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Abstract. Identifying and quantifying local methane emitters remains a major challenge for atmospheric monitoring. We
present a novel top-down method to estimate both the upwind location and emission strength of an unknown atmospheric
source from a time series of concentration observations. The approach employs backward trajectories from a Lagrangian
Particle Dispersion Model (LPDM) to derive a characteristic transfer function for each potential source region. The transfer
function that best reproduces the observed enhancement identifies the most likely source location. In a second step, the emission
strength is inferred from the particle ensemble and its corresponding surface footprint.

The method was developed and tested using data from a six-week measurement campaign in the San Francisco Bay Area,
where six EM27/SUN near-infrared Fourier transform spectrometers were operated as part of a collaborative effort to quantify
greenhouse gas emissions. At the UC Berkeley site, one instrument recorded a strictly periodic methane enhancement of
approximately 10 ppb occurring every 12 minutes. Since co-emitted species showed no correlation with this pattern, the signal
was attributed to a single, point-like, puff-emitting methane source.

Favourable meteorological conditions enabled the analysis of several enhancement peaks. The retrieved average emission
strength during the emission episodes was 0.8 - 78 g CHy s—! (equivalent to 2.1 - 190 metric tons yr—!). Although the exact
source could not be identified in the field, the emission characteristics are consistent with periodic natural-gas venting from
a heating system with an installed power output of approximately 500-1000kW installed power. The study demonstrates the
potential of this approach for detecting and characterising local methane emitters from ground-based remote-sensing observa-

tions.

1 Introduction

Methane (CHy) is a potent greenhouse gas with a global warming potential (GWP) about 28 times that of carbon dioxide
(CO2) on a 100-year timescale (Myhre et al., 2013), and roughly 84 times higher when evaluated over 20 years. Given its high
short- and long-term warming potential, accurate quantification of methane emissions is critical for both near-term climate

mitigation and long-term carbon budgeting. While anthropogenic CO, accounts for more than 75 % of global greenhouse gas
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emissions and can be estimated with an uncertainty of about 20 %, global CH, emissions (contributing roughly 19 %) remain
considerably more uncertain, with typical uncertainties near 30 % (Solazzo et al., 2021).

Atmospheric emissions are generally estimated using two complementary approaches. Botfom-up methods quantify indi-
vidual sources and scale their activity to regional or national inventories (e.g. Hegarty et al., 2007; Subramanian et al., 2015;
Thorpe et al., 2020; Lebel et al., 2022). Top-down methods, in contrast, infer source strengths and locations from atmospheric
observations through inverse modelling (e.g. Fairley and Fischer, 2015; Desjardins et al., 2018; Schneising et al., 2014; Chen
et al., 2016). Methane emissions are often unintentional—originating from fugitive leaks, landfills, or livestock (e.g. Hopkins
et al., 2016; Enishi, 2007)—and therefore difficult to constrain by bottom-up inventories alone, motivating the use of combined
or hybrid approaches (e.g. Mgnster et al., 2019; Lassey, 2008; Jones et al., 2021).

From an observational perspective, top-down methods rely either on in sifu measurements or on remote sensing. In situ
data can be collected continuously at fixed stations or from mobile platforms (e.g. Xueref-Remy et al., 2020; Al-Shalan et al.,
2022; Chen et al., 2020), or as discrete samples such as flasks or air cores for later laboratory analysis (e.g. Andersen et al.,
2021; Young et al., 2023; Dietrich et al., 2023). Remote sensing techniques, on the other hand, provide spatially integrated
observations either from satellites (e.g. Hu et al., 2016, 2018; Hamburg et al., 2022) or from ground-based Fourier-transform
spectrometers (e.g. Wunch et al., 2015; Frey et al., 2019; Dietrich et al., 2021). These ground-based systems measure the
total atmospheric column along the instrument line of sight and thus deliver temporally resolved, but spatially integrated,
concentration data.

A major challenge in top-down emission estimates for long-lived gases is the definition of the background concentration.
Observed signals contain both local enhancements and a substantial pre-existing atmospheric background. High-frequency
time-series often estimate the background as a low-percentile of the observations (e.g. the lowest 10 %; Ammoura et al., 2016;
Barkley et al., 2017; Cui et al., 2017), or use dedicated background sites with minimal local influence (e.g. Viatte et al.,
2017; Karion et al., 2019). Spatially resolved satellite observations instead identify background regions within the swath (e.g.
Makarova et al., 2020; Shekhar et al., 2020; Hamburg et al., 2022). Alternatively, model-based backgrounds can be derived
from atmospheric transport simulations (e.g. Vogel et al., 2019).

Most of the above approaches employ transport models of varying complexity to determine source—receptor relationships or
footprint sensitivities. In standard inverse frameworks, these footprints are combined with spatially resolved emission invento-
ries to drive a forward model (e.g. Jones et al., 2021; Luther et al., 2019; Forstmaier et al., 2023; Wu et al., 2018).

However, such footprints are typically computed independently for each observation time step, without explicitly represent-
ing their joint temporal structure. Several studies, including (e.g. Patel et al., 2025), have exploited the temporal evolution of
observed methane plumes—whether through imaging spectroscopy, empirical plume-spread models, or time-resolved inver-
sions—to constrain source characteristics. These approaches use the temporal development of the plume field itself, rather
than the temporal structure inherent in the back-trajectories. In contrast, our framework interprets the upstream trajectories as
the impulse response of a linear time-invariant system, enabling us to exploit their full temporal dimension in a principled,

system-theoretic manner to infer source distances.
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Figure 1. Enhancements of methane total column during the forenoon on Nov. 3™ 2016 at UC Berkeley. The enhancement is calculated by
subtracting the 10% quantile in a 60 minute rolling window. For reference a 12 minute pattern is plotted (vertical lines) which aligns well

with the observed enhancements.

In this study we present a top-down approach that analyses a time-series of ground-based remote-sensing observations. The
method uses the travel time of simulated particles to estimate the enhancement pattern that a point-like source would produce
in the measured concentration record. We describe this process within the framework of linear, time-invariant (LTI) system
theory, where the atmospheric transport can be represented by a transfer function, or impulse response, h(t), that characterises
the system behaviour without detailed knowledge of its internal structure. This black-box treatment enables the derivation of
source distance and emission strength directly from observed peaks, offering a compact yet physically interpretable alternative

to traditional inversion techniques.

2 Methodology

This section describes the framework developed to estimate the location and strength of a local methane source from ground-
based remote-sensing observations. The method combines linear system theory with a Lagrangian particle dispersion model
(LPDM)), treating the atmospheric transport as a linear time-invariant (LTI) system. In the following, we outline the conceptual
background, observational dataset, model configuration, and inversion procedure. For a brief introduction into LTI systems

within this context please refer to Appendix A.
2.1 Observational data

The method was tested using total column observations obtained during a six-week campaign in autumn 2016 in the San
Francisco Bay Area, USA. At the UC Berkeley site (37.876° N, 122.257° W, 119 m a.s.l.), a Bruker EM27/SUN near-infrared

Fourier transform spectrometer was operated continuously during sunshine conditions (Gisi et al., 2011, 2012; Hase et al.,
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2016; Chen et al., 2016; Frey et al., 2019). Interferograms were recorded approximately every 12s and processed with the
proffast 2.2 software (Frey et al., 2019; Sha et al., 2020; Feld et al., 2024; Makowski et al., 2025; Hase, 2025) to retrieve
total column-averaged dry-air mole fractions of methane (Xcm, ), carbon dioxide (Xco,), water vapour (Xp,0), and oxygen
(Xo,)-

During the morning of 3 November 2016, the instrument detected periodic methane enhancements with a 12-minute recur-
rence and amplitudes of approximately 10 ppb above background. Background concentrations were defined as the rolling 10
% quantile of a 60-minute window centered on each measurement (see Figure 1). The choice of the window-size is found to be
uncritical, due to the prominence of the peaks. Please refer to Appendix B for details on co-emitted species and an assessment

of observational uncertainties.
2.2 Conceptual framework

In atmospheric inverse modelling, the goal is to infer the emission signal e(¢) from an observed concentration enhancement
y(t). Following the theory of linear time-invariant systems, the atmosphere can be represented as a system that transforms an
input e(¢) (emission) into an output y(t) (measured enhancement) through convolution with an impulse response or fransport
kernel k(t):

o}

y(t) = (e k() = / o() k(i —7) dr. (1)
Here, k(t) encapsulates the temporal and spatial characteristics of atmospheric transport between the source region and the
observation site. In this framework, identifying a source corresponds to finding the kernel that best reproduces the observed

signal and determining the corresponding emission strength. We employ a two step approach:
1. derive maximum source distance 7,4z

2. infer the emissions from potential candidates within that range.
2.3 Atmospheric transport modelling

Atmospheric transport was simulated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Stein et al., 2015) running the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003; Fasoli et al.,
2018; Loughner et al., 2021) transport formulation.

Local observations indicate stable transport conditions over several hours. Backward trajectories were launched every 15
minutes from 10 receptor points distributed along the instrument’s line of sight up to 100 m above ground level. For each
receptor, 500 particles were tracked backward in time, in one minute steps. The used meteorological fields are from NOAA’s
High-Resolution Rapid Refresh (HRRRv1) reanalysis model at 3 km x 3 km spatial resolution for every hour (Benjamin et al.,

20164, b). The ensemble of particle positions forms the basis for constructing the transport kernel.



105

110

https://doi.org/10.5194/egusphere-2026-204
Preprint. Discussion started: 28 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

©

kernel 0.1km |
—— observed

1 |
W
| m—kernel 0.7km

—— observed

o

enhancement / ppb
N S

o

o

o

enhancement / ppb
N -

receptor distance north / km

o

o

| m—kernel 3.6km
—— observed

4
-400 -200 0 200 400 0 1 2 3 4 5 6 7
time /s receptor distance east / km

o

enhancement / ppb
N S

o

Figure 2. Illustration of the particle segmentation and range estimation procedure. Right: Top view of consecutive STILT-simulated particle
positions in the spatial domain. Particles are released from the receptor at (0,0) and traced backward in time; in this case the wind originates
from the east—northeast. Each particle is assigned to an ensemble P; ; ; defined by upwind distance ¢, wind-relative azimuth j, and source
altitude above ground k, indicated by different colors. Only one source altitude (k) is shown here. Left: Scaled histograms of particle arrival
times for selected segments (thick colored lines), representing the respective transport kernels. The maximum upwind source distance (=

0.7 km in this example) corresponds to the kernel which best fits the observed enhancement (see. Section 2.5).

2.3.1 Discretisation of the upwind domain

To construct the transport kernel, the upwind domain sampled by all backward trajectories is divided into discrete volumetric
segments according to upwind distance, wind-relative azimuth, and altitude. Each segment is indexed by (3, 7, k), representing
its radial (¢), angular (7), and vertical (k) position, respectively. All particles passing through a segment form the corresponding
particle ensemble P; ; .. For each ensemble, the residence times are accumulated to derive the surface sensitivity, which serves
as the building block for the transport kernel (see Section 2.4).

A schematic of this segmentation is shown in Figure 2, illustrating how the domain is partitioned into radial and angular
bins relative to the prevailing wind direction. A detailed mathematical description of the binning procedure and coordinate

transformations is provided in Appendix E.
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2.4 Transport Kkernel construction

To relate emissions within the upwind domain to the observed signal, we derive a time-resolved transport kernel k(t) from the
ensemble of STILT trajectories. Each trajectory records the residence time of particles within discrete spatial cells of the model

domain. Following Lin et al. (2003), the surface sensitivity (footprint) for a particle ensemble in cell 4, j, k is

o Atsim Mair
- A _
Az pi ik

fi k() ()

where Aty is the model time step, 1m,;, the molar mass of air, p; ; ; the mean air density in the cell, and Az;, the segments

vertical thickness, we use 10 m. The kernel is then formed as a weighted histogram ¢,,, with bin-size of Atj, of particle arrival

times:
ki,j,k(tm) = Z X(tm) fi,j»k,l)(t) w(”q» Aq)a (3)
PEP; jk.q
1, iftet— Ak ¢4 Aln)
X(tm) = “4)

0, else

where w(ng(z,), Aq(zr,tr)) is a dimensionless receptor-specific weighting function. This function assigns a weight to each
of the receptor points ¢ along the instruments line of sight. It accounts for the number of particles n4(z,) the receptor point
represents at the receptor altitude z,, as well as the instruments specific averaging kernel A(z,,t,) at the receptor time ¢,
(see Appendix D). Thus, k; ; ,(t) represents the system’s impulse response for a given particle ensemble P, ; ;.: the temporal
pattern expected at the receptor for a unit emission released within the corresponding 3-D upwind segment. The unit of £ is

ppm - m?2s/pmol - the footprint unit.
2.5 Step 1: Source-range estimation

For each upwind segment s := (i, j, k), we compare the modeled kernel k() to the observed enhancement y(t). A least-

squares fit is applied with three free parameters—a temporal shift 7, an amplitude a4, and an offset o,:

min ||y(t) —asks(t+75) —os]||- 5)

Ts,Qs;0s

The goodness of fit is quantified by the standard deviation of the residuals,
ps =std[y(t) —asks(t+75) — 0s], (6)

with lower values indicating a better temporal match. The distance at which p, is minimal defines the furthest upwind location

of the source (r,x) ; segments beyond this distance produce kernels too broad to reproduce the observed narrow peaks.
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Figure 3. Illustration of the connection between source emission patterns and the transport kernel and the ovserved enhancement. From left
to right: A source emission pattern (blue) is transported and diluted according to the kernel (orange), resulting in a predicted downwind
enhancement (green), which can be compared to an observed signal (black, dashed). From top to bottom: Scenarios with increasing upwind
distance. The same enhancement can be explained with a long emission duration (top) but requires a narrow transport kernel. With increasing
upwind distance, the kernel broadens and requires a shorter emission duration to explain the same enhancement. In the bottom row, even a

puff-like emission cannot explain the observed enhancement, indicating that the source lies beyond the maximum upwind influence range.
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Figure 4. Illustration of the range estimation method for the methane enhancement observed at 17:26 UTC. Top: Standard deviation of
the fit residuals, p; (ppb), as a function of upwind distance (km). A distinct minimum at approximately 0.7 km indicates the most likely
maximum distance to the emission source. Center right: Observed methane enhancements (gray) and two fitted reconstructions using kernels
corresponding to distances near the residual minimum. The kernel-emission convolution (green) reproduces the observed enhancement,
highlighting the physical constraint on the solution. Bottom: Corresponding median emission strength (mol), assuming the source is located
within the respective upwind segment. Because the inferred emission increases strongly with distance, the vertical axis is shown on a

logarithmic scale.
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2.6 Step 2: Emission strength inversion

Now, that 7, is obtained the most likely source region can be identified in the upwind sections closer or equal 7y, ,«. For this

location the time-resolved emission rate e(¢) can be retrieved by solving a non-negative least-squares problem:

min [ly(®) ~ (k) 1) | ™

This inversion yields the emission pattern that, when convolved with the transport kernel, best reproduces the observed
enhancement. Figure 3 illustrates the principle how the emission-patterns evolve under multiple kernel-scenarios, given the
same observed enhancement. The residual of both optimization problems (Eq. 5 and 7) are displayed in Figure 4. The residual
obtained from Eq. 7 is generally lower than that of Eq. 5, as the emission strength is adjusted for a fixed kernel. However, the
maximum upwind distance 7, is robustly identified only through Eq. 5, where the residual minimum reflects the physically
consistent kernel extent.

Finally, the integration of e(t) over the emission period provides the total emitted mass for each segment:

E= /e(t) dt. ®)

Negative values are not permitted, ensuring physical plausibility and preventing artefacts that could compensate for exces-
sively wide kernels. The resulting emission map therefore contains only non-zero fluxes in dynamically consistent upwind

regions.
2.7 Uncertainty analysis

Uncertainties in the retrieved emissions arise from both the inversion procedure itself and from systematic errors in the input
data. For the method-intrinsic part, we use the ensemble of all upwind segments defined by distance, azimuth, and altitude. Only
well-sampled segments—those contributing significantly to the total surface sensitivity—are retained. The ensemble mean and
the range spanned by the retained members provide a first-order estimate of the methodological uncertainty.

Systematic errors are dominated by uncertainties in the meteorological wind field, which directly affect the surface sensitivity
and therefore the inferred emission strength. An error in the mean wind speed o, /u propagates approximately linearly to the

emission estimate,
o

AE~F -2, 9
U

Based on comparisons with local meteorological observations, wind speed errors during the analysed period are estimated at
below 50 %, which translates a similar uncertainty in the derived emissions. We correct modeled emissions by the deviation in
wind speed according to equation 9. Further details on the can be found in Appendix G.

Observation noise adds an additional, smaller contribution. Because the emission rate is obtained by integrating concentra-

tion enhancements over time, random measurement noise is partly compensated, but longer integration windows can accumu-
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Figure 5. Retrieved emission estimates for the two potential source candidates (Student housings and the Foothill Dining). The results are
corrected by wind-speed using the observed wind speed rather than the meteorological model solely. Te ensemble range is indicated by the

error bars.

late additional uncertainty. This contribution tends to be positive, since negative emissions are excluded. We therefore treat
observational noise as a secondary effect compared to wind-related errors.

Overall, we estimate a residual relative uncertainty of roughly 30—70 % for the retrieved emission strengths, dominated by the
uncertainty in the wind speed changes due to surface roughness and by ensemble variability. This uncertainty can significantly

increase if the deviation of the meteorological model to the present conditions cannot be derived.

3 Results

The potential source areas were identified using the optimised particle ensemble P,y (lat,lon), constructed from the best-
fitting trajectories for each of the 13 forenoon enhancement peaks. Figure 6 overlays these ensembles on a high-resolution
map of the surrounding area. Possible emitters are located within the region marked by bluish points, which correspond to low
model—observation residuals in the range-estimation fit (see Section 2.5). Red areas indicate poorer agreement and thus less
likely source locations.

The emission characteristics suggest a direct, periodic release of natural gas into the atmosphere rather than a diffuse ground-
level leak. Several upwind facilities were investigated as potential emitters. A natural gas valve located farther east was not
equipped with a blow-down vent. The nearby Lawrence Berkeley National Laboratory (LBNL) uses steam supplied from a
cogeneration plant rather than direct gas combustion, and the two smoke stacks located roughly 800 m upwind would imply
unrealistically large emissions. The most plausible candidates are therefore natural gas powered units of the Foothill Dining
and Foothill Student Housing complexes. Google Street View imagery indicates the presence of a natural gas—fired boiler.
A plausible explanation is a burner that fails to ignite and automatically purges its combustion chamber every 12 minutes,
releasing unburned gas to the atmosphere. Assuming a typical installed heating capacity of S00—-1000 kW for buildings of this

size, the corresponding methane consumption would be on the order of 8-16 g s~1, consistent with the retrieved emission rates.

185 Attempts to contact the facility management for confirmation were unsuccessful.
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Table 1. Ensemble-averaged methane emission estimates for two potential upwind source locations. *Annual values assume five emission

events per hour throughout the entire year.

Source candidate ~ Mean (min/max) Unit
Foothill Dining 28.2(0.8/717.9) gs !
Student Housing ~ 38.1 (0.9/78.4) gs !
Foothill Dining 1.20 (0.05/3.72) kg per peak
Student Housing  1.53 (0.05/4.33) kg per peak
Foothill Dining 52.7(2.1/162.9) tCHyyr **
Student Housing ~ 66.8 (2.0/189.5) tCHyyr * *

Figure 5 shows the retrieved emission strength corresponding to each observed enhancement peak during the forenoon. For
the most likely source candidate located about 146 m upwind, the individual peaks yield consistent emission magnitudes after
wind-speed correction. On average, we obtain values between 0.8 g s~! and 78 g s~! per event, corresponding to roughly
0.05-4 kg per release.

Table 1 summarises the ensemble-averaged results for the two most plausible upwind source locations. Upscaling to annual

values assumes a regular pattern of five emission events per hour (one every 12 minutes).

4 Conclusions

We have developed a novel top-down approach to identify potential source regions and emission strengths from peak-like
enhancements in atmospheric trace gas observations. The method employs a Lagrangian particle ensemble to derive the char-
acteristic transfer function of each potential source region. STILT-generated footprints indicate potential source regions several
tens of kilometers upwind. By using high-resolution four-dimensional meteorological fields—primarily wind speed and direc-
tion—and comparing transport patterns with the observed enhancements, this method narrows the potential source region to
within 1 km.

Although the present analysis focuses on total column methane observations, the approach is generally applicable to other
pollutants and observational techniques that provide temporally resolved concentration data.

Our evaluation confirmed the consistency of both the observational and meteorological input data. The results show that the
method is robust with respect to key configuration parameters, such as the choice of radial binning. Nevertheless, uncertainties
remain substantial, mainly due to wind-field errors and observational noise. The accuracy of the meteorological model in terms
of wind speed is particularly critical, as it directly determines the inferred emission strength. If observed meteorological data
is not available as in this study, a high uncertainty needs to be assumed.

The approach is best suited for isolated, point-like, or short-term “puff” emitters. For sources that deviate from this assump-

tion, the method tends to overestimate the source distance and consequently the emission strength, although it can still provide

10
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Figure 6. Top view facing east-northeast showing the optimised particle ensembles P, for all observed forenoon enhancements. The
EM27/SUN observation site (purple marker) is located on the roof of the green building. The meteorological station LBNL1 (yellow marker)
lies within the upwind direction. White markers denote potential source locations: Foothill Dining (right) and Student Housing (left). Dots
represent the fit residuals of the forward model compared to observations—blue indicating low residuals (good agreement) and red high
residuals. An increasing trend of residuals with upwind distance is apparent, supporting the localisation of the source within the bluish

region. Google Earth. © Google, data provider: Image © 2025 Airbus / Image Landsat / Copernicus

a useful upper bound on the likely source range. Similarly, if a plume is only partially observed (e.g., the diluted outer section
rather than the plume centre), the retrieved emission strength will be underestimated. Baseline noise in the observations can
also broaden the apparent peak and bias the distance estimate.

Future work will focus on extending the method to more complex emission scenarios, including broader or overlapping
peaks from stronger or more distant sources, and to quasi-continuous emitters with non-symmetric rise and decay times.
Moreover, coupling with higher-resolution local meteorological models may further improve the localisation accuracy and the

quantification of emission strengths.

Code availability. We plan to provide the code to public in a more generalized version.

Data availability. Can be provided upon request.

11
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Appendix A: Linear Time Invariant Systems

We briefly introduce the concept of Linear Time-Invariant (LTI) systems from system theory, as it forms the conceptual foun-
dation for our approach.

An LTI system is a model that maps an input signal z(¢) to an output signal y(¢) via a transformation H, such that

Two key properties define LTI systems:
- Linearity: For any signals x1(t), 22(t) and scalars «, (3,
H(awy(t) + Paa(t)) = aH (21 (t)) + BH (22(t)).
— Time-invariance: For any time shift 7, the system satisfies
H(z(t—71))=y({t—1).

Both aspects apply for our inverse problem. The linearity is trivial, because the the trajectory derived footprint f to a
given enhancement y is is proportional to the emissions. The time-invariance is implicitly assumed with the use of backward-
trajectories discussed in (Lin et al., 2003).

A fundamental result of system theory states that any LTI system can be fully characterized by its response to a Dirac delta
function 6(¢). The output h(t) = H(§(t)) is known as the impulse response of the system. Given this response, the output for
an arbitrary input x(¢) is computed via convolution:

oo
y(t) = (xxh)(t) = / xz(T)h(t —7)dT.
—o0

As a simplified real-world example, consider a thermometer that reacts sluggishly to rapid temperature changes. The true
ambient temperature z(t) is filtered by the device’s physical response, producing a delayed observation y(¢). The impulse
response h(t) in this case reflects the thermal inertia of the thermometer.

LTI systems also play a central role in other domains. In optics, for instance, the impulse response is known as the point
spread function (PSF) and describes how a point source of light is blurred by an optical system. The PSF can be used as a
convolution kernel to model optical distortions such as defocus or aberrations.

In this study we adopt this LTI perspective for atmospheric transport modeling and interpret the ensemble of particle tra-
jectories simulated by STILT as the impulse response of a LTI-system. Specifically, we assume a hypothetical instantaneous
point source (i.e., a J-emission) within a source region and track the particles’ transport to the observation site. The footprint
weighted arrival times then serve as a transfer function h(t) that links emissions in space and time to observed concentrations.
Given a observed peak-enhancement this approach allows not only to identify the maxium upwind source influence distance

T'maz DUt also the corresponding source emission pattern e(t) and thus the overall emission.
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Figure B1. Observations of methane total column during the forenoon on Nov. 3™ 2016 at UC Berkeley. The enhancement is calculated by

subtracting the 10% quantile in a 60 minute rolling window.

Appendix B: Observations

Figure B1 shows the observed total column average of methane of the entire day, together with the 10%-quantile as background:
For each observation at the time step ¢y, we define a 60-minute window with d¢t = £7.5 minutes. The maximum value of the

lowest 10 percent of these observations (Y) is assumed to be the background (Equation B1).
Ubg,to, = max{y(t)|to —dt >t <to+dtandy(t) € Y} (B1)

We consider the correction for the solar zenith angle as negligible, because of the broadband characteristic compared to the
observed peak enhancements.

Figure B2 shows the enhancement calculated using the 10%-quantile as background e = y — 4.

As a measure for the precision of the spectroscopic total column average we use X, as an indicator. X;, is the ratio of
spectroscopic expected ground pressure and the observed hydro-static ground pressure. Note, that there are different definitions
of X, we use the one (Frey et al., 2019) defines in section 3.3. Ideally X,;, should scatter around one. Deviations from this
value indicate shortcomings in the spectroscopic retrieval. Figure B3 shows the X,,;, parameter to be constant in the forenoon
that day; thus, we consider only the peaks observed here as evaluable for our analysis.

Co-emitted species can give indicators to certain sources. Combustion-related processes might enhance CO2 observations,
whereas emissions from digesters might increase water vapor abundance. Figure B4 displays the retrieved species, which
exhibit no correlation with the enhanced methane observations. One exception is the correlated rise of XCOq of 1ppm, ap-
proximately 20 seconds before the methane peak at ¢ = 17.6287 hours which translates to 17:37:46 UTC. The reason for this

enhancement in CO5 remains unclear.
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Figure B3. Observed methane total columns and X, as an indicator of systematic errors. While X, remains fairly constant in the

forenoon, deviations begin to spike later in the day, reducing confidence in the observed methane total column observations.

To put the total column observations into perspective: 10ppb Enhancement in the total column is equivalent to approximately

265 3.5-1072 mol/m?. If the plume has a height of only 10 m an in-situ instrument would measure additional 8400 ppb of Methane.
A source with the strength of 7- 1073 mol/s, located directly next to the total column instrument (1m lateral dilution) at wind-
speeds of 2m/s (roughly the observed wind speed that day) would create this enhancement. A plume with 30 m dilution width

would be equivalent to 0.21 mol/s.
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Figure C1. Schematic of the receptor points (blue dots) along the slant line of sight of the instrument. Four representative trajectories
are shown in light blue, calculated backward in time. Vertical weighting w is based on the number of molecules noiec,; in the layer of

representation, considering different surface elevations.

Appendix C: Receptor points and vertical weighting

270 We place four dimensional receptor points p(x,y,z,t4,) along the line of sight as (Jones et al., 2021) suggested. x and y
represent the longitude/latitude coordinate on the WGS84 grid in degrees, negative west of Greenwich, negative south of
equator. tg4,, represents the downwind time in julian date format.  and y are projected according to the solar position from the

site location ¢, Yo, 20 and z,; altitude above the instrument. As altitude STILT accepts altitudes above ground level z,g4;. In
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presence of complex topography the change in surface elevation on the projected x — y coordinates cannot be neglected. We

use the underlying STILT elevation and compute the the altitude at the projected point see Figure C1.

Zagl = Zrel + Zinstr. — Zsfe (Cl)

Zinstr. 18 the altitude of the instrument above mean sea level including the altitude of the instrument above the surface (build-
ing height or similar). z, 7. denotes the surface altitude of the receptor point at the location p(z,y,t4.) and is used as STILT
input. In this particular study we find differences of 150 m in altitude, if the topography is not accounted for. This corresponds
to a difference in the weighting factors in the order of several percent. It is to be expected, that this error propagates more or
less linear through the forward model (calculation of the enhancements using an emission inventory) will have deviations in a
similar order of magnitude, if neglected. Please note, that the STILT model can also accept altitudes relative to mean sea level

instead of surface elevation if kmsl-parameter is set to 1.

Appendix D: Calculation of the vertical weighting factor

As shown in Figure C1 the total column measurement integrates the molecules along the line of sight (yellow). We define
along this line of sight STILT receptor-poionts at several altitudes ¢ up to the maximum altitude g,,,,. The index , indicates
receptors or the instruments point of view. Each of the receptor points represents a certain layer along the line of sight. The
vertical weights w,, are calculated using the underlying meteorology as well as the EM27 instruments vertical column averaging
kernel A(z,,t,) at the receptor altitude z, and receptor time ¢,.. e.g. (Hedelius et al., 2017, Fig. 5). The averaging kernel alters

the weight in the order =~ + 20% depending on the time and altitude dependent solar elevation angle.

) "
Wy = . p(2r) - Cgas(2r,tr) - A2y, tr) dz (D1)

Where as woo = [

Zinstr

concentration profile of the target gas. 2, = 0.5(z,, + 2,,+1) denotes the midpoint between two receptor points. Here, we use

p(2r)Cgas(zr) A2y, t,) dz represents the integral along the entire column and cg4s(%,) the vertical

the profile a-priori used for the total column retrieval. The upper most weight represents the entire residual atmosphere:

1 o0
W = [ P) o) At d 02)

Appendix E: Discretisation of the upwind domain.

The upwind domain covered by the backward trajectories is discretised into a three-dimensional set of volumetric segments

indexed by (i, j, k). The indices denote:
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— 4: radial (upwind) distance bins,
— j: angular (wind-relative azimuth) sectors,
— k: vertical (altitude) layers.

Coordinates of a particle position are expressed in a local Cartesian system centered at the receptor (zg,yo) They are
projected from geographic coordinates onto an appropriate map projection. For a particle at horizontal coordinates (z,y) and

altitude z (above ground level), we define the horizontal polar coordinates

r(z,y) =/ (z —20)2 + (y — v0)?, (E1)

0(z,y) = atan2(y — yo, « — 9), (E2)

where r is the radial distance and @ the azimuth measured in radians (convention: —7 < 6§ < 7). To obtain wind-relative
azimuths, the raw azimuth is rotated by a reference wind direction ¢.¢¢ (€.g., the mean wind direction during the analysed

interval, measured clockwise from north), yielding
9/ =0- Pref - (E3)

The wind-relative angle 6’ is then wrapped to the interval (—m,7|. The bin edges are defined by monotonically increasing

sequences
O=ro<ri <---<rpn,,

—T=0y<0) <--- <Oy, =m,
o<z <:--<2N,-

where N,., Ny, N, denote the number of radial, angular and vertical bins, respectively. A particle with coordinates (r,¢’, z) is

assigned to the segment with indices (i, j, k) if
T <7 <Tig1, 0, <0 <0, 2k <2< 2pg1- (E4)
We define the particle ensemble associated with segment (¢, 5, k) as

P, ; . = {p | particle p occupies cell (4, ], k)
' (E5)
at some model time step }.

The residence time contributions of all particles in P, ; ;, are accumulated to compute the segment footprint f; ; 1 () and, after

time-binning and vertical weighting, the transport kernel k; ; 1.(t) (see Section 2.4).
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a8

Figure F1. Illustration of various radial set definitions. The bin sizes range from 50m to 500m per step. Figure F2 shows that the method is

largely independent on the choice of the bin size and thus not considered as a critical design parameter.

Appendix F: Impact of radial binning

We investigated the impact of multiple definitions of radial bins for the particles. Figure F1 illustrates the segmentation into
50,100,200 and 500m steps. We performed the fit described in section 2.5 for each of the segmentations. The resulting standard
deviation of the fit residuals is shown in Figure F2. All of the sets find a minimum to 174, 304, 324, 350m with a mean of
288+68m. We conclude that the influence of the choice of the radial bins is negligible within bin sizes between 50 and 500m.
However, some choices appear to create aliasing artifacts. We assume they average out over several events. In order to lower
the computational effort we used a non-uniform radial discretization with exponentially increasing step sizes. This provides
high spatial resolution near the origin while efficiently covering large radii. Optionally, a radius-dependent angular resolution
is computed to maintain approximately isotropic (square) grid cells. However, the shape in the latitudinal-longitudinal domain
plays a major role with respect to the derived transport kernel. Thus it is critical to define a segment, with entry- and exit-points
mostly perpendicular to the particle trajectories. Radial binning ensures this in good approximation, especially in the near-field

of the receptor.

Appendix G: Meteorological 4D field (HRRR)

The used meteorological model is the High-Resolution Rapid Refresh (HRRRv1) meteorological model (Blaylock et al., 2017;
Pichugina et al., 2019, 2020). Despite the high spatial resolution of 3km?, the complex topography as well as the land-sea
conditions pose a major challenge to these meteorological models. Comparisons with a local meteorological site (LBNL1)

indicate a good agreement, at least during the time of our observations.
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Figure F2. Standard deviation of the residual using the different radial segmentation sizes from 50m to 500m per step. The absolute minimum

is similar for all choices of steps.
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Figure G1. Comparison of wind direction.
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