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Abstract. Soil organic carbon (SOC) density is a key variable for quantifying soil carbon stocks, yet its modelling is challenged

by sparse and inconsistent measurements of bulk density and coarse fragments relative to SOC content. Conventional digital

soil mapping approaches typically model SOC density as a single target variable, thereby underutilising abundant SOC content

data and overlooking physical relationships among soil properties. This study evaluates a soil science-informed neural network

for SOC density prediction that explicitly constrains the SOC–BD relationship, and compares it with univariate and multivariate5

neural network architectures. Across sparsely sampled target variables, including SOC density, bulk density, and coarse frag-

ments, the soil science-informed model achieves comparable or slightly improved prediction accuracy relative to multivariate

and univariate models. Although it yields lower accuracy for SOC content, the soil science-informed model better preserves

physically plausible SOC–BD joint distributions and generates smoother, more temporally stable SOC density trajectories.

Overall, the results demonstrate that incorporating soil physical constraints into machine learning models adds value beyond10

univariate accuracy, improving robustness, plausibility, and temporal coherence of SOC density predictions under sparse data

conditions. Moreover, the latent parameters inferred by the soil science-informed model improve model interpretability and

offer additional soil science relevant insights beyond predictive accuracy.

1 Introduction

Soil organic carbon (SOC) is fundamental for soil health and is increasingly recognised for its critical role in climate-change15

mitigation (Lal, 2004; Lehmann et al., 2020). For practical applications, stakeholders are primarily interested in SOC density

(kgm−3) rather than SOC content (gkg−1), as SOC density directly determines SOC stocks. Digital soil mapping (DSM)

provides a means to generate spatially explicit information on soil properties, including SOC. The increasing availability of

SOC measurements and Earth Observation (EO) data has stimulated a rapid growth of Machine Learning (ML) applications in

DSM, resulting in numerous SOC map products at global, continental and national scales (Wadoux et al., 2020).20

In DSM, SOC density is typically modelled in a univariate way: SOC density is calculated from observed SOC content, bulk

density (BD, g cm−3), and coarse fragments (CF, unitless fraction between 0 and 1) (Hengl and MacMillan, 2019), and then

learned as a single target variable. However, SOC content is usually measured far more frequently than BD and CF, and even

when BD and CF are available, inconsistencies in measurement protocols can make them incompatible for direct SOC density
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calculation (e.g., BD measured for fine earth only while CF reported as mass fraction; Poeplau et al. 2017). For example, in25

the LUCAS Topsoil survey, SOC content is available for 2009/2012, 2015 and 2018, with only SOC content available through

all three surveys (Orgiazzi et al., 2018). This mismatch leads to a “waste” of SOC content data and limits our ability to model

SOC density dynamics.

Focusing solely on SOC density may also obscure the intrinsic physical relationships among SOC content, bulk density, and

coarse fragments. Different combinations of SOC content, BD and CF can yield similar SOC density values, yet correspond30

to distinct environmental and soil conditions represented by different regions of the feature space. Ignoring these relationships

effectively discards valuable information and may limit the model’s ability to learn physically meaningful patterns, ultimately

undermining predictive performance and robustness.

Multivariate modelling has long been used in DSM to address such interdependencies, ranging from co-kriging (Heuvelink

et al., 2016) and structural equation modelling (Angelini et al., 2017) to more recent machine-learning approaches. Multivariate35

ML has been applied to jointly model SOC, total nitrogen and C:N ratio (Van Der Westhuizen et al., 2023), soil properties

at multiple depths (Wadoux, 2019; Taghizadeh-Mehrjardi et al., 2020), multiple soil attributes (Padarian et al., 2019; Ng

et al., 2019), and the three texture components (Taghizadeh-Mehrjardi et al., 2020; Ließ and Sakhaee, 2024). However, to our

knowledge, it has not yet been applied to jointly model SOC concentration, bulk density, coarse fragments and SOC density

within a single modelling framework.40

Beyond multivariate modelling, another way to account for relationships among soil variables is to explicitly incorporate

knowledge about relationships among soil properties into machine-learning models, which has been referred to as soil sci-

ence–informed ML (Minasny et al., 2024). Embedding domain knowledge can constrain model behaviour and prevent predic-

tions that violate known soil processes. In univariate SOC dynamics modelling, purely data-driven ML approaches have been

shown to produce noisy SOC time series, sometimes exhibiting implausibly large changes over short time spans (Tian et al.,45

2025b). Hybrid approaches that combine soil process understanding with ML have been reported to yield more realistic pre-

dictions than those derived from purely data-driven models (Zhang et al., 2023, 2024). Although the mechanistic relationship

between SOC concentration and bulk density has been well documented in soil science (Stewart et al., 1970; Adams, 1973;

Federer et al., 1993; Robinson et al., 2022), its integration into DSM frameworks remains limited.

The aim of this study is to compare multivariate and soil relation–informed modelling strategies for predicting SOC density50

under sparse data conditions while explicitly accounting for inter-variable relationships. Among ML approaches, neural net-

works (NNs), compared to more conventional models such as Random Forests, Cubist, and partial least squares regression, are

particularly well suited for multivariate soil property mapping. This is due to ease-of-use in representing complex dependen-

cies and their flexibility to accommodate data sparsity, where not all observations contain measurements for all target variables

(Ng et al., 2019; Padarian et al., 2019). However, explicitly incorporating expert soil knowledge into ML-based DSM remains55

challenging (Ma et al., 2019; Wadoux, 2019), as ML models are inherently data-driven and the soil processes they represent are

implicitly inferred from the training data (Wadoux et al., 2020). The EasyHybrid.jl package developed by Alonso et al.

(2025) provides a practical framework for embedding mechanistic constraints directly into NN architectures. Therefore, in this

study, all three modelling strategies are implemented using neural networks.
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Using the LUCAS topsoil dataset, three model structures are compared: (i) a univariate neural network (UniNN), (ii) a mul-60

tivariate neural network (MultiNN), and (iii) a soil relation–informed neural network (SiNN). The models are evaluated with

respect to their ability to predict SOC density, as well as the soil properties from which SOC density is derived, namely SOC

content, BD and CF. Using the subset of LUCAS 2018 with complete measurements for all four properties, we further examine

whether MultiNN and SiNN can exploit the abundant SOC concentration data from 2009/2012, 2015, and the incomplete part

of 2018 to reconstruct SOC density under sparse BD availability. Inter-variable relationships are also examined. As CF are65

excluded from SOC content and fine-earth BD determinations in this study, the assessment focuses primarily on the SOC–BD

relationship. In addition, we assess whether the hybrid SiNN model produces more temporally stable and physically realistic

SOC density trajectories. Finally, plausibility checks are performed on the latent representations of bulk density components

inferred by the SiNN to evaluate the soil-science consistency of the model outputs.

2 Materials and Methods70

2.1 Soil data

This analysis uses LUCAS soil data from the 2009/2012, 2015, and 2018 campaigns. Besides SOC content gkg−1, the key

properties are the volumetric form of CF (fraction, unitless between 0-1) and the fine-earth BD (g cm−3), excluding coarse

fragments larger than 2 mm, taken from the curated dataset of Pacini et al. (2023). When all three variables are available, SOC

density (kgm−3) is calculated as:75

SOCdensity = SOCcontent ·BDfe · (1−CFvol) (1)

This study focuses on topsoil (0–20 cm); thus, LUCAS 2018 measurements at 0–10 and 20–30 cm were excluded. For sites

with three repeated measurements, we applied a quality filter based on temporal consistency of SOC content: assuming SOC

changes at less than 0.5 gkg−1 yr−1, we used a conservative threshold of 50 gkg−1 yr−1 for the maximum absolute difference

across measurements (Poeplau et al., 2011; Gubler et al., 2019). After removing time series exceeding this threshold and80

discarding records lacking required covariates, 56,117 measurements remained. All of them include SOC content, among them

5,194 also contain CF and BD. Regarding temporal replication, 11,690 sites have three measurements, 7,309 have two, and

6,429 have one.

2.2 Covariates

A wide range of covariates (also referred to as predictors or features) was included to represent environmental factors influenc-85

ing SOC dynamics. Some covariates were available as time series (e.g., precipitation), providing multiple values for the same

location across time. Others were static or long-term summaries (e.g., topography), offering a single value per location. All

covariates were rescaled to the [0,1] range to ensure their suitability in the neural network, and variables lacking informative

values within Europe were excluded from the analysis. This results in a covariate set with 362 individual covariates, from 15
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Table 1. Summary statistics of soil properties: SOC content (gkg−1), BD (g cm−3), CF (fraction) and calculated SOC density (kgm−3) per

year.

Year N sites SOC content BD CF SOC density

2009 17817 38.266 ± 72.672 - - -

2012 1777 19.517 ± 9.528 - - -

2015 19780 32.440 ± 53.596 - - -

2018 16743 34.836 ± 57.591 1.032 ± 0.302 0.061 ± 0.055 23.411 ± 17.764

covariate groups (Table 2). The full list of covariates is not included in the main text but is available in the supplementary90

materials at our Supplemetary Repository.

Table 2. Covariate groups used in this study. Note that each entry represents a group of covariate layers, which may include multiple data

layers with different temporal and spatial resolutions.

Covariate group Source Temporal

resolution

Spatial

resolution

Digital terrain model and derived land

surface parameters

Ho et al. (2025) Static 30, 60, 120,

240, 480, and

960 m

Lithology type probability Isik et al. (2024) Static 250 m

Plant functional type Harper et al. (2023) Annual 300 m

Vegetation cover fraction Sun et al. (2023) Annual 500 m

Precipitation Karger et al. (2021) Annual 1 km

Land surface temperature Wan (2006) Annual 1 km

Water vapor Lyapustin and Wang (2018) Annual 1 km

Bioclimate Karger et al. (2017) Long-term 1 km

Landsat spectral index Tian et al. (2025a) Annual,

long-term

30 m

Bare surface reflectance Rogge et al. (2018) Long-term 30 m

Sentinel backscatter Wagner et al. (2021) Long-term 25 m

PALSAR backscatter Shimada and Ohtaki (2010) Static 25 m

Peatland indicator Widyastuti et al. (2024) Long-term 1 km

Cropland indicator Potapov et al. (2022) Annual 30 m

Soil moisture Bauer-Marschallinger et al.

(2018)

Annual 1 km
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2.3 Model architectures

Three NN architectures are evaluated and compared in this study: UniNN, MultiNN, and SiNN (Fig. 1). To improve training

stability and predictive performance of the NN, all four target variables—BD, SOC content, CF, and SOC density—were

transformed to reduce skewness and to constrain their values to the [0,1] range. This was achieved through log transformation95

and scaling using a standard scaler.

The UniNN model serves as a baseline that reflects the conventional approach in DSM, where each soil property is modelled

independently using a separate NN. The MultiNN architecture advances this idea by training a single NN to simultaneously

learn and predict four targets. All targets are treated as purely data-driven outputs in both UniNN and MultiNN. The SiNN

architecture incorporates physical constraints directly into the learning process. In SiNN, SOC content and CF are predicted100

by the NN, while BD and SOC density are computed within the model using mechanistic equations. Here, BD is expressed

as a function of SOC content and two latent BD parameters—organic bulk density (oBD) and mineral bulk density (mBD),

following the well-established relationship of Federer et al. (1993):

BD =
1

SOM
oBD + 1−SOM

mBD

(2)

where the soil organic matter (SOM) could be converted from SOC content with a factor 1.724 (SOM = 1.724·SOCcontent).105

To constrain the latent parameters oBD and mBD and to facilitate model convergence, prior ranges and recommended initial

values are specified. Following Robinson et al. (2022), oBD is constrained to the range 0.05–0.40 g cm−3, with an initial value

of 0.20 g cm−3. Mineral bulk density (mBD) is constrained to the range 0.75–2.00 g cm−3, with an initial value of 1.20 g cm−3.

SOC density is subsequently derived from SOC content, BD, and CF using the mechanistic formulation in Eq. 2.

Across all three architectures, the supervised training targets include the four soil variables (SOC content, BD, CF, SOC110

density), and the loss function jointly constrains the predictions for all variables. In the SiNN model, the latent parameters

oBD and mBD are also learned during training and can be output to provide additional interpretability regarding soil physical

properties. The model experiments are implemented using the EasyHybrid.jl package (Alonso et al., 2025).

2.4 Model evaluation

All models were trained and evaluated using a five-fold cross-validation scheme to ensure objective assessment while max-115

imising the use of available data. In each iteration, three folds are used for hyperparameter optimisation and model training,

one fold serves as the validation set for selecting the best-performing model, and the remaining fold is held out as the test set

for final evaluation. The folds are constructed through random partitioning of the dataset. By iterating across all five folds,

full-coverage predictions for all samples are obtained for subsequent analysis.

Model evaluation is performed at two levels. First, the predictive accuracy of each individual target variable is assessed using120

all available observations for that variable. Second, joint evaluation is conducted on the complete subset of samples where all

four target variables are present. Both global accuracy and stratified accuracy across land-cover classes are examined. The

5

https://doi.org/10.5194/egusphere-2026-229
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



(a) UniNN

SOC
cont CFBD

NN

SOC
cont CFBD

NN NN

SOC
density

SOC
density

SOC
cont CFBD

NN

NN (c) SiNN

(b) MultiNN

NN

SOC
density

mBD

oBD

Figure 1. Schematic illustration of the three NN architectures evaluated in this study: (a) UniNN, in which a separate NN is trained for each

soil variable; (b) MultiNN, in which a single NN is trained to predict all soil variables simultaneously; and (c) SiNN, in which SOC–BD

relationships are explicitly embedded in the model structure. Dark grey boxes denote NN models, while dark blue boxes denote target

variables and intermediate variables that are output by the model.

metrics considered include the coefficient of determination (R2), mean squared error (MSE) and bias, defined as the mean

difference between predictions and observations.

Additionally, to assess the plausibility and consistency of BD–SOC content relationships, the joint distributions of predicted125

SOC content and BD were compared across the three neural network architectures and against observed data. Finally, the latent

parameters oBD and mBD predicted by the SiNN model are examined with respect to soil texture, land cover, SOC content,

and other soil properties to assess whether their spatial patterns and magnitudes are physically reasonable.

2.5 Temporal performance

The three models are evaluated in terms of temporal performance from two complementary perspectives: temporal plausibility130

and temporal transferability. Temporal plausibility refers to the coherence and stability of predicted SOC density time series,

and is assessed using SOC density predictions obtained from cross-validation across multiple survey years. The underlying

expectation is that the SiNN produces more coherent and less noisy SOC density trajectories than purely data-driven models.

Temporal transferability, in contrast, evaluates how well a model trained on one time period generalises to other time periods.

This is assessed by training the models on data from 2018 and predicting SOC density for the remaining survey years. However,135

as SOC density measurements in the current dataset are available for only a single survey year, direct evaluation of temporal

transferability for SOC density is not feasible. Therefore, an indirect assessment is conducted using SOC content, which is

consistently measured across multiple survey years, as a proxy to evaluate temporal transferability.
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3 Results

3.1 Model accuracy140

Fig 2 shows the cross-validation performance of SOC density predictions for the three models. Overall, SiNN exhibits the

highest predictive performance, followed by MultiNN and UniNN, as reflected by R2, MSE, and bias. Among the three models,

SiNN produces predictions that most closely align with the 1:1 line relative to the observations. However, the performance

differences among the models are relatively small.
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Figure 2. Accuracy of cross-validated SOC density predictions for the three models: UniNN, MultiNN and SiNN. All results are shown in

the transformed target space used during model training.

These modest overall performance differences are also reflected in the land-cover-specific accuracy metrics, shown in Ta-145

ble 3. SiNN does not consistently outperform the other models across all land-cover classes or evaluation metrics. Based on R2

and MSE, SiNN shows better performance in land covers typically associated with higher SOC levels, including Grassland,

Woodland, and Wetland. Comparable performance is observed for Cropland and Bareland, whereas SiNN underperforms in

Artificial land.

In terms of bias, UniNN tends to overestimate SOC density across most land-cover classes, with the exception of Grassland150

and Shrubland, resulting in an overall positive bias. In contrast, both MultiNN and SiNN exhibit overestimation in Bareland,

Cropland, and Wetland, while showing slight underestimation in the rest land-cover classes.

3.2 Joint distribution of SOC content and BD

Figure 3 compares the observed and predicted joint distributions of SOC content and BD. The observations exhibit a clear

wedge-shaped support, characterised by high SOC values occurring predominantly at low BD and an overall negative SOC–155

BD dependence. In the observations, BD spans a wide range (approximately 0–1.8 g cm−3). In contrast, none of the three

models fully reproduces the extreme ends of the BD distribution, with predicted values rarely falling below 0.2 g cm−3 or

exceeding 1.6 g cm−3, except for two isolated cases produced by UniNN.
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Table 3. SOC density prediction performance by land cover and model; sample sizes for each land-cover class are reported in the last row.

Metric Model Artificial Bareland Cropland Grassland Shrubland Woodland Wetland

R2 UniNN 0.30 0.45 0.40 0.39 0.08 0.15 0.53

R2 MultiNN 0.26 0.44 0.41 0.41 0.21 0.19 0.84

R2 SiNN 0.18 0.44 0.41 0.43 0.17 0.21 0.90

MSE UniNN 0.0094 0.0057 0.0050 0.0068 0.0115 0.0094 0.0239

MSE MultiNN 0.0098 0.0058 0.0049 0.0065 0.0098 0.0090 0.0079

MSE SiNN 0.0110 0.0058 0.0049 0.0064 0.0103 0.0088 0.0049

Bias UniNN 0.0025 0.0149 0.0070 -0.0033 -0.0163 0.0046 0.0148

Bias MultiNN -0.0086 0.0138 0.0034 -0.0044 -0.0183 -0.0008 0.0197

Bias SiNN -0.0066 0.0164 0.0033 -0.0042 -0.0204 -0.0024 0.0360

N – 24 203 2339 1159 161 1306 2

The negative SOC–BD relationship observed in the data is qualitatively reproduced by all three models. However, this

relationship is more clearly expressed and more strongly constrained in the MultiNN and SiNN predictions, whereas UniNN160

exhibits a weaker coupling between SOC content and BD.

In the observations, SOC content at very low BD (<0.2 g cm−3) shows a bimodal pattern, with both very high (400-

500 gkg−1) and low SOC values (<100 gkg−1). While UniNN produces SOC predictions exceeding 200 gkg−1, these occur

mostly at moderate BD values rather than at low BD. MultiNN shows a reduced occurrence of such implausible combinations,

while SiNN largely avoids them. Overall, the predicted SOC–BD distributions become progressively more constrained from165

UniNN to MultiNN to SiNN, with extreme and weakly supported combinations occurring less frequently.
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Figure 3. Joint distribution of SOC content (gkg−1) and bulk density (g cm−3) for observations and model predictions.
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3.3 Temporal performance

Temporal performance is assessed from two perspectives: temporal plausibility and temporal transferability. Plausiblity is

assessed based on the stability of SOC density time series derived from cross-validation predictions, whereas transferability is

evaluated by training the models on 2018 data and predicting other years.170

The stability of predicted SOC density time series is quantified using the temporal range, defined as the maximum absolute

change in SOC density within each predicted time series across survey years. The resulting range distributions (Fig. 4) are long-

tailed for all three models, with the majority of values concentrated around a change magnitude of approximately 3 kgm−3.

Despite similar median ranges, clear differences emerge in the upper tails of the distributions. UniNN exhibits the largest

extreme changes, followed by MultiNN, whereas SiNN shows a much reduced upper outliers. Overall, the SiNN produces175

smoother and more temporally stable SOC density trajectories.
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Figure 4. Temporal range of predicted SOC density time series across LUCAS survey years for the three models (left), with a zoomed-in

view for detailed inspection (right). Quantile statistics of the temporal ranges are shown for UniNN (5% = 0.76, 50% = 3.66, 95% = 12.35),

MultiNN (5% = 0.63, 50% = 3.02, 95% = 10.66), and SiNN (5% = 0.74, 50% = 3.48, 95% = 10.39).

Temporal transferability is assessed indirectly using SOC content. Among the three models, UniNN achieves the highest

prediction accuracy when transferred to other survey years, followed by SiNN, while MultiNN shows the lowest accuracy.

However, when these results are compared with the cross-validation performance reported in Appendix X, a larger performance

drop is observed for UniNN (from R2 = 0.59 to R2 = 0.49) and MultiNN (from R2 = 0.49 to R2 = 0.42) than for SiNN (from180

R2 = 0.48 to R2 = 0.46). This smaller degradation in performance indicates that the SiNN model exhibits greater temporal

robustness.

3.4 Plausibility of oBD and mBD

An additional advantage of SiNN is that, beyond predicting the target soil properties, it simultaneously estimates the latent

parameters oBD and mBD. Figure 6 shows the distributions of the latent oBD and mBD components across seven land cover185

classes. Overall, predicted oBD values range from approximately 0.1 to 0.3 g cm−3 and exhibit a clearer land cover relevant
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Figure 5. Accuracy of SOC content predictions for other survey years using models trained on 2018 data, assessing temporal transferability.

All results are shown in the transformed target space used during model training.

pattern than mBD. From Bareland and Cropland through Grassland and Shrubland to Woodland, oBD decreases gradually

from around 0.22 to approximately 0.15 g cm−3, consistent with increasing vegetation cover. The oBD of Artificial land lies

between that of Cropland and Grassland (around 0.2 g cm−3), while Wetland exhibits the lowest mean oBD and largest spread

among all land cover classes. Assuming peat as an organic end member, with reported peat BD values of approximately 0.1–190

0.2 g cm−3 (Päivänen, 1969; Huat et al., 2011), and organic forest soils exhibiting oBD values around 0.11 g cm−3 (Perie and

Ouimet, 2008), the inferred oBD range appears physically plausible (Robinson et al., 2022).
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Figure 6. Distribution of latent parameters oBD (a) and mBD (b) across different land covers.

In contrast, mBD values range from approximately 1.0 to 1.5 g cm−3 and show much weaker differentiation across land

covers. The mBD distributions for Artificial land, Bareland, Cropland, Grassland, and Wetland are centered around similar

values (approximately 1.3 g cm−3), although Wetland shows a slightly larger spread. Shrubland and Woodland exhibit slightly195

lower mBD values, with mean values below approximately 1.25 g cm−3. Compared with mBD values estimated from soil data
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collected in Wales (1.9 g cm−3), the values inferred here are lower, but are comparable to those suggested by Stewart et al.

(1970) (1.4 g cm−3).

Fig 7 shows the distributions of the estimated oBD and mBD across the soil texture space. Both oBD and mBD exhibit lower

values in fine-textured soils, particularly where sand content is below 10 %, corresponding to silty clay and clay textures. In200

contrast, higher oBD and mBD values are observed in coarse-textured soils characterised by high sand content (above 70 %)

and low clay content (below 40 %), corresponding to sandy clay loam and sandy loam textures. In other texture regions, the

patterns are more mixed.
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Figure 7. Distribution of latent parameters oBD (a) and mBD (b) across textures.

Fig 8 presents example maps of these latent parameters generated by SiNN. Consistent with the land-cover analysis shown

in Fig. 6, clear land-cover and land-use patterns are evident: higher oBD and mBD values are observed in cropland, followed205

by artificial land associated with built-up areas, and lower values in woodland regions, which are indicated by dense vegetation

(dark green) in the satellite imagery.

4 Discussion

4.1 Model performance under sparse data conditions

Across all target variables with sparse data, including SOC density, BD, and CF, SiNN generally exhibits comparable or slightly210

better performance than MultiNN, followed by UniNN, with the clearest improvements observed for SOC density (see accuracy

plots for other properties in Appendix Fig. A1). These improvements, however, are not consistent across all land-cover classes.

An exception is SOC content, for which prediction accuracy decreases from UniNN (R2 = 0.59) to MultiNN (R2 = 0.49)

and further to SiNN (R2 = 0.48). UniNN achieves the highest accuracy for SOC content, which is also the most available vari-

able, while slightly underperforming for properties with sparser observations. From a purely univariate accuracy perspective,215
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Figure 8. Maps of the predicted latent parameters oBD (middle) and mBD (right), shown alongside the corresponding satellite imagery (left).

Predictions are generated at 30 m spatial resolution for the year 2018 over a region in central Germany (centre location: longitude 10.19320,

latitude 51.98643). Satellite imagery: map data ©2025 GeoBasis-DE/BKG (©2009), Google.

this suggests that different model structures may be preferable depending on data availability: the soil science-informed model

is advantageous for SOC density prediction under sparse auxiliary data, whereas MultiNN achieves comparable accuracy for

BD and CF with lower computational cost, and the univariate approach remains competitive for well-represented variables

such as SOC content.

4.2 Plausibility of predictions from the perspective of soil science220

The higher SOC content accuracy achieved by UniNN appears to be associated with its ability to predict very high SOC values,

whereas MultiNN and SiNN tend to underestimate the upper tail of the SOC distribution (Fig. A1-a). However, when the joint

SOC–BD relationship is considered, these high SOC predictions by UniNN are often implausible. In the observations, very

high SOC content typically co-occurs with very low BD values (below approximately 0.2 g cm−3), whereas UniNN frequently

predicts such high SOC values at moderate BD levels (approximately 0.5–1.0 g cm−3), thereby placing probability mass in225

sparsely supported regions of the SOC–BD space.

Temporal transferability experiments further show that UniNN exhibits the largest performance degradation when models

trained on one survey year are transferred to other years. This pronounced drop indicates a higher sensitivity of UniNN to

temporal domain shifts and a less stable generalisation across time, compared with the more constrained multivariate and soil

science-informed model structures. Consistent with this finding, temporal plausibility analyses reveal that UniNN produces230

noisier SOC density trajectories, with larger extreme changes exceeding 60 g cm−3. Such magnitudes are highly implausible
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over the nine-year LUCAS interval, even under strong anthropogenic intervention (Poeplau et al., 2011; Gubler et al., 2019).

In contrast, MultiNN shows intermediate behaviour, while SiNN exhibits the most stable temporal dynamics. Overall, the soil

science-informed model provides the most plausible and temporally coherent SOC density time series under temporal domain

shifts.235

4.3 Latent soil physical parameters

Beyond predicting the target soil properties, SiNN additionally yields latent estimates of oBD and mBD. Although direct

ground truth data for these latent parameters are not available for validation, their inferred ranges are broadly consistent with

values reported in the literature, and their plausibility is supported by systematic patterns observed across land cover classes

and soil texture space. It should be noted that the learning of oBD and mBD is constrained by prior information specified in240

this study. In our case, these priors are knowledge-based and lead to physically reasonable and numerically stable solutions.

However, fixed priors implicitly assume their validity beyond the calibration domain, and their suitability may vary. Therefore,

the use of the SiNN requires selecting or adapting prior ranges based on domain knowledge and the specific environmental

context of the application.

The latent parameter estimates also provide insights into the spatial variability of oBD and mBD. As illustrated in Fig. 8,245

clear land cover and land use associations are evident for both parameters. Such patterns are expected for oBD, as land cover

and land use influence organic matter inputs and accumulation (Smith, 2008). For mBD, however, the interpretation is less

straightforward. The observed spatial variation may reflect differences in soil compaction associated with land use, differences

in soil texture, or a combination of both. In the absence of independent ground truth data, these hypotheses cannot be explicitly

tested within this study.250

Estimates of oBD and mBD can be further linked to soil porosity and compaction characteristics (Robinson et al., 2022).

Soil porosity, defined as the fraction of soil volume occupied by pore space, plays a key role in regulating aeration, water

movement, and nutrient transport, and is therefore closely related to soil structure and ecosystem functioning (Pagliai and

De Nobili, 1993; Hao et al., 2008; Assouline and Or, 2013). Using the latent parameters inferred by SiNN, soil porosity can be

derived following the analytical model developed by Robinson et al. (2022). This illustrates that the SiNN enables large-scale255

porosity estimation by combining legacy soil observations with EO covariates, without requiring direct porosity measurements.

As shown in Appendix B, the derived porosity patterns are consistent with those reported by Robinson et al. (2022) based on

soil data from Great Britain and Wales: porosity generally increases with SOC content and levels off at SOC contents of

approximately 200 g kg−1 (Fig. B1).

Soil compaction is a major form of soil degradation (Nawaz et al., 2013; Shah et al., 2017). BD and its derivatives, such260

as packing density, are commonly used as proxies for soil compaction because compaction directly leads to increased BD

(Stolf et al., 2011; Panagos et al., 2024). However, BD is influenced not only by compaction but also by SOC content, which

complicates its interpretation. By explicitly estimating mBD, SiNN rules out the influence of SOC on BD. When further

normalised by the mineral particle density (mPD), assumed to be constant, the ratio mBD/mPD can be used as a proxy indicator

of soil compaction. Using this compaction indicator, Fig. B1 compares its distribution across land-cover classes. The highest265
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mean values are observed in Cropland and Woodland, with Woodland exhibiting the largest spread. These patterns may reflect

the effects of mechanised operations associated with intensive cropping and forest silviculture (Nawaz et al., 2013). This is

consistent with the findings of Panagos et al. (2024), who reported a higher susceptibility of arable land to soil compaction

using packing density as an indicator.

The case of porosity and compaction illustrate how the soil science-informed model structure enables interpretation of soil270

physical characteristics beyond the directly predicted variables, providing added soil science value and practical relevance for

soil assessment. Furthermore, these latent parameter estimates also enhance model interpretability by explicitly linking SOC

content and BD within the model structure. This improves transparency and supports a more process-consistent understanding

of model behaviour.

4.4 Limitations275

Despite the added value introduced by the soil science-informed structure, SiNN does not fully resolve the challenge of pre-

dicting highly organic soils. Both MultiNN and SiNN fail to accurately reproduce the upper tail of SOC content associated

with very low BD. This limitation can be viewed from two related perspectives: an underestimation of extreme SOC and BD

values, and an incomplete reproduction of their joint relationship.

As illustrated in Fig. A2, highly organic soils—characterised by SOC content exceeding 200 gkg−1 and BD below approx-280

imately 0.2 g cm−3—remain at the lower edge of the predicted BD range for all models, yet their predicted BD values are

generally higher than observed. While both MultiNN and SiNN largely fail to predict SOC content above 200 gkg−1, they pre-

serve the qualitative association between high SOC and low BD. In contrast, UniNN is able to generate high SOC predictions,

but these are weakly constrained, often occurring at moderate BD values and failing to reproduce both the low-BD regime and

the joint SOC–BD structure.285

Two factors may contribute to this limitation. First, the input data may be insufficient to distinguish highly organic soils. They

are intrinsically under-represented in the training set, and the available covariates may not capture the factors that differentiate

these soils. Although most highly organic samples originate from Woodland and Grassland, many other samples from the

same land-cover classes occupy similar covariate space while exhibiting lower SOC content and higher bulk density, thereby

limiting the discriminative power of the predictors. Second, all model experiments are conducted in a transformed target290

space, with logarithmic scaling applied. This transformation compresses differences at the upper end of the distribution (e.g.,

between 200 and 600 gkg−1), reducing the influence of extreme values during loss optimisation and contributing to systematic

underestimation of the highest SOC contents.

A further limitation is the lack of repeated SOC density measurements across survey years, which prevents direct validation

of predicted temporal changes. This constraint is intrinsic to the sparse availability of BD and CF data and necessitates indirect295

assessments of temporal transferability and plausibility using SOC content and relative change metrics. As future LUCAS

survey rounds become available and provide more complete measurements, this limitation is expected to be alleviated.

In addition, this study focuses primarily on accuracy-based evaluation and does not include uncertainty quantification, which

has become increasingly common in digital soil mapping to support map interpretation and use. Although the gains in predictive
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accuracy introduced by structural constraints are modest, such constraints may contribute to reduced predictive uncertainty.300

Given the availability of established uncertainty quantification methods for neural networks (Huang et al., 2025), incorporating

such approaches is identified as a priority for future work.

5 Conclusions

This study evaluated three NN architectures for reconstructing SOC density time series while preserving consistent relation-

ships between soil properties, particularly between SOC content and BD. The results show that the soil relation informed model305

generally achieved the most favourable balance between prediction accuracy, temporal stability, and joint SOC–BD plausibility.

While improvements in SOC density accuracy are modest, SiNN consistently produced less noisy SOC density trajectories and

better preserved the physically meaningful association between SOC and BD, followed by MultiNN and UniNN. In addition,

the latent parameters estimated by SiNN enable the derivation, interpretation and assessment of soil physical properties, such

as porosity and compaction-related indicators.310

In contrast, the univariate model performed well for abundantly sampled variables such as SOC content, but failed to repro-

duce plausible joint SOC–BD behaviour while exhibiting greater sensitivity to temporal domain shifts. These findings highlight

that, in soil property modelling and mapping, evaluating models solely based on univariate accuracy can be misleading. In-

corporating multivariate structure and soil constraints provides added value by improving robustness, plausibility, temporal

coherence, and interpretability from a soil science perspective.315

Code and data availability. The code used for the modelling experiments, analysis, and visualisation is available via a GitHub repository at

https://github.com/AI4SoilHealth/EasyDensity.jl (last access: 15 January 2026). The EasyHybrid.jl package used in this study is available at

https://github.com/EarthyScience/EasyHybrid.jl. The soil measurements analysed in this study are curated and maintained by the European

Soil Data Centre (ESDAC) and are openly available through the LUCAS Topsoil database (https://esdac.jrc.ec.europa.eu/projects/lucas). All

covariate layers used for modelling are openly accessible via the EcoDataCube platform (https://ecodatacube.eu/, last access: 24 December320

2025).

Appendix A: Complementary accuracy assessment and joint distribution analysis

Figure A1 presents complementary cross-validation accuracy plots for the three models for the remaining target variables:

SOC content (a), BD (b), and CF (c). UniNN achieves the highest prediction accuracy for SOC content (R2 = 0.59), substan-

tially outperforming MultiNN (R2 = 0.49) and SiNN (R2 = 0.48). In contrast, for BD and CF, UniNN shows slightly lower325

performance compared to the multivariate and soil science-informed models.

Figure A2 shows the joint distribution of SOC content and bulk density for highly organic soils, defined by SOC content

exceeding 200 gkg−1 and bulk density below approximately 0.2 g cm−3. Across all models, these samples remain at the

lower edge of the predicted bulk density range; however, predicted BD values are generally higher than those observed. Both
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Figure A1. Accuracy of cross-validated predictions for the three models, UniNN, MultiNN, and SiNN, across different soil properties. All

results are shown in the transformed target space used during model training.
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MultiNN and SiNN largely underpredict SOC content above 200 gkg−1, although their predictions remain associated with low330

bulk density values. In contrast, UniNN is able to generate high SOC predictions, but these frequently occur at moderate bulk

density levels.
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Figure A2. Joint distribution of SOC content (gkg−1) and bulk density (g cm−3) for observations and model predictions, restricted to

samples with SOC content exceeding 200 gkg−1 and bulk density below 0.2 g cm−3.

Appendix B: Porosity and compaction

Once oBD and mBD are obtained from SiNN, soil porosity can be derived. Following Robinson et al. (2022), particle densities

of the organic and mineral soil constituents (oPD and mPD) are assumed to be constant, with oPD = 1.4 gcm−3 and mPD =335

2.7 gcm−3. Soil porosity is then calculated as:

φ = 1−
[(

SOM

oPD
+

1−SOM

mPD

)
÷

(
SOM

oBD
+

1−SOM

mBD

)]
, (B1)

Figure B1(a)− (g) shows the derived soil porosity against SOC content across land-cover classes. Porosity is lowest in

Cropland and Bareland, and highest in Wetland and Woodland. Consistent with estimates reported by Robinson et al. (2022)

using soil data from Great Britain and Wales, porosity generally increases with SOC content. This increase, however, levels off340

at SOC contents of approximately 200 g kg−1.

The inverse of mineral soil porosity, expressed as the ratio of mineral bulk density to mineral particle density (mBD/mPD),

could be interpreted as a proxy indicator related to soil compaction. This mBD-based indicator is a modelling construct intended

to reduce the influence of SOC-driven density effects. Figure B1 (e) compares the distribution of this compaction-related

indicator across land-cover classes. The highest mean values are observed in Cropland, whereas the lowest mean values occur345

in Shrubland. The widest distributions are found in Woodland and Wetland.
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Figure B1. (a)−(g). Porosity derived from predicted oBD and mBD, plotted against SOC content for each land cover class. (e) Compaction

indicator calculated for each land cover.
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