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11 Abstract. Chloride depletion from sea salt aerosols (SSA) has frequently been observed in polluted
12 coastal regions, severely impacting air quality and human health. However, the influencing mechanism
13 of alkaline species in chloride depletion remains incompletely understood. Here, we report the first
14 investigation of alkaline species including NH; and an organic amine (dimethylamine, DMA) on
15 chloride depletion and the subsequent formation of organic chlorinated compounds. Results showed
16 that alkaline species could weaken chloride depletion caused by acidic gases, mainly due to acid-base
17 neutralization. Specifically, chloride depletion in the presence of NOy decreased from 20.1% to 15.8%
18 when NHj concentration increased from 100 to 300 ppb. Chloride depletion also decreased from 18.6%
19 to 13.5% with DMA concentration increasing from 50 to 150 ppb. The weakening effect of organic
20 amine on chloride depletion is more pronounced than that of NH3, primarily because DMA has stronger
21 alkalinity and nucleation ability. These alkaline species exhibit a stronger reduction of chloride
22 depletion in the presence of SO; than in the presence of NOy. The detection of organic chlorinated
23 products, which were formed via active chlorine-induced oxidation, is consistent with the role of
24 alkaline species in weakening chloride depletion. The formation of organic chlorinated compounds was
25 weakened by the addition of alkaline species, indicating the significant role of alkaline species in
26 reducing active chlorine. These findings suggest that alkaline species, more specifically organic amines,
27  are significant factors influencing chloride depletion in the coastal atmosphere. This further enhances

28 our understanding of chloride depletion phenomena in coastal regions.

29 1 Introduction

30 Sea salt aerosols (SSA), primarily composed of sodium chloride, are abundant in coastal areas and play
31 a key role in cloud nucleation with high light scattering efficiency (Zhang and Chan, 2023; Zhou et al.,
32 2025). Chloride depletion, which refers to the removal of chloride ions from SSA, has been frequently
33 observed in the coastal atmosphere (Bian et al., 2014; Duan et al., 2024; Su et al., 2022). Chloride
34 depletion in SSA accelerates their aging process, profoundly influencing visibility, global climate and
35 the earth-atmosphere radiative balance (Ghosh et al., 2020; Edwards et al., 2024; Su et al., 2022). This
36  process also affects the atmospheric oxidation capacity by producing Cl,, HCI, CI', and other reactive
37 species (Hoffmann et al., 2019; Chen et al., 2024b; Dai et al., 2025). However, significant

38 discrepancies exist between field observations and model predictions of chloride depletion (Nolte et al.,
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39 2008; Nolte et al., 2015), highlighting the need for a deeper understanding of its underlying
40 mechanisms.

41 Alkaline species such as NH3 and organic amines have been suspected to affect chloride depletion (Su
42 et al., 2022). Gaseous ammonia (NH3), the most abundant alkaline species in the atmosphere, plays an
43 important role in the formation of atmospheric particles (Behera et al., 2013; Lan et al., 2024; Wang et
44 al., 2020). A field study found a relatively low level of chloride depletion in the Antarctic winter, and
45 the large amount of ammonia emitted by penguins has been hypothesized to be responsible for this
46 phenomenon (Rankin and Wolft, 2003). Dimethylamine (DMA, (CH3);NH), a predominant organic
47 amine in the atmosphere, has stronger alkalinity than ammonia and could compete with ammonia in
48 reactions with acidic species, despite its atmospheric concentration being much lower than that of
49 ammonia (Chen et al., 2022; Xie et al., 2018; Liu et al., 2024a). However, to the best of our knowledge,
50 there is currently no experimental evidence illustrating the role of alkaline species in chloride
51 depletion.

52 Organic chlorinated compounds are important indicators of chloride depletion. They can be formed
53 from the oxidation of volatile organic compounds (VOCs) by reactive chlorine species (e.g., Cl', Clx™,
54 etc.) generated during the chloride depletion process (Zhang and Chan, 2023; Wennberg et al., 2018;
55 Wang et al., 2022b). Once formed, some organic chlorinated compounds with low volatility can
56 partition into the particle phase, contributing to the formation of secondary organic aerosols (SOA). For
57 example, it is estimated that organic chlorinated compounds can contribute up to 15% of total SOA in
58  polluted areas with sufficient chlorine and VOC emissions (Liu et al., 2024b). Organic chlorinated
59 compounds have been observed during chloride depletion in our previous study in the presence of
60 isoprene (Song et al., 2025), a significant biogenic VOC emitted from ocean and terrestrial plants (Yu
61 and Li, 2021; Zhang et al., 2025; Zou et al., 2023). Studying the formation of organic chlorinated
62 compounds not only characterizes the influence of alkaline species on chloride depletion but also holds
63 significant implications for the chlorine cycle.

64 To investigate the roles of alkaline species, including NH3 and organic amine, in chloride depletion,
65 experiments on reactions involving SSA particles, alkaline species, acidic gases, and/or isoprene were
66 conducted in a chamber. We characterized the changes in chloride depletion and further analyzed the
67 subsequent formation of corresponding organic chlorinated compounds to explore the reasons for their

68 changes. This study provides a comprehensive understanding of chloride depletion from SSA, which
3
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69 may be crucial for more accurately predicting chloride depletion in coastal atmospheres.

70 2 Materials and methods

71 2.1 Chamber experiments

72 To study the effect of alkaline species on chloride depletion, three groups of experiments were designed:
73 NaCl particles + NH3/DMA (control experiments), NaCl particles + H>O, + NO,/SO, + NH3/DMA,
74 and NaCl particles + H,O; + isoprene + NO,/SO, + NH3/DMA. Details of experimental conditions are
75 provided in Table 1. All experiments were conducted in a 1.5 m? indoor chamber consisting of 60 um
76 Teflon film within a temperature-controlled environment, surrounded by black light lamps (F40BLB,
77 GE) with the center irradiation wavelength of 365 nm as the light source. The chamber was equipped
78 with a set of online instruments for measuring physical and chemical parameters. The concentration of
79 aerosol particles was measured using a scanning mobility particle sizer (SMPS, Grimm, Germany),
80  which is composed of a differential mobility analyzer (DMA, 55-L, Grimm, Germany) and a

81 condensation particle counter (CPC, 5416, Grimm, Germany). The concentrations of NOy and isoprene
82 in the chamber were monitored using a NO—NO,—NOj analyzer (Model 42i, Thermo Scientific, USA)

83 and a gas chromatograph coupled with a flame ionization detector (GC-FID 7890B, Agilent
84 Technologies, USA). H>O, acted as the source of OH radicals. The initial concentrations of other
85 substances (H,O,, alkaline gases, etc.) were calculated based on the chamber volume and the injection

86 volume.

87 Table 1. Summary of experimental conditions and results.

[Isoprenelo [H202Jo [NOio  [SO2lo  [NH3Jo  [DMA]o  RH T Cl™/Na*
Experiment®

(ppb) (ppm) (ppb) (ppb) (ppb) (ppb) (%) (°C) (mM/mM)*

C.1 100 72 20 0.989+0.019

C2 100 71 20 0.994+0.020

N.1 4 141 69 23 0.755£0.015
NA.1 4 138 100 69 21 0.798+0.016
NA.2 4 139 200 72 21 0.822+0.017
NA.3 4 139 300 72 20 0.841+0.017
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ND.1 4 146 50 69 21 0.813+0.017
ND.2 4 147 100 71 21 0.849+0.017
ND.3 4 141 150 71 22 0.864+0.018
S.1 4 300 67 22 0.704+0.009
SA.1 4 300 100 70 23 0.825+0.017
SA.2 4 300 200 70 23 0.839+0.017
SA.3 4 300 300 69 23 0.849+0.017
SD.1 4 300 50 70 22 0.851+0.017
SD.2 4 300 100 71 22 0.865+0.018
SD.3 4 300 150 70 23 0.878+0.018
IN.1° 667 4 150 72 20 0.770+0.016
INA.1° 621 4 140 100 71 22 0.784+0.016
INA.2 604 4 161 300 69 23 0.791+0.016
IND.1° 601 4 152 100 68 22 0.814+0.017
IND.2 668 4 146 150 70 20 0.866+0.018
IS.1° 776 4 300 68 20 0.655+0.008
ISA.1° 604 4 300 100 70 20 0.790+0.016
ISA.2 601 4 300 300 71 21 0.800+0.016
ISD.1° 629 4 300 100 70 21 0.897+0.018
ISD.2 594 4 300 150 69 22 0.961+0.020

88 *Abbreviations used in experimental codes correspond to the reactants introduced into the chamber.
89 “N”, “S”, “A”, “D”, and “I” stand for NOy, SO», NH3, DMA, and isoprene, respectively. C.1 and C.2
90 are control experiments.

91 "Experiments were repeated to collect aerosol particles for composition measurement by
92  UPLC/ESI-HR-Q-TOFMS.

93 °Errors in CI/Na* were calculated by error propagation considering Cl- and Na* errors derived from

94 their IC calibration curve.
95 The chamber was thoroughly cleaned using O3 and purified air, and exposed to UV lamps for at least
96 12 h before each experiment. Relative humidity (RH) in the chamber was adjusted by the proportion of

97 dry and wet air. Subsequently, SSA particles produced by atomizing NaCl solution with an atomizer

98 (Model 3076, TSI, USA) were introduced into the chamber. Based on the experimental design, known
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99 volumes of other reactants (i.e., H,O, (Aladdin, 30 wt% in H,0O), inorganic gases (NH3, NO, etc)
100 (Qingdao Deyi Gas Company, 500 ppm balanced in N»), DMA (Aladdin, 40 wt% in H,0O), and isoprene
101 (Macklin, >99%)) were introduced into the chamber. After the reactants were adequately mixed for 20
102 minutes, the black light lamps were turned on to initiate the reaction. The experiment lasted for two
103 hours, after which aerosol particles generated during the experiment were collected onto quartz filters

104 and 47 mm polytetrafluoroethylene (PTFE) filters and stored at -20 °C until offline analysis.
105 2.2 Particle analysis

106 The concentrations of inorganic ions were measured by ion chromatography (IC, Dionex ICS-600,
107 Thermo Scientific, USA). Aerosol particles collected on the quartz filters were first extracted in 5 mL
108 of ultrapure water (Milli-Q, Millipore, France) by ice sonication for 45 min. The extract was then
109 filtered through a 0.22 um polyethersulfone syringe filter and injected into the ion chromatography
110 instrument via a six-way valve with a 250-uL loop. The separation of anions and cations was achieved
111 using a Dionex IonPac AS19 column (4 x 250 mm) with an AG19 guard column (4 x 50 mm, Dionex
112 Ionpac) for anions, and a Dionex IonPac CS12A column (4 x 250 mm) with a CG12A guard column (4
113 x 50 mm, Dionex Ionpac) for cations. A 20 mM potassium hydroxide solution was used as the anionic
114 eluent, while a 20 mM methanesulfonic acid solution was employed for cationic elution. The flow rate
115 for both eluents was maintained at 1 mL min~'. The degree of chloride depletion was characterized by
116 the mole ratios of C1/Na*. The Cl/Na" value for fresh SSA is around 0.99, while lower Cl/Na* ratios
117 in SSA indicate the occurrence of chloride depletion.

118 The formation of organic chlorinated compounds was characterized using ultra-high performance
119 liquid chromatography (UPLC, UltiMate 3000, Thermo Scientific, USA) coupled with electrospray
120 ionization high-resolution quadrupole time-of-flight mass spectrometer (ESI-HR-Q-TOF-MS, Bruker
121 Impact HD, Germany). Prior to measurements, aerosol particles collected on PTFE filters were
122 extracted twice using 5 mL methanol (Optima® LC/MS grade, Fisher Scientific, USA) by sonication in
123 an ice bath for 30 min. The extract was filtered through a PTFE syringe filter (0.22 um) to remove
124 impurities, and then concentrated under a gentle nitrogen gas (99.999%, DEYT). The dried extract was
125 reconstituted in 200 pL of a 1:1 (v:v) mixture of methanol and ultrapure water containing 0.1% formic
126 acid (Optima® LC/MS grade, Fisher Scientific, USA). Sample extracts (10 uL) were analyzed using an

127 Atlantis T3 C18 column (100 A, 3 pm particle size, 2.1 mm x 150 mm, Waters, USA). The mobile

6
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128 phase comprised 0.1% formic acid in ultrapure water (A) and 0.1% formic acid in methanol (B). A 60
129 min gradient elution with a flow of 200 uL min~! was performed as follows: B initially maintained at 3%
130 for the first 3 minutes, gradually increased to 50% from 3 to 25 minutes, and then rose to 90% from 25
131 to 43 minutes. The fraction of B was reduced back to 3% between 43 and 48 minutes, and maintained
132 at 3% until 60 minutes to re-equilibrate the column.

133 Mass spectrometric data were analyzed with Bruker Compass Data Analysis version 4.2 Build 383.1
134 software. The molecular formulas of organic chlorinated compounds were assigned as
135 C-40H2-8000-40N0-3S0-2Cli.» within a £ 5 ppm mass tolerance, with restrictive conditions applied to
136 exclude unreasonable formulas: 1 <H/C <3,0.2<0/C<1.5,0<N/C<0.5,0<S/C<1,S/0<0.25,0
137 < double bond equivalent (DBE)/C < 1. The organic chlorinated compounds were reliably identified
138  based on their isotopic mass and intensity, but the identified formulas containing isotopes (e.g., '*C, '*0,
139 S, and *'Cl) were not further discussed. The carbon oxidation state (OSc) and DBE of the assigned

140 molecular formula (CcHyOoN,SsCl;) were calculated as follows:

2c—(h+j)+n

141 DBE=1+ (1)

142 0S¢ z2x%—g )

143 3. Results and discussion

144 3.1 Effects of NHz on chloride depletion

145 A series of experiments were designed with varying initial concentrations of alkaline species in the
146  presence of acid gases, i.e., SO, and NOy, to evaluate the effect of alkaline species on chloride
147  depletion (Table 1). Despite NH3 addition in the absence of SO, and NO had little effect on chloride
148 depletion (Exp.C.1), it could significantly reduce chloride depletion caused by NOy and SO» (Fig. 1a).
149 For example, the mole ratios of C17/Na" increased from 0.798 to 0.841 when the concentration of NH3
150 raised from 100 to 300 ppb under constant NOx (Exp.NA.1-NA.3), while this ratio was 0.755 when
151 only NOx was present (Exp.N.1). This corresponds to a reduction in chloride depletion from 20.1% to
152 15.8%. In these experiments, nitric acid (HNO3) could be produced either through NO, + OH reaction
153 or through N>Os + H,O reaction, which can cause chloride depletion through the replacement reaction
154 (Su et al., 2022; Xu et al., 2021). The suppressed chloride depletion by NH3 can be attributed to the

155 neutralization reaction between NH3 and HNOj3 that generates NH4sNOj particles (Behera et al., 2013).
7
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156 Although NH4NO:; is unstable (Behera et al., 2013; Lan et al., 2024), ammonium ions were detected in
157 these experiments. In the presence of SO, the effect of NH3 on reducing chloride depletion is even
158 more pronounced. For example, the addition of 300 ppb NH; (Exp.SA.3) reduced SO»-induced chloride
159 depletion from 29.5% (Exp.S.1) to 15.0%. This can be explained by the generation of (NH4)2SO4 via
160 the reaction of NH3 with sulfuric acid (H2SO4), which is produced from the oxidation of SO, by OH
161 radicals (Lan et al., 2024; Behera et al., 2013). As shown in Fig. S1, ammonium ion was detected in
162  Exp.SA.1-SA.3. Notably, the affinity for the reaction between H>SO4 and NHj3 is much greater than that
163 between HNOs and NH; (Behera et al., 2013), and the reaction rate between H,SO4 and NHj is higher
164  than that between HNO;3 and NH; (Behera and Sharma, 2011). This may be the reason why the

165 reduction in chloride depletion was more significant in experiments SA.1-SA.3 compared to

ISD.1 ISD.2

166 experiments NA.1-NA.3.
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168 Figure 1. Dependences of CI7/Na* ratio on the concentrations of various alkaline species in the (a) absence
169 and (b) presence of isoprene. The experiments with a grey background represent the addition of DMA.

170 Isoprene was further introduced into the experimental chamber with various initial NH3 concentrations
171 to study the combined effect of alkaline gases with isoprene and acidic gases (Fig. 1b). Similar to the
172 above experiments without isoprene, NH3 can reduce the chloride depletion caused by acidic gases,
173 with a more pronounced weakening effect in the presence of SO». Notably, the addition of isoprene
174 reduced the ability of NH3 to weaken chloride depletion, resulting in relatively enhanced chloride
175  depletion. For instance, chloride depletion was 20.8% in the experiment with isoprene and NH3
176 (Exp.INA.2), significantly higher than 15.8% in the experiment without isoprene (Exp.NA.3). Chloride
177 depletion in Exp.ISA.2 and Exp.SA.3 was 19.9% and 15.0%, respectively, which can be attributed to

178  the reaction of NH3 with SOA constituents such as organic acids, or other species generated from the

8



https://doi.org/10.5194/egusphere-2026-197
Preprint. Discussion started: 2 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

179 oxidation of isoprene to form nitrogen-containing organic compounds (Li et al., 2024; Wu et al., 2021;
180 Wennberg et al., 2018; Bates et al., 2023). This leads to reduced NH; for neutralizing acid-induced

181 chloride depletion.
182 3.2 Effects of DMA on chloride depletion

183 To further investigate the influence of organic amine, DMA was introduced into the reaction system.

184 Similar to NH3, DMA also caused negligible chloride depletion in the absence of acidic gases (Exp.C2,

185 Table 1). In the presence of acidic gases, the weakening effect of chloride depletion becomes more

186  pronounced with increasing DMA concentrations (Fig. 1a). For example, chloride depletion decreased

187 from 18.6% to 13.5% as DMA concentration increased from 50 to 150 ppb in the presence of NOx

188 (Exp.ND.1-ND.3). Chloride depletion in the presence of SO, in Exp.SD.1-SD.3, ranging from 12.1%

189 to 14.8%, was higher than that in Exp.S.1 (29.5%). This is mainly because DMA, with a high vapor

190 pressure, can react with inorganic acids (e.g., HNO3, H>SOs, etc.) produced during the reaction to form

191 amine salts with lower vapor pressure (Wang et al., 2010; Murphy et al., 2007; Nielsen et al., 2012).

192 Moreover, DMA can effectively promote cluster formation with HoSO4 or HNOs3, thereby generating

193 DMA-H,SO4, DMA-H>S04-H,0, and other nucleation systems (Chen et al., 2024a; Loukonen et al.,

194 2010; Zhang et al., 2019). The aforementioned mechanisms can all reduce chloride depletion caused by

195 inorganic acids.

196 As shown in Fig. 1a, chloride depletion in Exp.ND.2 (15.0%) was lower than that in Exp.NA.1 (20.1%).
197  In Exp.SD.2, chloride depletion was 13.4%, which was also lower than 17.4% in Exp.SA.1. Despite the

198 concentration of DMA is lower than that of NH3, chloride depletion in the presence of DMA (Exp.SD.1)
199 was still lower than that in the presence of NH3 (Exp.SA.1). It follows that the weakening effect of
200 DMA on chloride depletion is significantly greater than that of NH3, and this can be attributed to the

201 stronger alkalinity of DMA compared to NH3 (Chen et al., 2022; Sauerwein and Chan, 2017; Xie et al.,

202 2018). Furthermore, the clusters formed by DMA and HSO, are more stable than those formed by NH3

203 and H,SO;4 (Ortega et al., 2012; Kupiainen et al., 2012). According to a theoretical study by Zhang et al.
204 (2019), DMA is more likely to approach the air-nanoparticle interface compared to NH3, where the
205 probability of its heterogeneous reaction with HySO4 can increase.

206 Following the addition of isoprene, the weakening effect of DMA on chloride depletion in the presence

207  of NOx was not significantly different from that of experiments without isoprene. Nonetheless, this

9
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208 addition enhanced the weakening effect of DMA on chloride depletion in the presence of SO,. Chloride
209 depletion in Exp.ISD.2 was 3.8%, significantly lower than that in Exp.SD.3 (12.1%). This can be
210 explained by the fact that organic acids produced from the oxidation of isoprene enhance DMA-H,SO4
211 nucleation, with a stronger enhancement effect observed at lower HoSO4 concentrations (Wang et al.,
212 2022a; Lu et al., 2020). Isoprene oxidation products can react with H,SO4 to form organic sulfates
213 (Armstrong et al., 2022; Wach et al., 2020), leading to a reduction in H,SO4 concentration within the

214 reaction system.
215 3.3 Formation of organic chlorinated compounds

216 The molecular composition of organic chlorinated compounds was analyzed, using
217  UPLC/ESI-Q-TOF-MS, to further explore the effect of active chlorine on chloride depletion. Fig. S2
218 presents the mass spectra of organic chlorinated compounds in the presence of acidic and alkaline gases.
219 Mass spectra in both positive and negative ion modes contained numerous peaks, with more complex

220 compositions in the presence of NOx compared to those in the presence of SO,.
221 3.3.1 Effects of alkaline species in the presence of NOx

222 As shown in Fig. 2a, the total signal intensity of the organic chlorinated compounds detected in the
223 presence of alkaline species (Exp.INA.l and Exp.IND.1) was lower than that in their absence
224 (Exp.IN.1), indicating that the alkaline species reduce the formation of organic chlorinated compounds
225 during the chloride depletion process. The identified organic chlorinated compounds were classified
226 into three categories: m/z < 300, 300 < m/z < 400 and m/z > 400 (Fig. 2b). The molecular weight
227 distribution of products shifted with the addition of alkaline species. In the experiment without alkaline
228 species (Exp.IN.1), molecules with high molecular weight (m/z > 400) had the highest proportion. In
229 contrast, DMA reduced the proportion of high molecular weight molecules (m/z > 400), while
230 increasing the intensity of molecules with m/z values in the ranges m/z < 300 and 300 < m/z < 399
231 (Exp.IND.1) as shown in Fig. 2b. This suggests that the presence of DMA facilitates the formation of
232 organic chlorinated compounds with lower molecular weight, which can be attributed to the stronger
233 neutralization of the acidity by DMA, thereby inhibiting the acid-catalyzed polymerization reaction to
234 generate high molecular weight molecules (Du et al., 2023). The lower proportion of organic

235 chlorinated oligomers produced in Exp.IND.1 further supports this speculation (Fig.S3).

10
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237 Figure 2. (a) Total signal intensity of identified organic chlorinated compounds for different experiments. (b)
238 Distribution of identified molecules under different experimental conditions.

239 The Van Krevelen (VK) diagrams based on O/C and H/C ratios are presented in Fig. 3a-3b. The H/C
240 and O/C ratios of organic chlorinated compounds are primarily distributed in the ranges of 0.9-2.0 and
241 0.1-1.0. As shown in Fig. 3c, the organic chlorinated compounds produced in the presence of NH3
242 (Exp.INA.1) exhibited the highest O/C ratio, which can be attributed to the presence of more hydroxyl,
243 carbonyl, and carboxyl functional groups. The OSc of organic chlorinated compounds in Exp.INA.1
244  was also higher, indicating that NHj3 enhances the degree of oxidation of organic chlorinated
245 compounds (Fig. 3d). Conversely, the O/C ratio and OSc of organic chlorinated compounds were low
246 in the presence of DMA (Exp.IDA.1). Fig. S4 shows that the proportion of dichlorinated compounds in
247  the presence of DMA is lower than that in the presence of NH3, indicating that less active chlorine was
248  produced in the presence of DMA and its multi-generation oxidation was inhibited. This result further
249 supports that the weakening effect of DMA on chloride depletion is significantly higher than that of

250 NHj3; as mentioned above.

11
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252 Figure 3. Van Krevelen diagram of organic chlorinated compounds for different experiments with NOx in the
253 (a) positive and (b) negative ion modes. The circle size represents the proportion of organic chlorinated
254 compounds. (¢) OScand (d) DBE of organic chlorinated compounds for different experiments with NOx. (e)
255 Fractional contribution to the total unique molecules by CHCIO and CHCINO compounds in the presence of
256 alkaline species. (f) Nitrogen atom distribution of CHCINO compounds in the presence of alkaline species for
257 different experiments with NOx.

258 Furthermore, we compared the chemical composition of organic chlorinated compounds with and
259 without alkaline species. As shown in Fig. S5, many unique molecules were detected in the
260 experiments with alkaline species (Exp.INA.1 and Exp.IND.1), in addition to some compounds also
261 detected in Exp.IN.1. In the experiment with NH3 (Exp.INA.1), 42 and 30 unique molecules were
262 detected in the positive and negative ion modes, respectively. When DMA was present (Exp.IDA.1), 45
263 and 25 unique organic chlorinated compounds were identified in the positive and negative modes,

12
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264 respectively. These findings suggest that alkaline species alter the molecular composition
265 characteristics of organic chlorinated compounds. These specific molecules predominantly consist of
266 CHCIO and CHCINO compounds, with the proportion of CHCINO being higher than that of CHCIO
267 (Fig. 3e). The CHCINO compounds primarily consist of N2 products (Fig. 3f), and their formation is
268 favored by high humidity (Yang et al., 2025). Representative CHCINO compounds include
269 CoH14CINOy, C7H13CIN;04, CsH12CINO», and others. Fig. 4 presents the formation mechanism of these
270 compounds. Specifically, isoprene is oxidized by OH radicals to form key intermediates, which can be
271 further oxidized by CIl radicals, yielding organic chlorinated monomers (e.g., C4H7ClO;, C4H5ClO,,
272 CsHoClO4). These monomers can be converted into organic chlorinated oligomers through dehydration
273 reactions or acid-catalyzed accretion reactions. Notably, NH3; and DMA can react with these organic
274 chlorinated compounds through acid-base neutralization to produce CHCINO compounds. For instance,
275 NH3 and DMA can react with C4HzOs and C4H7ClO3, respectively, to form CsHi1NOs and C¢H2CINO,.
276 C4H11NOs and CsH7ClO4 can undergo an accretion reaction to form CoH4CINOo. In addition, DMA
277 can react with the aldehyde function of organic chlorinated compounds to form carbinolamines, which
278  then dehydrate to form enamine compounds (e.g., C7Hi3CIN2O4 and C7H14CINO,). These enamine
279 compounds can be further oxidized by OH and Cl radicals to produce the observed CHCINO

280 compounds (G.g., C5H10C]N03, C7H13C12NO3,C7H13C1N209).
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282 Figure 4. (a) Formation mechanism of representative CHCINO compounds. The red boxes indicate the

283 detected CHCINO compounds in our experiments.
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284 3.3.2 Effects of alkaline species in the presence of SO2

285 In the presence of SO, the addition of NH3 and DMA both significantly reduced the abundance of high
286 molecular weight compounds (Fig. S6). They also reduced the total signal intensity of organic
287 chlorinated compounds (Fig. 5a), which can be attributed to a reduced activation of chloride ions. This
288  might be due to the fact that the addition of alkaline species reduces the production of gaseous HCl as a
289 result of acid-base neutralization reactions and further diminishes the source of active chlorine
290 (Edwards et al., 2024; Song et al., 2025). In addition, chloride ions can be activated into active chlorine
291 by strong oxidants (OH radicals, O3, etc.) (Zhang and Chan, 2023; Su et al., 2022). DMA can compete
292 with chloride ions for these oxidants, thereby limiting the activation of chloride ions and reducing the
293 generation of active chlorine species (Moller et al., 2020). The proportion of dichlorinated compounds
294 in Exp.ISD.1 was significantly lower than that in Exp.IS.1 (Fig. 5a), mainly due to the reduction of
295 active chlorine inhibiting its multi-generation oxidation. This further explains that the weakening effect
296 of DMA on chloride depletion is enhanced in the presence of isoprene and SO,.
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298 Figure 5. (a) Fractional contribution of monochlorinated and dichlorinated compounds in the total organic
299 chlorinated compounds for different experiments with SO2. (b) Fractional contribution to the total organic
300 chlorinated compounds by different compounds.

301 As shown in Fig. 5b, in experiments with SO», the products detected in the positive ion mode mainly
302 consisted of CHCIO compounds, while the proportion of CHCISO compounds was the highest in the
303 negative ion mode. This may be related to the different sensitivities of the compounds in different ion
304 modes. CHCINO and CHCINSO compounds (including C7H;5sCIN,Os, Ci3H19CIN,O¢, CisH35CIN,SOs,
305 etc) were also detected in experiments in the presence of alkaline species and SO. As mentioned above,
306 the CHCINO compounds can be formed through the acid-base neutralization reaction or the reaction of

307 DMA with aldehyde function. These compounds can react with H>SO4 through esterification reactions
14
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308 to form CHCINSO compounds. The observed higher proportion of CHCINO compounds in Exp.ISD.1
309  than that in Exp.ISA.1 (Fig. 5b) may result from the stronger ability of DMA to react with organic
310 acids or carbonyl compounds (Smith et al., 2021). Moreover, autoxidation via unimolecular reaction,
311 being an important oxidation pathway for DMA in the atmosphere, facilitates the formation of
312 hydroperoxy amides (Mgller et al., 2020). Overall, alkaline gases affect the formation of active chlorine

313 during chloride depletion, and alters the composition of organic chlorinated compounds.

314 4. Conclusions

315 The complexity of atmospheric pollutants in coastal environments hinders the understanding of the
316 mechanisms influencing chloride depletion. In this study, we explored the detailed effects of NH3 and
317 DMA on chloride depletion. The results demonstrated that NH3 and DMA could weaken the chloride
318 depletion induced by acidic gases, with DMA exhibiting a more substantial weakening effect than NH3.
319 This difference in their impact is primarily due to DMA's stronger alkalinity and nucleation ability,
320 which enable it to interact more effectively with acidic species than NH3. Although the concentration of
321 organic amines in the atmosphere is lower than that of NHj, their impact on the chloride depletion
322 phenomenon is essential. The results of the current study reveal that considering only the effects of
323 acidic gases may lead to deviations in the prediction of chloride depletion. Our findings underscore the
324 necessity to discuss the inclusion of alkaline species in the chloride depletion process, especially
325 organic amines.

326 The mass spectrometry results showed that the presence of alkaline species also reduces the formation
327 of organic chlorinated compounds, indicating that the generation of active chlorine is inhibited during
328 chloride depletion. This can be attributed to the fact that the alkaline species reduce the generation of
329 gaseous HCI through acid-base neutralization reactions, and can compete with chloride ions for
330 oxidants, thereby further reducing the production of active chlorine. This further supports the idea that
331 alkaline species could weaken the chloride depletion process. Additionally, the presence of alkaline
332 species, especially DMA, promotes the formation of low-molecular-weight organic chlorinated
333 compounds by neutralizing acidity, thereby inhibiting acid-catalyzed polymerization and the formation
334 of high-molecular-weight compounds. The addition of alkaline species was observed to alter the

335 composition of organic chlorinated compounds, with several identified unique products that were not
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336  present under acidic conditions. This suggests that alkaline species not only inhibit chloride depletion
337  but also influence the overall chemical composition of the atmosphere by altering the chlorination
338 pathways of organic compounds. The current results strengthen our understanding of the mechanism

339 influencing chloride depletion, and provide a ground for the future identification of ambient samples.
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