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Text S1. Tangential Flow Ultrafiltration (TFF)

Tangential flow ultrafiltration (TFF) was employed to fractionate dissolved organic
nitrogen (DON) in water samples based on molecular weight (MW) ranges. The TFF setup
included polyether sulfone (PES) ultrafiltration membrane cartridges (Vivaflow 50, Sartorius,
Germany) with nominal molecular weight cutoffs (MWCOs) of 1 kDa and 10 kDa, a
MASTERFLEX L/S peristaltic pump, and MASTERFLEX L/S precision polyvinyl chloride
(PVC) tubing (Figure Sla). The peristaltic pump maintained tangential flow across the
membrane surfaces. A schematic overview of the TFF procedure is shown in Figure S1b.

Prior to TFF, water samples were filtered through a 0.45 pm membrane (Amicrom, 47
mm). The initial TFF step used a 10 kDa membrane to separate the sample into two fractions:
DON > 10 kDa (retentate, concentrated to 100—150 mL) and DON < 10 kDa (permeate). The
DON < 10 kDa fraction was further processed with a 1 kDa membrane, yielding two additional
fractions: DON 1-10kDa (retentate, 100—150 mL) and DON < 1kDa (final permeate). All
retentates and ultrafiltrates were collected in 50 mL centrifuge tubes for subsequent analysis of
DON and dissolved inorganic nitrogen (DIN).

To avoid overestimation of colloidal nitrogen due to potential retention of DON < 1 kDa,
the colloidal fraction was calculated using an ultrafiltration permeation model. Based on
previous studies and our preliminary experiments, when the concentration factor (CF) was > 30,
the difference between model-based and observed colloidal nitrogen abundance remained
within 5% (Yang et al., 2021). Therefore, a uniform CF of 30 was applied to all samples to
reduce analytical variability and facilitate inter-sample comparisons. The CF was calculated
using Equation 1:

_ Total Sample Volume

Equation 1
Retentate Volume 1

To minimize cross-contamination, a six-step cleaning protocol was applied to the TFF
system before each experiment and between successive samples. The protocol involved
sequential rinsing with:

* 1% Micro-90 detergent,

*  Milli-Q water,

e mol L' NaOH,

e  Milli-Q water,

e mol L™ HCI, and

*  Milli-Q water,
with each step lasting 20 minutes. After cleaning, Milli-Q water was run through the tubing,
and its nitrate concentration was measured using an ultraviolet-visible spectrophotometer (TU-
1901, Persee, China). The cleaning was deemed complete only when the nitrate concentration
was below the detection limit of the nitrogen oxides analyzer.

To ensure quality control, nitrogen recovery efficiency was evaluated and found to range
between 80-120% (Figure Slc), consistent with acceptable limits (Powell et al., 1996). The
following equations were used for calculations:

Ce=Cphy —Cy Equation 2
C,(CF-1)+(;
= ul ) Y %100 Equation 3
CF X Cpy



where, C,,, Cy;, Cy, and C. represent the nitrogen concentrations. Cp,: Nitrogen concentration in
the pre-filtered sample. Cyr Nitrogen concentration in the retentate. C,; Nitrogen concentration
in the ultrafiltrate. Cc: Colloidal nitrogen concentration. R: Colloidal nitrogen recovery
efficiency

To purify the CON fraction and remove free small molecules and ions, CON-enriched
concentrates were dialyzed against 3 L of double-distilled water using 1000 Da MWCO dialysis
membranes (HF132640, Henghuibio), under continuous magnetic stirring for 24 h (Ouyang et
al., 2018).

Text S2. Sample analysis precision, detection limits, and quality control

The concentrations of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN)
were measured using high-temperature catalytic oxidation with a TOC analyzer (multi N/C
3100, Analytik Jena, Germany) equipped with a TDN module. The method had a detection
limit of 4 ug L' and a measurement precision of 2%. Quality control involved periodic analysis
of ultrapure water blanks and reference standards (1.0 mg L™ potassium hydrogen phthalate for
DOC; 0.5 mg L' KNOs + 0.5 mg L™ urea for TDN) every fifth sample, with recovery
efficiencies exceeding 97% (Ye et al., 2018). DON was calculated as the difference between
TDN and dissolved inorganic nitrogen (DIN). DIN species were quantified using standard
marine nutrient analysis protocols and a UV-Vis spectrophotometer (TU-1901, Persee, China),
with detection limits of 0.3 ug L™, 0.7 ug L' and 0.4 pg L' and relative standard deviations
(RSDs) of < 4%, < 3%, and < 2% for NO:~, NOs~, and NH4", respectively (Wu et al., 2023).
Using the procedure described above, concentrations of total nitrogen and inorganic nitrogen
in the truly dissolved fraction (<1 kDa) were determined concurrently. tDON was similarly
calculated as the difference between total nitrogen and inorganic nitrogen in this fraction. CON
concentrations were calculated by subtracting tDON from DON, based on a sufficiently high
concentration factor (> 30) during filtration (Yang et al., 2021) as elaborated in the
Supplementary Information. Measurement uncertainties arising from subtraction and addition
were estimated using the error propagation method described by Cornell et al. (2003). All
samples were analyzed in triplicate, with analytical accuracy consistently exceeding 95 %.

Particulate nitrogen (PN), particulate organic carbon (POC), and stable isotope ratios
(0'3C, 0'°N) were analyzed in continuous-flow mode using an elemental gas analyzer coupled
to an isotope ratio mass spectrometer (DELTA V Advantage, Thermo Fisher Scientific, USA).
Prior to analysis, filters containing particulate matter were acidified with ~1 mL of 1 mol L™!
HCI to remove carbonates. This treatment had a negligible effect on PN and 8N measurements,
and has been applied in previous studies (Loick et al., 2007; Kao et al., 2012; Yan et al., 2022).
POC and PN on dried filters were quantified after combustion in tin capsules using L-cystine
as the calibration standard, with analytical accuracies exceeding 99% and 97.5%, respectively.
Isotopic values were calibrated against the Pee Dee Belemnite standard for &'°C and
atmospheric Nz for "N (Wu et al., 2023), with measurement precisions of +0.1%o and +0.2%o,
respectively. Particulate inorganic nitrogen (PIN) was determined using standard nutrient
analysis methods after a 2-hour oscillatory extraction with 25 mL of 0.1 M HCI (Zuo et al.,
2016). As PIN accounted for less than 5% of total PN, PN was considered equivalent to PON
in this study.
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Figure S1. Schematic diagram of Tangential Flow Ultrafiltration (TFF) device (a) and
process of TFF (b). Mass recovery of colloidal nitrogen from TFF device (c).
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Figure S2. ATPase activity in the biologically active mixing (BAM) and biologically inhibited
mixing (i.e., physicochemical mixing only, BIM) treatments (a). ATPase activity was
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significantly higher in the BAM treatments (p < 0.001), with near-zero activity in the BIM
treatments, validating the effectiveness of the inhibition. Potential interference by chloroform
was assessed by conducting a 2 h experiment evaluating flocculation and/or adsorption of
amino sugar (a representative DON component, 1 mg L) in a turbid suspension (50 mg L™
SPM). The effect of addition/non-addition of chloroform on the average particle size (b), Zeta
potential (c) and Pdl (d) of the amino sugar (1 mg L) + inactivated SPM (50 mg L) system
was examined, oscillating at 180 rpm for 2 hours. NS means no significance, and ‘***’ denotes
p <0.001. Zeta potential analysis showed no significant changes in average particle size, zeta
potential, or Phl following chloroform addition (Figure S2, p > 0.05), indicating minimal
interference in the observed ON behavior during the experiments.
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Figure S3. Variations of proportions of different organic nitrogen forms along varying ratios
of estuarine mixing in the biologically active mixing (BAM) (a) and biologically inhibited
mixing (i.e., physicochemical mixing only, BIM) treatments (b). Red represents particulate
organic nitrogen (PON), gray represents colloidal organic nitrogen (CON), and blue represents
truly dissolved organic nitrogen (tDON).
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Figure S4. The relationship of salinity and three components identified by PARAFAC in the
biologically active mixing (BAM) (a) and biologically inhibited mixing (i.e., physicochemical
mixing only, BIM) treatments (b). Shaded areas represent 95% confident intervals.
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Figure S5. Comparison of relative intensity changes of C1, C2, and C3 at the truly dissolved
phase (tDP) and the colloidal phase (CP) of the biologically active mixing (BAM) (a) and
biologically inhibited mixing (i.e., physicochemical mixing only, BIM) treatments (b). Blue
diamonds represent the samples (n = 5), and squares show the mean values. NS means no

significance, and ‘***’ denote p < 0.001.
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Figure S6. The relationship of §'°C and 3'°N of PON in two mixing treatments.
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Figure S7. Variations of (a) Chl-a, (b) Suspended Particulate Matter (SPM), (e) nitrate (NO3")
and ammonium (NH4") along the salinity gradient in the biologically active mixing (BAM) and
biologically inhibited mixing (i.e., physicochemical mixing only, BIM) treatments (a, b). The
relationship of (c) Chl-a and PON, (d) Chl-a and 8"°N of PON, (f) Chl-a and NOs™ in the BAM

treatments.
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Figure S8. Variations in the activities of (a) nitrite reductase (NIR), (b) succinate
dehydrogenase (SDH), and (c) chitinase (CHI) along varying ratios of estuarine mixing in the
biologically active mixing treatments. NS means no significance, and ‘**’ doenotes p < 0.01.
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Table S1. Sampling information, physicochemical properties of river water and seawater, and

mineral composition of suspended particulate matter (SPM) in New Ziya Riverway and Bohai

Bay.

New Ziya Riverway

Bohai Bay

Sampling data

Sampling coordinates

2024.7

117.250°E, 38.602°N;
117.257°E, 38.601°N;
117.262°E, 38.603°N

2024.7

118.160°E, 38.662°N;
118.186°E, 38.670°N
118.171°E, 38.660°N

Temperature (°C) 17.0£2.3 185+14
Salinity 0.49+0.11 31.52+0.20
pH 7.87 £0.03 8.20 £ 0.05
SPM (mg L) 452 +4.35 20.1+3.46
DO (mgL ™) 9.10+0.47 9.12+£0.36
TOC (mg L) 44.77 + 3.68 32.16 £4.32
TN (mgL ) 3.64+£1.34 1.14+0.24
DIN (mg L ) 1.54 £1.12 0.60 +0.21
DON (mg L ) 2.10 £ 1.45 0.54 +£0.17
DIP (mg L ) 0.015+0.003 0.011 £ 0.001
Quartz (%) 27 /

Potash feldspar (%) 4 /

Mllite (%) 48 /

Chlorite (%) 3 /

Calcite (%) 2 /

Dolomite (%) 8 /
Plagioclase (%) 8 /




Table S2. Variation in the concentrations and compositions of truly dissolved organic carbon (tDON), colloidal organic nitrogen (CON) and particulate organic

nitrogen (PON).
Relative theoretical
Salinity PON CON tDON CON compounds-RI tDON compounds-RI dilution curve offset 85N-PON  $13C-PON
(mgL"') (@mgL") (mgL™) percentage (%) (%o) (%o)
Cl1 C2 C3 Cl1 C2 C3 C1+C3 C2
Biologically active mixing (i.e., biological and physicochemical processes occurring concurrently, BAM)
1.52 0.391 0.829 1.270 2.61 2.00 0.40 2.10 2.14 0.40 / / 8.82 -26.65
8.34 0.387 0.622 1.210 1.77 1.70 0.21 1.44 2.11 0.18 19.46 11.58 6.29 -27.44
14.67 0.358 0.439 1.101 1.22 1.40 0.11 1.21 1.53 0.05 25.88 7.04 4.34 -27.64
17.24 0.317 0.386 0.913 1.21 1.25 0.08 1.06 1.37 0.06 22.89 6.53 4.20 -27.75
20.83 0.282 0.359 0.709 0.98 1.09 0.01 0.98 1.21 0.03 22.21 10.9 4.13 -27.86
26.06 0.244 0.297 0.504 0.66 0.78 0.06 0.71 0.89 0.07 15.27 10.27 1.38 -27.95
30.31 0.167 0.289 0.247 0.32 0.49 0.06 0.64 0.57 0.11 / / 1.15 -28.28
Biologically inhibited mixing (i.e., physicochemical processes mixing only, BIM)
1.28 0.381 0.756 1.309 2.21 1.86 0.45 1.85 2.58 0.56 / / 7.12 -25.98
8.98 0.351 0.504 0.924 1.62 1.58 0.32 1.22 2.04 0.35 14.22 0.81 6.87 -26.04
15.18 0.293 0.382 0.630 1.21 1.35 0.25 0.87 1.57 0.28 20.89 2.99 6.88 -26.07
18.13 0.276 0.340 0.443 1.23 1.26 0.22 0.82 1.38 0.26 13.26 2.48 6.53 -26.06
20.27 0.243 0.293 0.418 1.19 1.20 0.22 0.73 1.24 0.22 10.47 1.66 6.20 -26.09
27.85 0.195 0.180 0.298 0.86 0.93 0.11 0.40 0.74 0.11 11.15 1.66 6.25 -26.09
31.5 0.153 0.193 0.199 0.68 0.80 0.11 0.29 0.53 0.12 / / 6.74 -26.06
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Table S3. Compositions and fluorescence characteristics of DOM in the mixed water of New
Ziya Riverway and Bohai Bay.

Compositions Ex/Em Characteristics References
(nm)
C1 385/478 Terrestrial humic-like component, high (Osburn et al., 2011;

molecular weight, aromatic, fluoresces Wang et al., 2022)
like fulvic acid, widespread

C2 305/350 Autochthonous tyrosine, protein-like (Liu et al., 2024;
substances, related to the degradability of Maurischat et al.,
DOM 2022; Ren et al.,
2021)
C3 240/426 microbial humic-like, low molecular (Fellman etal., 2010;
weight, related to biological activity Liu et al., 2025)
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Table S4. Global concentrations of salinity, chlorophyll-a and different fractions of nitrogen in different estuaries. Dissolved organic nitrogen (DON) (< 0.45

um) was divided into truly dissolved organic nitrogen (< 1 kDa) and colloidal organic nitrogen (1 kDa - 0.45 um). Empty values were not reported.

;eol:ial Estuary Salinity gllg-lil‘l) DIN (uM) DON (uM) IEI\(/)II)V ggg PON (pM) TN (uM) References

1 Yangtze River Estuary (YRE)  2.2-33.8 ?9'?6')72'4 ?2265 0.3 ?9";)3 27 ?9‘%6')140‘8 (1 59'?6')3 ol (Yan et al., 2022)

2 Pearl River Estuary (PRE) ??;.932)-5'6 (229 629-?47 (Lietal., 2024)

3 Pearl River Estuary (PRE) 5.1-33.7  1.1-2.4(1.6) ?72-(1))788 (121793-§55 (Lietal., 2023)

4 Ochlockonee Estuary (OE) 3802_ ?2?-)_2;) 9 ?13?)1 ?l 2:%7 1 (Powell et al., 1996)
S a3 opae MM 0so 0% 0ms s (o wd S
S Domecbmmop O L2l 20480 T4 (Mamino and. Harvey
7 York River Estuary (YORE)  4.1-15.8 ?2?)—2;) 0 ?lg-g)l 7 flg-%z > (Detweiler et al., 2025)

S Yellow River (YR) 5758 1056 103304 03720 (van et 2021

9 the North Australian shelf ggg_ 3.9-7.2 (5.9) (3369_;‘2 ?1 19_§6 (Knapp et al., 2012)

10 ?11511;2) Monsoonal Estuaries g '523_ %%‘68 4.3-24.0 (9.4) fé???"‘ (Sarma et al., 2014)

1 ?ﬁ;sEls)smpl River Estuary (113602-)193 (6g6<; )10.5 ?783- )1 1.8 (Duan et al., 2007)

12 Pearl River Estuary (PRE) 0.1-33.3 2;526)_35'0 (95;3_;124'9 24%_357 (Yeetal., 2018)

5 LsoheRnerbsuy LRy U6 LEGO dsoeiss lolaio 1662 0TS0 g i, 2014
14 Brisbane River Estuary (BRE)  1.0-35.8 (25)6_18'5 (12146533 (258231_)1 356 (124947-;‘83 (11032771_)1 61.3 (Wells and Eyre, 2019)
15 ?ﬁ;}rgg))chy River Estuary (3)67 é - (1621-)141 (11?-;)98 (133386-)762 (1321-;)56 ?77005-)1 64.4 (Wells and Eyre, 2019)
16 Noosa River Estuary (NRE)  7.1-36.7 21.?68)-6.0 ?13?)7 7 ?261?53 (12%5_%7 8 ?50991_)1 144 (Wells and Eyre, 2019)
17 Cape Fear River Estuary 0.2-34.8  0.9-22.3 0.64-101.4 11.6-139.2 10.8-48.6 0.9-101.4 (Dafner et al., 2007)
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(CFRE) 6.7) (15.6) (44.7) (29.1) (15.6)
18 Tampa Bay Estuary (TBE) gf; 3.1-14.4 (7.6) (137627-§O4 ?1;-411)91 (354637-)792 (Jani and Toor, 2018)
I e e 5 LSS MRS e
20 Manko Estuary (ME) 3983_ (1317_)103 ?196?;_%164 ?00596_)2 17 (Shilla et al., 2011)
21 (Ccaggeira River — Estuary 5 55 g leégff); > (dos Santos et al., 2018)
22 Elbe River Estuary (ERE) (3)033_ ‘2‘;3.-1(8.1) ?183?;;39 (231626-)602 (147251-)934 (1157759;003 (Déhnke et al., 2022)
23 Hooghly Estuary (HE) 3.5-25.6 3.6-83(5.2) (135?;)56 (Fischer et al., 2016)
24 ](?)atg%l)uei River  Estuary (3)202- E););)—M.l (121279-%81 23(;-;)106 ?éi(‘))-65.6 (1 28%—%;150 (Fang and Chen, 2021)
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