

1

2

3

4

5 **Technical note: Heat-flash travel just
6 above a deep Mediterranean seafloor**

7

8

9

10 **by Hans van Haren**

11

12

13

14

15

16 Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg,
17 the Netherlands.

18 e-mail: hans.van.haren@nioz.nl

19

20

21

22 **Abstract.** The deep sea is weakly stratified in density but shows considerable variations in turbulent
23 motions in all three directions. When registered by moored high-resolution temperature ‘T’-sensors, the
24 motions cause variations of 0.01°C or less and in time of minutes or less, which is much faster than
25 hours or longer of internal waves. Occasionally, T-sensors close to the seafloor register minute-long
26 flashes of 0.0005-0.001°C warmer than the environment. When singular, such flashes may be artefacts.
27 However, in a large mooring-array with 45 vertical lines at 9.5-m horizontal distances, near-seafloor
28 heat flashes are seen to travel, most likely with internal-wave instabilities in overlying stratified waters.
29 The instabilities seem to release the flashes from a geothermally heated seafloor of which turbulence
30 convection is suppressed by warmer waters from above. The forms and turbulence intensity of these
31 rare signals are compared with those induced by a Remotely Operated Vehicle working near the array.
32 Other causes like unidentified marine mammal passing are hypothesized.

33

34 **1 Introduction**

35 As with all observational methods, instrumental knowledge is required to distinguish between artificial
36 and ‘real-signal’ data. The distinction not only separates instrumental noise from environmental signals,
37 but also time-varying electronic drifts or bias from waves, and digitization glitches from short-term
38 turbulent overturns. In a laboratory set-up, instruments may be regularly tuned during an experiment for
39 better signal compared with artificial data. Such tuning is not possible for remotely-operating stand-
40 alone oceanographic instrumentation on deep-sea underwater moorings that release their data after
41 instrument recovery. Data from those oceanographic instruments are subject to elaborate post-
42 processing, involving separation of known artificial and environmental signals, but especially also of
43 unknown.

44 Improved instrumentation such as high-resolution temperature ‘T-’sensors mounted on a mooring-
45 array of multiple closely spaced vertical lines deployed in weakly stratified waters may provide new
46 insights of propagation of waves and various turbulent mixing processes besides rare passages of warm
47 water blobs by deep-sea animals or remotely operated vehicles ‘ROVs’.

48 In this paper, several of such rare warm-water passages are presented and discussed in data from the
49 deep Western Mediterranean Sea, where most of the dynamical and artificial temperature variations are
50 in the range of 0.0001-0.01°C. The focus will be on ‘heat flashes’, temperature variations of 0.0002-
51 0.001°C above environmental values that last 0.0005-0.005 day (45-450 s). Such flashes are mainly
52 observed within a few meters above the seafloor.

53

54 **2 Materials and Methods**

55 A volume of nearly half-a-million cubic meters of seawater has been sampled using 2925 self-contained
56 high-resolution ‘NIOZ4’ T-sensors. The ensemble ‘large-ring’ mooring was deployed in drag-parachute
57 controlled free-fall at the <1° flat and 2458-m deep seafloor of 42° 49.50’N, 006° 11.78’E and was
58 underwater between October 2020 and March 2024. The site was near the neutrino telescope
59 KM3NeT/ORCA (Adrián-Martínez et al., 2016) and just 10 km south of the steep continental slope of
60 the Northwestern Mediterranean Sea.

61 The large-ring mooring had a diameter of about 70 m (Fig. 1). The eighteen 12-m long and 0.61-m
62 diameter steel pipes held a steel-cable grid for rigidness, like spokes in a wheel. Perpendicular cables
63 were 9.5 m apart. At cable intersects, 2.5-m diameter ‘small’ rings were mounted that each held a 125-
64 m long mooring line with 65 T-sensors below a single 1.45-kN buoy. After unrolling, the T-sensors had
65 their sensor-tip directed down along their vertical line to avoid accumulation of sediment. Of eight small
66 rings, imaginary intersects were at the steel pipes, so that special off-set mounting was needed with three
67 assist cables (van Haren et al., 2021). Upon landing at the seafloor, the orientation of the ring was
68 directed to the NNW, pointing at 337 °N. The 45 buoys lifted the cable grid in a dome with its center at
69 a height of $h = 2.0 \pm 0.2$ m above seafloor (Appendix A). On vertical lines near the edges of the cable
70 grid, close to the steel pipes, the lowest T-sensor was at about $h = 0.7 \pm 0.2$ m.

71 Fig. 1 shows the numbering of the 45 vertical mooring lines, which were ordered in six groups for
72 synchronisation purposes. As with previous NIOZ4 T-sensors (van Haren, 2018), the individual clocks
73 were synchronised via induction to a single standard clock on the mooring-array every 4 hours, so that
74 all sensors were sampled within 0.01 s. The single synchroniser ‘S’ was located at the small ring of
75 central line 5.1, line 1 of synchronization group 5. (Henceforth in the text vertical lines will be indicated
76 without period). Three buoys also held an AquaDopp single-point acoustic current meter.

77 Per vertical line, two T-sensors registered acceleration-tilt besides temperature. These sensors were
78 located just above the lowest and just below the uppermost T-sensors. The other 63 sensors only
79 registered temperature and were mounted at 2.0-m intervals. Unintentionally, all T-sensors switched off
80 when the file size on the 8-GB Kingston memory card reached 30 MB, which was likely due to a
81 formatting error. It implied that a maximum of 20 months of data was obtained for the 63 temperature-
82 only sensors, and 5.5 months for tilt-temperature sensors. All recorded data at an interval of once per 2
83 s. Of the total of 2835 temperature-only sensors, between 50 and 150 data records were interpolated
84 between neighbouring sensors because of some instrumental failure or bias, depending on moment in
85 the record.

86 As detailed elsewhere (van Haren, 2018), laboratory-bath calibration yielded a relative precision of
87 $<0.001^\circ\text{C}$. Post-processing of data involved correction for instrumental electronic drift of about 0.001°C

88 mo^{-1} after aging. This correction was established by referencing daily averaged vertical profiles, which
89 must be stable from a turbulent-overturning perspective in a stratified environment, to a smooth
90 polynomial without instabilities. The multiple lines were referenced to an arbitrary single mean value,
91 per daily period. In addition, because vertical temperature (density) gradients are so small in the deep
92 Mediterranean, so that buoyancy frequency $N = O(f)$ where f denotes the inertial frequency, reference
93 was made to periods of typically one hour duration that were quasi homogeneous with temperature
94 variation smaller than instrumental noise level (van Haren, 2022). Such >124-m tall quasi-homogeneous
95 periods existed on days 350, 453, and 657 (the latter two -366 in 2021) in the records. This double drift
96 correction was necessary for quantification of turbulence using the method of Thorpe (1977) under
97 weakly stratified conditions and typical energy-containing scales between 1 and 100 m. The T-sensors
98 at the 45 lines of the large-ring mooring allowed for improved statistics of turbulence values, besides
99 creation of small movies for investigation of propagation of phenomena like waves, eddies, turbulent
100 clouds (for an overview see van Haren et al., 2026), and rare heat flashes.

101

102 **3 Results**

103 The focus is on the first full year of observations, between days 306 and 671, with some emphasis on
104 the first months when tilt-temperature sensors were still recording.

105

106 **3.1 Rare multiple line travel of warm-water flashes**

107 On day 436.87 (late evening of Friday 12 March 2021), small heat flashes of up to 0.001°C above
108 environmental values were observed in the lowest T-sensor above the seafloor. Initially these were seen
109 at lines 66, 64, 65, and 67 in that order, followed by very weak wavy variations of about 0.00003°C . A
110 quasi-3D movie of 3000-cpd (short for cycles per day) low-pass filtered ‘lpf’ temperature records
111 demonstrates that the sequence continued in weaker form to lines 12-16 (Fig. 2). Higher-up in the water,
112 slow cat’s eye shrinking and expanding of parametrically induced quasi-mode-two instability ‘waves’
113 are discernible, with associated turbulence generation. Duration of the passage of heat flashes varied
114 between 0.0005 and 0.01 days (45 and 900 s) at different sensors. The average propagation was in E
115 direction (cf., Fig. 1) at a speed of 0.06 m s^{-1} , which was about twice the average particle velocity u in

116 ESE direction measured at $h = 126$ m (Fig. 2 small right panel). For reference in the 3D cube of the
117 movie, white numbers are indicated when the line's lowest T-sensor becomes warmer than the
118 environment. The upper panel of the 72-s (1440-s real-time) movie shows the lower 80 m above seafloor
119 time-depth series from line 16. It includes heat flashes near the seafloor, e.g., at the white vertical line
120 in the upper image of Fig. 2, and a sequence of 'cat's eye' in- and decreasing of isotherms higher up.
121 The variations in isotherms are visible in the movie as gentle shrinking and expanding of colours along
122 vertical lines in the 3D cube. As will be elaborated below, the associated local vertical mode-2 motions
123 are a non-negligible means for internal wave-induced turbulence across the (weak) stratification, and
124 may also have effect on the seafloor.

125 In unfiltered, but de-trended with common mean, time series of the lower four T-sensors, including
126 tilt-temperature sensors, the duration and form of heat flashes is well visible (Fig. 3). Flashes are mostly
127 found at the lowest T-sensor, of which the nominal but not the exact heights are given. With respect to
128 given heights, lines 16 and 67 differ by -0.7 m, line 66 by -0.5 m, and the others by 0 or +0.5 m,
129 depending on distance to the nearest steel pipe (cf., Appendix A). In none of the lines, flashes are
130 observed at nominally $h = 5.5$ m, a few at $h = 3.5$ m, while in half the cases at $h = 2$ m.

131 The warmest flashes are observed in the NW of the ring, line 66. Intense flashes have a typical
132 duration of 0.001 day (about 90 s), but shorter duration ones are also visible. Given that all flashes are
133 observed at the lowest T-sensor per line, with largest value at line 66, it is anticipated that their source
134 lies near the seafloor to the NW of the large ring. As for the size, initially flashes are seen at separate
135 lines only, so the horizontal scale is <9.5 m (and <3-m vertically). Its elongated extent at line 65 and
136 back-bending occurrence at line 67 either demonstrate a whirling motion advecting the flashes, or an
137 expansion of warm area of complex form. The amplitude increase at line 16 following the steady
138 decrease along the sequence is probably due to the relatively short height above seafloor of sensors close
139 to a steel pipe.

140 Assuming that the steady decrease in amplitude reflects a single source and transport advection by
141 local waterflow, the somewhat irregular order of appearance at lines, in both northward and eastward
142 directions, complicates the interpretation. As for the source, a single vent-like geothermal warming is
143 possible, but no external vent-tubes were observed in the vicinity and conditions for observing general

144 geothermal heating occurred about 60% of time, throughout the record. This contrasts with the rare
145 sequence in Figs 2, 3, which only somewhat compares with another event presented below, during the
146 one year of observations. Presumably, an unidentified external heat source visited the site, for example
147 a deep-diving submarine or a sperm whale, perhaps urinating. Before elaborating on these hypotheses
148 below, a comparison is made with mid-height physical turbulence events appearing around the same
149 time.

150

151 **3.2 Mid-height occurrence of internal-wave turbulence**

152 Four records of neighbouring mid-height, around $h = 55$ m above seafloor, T-sensors on the lines of Fig.
153 3 demonstrate also a sequence of about 0.0003°C temperature variations of typically 0.003-day (250-s)
154 duration and occurring about every 0.01 day (Fig. 4). When temperature falls at some sensors, it rises at
155 others around the same time, which evidences a local mode-two motion. (In the lower-left panel, this is
156 in opposite to the upper panel of Fig. 2: where isotherms separate, temperature records are about the
157 same and turbulent overturning is expected, e.g., on day 436.882; where isotherms are close together,
158 temperatures differ and enhanced stratification reduces turbulence scales, e.g., around day 436.886).
159 Their oblique appearance deforms from exactly mode-two, and is more akin to turbulent overturning,
160 probably under larger-scale shear (Thorpe, 2005).

161 The occurrence interval and size of these quasi-mode-two motions is faster and shorter than the
162 smallest freely propagating internal waves, which amounts about 0.14 day for given small-scale
163 stratification, as far as can be established from 2-m vertical resolution. The discrepancy in duration by
164 a factor of 14 is about three times longer than found in laboratory experiments (Davis and Acrivos, 1967;
165 Thorpe, 2005), if the smallest freely propagating internal waves generate the 0.01-day long mode-two
166 motions as parametric instabilities. (For comparison, a heat flash of 0.001°C would create hypothetical
167 stratification equivalent to small-1-m-scale buoyancy frequency of $N_1 \approx 16f$, or a free internal-wave
168 periodicity of about 0.04 day, which approaches the laboratory factor of 4.) The sequence between the
169 lines is different from that presented in Fig. 3, and more steadily propagates in E direction at a speed of
170 $c = 0.10 \text{ m s}^{-1} \approx 4u$, u measured at $h = 126$ m. It is thought that growing parametric instabilities may

171 break and thereby disintegrate their generating progressive primary internal waves (Davis and Acrivos,
172 1967), by which they are expected to be transported. Their amount of turbulence is calculated in Section
173 3. Although the quasi-mode-two motions have the same order of duration as the near-seafloor heat
174 flashes, they do not directly seem to associate with them, because they do not occur at precisely the
175 same time and slightly differently between different lines. Their potential relationship is investigated
176 below in an enlargement of filtered data.

177 Fig. 5 is the lpf version of temperature from two lower and two mid-height T-sensors, extended over
178 a period of 0.2 day. Mean temperature values are referenced to a smooth polynomial over the entire 124-
179 m vertical range, for drift correction. The near-seafloor heat flashes (in red graphs) are seen embedded
180 by a weak local mode-two variation in temperature, peaking with a local low a few meters above (green
181 graphs). They occur when mid-height mode-two motions are at reduced variation, i.e. increased isotherm
182 straining, followed by a drop in temperature at lower mid-height (magenta graphs). The observation of
183 mode-two variations and associated turbulent overturning across the vertical range of moored T-sensors
184 suggests some relationship between internal-wave induced mid-height turbulence and that occurring just
185 above seafloor. The internal-wave variations possibly trigger/release geothermal heating to convect
186 upwards during lower mid-height cooling phase, and seafloor convection is depressed during lower mid-
187 height warming phase. Besides the heat flashes, geothermal-heat convection is rather limited during this
188 period.

189

190 **3.3 Another sequence, but different**

191 The near-seafloor heat flashes in Figs 2, 3 are thus rare that only one other event has been detected in
192 the year-long records. This other event is shown in Fig. 6, upper-left column. In contrast with conditions
193 of reasonably stratified waters for Figs 2, 3, this event is observed under very weakly stratified
194 conditions at only three lines, starting within the large ring at line 11 and propagating in WNW direction
195 passing lines 65 and 67 at a mean speed of 0.05 m s^{-1} . During this period at $h = 126 \text{ m}$, waterflow equals
196 $u = 0.005 \text{ m s}^{-1}$, negligibly small in SW direction. While spikiness and duration of the flashes resemble
197 those of Fig. 3, it is puzzling why the record from the temperature-tilt sensor starts with a spike and the
198 flash is extended to twice the common duration at the lowest sensor of line 67. The flashes occur about

199 halfway during an episode of near-homogeneous waters, when a 1-h long 0.0001-0.0002°C elevation in
200 temperature is observed at upper T-sensors compared to those closer to the seafloor. Despite favourable
201 conditions of very weakly stratified waters, no convection turbulence due to general geothermal heating
202 was observed during this period.

203

204 **3.4 Isolated spikes at the lowest T-sensor**

205 Seldom, albeit occurring more often than sequences like depicted in Figs 2-5, singular heat flashes are
206 observed at the lowest T-sensor of some vertical lines, e.g., line 25 (Fig. 6 lower left). Given that the
207 flashes are observed at no other lines during or close to the time of appearance, no direction and
208 propagation speed can be established. For the given example, conditions are near-homogeneous with a
209 vertical temperature difference between uppermost and lowest T-sensor of $\Delta\Theta < 0.0001^\circ\text{C}$. Despite the
210 small vertical temperature variations barely extending above noise level, temporal variations are visible
211 in the duration of the flashes, being about 0.003 day (250 s), and oscillations vary between 0.001 and
212 0.005 days, besides > 0.04 d longer duration ones (not shown). Moreover, vertical mode-two is
213 discernible locally with next T-sensors up, e.g. a weak depression at 2 m during the heat flash at 1.5 m,
214 and across the entire 124-m vertical range after day 370.67.

215

216 **3.5 The temperature signature of an ROV**

217 While the above examples suggest a correspondence between heat flashes, possibly geothermal heating
218 from below and internal wave turbulence from above, a comparison should be made with temperature
219 signals from known other effects. On day 323, ROV 'Victor' (Ifremer, La Seyne-sur-mer, France)
220 approached the large-ring mooring. Its purpose was to set free the acoustically released but mechanically
221 stuck rope of the large-ring deployment drag parachute. The stuck rope, one out of six released, had
222 scraped several T-sensors from nearest vertical line 18. During operations also several fallen-off T-
223 sensors were collected outside the large ring from the seafloor. The ROV's engine heats the local waters
224 and its impellers create additional local turbulence and advective waterflow. The ROV always stayed
225 outside the large ring, but sometimes rested on a steel tube, e.g. on day 323.675.

226 While the ROV's temperature signals are $> 0.001^{\circ}\text{C}$ above environmental values at some T-sensors
227 of line 18, they rapidly decrease away from the 'source', with the nearest three lines showing weaker
228 and shorter duration artificial temperature elevations at their lowest three T-sensors mainly (Fig. 6
229 upper-right column). Weaker signals are found towards the south (lines 22-25). An approximately 10-
230 m high 'cloud' of warmer water is observed on day 323.655 around $h = 25$ m (line 16) moving up to h
231 = 50 m (line 26) whilst decreasing in intensity and duration. This cloud is not seen northward, also not
232 at line 18, and may reflect the expulsion by the impellers. No artificial temperature elevation is detected
233 further to the West at lines 11, 12, 17, and 21. The mean waterflow was 0.04 m s^{-1} in ENE direction,
234 measured at $h = 126$ m, and perpendicular to the direction of the cloud. Environmental conditions were
235 near homogeneous, with a positive vertical temperature difference of about 0.0001°C over 124 m.

236 The type of temperature signals is akin to those of others presented in Fig. 6. The ROV's warm signal
237 remains near the seafloor, also > 9.5 m away from the source, and is short-lived with flash durations
238 between <0.001 and 0.005 days. Irregularly, temperature is not highest at the seafloor, but at a T-sensor
239 above, e.g. on lines 15 and 16. Considering the likelihood of the source near line 18, the with 2.8-m high
240 0.5 m above the seafloor at the nearby steel pipe, the dispersal is about 0.035 m s^{-1} in SW direction,
241 which is against the flow direction measured at $h = 126$ m. No increase in the vertical is observed across
242 the approximately 10-m horizontal distance, despite the expected free convection turbulence occurring
243 by the warm water. Apparently the turbulence is a slow process.

244

245 **3.6 Geothermal-heating signals at lower T-sensors**

246 Heat flashes are observed more often uniquely at lowermost T-sensors of generally lower-lying 'corner-
247 lines' like 17 and lines like 25, under weakly but stratified-water conditions and less so under near-
248 homogeneous conditions when the 124-m vertical temperature difference equals $< 0.0002^{\circ}\text{C}$. Fig. 7
249 shows occurrence of flashes that are visually detected at the lowermost sensor of line 17, which did not
250 register the sequence of Figs 2, 3. Despite most occurrence of heat flashes under (weak) stratified-water
251 conditions, the flashes are associated with geothermal heating from below but which is suppressed by
252 the warmer waters above. This may explain the roughly 20-30-day periodicity of the heat flashes, and

253 their lack of appearance higher up. While the 20-30-day periodicity may thereby be associated with
254 mesoscale variability governing the variation in stratification conditions, the flashes' signature is
255 verified before the ROV collected fallen-off T-sensors from the seafloor on day 323. A T-sensor lying
256 on the seafloor has its measuring tip within 0.01 m from the sediment.

257 On day 317, inertial-period temporal variation in temperature was observed throughout the range of
258 observations (van Haren, 2023). Despite the very weakly stratified conditions, with $\Delta\Theta \approx 0.0001^\circ\text{C}$ over
259 $h = 124$ m, heat flashes alternate with time. They are suppressed and remain in the lower $h = 2$ m above
260 seafloor (e.g., Fig. 6 lower right), before becoming released in geothermal-induced flares that may reach
261 several tens of meters up from the seafloor and which are of longer duration than heat flashes lasting
262 hours. During suppression by warming from above, the record of a fallen-off T-sensor shows rapid
263 variability with temperature variations akin to those induced by the ROV (Fig. 6 upper-right column).
264 In case of heat release into overlying waters, near-seafloor temperature variations decrease as excess
265 heat is distributed over a larger vertical range. Apparently, even under weakly stratified conditions
266 suppression of convection turbulence is so strong that rarely geothermally-heated temperature peaks,
267 heat flashes, reach above $h > 1$ m, as observed.

268

269 **3.7 Turbulence effects of flashes**

270 As all observed heat flashes are characterized by elevated temperatures above environmental values near
271 the seafloor, they are unstable and may provide a contribution to turbulence values. On the other hand,
272 their duration is generally short. Their effects on general turbulence values are verified below using the
273 method proposed by Thorpe (1977).

274 Concerning the passage of flashes on day 436, small spikes are seen in the vertically averaged
275 dissipation rate values for line 16 (Fig. 8a, b). Only the spikes around days 436.848 and 436.883 are
276 associated with heat flashes near the seafloor, those after day 436.9 are not involved. Thus, the
277 contribution of these flashes is negligible to the overall-mean turbulence, which is dominated by
278 parametric instabilities following internal-wave action from above. The 0.2-day and 124-m time/depth
279 mean values for this period under 'stratified-water' conditions are: for turbulence dissipation rate $\langle[\varepsilon]\rangle$
280 $= 7 \pm 3 \times 10^{-11} \text{ m}^2 \text{ s}^{-3}$, vertical eddy diffusivity $\langle[K_z]\rangle = 6 \pm 2 \times 10^{-4} \text{ m}^2 \text{ s}^{-1}$ under large-scale buoyancy

281 frequency $N = \langle [N_s] \rangle = 1.5 \pm 0.4 \times 10^{-4} \text{ s}^{-1} = 1.1 \text{f}$. These turbulence values are comparable with well-
282 stratified open-ocean turbulence values (e.g., Gregg, 1989; Polzin et al., 1997; Yasuda et al., 2021) and
283 about half of well-developed convection turbulence induced by general geothermal heating in the
284 present area: $\varepsilon_{\text{GH}} = 1.2 \times 10^{-10} \text{ m}^2 \text{ s}^{-3}$ (van Haren, 202b submitted) which corresponds with the local
285 average mean heat flux of 0.11 W m^{-2} determined from geophysics measurements (Pasquale et al., 1996).
286 Calculations for neighbouring lines demonstrate that the heat flashes contribute $<1\%$ to mean turbulence
287 values, in this example.

288 For comparison, during ROV working on day 323 (Fig. 8c, d), the 0.2-day and 124-m time/depth
289 mean values for line 15 during this ‘very weakly stratified’ period are: $\langle [\varepsilon] \rangle = 3 \pm 1 \times 10^{-10} \text{ m}^2 \text{ s}^{-3}$, $\langle [K_z] \rangle$
290 $= 4 \pm 1.5 \times 10^{-3} \text{ m}^2 \text{ s}^{-1}$ under $N = \langle [N_s] \rangle = 7.5 \pm 2 \times 10^{-5} \text{ s}^{-1}$. Thus, under four times smaller mean
291 stratification, turbulence values are approximately four times larger than the previous example.
292 However, the time series of vertically averaged dissipation rate values demonstrates about the same
293 level as in Fig. 8b, except during two periods of spiking values around days 323.61 and 323.67 when
294 turbulence dissipation rate values reach $10^{-8} \text{ m}^2 \text{ s}^{-3}$. In the calculations, the secondary drift correction is
295 not applied, for comparison with Fig. 8a, b. The mean turbulence values in Fig. 8b, d are three times the
296 values from lines to the West in the large-ring, but about 30 times smaller than those of line 16 nearest
297 to the working ROV (apart from damaged line 18). As a result, artificial heat flashes can dominate
298 turbulence calculations under very weakly stratified conditions.

299

300 **4 Discussion**

301 As not one cold flash has been detected in the inspected year of observations, and given the more
302 prominent occurrence near the seafloor, the source of observed heat flashes seems evident. Either they
303 result from an artificial or biological source, or from geothermal heating. In addition to the source, a
304 means to travel may be related to the source or be independent. For example, an ROV has impellers that
305 can drive a waterflow advecting the engine’s excessive heat. Or, mesoscale eddies, internal waves and
306 turbulence motions operating some distance above the seafloor can move geothermal heat originating
307 at the seafloor.

308 Further investigation is required on the release of general geothermal heat from the seafloor.
309 Apparently, excess warmer waters stay in the lower 2 m from the seafloor most of the time, becoming
310 only convected vertically in 10-100 m high flares when conditions are favourable and stratification is
311 negligible so that $N < 0.5f$. The convection-turbulence flares are larger than heat flashes in spatial extent
312 and in time, but they exceed environmental temperature values only by values $O(0.0001)^\circ\text{C}$. Any very
313 weak stratification, even $N = 0.75-1f$, is sufficient to suppress the heated-seafloor waters from
314 convecting, whereby some accumulation of up to 0.001°C at $h = 1.5$ m occurs. Apparently, excess heat
315 is absorbed by passing water flows, and occasional heat flashes are released at lowest (corner-line) T-
316 sensors.

317 Although it cannot be ruled out that the heat flashes are transported via internal waves' associated
318 turbulence following parametric instabilities several tens of meters from the seafloor, it remains
319 surprising that flashes are a rare phenomenon at instrumentation only 1.5-2 m above seafloor. The fallen-
320 off T-sensor with its sensor-tip at $h = 0.01$ m revealed much more often, albeit not continuously and
321 highly variable, temperature variations of equivalent value. However, the variations never exceeded a
322 difference of 0.001°C compared to nearby values. The geothermal-heat source thus seems variable as
323 well, like the response in a pot over a uniformly heated plate. Geologically, geothermal-heat sources
324 may also vary over short distances $O(100)$ m (Kunath et al., 2021), or perhaps smaller.

325 As for unidentified sources, the near-seafloor heat flashes all have a similar appearance. No clear
326 identification can be given for ROV-induced or geothermally-induced flashes, other than distance from
327 the seafloor and distance from the source. If the travelling flash on day 436 is due to ROV, or perhaps a
328 whale, they have stayed some 10 m from the nearest vertical line, outside the large ring. As no planned
329 sea operations were ongoing on that day near the large ring, a curious whale may have urinated, or a
330 geothermal flash was released by some favourable wave passing above. Whatever, the flash propagated
331 in the direction of the wave and mean flow higher-up.

332 Although the statistically unstable flashes do not pose a large problem for calculation of turbulence
333 values from moored high-resolution temperature sensors, except when an ROV is operating nearby,
334 their detection challenges the instrumentation and post-processing. Considering their duration and

335 occurrence over multiple independent T-sensors, they are not electronic ‘glitches’ or ‘spikes’, which
336 also occur (quite rarely) and commonly consist of a few data point (< 10-s duration). Detailed data-
337 quality control search thus also provides insight in unknown phenomena.

338

339 **5 Conclusion**

340 A rare sequence of heat flashes is observed traveling through the northern part of a 70-m diameter large-
341 ring mooring about 2-2.5 m above flat seafloor at 2458 m in the Northwestern Mediterranean. In an
342 environment where the vertical density stratification is very weak, the buoyancy frequency equals the
343 inertial frequency and all dynamics are contained within temperature variations <0.01°C, the flashes
344 have maximum excess temperature of 0.001°C above surrounding values and last between 1 and 7
345 minutes. They appear as spikes as if due to electronic failure, which they are not. They travel with
346 internal-wave instabilities in overlying water up to some 50 m above seafloor. This suggests an
347 unexpected mechanism of such interior instabilities releasing flashes from the geothermally-heated
348 seafloor. Turbulent convection is otherwise suppressed by the weakly-stable stratification. Possible
349 unidentified source is a unique visit from either a manned or unmanned submarine, or a deep diving
350 whale.

351

352 *Data availability.* Only raw data are stored from the T-sensor mooring-array. Analyses proceed via
353 extensive post-processing, including manual checks, which are adapted to the specific analysis task.
354 Because of the complex processing the raw data from the custom-made T-sensors are not made publicly
355 accessible. Current meter data are available from van Haren (2025): “Large-ring mooring current meter
356 and CTD data”, Mendeley Data, V1, <https://doi.org/10.17632/f8kfwcvtdn.1>. The movie to Fig. 2 can be
357 found in van Haren (2026), “Movie to: Heat-flash travel just above a deep Mediterranean seafloor”,
358 Mendeley Data, V1, <https://doi.org/10.17632/mdw59fv2vv.1>.

359

360 *Competing interests.* The author has no competing interests.

361

362 *Acknowledgments.* This research was supported in part by NWO, the Netherlands organization for the
363 advancement of science. Captains and crews of R/V Pelagia are thanked for the very pleasant
364 cooperation. The team of ROV Victor performed an excellent underwater mission to set free the drag
365 parachute of the large ring. NIOZ colleagues notably from the NMF department are especially thanked
366 for their indispensable contributions during the long preparatory and construction phases to make this
367 unique sea-operation successful. The KM3NeT Collaboration built, operated and maintained the
368 KM3NeT research infrastructure, and I am grateful being part of it. For suggestions on visualization of
369 3D-motions I am indebted to P. Coyle, R. Bakker, J. van Bennekom and E. Keijzer.
370

371 **Appendix A Doming of steel-cable grid**

372 In contrast with conventionally anchored single-line moorings, the multiple-line large-ring mooring has
373 a flexible steel-cable grid attached to grounding steel pipes (Fig. 1). Although also common single-line
374 moorings stretch under buoyancy, thereby displacing instrumentation upward from their nominal
375 positions, the large-ring mooring can further stretch because of its steel-cable grid. Based on cable
376 information, and on-quay cable stretching and tensioning, several mathematical models were discussed
377 by van Haren (2026, submitted). The models were verified (Fig. A1) using physical information during
378 a passage of highly turbulent and well-stratified warm waters.

379 The cable grid was attached to the center of the 0.61-m diameter steel pipes. The pipes sank
380 0.07 ± 0.02 m in the sediment (van Haren et al., 2021), so that the cable attachments were at $h = 0.24 \pm 0.02$
381 m above seafloor. For all cable cross-sections a near-parabola was established. Consistent statistical
382 significance was found to within ± 0.2 m, see the error bar.

383 While the observed doming is close to the mathematical parabola models, larger height-correction
384 values are observed in the center, with slightly steeper grid cables that approximately obey the maximum
385 5°-slopes as found during on-quay tensioning. Corrections to vertical positioning of T-sensors are
386 therefore feasible and necessary, because the difference between the center and the edges of the grid is
387 approximately 1.5 ± 0.2 m. The small height difference may have noticeable effects on stratification-
388 suppressed geothermal heating and on the development of convection turbulence, or lack thereof.

389

390 **References**

391 Adrián-Martínez, S. et al.: Letter of intent for KM3NeT 2.0, *J. Phys. G*, 43, 084001, 2016.

392 Davis, R. E., and Acrivos, A.: The stability of oscillatory internal waves, *J. Fluid Mech.*, 30, 723-736,
393 1967.

394 Gregg, M. C.: Scaling turbulent dissipation in the thermocline, *J. Geophys. Res.*, 94, 9686-9698, 1989.

395 IOC, SCOR, and IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation
396 and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission,
397 Manuals and Guides No. 56, UNESCO, Paris, 196 pp, 2010.

398 Kunath, P., Chi, W.-C., Berndt, C., and Liu, C.-S.: A rapid numerical method to constrain 2D focused
399 fluid flow rates along convergent margins using dense BSR-based temperature field data, *J.*
400 *Geol. Res. Solid Earth*, 126, e2021JB021668, 2021.

401 Pasquale, V., Verdoya, M., and Chiozzi, P.: Heat flux and timing of the drifting stage in the Ligurian–
402 Provençal basin (northwestern Mediterranean), *J. Geodyn.*, 21, 205-222, 1996.

403 Polzin, K. L., Toole, J. M., Ledwell, J. R., and Schmitt, R. W.: Spatial variability of turbulent mixing in
404 the abyssal ocean, *Science*, 276, 93-96, 1997.

405 Thorpe, S. A.: Turbulence and mixing in a Scottish loch, *Phil. Trans. Roy. Soc. Lond. A*, 286, 125-181,
406 1977.

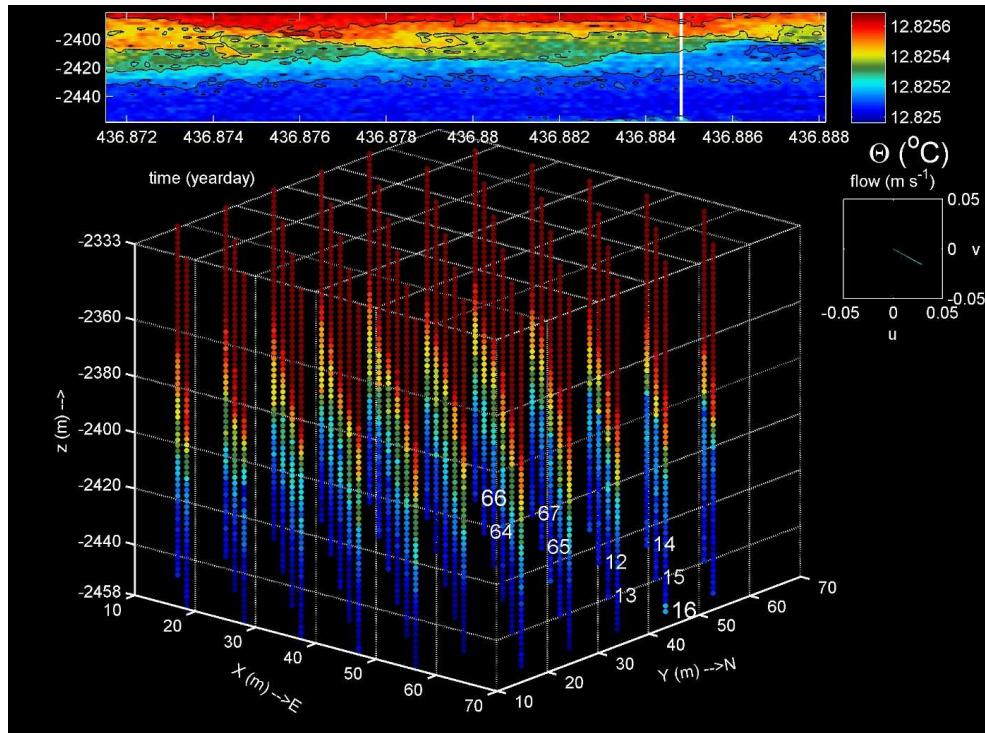
407 Thorpe, S. A.: The turbulent ocean, Cambridge Univ Press, Cambridge, 439 pp, 2005.

408 van Haren, H.: Philosophy and application of high-resolution temperature sensors for stratified waters,
409 *Sensors*, 18, 3184, doi:10.3390/s18103184, 2018.

410 van Haren, H.: Thermistor string corrections in data from very weakly stratified deep-ocean waters,
411 *Deep-Sea Res. I*, 189, 103870, 2022.

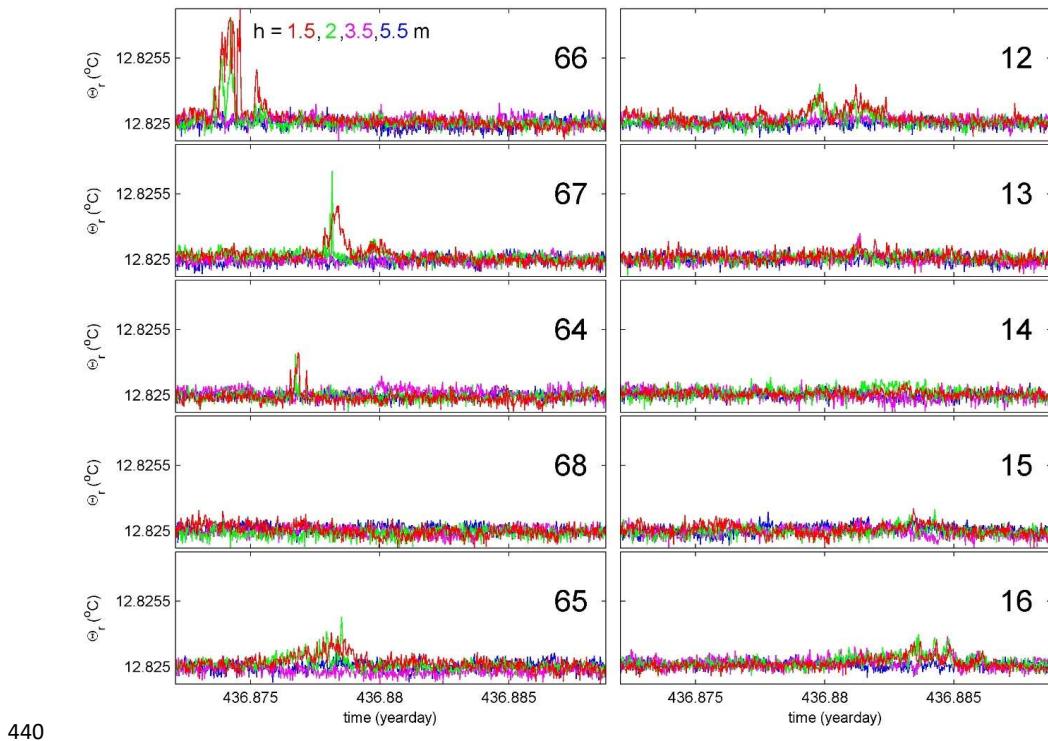
412 van Haren, H.: Convection and intermittency noise in water temperature near a deep Mediterranean
413 seafloor, *Phys. Fluids*, 35, 026604, 2023.


414 van Haren, H., Bakker, R., Witte, Y., Laan, M., and van Heerwaarden, J.: Half a cubic hectometer
415 mooring-array 3D-T of 3000 temperature sensors in the deep sea, *J. Atmos. Ocean. Technol.*,
416 38, 1585-1597, 2021.


417 van Haren, H., et al.: Whipped and mixed warm clouds in the deep sea, Geophys. Res. Lett., in press,
418 2026.

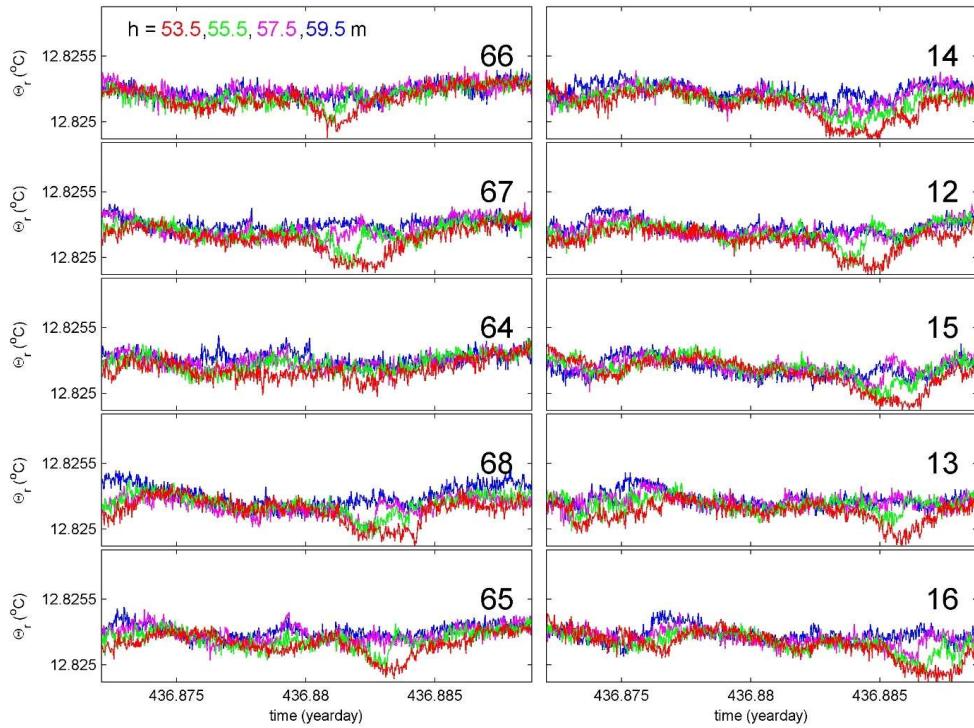
419 Yasuda, I., et al.: Estimate of turbulent energy dissipation rate using free-fall and CTD-attached fast-
420 response thermistors in weak ocean turbulence, J. Oceanogr., 77, 17-28, 2021.

421


422 423 **Figure 1.** Plan-view of ‘large-ring mooring’ layout, including steel-cable grid and, at cable intersections,
424 2.5-m diameter small rings originally holding 125-m long mooring lines with 65 temperature ‘T-’
425 sensors and a single buoy each. The vertical mooring lines are numbered in six synchronisation groups
426 with colour dots indicating group nodes, and synchroniser ‘S’ at line 51. Here and elsewhere in the text,
427 lines are indicated without period for short. Lines 14, 35 and 57 held a current meter ‘CM’ at the buoy.
428 Eight ‘corner-’lines 17, 18, 26, 38, 47, 48, 62, and 66 were not at cable-grid intersections (van Haren et
429 al., 2021). The light-pink arrow orients to geographical North.

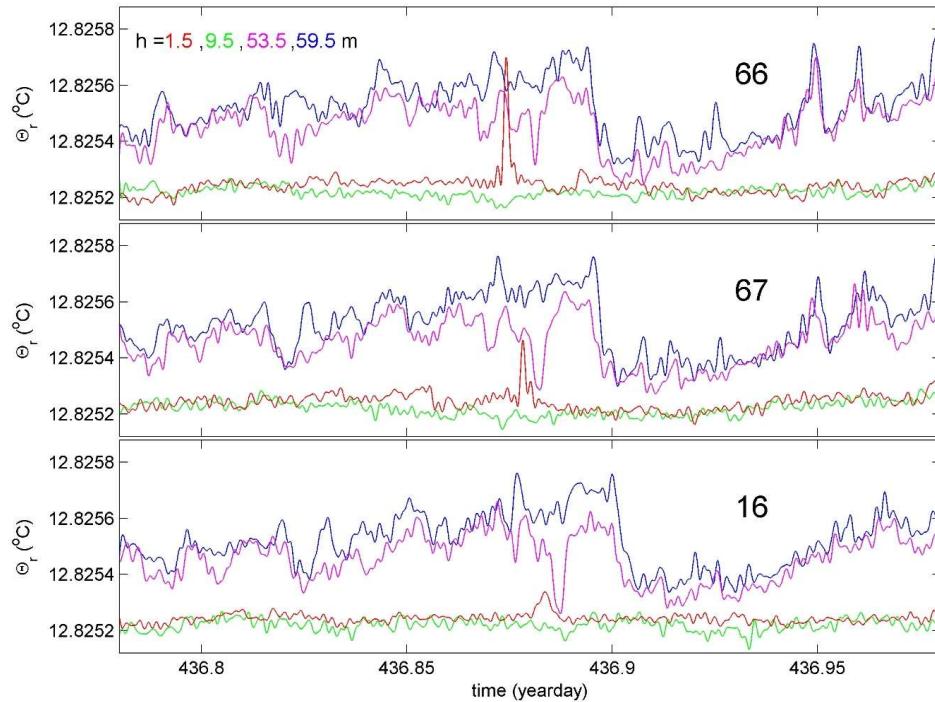
431

432 **Figure 2.** Quasi-3D movie from low-pass filtered ‘lpf’ temperature data of about 2800 T-sensors in
433 nearly 0.5-hm^3 mooring-array. Each sensor is represented by a small filled circle, of which the colour
434 represents a Conservative Temperature (IOC et al., 2010) in the scale above (entire range: 0.0007°C).
435 In the movie, above the cube, which is vertically depressed by a factor of about two, a white time-line
436 progresses in a 1440-s/124-m time/depth image from line 16 on the east-side of the cube. The 72-s movie
437 is accelerated by a factor of 20 with respect to real-time. In the small panel to the right in this figure, but
438 not appearing in the movie, the mean flow is indicated, measured at 126 m above seafloor.

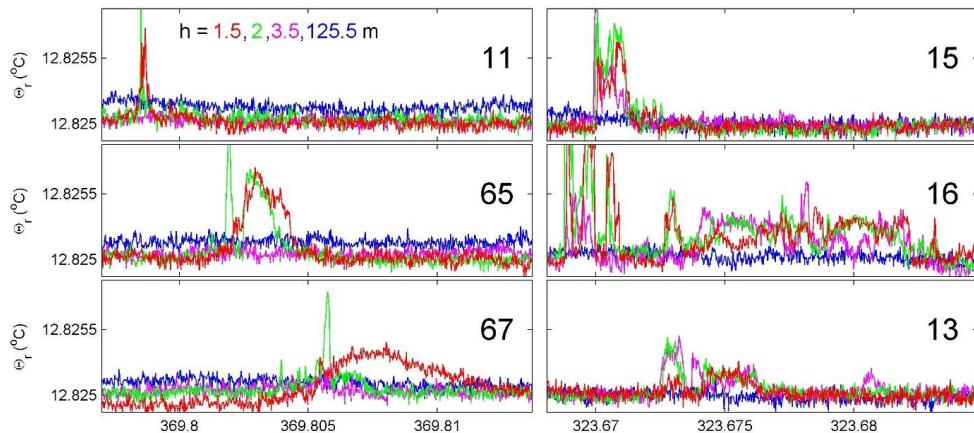

439

440

441 **Figure 3.** Heat-flash travel registered at 9 (out of 10 plotted) lines by the lower 2 (out of 4 plotted) T-
442 sensors for the 1440-s real-time period of Fig. 2. The four unfiltered, detrended, and relative to common-
443 mean Conservative Temperature time series are for heights h just above seafloor as indicated in the
444 upper-left panel.

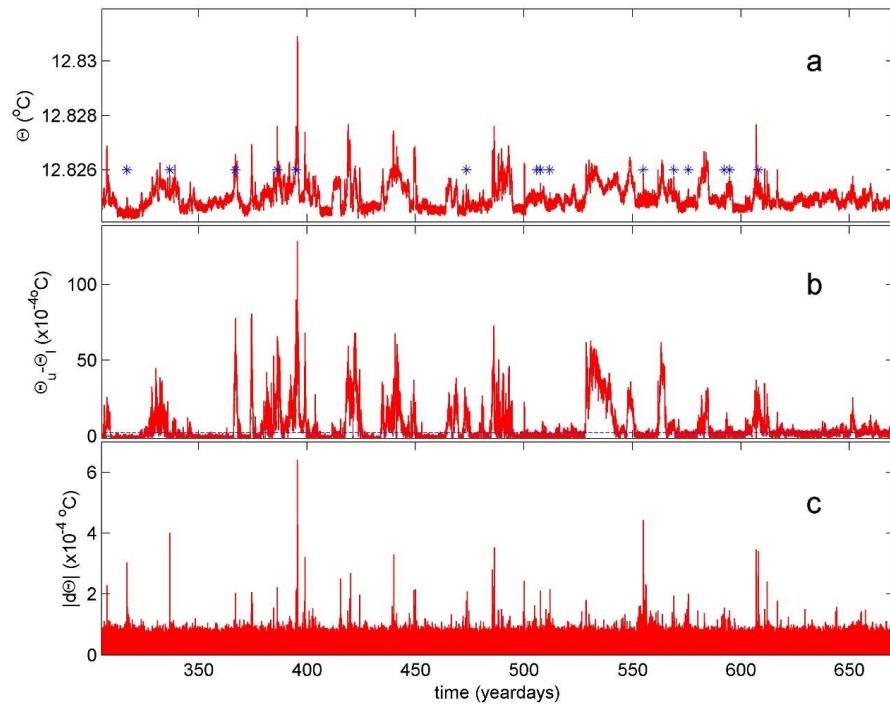

445

446



447 **Figure 4.** As Fig. 3, but for mid-heights showing no heat flashes but small-scale overturns that travel in
448 the same E direction as flashes of Fig. 3, but at twice the speed, i.e. four times the waterflow (particle)
449 speed in ESE direction measured at $h = 126$ m.

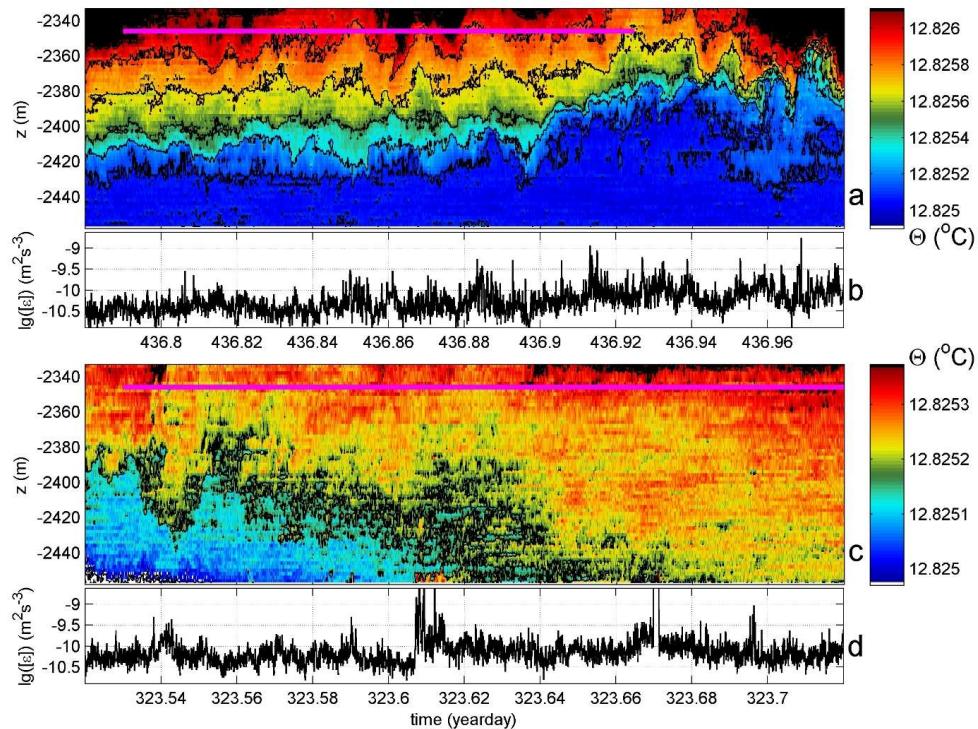
450

451


452 **Figure 5.** Enlargements to 0.2-day time series of three panels of Figs 3, 4 but for lpf Conservative
453 Temperature referenced to 124-m tall mean vertical profile corrected to a 3rd-order polynomial fit.
454

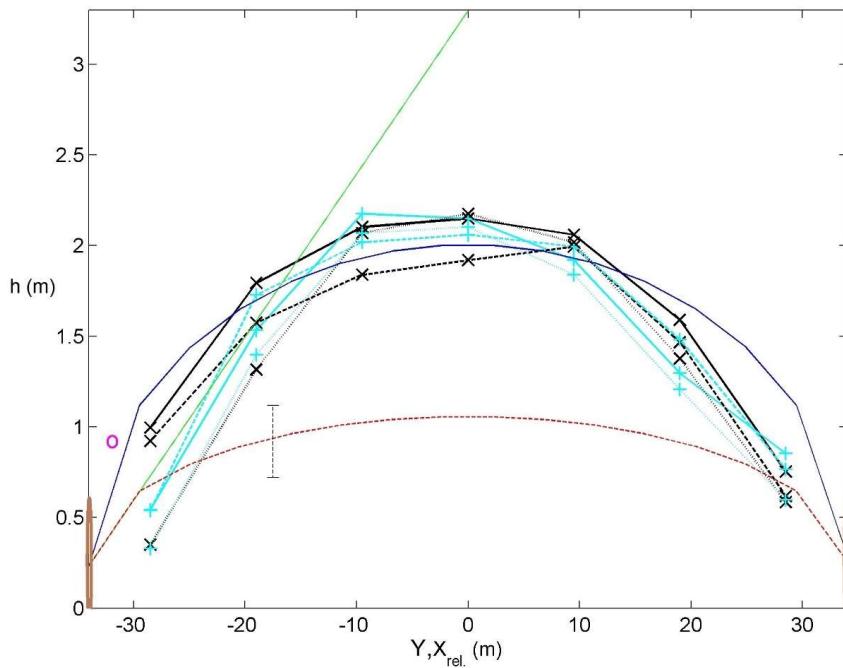
455

456 **Figure 6.** As Fig. 3, but for a glossary of shorter horizontal-range examples, whereby the uppermost T-
457 sensor replaces that of the fourth from the seafloor. Upper-three left column: a sequence of heat flashes
458 akin to Fig. 3 but traveling to the WNW during an episode of very weak stratification. Lower left:
459 singular isolated flash at the lowest sensor of line 25. Upper-three right column: Remotely Operated
460 Vehicle ‘ROV’ working to remove parachute from nearby line 18. Lower right: multiple flashes at lower
461 sensor of line 25, also registered at line 16, in comparison with short-term sensors closer to the seafloor
462 at acoustic release (yellow) and line-18 fallen-off sensor (black&white).


463

464

465 **Figure 7.** Year-long time series indicating occurrence of heat flashes at lowest T-sensor of corner-line
466 17. Temperature data are not corrected for bias. (a) Conservative Temperature with stars indicating heat
467 flashes. (b) Upper-lowermost T-sensor's 124-m vertical temperature difference with dashed line
468 indicating a threshold of 0.0002°C , approximately designating near-homogeneous from stratified-water
469 conditions. (c) Gradient (with time) of record in a.


470

471

472 **Figure 8.** Magnifications of 0.2-day time and 124-m depth images with vertically averaged turbulence
473 dissipation rate values using the method by Thorpe (1977). (a) Conservative Temperature from line 16
474 lpf at cut-off frequency of 3000 cpd (short for cycles per day) for weakly-stratified-water period
475 encompassing that of Figs 2, 3. Black contours are drawn every 0.0002°C. The magenta bar
476 demonstrates the duration of the shortest free internal-wave period during the first 40% of data. The
477 seafloor is at the horizontal axis. The small speckles just above the seafloor denote heat flashes, the
478 largest passing at day 436.882. (b) Logarithm of corresponding 124-m vertically averaged dissipation
479 rates. (c) As a., but for line-15 data during very weakly stratified period (three-times smaller temperature
480 range than in a.) and ROV working near line 18, mainly between days 323.605 and 323.67. The magenta
481 bar extends out of window, covering about 0.22 d. (d) As b., corresponding to c.

482

483

484 **Figure A1.** The height doming of the large-ring mooring steel-cable grid under tension of 45 buoys as
485 followed from modelling and observations by van Haren (2026b; submitted). Quasi-parabola (red, blue)
486 and straight-line (green) mathematical models are given for center cables. The seafloor is at the
487 horizontal axis. Cable-grid attachments are halfway large-ring pipes (brown ellipses), effectively at $h =$
488 0.24 m above seafloor as the anchoring pipes sunk 0.07 ± 0.02 m in the sediment. The green straight line
489 makes a fixed angle of 5° with the horizontal, which angle was established after in-port cable-tension
490 tests. The blue (solid line, 5-m discretized) parabola model intersects the green line halfway, so that its
491 top is at $h = 2.00$ m. If an overall maximum angle of 5° is maintained (red-dotted model), the top is at h
492 = 1.05 m, and the lowest vertical line will be at $h = 0.65$ m. Cross-sections without corner-lines of
493 constant-Y (black x graphs) and constant-X (cyan + graphs) are given for physical relative heights
494 determined from observed turbulence temperature-variance. Solid lines indicate center lines in both
495 directions. Corner-line height is indicated by magenta o.

496