

1 Trait-based mechanisms underpin regional hotspot of diatom-driven carbon 2 export in an oligotrophic gyre

3

4

5

5 Feng Li^{1#}, Hongzhen Jiang^{1#}, Linwei Liu¹, Zhouyi Jiang¹, Lu Huang¹, Kehui Feng¹,
6 Zuozhu Wen², Xin Liu², Changping Chen¹, Kuanbo Zhou^{2*}, Junrong Liang^{1*}

7

⁸ ¹School of Life Sciences, Key Laboratory of Ministry of Education for Coastal and
⁹ Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University,
¹⁰ Xiamen 361102, Fujian, China.

11 ²College of Ocean and Earth Sciences, State Key Laboratory of Marine Environment
12 Science, Xiamen University, Xiamen 361102, Fujian, China.

13 #These authors contributed equally to this work.

14 *Corresponding author: sunljr@xmu.edu.cn (Junrong Liang); kbzhou@xmu.edu.cn
15 (Kuanbo Zhou)

16

17 **Abstract**

18 The oligotrophic subtropical gyres, vast yet nutrient-poor, pose challenges to our
19 understanding of efficient carbon sequestration. Here, we integrate taxonomic,
20 sediment trap, and metagenomic analyses to investigate the mechanisms underlying
21 regionally heterogeneous and efficient diatom - mediated carbon export in the western
22 North Pacific Subtropical Gyre. We discovered that within a vertically stratified nutrient
23 regime, diatom communities displayed clear niche partitioning: *Navicula* and
24 *Rhizosolenia* were enriched in the nutrient-depleted surface mixed layer, while
25 *Nitzschia*, *Chaetoceros*, and *Thalassiosira* tended to dominate the deep chlorophyll
26 maximum—reflecting hydrographic control over community assembly. This trait-based
27 community structuring directly influenced the composition and magnitude of diatom
28 carbon export, with fluxes ranging from 10^3 to 10^5 cells $m^{-2} d^{-1}$ and an estimated 0.13–
29 194.85 $\mu g C m^{-2} d^{-1}$. Total carbon export and export efficiency (carbon exported relative
30 to production) was markedly enhanced at station affected by the Kuroshio (K2b), which
31 was mainly driven by the large, carbon-rich *Rhizosolenia*, delineating a distinct regional
32 hotspot. Critically, metagenomic analysis revealed a limited presence of bacteria genes
33 encoding key carbohydrate-active enzymes capable of degrading diatom-derived
34 fucose-containing sulfated polysaccharides (FCSP), indicating a key biochemical
35 mechanism that may reduce organic matter remineralization and enhance flux
36 preservation. Our findings establish a multi-process framework wherein hydrodynamic
37 regimes select for export-prone diatom communities with specific functional traits (e.g.,
38 size, carbon content), and the biochemical resistance of their organic byproducts may
39 synergistically promote efficient carbon export. This study deciphers the interacting
40 controls on carbon sequestration heterogeneity in the oligotrophic ocean, with crucial
41 implications for predicting the biological pump's response to global change.

42

43 **Key words:** diatom carbon export, microbial degradation resistance, fucose-containing
44 sulfated polysaccharides (FCSP), North Pacific Subtropical Gyre, spatial variation,
45 vertical stratification

46

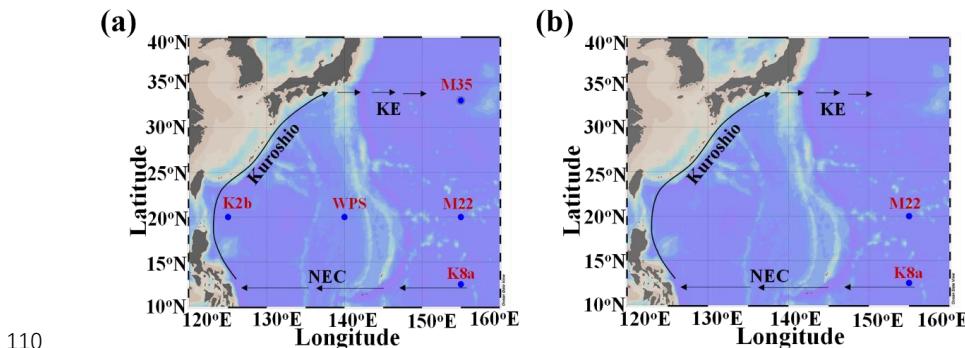
47 **1.1 Introduction**

48 The Biological Carbon Pump (BCP) is a cornerstone of the ocean's capacity to
49 sequester atmospheric carbon, responsible for the majority of the dissolved inorganic
50 carbon (DIC) gradient from the surface to the deep sea (Simon et al., 2025). Its
51 efficiency, however, is not a simple function of primary production but is governed by
52 a complex interplay of physical, ecological, and biogeochemical processes that control
53 the composition of phytoplankton communities, the aggregation and sinking of particles,
54 and the microbial remineralization of organic matter during descent (Kwon et al., 2009;
55 McDonnell et al., 2015; Guidi et al., 2016; Tréguer et al., 2018).

56 Among phytoplankton, diatoms are often pivotal to efficient carbon export
57 (Tréguer et al., 2018; Zhang et al., 2018; Stukel et al., 2023). Their silica frustules
58 provide ballast, enhancing particle sinking velocity (Tréguer et al., 2018). Perhaps more
59 critically, many diatoms produce specific extracellular polymers, notably fucose-
60 containing sulfated polysaccharides (FCSPs), which drive the formation of sticky, gel-
61 like transparent exopolymer particles (TEP) (Vidal-Melgosa et al., 2021). These TEP
62 facilitate particle aggregation and, due to their complex sulfated structure, exhibit
63 significant resistance to bacterial degradation (Vidal-Melgosa et al., 2021). This
64 combination of physical (ballasting) and biochemical (polymer-mediated aggregation
65 and preservation) traits enables diatoms to contribute disproportionately more to deep
66 carbon flux relative to their share of primary production (Henson et al., 2019). The
67 ultimate fate of this diatom-derived carbon is further regulated by the metabolic
68 capabilities of heterotrophic bacteria, whose suite of carbohydrate-active enzymes
69 (CAZymes) determines the degradation rates of key polysaccharides like laminarin,
70 mannans, and FCSPs. The balance between particle export and microbial degradation
71 thus represents a fundamental biogeochemical control point for carbon sequestration.

72 A central paradox emerges in the vast oligotrophic ecosystems of the subtropical
73 gyres, such as the North Pacific Subtropical Gyre (NPSG). Characterized by strong
74 stratification, chronic nutrient limitation, and dominance by picophytoplankton, the
75 NPSG is often considered a "marine desert" with a weak biological pump (Karl et al.,
76 2012; Letscher et al., 2016; Xiu & Chai, 2020; Dai et al., 2023). Diatoms are typically
77 sparse, raising a key mechanistic question: Can the coupled physical-biological
78 processes that underpin diatom-mediated carbon export operate efficiently under such
79 persistently oligotrophic conditions? While episodic diatom blooms in the eastern

80 NPSG are known to drive substantial export (Scharek et al., 1999; Villareal et al., 2011;
81 Karl et al., 2012), the functioning and efficiency of diatom communities during non-
82 bloom periods—particularly in the understudied western NPSG—remain poorly
83 constrained. Furthermore, the strongly stratified water column creates distinct niche
84 environments: a nutrient-depleted surface layer (NDL) overlying a nutrient-replete deep
85 layer (NRL) (Dore et al., 2008; Dai et al., 2023). This vertical physicochemical gradient
86 likely promotes differentiation in diatom community structure, which may in turn lead
87 to heterogeneity in the magnitude, composition, and efficiency of exported carbon.


88 This study employed an integrated approach to investigate the diatom-driven
89 carbon export and its potential controls in the western NPSG. We combine taxonomic
90 community analysis, sediment trap flux measurements, and metagenomic profiling of
91 bacterial CAZymes across four biogeochemically distinct subregions. Our objectives
92 are to: (1) describe the spatial and vertical structure of diatom communities and their
93 carbon export fluxes; (2) assess regional heterogeneity in export efficiency (carbon
94 exported relative to production); and (3) evaluate a potential biochemical mechanism—
95 the limited bacterial degradation potential for diatom-derived FCSPs—that may
96 enhance carbon export in this oligotrophic system. By linking community ecology, flux
97 biogeochemistry, and microbial genomics, this work aims to provide a mechanistic
98 framework for understanding how interacting processes can sustain carbon export
99 efficiency even in nutrient-limited oceans.

100

101 **2 Material and methods**

102 **2.1 Western NPSG and sampling stations**

103 Sampling was carried out in the western NPSG during two research cruises on the
104 R/V *Tan Kah Kee*: the KK2003 expedition in summer (July–August 2020) and the
105 KK2007 expedition in winter (January–February 2021). A total of five stations were
106 occupied, spanning four biogeochemical regions: K2b (125°E, 20°N) in the Kuroshio
107 region, M35 (155°E, 33°N) in the Kuroshio Extension area, WPS (140°E, 20°N) and
108 M22 (155°E, 20°N) within the NPSG interior, and K8a (155°E, 12.5°N) in the NEC area
109 (Fig. 1a).

110
111 **Fig. 1 Sampling stations in the western North Pacific Subtropical Gyre (NPSG)**
112 **during summer (Chinese KK2003 cruise) and winter (Chinese KK2007 cruise).** (a)
113 Sampling stations established in summer, (b) Sampling stations established in winter.

114

115 **2.2 Sample collections**

116 Water samples for diatom taxonomy and abundance analysis were collected from
117 three predefined depths: the surface mixed layer (5 m), the deep chlorophyll *a*
118 maximum (DCM), and 200 m, using Niskin-X bottles. During the summer cruise, all
119 five stations were sampled (Fig. 1A), with the DCM depth varying station-specifically:
120 K2b (110 m), WPS (145 m), M22 (155 m), K8a (150 m), and M35 (95 m). Winter
121 sampling was conducted only at stations M22 and K8a due to rough sea conditions (Fig.
122 1b).

123 Settling particulate matter for diatom export flux was collected with custom-made
124 sediment traps deployed at 50 m, 100 m, and 200 m. Traps were successfully retrieved
125 only at stations K2b, M22, and K8a in the summer cruise, enabling quantification of
126 diatom carbon export fluxes at these sites.

127 For metagenomic analysis, a total of 39 samples were obtained: during summer,
128 seawater from 5 m and the DCM at all five stations was filtered in situ (100–120 L per
129 sample) through 0.2 μm (142 mm) polycarbonate membranes using a high-volume
130 pump; each filter was subdivided into eight aliquots, stored in cryovials, and kept at –
131 80°C. In winter, water sampling was additionally performed at 200 m depth at station
132 M22.

133 A complete summary of sampling stations and depths is provided in Table S1.

134

135 **2.3 Environmental data**

136 The environmental data during sampling were measured by the team led by Du (Du
137 et al., 2024).

138

139 **2.4 Diatom taxonomy and counting**

140 For diatom taxonomic analysis, 20 L of seawater was collected at each sampling
141 site and immediately fixed with Lugol's solution (1.5% vol/vol). Samples were stored
142 in opaque plastic bags to avoid light exposure prior to laboratory processing. Given the
143 typical low diatom abundance in oligotrophic waters and the prevalence of small-sized
144 taxa, a concentration-based approach combined with filtration was selected to improve
145 detection sensitivity (Jiang et al., 2019) as conventional filtration methods may fail to
146 capture smaller cells due to pore size constraints (Zhang et al., 2022).

147 For the detailed, samples underwent sequential sedimentation in the laboratory.
148 Following three days of settling, two-thirds of the supernatant was carefully removed
149 via siphoning. The removed supernatant was filtered through an 8-µm nylon mesh to
150 prevent the loss of floating species, while the remaining sample was gently resuspended
151 and transferred to a new container for further concentration. This procedure was
152 repeated until a final volume of 10 mL was obtained. Throughout processing,
153 meticulous care was taken to minimize cell damage, including gentle shaking and slow
154 liquid transfers, to preserve fragile, lightly silicified frustules. Although the method may
155 slightly underestimate larger or more fragile taxa (e.g., *Rhizosolenia*), it effectively
156 retained intact cells of small species such as *Nitzschia*, *Navicula*, *Eunotogramma*, and
157 *Protoraphis*, enabling reliable inter-station comparison of diatom community
158 composition.

159 For the identification and counting of diatom species, 100 µL of the resulting
160 concentrate was transferred to a 0.1-mL phytoplankton counting chamber and analyzed
161 using a light microscope (Olympus BX51) at 200× and 400× magnifications (Jiang et
162 al., 2019). Diatom identification was conducted with the support of standard taxonomic
163 references. Triplicate counting was carried out to determine the abundance of diatom
164 species.

165 Diatom abundance (N, cells L⁻¹) was calculated using the following formulas:

166

$$167 N = (N_1 \times V_2) / (V_1 \times V) \quad (1)$$

168

169 In equation 1, N represents the abundance of diatoms (cells L⁻¹). N₁ denotes the
170 count of diatoms in a specific volume of concentrated sample (cells). V₂ indicates the
171 total post-concentration sample volume (mL). V₁ refers to the volume used for
172 observation (μL), and V represents the pre-concentration total sample volume (L).

173

174 **2.5 Estimation of carbon biomass**

175 The estimation of total phytoplankton carbon biomass was obtained by converting
176 chlorophyll *a* (Chl *a*) concentration into carbon equivalents using the carbon-to- Chl *a*
177 ratio (C: Chl *a*), with C: Chl *a* value derived from in situ measurements at the ALOHA
178 station at corresponding depths (Wang et al., 2015; Liu et al., 2016). Total Chl *a* was
179 quantified by HPLC analysis: filters were extracted with 2 ml of N, N-
180 dimethylformamide, and the extracts were analyzed using an Agilent 1100 series HPLC
181 system (Huang et al., 2010).

182 For the estimation of diatom carbon biomass, the average carbon content among
183 known species within each genus was adopted as the representative carbon content for
184 that genus. Most species-specific carbon content values were compiled from existing
185 literature (Harrison et al., 2015; Chitari & Anil, 2017; Chen et al., 2023; Rath &
186 Mitbavkar, 2023). For genera lacking reported carbon content data, carbon content was
187 estimated through established proxy methods. In cases where only cellular volume data
188 were available, carbon content was derived using the volume-to-carbon conversion
189 relationship proposed by Menden-Deuer & Lessard (2000). For taxa with no available
190 carbon or volume measurements, biovolume was calculated based on cell dimensions
191 using appropriate geometric models (Sun & Liu, 2003), and carbon content was
192 subsequently estimated using the empirical formula of Eppley et al. (1970). The
193 resulting average carbon biomass values for each genus included in this study are
194 summarized in Table S2.

195

196 **2.6 Diatom community analysis**

197 Differences in diatom community structure between sampling sites were
198 investigated with a non-metric multidimensional scaling (NMDS) analysis of Bray-
199 Curtis dissimilarity using the vegan (version 2.5-1) package (Oksanen et al., 2019) in
200 R (version 3.4.1).

201 Diatom community diversity was assessed based on carbon biomass using three

202 α diversity indices: Species richness index (Pielou, 1966), Simpson index (Siqueiros
203 Beltrones et al., 2025), and Pielou evenness index (Pielou, 1966). Species richness
204 simply counts the number of species present, providing a basic measure of biodiversity
205 (Taurozzi & Scalici, 2025). The Simpson diversity index was calculated as $1 - D$, which
206 reflects the dominance structure within the community by emphasizing the probability
207 that two randomly selected individuals belong to the same species (Buzas & Hayek,
208 2005). Pielou's evenness index (J) was applied to quantify the uniformity of species
209 abundance distribution, standardizing the Shannon diversity value to a scale ranging
210 from 0 to 1 (Kunakh et al., 2023).

211

212 **2.7 Fluxes of diatom cells and the estimated carbon biomass**

213 Floating sediment traps were deployed at selected sites for 72 hours. Each trap
214 consisted of 12 tubes (10 cm diameter \times 50 cm height) per depth. After collection, one
215 tube was randomly selected for concentration, yielding a final volume of 20 mL. From
216 this, 5 mL aliquots were analyzed using an inverted microscope and the Utermöhl
217 method (Utermöhl, 1958) at 200 \times and 400 \times magnifications. Owing to the scarcity of
218 samples, the results of three counts from a single tube will be regarded as the final value.
219 The same principle applies to the subsequent particulate organic carbon (POC) flux and
220 biogenic silica (BSi) flux.

221 Diatom cells flux (F) was calculated as:

222

$$223 F = (N_1 \times N_2) / (V_1 \times A \times T) \quad (2)$$

224

225 where F represents diatom cells flux ($\text{cells m}^{-2} \text{ d}^{-1}$), N_1 is the observed diatom
226 count in a specific sample volume (cells), V_2 is the post-concentration sample volume
227 (mL), V_1 is the volume used for sample observation (μL), A denotes the collector's
228 cross-sectional area (m^2), and T is the sediment trap's collection time (d).

229 The estimated carbon biomass flux for each site was acquired by converting the
230 cell fluxes of all species at the site into the sum of the average carbon biomass values
231 corresponding to the genus of each species.

232

233 **2.8 The fluxes of total POC and BSi**

234 Total POC concentration in the sediment traps was quantified using an elemental

235 analyzer-isotope ratio mass spectrometer (EA-IRMS; vario PYRO cube coupled with
236 Isoprime 100) following the removal of inorganic carbon via acid fumigation with
237 concentrated HCl (24 h, room temperature) (Wang et al., 2025). A procedural carbon
238 blank correction (<6 µg C) was applied to all POC measurements.

239 For BSi analysis, samples were oven-dried (50 °C, 24 h) and subjected to a one-
240 step wet-alkaline digestion (0.2 M NaOH, 100 °C, 40 min) to solubilize particulate
241 silica (Lam et al., 2018). The dissolved silicon concentrations were then determined
242 spectrophotometrically by measuring the silico-molybdate blue complex using a
243 Technicon AA3 Auto-Analyzer (Bran + Luebbe GmbH). Replicate analyses of selected
244 filter samples confirmed a methodological uncertainty of <10% (Cao et al., 2020).

245 Sediment trap-derived POC export fluxes were calculated as follows:

246

247 $F = [POC] / (A \times T)$ (3) (Belcher et al., 2023)

248

249 Where [POC] are the POC concentrations collected by the traps. A denotes the
250 collector's cross-sectional area (m^3), and T is the sediment trap's collection time (d).

251 The same calculation was carried out for BSi.

252

253 $F = [BSi] / (A \times T)$ (4) (Belcher et al., 2023)

254

255 2.9 Metagenomic analysis and MAG reconstruction

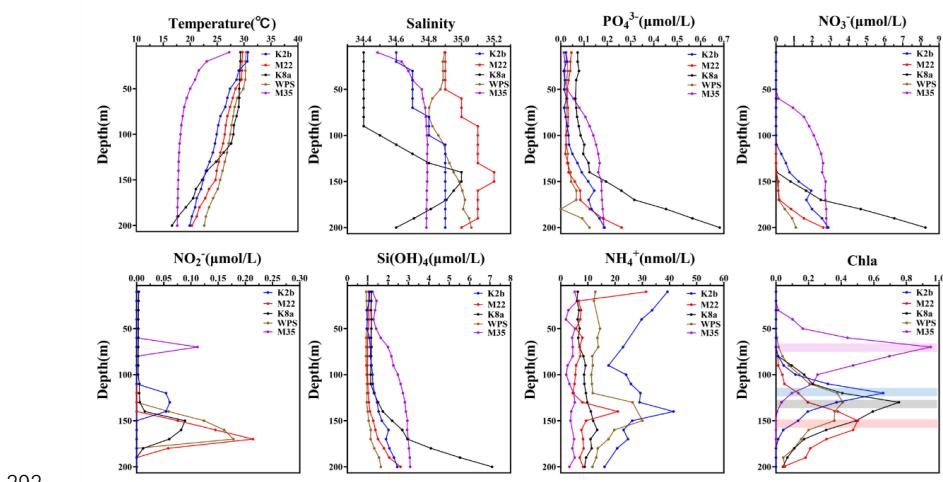
256 Total DNA was extracted following manufacturer protocols and sequenced on the
257 Illumina HiSeq 2500 platform (PE 150) at Shanghai Majorbio Bio-pharm Technology
258 Co., Ltd. Raw data were processed using Fastp (v0.20.0,
259 <https://github.com/OpenGene/fastp>) to filter low-quality reads. Clean reads were
260 assembled into contigs using MEGAHIT (v1.1.2), and open reading frames (ORFs)
261 were predicted using MetaGene (Noguchi et al., 2006). Redundant genes were removed
262 using CD-HIT (v4.6.1), resulting in a non-redundant gene catalog (Fu et al. 2012).
263 Taxonomic and functional annotations were performed against the
264 NR(<http://ncbi.nlm.nih.gov/>), EggNOG (<http://eggnog.embl.de/>), and KEGG
265 (<http://www.genome.jp/kegg>) databases. Carbohydrate-active enzymes (CAZymes)
266 were annotated using the dbCAN2
267 database(<http://bcb.unl.edu/dbCAN2/download/Datab>). Metagenome-assembled

268 genomes (MAGs) were reconstructed using the ATLAS workflow (Kieser et al., 2020)
269 with default parameters.

270

271 **2.10 Data visualization and statistical analysis**

272 Sampling map was visualized using Ocean Data View (ODV, v5.3.0). Both α -
273 diversity indices and Spearman correlation analyses between diatom assemblages and
274 physicochemical parameters were conducted using the R package *vegan* (Dixon, 2003).
275 To evaluate significant differences in α -diversity indices, the Wilcoxon test was applied
276 (Paul et al., 2016). Spearman's rank correlation analyses were calculated using Prism 9
277 (GraphPad Software) with two-tailed P-values and approximate 95% confidence
278 intervals determined for all comparisons. (Schreiber et al., 2016). Comparative analyses
279 of cell abundance and estimated carbon biomass across sampling sites or seasons were
280 conducted using Student's t-test (Student, 1908), and data visualization (e.g. histograms)
281 was performed using GraphPad Prism 9 (Li et al., 2024).

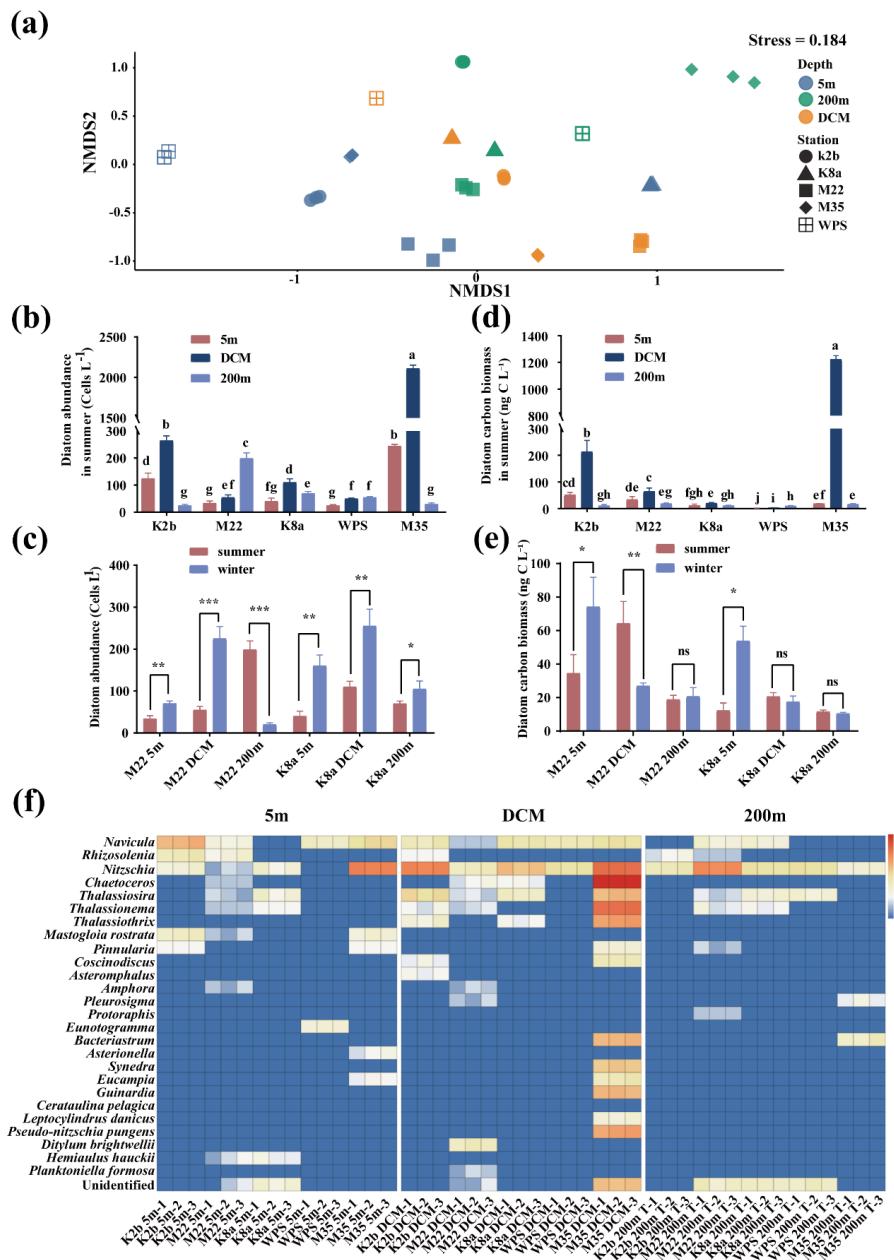

282

283 **3. Results**

284 **3.1. Diatom abundance and community structure in water column**

285 The western NPSG exhibited a distinct two-layer nutrient structure within the
286 euphotic zone: a NDL and a NRL, as reflected in vertical profiles of temperature,
287 salinity, nutrients, and Chl *a* (Fig. 2). Our sampling design targeted these layers, with
288 the 5 m depth representing the NDL and DCM representing the NRL, across five
289 stations spanning four biogeochemically distinct subregions (Kuroshio: K2b; Kuroshio
290 Extension: M35; NPSG interior: M22, WPS; NEC: K8a).

291


292

293 **Fig. 2 Vertical profiles of temperature, salinity, nutrients, and chlorophyll *a* within**
294 **the 0-200 m layer during summer season.** In the Chl *a* graph, the strip-shaped color
295 blocks represent the approximate positions of the DCM layer at different stations. The
296 depths of the DCM at stations K8b and WPS almost coincide.

297

298 Within this physicochemical framework, diatom communities, diatom abundance,
299 and estimated carbon biomass showed significant spatial and vertical heterogeneity
300 ($P < 0.05$) (Fig. 3a-c). Summer averages of abundance and estimated carbon biomass
301 across the regions were 235 ± 526 cells L^{-1} and 114.2 ± 311.3 ng C L^{-1} , with peaks
302 located within the DCM layer of stations influenced by the Kuroshio Extension and
303 Kuroshio (M35, K2b) (Fig. 3b, d). Vertical profiles revealed that maximum diatom
304 carbon biomass generally coincided with the DCM, except at station WPS, where non-
305 diatom groups likely dominated the DCM community (Fig. 3d). Notably, winter
306 biomass in the mixed layer at stations M22 and K8a exceeded summer values,
307 underscoring seasonal dynamics (Fig. 3e).

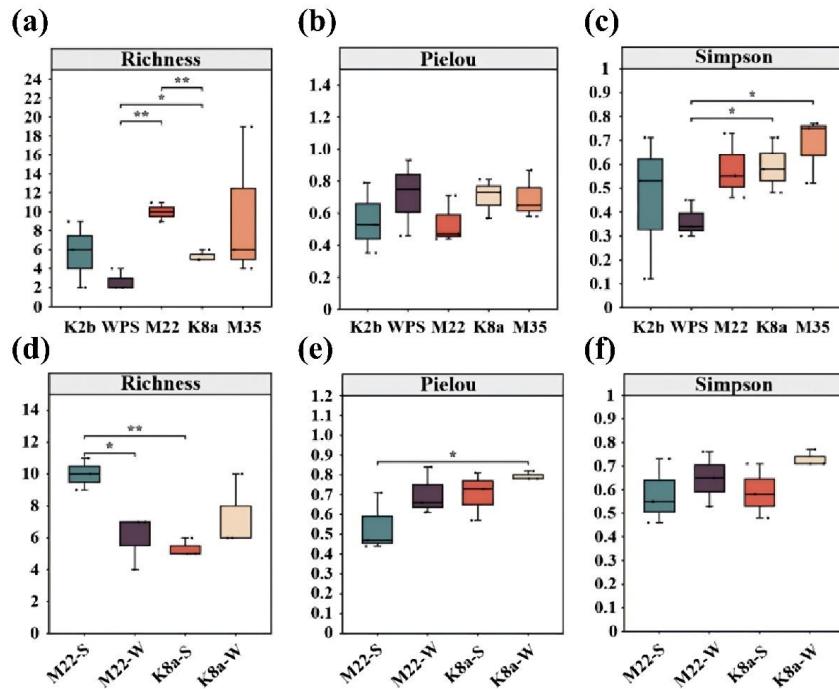
308

309

310 **Fig. 3 The regional heterogeneity of diatom communities, abundance, estimated
 311 carbon biomass, and dominated species in the western North Pacific Subtropical
 312 Gyre (NPSG).** (a) Non-metric MultiDimensional Scaling (NMDS) of Bray–Curtis
 313 dissimilarity between ribotag profiles for diatom communities. Each colored symbol
 314 represents a biological replicate. (b) Abundance of diatoms at three depths across five

315 stations in summer, (c) Estimated carbon biomass of diatoms at three depths across five
316 stations in summer, (d) Comparison of diatom abundance between summer and winter,
317 (e) Comparison of diatom carbon biomass estimates between summer and winter. (f)
318 Heat map depicting the relative abundance of diatoms in the water column. KE:
319 Kuroshio Extension area; NEC: North Equatorial Current. The DCM layer depths in
320 summer for stations K2b, WPS, M22, K8a, and M35 are 110 m, 145 m, 155 m, 150 m,
321 and 95 m, respectively. In winter, the DCM layer depths for stations M22 and K8a are
322 135 m and 146 m, respectively.

323


324 Community composition analysis identified 37 taxa from 26 genera during
325 summer, displaying clear vertical niche differentiation linked to the nutrient gradients.
326 Taxa such as *Navicula* and *Rhizosolenia* exhibited higher abundance in the NDL than
327 in the NRL, whereas *Nitzschia*, *Chaetoceros*, and *Thalassiosira* tended to be dominant
328 in the NRL (Fig. 3f). The contribution of different genera to community carbon biomass
329 varied widely: large-celled *Rhizosolenia* dominated the biomass at the mixed surface
330 (5m) of stations K2b, while the small but ubiquitous *Nitzschia* was the most frequently
331 occurring taxon (Table S3). This structured community distribution sets the stage for
332 understanding differential contributions to export.

333

334 **3.2. Spatial and temporal variability in diatom diversity**

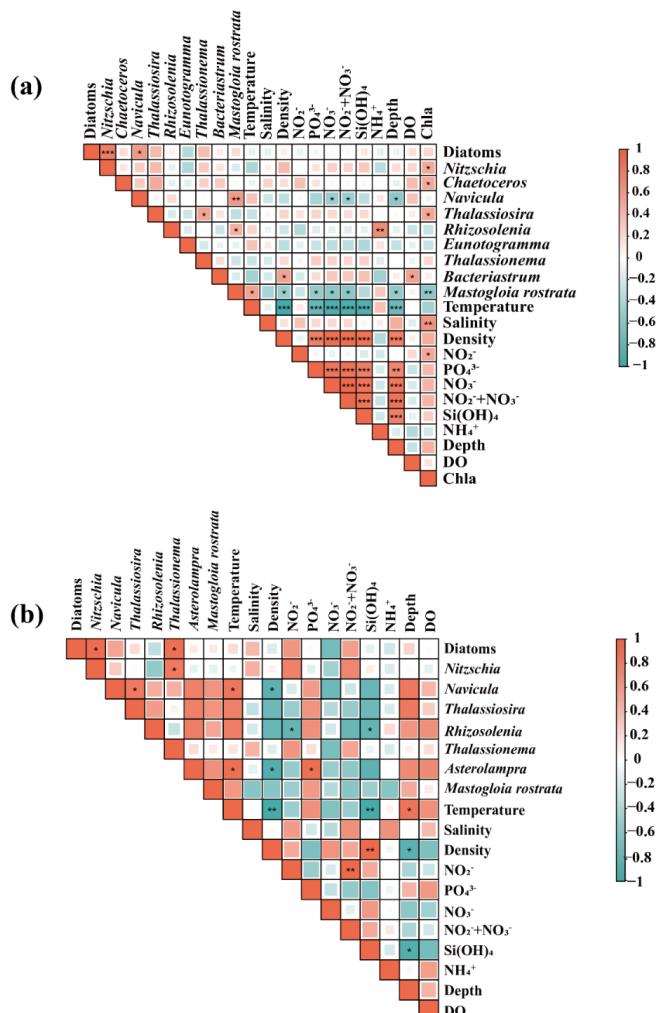
335 Diatom α -diversity, assessed through species richness, evenness, and the Simpson
336 index (based on estimated carbon biomass), varied significantly across stations and
337 seasons ($P < 0.05$) (Fig. 4, Tables S4, S5). During summer, station M22 within the gyre
338 interior supported significantly higher species richness than stations K8a ($P < 0.01$) and
339 WPS ($P < 0.01$) (Fig. 4a). The Simpson index at WPS was significantly lower than that
340 at K8a ($P < 0.05$) and M35 ($P < 0.05$) (Fig. 4c), indicating weaker diversity at WPS.
341 Seasonal comparisons revealed higher richness at M22 in summer than in winter (Fig.
342 4d), while carbon biomass was more evenly distributed among species at K8a during
343 winter based on Pielou evenness (Fig. 4e). These patterns highlight that diversity is not
344 static but responds to regional physicochemical settings and seasonal forcing.

345

346

347 **Fig. 4 Alpha diversity index of the diatom community.** (a, d) Richness index; (b, e)
348 Pielou evenness index; (c, f) Simpson index. (a-c) Alpha diversity indices during the
349 summer season. (d-f) Comparison of alpha diversity indices between summer and
350 winter. "M22-S," "M22-W," "K8a-S," and "K8a-W" represent M22-summer, M22-
351 winter, K8a-summer, and K8a-winter, respectively. The boxes indicate the ranges of the
352 first and third quartiles, the line inside each box represents the median, and the whiskers
353 show the lowest and highest data points (mean \pm 1.5 SD). Note that Simpson's index is
354 presented as 1-D. Asterisks indicate statistically significant results (*p < 0.05; **p <
355 0.01).

356


357 **3.3. Linking diatom communities to environmental drivers**

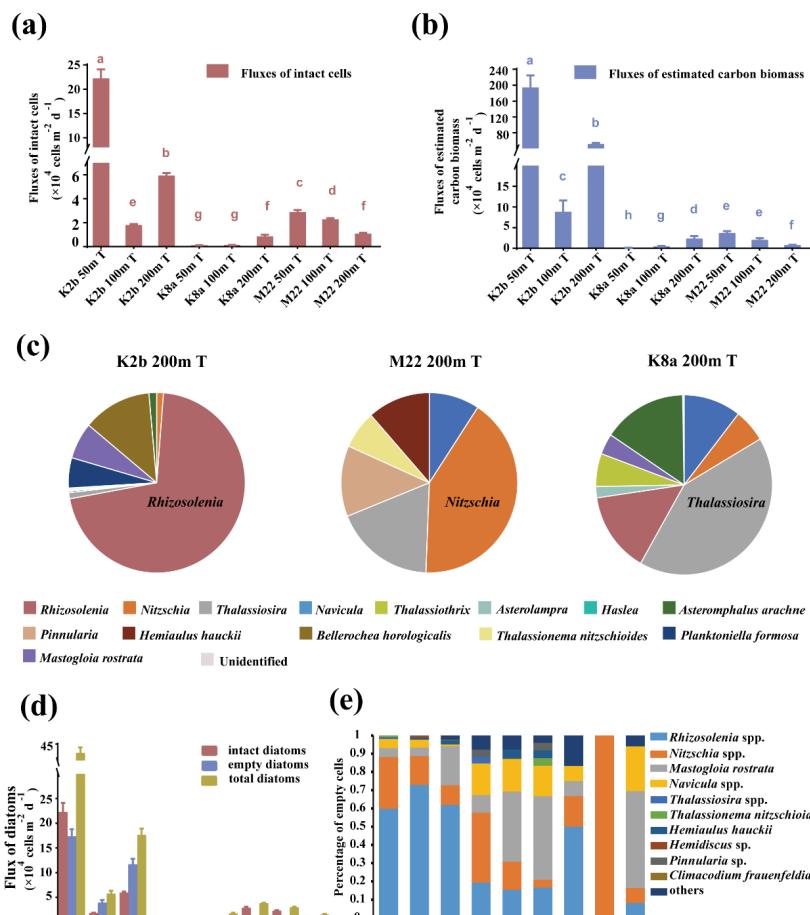
358 Spearman's correlation analysis revealed key relationships between dominant
359 diatom taxa and environmental factors, underscoring niche specialization (Fig. 5). In
360 summer, *Rhizosolenia* abundance showed a strong positive correlation with ammonium
361 (NH_4^+ , $r = 0.72$, $P < 0.01$). Conversely, *Navicula*, a similar dominant species in the
362 mixed layer, exhibited a negative correlation with depth, NO_3^- , and $\text{NO}_3^- + \text{NO}_2^-$ ($r = -$
363 0.53, $P < 0.05$; $r = -0.53$, $P < 0.05$, respectively). *Nitzschia*, *Chaetoceros*, *Thalassiosira*,

364 which are prevalent in the DCM, were positively correlated with Chl *a* ($r = 0.61$, $P < 0.05$;
 365 $r = 0.53$, $P < 0.05$; $r = 0.53$, $P < 0.05$; $r = 0.55$, $P < 0.05$, respectively) (Fig. 5a).
 366 Regardless of whether it is summer or winter, the abundance of the widespread genus
 367 *Nitzschia* was correlated with total diatom abundance ($r = 0.82$, $P < 0.01$; $r = 0.94$,
 368 $P < 0.05$, respectively), which confirms its central role in the community (Fig. 5). These
 369 correlations demonstrate that the vertical stratification of diatom taxa is underpinned by
 370 distinct physiochemical affinities.

371

372

373 **Fig. 5 Spearman's correlation between diatoms and environmental factors.** (a) In
 374 summer. (b) In winter. NO_2^- : nitrite, PO_4^{3-} : phosphate, NO_3^- : nitrate, Si(OH)_4 : silicic


375 acid, NH_4^+ : ammonium, DO: dissolved oxygen, Chl *a*: chlorophyll *a*. Asterisks
 376 indicate statistically significant results: * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$.

377

378 3.4. Magnitude and composition of diatom export flux

379 Diatom export fluxes, quantified via sediment traps at three stations (K2b, M22,
 380 K8a) in summer, revealed substantial heterogeneity ($P < 0.05$) (Fig. 6a, b). Intact cell
 381 fluxes ranged from 10^3 to 10^5 cells $\text{m}^{-2} \text{ d}^{-1}$ (Table S6), and the estimated carbon fluxes
 382 ranged from 0.13 to $194.85 \mu\text{g C m}^{-2} \text{ d}^{-1}$. The highest fluxes were observed at Station
 383 K2b, which is influenced by the Kuroshio (Fig. 6a). This observation is supported by
 384 the diatom cells flux, the estimated carbon flux, and the BSi flux (Table 1).

385

386

387 **Fig. 6 Vertical flux of diatom cells at a depth of 200 m in the western NPSG.** (a)
388 Fluxes of intact diatom cells. (b) Fluxes of estimated carbon biomass. Different
389 lowercase letters indicate significant differences in intact cell flux or estimated carbon
390 biomass flux among the samples. (c) Comparison of the relative contributions of diatom
391 genera based on the estimated carbon biomass from the 200 - m depth sediment trap.
392 (d) Total, empty, and intact diatom cells in trap samples. (e) Species composition and
393 relative abundance of empty diatom frustules in trap samples. The labels "K2b 5m",
394 "K2b 150m", and "K2b 200m" denote water samples collected at depths of 5 m, 150 m,
395 and 200 m, respectively, from station K2b. The labels "K2b 50m T", "K2b 100m T",
396 and "K2b 200m T" refer to trap samples collected at corresponding depths of 50 m, 100
397 m, and 200 m at station K2b. This naming convention is consistently applied to samples
398 from stations M22 and K8a. Twenty liters of water were collected per depth interval for
399 cell abundance analysis, and one sediment trap tube (10 cm diameter \times 50 cm height)
400 was used per depth interval for diatom flux analysis.

401

402 The taxonomic composition of the exported material directly reflected the
403 vertically stratified source communities. At K2b, export at 200 m was dominated by
404 *Rhizosolenia* (contributing 71% of diatom carbon export), which originated primarily
405 from the mixed layer (Fig. 6c). At stations M22 and K8a, export was dominated by
406 *Nitzschia* and *Thalassiosira*, respectively, both sourced mainly from the DCM layer
407 (Fig. 6c). Notably, a significant fraction of sinking cells were empty frustules (Fig. 6d,
408 e), indicating active bacterial degradation of organic matter during sinking, particularly
409 for *Rhizosolenia* and *Nitzschia*.

410

411 **3.5. Regional heterogeneity in diatom-mediated export efficiency**

412 A notable regional disparity in the efficiency of diatom production export was
413 identified (Table 1). We defined export efficiency here by comparing the diatom export
414 proportion (DEP) at 200 m to the diatom production proportion (DPP) (Table S7, S8).
415 Station K2b exhibited high efficiency (DEP > DPP), driven by the large, carbon-rich
416 *Rhizosolenia*, which also resulted in a high diatom carbon flux to biogenic silica (BSi)
417 flux ratio, indicating a community of lightly silicified cells. Station K8a showed a
418 similar but less pronounced trend (moderate). In stark contrast, station M22 in the gyre
419 interior showed low efficiency (DEP < DPP) despite having the highest total POC flux,

420 implying a greater relative contribution from non-diatom phytoplankton to export at
421 this site. This demonstrates that diatom carbon export efficiency is decoupled from total
422 POC flux and is instead regulated by regional differences in diatom community
423 structure and functional traits.

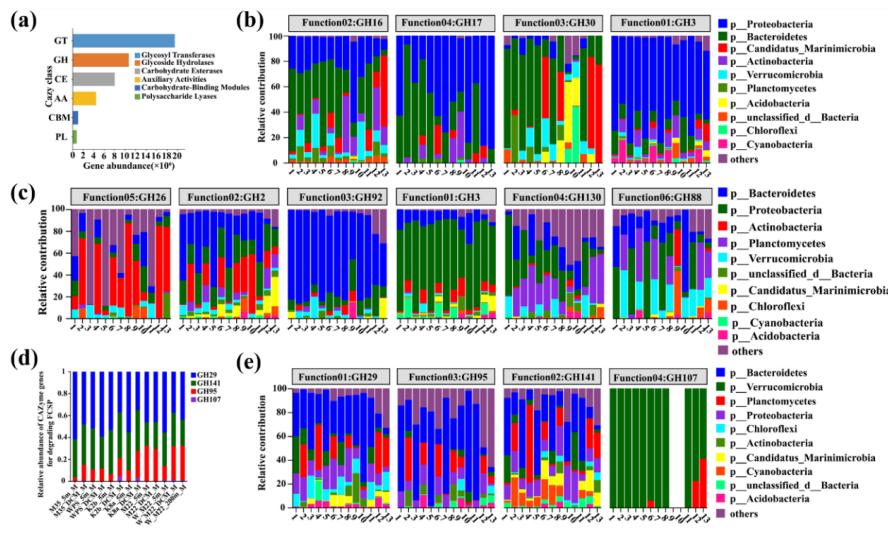
424

425 **Table 1** Comparison of diatom cell flux, estimated carbon flux, BSi flux, and export
426 efficiency at 200m depth across three stations in the western NPSG during summer

Parameters	K2b (Kuroshio)	M22 (NPSG interior)	K8a (NEC)
Diatom cell flux [cells m ⁻² d ⁻¹]	6.0 * 10 ⁴	1.1 * 10 ⁴	0.9* 10 ⁴
Diatom estimated carbon flux (µg C m ⁻² d ⁻¹)	52.4	0.79	2.42
BSi flux [mmol m ⁻² d ⁻¹]	0.19	0.06	0.04
Export efficiency (DEP>DPP)	High	low	moderate
Diatom export proportion (DEP)	17.2 %	0.8 %	1.4%
Diatom production proportion (DPP)	1.2-6.8%	1.5-2.0%	0.7-1.1%
Total POC flux [mmol C m ⁻² d ⁻¹]	3.19	3.67	0.92
Diatom estimated carbon flux/POC flux	0.14%	0.002%	0.022%
Diatom estimated carbon flux/BSi flux	0.02	0.001	0.005
Diatom species	High DDA	Low DDA	Low DDA

427 BSi: biogenic silica; POC flux: particulate organic carbon flux; DDA: diatom–
428 diazotroph associations; Diatom production proportion: the ratio of diatom carbon
429 production to the total carbon production of phytoplankton within the water column;
430 Diatom export proportion: the ratio of diatom carbon export flux to the total
431 phytoplankton carbon export flux.

432


433 **3.6. Metagenomic evidence for limited bacterial degradation of key diatom
434 polymers**

435 Metagenomic analysis of water bacteria across five stations assessed the genetic
436 potential for degrading diatom-derived organic matter (Fig. 7). The high relative
437 abundance of glycosyl transferases (GT) and glycoside hydrolases (GH) within the six
438 functional CAZyme modules (Fig. 7a) indicates a bacterial community adapted for both
439 polysaccharide synthesis (GT) and degradation (GH), highlighting its pivotal role in the
440 processing of environmental carbohydrates, including diatom- derived POC.

441 While genes for degrading common diatom polysaccharides like laminarin (e.g.
442 GH16, GH17, GH30, GH3, Unfried et al., 2019) and mannan (e.g. GH26, GH2, GH92,
443 GH3, GH130, GH88, Kappelmann et al., 2018) were widespread and taxonomically
444 diverse (Fig. 7b, c), a key gene for cleaving the sulfated fucan backbone of FCSPs—
445 glycoside hydrolase 107 (GH107) (Nagao et al., 2017)—was notably scarce or absent
446 (Fig. 7d, e). Given that dominant diatoms in this region (e.g., *Chaetoceros*,
447 *Thalassiosira*, *Nitzschia*) are known FCSP producers (Huang et al., 2021; Vidal-
448 Melgosa et al., 2021), this genetic deficit suggests a limited bacterial capacity to
449 degrade this specific polymer. Furthermore, genomic analysis of key degraders like
450 Bacteroidetes revealed few polysaccharide utilization loci (PULs), and none targeting
451 FCSPs (Fig. S1). This implies that diatom-derived FCSPs may resist rapid microbial
452 breakdown, potentially enhancing the preservation and export of diatom-associated
453 carbon.

454

455

456

457 **Fig. 7 Composition and abundance of CAZyme genes, along with the contribution**
458 **of dominant microbial groups at the phylum level.** (a) CAZyme gene composition
459 and abundance detected in this study. (b) Contribution of dominant microbial groups to
460 CAZymes for degrading laminarin. (c) Contribution of dominant microbial groups to
461 CAZymes for degrading laminarin mannans. (d) Composition and relative abundance
462 of CAZyme genes for degrading fucose-containing sulfated polysaccharides (FCSP).
463 (e) Contribution of dominant microbial groups to CAZymes for degrading FCSP.
464 "M35_5m_M" and "M35_DCM_M" denote water samples collected at depths of 5 m
465 and the depth of maximum chlorophyll *a* (DCM), respectively, from station M35 during
466 the summer cruise for metagenomic analysis. This naming convention is consistently
467 applied to samples from four additional stations (WPS, K2b, M22, and K8a). "W_M22_
468 5m_M", "W_M22_DCM_M", and "W_M22_ 200m_M" refer to water samples
469 collected at depths of 5 m, DCM, and 200 m, respectively, from station M22 during the
470 winter cruise for metagenomic analysis. Samples "1" to "10" represent summer
471 collections at M35_5m, M35_DCM, WPS_5m, WPS_DCM, K2b_5m, K2b_DCM,
472 K8a_5m, K8a_DCM, M22_5m, and M22_DCM, while "11", "12", and "13" represent
473 winter collections at M22_5m, M22_DCM, and M22_200m, respectively. Taxa with a
474 relative abundance below 0.01 in all samples were aggregated into the category "others".
475

476 **4. Discussion**

477 **4.1. Diatom export fluxes: establishing a baseline and contextualizing** 478 **heterogeneity**

479 This study provides a quantitative baseline for diatom abundance and carbon
480 export in the western NPSG. The observed diatom abundance (mean: 235 ± 526 cells
481 L^{-1}) and cell export fluxes (10^3 – 10^5 cells $\text{m}^{-2} \text{ d}^{-1}$) align with the lower range typical of
482 stratified oligotrophic oceans (Table S9, S10) (Lange et al., 1998; Girault et al., 2016;
483 Ding et al., 2021; Wei et al., 2021). This consistency underscores the characteristically
484 low but measurable role of diatoms in these systems. Critically, the pronounced spatial
485 heterogeneity in fluxes—spanning orders of magnitude within the gyre—reveals that
486 oligotrophy does not equate to negligible export. Instead, it masks a mosaic of
487 biogeochemical provinces where specific physical-biological interactions can
488 episodically enhance carbon transfer. In the context of climate-driven expansion of
489 oligotrophic gyres (Cabré et al., 2015), our data highlight that intrinsic heterogeneity

490 will persist, necessitating regionally refined models to project future carbon cycling.

491

492 **4.2. Physico-chemical drivers of diatom community structure and export potential**

493 The observed coupling between diatom community composition and vertical
494 nutrient gradients emphasizes nutrient supply as a factor controlling export-relevant
495 taxa. In the NPSG, nutrient delivery is modulated by a suite of physical and
496 biogeochemical processes, including eddy activity, nitrogen fixation, and lateral
497 advection (Karl et al., 1997, 2012; Letscher et al., 2016; Xiu & Chai, 2020). Our
498 observations are consistent with such mechanisms: for instance, DCM community at
499 station M35, dominated by *Thalassiosira* and *Chaetoceros*, likely benefited from
500 nutrient injections associated with North Pacific Tropical Subtropical Mode Water (Du
501 et al., 2024). This link implies that future changes in ocean stratification and subsurface
502 nutrient dynamics will not only affect total productivity but also reconfigure the
503 functional structure of export-prone diatom communities, with direct consequences for
504 carbon sequestration.

505

506 **4.3. Regional heterogeneity in export efficiency: a trait-based and mechanistic 507 perspective**

508 A crucial discovery in our research is the notable regional heterogeneity in the
509 carbon export efficiency of diatoms. The hotspot at station K2b was driven by diatom-
510 diazotroph assemblages (DDAs, e.g., *Rhizosolenia* spp.), which combine high cellular
511 carbon content with an ecological strategy linked to nitrogen fixation. The spatial co-
512 occurrence of elevated ammonium (Fig. 2 and Shen et al., 2024), *Trichodesmium*
513 blooms (Jiang et al., 2025), and high *Rhizosolenia* abundance suggests a tight
514 biogeochemical coupling where fixed nitrogen supports high-carbon-content diatom
515 production (Dai et al., 2023; Shen et al., 2024), thereby enhancing export efficiency.

516 In contrast, export at station K8a was dominated by *Thalassiosira* spp.,
517 demonstrating a different, moderately efficient pathway. The gyre interior (M22)
518 showed the lowest efficiency, despite *Nitzschia* spp. dominating the flux, highlighting
519 that species-specific traits—such as carbon content, nutrient affinity, and aggregate
520 formation potential—are critical determinants of flux efficiency rather than abundance
521 alone. Under climate change, shifts in the competitive landscape for these different
522 ecological strategies will likely alter the functional composition of export fluxes,

523 impacting the strength of the biological pump.

524

525 **4.4. The biogeochemical role of diatom polymers in carbon flux**

526 Beyond bulk community traits, our metagenomic analysis points to a molecular-
527 scale mechanism influencing carbon export: the fate of diatom-derived FCSPs. These
528 biopolymers are key agents in forming transparent exopolymer particles (TEP), which
529 enhance particle aggregation and exhibit resistance to degradation (Passow et al., 2001;
530 Huang et al., 2021). In the macroalgae-scarce western NPSG, dominant diatom genera
531 (e.g., *Chaetoceros*, *Thalassiosira*, *Nitzschia*) are major FCSP producers, positioning
532 them as potential architects of aggregate formation and carbon export. The limited
533 genetic potential for FCSP degradation in the water bacterial community we observed
534 suggests a potential mechanism for enhanced carbon flux preservation.

535 In an ecosystem dominated by small phytoplankton, diatom-derived FCSPs may act
536 as crucial biogeochemical “glue”, facilitating the coagulation and export of otherwise
537 slow-sinking picoplankton (Albertano et al., 1997; Richardson & Jackson, 2007; Guidi
538 et al., 2016). This potential cross-functional facilitation underscores the
539 interconnectedness of phytoplankton guilds in driving carbon flux. As future oceans
540 become more stratified and dominated by smaller cells (Ali et al., 2025), the role of
541 such conditioning agents in sustaining particle export may become increasingly critical,
542 making the environmental drivers of FCSP production and lability a key research
543 frontier for projecting biological pump resilience.

544

545 **4.5. Key taxa and functional traits governing long-term sequestration**

546 The contribution of diatoms to POC export is governed by a suite of species-specific
547 functional traits. *Rhizosolenia*, with its large size and high carbon content, acted as a
548 major export vector at K2b, consistent with observations of its role in deep export
549 events elsewhere (~4000 m; Karl et al., 2012). Its potential for rapid, aggregate-
550 mediated sinking (Agusti et al., 2015) is supported by our inference of FCSP production.

551 Conversely, the smaller *Nitzschia*, which dominated fluxes at other stations,
552 represents a high-efficiency pathway for organic carbon export relative to silica (low
553 Si/C ratio, Brzezinski, 1985), favoring long-term sequestration once carbon is
554 transferred to depth (1,003 m, Sabine et al., 2004; Ran et al., 2015; Zhang et al., 2018).
555 Other taxa like *Thalassiosira* and *Chaetoceros* possess traits (e.g., resting spores,

556 polymer exudation) (Rembauville et al., 2016; Huang et al., 2021; Vidal-Melgosa et al.,
557 2021), that predispose them to enhanced export. These findings collectively
558 demonstrate that predicting the ocean's carbon sink requires a trait-based approach that
559 accounts for the biogeography and success of key functional groups, not just total
560 biomass.

561

562 **5. Conclusion**

563 This study demonstrates that diatom-mediated carbon export in the oligotrophic
564 western NPSG is characterized by significant vertical structuring and regional
565 heterogeneity, driven by the interplay of physical, chemical, and biological processes.
566 We show that export is not a simple function of total diatom abundance but is
567 fundamentally regulated by: 1) Hydrographic controls that create distinct nutrient
568 regimes and shape diatom community composition. 2) Species-specific functional traits,
569 such as cell size, carbon content, and the production of aggregation-promoting
570 biopolymers (FCSPs), which determine the quality and efficiency of export. 3) Cross-
571 ecosystem interactions, where processes like nitrogen fixation can fuel hotspots of high
572 export efficiency, and diatom-derived polymers may facilitate the export of co-
573 occurring smaller plankton.

574 Even within an oligotrophic gyre, these interacting mechanisms can sustain
575 regionally efficient carbon export, challenging simplistic paradigms of low biological
576 pump activity. Our integrated analysis provides a mechanistic, process-oriented
577 framework for understanding and projecting the heterogeneity of marine carbon
578 sequestration. Future research must prioritize long-term, multitrophic observations and
579 mechanistic studies to quantify how these critical interactions will respond to global
580 change, thereby refining our predictions of the ocean's evolving carbon sink.

581

582 **Acknowledgements**

583 This work was supported by the National Natural Science Foundation of China
584 (grant number: 41890804, 42076115). Environmental data were kindly provided by Dr.
585 Xianghui Guo and Zhimian Chao from College of Ocean and Earth Sciences, Xiamen
586 University, Xiamen, China.

587

588 **Author contributions**

589 Feng Li: Investigation, Writing - original draft, Formal analysis; Hongzhen Jiang:
590 Investigation, Visualization; Zhouyi Jiang: Formal analysis, Visualization; Linwei Liu:
591 Formal analysis, Visualization; Lu Huang: Formal analysis, Visualization; Kehui Feng:
592 Formal analysis, Visualization; Zuozhu Wen: Investigation; Xin Liu: Investigation;
593 Changping Chen: Resources; Kuanbo Zhou: Investigation, Formal analysis; Junrong
594 Liang: Conceptualization, Funding acquisition, Resources, Writing - original draft,
595 Validation, Writing - review & editing. The final manuscript was approved by all the
596 authors.

597

598 **Data availability**

599 Data will be made available on request. The data that supports the findings of this
600 study are available in the supplementary material of this article.

601

602 **Declaration of competing interest**

603 The authors declare that they have no known competing financial interests or
604 personal relationships that could have appeared to influence the work reported in this
605 paper

606 **References**

607 1) Agusti, S., González-Gordillo, J. I., Vaqué, D., Estrada, M., Cerezo, M. I., Salazar,
608 G., Gasol, J. M., and Duarte, C. M.: Ubiquitous healthy diatoms in the deep sea
609 confirm deep carbon injection by the biological pump, *Nat Commun.*, 6, 7608,
610 <https://doi.org/10.1038/ncomms8608>, 2015.

611 2) Albertano, P., Somma, D. D., and Capucci, E.: Cyanobacterial picoplankton from
612 the Central Baltic Sea: cell size classification by image-analyzed fluorescence
613 microscopy, *J Plankton Res.*, 19, 1405–1416,
614 <https://doi.org/10.1093/plankt/19.10.1405>, 1997.

615 3) Ali, S. M., Kuttippurath, J., Krishna, A. V., Gupta, A., Ganguly, D., P, A., Raman,
616 M., Sahay, A., and Babu, K. N.: An in-depth analysis of the impact of
617 environmental drivers on the variability of phytoplankton community in the
618 Arabian Sea during 2010–2021, *Environ. Sci.: Processes Impacts.*, 27, 498–512,
619 <https://doi.org/10.1039/D4EM00385C>, 2025.

620 4) Belcher, A., Henley, S. F., Hendry, K., Wootton, M., Friberg, L., Dallman, U.,
621 Wang, T., Coath, C., and Manno, C.: Seasonal cycles of biogeochemical fluxes in
622 the Scotia Sea, Southern Ocean: a stable isotope approach, *Biogeosciences*, 20,
623 3573–3591, <https://doi.org/10.5194/bg-20-3573-2023>, 2023.

624 5) Brzezinski, M. A.: The Si:C:N ratio of marine diatoms: interspecific variability and
625 the effect of some environmental variables, *J. Phycol.*, 21, 347–357,
626 <https://doi.org/10.1111/j.0022-3646.1985.00347.x>, 1985.

627 6) Buzas, M. A. and Hayek, L.-A. C.: On richness and evenness within and between
628 communities, *Paleobiology*, 31, 199–220, <http://www.jstor.org/stable/4096804>,
629 2005.

630 7) Cao, Z., Wang, D., Zhang, Z., Zhou, K., Liu, X., Wang, L., Huang, B., Cai, P., and
631 Dai, M.: Seasonal dynamics and export of biogenic silica in the upper water column
632 of a large marginal sea, the northern South China Sea, *Prog Oceanogr.*, 188, 102421,
633 <https://doi.org/10.1016/j.pocean.2020.102421>, 2020.

634 8) Cabré, A., Marinov, I., and Leung, S.: Consistent global responses of marine
635 ecosystems to future climate change across the IPCC AR5 earth system models,
636 *Clim Dyn.*, 45, 1253–1280, <https://doi.org/10.1007/s00382-014-2374-3>, 2015.

637 9) Chen, D., Shi, Z., Li, R., Li, X., Cheng, Y., and Xu, J.: Hydrodynamics drives shifts
638 in phytoplankton community composition and carbon-to-chlorophyll a ratio in the

639 northern South China Sea, Front. Mar. Sci., 10, 1293354,
640 <https://doi.org/10.3389/fmars.2023.1293354>, 2023.

641 10) Chitari, R. R. and Anil, A. C.: Estimation of diatom and dinoflagellate cell volumes
642 from surface waters of the Northern Indian Ocean, *Oceanologia*, 59, 389–395,
643 <https://doi.org/10.1016/j.oceano.2017.03.001>, 2017.

644 11) Dai, M., Luo, Y., Achterberg, E. P., Browning, T. J., Cai, Y., Cao, Z., Chai, F.,
645 Chen, B., Church, M. J., Ci, D., Du, C., Gao, K., Guo, X., Hu, Z., Kao, S., Laws,
646 E. A., Lee, Z., Lin, H., Liu, Q., Liu, X., Luo, W., Meng, F., Shang, S., Shi, D.,
647 Saito, H., Song, L., Wan, X. S., Wang, Y., Wang, W., Wen, Z., Xiu, P., Zhang, J.,
648 Zhang, R., and Zhou, K.: Upper Ocean Biogeochemistry of the Oligotrophic North
649 Pacific Subtropical Gyre: From Nutrient Sources to Carbon Export, *Rev Geophys.*,
650 61, e2022RG000800, <https://doi.org/10.1029/2022RG000800>, 2023.

651 12) Ding, C., Sun, J., Narale, D., and Liu, H.: Phytoplankton Community in the
652 Western South China Sea in Winter and Summer, *Water*, 13, 1209,
653 <https://doi.org/10.3390/w13091209>, 2021.

654 13) Dixon, P.: VEGAN, a package of R functions for community ecology, *J Vegetation
655 Science.*, 14, 927–930, <https://doi.org/10.1111/j.1654-1103.2003.tb02228.x>, 2003.

656 14) Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., and Karl, D. M.: Summer
657 phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre:
658 Historical perspective and recent observations, *Prog Oceanogr.*, 76, 2–38,
659 <https://doi.org/10.1016/j.pocean.2007.10.002>, 2008.

660 15) Du, C., Dai, M., Liu, Z., Hu, Z., Yang, J.-Y. T., Zhou, K., Lin, H., Yuan, Z., Wang,
661 L., Huang, T., Guo, L., Wang, Z., and Kao, S.-J.: Diapycnal Fluxes of Nutrients in
662 the North Pacific Subtropical Gyre, *Global Planet. Change* (to
663 accepted), <https://doi.org/10.2139/ssrn.4915323>, 2024.

664 16) Eppley, R. W., Reid, F., and Strickland, J.: Estimates of phytoplankton crop size,
665 growth rate, and primary production, *Calif Univ Scripps Inst Oceanogr Bull.*, 1970.

666 17) Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W.: CD-HIT: accelerated for clustering the
667 next-generation sequencing data, *Bioinformatics*, 28, 3150–3152,
668 <https://doi.org/10.1093/bioinformatics/bts565>, 2012.

669 18) Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y.,
670 Audic, S., Berline, L., Brum, J. R., Coelho, L. P., Espinoza, J. C. I., Malviya, S.,
671 Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral, M., Poulain, J., Searson, S.,

672 Tara Oceans Consortium Coordinators, Stemmann, L., Not, F., Hingamp, P.,
673 Speich, S., Follows, M., Karp-Boss, L., Boss, E., Ogata, H., Pesant, S.,
674 Weissenbach, J., Wincker, P., Acinas, S. G., Bork, P., De Vargas, C., Iudicone, D.,
675 Sullivan, M. B., Raes, J., Karsenti, E., Bowler, C., and Gorsky, G.: Plankton
676 networks driving carbon export in the oligotrophic ocean, *Nature*, 532, 465–470,
677 <https://doi.org/10.1038/nature16942>, 2016.

678 19) Girault, M., Gregori, G., Barani, A., and Arakawa, H.: A study of
679 microphytoplankton and cyanobacteria consortia in four oligotrophic regimes in
680 the western part of the North Pacific subtropical gyre and in the warm pool, *J. Plankton Res.*, 38, 1317–1333, <https://doi.org/10.1093/plankt/fbw056>, 2016.

682 20) Harrison, P. J., Zingone, A., Mickelson, M. J., Lehtinen, S., Ramaiah, N., Kraberg,
683 A. C., Sun, J., McQuatters-Gollop, A., and Jakobsen, H. H.: Cell volumes of marine
684 phytoplankton from globally distributed coastal data sets, *Estuar Coast Shelf S.*,
685 162, 130–142, <https://doi.org/10.1016/j.ecss.2015.05.026>, 2015.

686 21) Henson, S., Le Moigne, F., and Giering, S.: Drivers of Carbon Export Efficiency
687 in the Global Ocean, *Global Biogeochemical Cy.*, 33, 891–903,
688 <https://doi.org/10.1029/2018GB006158>, 2019.

689 22) Huang, B., Hu, J., Xu, H., Cao, Z., and Wang, D.: Phytoplankton community at
690 warm eddies in the northern South China Sea in winter 2003/2004, *Deep-Sea
691 Research II.*, 57, 1792–1798, <https://doi.org/10.1016/j.dsr2.2010.04.005>, 2010.

692 23) Huang, G., Vidal-Melgosa, S., Sichert, A., Becker, S., Fang, Y., Niggemann, J.,
693 Iversen, M. H., Cao, Y., and Hehemann, J.: Secretion of sulfated fucans by diatoms
694 may contribute to marine aggregate formation, *Limnol. Oceanogr.*, 66, 3768–3782,
695 <https://doi.org/10.1002/lio.11917>, 2021.

696 24) Jiang, R., Hong, H., Wen, Z., Yu, X., Browning, T. J., Chen, Z., Shang, Y., Liu,
697 X., Cao, Z., Achterberg, E. P., Dai, M., and Shi, D.: Significant contribution of the
698 unicellular cyanobacterium UCYN-B to oceanic nitrogen fixation, *Natl. Sci. Rev.*,
699 12, nwaf337, <https://doi.org/10.1093/nsr/nwaf337>, 2025.

700 25) Jiang, Z., Gao, Y., Chen, Y., Du, P., Zhu, X., Liao, Y., Liu, X., and Zeng, J.: Spatial
701 heterogeneity of phytoplankton community shaped by a combination of
702 anthropogenic and natural forcings in a long narrow bay in the East China Sea,
703 *Estuar Coast Shelf S.*, 217, 250–261, <https://doi.org/10.1016/j.ecss.2018.11.028>,
704 2019.

705 26) Kappelmann, L., Krüger, K., Hehemann, J.-H., Harder, J., Markert, S., Unfried, F.,
706 Becher, D., Shapiro, N., Schweder, T., Amann, R. I., and Teeling, H.:
707 Polysaccharide utilization loci of North Sea *Flavobacteriia* as basis for using
708 SusC/D-protein expression for predicting major phytoplankton glycans, ISME J.,
709 13, 76–91, <https://doi.org/10.1038/s41396-018-0242-6>, 2019.

710 27) Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M., and Mahaffey, C.:
711 Predictable and efficient carbon sequestration in the North Pacific Ocean supported
712 by symbiotic nitrogen fixation, Proc. Natl. Acad. Sci. U.S.A., 109, 1842–1849,
713 <https://doi.org/10.1073/pnas.1120312109>, 2012.

714 28) Karl, D., Letelier, R., Tupas, L., Dore, J., Christian, J., and Hebel, D.: The role of
715 nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean,
716 Nature, 388, 533–538, <https://doi.org/10.1038/41474>, 1997.

717 29) Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M., and McCue, L. A.: ATLAS:
718 a Snakemake workflow for assembly, annotation, and genomic binning of
719 metagenome sequence data, BMC Bioinf., 21, 257,
720 <https://doi.org/10.1186/s12859-020-03585-4>, 2020.

721 30) Kunakh, O. M., Volkova, A. M., Tutova, G. F., and Zhukov, O. V.: Diversity of
722 diversity indices: Which diversity measure is better, Biosys. divers., 31, 131–146,
723 <https://doi.org/10.15421/012314>, 2023.

724 31) Kwon, E. Y., Primeau, F., and Sarmiento, J. L.: The impact of remineralization
725 depth on the air-sea carbon balance, Nature Geosci., 2, 630–635,
726 <https://doi.org/10.1038/ngeo612>, 2009.

727 32) Lam, P. J., Lee, J.-M., Heller, M. I., Mehic, S., Xiang, Y., and Bates, N. R.: Size-
728 fractionated distributions of suspended particle concentration and major phase
729 composition from the U.S. GEOTRACES Eastern Pacific Zonal Transect (GP16),
730 Mar. Chem., 201, 90–107, <https://doi.org/10.1016/j.marchem.2017.08.013>, 2018.

731 33) Lange, C. B., Romero, O. E., Wefer, G., and Gabric, A. J.: Offshore influence of
732 coastal upwelling off Mauritania, NW Africa, as recorded by diatoms in sediment
733 traps at 2195 m water depth, Deep-Sea Res Pt I., 45, 985–1013,
734 [https://doi.org/10.1016/S0967-0637\(97\)00103-9](https://doi.org/10.1016/S0967-0637(97)00103-9), 1998.

735 34) Letscher, R. T., Primeau, F., and Moore, J. K.: Nutrient budgets in the subtropical
736 ocean gyres dominated by lateral transport, Nature Geosci., 9, 815–819,
737 <https://doi.org/10.1038/ngeo2812>, 2016.

738 35) Li, D., Wang, H., Li, Y., Cao, Y., Wu, K., and Wang, Q.: Current trends and
739 hotspots of etiology of auditory neuropathy in the past 30 years: A bibliometric
740 analysis, *J Otol.*, 19, 113–119, <https://doi.org/10.1016/j.joto.2024.07.003>, 2024.

741 36) Liu, X., Xiao, W., Landry, M. R., Chiang, K.-P., Wang, L., and Huang, B.:
742 Responses of Phytoplankton Communities to Environmental Variability in the East
743 China Sea, *Ecosystems*, 19, 832–849, <https://doi.org/10.1007/s10021-016-9970-5>,
744 2016.

745 37) Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for
746 dinoflagellates, diatoms, and other protist plankton, *Limnol. Oceanogr.*, 45, 569–
747 579, <https://doi.org/10.4319/lo.2000.45.3.0569>, 2000.

748 38) McDonnell, A. M. P., Boyd, P. W., and Buesseler, K. O.: Effects of sinking
749 velocities and microbial respiration rates on the attenuation of particulate carbon
750 fluxes through the mesopelagic zone, *GBC.*, 29, 175–193,
751 <https://doi.org/10.1002/2014GB004935>, 2015.

752 39) Nagao, T., Kumabe, A., Komatsu, F., Yagi, H., Suzuki, H., and Ohshiro, T.: Gene
753 identification and characterization of fucoidan deacetylase for potential application
754 to fucoidan degradation and diversification, *J Biosci Bioeng.*, 124, 277–282,
755 <https://doi.org/10.1016/j.jbiosc.2017.04.002>, 2017.

756 40) Noguchi, H., Park, J., and Takagi, T.: MetaGene: prokaryotic gene finding from
757 environmental genome shotgun sequences, *Nucleic Acids Res.*, 34, 5623–5630,
758 <https://doi.org/10.1093/nar/gkl723>, 2006.

759 41) Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P. McGlinn,
760 D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H.,
761 Szoecs, E., Wagner, H.: vegan: Community Ecology Package. R package version
762 2.5-6. URL <https://CRAN.R-project.org/package=vegan>, 2019.

763 42) Passow, U., Shipe, R. F., Murray, A., Pak, D. K., Brzezinski, M. A., and Alldredge,
764 A. L.: The origin of transparent exopolymer particles (TEP) and their role in the
765 sedimentation of particulate matter, *Cont Shelf Res.*, 21, 327–346,
766 [https://doi.org/10.1016/S0278-4343\(00\)00101-1](https://doi.org/10.1016/S0278-4343(00)00101-1), 2001.

767 43) Paul, S. S., Mallik, B., Mandal, M., Biswas, B., Sekh, S., and Sarkar, N. S.:
768 Epilithic diatoms as biological water quality indicators--A study in three
769 geographically isolated hill streams in India, *J Environ Biol.*, 37, 275–283, 2016.

770 44) Pielou, E. C.: The measurement of diversity in different types of biological
771 collections, *J Theor Biol.*, 13, 131–144, [https://doi.org/10.1016/0022-5193\(66\)90013-0](https://doi.org/10.1016/0022-5193(66)90013-0), 1966.

773 45) Ran, L., Chen, J., Wiesner, M. G., Ling, Z., Lahajnar, N., Yang, Z., Li, H., Hao,
774 Q., and Wang, K.: Variability in the abundance and species composition of diatoms
775 in sinking particles in the northern South China Sea: Results from time-series
776 moored sediment traps, *Deep-Sea Res Pt II.*, 122, 15–24,
777 <https://doi.org/10.1016/j.dsr2.2015.07.004>, 2015.

778 46) Rath, A. R. and Mitbavkar, S.: Diatom community dynamics in a tropical brackish
779 coastal ecosystem from an ecological and biogeochemical perspective: A size-
780 fractionated approach, *Cont. Shelf Res.*, 263, 105039,
781 <https://doi.org/10.1016/j.csr.2023.105039>, 2023.

782 47) Rembauville, M., Manno, C., Tarling, G.A., Blain, S., and Salter, I.: Strong
783 contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-
784 fertilized waters downstream of South Georgia, *Deep-Sea Res. I*, 115, 22–35,
785 <http://dx.doi.org/10.1016/j.dsr.2016.05.002>, 2016.

786 48) Richardson, T. L. and Jackson, G. A.: Small Phytoplankton and Carbon Export
787 from the Surface Ocean, *Science*, 315, 838–840,
788 <https://doi.org/10.1126/science.1133471>, 2007.

789 49) Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L.,
790 Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng,
791 T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The Oceanic Sink for Anthropogenic
792 CO₂, *Science*, 305, 367–371, <https://doi.org/10.1126/science.1097403>, 2004.

793 50) Scharek, R., Tupas, L., and Karl, D.: Diatom fluxes to the deep sea in the
794 oligotrophic North Pacific gyre at Station ALOHA, *Mar. Ecol. Prog. Ser.*, 182, 55–
795 67, <https://doi.org/10.3354/meps182055>, 1999.

796 51) Schreiber, F., Littmann, S., Lavik, G., Escrig, S., Meibom, A., Kuypers, M.M.M.,
797 and Ackermann, M.: Phenotypic heterogeneity driven by nutrient limitation
798 promotes growth in fluctuating environments. *Nat. Microbiol.* 1: 16055,
799 <https://doi.org/10.1038/nmicrobiol.2016.55>, 2016.

800 52) Shen, H., Wan, X. S., Zou, W., Dai, M., Xu, M. N., and Kao, S.-J.: Light-driven
801 integration of diazotroph-derived nitrogen in euphotic nitrogen cycle, *Nat
802 Commun.*, 15, 9193, <https://doi.org/10.1038/s41467-024-53067-x>, 2024.

803 53) Simon, E., Lacour, L., Claustre, H., Bock, N., Cor nec, M., Sauz ède, R., Schmechtig,
804 C., and Coppola, L.: Linking Surface Phytoplankton Dynamics to Small-Particle
805 Fluxes in the Mesopelagic Zone: Insights From High Latitude Bioregions Using
806 BGC-Argo Floats, GBC., 39, e2024GB008447,
807 <https://doi.org/10.1029/2024GB008447>, 2025.

808 54) Siqueiros Beltrones, D. A., Echevarría Herrera, E., López-Fuerte, F. O., and
809 Martínez, Y. J.: Species Diversity of Benthic Marine Diatoms from a Natural
810 Protected Area in Cuba, *Diversity*, 17, 181, <https://doi.org/10.3390/d17030181>,
811 2025.

812 55) Student: The Probable Error of a Mean, *Biometrika*, 6, 1,
813 <https://doi.org/10.2307/2331554>, 1908.

814 56) Stukel, M. R., Irving, J. P., Kelly, T. B., Ohman, M. D., Fender, C. K., and Yingling,
815 N.: Carbon sequestration by multiple biological pump pathways in a coastal
816 upwelling biome, *Nat Commun.*, 14, 2024, <https://doi.org/10.1038/s41467-023-37771-8>, 2023.

817 57) Sun, J.: Geometric models for calculating cell biovolume and surface area for
818 phytoplankton, *J. Plankton Res.*, 25, 1331–1346,
819 <https://doi.org/10.1093/plankt/fbg096>, 2003.

820 58) Taurozzi, D. and Scalici, M.: Climbing the elevational gradient: Diatom diversity
821 patterns across temporary ponds, *Environ. Res.*, 285, 122630,
822 <https://doi.org/10.1016/j.envres.2025.122630>, 2025.

823 59) Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O.,
824 Bittner, L., Dugdale, R., Finkel, Z., Iudicone, D., Jahn, O., Guidi, L., Lasbleiz, M.,
825 Leblanc, K., Levy, M., and Pondaven, P.: Influence of diatom diversity on the
826 ocean biological carbon pump, *Nature Geosci.*, 11, 27–37,
827 <https://doi.org/10.1038/s41561-017-0028-x>, 2018.

828 60) Unfried, F., Becker, S., Robb, C. S., Hehemann, J.-H., Markert, S., Heiden, S. E.,
829 Hinzke, T., Becher, D., Reintjes, G., Krüger, K., Avci, B., Kappelmann, L., Hahnke,
830 R. L., Fischer, T., Harder, J., Teeling, H., Fuchs, B., Barbeyron, T., Amann, R. I.,
831 and Schweder, T.: Adaptive mechanisms that provide competitive advantages to
832 marine bacteroidetes during microalgal blooms, *ISME J.*, 12, 2894–2906,
833 <https://doi.org/10.1038/s41396-018-0243-5>, 2018.

834

835 61) Utermöhl, H.: Zur Vervollkommnung der quantitativen Phytoplankton-Methodik:
836 Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel, SIL Communications.,
837 1953-1996, 9, 1–38, <https://doi.org/10.1080/05384680.1958.11904091>, 1958.

838 62) Vidal-Melgosa, S., Sichert, A., Francis, T. B., Bartosik, D., Niggemann, J., Wichels,
839 A., Willats, W. G. T., Fuchs, B. M., Teeling, H., Becher, D., Schweder, T., Amann,
840 R., and Hehemann, J.-H.: Diatom fucan polysaccharide precipitates carbon during
841 algal blooms, *Nat Commun.*, 12, 1150, <https://doi.org/10.1038/s41467-021-21009-6>, 2021.

843 63) Villareal, T. A., Adornato, L., Wilson, C., and Schoenbaechler, C. A.: Summer
844 blooms of diatom-diazotroph assemblages and surface chlorophyll in the North
845 Pacific gyre: A disconnect, *J. Geophys. Res.*, 116, C03001,
846 <https://doi.org/10.1029/2010JC006268>, 2011.

847 64) Wang, C., Zhang, K., Cao, Z., Zhou, K., Yuan, Z., Chen, J., Ma, Y., Zhou, B., Liu,
848 X., Cai, Y., Shi, D., and Dai, M.: Size-fractionated C:N:P:Si stoichiometry of
849 particulate matter in the subtropical Western North Pacific, *Global Planet. Change.*,
850 246, 104732, <https://doi.org/10.1016/j.gloplacha.2025.104732>, 2025.

851 65) Wang, L., Huang, B., Liu, X., and Xiao, W.: The modification and optimizing of
852 the CHEMTAX running in the South China Sea, *Acta Oceanol. Sin.*, 34, 124–131,
853 <https://doi.org/10.1007/s13131-015-0621-z>, 2015.

854 66) Wei, Y., Wang, X., Gui, J., and Sun, J.: Significant Pico- and Nanoplankton
855 Contributions to Biogenic Silica Standing Stocks and Production Rates in the
856 Oligotrophic Eastern Indian Ocean, *Ecosystems*, 24, 1654–1669,
857 <https://doi.org/10.1007/s10021-021-00608-w>, 2021.

858 67) Xiu, P. and Chai, F.: Eddies Affect Subsurface Phytoplankton and Oxygen
859 Distributions in the North Pacific Subtropical Gyre, *Geophys. Res. Lett.*, 47,
860 e2020GL087037, <https://doi.org/10.1029/2020GL087037>, 2020.

861 68) Zhang, A., Liu, H., Li, C., Chen, C., Liang, J., Sun, L., and Gao, Y.: Relationship
862 between toxic and harmful microalgae and environmental factors in typical
863 mariculture areas of East China Sea, *J. Ocean. Limnol.*, 40, 2401–2415,
864 <https://doi.org/10.1007/s00343-022-2125-y>, 2022.

865 69) Zhang, C., Dang, H., Azam, F., Benner, R., Legendre, L., Passow, U., Polimene,
866 L., Robinson, C., Suttle, C. A., and Jiao, N.: Evolving paradigms in biological

867 carbon cycling in the ocean, Natl. Sci. Rev., 5, 481–499,

868 <https://doi.org/10.1093/nsr/nwy074>, 2018.

869