sabater and Copernicus Climate

Change Service, 2019), specifically the volumetric soil water content of the uppermost soil layer. Soil texture, expressed in

terms of clay, silt, and sand fractions, is provided by the SoilGrids database (Poggio et al., 2021). In addition, the aerodynamic

roughness length is prescribed using the dataset by Prigent et al. (2005). Together with the spatial constraints of the model

domain, these datasets ensure that only continental dust sources are activated. To evaluate the spatial distribution of active210

sources, we further use the MSG-SEVIRI dust source activation frequency map by Schepanski et al. (2007).

Mineralogical composition is represented by the GMINER SMA (Nickovic et al., 2012), which was first implemented in the

model system by Gómez Maqueo Anaya et al. (2024). The mineralogical fields in GMINER are based on the procedure intro-

duced by Claquin et al. (1999), which identifies dust-productive soils according to the FAO74 classification. Effective mineral

fractions are derived by combining soil texture classes, establishing links between soil types and key minerals including quartz,215

feldspar, calcite, gypsum, illite, kaolinite, smectite, and hematite. Phosphorus, present in several minerals and of particular im-

portance for ocean fertilization, is also included. Mineral and phosphorus fractions are distributed between clay (<2 µm) and

silt (2–50 µm) size populations. However, this approach introduces several sources of uncertainty. The relationship between soil

type and mineral content is derived from sparse measurements and does not account for regional variability within a soil class.

In addition, the underlying measurements are based on wet sedimentation techniques that alter the natural soil composition by220

breaking aggregates, thereby biasing the mineral allocation toward clay-sized fractions (Perlwitz et al., 2015a). This artifact

particularly affects the modeled content of phyllosilicates (illite, kaolinite, and smectite), which observations suggest are more

abundant in coarser size ranges (e.g., Kandler et al., 2009). Such uncertainties can lead to large deviations in modeled soil size

distributions at emission (Journet et al., 2014; Perlwitz et al., 2015a).

The choice of GMINER as the implemented SMA is motivated by its ability to more accurately reproduce the iron oxide225

content in the study region (Gonçalves Ageitos et al., 2023). Since the primary objective of this implementation was to assess

the impact of iron oxides on lidar-retrieved optical properties (Gómez Maqueo Anaya et al., 2025), GMINER provided a

suitable basis for the analysis. At the same time, the comparative study by Gonçalves Ageitos et al. (2023) showed that

GMINER also better captures phyllosilicate distributions, particularly kaolinite for North Africa, than the Journet et al. (2014)

SMA. Feldspar exhibited greater spatial variability, with lower errors when using GMINER, although feldspar size distributions230

remain poorly characterized due to their absence from the finer fractions in this dataset. By contrast, calcite concentrations

were more accurately represented by Journet et al. (2014), while GMINER systematically underestimated calcite levels over

the Sahara Desert. At the time of implementation, these two SMAs were the only datasets available for use.

3.2 Mineralogical composition modification in COSMO5.05-MUSCAT

This section introduces the methodological framework developed to improve and evaluate the representation of mineralog-235

ical composition in atmospheric dust simulations. The focus is on modifications to the mineralogical representation in the
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COSMO5.05-MUSCAT model (Gómez Maqueo Anaya et al., 2024), designed to enhance how mineral size distributions are

treated within simulated aerosol composition.

In the ‘original’ approach by Gómez Maqueo Anaya et al. (2024), mineralogical fractions are prescribed by directly mapping

the mineral soil particle size distribution (PSD) from GMINER (Nickovic et al., 2012) onto the mineral-resolved aerosol PSD240

(see upper panel of Fig. 2). A key limitation of this approach is that the modifications to the bulk PSD caused by the emission

process do not affect the mineral-resolved PSD. This overlooks the fact that the emission process explicitly alters the overall

dust PSD, as predicted by dust emission theories (Kok et al., 2012; Marticorena and Bergametti, 1995; Shao et al., 2011).

This inconsistency stems from the structure of GMINER in combination with Marticorena and Bergametti (1995)’s emission

scheme, since GMINER provides mineralogical mass fractions only for the finest soil classes (silt and clay). These are assumed245

to represent the airborne dust range, given their capacity to remain suspended for several days. However, the emission scheme of

Marticorena and Bergametti (1995) (Eqs. (3)–(6)) requires the full soil PSD to represent saltation and bombardment processes.

Larger soil particles, although not staying airborne, are essential because their impacts release smaller fragments that otherwise

could not overcome interparticle cohesion forces (Marticorena and Bergametti, 1995; Iversen and White, 1982).

Consequently, a consistent application of the Marticorena and Bergametti (1995) scheme is not possible with GMINER250

alone, since the database lacks information on the coarser soil fractions. Figure 1 illustrates this limitation for a representative

Saharan grid cell, highlighting the substantial portion of the soil PSD that is missing when mineral fractions are restricted to

only the two finest classes.

The emission scheme inherently favors silt-sized particles, which require relatively low wind stress for entrainment and are

small enough to remain airborne, as illustrated by the threshold friction velocity curve (in Fig. 1 of Marticorena and Bergametti255

(1995)). This aerodynamic preference becomes problematic when GMINER assigns minerals exclusively to silt or clay size

classes. Treating these mineral-resolved PSDs as representative of the full soil PSD within the Marticorena and Bergametti

(1995) framework introduces systematic biases: clay-sized minerals experience artificially suppressed emissions due to high

cohesion thresholds that rely on larger saltating particles to be broken, while silt-sized minerals are prone to overestimation in

the absence of coarser, non-erodible grains. Accurate dust emission calculations therefore require a complete soil PSD, where260

larger particles mobilize finer fractions via saltation bombardment (Kok et al., 2012; Marticorena and Bergametti, 1995). This

issue is compounded by the methodology used to construct GMINER: wet sieving mechanically disaggregates soil samples,

increasing the apparent fraction of clay-sized particles relative to undisturbed soils (Perlwitz et al., 2015a). While airborne clay-

sized fractions generally match source soils and are preserved during transport (Caquineau et al., 1998; Lafon et al., 2004),

silt-sized mineral distributions show poorer agreement, partly due to biases introduced by wet-sieving (Perlwitz et al., 2015a).265

To address these issues, several modeling studies have incorporated mineral-specific transformations from soil to aerosol

PSDs (e.g., Perlwitz et al., 2015a, b; Gonçalves Ageitos et al., 2023; Pérez García-Pando et al., 2016; Scanza et al., 2015;

Li et al., 2021). These approaches build on the Brittle Fragmentation Theory (BFT) of Kok (2011), which posits that for

the finest particles, the emitted size distribution is largely independent of soil properties and wind speed. BFT conceptualizes

emission as a sequence of energetic collisions between saltating aggregates, producing fragments that predominantly fall below270

a characteristic size threshold. The resulting particle number concentration N is inversely proportional to the square of the
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Figure 1. Mass size distribution of soil particles in a random grid cell (22.45°N, 20.9°E) in the Saharan Desert. In black, solid line the total

mass size distribution is shown, three modes can be observed for the different soil size classes clay, silt and sand. In dashed, colored lines,

the mass size distributions per mineral as given in the GMINER database are shown. Figure from Gómez Maqueo Anaya, Sofía (2025)

particle diameter Dp, modulated by an exponential cutoff, as expressed in the following relation:

dN

dlnDp
∝ 1

D2
p
exp

[
−
(

Dp

Dc

)3
]

forDp > Ds, (7)

where Ds represents the "indivisible" size, where particles below this scale are resistant to further fragmentation due to their

inherent particle cohesion. According to Kok (2011), this indivisible size corresponds to the wet-sieved PSD observed in275

soil samples, as wet sieving disperses soil aggregates until further breakdown becomes mechanically limited (Perlwitz et al.,

2015a). Incorporating this concept, the emitted number size distribution can be formalized as:

dN

dlnDp
=

1
cND2

p
exp

[
−
(

Dp

Dc

)3
] Dp∫

0

p(Ds)dDs, (8)

where cN is a normalization factor, and p(Ds) represents the probability density function of the indivisible soil particle diam-

eters after wet sieving. This formulation captures the physical constraint that emitted particles of size Dp cannot be formed280
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from indivisible components larger than Ds. The integral term thus reduces the number of small-sized emitted particles if the

soil has a limited abundance of fine indivisible grains, while the exponential cutoff suppresses emissions at larger diameters.

The BFT posits that the emitted number concentration of small dust particles is largely independent of the undispersed soil

size distribution, with the upper limit of aggregate diameters (Dc) estimated at 12±1µm (Kok, 2011). In this framework,

the PSD of emitted aggregates is skewed toward larger diameters compared to wet-sieved soil, consistent with observations285

by Kandler et al. (2009) and Enete (2012), which indicate that saltation-driven fragmentation preserves a greater fraction

of mass in the silt-size range than suggested by wet-sieved samples. Perlwitz et al. (2015a) further show that roughly 45%

of the silt-sized emitted mass originates from indivisible particles that would be classified as clay-sized in wet-sieved soils.

To reconcile this discrepancy, they proposed an empirical correction that reallocates a fraction of clay-sized minerals from

wet-sieved soils to the silt fraction, particularly phyllosilicates such as illite, kaolinite, and smectite, which are categorized in290

GMINER exclusively in clay size classes but contribute to silt-sized emissions in reality.

This adjustment is quantified using Equation (8) to derive a generalized ratio of emitted clay- to silt-sized particles, as-

sumed to be spatially invariant and independent of local soil conditions. This simplifying assumption has been adopted in

several modeling studies (Albani et al., 2014; Perlwitz et al., 2015a, b; Scanza et al., 2015; Pérez García-Pando et al., 2016;

Gonçalves Ageitos et al., 2023). However, it applies only to particles below 20 µm, as larger particles are more sensitive to295

site-specific emission factors such as wind speed, soil properties, and surface roughness. Since GMINER defines the silt class

up to 50 µm, a further adjustment is needed for particles in the 20–50 µm range. Perlwitz et al. (2015a) addressed this by scal-

ing the clay contribution using measurements from Kandler et al. (2009), which provided empirical data on the coarse-mode

mineral distribution of freshly emitted dust. Using Equation (8), they estimated a clay-to-silt ratio of 0.05 for diameters below

20 µm, which was reduced to 1.3% of the total emitted mass for the 0–50 µm range after volume-normalization for the coarser300

fraction.

This methodology rests on two critical assumptions. First, it assumes that the PSD measured at Tinfou by Kandler et al.

(2009) is representative of other dust source regions. While this may not hold universally, the observed increase in silt fraction

with particle diameter is consistent with the physical principle that the threshold friction velocity for emission decreases with

particle size (Marticorena and Bergametti, 1995; Iversen and White, 1982). The approach also assumes that the emitted PSD305

is primarily determined by mineral-specific fragmentation, neglecting wind speed variations. This assumption is reasonable

for particles below 20 µm, where Eq. (8) offers a reliable approximation, but becomes less reliable for coarser particles where

emission dynamics are more sensitive to environmental conditions. Second, the model neglects modifications to the PSD

caused by gravitational settling during transport to the Tinfou observation site. This simplification is justified by focusing only

on measurements taken during high-concentration dust events, which are presumed to reflect recently emitted aerosols with310

minimal transport-induced size sorting.

This methodology is implemented here as the ‘modified’ approach, in which the dispersed soil size distribution from the

GMINER SMA is adjusted to more realistically represent the aerosol size distribution observed in atmospheric dust. The

formulation follows Perlwitz et al. (2015a), based on BFT. From GMINER, the mass fraction of each mineral k ∈M in the

clay (0-2 µm) and silt (2-50 µm) size categories is denoted by mc
k(st) and ms

k(st), respectively, where st is the arid soil type315
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Figure 2. Larger pie charts represents mineral fraction soil distribution, clay represents particles with diameters below 2.5 µm and silt

represents particles above. Smaller pie charts represent the mineral fractions of aerosols per size bin as classified in MUSCAT (Table 1).

Upper panel shows the original mineral soil particle size distribution as obtained by GMINER and the subsequent mineral fractions in the

aerosol bins mimicking that distribution. Lower panel shows the modifications to that mineral soil particle size distribution by following the

modifications suggested by Perlwitz et al. (2015a), and Gonçalves Ageitos et al. (2023).
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provided by FAO74. These fractions are normalized for each soil type such that:

∑

k∈M
mc

k(st) = 1 and
∑

k∈M
ms

k(st) = 1, (9)

with |M|=8 minerals considered. To better reflect the emitted PSD, the BFT-based method distributes all minerals across both

size categories, including those originally classified exclusively as clay- or silt-sized in GMINER.

To assign mineral fractions to the actual aerosol size categories, soil texture information from the SoilGrids database (Poggio320

et al., 2021) is incorporated. Let mc(sx) and ms(sx) denote the soil mass fractions of clay- and silt-sized particles, normalized

such that:

mc(sx) +ms(sx) = 1. (10)

The combined mineral mass fraction in each size category at each location is then computed by weighting the GMINER

mineral fractions by the local soil texture proportions:325

mc
k(st,sx) = mc(sx)mc

k(st), ms
k(st,sx) = ms(sx)ms

k(st). (11)

This ensures that the total mineral mass fraction across both size classes sums to unity:

∑

k∈M
(mc

k(st,sx) +ms
k(st,sx)) = 1. (12)

In this formulation, mineral mass fractions vary spatially according to two factors: the arid soil type (st), which governs

mineralogical composition, and the soil texture class (sx), which determines the relative abundance of clay- and silt-sized330

particles.

Once the soil mineral fractions are obtained from Eq. (11), the next step is to derive the emitted mass fraction of each

mineral in the clay and silt size categories. Denote by ϕc and ϕs the total emitted mass fractions of clay- and silt-sized aerosols,

constrained by:

ϕc + ϕs = 1. (13)335

These totals are composed of contributions from all minerals k ∈M. Let ϕc
k and ϕs

k represent the emitted clay- and silt-sized

fractions attributable to mineral k. They satisfy:

ϕc =
∑

k∈M
ϕc

k and ϕs =
∑

k∈M
ϕs

k, (14)

and consequently:

∑

k∈M
(ϕc

k + ϕs
k) = 1. (15)340

Thus, the emitted mineral mass fractions across all species and size classes sum to unity. Following the BFT-based for-

mulation, the global clay-sized emission fraction is prescribed as ϕc=0.013, constant across all locations. The contribution of
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mineral k to clay-size emissions is therefore given by:

ϕc
k(st) = ϕcmc

k(st), ϕc = 0.013, (16)

meaning that the proportion of emitted clay-sized dust mirrors the clay mineral fractions of the fully dispersed soil.345

With ϕc prescribed, the total silt-sized fraction follows implicitly as:

ϕs = 1−ϕc = 0.987. (17)

For each mineral, the emitted silt-sized fraction ϕs
k has two sources: (1) particles originally present in the silt-size range, and

(2) fragments of clay-sized particles that are mobilized through the disaggregation of aggregates during saltation. The latter is

approximated by an empirical reallocation of clay mass into the silt fraction. This is expressed as:350

ϕs
k = ϑ

(
γkmc

k(st,sx) +ms
k(st,sx)

)
. (18)

where γk is a mineral-specific reaggregation coefficient quantifying the clay-to-silt transfer, and ϑ is a normalization constant

ensuring that the sum of all ϕs
k equals ϕs.

For simplicity, γk is assumed constant across minerals, with the exception of feldspar, gypsum, and quartz. Feldspar is

typically overrepresented in the silt fraction due to its fragmentation behavior, while gypsum is soluble and exhibits distinct355

disaggregation and spatial patterns (Perlwitz et al., 2015a). Quartz, which dominates the coarse end of the size spectrum and

shows little evidence of disaggregation, is prescribed with γquartz=0. Based on Eqs. (11) and (18), the emitted silt-sized fraction

of mineral k is therefore expressed as:

ϕs
k(st,sx) = ϑ(st,sx) [γkmc(sx)mc

k(st) +ms(sx)ms
k(st)] . (19)

In this formulation, γk acts to suppress the silt-size emissions of minerals such as quartz, while extending the contribution of360

clay-rich species (e.g., phyllosilicates) into the silt range. This redistribution reflects the contrasting aggregation behaviors of

different minerals: quartz remains largely intact during saltation, whereas clay-dominated aggregates disintegrate, contributing

to larger size classes.

Feldspar and gypsum require special treatment since they are present in both clay and silt fractions of atmospheric aerosols

(e.g., Enete, 2012) but are absent from the clay fraction in the GMINER SMA. Consequently, Eq. (16) cannot be applied365

directly. Instead, their clay-size fractions are estimated following the approach of Gonçalves Ageitos et al. (2023), which uses

proxy minerals and scaling ratios: for feldspar, the extension into the clay fraction is scaled according to the quartz clay-to-silt

ratio:

mc
feldspar(st) = ms

feldspar(st) ∗
mc

quartz(st)
ms

quartz(st)
, (20)

and for gypsum, the calcite clay-to-silt ratio is used:370

mc
gypsum(st) = ms

gypsum(st) ∗
mc

calcite(st)
ms

calcite(st)
. (21)
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To conserve the total clay-size mass balance (Eq. 9), the phyllosilicate fractions in the clay category are proportionally

reduced by soil type.

A schematic representation of the ‘modified’ approach is shown in the lower panel of Fig. 2. In this framework, a substantial

reduction of the quartz fraction is introduced, along with a redistribution of minerals across size classes. Specifically, phyllosil-375

icates are incorporated into the silt fraction, while feldspar and gypsum are extended into the clay fraction. The application of

Eqs. (19)–(21) thereby entails a relative decrease of feldspar and gypsum within the silt-size range, resulting from the additional

contribution of phyllosilicates.

After constructing the adjusted mineral soil PSD, which better represents the composition of mineral aerosols at larger sizes,

it is incorporated into the COSMO5.05-MUSCAT emission scheme. The underlying emission algorithm remains unchanged380

from the implementation described by Gómez Maqueo Anaya et al. (2024): the vertical emission flux in each MUSCAT

size bin is scaled by the corresponding soil mineral fraction, with each mineral assigned to its own bin within the respective

size category (see Table 1). In the revised configuration, the mineralogical SMA is updated to reflect the modified PSD, and

additional bins are introduced to represent minerals that now occur simultaneously in both clay and silt size ranges.

4 In-situ dust sampling: dataset compilation and model comparison framework385

4.1 Compilation of North Africa mineralogical measurements

To assess the atmospheric relevance of the modeled modifications, we compared COSMO5.05-MUSCAT model outputs with

in-situ mineralogical measurements, taking into account the pronounced seasonal variability that governs Saharan dust emis-

sions and their transport pathways. Because these seasonal effects are closely linked to mesoscale weather patterns and source

activation, only measurements representative of NH winter months were retained to match the DUSTRISK 2022 campaign390

period (January–February 2022) (Gómez Maqueo Anaya et al., 2024) for this compilation.

The compilation builds on the dataset of Perlwitz et al. (2015b), augmented with additional North African measurements.

The workflow for the selection of the measurements datasets is visualized in Figure 3. Long-term campaigns, here defined

as sampling more than two dust events, were included only if their sampling period extended beyond NH summer months.

The dataset was further expanded relative to the initial COSMO5.05-MUSCAT comparison with in-situ measurements (Fig.395

5 in Gómez Maqueo Anaya et al. (2024)), and can be accessed through the zenodo repository . For long-term campaigns, we

computed average mineral mass fractions over the DUSTRISK 2022 campaign simulation period and compared these against

measurements. This approach was applied to the datasets of Adedokun et al. (1989); Enete (2012); Formenti et al. (2008);

Kandler et al. (2009, 2011); Møberg et al. (1991) and Panta et al. (2023).

For shorter measurement campaigns covering up to two dust events, we employed a more detailed matching procedure (see400

the decision tree workflow from the "dust event analysis" box in Fig. 3). This approach combined two complementary datasets:

(i) HYSPLIT back trajectories (Stein et al., 2015) and (ii) dust emission records from the MSG-SEVIRI Dust RGB product

(EUMETSAT). Following the methodology of Schepanski et al. (2007), recently applied in Souza et al. (2025), we identified

probable dust source regions by integrating these datasets. Simulated dust plumes were then selected to match the observed
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Figure 3. Schematic representation of the workflow used to select and compare in-situ mineral dust measurements with COSMO5.05-

MUSCAT simulations. Primary datasets are displayed in yellow boxes with slanted corners and bold text. The analysis pathway for simulated

mineralogy is depicted by green lines and arrows, while the in-situ measurement selection process is indicated by gray lines and arrows.

Decision points are represented by blue hexagons, procedural steps by blue octagons, supplementary datasets by yellow rectangular boxes,

and final outcomes by lavender octagons.
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transport pathways. Backward trajectories for simulated dust events were computed using the LAGRANTO tool (Miltenberger405

et al., 2013) driven by COSMO5.05 meteorological fields. Comparison with measurements only proceeded when similar dust

source regions were identified through these datasets, allowing direct matching of individual dust plume measurements with

model outputs.

Three campaigns required this detailed matching procedure: Alastuey et al. (2005), Jeong and Achterberg (2014), and Kan-

dler et al. (2007). For the Alastuey et al. (2005) study, MSG-SEVIRI data were unavailable before 2004, so we used Meteosat-7410

natural color imagery to identify a dust plume traveling from mid-southern Algeria to Tenerife on 29 July 2002. For the other

two campaigns, observed plumes were individually matched to simulated events from corresponding source regions by combin-

ing HYSPLIT back trajectories (intersected with active MSG-SEVIRI dust emissions) with LAGRANTO back trajectories (in-

tersected with the same emission areas). Several older measurements used by Perlwitz et al. (2015b), dating back to the 1970s,

could not be reliably traced using this combined approach, and were therefore not compared with COSMO5.05-MUSCAT415

DUSTRISK outputs.

Although the selection criteria were applied rigorously, some historical dust plumes may not have been accurately matched

to those simulated by COSMO5.05-MUSCAT. Deviations from typical seasonal transport patterns cannot be ruled out, as me-

teorological anomalies could have produced unusually strong emissions from certain source regions during the measurement

periods. Such events may not be captured in the model output, which represent only January–February 2022, while the obser-420

vations span a broader range of meteorological conditions. Furthermore, several measurement sites are located near major dust

sources, where local emissions can dominate the observed mineral composition in ways that may not be fully resolved at the

model’s spatial resolution, as seen in the campaigns reported by Formenti et al. (2008); Kandler et al. (2009); Møberg et al.

(1991) and Panta et al. (2023).

Additional uncertainty arises from inconsistencies in particle size classification across the measurement datasets. Some425

studies report only “bulk” mineral composition without specifying the particle size range; in these cases, the full COSMO5.05-

MUSCAT size range (0.2–80 µm) was used for comparison. Other measurements adopt ‘clay’ and ‘silt’ categories, which are

generally better defined but vary in the clay–silt boundary, reported between <2 µm and 2.5 µm (i.e., Kandler et al., 2009;

Møberg et al., 1991). For these, model bins were mapped accordingly, with clay represented by BIN01 + 0.5 BIN03 and silt

by 0.5 BIN03 + BIN09 + BIN26 + BIN80. When specific diameter ranges were reported (i.e., Kandler et al., 2007, 2009;430

Panta et al., 2023), the model bins containing more than 50% of the stated range were selected, and the average mineral mass

fractions of those bins were used for comparison. These classification inconsistencies underscore the need for high-resolution,

well-characterized, and concurrent measurement datasets. Such datasets were obtained during both the DUSTRISK and JATAC

2022 campaigns.

4.2 DUSTRISK 2022 campaign elemental composition435

The DUSTRISK 2022 campaign took place in the Cape Verde archipelago during January and February 2022. Particulate

matter sampling was conducted at two sites (named inflow and outflow) on the Cape Verde island of Santiago, where the

inflow site is positioned upwind of urban areas and exposed mainly to continental air masses from Africa, in contrast to the
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Table 2. Mass percentage of key elements found in the COSMO5.05-MUSCAT simulated minerals. The smectite group is represented by the

end-member montmorillonite, and feldspar is represented by a 1:1 average of microcline (K-feldspar) and albite (Na-feldspar). This selection

is based on common mineralogical assemblages observed in Saharan dust aerosols (Scheuvens et al., 2013; Formenti et al., 2011, 2014).

Mineral Fe (%) Si (%) Al (%) Mg (%) K (%) Ca (%) S (%)

Hematite 69.94 - - - - - -

Illite 1.43 25.25 9.01 1.87 6.03 - -

Kaolinite - 21.76 20.90 - - - -

Smectite - 20.46 9.83 - - 0.73 -

Quartz - 46.80 - - - - -

Feldspar - 30.89 10.23 - 14.05 0.76 -

Gypsum - - - - - 23.28 18.62

Calcite - - - - - 40.04 -

outflow site which is positioned outwind of the major urban area (Praia) (Bredeck et al., 2024; Souza et al., 2025). To ensure

direct comparability with model simulations that represent only continental dust sources, the analysis presented here focuses440

exclusively on measurements from the inflow site. The inflow site in Santiago is located at 14◦°59’24" N, 23◦28’16" W, this

site is characterized by strong prevailing northeast trade winds, with aerosol particles influenced by local marine emissions

from the Atlantic Ocean and long-range transport of continental air masses from Africa, frequently carrying Saharan dust.

Particulate matter (PM) samples were collected during January and February 2022 using Digitel DHA-80 high-volume sam-

plers (Walter Riemer Mess Technik, Germany) operating at an average flow rate of 500 L min−1. At each site, separate PM2.5445

and PM10 samplers were deployed. Sampling typically occurred over 24-hour periods (noon to noon); however, during pro-

nounced dust events, sampling duration was shortened to capture peak concentrations. All samples were collected on Ahlstrom

micro-quartz fiber filters (MK 360) (Bredeck et al., 2024; Souza et al., 2025).

Total reflection X-ray fluorescence (TXRF) spectroscopy was employed to determine elemental concentrations following

the methodology previously described in detail (Fomba et al., 2020). Filter samples of 1.5 cm2 area were prepared by digesting450

three 8 mm spots per filter in a HCl/HNO3 mixture (0.375 mL and 1.125 mL, respectively) using a microwave digester (Mars

6, CEM, Germany). Internal standards (Sc/Co at 10 µL) were added to the digested solutions, which were then applied to

siliconized quartz carriers, dried at 80◦C, and analyzed using a Bruker S4 T-STAR instrument. This procedure determined con-

centrations of Al, Ti, Ca, K, Mg, S, Si, Cr, Mn, Fe, among other elements. Measurement precision was assessed by calculating

relative errors from duplicate sample measurements.455

Table 2 presents the mass percentages of selected elements within the simulated minerals. We focus on Fe, Si, Al, Mg, K,

Ca, and S because these elements are commonly used for mineral identification in atmospheric dust studies (Kandler et al.,

2018; Formenti et al., 2011, 2014; Panta et al., 2023; Rodríguez et al., 2020).
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The comparison between simulated and measured elemental compositions follows a three-step procedure: (1) Filter samples

from inflow sites are identified, and measured elemental masses are normalized by total mass concentration to obtain elemental460

mass fractions. (2) Simulated mineral mass concentrations are extracted from the corresponding grid cells, temporally aver-

aged over the filter sampling periods (±30-minute tolerance), and aggregated by size fraction. For PM2.5, we use MUSCAT’s

BIN01 + 0.5×BIN03; for PM10, we use BIN01 + BIN03 + BIN09 where available (e.g., the ‘original’ scheme defines phyllosil-

icates only through BIN03). (3) Mineral mass concentrations are converted to elemental mass concentrations by multiplying

by their respective elemental mass percentages (Table 2), summing over minerals, and normalizing by total simulated mass465

concentration to yield elemental mass fractions.

In total reflection X-ray fluorescence (TXRF) analysis, the reproducibility of measurements on disk-shaped sample carriers

is evaluated by performing multiple measurements on the same sample while rotating it. This approach helps account for any

non-uniformity in the deposited residue. To assess measurement precision, each sample carrier was analyzed at 0° and 90°

rotational positions, yielding replicate intensity data. The measurements used for validation were quality screened to ensure470

that measurements corresponding in their majority to mineral dust aerosols. Only samples with dust concentrations≥38 µg/m3

were included in the comparison (dust concentrations are derived following Souza et al. (2025) procedure). This screening

resulted in 33 PM2.5 filters and 47 PM10 filters for the final validation dataset.

4.3 JATAC 2022 mineralogical composition

During the JATAC 2022 campaign, in-situ measurements of mineral dust aerosols were performed using Unmanned Aerial475

Vehicles (UAVs) over São Vicente, Cape Verde, throughout June 2022. The Cypurs Institute conducted 25 UAV flights, each

equipped with Optical Particle Counters (OPCs) for fine- and coarse-mode height-resolved PSD observations. Dust particles

were collected from the atmospheric layers using onboard impactor samples (Marinou et al., 2023), with a Giant Particle Col-

lector (GPaC) capable of capturing particle diameters from nanometers up to tens of micrometers (Kezoudi et al., 2025, 2021).

The GPaC’s upper size limit depends on airspeed, pressure, and temperature; as a reference, during the SAMUM-2 campaign,480

particles up to 28.5 µm were successfully collected (Lieke et al., 2011).

Two OPCs were mounted on each UAV. The Universal Cloud and Aerosol Sounding System counted aerosols with diameters

from 0.28 to 17.0 µm, while the Printed Optical Particle Spectrometer measured number concentrations in the 0.14–3 µm range

(Kezoudi et al., 2021). OPC measurements were used to validate PSDs derived from collected dust samples, following the

methodology of Panta et al. (2023).485

Aerosol chemical composition and single-particle characteristics were analyzed using a scanning electron microscope cou-

pled with Scanning Electron Microscope-Energy Dispersive X-ray spectrometry (SEM-EDX) to determine particle size, shape,

and elemental composition. Back-scattered images were used to study particles with projected area diameters (PAD) >0.5 µm,

where PAD (Dp =
√

4Ap/π, with Ap as the particle area) closely approximates aerodynamic diameter for dust (Aryasree et al.,

2024; Kandler et al., 2018). SEM-EDX provides normalized atomic percentages for elements including: F, Na, Mg, Al, Si, P,490

S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Zn, and Pb. Major dust components are classified primarily based on the Al/Si ratio, with

additional constraints from variations in Ca, Fe, Mg, K, and Na within aluminosilicates (Aryasree et al., 2024; Kandler et al.,
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2018, 2020; Panta et al., 2023). This method allows detection of particles up to 30 µm, with measurement precision for major

compounds within 2% relative standard deviation (RSD), while minor compounds range from 10–20% for particles >3 µm,

and can exceed to 100% for the smallest particles. Diameter measurement uncertainty decreases with size, from ∼1.5% RSD495

at 2 µm to <1% for particle diameters >3 µm (Kandler et al., 2018).

Certain minerals have well-defined compositions, such as gypsum, quartz, and calcite, making them readily identifiable

through elemental ratios. Others, notably clay minerals like illite and smectite, exhibit substantial compositional variability,

complicating their identification (Panta et al., 2023; Kandler et al., 2007, 2018; Rieder et al., 1998). Additionally, dust particles

frequently occur as internal mixtures or aggregates rather than pure mineral phases. Consequently, the approach adopted here500

identifies the dominant mineral type within each particle. For single-particle quantification, an elemental index for element X

is defined as the atomic fraction of that element relative to the sum of all quantified elements (Aryasree et al., 2024; Kandler

et al., 2007, 2018; Panta et al., 2023):

mineral− like =
X

(Na + Mg + Al + Si+ P + S + Cl + K + Ca+ Ti + Cr + Mn + Fe)
. (22)

Here, the element symbols represent the relative atomic percentage measured in each particle. Classification uses predefined505

rules based on the elemental index and additional ratios, determined by the dominance of specific elements or their combina-

tions (e.g., Al, Si, Ca, Fe, Al/Si). Particle classes are named after their most prevalent chemical component(s), incorporating

mineral phase terms where appropriate (e.g., gypsum, quartz), with labels assigned according to the best match to measured

elemental concentrations.

Particles are grouped into mineralogical classes using rule sets derived from elemental ratios, taking into account ideal510

mineral compositions as well as natural variability and measurement uncertainty. While not all minerals strictly conform to the

atomic ratios in Eq. (22), the classification focuses on minerals most relevant to the simulated compositions. Counting statistics

for each particle group are used to estimate uncertainty by generating two-sided 95% confidence intervals under a binomial

assumption. Table 3 provides detailed definitions of the mineral classes used in this study, the corresponding element X , and

the criteria for mineral-like classification.515

For iron oxide minerals such as hematite, the atomic ratio reported in Table 3 reflects the iron oxide content from a single-

particle perspective. However, a significant fraction of iron in dust occurs within the crystal lattice of other minerals (Lafon

et al., 2004; Zhang et al., 2015), necessitating an alternative approach to estimate total iron oxide content.

Following Aryasree et al. (2024), we use two parameters: (i) the total iron oxide percentage (Feoxides), which accounts for

iron present either as pure oxy-hydroxides (e.g., hematite, goethite) or incorporated within mineral lattices, and (ii) the total Fe520

index, defined as the atomic ratio of Fe to the sum of all quantified elements, as in Eq. (22). The total iron oxide percentage is

calculated as:

Feoxides = (
mFeox%

mFe%
) ∗ (

MFe

Mdry
) ∗ 100, (23)

where mFeox% and mFe% are the mass fractions of iron oxides and elemental iron relative to the total dust mass, respectively,

obtained from Table 3 in Di Biagio et al. (2019) for different Saharan source regions. MFe is the estimated Fe mass within a525

single particle from SEM-EDX measurements, and Mdry is the particle’s dry mass.
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Table 3. Criteria for element-based identification of major minerals. Element symbols indicate atomic percent concentrations. When X

corresponds to a single element or a sum of elements, it replaces X in Eq. (22). If X is not specified, the listed elemental ratio and its range

are used directly to assign the mineral classification.

Class name Atomic range Value range

Quartz-like X=Si 0.7 - 1.01

Al/Si 0 - 0.22

(Na+Mg+K+Ca+Al)/Si 0 - 0.2

F/(F+Si) 0 - 0.499

Kaolinite-like X=Al+Si 0.7 - 1.01

Al/Si 0.5 - 1.5

Fe/(Al+Si) 0 - 0.2

Mg/(Al+Si) 0 - 0.2

Ca/(Al+Si) 0 - 0.2

Na/(Al+Si) 0 - 0.15

K/(Si) 0 - 0.1

(Na+Cl+2*S)/(Al+Si) 0 - 0.25

Illite-like X=K+Al+Si 0.7 - 1.01

Al/Si 0.45 - 1.5

Fe/(Al+Si) 0 - 0.2

Mg/(Al+Si) 0 - 0.2

(Na+Ca)/(Al+Si) 0 - 0.2

K/(Si) 0.1 - 1.01

(Na+Cl+2*S)/(Al+Si) 0 - 0.25

Smectite-like X=Mg+Al+Si 0.7 - 1.01

Al/Si 0.5 - 1.5

Fe/(Al+Si) 0 - 0.2

Mg/(Al+Si) 0.2 - 1.01

(Na+Ca)/(Al+Si) 0 - 0.2

K/Si 0 - 0.1

(Na+Cl+2*S)/(Al+Si) 0 - 0.25

Class name Atomic range Value range

Calcite-like X=Ca 0.7 - 1.01

X=Ca+Mg 0.7 - 1.01

(Al+Si)/Ca 0 - 0.3

Mg/Ca 0.3 - 3.0

S/Ca 0 - 0.3

Cl/Ca 0 - 0.19

P/(Ca+P) 0 - 0.8

Gypsum-like X=(Ca+S) 0.7 - 1.01

Ca/(Ca+S) 0.2 - 0.8

Mg/Ca 0 - 0.3

Cl/Ca 0 - 0.3

Iron oxides-like X=Fe 0.5 - 0.98999

X=(F+Si)/F 0 - 0.499

Cr/(Cr+Fe) 0 - 0.1

Cl/(Cl+Fe) 0 - 0.1

Ti/(Ti+Fe) 0 - 0.1

Feldspar-like X=K+Al+Si 0.7 - 1.01

X=Na+Al+Si 0.7 - 1.01

X=Ca+Al+Si 0.7 - 1.01

X=Na+Ca+Al+Si 0.7 - 1.01

Al/Si 0.22 - 0.45

(Na+K+Ca)/(Na+K+Ca+Al+Si) 0.15 - 0.25

Fe/(Fe+Al+Si) 0 - 0.15
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Using Eq. (23), total iron oxide and hematite mass percentages are derived for each particle. For hematite specifically, the

iron oxide mass fraction in Eq. (23) is replaced by the hematite mass fraction reported in Table 3 of Di Biagio et al. (2019).

The calculated mineral mass fractions are then compared against COSMO5.05-MUSCAT simulation outputs, where simu-

lated mineral compositions are extracted from the corresponding grid cells and averaged over both the sampling periods and530

specified altitude ranges. In addition to the mineralogical composition comparison, elemental mass fractions are evaluated

using the model validation methodology described in the previous section (Section 4.2). Filter measurements were quality

screened to ensure sufficient particle counts for robust statistical analysis, where only filters containing 1000–2000 particles

were included in the comparison. This screening resulted in measurements from 17 filters that were taken into account for the

final validation dataset.535

5 Model validation

5.1 Northern Africa

To assess the implementation of the ‘modified’ mineral simulation approach in the COSMO5.05-MUSCAT emission scheme

(Section 3.2), first we compare the results with the MONARCH reference shown in Fig. 1 of Gonçalves Ageitos et al. (2023).

The comparison is performed for the same soil type, Xerosols Haplic, located in the northwestern Sahara. Figures 4a) and A)540

show results obtained with the ‘original’ method based on the undisturbed mineralogical database PSD, whereas Figs. 4b) and

B) depict the normalized PSD emission fluxes after modifying the mineralogical database.

The two models differ in how the mineral PSD changes are integrated into the emission calculation. MONARCH modifies

the mineral PSD directly within its emission parameterization, computing mineral emissions up to 20 µm using the updated

BFT formulation of Kok (2011) (Section 3.2). In contrast, COSMO5.05-MUSCAT adjusts the mineral soil PSD during pre-545

processing, prior to emission flux calculation. The modified soil PSD is then combined with the Marticorena and Bergametti

(1995) emission scheme and distributed across MUSCAT’s vertical bin structure. MONARCH also applies a finer size dis-

cretization and a narrower size range than COSMO5.05-MUSCAT: it uses eight bins extending to 20 µm, while COSMO5.05-

MUSCAT employs five broader bins reaching 80 µm (Table 1). Despite these structural differences, both models show clay

fractions largely unchanged and a consistent redistribution pattern, with phyllosilicates shifted toward silt-sized categories and550

a proportional reduction of quartz, as expected.

Nevertheless, notable differences appear. In the MONARCH reference, quartz fractions increase progressively with particle

sizes above 2 µm, while COSMO5.05-MUSCAT shows only a slight rise between the third and fourth bins, with no further

increase toward larger sizes. As a consequence, MONARCH exhibits a continuous decrease of phyllosilicates in the larger

bins, a feature absent from the COSMO5.05-MUSCAT modified PSD. These discrepancies reflect the coarser bin resolution555

and broader size range of COSMO5.05-MUSCAT, as well as differences in how the emission schemes interact with the SMA.

To evaluate whether the ‘modified’ approach improves the representation of dust mineral aerosol composition, a simulation

for the DUSTRISK 2022 campaign was conducted using the approach, shown in yellow solid stars in Fig. 5. A direct compar-

ison is made with the ‘original’ approach. Mineral mass percentages are compared then between the North Africa compilation
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Figure 4. (a) & (A): soil mineral PSDs; (b) & (B): aerosol mineral PSDs. Upper panel: MONARCH results, copied from Gonçalves Ageitos

et al. (2023); normalized mass size distribution of minerals for the Xerosols Haplic soil type according to Claquin et al. (1999)’s database.

Lower panel: COSMO5.05-MUSCAT results; normalized mass size for the Xerosols Haplic soil type according to GMINER. (B) aerosol

PSD is a result of modifying the mineralogical dataset by following a BFT-based approach (Perlwitz et al., 2015a; Gonçalves Ageitos et al.,

2023). Quar: quartz; calc: calcite; feld: feldspars; gyps: gypsum; illi: illite; kaol: kaolinite; smec: smectite; hema: hematite.
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of measured values and the simulation approaches. The results are summarized in Fig. 5, with uncertainties indicated by error560

bars when reported.

The differences between the two simulations are consistent with expectations. Bulk measurements indicate an increase in

phyllosilicates (illite and kaolinite in Fig. 5) under the ‘modified’ approach, accompanied by a decrease in quartz mass fractions.

For the clay-only measurements, phyllosilicates are slightly reduced, most clearly reflected in the illite values exceeding 30%

in Fig. 5. When averaged over the full simulation period, calcite content increases by 12%, hematite by 17%, and gypsum by565

6% compared to the ‘original’ mineralogical scheme. The strongest changes occur for kaolinite and illite, which increase on

average by 133% relative to their previous mass percentages, followed by smectite with a 128% increase. Conversely, quartz

and feldspar fractions decrease substantially, by 53% and 49%, respectively.
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Figure 5. Modified from Fig. 5 in Gómez Maqueo Anaya et al. (2024). Scatterplots of mineral mass percentages of illite, kaolinite, feldspar,

calcite, hematite and quartz measured vs. simulated by COSMO5.05-MUSCAT, the ‘original’ mineral emission scheme in green solid dots

while the ‘modified’ version is shown in yellow solid stars. The dashed lines represent the ratios of 2:1 and 1:2 between the simulated and

observed mineral percentages. The error bars are present when reported in the measurements. Pearson correlation coefficients are shown in

the legend represented by rp.
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Overall, kaolinite is the only mineral that shows a clear improvement in correlation with measurements when using the

‘modified’ approach, as indicated by the Pearson correlation coefficients (rp) in Fig. 5. Illite also exhibits a marginal improve-570

ment based on the change in correlation coefficients. The broad definition of illite complicates its identification (Rieder et al.,

1998, and references therein), contributing to this ambiguity. Importantly, some measurements that could not previously be

compared due to size limitations are now accessible. On average, both kaolinite and illite are slightly overrepresented in the

‘modified’ simulation. For illite, the overestimation already present in the ‘original’ approach is further amplified, whereas

kaolinite shifts from underestimation in the ‘original’ scheme to slight overestimation in the ‘modified’ one.575

Feldspar shows little change in correlation between the two approaches, although its simulated mass fractions are substan-

tially reduced in the ‘modified’ scheme. Both schemes underestimate feldspar compared to observations, but the ‘modified’

approach now enables additional comparisons by including feldspar in the lowest size bin (see Eq. 20). Quartz correlations

likewise remain unchanged, but its content is strongly reduced. This reduction has a marked effect on the difference between

model and measured percentages: the overestimation of quartz decreases from a residual average of ∼30% with the ‘original’580

scheme to only 1% with the ‘modified’ scheme.

Calcite representation worsens, remaining underestimated in both schemes. Hematite correlations remain poor, with negative

rp values in both cases. The quantification of hematite is subject to large uncertainties, as it occurs both as individual particles

and within the crystal lattice of other minerals (Lafon et al., 2004; Zhang et al., 2015). While the average hematite mass fraction

increases by 17% across the simulation period (Sect. 3.2), this increase is not reflected in Fig. 5, where both mineralogical585

schemes yield similar values.

Potential biases in the measurement dataset should also be considered. For instance, the inclusion of the FRAGMENT

campaign added ∼40% more data to the reference set (Fig. 5 in Gómez Maqueo Anaya et al. (2024)). These measurements,

reported by Panta et al. (2023), were collected in the Drâa Valley, Morocco, near active dust source regions. Such localized

influences may not be captured by the model, whose 28 km spatial resolution represents grid-cell averages and does not resolve590

small-scale convective events. Likewise, several other campaigns included in the comparison were conducted close to dust

sources, reflecting local emissions rather than regional transport observations. As a result, the observations may not fully

represent the broader mineral fraction distributions that the model is designed to simulate. Seasonal coverage also plays a

role: while some campaigns spanned transitional months with shifts in dominant source regions, the simulations are restricted

to NH winter (January–February), potentially missing these seasonal variations (Gebauer et al., 2025). Overall, the limited595

correlation improvements and the inability to draw definitive conclusions are driven by both the scale mismatch between

point measurements and grid-cell averages, as well as the temporal and spatial representativeness of the observations, which

introduce multiple sources of uncertainty.

5.2 Cape Verde - DUSTRISK 2022 campaign

The regional analysis presented above evaluated mineral composition across multiple measurement campaigns spanning dif-600

ferent years and locations, where temporal matching between observations and simulations was based on seasonal patterns

rather than exact timing. While informative for assessing broad model performance, this approach lacks the precision needed
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Figure 6. Scatterplots comparing observed elemental mass percentages of Si, Al, Fe, and Ca against simulated values from COSMO5.05-

MUSCAT. Simulated values were derived by multiplying modeled mineral mass by their respective elemental compositions (detailed in

Table 2). Green solid circles indicate the ‘original’ mineral emission scheme, while yellow solid stars represent the ‘modified’ version.

Column headers denote size classifications based on in-situ filter measurements: PM2.5 and PM10. The error bars are represent the measure-

ments’ standard deviation. Dashed lines mark the 2:1 and 1:2 ratios between simulated and observed mineral percentages.
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for stringent validation. The DUSTRISK campaign (January–February 2022) addresses this limitation by providing high-

resolution measurements of elemental composition and particle size distributions that coincide exactly with the simulation

period. Cape Verde’s role as a primary receptor site for Saharan dust transport makes these measurements particularly valu-605

able for evaluating the ‘modified’ mineralogical scheme. Additionally, validating the model through elemental mass fractions

calculated from simulated mineral compositions via Table 2 provides a complementary approach for validation of simulated

mineralogical content.

The scatterplots in Fig. 6 demonstrate marked differences in performance between the ‘original’ and ‘modified’ mineral

emission schemes when evaluated across elemental composition and particle size categories. The ‘modified’ approach shows610

improved representation of silicate content, largely attributable to decreased simulated quartz concentrations. In PM2.5, the

overestimation by the model decreases from a mean residual of +18% to +4% when applying the ‘modified’ scheme, while

in PM10, the overestimation is reduced as reflected in the change of average residuals from +25% to +15%. However, these

Si comparisons must be interpreted cautiously due to potential contamination from the quartz-based filter material used for

sampling.615

Measured aluminum content shows pronounced size fractionation, with PM10 exhibiting both elevated concentrations and

increased variability relative to PM2.5. For clay-sized particles (PM2.5), the modest reduction in phyllosilicate mass under the

‘modified’ scheme reduces model overestimation, with mean residuals improving from +7% to +5%. For the silt-size fraction

(PM10), an increase in phyllosilicate concentrations likewise strengthens model performance, diminishing the underestimation

from a residual mean of -5% to -1%.620

Both emission schemes substantially underestimate iron content, with negligible improvement in the ‘modified’ version. This

underestimation contrasts sharply with the mineral-level evaluation (Fig. 5), where hematite concentrations showed reasonable

agreement with observations. Although Fe occurs in other simulated minerals, notably illite and certain smectite formulations,

these secondary sources do not account for the simulated Fe under representation. This discrepancy between elemental Fe

underestimation and adequate hematite simulation highlights a key feature of atmospheric iron. Fe, especially as iron oxides,625

occurs predominantly as coatings or inclusions on other mineral phases rather than as isolated hematite particles (e.g., Lafon

et al., 2004; Kandler et al., 2007; Zhang et al., 2015). Such mineralogical complexity poses fundamental challenges for models

that assume external mineral mixing, simulating each mineral as a single particle. Calcium shows comparable systematic

underestimation in both schemes, but in this case, it mirrors the underrepresentation of calcite, the dominant Ca-bearing mineral

in the model.630

The potassium content shown in Figure 7 reveals an intriguing size-specific improvement under the ‘modified’ scheme. For

PM2.5, the modified approach yields substantially better agreement with observations, reducing the model’s overestimation

from a mean residual of +2% to +1%, while PM10 shows negligible change between schemes. The reduction of bias for

the clay sized particles stems primarily from the addition of the feldspar fractions to this size category. The improvement

is particularly noteworthy given that the preceding mineral-specific feldspar comparison (Fig. 5) revealed neither substantial635

differences between schemes nor strong correlations with measurements. This discrepancy highlights the value of elemental-
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Figure 7. As in Fig. 6 but for K, Mg and S.

level validation in assessing modifications to mineralogical emission schemes, as changes that appear modest in mineral-

specific comparisons may produce clearer signals when evaluated through their elemental signatures.

Magnesium displays a size-dependent pattern analogous to that observed for aluminum. Although the earlier illite compar-

ison did not strongly suggested improvements by the ‘modified’ scheme, an enhancement on the representation emerges from640

the Mg elemental analysis. For PM2.5, the ‘original’ scheme’s overestimation transitions to a slight underestimation under the

‘modified’ approach, with changes on the order of 0.05% in mean residuals. In PM10, the model’s underestimation diminishes

considerably, with mean residuals between simulated and measured values reduced by half.

Sulfur remains systematically and substantially underestimated by the model across both emission schemes, a deficiency

directly attributable to the well-documented underrepresentation of gypsum content in SMAs (Gonçalves Ageitos et al., 2023;645

Song et al., 2024).
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The elemental comparisons reveal that while the ‘modified’ emission scheme successfully addresses several key biases on

the mineralogical representation, particularly for Si, Al, and Mg, systematic underestimations persist for certain elements,

notably Fe, Ca, and S. However, interpretation of these discrepancies must account for the likelihood that the measured aerosol

samples contain contributions from non-mineral sources. The sampling campaign employed long integration periods during650

the NH winter season, a period characterized by intense biomass burning activity across the Sahel region (Tesche et al., 2011).

Biomass burning emissions are known to contribute substantial quantities of K (Dang et al., 2022), which can confound

interpretations of K derived from feldspars and clays in mineral dust (Formenti et al., 2011; Kandler et al., 2007). Additionally,

biomass burning can produce fine-mode particles enriched in elements such as Al and Mg through the combustion of vegetation

and soil dust entrained in fire plumes (Paris et al., 2010). Disentangling these source contributions would require either shorter655

sampling intervals, complementary measurements of biomass burning tracers (e.g., black carbon or levoglucosan), or selective

sampling of the elevated Saharan Air Layer (SAL), which is more likely less contaminated by other aerosol types.

The JATAC 2022 campaign provides this latter advantage. Conducted during the NH summer when the SAL is characteris-

tically elevated, JATAC measurements predominantly captured mineral dust with minimal biomass burning interference. This

cleaner sampling environment enables a more direct evaluation of the model’s mineral composition representation without the660

confounding factors present in the DUSTRISK NH winter measurements.

5.3 Cape Verde - JATAC 2022

5.3.1 Mineral comparison

The comparison between JATAC 2022 in-situ ‘mineral-like’ dust aerosol measurements and COSMO5.05-MUSCAT simulated

minerals is presented in Fig. 8 for clay minerals, Fig. 9 for silt minerals, and Fig. 10 for hematite. Both the ‘original’ scheme665

(Gómez Maqueo Anaya et al., 2024) and the ‘modified’ scheme (Section 3.2) are evaluated. Measurements were binned ac-

cording to COSMO5.05-MUSCAT size categories (BIN01, BIN03, BIN09, BIN26); BIN80 measurements are unavailable due

to the 30 µm detection limit of SEM-EDX (Kandler et al., 2018).

For clay minerals (illite, kaolinite, and smectite in Fig. 8), the model generally overrepresents total phyllosilicates. A key

improvement of the ‘modified’ scheme is the inclusion of clay minerals in coarser size bins, enabling direct comparison670

beyond the sub-2.5 µm fraction. In BIN01, both approaches show similar overrepresentation. In BIN03, the ‘original’ scheme

underestimates phyllosilicates, while the ‘modified’ scheme overestimates them by an average of 17%.The best agreement

is found in BIN09 with an average residual of +9%, though overestimation increases again in BIN26 (+15%). Looking at

individual clays, measured illite and smectite fractions are extremely low, falling outside the compiled dataset shown in Fig. 5,

leading to systematic overestimation in the model. This partly reflects known challenges in identifying these minerals in675

measurements (e.g., Rieder et al., 1998), which introduce uncertainties in both observations and mineralogical databases.

Kaolinite shows the opposite behavior, with modeled values underestimates its content overall. The ‘modified’ scheme reduces

the residual in BIN03 but maintains underrepresentation in larger bins.
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Figure 8. Scatterplots of minerals mass percentages of clay minerals, i.e., illite, smectite, and kaolinite, grouped and individually vs. sim-

ulated by COSMO5.05-MUSCAT. ‘original’ mineral emission scheme in green solid dots while the ‘modified’ version is shown in yellow

solid stars. The titles of the columns are size classifications from COSMO5.05-MUSCAT, the diameter ranges they represent are described

in Table 1. The dashed lines represent the ratios of 2:1 and 1:2 between the simulated and observed mineral percentages. The error bars

represent the lower and upper limits of the confidence intervals (between 2.5% and 97.5%).
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Figure 9. As in Fig. 8 but for silt minerals, i.e., quartz, calcite, feldspar, and gypsum.
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A related study by Gonçalves Ageitos et al. (2023) found that the GMINER SMA (Nickovic et al., 2012) generally outper-

forms Journet et al. (2014) SMA in reproducing the spatial distribution of phyllosilicates, although it tends to overestimate680

kaolinite and smectite while underestimating illite across the Sahara region. Their analysis also showed that, for fine clay-

sized fractions, illite is often overestimated near dust sources but underestimated during long-range transport, whereas coarser

silt-sized illite is typically underestimated. In contrast, our comparison with JATAC 2022 measurements shows consistent

overestimation of illite across all size bins.

For silt-sized minerals (Fig. 9), the ‘modified’ scheme strongly reduces quartz overestimation. Average residuals decrease685

from +23%, +41%, and +60% in the ‘original’ scheme for BIN03, BIN09, and BIN26, respectively, to just +5–11%, while

calcite remains underestimated across all bins with little improvement under the ‘modified’ scheme, consistent with earlier

findings for 2–20 µm particles (Gonçalves Ageitos et al., 2023). Feldspar shifts from strong overestimation in the ‘original’

approach to nearly unbiased results in BIN03 and BIN09 (+1–2%) and slight underestimation in BIN01 and BIN26 (-∼0.5%).

Gypsum is consistently underestimated in both schemes, with higher average residuals resulting from the implementation of690

the ‘modified’ scheme.
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Figure 10. As in Figs.( 8& 9) but for hematite by following Eq. 23 replacing wFeox% by wHem%. Error bars represent 10% variation from the

measurement.

Hematite (Fig. 10) is underestimated by an average of 0.9% in BIN01 under both schemes, with the average residuals

decreasing at larger sizes. In BIN03, the ‘modified’ scheme reduces the bias slightly, while in BIN09 and BIN26 the two

schemes diverge minimally, yielding both near-zero average residuals (0.1%). On average, hematite increases modestly by 5%

in the ‘modified’ scheme.695

Averaged over the JATAC 2022 simulation period, the ‘modified’ scheme produces substantial increases in phyllosilicates

(illite, kaolinite, smectite; +130% relative to the ‘original’ scheme) and modest changes in hematite (+5%) and calcite (–14%).

Conversely, quartz (–61%), feldspar (–56%), and gypsum (–17%) decline substantially. Comparison with measurements shows

that the reductions in quartz and feldspar improve model-observation agreement, whereas gypsum agreement deteriorates.
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These inter-scheme differences exceed those observed during the DUSTRISK winter simulations, reflecting the seasonal shift700

in active dust source regions between NH winter and summer (Section 2; Schepanski et al., 2009).

5.3.2 Elemental comparison
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Figure 11. As in Fig. 6 but the titles of the columns are size classifications from COSMO5.05-MUSCAT. The error bars represent the lower

and upper limits of the confidence intervals (between 2.5% and 97.5%).
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Size-resolved elemental comparisons offer a complementary perspective to the mineral-specific evaluations, enabling accu-

rate assessment of scheme performance. Figure 11 shows comparisons for Si, Al, Fe, and Ca. Silicone content in the finest

particles (BIN01) shows minimal differences between schemes. In intermediate sizes (BIN03 and BIN09), the ‘modified’705

scheme transforms model overestimation into underestimation. In the coarsest bin (BIN26), silicone overestimation persists in

both schemes but is substantially reduced under the ‘modified’ approach, with mean residuals improving from +14% to approx-

imately 0%. The silicone improvements trace directly to reduced quartz content in the ‘modified’ scheme (Fig. 9), confirming

that, for some elements, corrections to mineral abundances effectively translate to improved elemental representation.

Aluminum exhibits a clear size-dependent improvement pattern across the bin-resolved analysis. BIN01 shows no signifi-710

cant changes between schemes, while BIN03 reduces underestimation from -7% to -5%, BIN09 improves from -9% to -5%,

and BIN26 improves from -10% to -5% in average residuals. This progressive reduction in aluminum underestimation with

increasing particle size directly reflects the redistribution of clay minerals into larger size fractions in the ‘modified’ scheme, a

change that better reflects the aggregated nature of phyllosilicates during emission and transport. This feature is also observed

in the DUSTRISK elemental comparison for coarser sizes (Fig. 6). Notably, however, the PM2.5 overestimation observed in715

the DUSTRISK campaign does not appear in this size-resolved analysis, suggesting either biomass burning contamination in

the DUSTRISK samples, which would predominantly affect the fine particle fraction, or methodological differences in fine

particle measurement between campaigns.

Iron content shows negligible sensitivity to emission scheme choice across all size bins, with severe underestimation in

both approaches—a pattern consistent with DUSTRISK (Fig. 6). Notably, the mineral-specific hematite comparison (Fig. 10)720

also shows no comparable underestimation, exposing a critical discrepancy between mineral and elemental validation metrics.

Given iron oxide’s pivotal role in dust-atmosphere interactions (Li et al., 2024, 2021; Song et al., 2024; Zhang et al., 2024), this

distinction carries significant implications. This inconsistency reveals an inherent limitation of modeling frameworks that treat

minerals as discrete particles with uniform composition. Natural atmospheric dust contains iron primarily as nanoscale oxide

coatings or inclusions within clay minerals and quartz rather as well as discrete hematite grains (Kandler et al., 2009; Lafon725

et al., 2004). Neither current model formulations nor available SMAs capture this heterogeneous iron distribution, resulting in

systematic biases detectable only through element-resolved evaluations.

Calcium comparison in Fig. 11 exhibits minimal differences between emission schemes across all size bins, consistent

with the DUSTRISK results where both schemes substantially underestimate Ca content. Interestingly, for calcium in the bin-

resolved comparison, the ‘modified’ scheme worsens this underestimation, suggesting that the modifications proposed to the730

mineral size distributions, reduced Ca-bearing minerals beyond what observations support. This systematic Ca deficit aligns

with the mineral-specific evaluation, which identified clear underestimation of calcite and gypsum, the dominant Ca-bearing

phases in the simulations.

Figure 12 shows the scatterplots for the comparisons between simulated and measured content of K, Mg, and S. Potassium

content reveals a complex, size-dependent response to the modifications that varies inconsistently across measurement cam-735

paigns. In the bin-resolved analysis, BIN01 shows dramatic improvement under the ‘modified’ scheme, producing extremely

low average mean residuals and substantially reducing the previous underestimations. BIN03 exhibits no significant changes
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Figure 12. As in Fig. 11 but for K, Mg, and S.

between schemes, while BIN09 transitions from overestimation to underestimation with comparable magnitudes. However,

BIN26 demonstrates increased underestimation in the ‘modified’ scheme. This heterogeneous size-dependent behavior con-

trasts with the DUSTRISK comparison, where the ‘modified’ approach yielded improved PM2.5 representation (reducing740

underestimation from -2% to -1% in mean residuals) but negligible PM10 changes. The mineral-specific feldspar compar-

ison (Fig. 9), meanwhile, showed overall improvement across all sizes for the ‘modified’ scheme without the pronounced

size-dependent variability observed in the elemental K analysis. These inconsistencies across size fractions and measurement

campaigns complicate interpretation of the feldspar modifications. K sources and partitioning may be influenced by factors

beyond feldspar size distribution adjustments since both illite and feldspar contribute K, making it difficult to isolate their in-745

dividual influences on elemental K budgets. Furthermore, K contributions from biomass burning or other non-mineral aerosol

sources cannot be entirely excluded.
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Both emission schemes underestimate magnesium in the size-resolved analysis, with no significant differences between

the ‘original’ and ‘modified’ approaches. particularly intriguing given that the mineral-specific illite comparison described

previously showed dramatic over-representation by the model. This disconnect highlights both the challenges in accurately750

identifying and quantifying illite in complex mineral assemblages and the prevalence of Mg in silicate aggregates and mixed-

mineral phases (Kandler et al., 2018) absent from the model simulation capabilities. DUSTRISK exhibited less severe Mg

underestimation, highlighting campaign-dependent model performance variability. Despite this difference, both datasets reveal

size-dependent improvements under the ‘modified’ scheme.

Sulfur is consistently and substantially underestimated by the model across both emission schemes in the bin-resolved755

comparison, mirroring the systematic underestimation observed in the DUSTRISK dataset. This deficiency directly reflects the

earlier gypsum-specific mineral comparison and is attributable to the well-documented underrepresentation of gypsum content

in SMAs (Gonçalves Ageitos et al., 2023). The persistent S bias across both measurement campaigns and all size fractions

highlights a fundamental limitation in current simulation setups regarding sulfate mineral representation.

In summary, the JATAC 2022 comparison demonstrates that the ‘modified’ mineralogical scheme improves the represen-760

tation of quartz, feldspar, and phyllosilicate distributions in COSMO5.05-MUSCAT, while also extending the size range for

meaningful model–measurement evaluation. Persistent biases remain for illite, smectite, calcite, and gypsum, reflecting both

measurement challenges and uncertainties in source SMAs. Hematite (Fig. 10) shows encouraging agreement in terms of the

mineral composition, supporting its robustness for applications sensitive to dust optical properties (e.g., Gómez Maqueo Anaya

et al., 2025). However, the systematic elemental Fe underestimation (Fig. 11) reveals that mineral-level validation alone pro-765

vides an incomplete picture of iron representation, underscoring the importance of complementary elemental constraints.

The comparison between JATAC and DUSTRISK results further reveals the value of multi-campaign evaluation. The JATAC

NH summer measurements, conducted within the elevated SAL with minimal biomass burning interference, provide cleaner

constraints on mineral dust composition than the NH winter DUSTRISK campaign. Key differences emerge: silicon overesti-

mation in fine particles appears only in DUSTRISK, likely reflecting either the presence of other aerosols or methodological770

differences; potassium shows campaign-dependent size patterns that highlight the difficulty of attributing elemental K to spe-

cific mineral sources; and magnesium underestimation is more pronounced in JATAC despite illite overestimation, exposing

limitations in both SMAs, which inadequately represent Mg speciation in mixed silicates, and modeling frameworks that as-

sume single, compositionally uniform mineral particles.

Together, these results highlight both the progress achieved with the ‘modified’ scheme and the persistent challenges facing775

mineral dust modeling frameworks. The improvements in quartz and feldspar representation in the model demonstrate that

refinements to emission size distributions and mineral abundances can effectively propagate to both mineral and elemental

composition. However, the discrepancies in elemental composition for Fe and Mg, combined with campaign-specific variability

in model performance, underscore fundamental limitations: current approaches cannot adequately represent the heterogeneous

internal mixing of iron and iron oxides, and the complex speciation of magnesium in silicate aggregates. Addressing these780

limitations will require not only continued refinement of soil mineral assemblage databases and emission parameterizations,
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but also expanded observational constraints spanning multiple seasons, source regions, and atmospheric conditions to capture

the full complexity of mineral dust composition.

6 Conclusions

The implementation of the ‘modified’ mineral simulation approach in COSMO5.05-MUSCAT leads to a more accurate repre-785

sentation of dust aerosol composition by adjusting the soil mineralogical database prior to emission flux calculations. Applied

to the DUSTRISK 2022 campaign simulation results in comparison with a North African compilation of measurements, the

‘modified’ scheme substantially improved the representation of phyllosilicates, with kaolinite showing a markedly stronger

correlation with observations and illite a slight improvement, though still overestimated. Quartz and feldspar mass fractions

decreased significantly, reducing the average quartz residual from 30% to just 1%. Although correlation coefficients for these790

minerals changed little, the redistribution produced size-resolved fractions that more closely matched observations. Calcite

decreased modestly and remained underestimated, while hematite correlations stayed weak, consistent with persistent uncer-

tainties in both its measurement and modeling.

Validation with in-situ mineral-like measurements from JATAC 2022 further confirmed these improvements. By redistribut-

ing phyllosilicates into larger size bins, the ‘modified’ scheme improved agreement with measurements in mid-size ranges795

(BIN03 and BIN09). Quartz residuals dropped substantially across all bins, with overestimation in BIN26 decreasing from

60% to just 11%. Feldspar representation also improved in mid-size bins, while calcite and gypsum remained underestimated

in both approaches. Hematite showed similar results across schemes.

The complementary elemental validation for DUSTRISK and JATAC 2022 revealed both the strengths and fundamental

limitations of current modeling approaches. In the DUSTRISK 2022 campaign comparisons, several elemental results aligned800

with their mineral-specific counterparts. For silicon, the ‘modified’ scheme’s substantial reduction in quartz content produced

consistent improvements at both scales, with PM2.5 residuals decreasing from +18% to +4% and PM10 from +25% to +15%.

Aluminum performance similarly improved in both size fractions, reflecting more accurate size-dependent phyllosilicate dis-

tributions. However, systematic iron underestimation persisted in both schemes despite adequate hematite representation at the

mineral level. This mineral-element discrepancy exposes a critical modeling limitation: iron exists predominantly as nanoscale805

oxide coatings or inclusions within other mineral phases (Lafon et al., 2004; Kandler et al., 2007) rather than as discrete

particles, a complexity that frameworks treating minerals as single, internally homogeneous particles cannot capture.

The JATAC 2022 size-resolved elemental analysis reinforced these patterns while revealing important inter-campaign differ-

ences. Aluminum improvements remained consistent across all size bins but without the fine particle overestimation observed in

DUSTRISK, potentially reflecting methodological differences between campaigns. Potassium exhibited campaign-dependent810

size patterns, underscoring the difficulty of attributing K to specific mineral sources when both feldspar and illite contribute,

and the presence of the additional aerosols cannot be completley ruled out. Magnesium underestimation was more pronounced

in JATAC despite concurrent illite overestimation, indicating that current soil mineral assemblages cannot adequately represent

Mg speciation within mixed silicate aggregates (Kandler et al., 2018). The more severe Mg deficit in JATAC relative to DUS-
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TRISK likely reflects reduced biomass burning interference during NH summer SAL sampling rather than improved model815

performance. These campaign-specific variations demonstrate that model fidelity depends not only on emission parameteriza-

tions but also on sampling methodologies and the presence of non-dust aerosol components.

The persistent underestimation of calcite and gypsum additionally highlights ongoing limitations in SMAs and the coarse

spatial resolution of regional models, which limits the ability to resolve fine-scale dust source variability. The redistribution of

mineral mass fractions, such as >130% increases in phyllosilicates and >50% decreases in quartz and feldspar, illustrates the820

strong sensitivity of modeled composition to SMA assumptions. These shifts are not only relevant for mineralogical accuracy

but also for the radiative, optical, and health-related impacts of dust, emphasizing the importance of continued refinement of

mineralogy-specific emission schemes and observational constraints at multiple validation scales.

Taken together, these results demonstrate both progress and remaining challenges in modeling dust mineralogy. The ‘mod-

ified’ scheme clearly improves the size-resolved representation of phyllosilicates, quartz, and feldspar at both mineral and825

elemental scales, but persistent biases for iron, calcium, and magnesium reveal fundamental limitations in representing the het-

erogeneous internal mixing and complex speciation characteristic of natural mineral dust. Critically, the elemental validation

approach employed here provides a complementary and previously underutilized pathway for model evaluation. By converting

simulated mineral compositions to elemental mass fractions and comparing them against measured elemental abundances, this

methodology offers several distinct advantages. First, it enables validation against the extensive body of published elemental830

composition measurements from techniques such as X-ray fluorescence and electron microscopy. Second, it exposes discrep-

ancies between mineral-level and element-level performance that would remain hidden in mineral-only comparisons. Third, it

provides independent constraints on mineralogical simulations that can reveal limitations in both emission parameterizations

and fundamental assumptions about particle internal structure. The mineral-element discrepancies identified for Fe and Mg

exemplify how this dual validation framework diagnoses complexities in dust composition that direct mineral measurements835

alone cannot adequately capture, underscoring its value for advancing mineralogical representation in atmospheric models.

The seasonal comparison between DUSTRISK (NH winter) and JATAC (NH summer) 2022 further underlines the influence

of source region activity. While phyllosilicate increases were consistent across seasons, calcite decreased more strongly in

summer (–14%), together with further declines in quartz, feldspar, and gypsum content. These differences reflect shifts in

dominant dust-emitting regions and associated meteorology, underscoring the need to account for temporal variability when840

evaluating mineral fractions in transport models.

Future progress will depend on improved mineralogical datasets, better integration of observations into models, and advances

in representing the internal complexity of mineral dust particles. The emergence of hyperspectral measurements from NASA’s

EMIT mission (Green et al., 2020), alongside field campaigns providing detailed size-resolved composition at both mineral

and elemental levels, offers a pathway to reduce current uncertainties. Incorporating such multi-scale observations, particularly845

for iron oxides and mixed silicate phases, will help resolve biases in key radiatively active minerals and improve constraints

on dust–climate interactions. Additionally, developing modeling frameworks that can represent minerals as internally mixed

aggregates rather than discrete particles may be necessary to bridge the persistent mineral-element discrepancies identified here.
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Recent studies (Li et al., 2021, 2024; Obiso et al., 2024) reinforce that refining soil mineral maps and dust size distributions is

critical for advancing our understanding of dust’s climatic and biogeochemical roles.850
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