

1
2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Coupling between sub-mesoscale eddies, internal waves, and turbulence in the deep Mediterranean: A spectral investigation

21 Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg,
22 the Netherlands.
23 e-mail: hans.van.haren@nioz.nl
24

25 **Abstract.** Interaction between energy-abundant (sub-)mesoscale eddies and internal waves can lead to
26 turbulence generation and may prove important for replenishment of nutrients for deep-sea life and
27 circulation. However, observational evidence of such interaction is scarce and precise energy transfer is
28 unknown. In this paper, an extensive spectral study is reported using mooring data from nearly 3000
29 high-resolution temperature sensors in about half-a-cubic hectometer of seawater above a deep flat
30 Northwestern-Mediterranean seafloor. The number of independent data records partially improves
31 statistics for better determination of spectral slopes, which however do not show a roll-off to the viscous
32 dissipation range of turbulence. The spectra hardly show power-laws ω^p having exponent $p = -5/3$
33 representing an inertial subrange that evidences shear-induced isotropic turbulence. Instead, they are
34 dominated by $p = -7/5$ representing a buoyancy subrange, which evidences convection-induced
35 anisotropic turbulence. In contrast with $p=-5/3$ that indicates a downgradient cascade of energy, $p=-7/5$
36 characterizes by an ambiguous cascade direction. At height $h < 50$ m above seafloor, $p=-7/5$ is found
37 adjacent to instrumental noise. The $p=-7/5$ is also found in the sub-mesoscale/internal wave band that is
38 elevated in variance by one order of magnitude. It is reasoned that this sub-inertial range cannot
39 represent isotropic motions, hence $p \neq -5/3$ at all heights, and a new deep-sea energy cascade is proposed
40 between mesoscales and turbulence dissipation. Only higher up in more stratified waters an inertial
41 subrange is formed. The transition from internal waves into large-scale turbulence follows $p = -2$, while
42 a higher-frequency transition from 0 to π phase change reflects overturns of slanted convection or
43 standing-wave breaking leading to isotropic turbulence.

44

45 **1 Introduction**

46 In a stably stratified environment like the sun-heated ocean, downward pulses of warm water seem
47 impossible in terms of irreversible turbulent convection. ‘Natural, buoyancy-driven convection’ (e.g.
48 Dalziel et al., 2008) applies to denser waters moving down and less dense waters moving up. In terms
49 of temperature variations, this implies cooler waters moving down and warmer up. (An exception can
50 occur when the other major contributor to ocean-density variations dominates over temperature
51 variations: If downward moving warm waters are saltier than their environment, and vice versa for
52 upward motions). In contrast with day-time atmosphere dynamics, in the ocean such turbulent
53 convection may occur regularly under limited conditions: in the upper 10 m near the surface during
54 nighttime (Brainerd and Gregg, 1995), and possibly in the lower 100 m above the seafloor due to general
55 geothermal heating (e.g., Pasquale et al. 1996), depending on the local stratification. It can also occur as
56 ‘deep dense water formation’ after specific preconditioning near the surface in localized areas like polar
57 seas and the Mediterranean during brief irregular periods of about a week. While occurring during most
58 winters down to several 100’s of meters, only once every decade or so newly formed dense waters go
59 down all the way to >2000 m deep seafloors (Rhein, 1995; Dickson, 1996; Mertens and Schott, 1998).
60 Its convection turbulence has thus far not been directly observed in the deep sea (Thorpe, 2005).

61 One of the potential results, in fact evidence, of convection is the development of two-dimensional
62 ‘2D’ eddies, which also associate with front(al collapse), and which have horizontal scales $O(0.1-10)$
63 km in the ocean: sub-mesoscales (e.g., Taylor and Thompson, 2023). (While eddies are characterized
64 here as 2D rather than 3D because of their small aspect ratio $\ll 1$, it is acknowledged that they generally
65 have stronger flows in more stratified waters near the surface than in the deep sea). Sub-mesoscale
66 eddies are found ubiquitous in the Western Mediterranean (Gascard, 1978; Testor and Gascard, 2006)
67 and are suggested to interact with larger scale features such as continental boundary flows. In this region,
68 other mechanisms may lead to sub-mesoscale eddies as well, when deep dense water is not formed. For
69 example, the same boundary flows may spin off eddies, at mesoscale with typical 10-20 day periodicity
70 (Crepon et al., 1982; van Haren et al., 2011), which may break up to sub-mesoscales.

71 The region also shows extensive generation of near-inertial waves, which under conditions of weakly
72 stratified waters lead to slantwise convection, as has been proposed in general (Marshall and Schott,

73 1999; Straneo et al., 2002) and inferred from shipborne profiling observations in the open Western
74 Mediterranean (van Haren and Millot, 2009). The convection may develop to irreversible 3D turbulence,
75 while vertical (opposite-to-gravity) density profiles appear stably stratified. Under such conditions, the
76 traditional internal-wave bounds $[f, N]$ of inertial $f = 2\Omega \sin\varphi$ and buoyancy N frequencies extend to
77 inertio-gravity wave IGW bounds $[\omega_{\min}, \omega_{\max}]$ (LeBlond and Mysak, 1978). Here, φ denotes latitude, and
78 Ω the Earth rotational frequency. The $\omega_{\min} < f$ and $\omega_{\max} > 2\Omega, N$, whichever is largest, are functions of N ,
79 φ and direction of wave propagation (LeBlond and Mysak, 1978; Gerkema et al., 2008),

80
$$\omega_{\max}, \omega_{\min} = (A \pm (A^2 - B^2)^{1/2})^{1/2} / \sqrt{2}, \quad (1)$$

81 in which $A = N^2 + f^2 + f_s^2$, $B = 2fN$, and $f_s = f_h \sin\alpha$, $f_h = 2\Omega \cos\varphi$ and α the angle to φ . For $f_s = 0$ or $N \gg$
82 2Ω , the $[f, N]$ are retrieved from (1).

83 Internal-wave bounds may also vary due to (sub-)mesoscale motions. Local time- and space-varying
84 horizontal waterflow (U, V) differences such as in meanders and eddies can generate relative vorticity
85 $\zeta = \partial V / \partial x - \partial U / \partial y$, so that the effective inertial frequency reads (Kunze, 1985),

86
$$f_{\text{eff}} = (f^2 + f\zeta - \partial U / \partial x \cdot \partial V / \partial y)^{1/2}. \quad (2)$$

87 For weak $\zeta < 0.2f$, (2) can be approximated by $f_{\text{eff}} \approx f + \zeta/2$ (Mooers, 1975; Kunze, 1985), but this is
88 probably not relevant for the Northwestern Mediterranean where $|\zeta| = f/2$ are reported from mid-depth
89 drifter observations (Testor and Gascard, 2006). When $f_{\text{eff}} < f$, relative vorticity is dominated by
90 anticyclonic motions, while for $f_{\text{eff}} > f$ cyclonic motions dominate.

91 A reversible, also 3D, process occurs when internal-wave motions displace the stably-stratified
92 environment (e.g., LeBlond and Mysak, 1978). Such motions may displace relatively warm waters
93 downward during a particular wave-phase, and cooler waters up. However, such displacements will not
94 overturn irreversibly and thus not vertically mix different water masses.

95 A combination of the two 3D processes was observed in fresh-water alpine Lake Garda, where in the
96 weakly stratified waters underneath internal waves turbulent convection appeared (van Haren and
97 Dijkstra, 2021). It was suggested that this convection was either generated via shear displacing
98 convection tubes slantwise, or via wave-accelerations overcoming the density differences in reduced
99 gravity instead of overcoming gravity as in natural convection. However, precise coupling interactions

100 between above 3D motions and turbulence are still unknown, despite historic suggestions (e.g.,
101 Ozmidov, 1965a).

102 A universal surface-ocean [kinetic] energy spectrum was proposed by Ozmidov (1965a). As shown
103 in Fig. 1a, a limited number of peaks representing energy sources like large basin-scale circulation,
104 inertial motions and tides, and wind waves were connected with power-laws of different levels but with
105 a single exponent $p = -5/3$ representing unidirectional downscale energy cascade (Kolmogorov, 1941).

106 In this paper, observational investigations of convective water pulses are further pursued that occur
107 frequently in the deep Western Mediterranean. The attempt is to better understand the deep-sea energy
108 cascade including from sources like (sub-)mesoscale motions that were not considered in Ozmidov
109 (1965a). The observations are made with the aid of a large 3D mooring-array holding nearly 3000 high-
110 resolution temperature 'T'-sensors on 45 closely spaced vertical lines (Fig. 1b). Three current meters
111 were added to verify (2) on small horizontal scales of about 50 m. The original aim was to try to capture
112 deep dense-water events, but these were not found in 20-month long records that included two winters.

113 Here, the focus will be on frequency (ω) spectral analysis, which was motivated by a re-analysis of
114 historic upper-sea current-meter mooring data from the region (van Haren, 2025). While the historic
115 summer data were characterized by a larger near-inertial peak in kinetic energy, the more energetic
116 winter data showed a power-law ω^p with exponent of about $p = -2.2$, across sub-mesoscale and internal
117 wave bands. The same slope was found in the summer-data, at sub-inertial frequencies mainly. Coarsely,
118 such a slope shows (unnamed) in the same frequency range from other ocean areas (e.g., van Aken et
119 al., 2005; Ferrari and Wunsch, 2009). As these data did not resolve the turbulence range and generally
120 have poor spectral statistics, renewed investigation is performed using data from the large 3D mooring
121 holding many sensors for expected improved statistics.

122

123 **2 Spectral scaling**

124 Depending on the predictability of the motions, an ocean-spectral peak may be <<1 order of frequency-
125 range wide, e.g. for deterministic barotropic tides, or about one-quarter order wide, e.g. for (baroclinic-
126 internal) inertial waves. Less predictable broader-range distributions of variance may be considered over
127 one or more orders wide, which are modeled by power-laws ω^p with exponents like $p = -5/3$.

128 Since Kolmogorov (1941), a generally accepted scaling model exists for part of the isotropic
129 turbulence spectrum in an inertial subrange of continual irreversible cascade of energy from large to
130 small scales. However, such a consistent model does not exist for energy cascade from (sub-)mesoscales,
131 perhaps via IGW, to turbulence in stratified waters. For the transition from meso- to sub-mesoscales,
132 spectral slopes with exponents varying from $p = -5/3$ to $p = -3$ have been suggested (Ozmidov, 1965a
133 (without source-naming); McWilliams, 2016; Storer et al., 2022). No mention has been made of scaling
134 spectra with a slope proposed by Bolgiano (1959) and Obukhov (1959) 'BO' for active-scalar buoyancy-
135 subrange convection turbulence.

136 This BO-scaling has different spectral slopes for scalars (potential energy) and kinetic energy, being
137 $p = -7/5$ and $p = -11/5$, respectively. BO-scaling has an ambiguous direction for energy cascade, at least
138 for homogeneous turbulence (Lohse and Xia, 2010). Thus, it should be contrasted with above 'KO'-
139 scaling proposed by Kolmogorov (1941) and refined by Obukhov (1949), for passive-scalar shear-
140 turbulence scales (Tennekes and Lumley, 1972; Warhaft, 2000), so that $p = -5/3$ is identical for both
141 scalars and kinetic energy. Buoyancy-driven BO-scaling associates with anisotropic turbulence, with
142 Richardson number Ri of order unity, and is not existent under neutral [no convection] conditions. It
143 contrasts with KO-scaling, which may become non-existent under sufficiently stable conditions. These
144 notions by Bolgiano (1959) suggest that KO- and BO-scaling cannot co-exist at the same location. The
145 appearance of mean dominant KO- and BO-scaling is investigated for the deep Mediterranean.

146 Other important exponents of slopes in ocean spectra are $p = -1$ for intermittency 'Im'-scaling of a
147 weakly chaotic nonlinear system (Schuster, 1984; Bak et al., 1987), and $p = -2$ 'IW-scaling' for internal
148 wave (Garrett and Munk, 1972) or finestructure contamination (Phillips, 1971; Reid, 1971).

149 We elaborate on turbulence likely induced by internal-wave breaking, via parametric instability
150 (Davis and Acrivos, 1967), slantwise convection (Straneo et al., 2002), and/or possibly via coupling
151 with sub-mesoscale eddies (e.g., Chunchuzov et al., 2021).

152

153 **3 Materials and Methods**

154 A nearly half-cubic-hectometer of seawater was sampled using 2925 self-contained high-resolution
155 NIOZ4 temperature (T-)sensors. Details of mooring layout and deployment are given in van Haren et

156 al. (2021). In summary, the sensors were taped at 2-m intervals to 45 vertical lines 125-m tall that were
157 each tensioned to 1.3 kN by a single buoy on top. The T-sensors recorded data at an interval of 2 s.
158 Three buoys held a 2-MHz single-point Nortek AquaDopp acoustic current meter recording at a rate of
159 once per 600 s waterflow and relative acoustic intensity $dI = (\text{amp} - I_{\text{ref}}) * 0.45$. Raw amplitudes ‘amp’,
160 taken relative to a background value I_{ref} , are transferred to dI with units of dB (decibels). For somewhat
161 better comparison with volume backscattering, dI are transferred to echo intensities ‘rEI’ with arbitrary
162 units of (backscatter) power, $rEI = 10^{dI/10}$. Both dI and rEI are used, although the former favours low-
163 over high-frequency signals compared to the latter.

164 The lines were attached at 9.5-m horizontal intervals to a steel-cable grid that was tensioned inside a
165 70-m diameter steel-tube ring (Fig. 1b). Filled with air, the ring functioned as a large float that was
166 towed to the mooring site. Filled with water, the ring was a 140-kN anchor. The ensemble ‘large-ring
167 mooring’ was deployed at the $<1^\circ$ flat and 2458-m deep seafloor of $42^\circ 49.50'N$, $006^\circ 11.78'E$ just 5
168 km south of the foot of the steep continental slope of the Northwestern Mediterranean Sea, in October
169 2020. With the help from Irish Marine Institute Remotely Operated Vehicle (ROV) ‘Holland I’, all 45
170 vertical lines with T-sensors were cut and successfully recovered in March 2024.

171 As with all NIOZ4 T-sensors (van Haren, 2018), their individual clocks were synchronised via
172 induction to a single standard clock every 4 hours, so that all were sampled within 0.01 s. One line did
173 not register synchronisation, possibly due to an electric cable failure. Three T-sensors leaked and <10
174 were shifted in position due to a tape malfunctioning. In total 2902 out of 2925 T-sensors functioned as
175 expected mechanically. Due to unknown causes all T-sensors switched off unintentionally when the file-
176 size on the memory card reached 30 MB after 7500 start-ups for writing a 4-kB data block. It implied
177 that a maximum of 20 months of data was obtained. After post-processing, some 20 extra T-sensors are
178 not further considered due to electronics (noise) problems. Depending on the period of investigation,
179 between 50 and 150 T-sensors are not considered because of bias. Data from T-sensors failing post-
180 processing criteria are interpolated between neighbouring sensors.

181 With respect to previous NIOZ4 version, the somewhat improved electronics resulted in about twice
182 lower noise levels of 0.00003°C and twice longer battery life. As detailed elsewhere (van Haren, 2018),
183 calibration yielded a relative precision of $<0.001^\circ\text{C}$. Instrumental electronic drift of typically 0.001°C

184 mo^{-1} after aging was corrected by referencing daily-averaged vertical profiles, which must be stable
185 from turbulent overturning perspective in a stratified environment, to a smooth polynomial without
186 instabilities. For reference and to establish a temperature-density relationship, a single shipborne
187 Conductivity-Temperature-Depth profile was measured locally during the deployment cruise. In
188 addition because vertical temperature (density) gradients are so small in the deep Mediterranean,
189 reference was made to periods of typically one hour duration that were homogeneous with temperature
190 variations smaller than instrumental noise level (van Haren, 2022). Such periods were found on days
191 350, 453 and 657 in the existing records. A tertiary correction involved low-pass noise filtering 'lpf' of
192 data, with cut-off frequencies between 700 and 3000 cpd (cycles per day) and 0.05 and 0.2 cpm (cycles
193 per meter).

194

195 **4 Results**

196 The 600-d data-overview time series in Fig. 2 demonstrate multiple variations with time of which a
197 variation of 10-20 days stands out. This mesoscale variation is apparent in temperature at all levels
198 between $h = 1$ and 125 m above seafloor (Fig. 2a) and in echo intensity measured at $h = 126$ m (Fig.
199 2b). It is also evident in the modulation of band-pass filtered sub-mesoscale (between [0.1 1] cpd and
200 near-inertial (between [0.95 1.05]f) waterflow amplitudes (Fig. 2c), in 45 ± 5 -m horizontal waterflow
201 differences and stratification rate (Fig. 2d), and in wind-speed squared 'wind-load' (Fig. 2e).

202 The time series in Fig. 2d of mesoscale low-pass (<0.1 cpd) filtered effective inertial frequency (2)
203 oscillates around planetary vorticity f by about $\pm 1f$. This seems a large value for the deep sea, but it
204 corresponds well with values reported for near-surface eddies (e.g., Fine et al., 2018; Yang et al., 2021).
205 It has a 600-d mean value of $\langle f_{\text{eff}} \rangle = 0.91 \pm 0.9f$, and anticyclonic relative vorticity slightly dominates
206 over cyclonic vorticity. The f_{eff} seems to follow stratification by 4-5 days. Mean N averaged over 124
207 m and 600 days is $\langle N \rangle = 1.0 \pm 0.6f \approx 1.1\langle f_{\text{eff}} \rangle$.

208 Typical range values that govern the deep-sea dynamics are: Temperature variations of 0.005°C in
209 time and 124-m in the vertical that are alternated with periods when vertical differences are $<0.0002^\circ\text{C}$,
210 and total waterflow amplitudes are 0.05 m s^{-1} , which is also about the maximum value for 50-m

211 horizontal flow differences. The threshold value of daily-mean 0.0002°C for 124-m vertical temperature
212 difference delineates near-homogeneous (NH) conditions, difference $<$ threshold, from stratified-water
213 (SW) conditions, difference $>$ threshold. Spectral analyses partially focus on 600-d averages, and
214 partially on the distinction between these two conditions, represented by two periods of 17 days long,
215 which is about the longest consecutive period under a single condition in the 600-d record.

216

217 **4.1 Statistical improvement?**

218 Prior to exploring various spectral analyses including vertical and horizontal coherence and cross-
219 correlations, the mooring-array's improvement of statistics in reducing spectral uncertainty is explored.
220 Fig. 3a displays spectra for a period of 17 days under SW-conditions, varying from nearly unsmoothed,
221 except for application of a single modified-Kaiser taper window (Parks and Burrus, 1987), to a range of
222 different averaging. The single T-sensor's spectrum has a large statistical-uncertainty width. This
223 apparent variance variation is an optical illusion due to the logarithmic plotting of the x-axis; the
224 statistical uncertainty is equally spread over all frequencies.

225 The equally-spread statistical uncertainty is substantially reduced, spectrally smoothed, when the
226 single T-sensor's spectrum is averaged with that of data from all remaining independent T-sensors of
227 the same mooring line. However, further reduction in variance variation by averaging with that of data
228 from other vertical lines, or over longer more variable periods, is not equally spread over frequencies.

229 Most-improved statistics upon smoothing using multiple independent data records is found near the
230 Nyquist frequency, where the smoothing closely matches that of a quasi-random distribution of spectral
231 values (Jenkins and Watts, 1968). Around $\omega = f$, increased smoothing hardly reduces spectral uncertainty
232 when data from multiple T-sensors are averaged. For the smoothed spectra, the width of variance
233 variations is narrowest, most reduced around $\omega_{\text{nar}} = 350$ cpd. Apparently at $\omega > \omega_{\text{nar}}$, incoherent, isotropic
234 motions of equal-sized components $[u, v, w]$ are found for which spectral variance complies with quasi-
235 random distributions. Consequently at $\omega < \omega_{\text{nar}}$, more coherent, anisotropic motions are expected.

236 The effect of T-sensor bias on spectral content is small under SW, due to relatively large temperature
237 variance, but reflects a slight diversion of the spectral slope starting at about ω_{nar} . This is demonstrated

238 after application of a vertical lpf_z with cut-off at 0.1 cpm. Further smoothing involving all independent
239 T-sensors from all 45 lines changes the spectral width over that of one line only by $<30\%$ for the low-
240 frequency range $\omega \sim < 30$ cpd, while reducing by $85\% \approx (1 - 45^{-1/2})/100$ for $\omega > \omega_{nar}$ commensurate with
241 random statistics. Only spectral-band smoothing, the averaging of variance of neighbouring frequency
242 bands, substantially reduces variance variations by a factor of two around $\omega = f$. However, band-
243 smoothing does not treat the T-sensors as independent instruments, but rather their mean spectral values
244 as independent per frequency band.

245 The effect of short-term bias removal via lpf_z is more important, and more necessary, under NH than
246 under SW. The effect is best visible in a coherence spectrum (Fig. 3b). The example for 10-m vertical
247 coherence demonstrates a shift by maximum half an order of magnitude towards higher frequencies for
248 filtered records compared to unfiltered records.

249

250 **4.2 Lag-correlation analysis**

251 Yearlong lag-correlation analysis has been performed between vertical temperature difference and
252 various quantities. Normalized correlation values are shown in Fig. 4. Wind speed correlates reasonably
253 with temperature with an advance of about 5 days (Fig. 4a). This same advance is observed for
254 mesoscale relative vorticity in (anticyclonic-dominated) $-f_{eff}$, or a delay of about 4.5 days for cyclonic-
255 dominated f_{eff} (Fig. 4d). As a result, temperature (difference) and mesoscale f_{eff} are in quadrature, while
256 wind speed is in phase with $-f_{eff}$ and in anti-phase with f_{eff} . Approximately in-phase and more correlated
257 with temperature (difference) are sub-mesoscale waterflow speeds, with a small advance of 0.7 days
258 (Fig. 4c), while in anti-phase and less correlated are near-inertial waterflow speeds, with a delay of 1.2
259 days (Fig. 4b). Strictly in-phase with delay 0 is most correlated relative acoustic echo intensity (Fig. 4e),
260 which implies that small particles are transported by dominant convective motions of active
261 (temperature) scalars, or the acoustics reflect turbulence intensity.

262 The inference of the lag-correlation analysis is that acoustic echo intensity may be used as a, noisy,
263 proxy for temperature differences. They directly reflect sub-mesoscale motions, but inversely near-
264 inertial motions that are more associated with near-homogenous conditions under anticyclonic-
265 dominated mesoscale relative vorticity that is directly forced by wind.

266 Whilst the temperature differences and zero-lag associated signals reasonably correlate with wind at
267 the sea surface, the 5-day delay suggests a baroclinic response. Most puzzling is mesoscale relative
268 vorticity, with approximately 5-day advance for anticyclonic-dominated motions suggesting a
269 barotropic response to wind, and 5-day delay for cyclonic-dominated motions suggesting a delayed
270 baroclinic response. As near-inertial motions associate with anticyclonic mesoscale motions, a trapping
271 of the former by the latter is suggested as proposed by Kunze (1985). Sub-mesoscale and near-inertial
272 motions are in quadrature and do not dominantly co-exist. As a result, mesoscale and near-inertial
273 motions act like wind-driven sources in the deep-sea interior, with a transfer of energy to sub-mesoscale
274 and possibly non-inertial internal wave motions.

275

276 **4.3 An indication for possible sources of energy**

277 Prior to the investigation of spectral power-laws, some information is extracted from limited cross-
278 spectral information (Fig. 5). The exercise is limited because we only have waterflow measurements at
279 $h = 126$ m above seafloor, which can be correlated with nearest T-sensor at $h = 125$ m, and because the
280 waterflow measurements reach noise levels at $\omega > 3$ cpd, thereby barely resolving the IGW-band [ω_{\min} ,
281 ω_{\max}] for overall mean $N = 1.35f$. Nevertheless, the result is reasonably consistent between the three
282 possible U-T pairings, of which only the least-resolved vertical one is shown, in average for the 600
283 days of T-sensor observations (Fig. 5).

284 All three cross-spectra wT show multiple sign changes at sub-mesoscales and clear negative vertical
285 fluxes around 0.07 cpd at mesoscales and about 0.15 cpd at large sub-mesoscales. Differences between
286 the three sets of instrumentation exist, but consistency is found around these frequencies. Assuming that
287 the 600-d average is dominated by SW conditions with stable positive vertical temperature gradient,
288 negative wT implies downgradient flux contribution, at mesoscales and large-sub-mesoscales.
289 Ambiguously-directed down- and up-gradient fluxes are found at higher-frequency sub-mesoscales, 0.3
290 cpd $< \omega < \omega_{\min}$, and IGW frequencies, $\omega_{\min} < \omega < \omega_{\max}$, albeit with net upgradient fluxes for about 0.3
291 cpd $< \omega < f$.

292 Downgradient fluxes transport heat from larger to smaller scales such as in the turbulence inertial
293 subrange, and here suggest large sub-mesoscale motions as a dominant source of energy. Counter-(up-
294)gradient fluxes are interpreted as restratification, and here suggest mesoscale, large sub-mesoscale and
295 IGW (near-inertial motions) partially acting as source of energy. Countergradient internal-wave band
296 fluxes were previously observed above steeply sloping topography for 2-day (van Haren et al., 1994)
297 and 20-day (Gemmrich and van Haren, 2002) average data.

298

299 **4.4 Power spectra under SW- and NH-conditions**

300 At the large-ring mooring site, temperature variance and coherence spectra are rather featureless (Fig.
301 3a). No distinct spectral peaks, such as at f or at semidiurnal frequency 2Ω stand out, and no spectral
302 gaps are found. This implies that all signals distribute their energy over rather broad frequency ranges,
303 instead of over narrow ranges like deterministic signals do, such as tides. An exception may be near-
304 inertial kinetic energy $KE(f)$. It also implies that the broad-range signals may be modelled by transitions
305 over a certain frequency range after establishing their power-laws. Transitions and directionality of
306 energy transfer will depend on the value of p .

307 Before continuing with 600-d average investigations, a spectral comparison is made of 17-day
308 records under distinct SW- and NH-conditions (Fig. 6). Their mean temperature spectra differ by almost
309 two orders of magnitude in variance, but are otherwise similarly shaped at first glance. Because
310 temperature variance near the Nyquist frequency is still larger under SW conditions, albeit by only half
311 an order of magnitude, the SW spectrum has not reached instrumental noise levels.

312 In none of the spectra a steep slope ω^p , $p < -3$, is observed that represents the viscous dissipation
313 range before noise level, as was observed for $\omega > \sim 3000$ cpd in hundred-times more stratified NE-
314 Atlantic waters over steep topography (van Haren et al., 2016). The increase from half to two orders of
315 magnitude difference between the deep-Mediterranean T-spectra suggests some variation in spectral
316 slopes under differently stratified conditions (Fig. 6), while both show on average 4.5-d delayed
317 correlation between stratification and mesoscale vorticity in f_{eff} (Figs 2,4). Under both conditions, the

318 IGW bands show a relatively flat spectral slope, with p being about zero judging from the not band-
319 smoothed spectra, and relative peaks near their IGW-bounds.

320 Under NH conditions, stratification is very weak and occasionally unstable, with mean $N \approx 0.5f$ from
321 reordered data, so that the IGW bounds shift to lower frequencies and cover a wider frequency range
322 compared with SW conditions. At super-buoyancy frequencies, NH's T-spectrum tends to follow BO-
323 scaling $p = -7/5$, especially clear between about $50 < \omega < 400$ cpd, before roll-off to noise. No KO-
324 scaling is found in this spectrum, which suggests that convection turbulence dominates over shear
325 turbulence. Between $\omega_{\max} < \omega < 50$ cpd the spectral upper-bound variance tends to follow $p = -2$, the
326 spectral slope of IW-scaling or finestructure. For most of this frequency range, internal waves cannot be
327 freely propagating, unless very thin, < 2-m, layer stratification is dominant, which is unlikely. Despite
328 the rather flat spectral slope in the IGW-band, the overall slope of the sub-mesoscale range tends to
329 follow $p = -7/5$, but uncertainties are rather large.

330 Under SW-conditions, the IGW band (for mean $N = 2.2f = 2.0f_h$ calculated from reordered data)
331 shifts to slightly higher frequencies compared to NH. The mean stratification equals that of minimum
332 stratification under linear stability subject to large-scale destabilizing shear so that local neutral stability
333 exists in the direction of Earth's rotational vector (van Haren, 2008). Nevertheless, spectral slopes are
334 quite similar to that of NH, which may reflect that over time, on average, $f_{\text{eff}} \approx N$ so that local neutral
335 stability exists in slantwise direction with nonlinear stability subject to small-scale shear, under both
336 conditions. At super-buoyancy frequencies $30 < \omega \sim 800$ cpd the spectral upper-bound variance falls
337 off with about $p = -2$. For $f < \omega < 30$ cpd it slopes with $p = -5/3$ of KO-scaling, with considerable low-
338 variance dips.

339 The associated waterflow measurements demonstrate KE spectra with relatively large noise levels at
340 $\omega > 3$ cpd, or just super-IGW, super-buoyancy frequencies. Nevertheless, these spectra demonstrate a
341 stark contrast between the two conditions at $\omega < 3$ cpd. Under NH, a near-inertial peak stands out of the
342 noise. At sub-IGW, sub-inertial frequencies $0.1 < \omega \sim 0.7$ cpd, KE rises to a variance level eventually
343 above the inertial peak. In that sub-mesoscale range, the KE-spectrum slopes with about $p = -11/5$. This
344 would imply BO-scaling as found in the T-spectrum, but uncertainties are large. Under SW-conditions,

345 the same sub-inertial rise is found in KE, except that it starts at higher variance and over a smaller
346 frequency range of about $0.1 < \omega \sim 0.4$ cpd. In this frequency range ambiguously directed vertical flux
347 was found (Fig. 5), and elevations and depressions in KE and T alternate, consistently under both
348 conditions (Fig. 6). No distinct near-inertial peak is observed under SW, but a broad rise exists between
349 about $0.4 \text{ cpd} < \omega < f$, which is also observed in T-variance. It suggests a widening of IGW, possibly in
350 a slanted frame of reference where $N \approx 0.3f \approx 0.4$ cpd. Only at f , the KE-value under SW is lower than
351 the peak under NH-conditions. At all other frequencies, including super-buoyancy frequencies towards
352 noise, KE under SW exceeds that under NH. This supports the suggestion of a direct link between the
353 rise at (sub-)mesoscale across IGW into turbulence.

354

355 **4.5 Coherence under SW- and NH-conditions**

356 The large-ring mooring offers the possibility to investigate temperature coherence over a range of
357 vertical (dz) and horizontal (dh) length scales (Fig. 7). We distinguish SW- from NH-conditions, and
358 employ lpf affecting NH as for Fig. 2b, except when vertical 2-m scale coherence is computed which
359 scale is shorter than the filter cut-off. Different smoothing is applied by including different amounts of
360 T-sensors (lines), as indicated in the caption of Fig. 7.

361 The general observation is high coherence $coh > 0.8$, at sub-IGW, sub-inertial frequencies, and low
362 $coh < 0.2$, the 95%-statistical significance or noise level, at $\omega > 3000$ cpd. At frequencies in between, a
363 clear distinction is observed between the two conditions. Under NH, coherence uniformly transits
364 between above high and low coherence values. Under SW except for $dz = 2$ m, coherence also steadies
365 to a level of $coh \approx 0.25$ at super-buoyancy frequencies between about $20 < \omega < 1000$ cpd, depending on
366 length scale, before rolling off to noise level. This is already obvious in moderately smoothed spectra.

367 At the $coh = 0.25$ level, coherence is about the same for dz and dh at identical length scales, which
368 suggests isotropic motions at these frequencies. The $coh = 0.25$ small but statistically significant non-
369 noise coherence changes hardly with length scale. It is in the frequency range with thinnest variance-
370 variation in T-spectra after smoothing (Figs 3, 6). No such non-noise coh-level was observed in the more
371 stratified and more turbulent observations above NE-Atlantic sloping topography (van Haren et al.,

372 2016), but a similar observation was made in well-stratified open-ocean data (Gostiaux and van Haren,
373 2012). Ruling out freely propagating internal waves at super-buoyancy frequencies, interpretations, also
374 guided by vertical phase differences, are given in terms of finestructure advection and of standing-waves
375 (breaking) in Appendix A.

376 Further inspection provides some specific information on the difference between length scales and
377 between vertical and horizontal coherence. At the smallest vertical scale of $dz = 2$ m, coherence is largest
378 under SW, while that under NH is reduced by bias (Fig. 7a). Although a plateau is not reached for SW_{dz2} ,
379 the sliding down from it to noise level occurs between $1000 < \omega < 5000$ cpd, as may be inferred from
380 comparison with coherence at 10-m vertical scale SW_{dz10} in which a $coh = 0.25$ level is found.

381 Approximately at $\omega = 1000$ cpd, SW's low coherence level $coh = 0.25$ starts rolling off to noise,
382 irrespective of the scale used (Fig. 7a-d). Its starting frequency ω_{sf} does vary with length scale, between
383 about 30 and 150 cpd, for length scales of 60 and 10 m, respectively (Fig. 7b, c). It hardly differs between
384 vertical and horizontal coherence, and thereby marks the transition to isotropic motions as coherence
385 becomes direction independent. At $\omega < \omega_{sf}$, SW_{dz} and SW_{dh} diverge for fixed length scale, with larger
386 coherence at the horizontal scales. This has also been observed for limited length scales above a
387 seamount slope in the NE-Atlantic which is dominated by larger stratified conditions and shear
388 turbulence (van Haren et al., 2016). There, the transition to isotropic motions occurred at maximum
389 buoyancy frequency calculated using an estimated length-scale of 0.25 m. If employed here, it would
390 imply a transition at $8^{1/2}N_{max} \approx 30$ cpd. Also here, the larger the length scale, the larger the difference
391 in coherence, with barely high coherence $coh > 0.8$ for $dz = 60$ m at all frequencies (Fig. 7c).

392 Under NH, no non-noise low-coherence levels are observed, and only limited difference in coherence
393 between vertical and horizontal scales. Motions become isotropic at ω_{sf} , which is length-scale dependent
394 like under SW. While the transition from high to low coherence is about the same for SW_{dz} as NH_{dz} and
395 NH_{dh} for a length scale of 10 m (Fig. 7b), NH_{dz60} is significantly more coherent than SW_{dz60} at $\omega < 10$
396 cpd. This probably reflects relatively large scales dominating convection turbulence such as by
397 geothermal heating from below and by (slanted) eddies from above under NH-conditions. Stratification
398 commonly reduces vertical length scales, with reduced coherence, also in the deep sea.

399 That SW conditions may also differ in the vertical with more stratification away from the seafloor,
400 is reflected for 30-m horizontal length scales in upper and lower layers in Fig. 7d. In the lower layer,
401 coherence is almost indistinguishable from that under NH conditions. It lacks the coh = 0.25 level typical
402 for SW conditions, and indeed observed in the upper layer. It suggests that the low-coherence level is
403 related with non-negligible stratification and stratified turbulence under SW conditions, and not
404 reflecting convection turbulence. However, the presented example is not typical for SW conditions and
405 depends on the height of stratification. Upper- and lower-layer coherence spectra can be the same (five-
406 day record starting day 605), and sometimes reversed when stratification is pushed to very near the
407 seafloor under strong convection turbulence above (e.g., 0.8-day record starting day 606.8).

408

409 **4.6 600-d average spectra**

410 Considering full 20-month average spectra, the distinction between NH and SW is no longer made.
411 Instead in the vertical, coherence- and shear-turbulence provide slightly different slopes with improved
412 statistics, not only at super-buoyancy frequencies (Fig. 8). Splitting the vertical in three layers and
413 applying band-smoothing for super-IGW frequencies, the three temperature spectra have significantly
414 different slopes between about $30 \approx 2N_{\max} < \omega < 400$ cpd. N_{\max} is defined as the maximum of small-2-
415 m-scale buoyancy frequency. This definition is somewhat arbitrary as it depends on the scale-length
416 between sensors.

417 A considerable part of above high-frequency range corresponds with the transition from high to low
418 coherence, or the coh = 0.25 level in Fig. 7. In this range, the upper-layer slope follows KO-scaling with
419 exponent $p = -5/3$ most closely over a limited frequency range only, the middle layer BO-scaling with
420 exponent $p = -7/5$, and the lower layer Im-scaling with exponent $p = -1$ (Fig. 8). As a result, only the
421 most temperature-variance containing upper layer demonstrates a small inertial subrange of dominant
422 shear turbulence that treats temperature as a passive scalar. The remainder of the data, like under NH
423 conditions over the entire vertical range of observations, does not show an inertial subrange but a fluent
424 transition from buoyancy (or intermittency) subrange to noise. The viscous dissipation range is not
425 resolved in any of the records.

426 For the range $1-2 < \omega < 8$ cpd, or roughly $N < \omega < 0.5N_{\max}$, the three vertical levels demonstrate
427 about equal slopes with an exponent close to $p = -2$. Although the upper bound of this range includes
428 small-scale internal waves and although coherence was found to be high at almost all scales there (Fig.
429 7), it is anticipated that some large energetic turbulent overturns affect the spectral slope. If so, the
430 spectral slope would correspond with finestructure ‘contamination’, or rather variable kinematic
431 transport of thin and thick layers passed the T-sensors.

432 At sub-inertial frequencies $0.1 < \omega < 0.6$ cpd (extended to $< f$ for middle and lower layers), T-spectra
433 for all three levels correspond with BO-scaling with exponent $p = -7/5$ (Fig. 8). As this range is not
434 expected to be part of the buoyancy subrange of turbulence, it may associate with sub-mesoscale eddies.
435 With reference to Fig. 5, the frequency range includes the transition from upgradient to downgradient
436 vertical buoyancy flux, established at $h = 126$ m. This associates with BO-scaling of which the energy
437 transfer between scales is ambiguous in direction, as indicated for laboratory turbulence (Lohse and Xia,
438 2010), and unlike KO-scaling that is strictly downgradient. At $\omega < 0.1$ cpd, spectra tend to slope like
439 Im-scaling. This frequency range includes minimum buoyancy frequency N_{\min} , which is difficult to
440 define as it depends on sensor distance and duration.

441 Continued BO-scaling is also observed between 0.06 cpd $< \omega < \omega_{\min}$ (for $N = 1.35f$) in KE-spectra,
442 for which exponent $p = -11/5$, and in relative echo intensity spectra that closely correlate with
443 temperature differences (Fig. 4e) and in horizontal waterflow difference spectra, for which exponent p
444 $= -7/5$ and which thus act like an active tracer. In limited range between $0.06 < \omega < 0.15$ cpd, BO-scaling
445 is also observed in vertical waterflow component w , as $p = -7/5$. The limited range is due to the relatively
446 low signal/noise ratio, the signal exceeding noise for $\omega < 0.5$ cpd at sub-mesoscales. The BO-scaling
447 contrasts with w -spectra open-ocean well-stratified conditions, which are flat white noise at sub-
448 mesoscales and only exceed noise level in the IGW bulging near N (e.g., van Haren and Gostiaux, 2009).

449 While the waterflow measurements are limited to only three instruments at upper level $h = 126$ m,
450 the slopes are significantly different from other model slopes with exponents like $p = -2$ and $-5/3$. As
451 indicated before, the near-inertial peak/bulge in these spectra has no correspondence in T-spectra, which
452 is not necessarily expected, but which suggests considerable redistribution of near-inertial energy in

453 temperature. The small bulging peak in 60-m waterflow difference indicates relatively short horizontal
454 spatial scales existing near f . While this is expected for vertical scales in well-stratified waters, it
455 explains 1-10% in kinetic energy, or about 10-30% of waterflow amplitude. This suggests the typical
456 length scale of inertial excursions is up to 600 m, having an amplitude of 0.03 m s^{-1} , as observed at $h =$
457 126 m.

458 As observed previously from mid-depth data (van Haren, 2025), the near-inertial peak in KE extends
459 above the level of a bridge that slopes with exponent $p = -1$. Such an elevated spectral bridge in KE-
460 spectra is expected for turbulence in unstable (atmospheric) stratification (Lin, 1969). It is attributed to
461 the flow absorbing energy from temperature variations when potential energy is transferred to kinetic
462 energy.

463

464 **4.7 Refining fully averaged spectra in scaled form**

465 600-day and 38-line average spectra of 20-s sub-sampled T-sensor data are referenced to $\omega^{-7/5}$, the BO-
466 scaling (Fig. 9). All vertical lines are separated in two groups of T-sensors, of which the upper (Fig. 9a)
467 is composed of one, the upper-most T-sensor record, and the lower (Fig. 9b) is composed of 21 records.
468 Only lines that had more than 80% of good data in the group are considered. In Fig. 9a, the average
469 relative echo intensity DI-spectrum is added for reference.

470 The two enlarged T-spectra are quite similar. All smoothing via averaging data of the large number
471 of > 700 independent T-sensor records for the lower spectrum hardly reduces the spectral width in
472 variance variation in the range between mesoscale and isotropic turbulence motions. In the same band,
473 also the DI-spectrum hardly reduces variance by averaging data from multiple acoustic beams. Least-
474 reduced variance variation is found in the IGW band and up to $\omega = 3-4 \text{ cpd} \approx N_m$. The latter frequency
475 is close to the mean Ozmidov frequency $U/L_0 \approx 3.2 \text{ cpd}$, where $L_0 = (\epsilon/N^3)^{1/2}$ denotes the largest length-
476 scale for isotropic turbulent overturns in stratified waters (Ozmidov, 1965b), for mean $U = 0.035 \text{ m s}^{-1}$
477 and convection turbulence dissipation in (slanted) weak stratification $N = 0.3f$.

478 The lack of smoothing is attributed to quasi-coherent anisotropic motions. Here, reference is made
479 to the non-band-smoothed spectra. The most elevated part in variance is about one-and-a-half orders of
480 frequency range wide between $0.1 < \omega < 3 \text{ cpd}$. The top of its variance distribution is flat, i.e. follows

481 BO-scaling. It possibly represents a “buoyancy subrange” of sub-mesoscale and IGW motions. This
482 frequency range corresponds roughly with the range between 2-m scale N_{\min} , noting difficulty in
483 establishing its value (Section 4.8), and N_m .

484 Towards lower and higher frequencies, the elevated part in variance drops off following about Im-
485 scaling and IW/finestructure scaling, respectively. (In theory for the band-smoothed spectra, a deviation
486 from BO-scaling is significantly following KO-scaling when the spectral slope is maintained over half
487 an order of magnitude, Im-scaling over at least one-quarter order of magnitude, and IW/finestructure-
488 scaling over at least one-tenth order of magnitude.) One order of frequency range away from the elevated
489 part, variance is reduced by about one order of magnitude. At the high-frequency side this point is
490 reached close to 2-m-scale N_{\max} . Further beyond these frequencies, the spectra tend to follow BO-
491 scaling, again. There, it represents the buoyancy subrange of turbulence.

492 Differences between upper- and lower-group 600-d spectra are as follows. In the small IGW-band,
493 the elevated part in variance of the upper group inclines to KO-scaling while in the lower group
494 continues BO-scaling, before dropping off at the steeper IW/finestructure-scaling for $\omega > 3$ cpd, which
495 appears the furthest extension resolved above noise of near-inertial KE in Fig. 8. The non-turbulence
496 dropping off from BO-scaling is thus found very limited following KO-scaling. Likewise, at $\omega > 30$ cpd
497 in turbulence range the upper group briefly follows BO- before KO-scaling while the lower group
498 abruptly switches to BO-scaling for almost one order of frequency range, before rolling off to noise at
499 $\omega > 200$ cpd. The 30-cpd transition coincides with 60-m length-scale transition to weakly-coherent
500 isotropic motions (Fig. 7) and roughly with mean- $N \omega_0$ (Fig. 9).

501 Given the correspondence between the two spectra and the limited KO-scaling in the upper layer
502 only, it appears that BO-scaling is important throughout. Because of ambiguous effect of convection-
503 like BO-scaling on the direction of energy cascade (Lohse and Xia, 2010), the apparition of elevated T-
504 variance part in the sub-mesoscale band may result from generation of small sub-mesoscale motions
505 from (upgradient) near-inertial and from (downgradient) large sub-mesoscale motions. This frequency
506 band comprises the band $0.3 < \omega < 0.6$ cpd with some positive cross-spectral contributions between w
507 and T , resulting in a reduction in range of mean downgradient flux (Fig. 5), noting some ambiguity due

508 to limited resolution of vertical waterflow measurements. While KO-scaling is dominated by shear
509 turbulence and a downgradient cascade, its partial apparition in the IGW of the upper group suggests a
510 larger spread of energy towards higher frequency internal waves and turbulence scales there.

511 The upper-group rEI-spectrum reflects most of above observations, with dominant BO-scaling
512 between mesoscales and about 10 cpd, before rolling off to noise. The small elevation in the IGW and
513 the limited range between [3, 10] cpd of $p = -2$ -slope, in comparison with the T-spectrum, may be due
514 to the larger influence of noise.

515

516 **4.8 The distribution of stratification**

517 The width between minimum and maximum buoyancy frequencies of difficult-to-smooth T-variance
518 spectra from independent measurements reflects the core of distribution of 600 days of data of
519 (logarithm of) 2-m vertical buoyancy frequency N_s (Fig. 10). Although the distribution is less wide than
520 the width of the quasi-coherent non-smoothed variance width in Fig. 9, possibly due to the limiting
521 vertical scale of 2 m, it reflects the core of the coherent thick variance part and the positions of mean
522 large-scale N , mean of maximum small-scale N_m , and the rare occurrence of minimum N_{min} and
523 maximum N_{max} buoyancy frequencies.

524 As rare occurrence of rapid-fluctuating N_{max} are more or less understandable, a rare occurrence of
525 N_{min} does not match its long duration as it requires persistency over at least $2\pi/N_{min} \approx 10$ days. More
526 realistic indicators are 2.5 percentiles of the N_s -distribution, or a threshold curve of $\omega_{Nyquist}/\omega$ resulting
527 in 8 and 0.5 percentiles for N_{min} and N_{max} , respectively (Fig. 10). This places N_{max} at 5-7 cpd, and N_{min}
528 at about 0.55 cpd $\approx 0.4f$, near a dip in KE (Fig. 6) and near a bulge in w around 0.4 cpd whereby the
529 aspect ratio is reduced to $O(0.1-1)$ (not shown).

530 The lower layer shows an almost perfect lognormal distribution of N_s . For the upper layer the
531 distribution is slightly skewed and also shows a small flat level, starting at about N_m . This level reflects
532 more small-scale layering and hence the possibility of enhanced finestructure contamination possibly
533 following parametric instability (cf., Appendix A).

534 Although a somewhat smaller vertical length scale down to about 1 m would have corresponded
535 better with the coherent and non-smoothable parts of the spectra, the correspondence of these parts with
536 the stratification-rate distribution indicates that the deep sea is not a pool of stagnant water. Instead, it
537 is dynamic and variable, with sub-mesoscale eddies, internal waves, stratified turbulence operating at
538 partially the same scales. Whilst the kinetic energy has major input at localized near-inertial frequency,
539 a broadband response is found in the scalar temperature (and other like dI) fields. Considering that most
540 of the spectrum follows BO-scaling with an active role for scalars, and possibly also flow vorticity or
541 divergence, a connection is suggested between mesoscale and near-inertial motions via sub-mesoscale
542 eddies.

543

544 **4.9 BO-scaling of sub-mesoscale motions**

545 The observation at all levels and all quantities, including KE and several scalars, of BO-scaling in
546 average spectra across [0.1, 0.7] cpd where sub-mesoscale motions reside can be supported from several
547 principle considerations.

548 First, coherent sub-mesoscale motions in the vertically stratified deep-sea are not associated with
549 isotropic turbulence, so that they unlikely follow KO-scaling. Second, isotropic motions are limited by
550 the aspect ratio of ocean basins or of the size of homogeneous layers. Commonly, the aspect ratio of
551 motions is about unity near N and $\ll 1$ at sub-mesoscales, see also 600-d average w and KE spectra
552 (Fig. 8), with a possible extreme shift to lower frequencies in near-homogeneous layers. As in the deep
553 Northwestern Mediterranean near-homogeneous layers can extend up to $h = 300$ m above seafloor (van
554 Haren et al., 2026) and mean sub-mesoscale flow speed amounts $U_{sm} = 0.013 \pm 0.009$ m s⁻¹ (Fig. 2c), the
555 minimum frequency ω_{iso} for isotropic motions in the lower layer is expected to be $\omega_{iso}(h) = U_{sm}/h = 0.6$
556 cpd. This is close to the observed dip in the KE-spectrum for NH (Fig. 6). All motions at $\omega < \omega_{iso}$ must
557 therefore be anisotropic, even under NH (over relatively large h), although variations in aspect ratio may
558 occur such as around 0.35 cpd. Third, our observations indicate dominant convection, both under NH,
559 via geothermal heating from below, as well as under SW, via slanted-eddy internal wave push from

560 above/sideways. Fourth, limited observations indicate ambiguously directed vertical fluxes in the sub-
561 mesoscale range.

562 Apparently, sub-mesoscale motions are best modeled using BO-scaling, rather than KO-scaling like
563 in Fig. 1a. The BO energy cascade may be reversible because of its ambiguous direction. This unknown,
564 but if f-motions are trapped in anticyclonic eddies, local small-scale shear may generate marginally
565 stable $Ri \approx 1$ and non-linear motions that may lead to irreversible turbulence.

566 Thus a modified energy spectrum is presented for deep-sea motions in the frequency range between
567 mesoscales and stratified turbulence (Fig. 11). Sources are at large sub-mesoscales and near-inertial
568 frequencies (which may include tides in the open ocean), which elevate the at least one order of
569 frequency wide ranges in between. The spectral slopes between the two sources follow BO-scaling of
570 active scalars representing anisotropic, coherent eddy-motions. At $\omega > 2\Omega$, spectra slope with internal
571 wave/finestructure scaling, before either adopting BO-scaling under near-homogeneous and lower-layer
572 stratified water conditions, or KO-scaling under upper-layer stratified water conditions. The latter
573 observation seems at odds with the condition of isotropic motions, except that, probably dominant small-
574 scale, shear is expected to be strong under stratified conditions. This sufficiently destabilizes the
575 apparently stable conditions.

576

577 **5. Discussion and outlook**

578 Generally, yearlong KE-spectra of moored waterflow observations from shallow seas and open ocean
579 demonstrate numerous peaks at inertial, tidal and higher harmonic frequencies. In contrast, such KE-
580 spectra from the deep Northwestern Mediterranean Sea are rather featureless except perhaps for a peak
581 around the local inertial frequency. At the large-ring mooring, an f-peak dominates yearlong spectra,
582 but it associates with relatively calm, near-homogeneous conditions. Under more turbulent vertically
583 stratified water conditions such a near-inertial peak vanishes into a broader range of sub-mesoscale
584 motions.

585 The deep-Mediterranean temperature-(and acoustic reflection-)scalar spectra however, demonstrate
586 no peaks at all, regardless of stratification conditions. Their entire featurelessness points at broadband
587 distribution of variance and draws to analyses in terms of various slope dependence on frequency. The

588 type of instrumentation and environmental conditions limit the spectral resolution, even for the high-
589 resolution T-sensors on the large-ring mooring.

590 Despite the 0.00003°C noise level the T-sensors did not resolve the viscous dissipation rate. This
591 may be due to the sampling rate of once per 2 s, which is too slow for mm-scale turbulence dissipation
592 motions, or due to small temperature variations down to this order of magnitude in the deep
593 Mediterranean.

594 On the large scales of the spectrum, the 20 (of intended 70) months of acquired temperature data
595 were insufficient to capture a strong convection event of deep dense-water formation. We should have
596 left the instrumentation in the deep sea for two or more decades, perhaps at a site further in the open
597 Provençal Basin. Nevertheless, our deep-sea observations do show extensive evidence of convection,
598 which is either generated by general geothermal heating from below and, more energetically, by internal
599 wave action from above. Geothermal heating is suppressed by stratification from above, and only
600 noticeable very close to the seafloor in rare flashes (van Haren, 2026 submitted) unless conditions are
601 near-homogeneous. The two convection processes have a typical timescale of about 15 days and thus
602 alternate at twice that scale, which results in a broad peak around 0.03 cpd in both KE- and T-spectra.
603 Commonly, this monthly variation is attributed to mesoscale motions, which however, do not represent
604 single harmonic wave motions like tides.

605 One of the aims of the study was to investigate the potential coupling between various scales of
606 motions, involving mesoscale, sub-mesoscale, IGW, and turbulence motions. Potential coupling may be
607 characterized by different model-slopes with frequency that depend on frequency-range and height
608 above the seafloor. The featureless spectra are ideal for such model-slope investigation. With the
609 absence of resolved roll-off to the viscous dissipation range, a second surprising result is the near-
610 absence of an inertial subrange of shear turbulence. Only in upper-layer $h \approx 100$ m, more stratified waters
611 at super-buoyancy frequencies KO-scaling may fit observed mean spectra.

612 In the ocean and deep sea not only large-100-m-scale shear occurs which may dominate shear
613 turbulence, but also small-scale near-inertial shear. This shear may dominate KO-scaling in well
614 stratified waters. In weakly stratified waters however, BO-scaling dominates, and thus convection-
615 turbulence with associated ambiguous energy transfer so that convection tubes reorganize before

616 dissipating. Convection is unstable, but does not necessarily occur under neutral (shearless) conditions,
617 and small-scale (secondary) shear is expected to be important for energy transfer.

618 Most of the T-spectra follow BO-scaling of active-scalar convection turbulence, not only near the
619 seafloor under near-homogeneous conditions, but also away from the seafloor and under yearlong mixed
620 conditions. Finestructure contamination or small-scale standing internal-wave turbulence dominate
621 under stratified-water conditions. However, while improved statistics taking advantage of the large
622 number of independent T-sensors support above observations in the super-buoyancy frequency range of
623 isotropic turbulence motions, such a conclusion is not possible for mid-range frequencies between sub-
624 meso- and maximum small-scale buoyancy frequencies. Apparently, motions at the latter frequencies
625 fall in between near-deterministic signals like tides, for which random statistics do not apply, and near-
626 random signals like isotropic turbulence and instrumental noise.

627 Obviously, the nearly 3000 T-sensors provide excellent statistics at the high-frequency end, but also
628 reasonably at the low-frequency mesoscale side. Least improved statistics are around IGW/large
629 turbulence frequencies, which include stratified turbulence and sub-mesoscale signals. These signals
630 should probably be sampled over larger spatial ranges. It is found that they follow some degree of
631 coherence at all resolved spatial scales of up to 60 m, thereby forming a bridge extending about one
632 order of magnitude in variance over background BO-scaling. From band-smoothing it is revealed that
633 the sub-mesoscale signals in the sub-inertial frequency range follow BO-scaling. In this range,
634 ambiguously-directed vertical flux contributions were observed from limited waterflow measurements,
635 but which confirm similar observations in isotropic turbulence under laboratory conditions (Lohse and
636 Xia, 2010). The same limited waterflow measurements confirm the BO-scaling in the sub-inertial range
637 down to mesoscales, providing a significantly different spectral slope than for temperature (and acoustic
638 intensity), which points at active scalars.

639 Thus, sub-mesoscale motions may be governed by mesoscale/large sub-mesoscale and by near-
640 inertial IGW, reflecting theoretical modeling for 2D flow of a homogeneous, nondivergent fluid with
641 up- and down-scale cascade of kinetic energy (Fjørtoft, 1953). Thereby, the deep Mediterranean
642 observations demonstrate a sharp contrast between mesoscale and small sub-mesoscale motions. Large
643 (sub-)mesoscale motions act as a source, albeit with some intermittent appearance resulting in a source

644 peak that is broader than an inertial peak. Small sub-mesoscale motions are modeled by a spectral slope
645 of energy cascade.

646 The observed spectral non-KO-scaling between mesoscale and IGW, and between IGW and stratified
647 turbulence in the weakly stratified deep Mediterranean may be verified in ocean areas. Especially the
648 influence of (internal) tides and their potential higher harmonics following strong nonlinear interactions
649 may deform spectra, also in the deep ocean over the rugged continental slope (e.g., van Haren et al.,
650 2002; van Haren and Maas, 2022). In those deep-ocean KE spectra, the base of the inertial-tidal higher
651 harmonic peaks closely sloped with exponent $p = -1$ over an IGW frequency range commensurate with
652 $N = 5-8f$, as observed in Mediterranean data (van Haren, 2025).

653 For future spectral improvement, mooring duration may be extended to span >10 years underwater,
654 to include all mesoscale motions up to basin scales. For statistical significance reduction it is suggested
655 to continue using 3D mooring arrays of closely spaced multiple instrumentation, perhaps over a
656 somewhat wider range of up to 1 km to resolve all IGW and sub-mesoscales. More current meters in the
657 array would be helpful to improve relative vorticity measurements and include shear observations. For
658 this, a considerable cost-reduction of higher-resolution deep-sea instrumentation is welcomed.

659 The suggested complex interactions between mesoscale and turbulence signals including small-scale
660 standing waves, via sub-mesoscale and IGW --notably near-inertial-- motions lead to slantwise
661 convection at many scales with up- and down-gradient energy transfers at the mooring-array site in the
662 deep Western Mediterranean. The associated turbulence is largely sufficient for deep-sea life and locally
663 for deep-sea circulation (e.g., Ferron et al., 2017), during two winters when deep dense-water formation
664 was absent. Future observational studies are welcomed that further extend scale resolution, and for
665 which instrumentation should be employed not only in the deep Mediterranean but also in the ocean
666 where tides are stronger, over a variety of seafloor topography. More is to be learned.

667

668 **6. Conclusions**

669 Yearlong scalar and kinetic energy spectra from the deep Northwestern Mediterranean have been
670 calculated from data provided by instrumentation on a nearly-half-cubic-hectometer 3D mooring array.
671 They show that,

672 • The deep-sea energy spectrum may be adjusted between mesoscales and stratified turbulence, with
673 two sources, at large sub-mesoscale and inertial frequencies. Scalar spectra are completely featureless,
674 with a broad increase in variance across mesoscale and inertial-gravity wave IGW-frequencies.

675 • At frequencies away from the two main sources, BO-scaling of dominant anisotropic convective
676 motions is observed across sub-mesoscales with alternating up- and down-gradient fluxes, under all
677 conditions. BO-scaling characterizes sub-mesoscales. KO-scaling is not possible in this frequency range
678 because motions do not become isotropic.

679 • Depending on convection- and stratification-type, BO-scaling is also partially observed at super-
680 buoyancy turbulence frequencies, alternating with limited KO-scaling. Direct fluxes could not be
681 established in this frequency range due to poor resolution of waterflow measurements. However,
682 convection and shear are known to generate both turbulence and internal waves.

683 • Internal wave/finestructure scaling is observed at IGW frequencies up to maximum small-scale
684 buoyancy frequency.

685 • Mesoscale/large sub-mesoscale and small sub-mesoscale motions are distinctly different, being energy
686 source and energy cascade, respectively. They appear in quadrature with each other.

687 • Anticyclonic mesoscale motions are found in phase with winds and with near-inertial motions.

688 • Apparent stratified water conditions and increased sub-mesoscale activity occur around the transition
689 from anticyclonic to cyclonic mesoscale relative vorticity.

690 • Stratified water conditions have $N = 2.2f$, which $\approx f_{\text{eff}}$ when averaged over the full period (of dominant
691 cyclonic relative vorticity). The former suggests linear marginal stability for large-scale shear. The latter
692 approximate equation suggests nonlinear marginal stability for small (likely near-inertial) shear, in
693 which case near-homogeneous $N \approx 0.3$ cpd probably occurs in the direction of slanted convection.

694 • Relative acoustic echo intensity is found to be a close proxy of temperature variations, despite more
695 noisy instrumentation. The good correspondence at zero lag suggests either >1-mm size particles being
696 transported by water motions that also transport different (temperature) water masses, or 2-MHz
697 acoustics is basically reflecting off temperature difference interfaces. This may be verified with multiple
698 frequency acoustic instrumentation.

699 • Both scalar properties show improved smoothing by averaging spectra from multiple instruments,
700 albeit at super-buoyancy frequencies of weakly coherent isotropic motions only. At the scales of the
701 array of maximum 60 m horizontally and 124 m vertically, anisotropic coherent motions reduce such
702 smoothing, especially in IGW and sub-mesoscale bands for which band-smoothing has to be applied.

703

704 **Conflict of Interest**

705 The author declares no conflict of interest relevant to this study.

706

707 **Data availability**

708 Only raw data are stored from the T-sensor mooring-array. Analyses proceed via extensive post-
709 processing, including manual checks, which are adapted to the specific analysis task. Because of the
710 complex processing the raw data from the custom-made T-sensors are not made publicly accessible. The
711 movie to Fig. A2 can be found in van Haren (2026), “Movie to: Coupling between sub-mesoscale eddies,
712 internal waves, and turbulence in the deep Mediterranean: A spectral investigation.”, Mendeley Data,
713 V1, <https://doi.org/10.17632/dxmdv75kw8.1>. Current meter data are available from van Haren (2025):
714 “Large-ring mooring current meter and CTD data”, Mendeley Data, V1,
715 <https://doi.org/10.17632/f8kfwcvtdn.1>. Atmospheric data are retrieved from
716 <https://content.meteoblue.com/en/business-solutions/weather-apis/dataset-api>.

717

718 **Acknowledgements** Captains and crews of R/V Pelagia are thanked for the very pleasant cooperation.
719 I also thank the team of ROV Holland I for the well-performed underwater mission to recover the
720 instrumentation of the large ring. NIOZ colleagues notably from NMF department are thanked for their
721 indispensable contributions during the long preparatory and construction phases to make the unique sea-
722 operation successful. I highly appreciated working with colleagues within the KM3NeT collaboration.
723 I thank A. Margiotta for discussions on publication matters, oceanography, and many other topics. The
724 author acknowledges the financial support of Nederlandse organisatie voor Wetenschappelijk
725 Onderzoek (NWO), the Netherlands.

726 **Appendix A Super-buoyancy finestructure contamination and parametric instabilities**

727 Non-negligible, small but significant coherence at super-buoyancy frequencies like the coh = 0.25 levels
728 under weakly stratified deep-Mediterranean SW conditions of Fig. 7 has also been observed, in slightly
729 different form, in the well-stratified open ocean far away from boundaries (van Haren and Gostiaux,
730 2009). There, high-frequency super-buoyancy “waves” were attributed to kinematics as explained
731 using a model of advection by the vertical N-wave motion of thin, <2.5 m mainly, and thick, average 60
732 m, layers including inversions passed moored T-sensors (Gostiaux and van Haren, 2012). The
733 kinematics model did not include dynamical evolution, e.g. by turbulent overturning, of the inversions
734 or layering.

735 The small super-buoyancy coherence may also be due to dynamical coupling to buoyancy frequency
736 motions via wave-wave interactions leading to high-frequency parametric instabilities of local mode-2
737 standing waves, as previously observed in the laboratory (Davis and Acrivos, 1967). Such non-
738 propagating instabilities may then be advected passed the sensors by coherent internal waves. Turbulent
739 overturns in general and slantwise convection tubes (e.g., Straneo et al., 2002) also provide quasi mode-
740 2 motions, also on large scales O(10-100) m.

741 An important criterion for distinction between the kinematics and dynamics is considering the
742 vertical phase differences, such as in Fig. A1. While for coh > 0.3 the, vertical and horizontal, phase
743 difference is close to zero, it spreads to $\pm 180^\circ$ phase difference for the super-buoyancy coh = 0.25 level.
744 The transition in phase difference is gradual in the vertical while abrupt in the horizontal, before reaching
745 random distribution towards noise levels. The phase transition, while not found at 2-m intervals (Fig.
746 7), depends on scale-length like the coh = 0.25 level in Fig. 7, which was found at frequencies around
747 400 cpd for which the temperature spectrum had a slope with exponent p = -2.

748 These observations contrast with 1D open-ocean observations (Gostiaux and van Haren, 2012),
749 where the large 100-m scale buoyancy frequency $N = 26$ cpd $\gg f$ and smallest $\Delta z = 2.5$ m. In those
750 data, the super-buoyancy temperature spectra had a slope with exponent p = -8/3, which was attributed
751 to finite layering. A zero-coherence dip was found between low-frequency coh > 0.3 and super-
752 buoyancy coh = 0.25, rather than a smooth transition to a non-noise level as found in the deep
753 Mediterranean data. An abrupt transition in vertical phase difference was found at all vertical scales,

754 with a block in transition-frequency at $N_t = 1.6N \approx N_{\max 10}$, the maximum buoyancy frequency at 10-m
755 scales, for $\Delta z \geq 10$ m.

756 For open-ocean data a scale of 10 m seems canonical, at which a separation is suggested between
757 internal-wave shear and turbulence (Gargett et al., 1981), and below it the temperature gradient variance
758 rolls off (Gregg, 1977).

759 The 10-m scale is also applied horizontally in the set-up of the large-ring mooring, but a blocking
760 limit is not observed in the present data in weakly stratified waters of the deep Mediterranean. A 10-m
761 scale is also roughly determined from some time-depth images as local mode-2 motions between
762 isotherms (Fig. A2). In the horizontal, such a scale is inferred from differences in rapid motions between
763 neighbouring lines in the movie associated with this half-day period under SW-conditions. Probably
764 processes other than shear induce turbulence, like convection and parametric instability.

765 In laboratory models, parametric instability grows under large-scale shear at
766 wavelengths/frequencies about 5 times larger than the buoyancy frequency, which would imply between
767 about 11 and 60 cpd under SW conditions in the deep Mediterranean data, for $5N$ and $5N_{\max}$,
768 respectively. In Figs 7, A1, the $\text{coh} = 0.25$ level is found between about 150 and 700 cpd at 10-m scales,
769 and between about 20 and 300 cpd at 60-m scales. The matching range suggests 50-100 m is closer to a
770 canonical scale for the deep Mediterranean.

771 Although the latter frequency range is characterized by a spectral slope with exponent $p = -2$ (Fig.
772 6), finestructure contamination having the same spectral fall-rate (Phillips, 1971) seems less dominant
773 than in the stronger stratified NE-Atlantic. Also, turbulence generation in the deep Mediterranean is not
774 only governed by parametric instabilities, but also by nonlinear motions generating larger overturns like
775 around day 443.15 in the example of Fig. A2, and by slantwise convection induced via internal wave
776 push and/or sub-mesoscale eddies. All phenomena result in dominant 180° phase differences across the
777 relevant length scale.

778 It remains to be said that conclusions inferred from super-buoyancy temperature spectra should be
779 taken with care in the presence of steps in the temperature profile.

780 **References**

781 Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality: An explanation of the 1/f noise, *Phys.*
782 *Rev. Lett.*, 59, 381-384, 1987.

783 Bolgiano, R.: Turbulent spectra in a stably stratified atmosphere, *J. Geophys. Res.* 64, 2226-2229, 1959.

784 Brainerd, K. E., and Gregg, M. C.: Surface mixed and mixing layer depths, *Deep-Sea Res. I*, 42, 1521-
785 1543, 1995.

786 Chunchuzov, I. P., Johannessen, O. M., and Marmorino, G.O.: A possible generation mechanism for
787 internal waves near the edge of a submesoscale eddy, *Tellus A*, 73, 1-11, 2021.

788 Crepon, M., Wald, L., and Monget, J. M.: Low-frequency waves in the Ligurian Sea during December
789 1977, *J. Geophys. Res.*, 87, 595-600, 1982.

790 Dalziel, S. B., Patterson, M.D., Caulfield, C. P., and Coomaraswamy, I. A.: Mixing efficiency in high-
791 aspect-ratio Rayleigh-Taylor experiments, *Phys. Fl.*, 20, 065106, 2008.

792 Davis, R. E., and Acrivos, A.: Solitary internal waves in deep water, *J. Fluid Mech.*, 29, 593-607, 1967.

793 Dickson, R.R., Lazier, J. R. N., Meincke, J., Rhines, P., and Swift, J.: Longterm coordinated changes in
794 the convective activity of the North Atlantic, *Progr. Oceanogr.*, 38, 241-295, 1996.

795 Ferrari, R., and Wunsch, C.: Ocean circulation kinetic energy: Reservoirs, sources, and sinks, *Annu.*
796 *Rev. Fluid Mech.*, 41, 253-282, 2009.

797 Fine, E. C., MacKinnon, J. A., Alford, M. H., and Mickett, J. B.: Microstructure observations of
798 turbulent heat fluxes in a warm-core Canada Basin eddy, *J. Phys. Oceanogr.*, 48, 2397-2418,
799 2018.

800 Fjørtoft, R.: On the changes in the spectral distribution of kinetic energy for twodimensional,
801 nondivergent flow, *Tellus* 50, 225-230, 1953.

802 Gargett, A. E., Hendricks, P. J., Sanford, T. B., Osborn, T. R., and Williams, A. J.: A composite spectrum
803 of vertical shear in the upper ocean, *J. Phys. Oceanogr.*, 11, 1258-1271, 1981.

804 Garrett, C., and Munk, W.: Space-time scales of internal waves, *Geophys. Fl. Dyn.* 3, 225-264, 1972.

805 Gascard, J-C.: Mediterranean deep water formation, baroclinic eddies and ocean eddies, *Oceanol. Acta*,
806 1, 315-330, 1978.

807 Gemmrich, J. R., and van Haren, H.: Internal wave band eddy fluxes in the bottom boundary layer above
808 a continental slope, *J. Mar. Res.*, 60, 227-253, 2002.

809 Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M., and van Haren, H.: Geophysical and astrophysical
810 fluid dynamics beyond the traditional approximation, *Rev. Geophys.*, 46, RG2004,
811 doi:10.1029/2006RG000220, 2008.

812 Gostiaux, L., and van Haren, H.: Fine-structure contamination by internal waves in the Canary Basin, *J.*
813 *Geophys. Res.*, 117, C11003, doi:10.1029/2012JC008064, 2012.

814 Gregg, M.: Variations in the intensity of small-scale mixing in the main thermocline, *J. Phys. Oceanogr.*,
815 7, 436-454, 1977.

816 IOC, SCOR, and IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation
817 and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission,
818 Manuals and Guides No. 56, UNESCO, Paris, 196 pp, 2010.

819 Jenkins, G. M., and Watts, D. G.: Spectral analysis and its applications, Holden-Day, San Francisco,
820 USA, 525 pp, 1968.

821 Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large
822 Reynolds numbers, *Dokl. Akad. Nauk SSSR*, 30, 301-305, 1941.

823 Kunze, E.: Near-inertial wave propagation in geostrophic shear, *J. Phys. Oceanogr.*, 15, 544-565, 1985.

824 LeBlond, P. H., and Mysak, L. A.: Waves in the Ocean, Elsevier, New York, USA, 602 pp, 1978.

825 Lin, J.-T.: Turbulence spectra in the buoyancy subrange of thermally stratified shear flows, PhD-thesis
826 Colorado State University, Fort Collins, USA, 143 pp, 1969.

827 Lohse, D., and Xia, K.-Q.: Small-Scale properties of turbulent Rayleigh-Bénard convection, *Annu. Rev.*
828 *Fluid Mech.*, 42, 335-364, 2010.

829 Marshall, J., and Schott, F.: Open-ocean convection: Observations, theory, and models, *Rev. Geophys.*
830 37:1-64, 1999.

831 McWilliams, J. C.: Submesoscale currents in the ocean, *Proc. R. Soc. Lond. A*, 472, 20160117, 2016.

832 Mertens, C., and Schott, F.: Interannual variability of deep-water formation in the Northwestern
833 Mediterranean, *J. Phys. Oceanogr.*, 28, 1410-1424, 1998.

834 Mooers, C. N. K.: Seveal effects of a baroclinic current on the cross-stream propagation of inertial-
835 internal waves, *Geophys. Fluid Dyn.*, 6, 245-275, 1975.

836 Obukhov, A. M.: Structure of the temperature field in a turbulent flow, *Izv. Akad. Nauk SSSR, Ser.*
837 *Geogr. Geofiz.*, 13, 58-69, 1949.

838 Obukhov, A. M.: Effect of buoyancy forces on the structure of temperature field in a turbulent flow,
839 *Dokl. Akad. Nauk SSSR*, 125, 1246-1248, 1959.

840 Oztmidov, R. V.: Certain features of the energy spectrum of oceanic turbulence, *Dokl. Akad. Nauk*
841 *SSSR*, 161, 828-831, 1965a.

842 Oztmidov, R. V.: On the turbulent exchange in a stably stratified ocean, *Izv. Akad. Nauk SSSR, Ser.*
843 *Geogr. Geofiz.*, 1, 853-860, 1965b.

844 Parks, T. W., and Burrus, C. S.: Digital filter design, John Wiley & Sons, New York, USA, 342 pp,
845 1987.

846 Pasquale, V., Verdoya, M., and Chiozzi, P.: Heat flux and timing of the drifting stage in the Ligurian–
847 Provençal basin (northwestern Mediterranean), *J. Geodyn.*, 21, 205-222, 1996.

848 Phillips, O. M.: On spectra measured in an undulating layered medium, *J. Phys. Oceanogr.*, 1, 1-6, 1971.

849 Reid, R. O.: A special case of Phillips' general theory of sampling statistics for a layered medium, *J.*
850 *Phys. Oceanogr.* 1, 61-62, 1971.

851 Rhein, M.: Deep water formation in the western Mediterranean, *J. Geophys. Res.*, 100, 6943-6959,
852 1995.

853 Schuster, H. G.: Deterministic chaos: An introduction, Physik-Verlag, Weinheim, Germany, 220 pp,
854 1984.

855 Storer, B. A., Buzzicotti, M., Khatri, H., Griffies, S. M., and Aluie, H.: Global energy spectrum of the
856 general oceanic circulation, *Nat. Comm.*, 13, 5314, 2022.

857 Straneo, F., Kawase, M., and Riser, S. C.: Idealized models of slantwise convection in a baroclinic flow,
858 *J. Phys. Oceanogr.*, 32, 558-572, 2002.

859 Taylor, J. R., and Thompson, A. F.: Submesoscale dynamics in the upper ocean, *Annu. Rev. Fluid*
860 *Mech.*, 55, 103-127, 2023.

861 Tennekes, H., and Lumley, J. L.: A first course in Turbulence, MIT Press, Cambridge, USA, 300 pp,
862 1972.

863 Testor, P., and Gascard, J.C.: Post-convection spreading phase in the Northwestern Mediterranean Sea,
864 Deep-Sea Res., 53, 869-893, 2006.

865 Thorpe, S. A.: The turbulent ocean, Cambridge Univ Press, Cambridge, 439 pp, 2005.

866 van Aken, H. M., Maas, L. R. M., and van Haren, H.: Observations of inertial wave events near the
867 continental slope off Goban Spur. J. Phys. Oceanogr., 35, 1329-1340, 2005.

868 van Haren, H.: Abrupt transitions between gyroscopic and internal gravity waves: the mid-latitude case,
869 J. Fluid Mech., 598, 67-80, 2008.

870 van Haren, H.: Philosophy and application of high-resolution temperature sensors for stratified waters,
871 Sensors, 18, 3184, doi:10.3390/s18103184, 2018.

872 van Haren, H.: Thermistor string corrections in data from very weakly stratified deep-ocean waters,
873 Deep-Sea Res. I, 189, 103870, 2022.

874 van Haren, H.: Technical note: spectral slopes in deep, weakly-stratified ocean and coupling between
875 sub-mesoscale motions and small-scale mechanisms, Ocean Sci., 21, 555-565, 2025.

876 van Haren, H., and Dijkstra, H. A.: Convection under internal waves in an alpine lake, Env. Fluid Mech.,
877 21, 305-316, 2021.

878 van Haren, H., and Gostiaux, L.: High-resolution open-ocean temperature spectra, J. Geophys. Res.,
879 114, C05005, 2009.

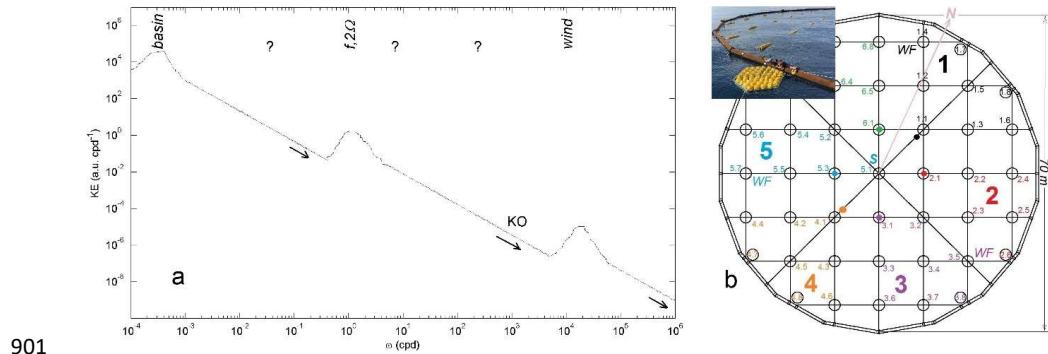
880 van Haren, H., and Maas, L.: A simple model for an internal wave spectrum dominated by non-linear
881 interactions. Tellus A, 74, 382-390, 2022.

882 van Haren, H., and Millot, C.: Slantwise convection: a candidate for homogenization of deep newly
883 formed dense waters, Geophys. Res. Lett., 36, L12604, 2009.

884 van Haren, H., Oakey, N., and Garrett, C.: Measurements of internal wave band eddy fluxes above a
885 sloping bottom, J. Mar. Res., 52, 909-946, 1994.

886 van Haren, H., Maas L., and van Aken, H.: On the nature of internal wave spectra near a continental
887 slope, Geophys. Res. Lett., 29(12), 10.1029/2001GL014341, 2002.

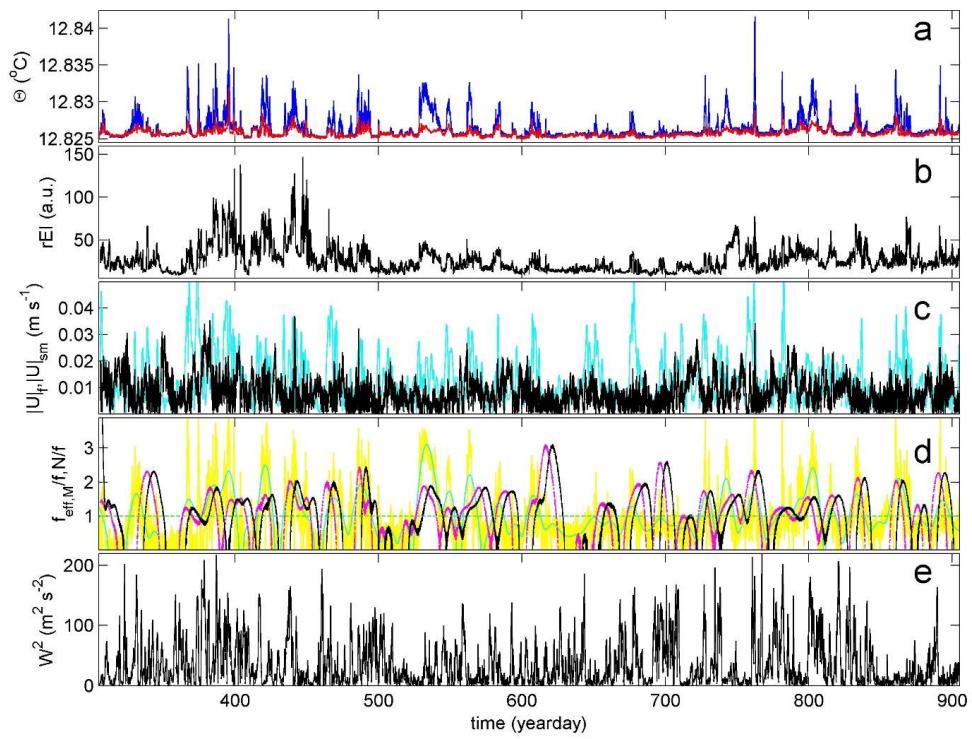
888 van Haren, H. et al.: Acoustic and optical variations during rapid downward motion episodes in the deep
889 north-western Mediterranean Sea, Deep-Sea Res. I, 58, 875-884, 2011.


890 van Haren, H., Cimatoribus, A. A., Cyr, F., Gostiaux, L.: Insights from a 3-D temperature sensors
891 mooring on stratified ocean turbulence, Geophys. Res. Lett., 43, 4483-4489
892 doi:10.1002/2016GL068032, 2016.

893 van Haren, H., Bakker, R., Witte, Y., Laan, M., and van Heerwaarden, J., Half a cubic hectometer
894 mooring array 3D-T of 3000 temperature sensors in the deep sea, J. Atmos. Ocean. Technol.,
895 38, 1585-1597, 2021.

896 van Haren, H., et al.: Whipped and mixed warm clouds in the deep sea, Geophys. Res. Lett., in press,
897 2026.

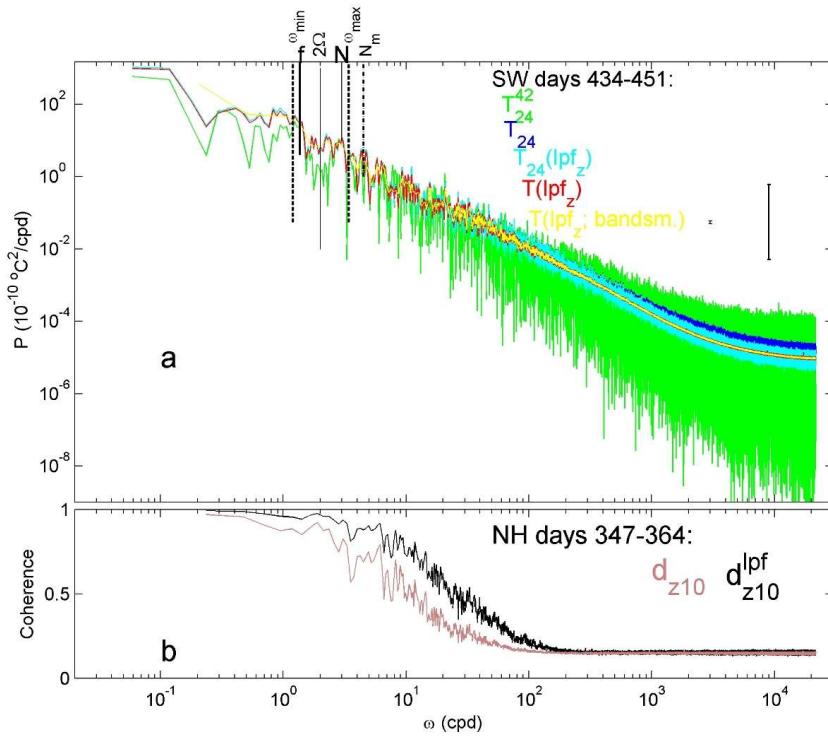
898 Yang, Q., Nikurashin, M., Sasaki, H., Sun, H., and Tian, J.: Dissipation of mesoscale eddies and its
899 contribution to mixing in the northern South China Sea, Sci. Rep., 9, 556, 2019.


900 Warhaft, Z.: Passive scalars in turbulent flows, Annu. Rev. Fl. Mech., 32, 203-240, 2000.

901

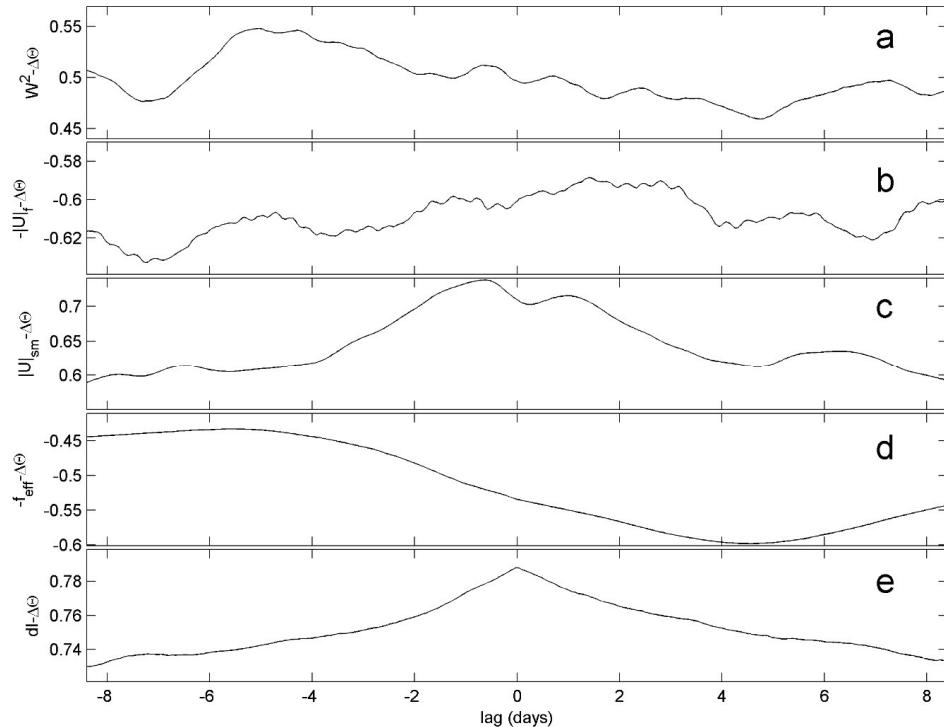
902 **Figure 1.** Ocean spectral model and mooring array layout. (a) Impression of ocean [kinetic] energy
 903 spectra between basin-scale motions to the left and roll-off to viscous dissipation (Kolmogorov)-scale
 904 of turbulence to the right. Redrawn from Ozmidov (1965a) and transferred from wavenumber to
 905 frequency space. The sloping lines indicate KO-scaling $\propto \omega^p$ with exponent $p = -5/3$ for a model of
 906 energy downscale (direction-arrows) energy cascade by Kolmogorov (1941) and Obukhov (1949). The
 907 slopes are the same for different frequency ranges having different variance levels c . The question marks
 908 are by the author. (b) Mooring-array orientation at seabed and layout, with steel-cable grid and small
 909 rings holding the vertical lines at 9.5 m intervals. Lines are numbered in six synchronization groups.
 910 Single synchronizer S is at ring 51. Waterflow 'WF' instruments are at buoys on top of lines 14, 35 and
 911 57. The insert shows part of the large ring just prior to deployment at sea, with free-fall drag-parachute
 912 in front.

913



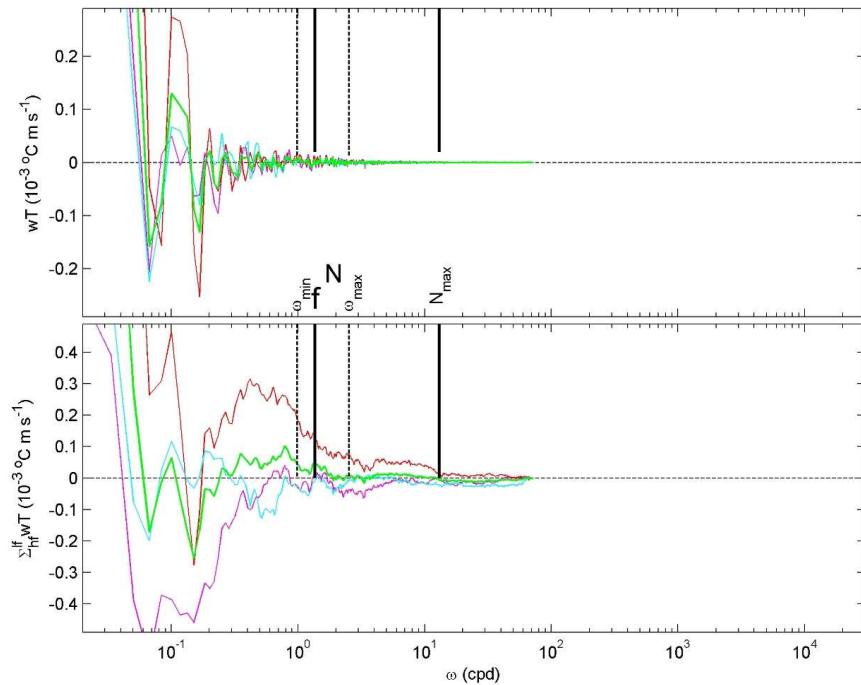
914
915 **Figure 2.** Time series of 20 months of temperature and waterflow data, (sub-)sampled at once per 600
916 s. Time in days starts on January 1, 2020. (a) Conservative Temperature (IOC et al., 2010) measured on
917 a single line at $h = 1.0$ (red) and 125 m (blue) above seafloor. The records are detrended and referenced
918 to shipborne CTD-data. (b) Hourly filtered echo intensity rEI measured at $h = 126$ m. (c) Band-pass
919 filtered waterflow amplitudes for sub-mesoscale (cyan) and near-inertial (black) motions. (d) Mesoscale
920 low-pass filtered effective inertial frequency (2) (black; in magenta: 4.6 days shifted) compared with
921 124-m scale buoyancy frequency (yellow; in green: mesoscale low-pass filtered). All are scaled by
922 planetary inertial frequency f (horizontal dashed line). (e) Wind speed squared measured at island-station
923 Porquerolles about 20 km north of the mooring site.

924


925

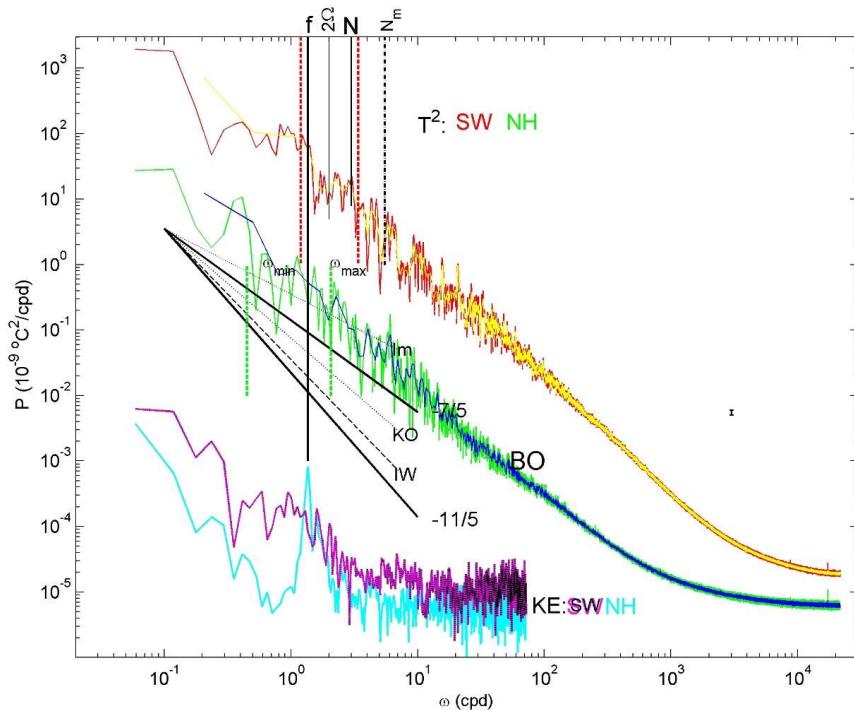
926

Figure 3. Illustration of effects of smoothing and low-pass filtering 'lpf' on 600-d mean frequency (ω) spectra from originally 2-s sampled T-sensor data. Several frequencies are named, including the inertial frequency f , the mean buoyancy frequency $N \approx 2.2f = 2.0f_h$, mean of maximum 2-m scale buoyancy frequency N_m , and inertio-gravity wave 'IGW' bounds $[\omega_{\min} < f, \omega_{\max} > 2\Omega, N]$ for mean N . Ω denotes half the Earth rotational frequency. (a) Nearly raw, unsmoothed spectra of data from indicated 17-day period under stratified-water (SW) conditions. A single record (green), from 42th T-sensor of line 24, is compared with the vertically 63-sensor averaged spectrum of that line (blue), with the same after correction for short-term bias (cyan) using vertical lpf_z with cut-off at 0.1 cpm (cycles per meter), and with the vertically and horizontally 45-line (about 2200 independent sensors) averaged spectrum (red) and its band-smoothed version (yellow). The amount of spectral smoothing is represented by small and large error bars, for the red and green spectra, respectively. (b) Coherence over vertical 10-m distances for all 1830 independent pairs of data from indicated period under near-homogeneous (NH) conditions (pink). In black, the same but after application of lpf_z with cut-off at 0.05 cpm.


939

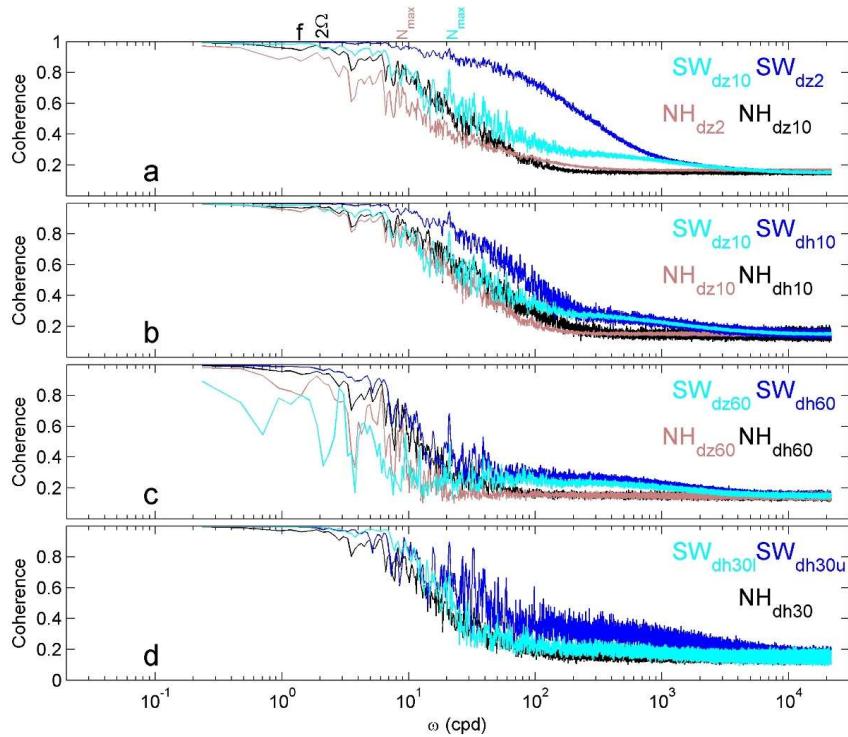
940

941 **Figure 4.** Normalized lag-correlation analysis between hourly data of $h=124\text{-m}$ -vertical temperature
942 difference and several observed quantities from Fig. 2. About one fortnight of lags is shown, negative
943 lags imply that the observed quantity is ahead of temperature differences. (a) Wind speed squared. (b)
944 Inverse (negative) inertial band-pass filtered waterflow amplitude. (c) Sub-mesoscale bandpass filtered
945 waterflow amplitude. (d) Inverse (negative) mesoscale low-pass filtered effective inertial frequency. (e)
946 Relative echo intensity $dI(\text{dB})$ averaged over 3 beams.


947

948

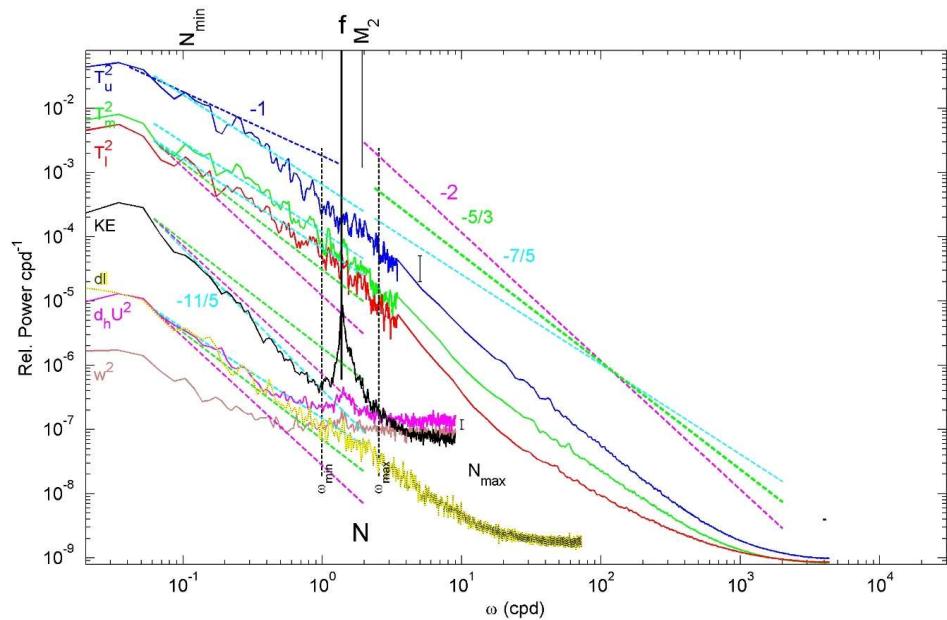
949 **Figure 5.** Cross-spectral averages over 600-d between uppermost T-sensor and waterflow data from all
950 three instruments, with mean values in green. Maximum 2-m scale buoyancy frequency is indicated by
951 N_{\max} . The frequency range is the same as in Fig. 3, while overall mean $N = 1.35f$ is given with associated
952 IGW-bounds. (a) Vertical cross-spectra. (b) Vertical heat flux, integrated from high to low frequencies,
953 demonstrating the potential influence on low frequencies relative to their Reynolds decomposition cut-
954 off.


955

956

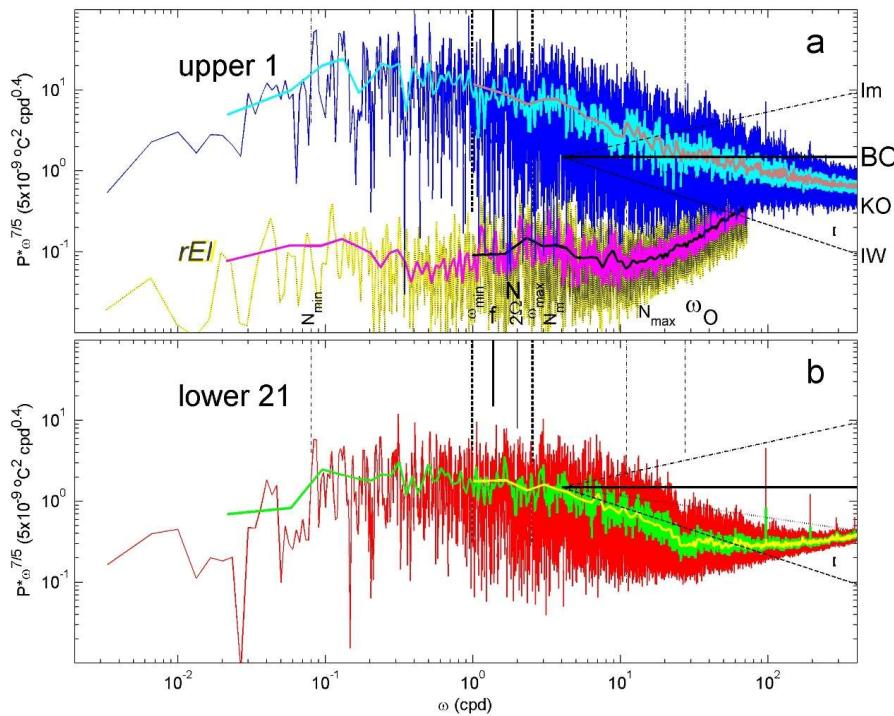
957 **Figure 6.** A spectral comparison between data from 17-day records of SW (red, in band-smoothed form
958 yellow) and NH (green, band-smoothed blue) in Fig. 3, for 2-s sampled and about 2800 independent T-
959 sensor averages in temperature. These are compared with 600-s sampled 3-sensor averages in kinetic
960 energy KE (magenta-black and cyan, respectively). The IGW-bounds are given for mean N of 2.2f and
961 0.5f under SW- and NH-conditions, respectively. Several spectral slopes are indicated by their exponent
962 value p in ω^p , and by abbreviations (see text).

963


964

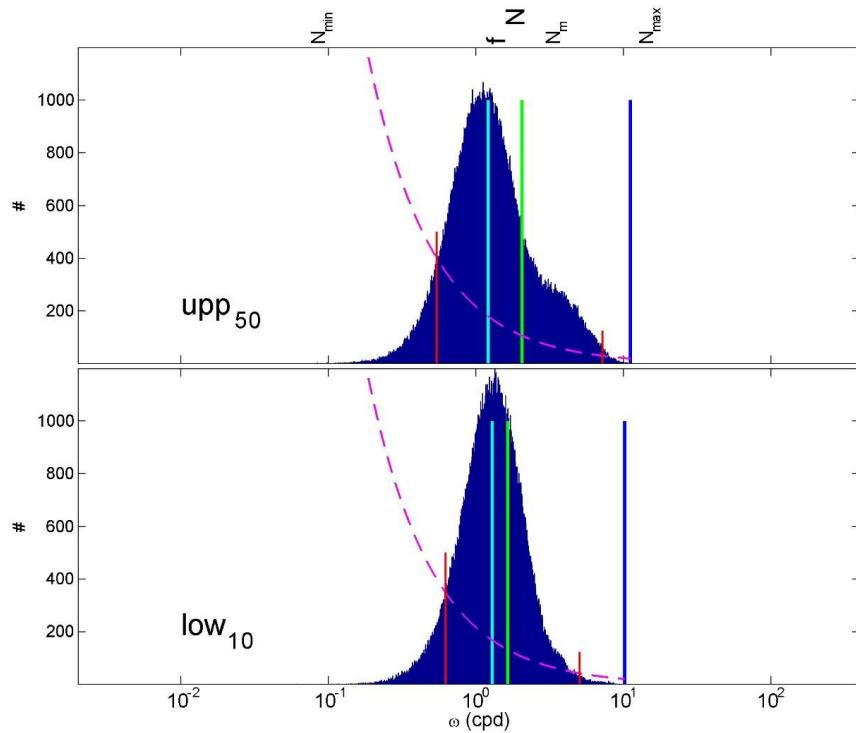
965 **Figure 7.** Coherence spectra using data from periods under SW- and NH-conditions in Fig. 3 for
 966 different smoothing. NH data are lpf_z , except for vertical $dz = 2$ -m scale. (a) Dz 2-m and 10-m scale
 967 coherence, for about 1800 independent T-sensor pairs. Several frequencies are indicated, including
 968 maximum 2-m scale buoyancy frequency under NH and SW. (b) Ten-meter scale dz and horizontal 'dh'
 969 coherence, data from five lines around line 11. (c) As b., but for 60-m scale data of all possible 10 pairs
 970 of lines. (d) Thirty-meter scale dh for 4 line-pairs of data around the mooring-array's central line (NH)
 971 and the vertical split in three 20-sensor level groups of which upper and lower are shown (SW).

972


973

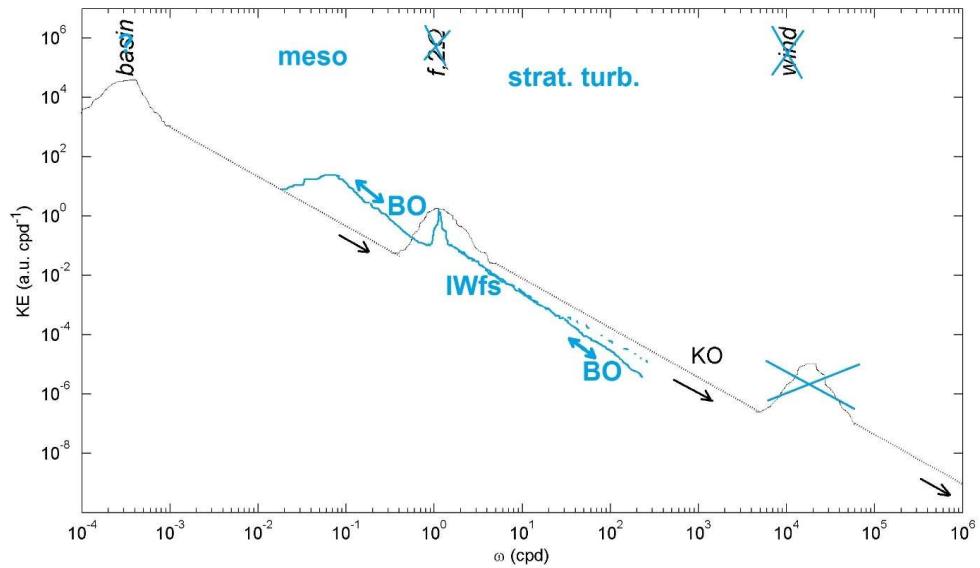
974

975 **Figure 8.** 600-d average spectra for 10-s sub-sampled data from 43 lines for four (u)pper, (m)id-height
976 and (l)ower T-sensors. These spectra are compared with average spectra over three CM for KE,
977 horizontal flow difference $d_h U$, vertical component w and 9-beam (3-CM) averaged relative echo
978 intensity dI (dB). Several spectral slopes are indicated with straight dashed lines, with their exponent
979 values. The IGW band for mean $N = 1.35f$ is between the vertical black-dashed lines. N_{\min} denotes the
980 minimum 2-m scale buoyancy frequency. Each temperature spectrum is split at about 3.5 cpd (cycles
981 per day) in a moderately-smoothed low-frequency part and a heavy-smoothed high-frequency part.


982

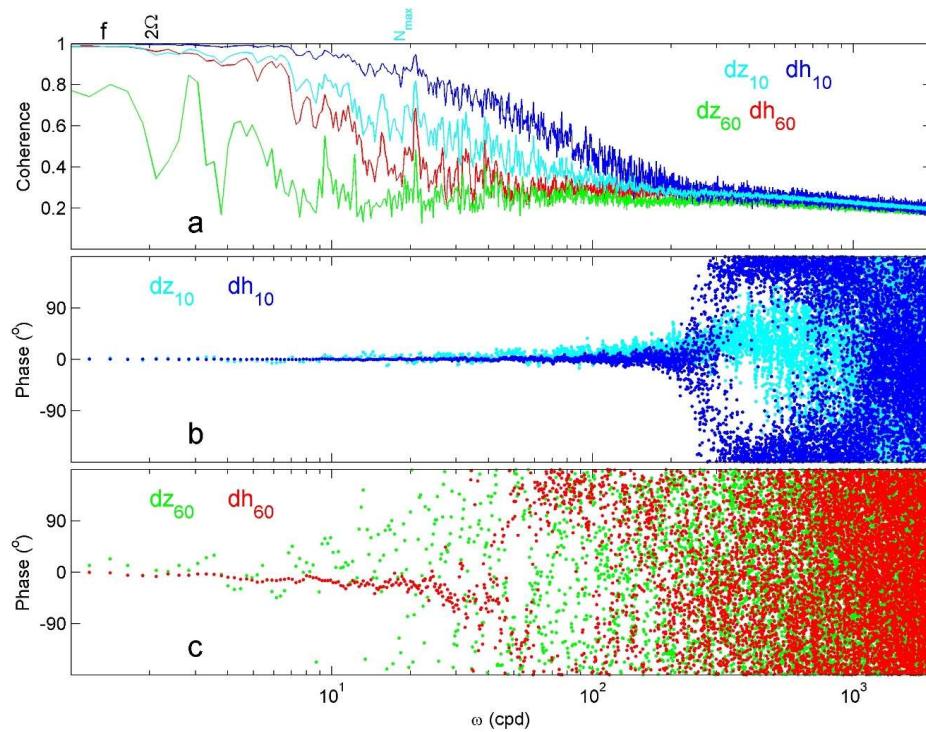
983

984 **Figure 9.** Zoom centering on IGW of 600-d and 38-line average spectra for 20-s sub-sampled data from
 985 (a) upper 1 and (b) lower 21 T-sensors. In a., the upper T-spectra are compared with 9-acoustic-beam
 986 (3-CM) averaged rEI spectra (arbitrary vertical scale). Band-smoothing is applied in the order cyan-pink
 987 for upper blue spectrum and magenta-black for yellow-grey dI-spectrum, and in b. green-yellow for
 988 lower red spectrum. The spectra are referenced to ω^p , $p = -7/5$, BO-scaling. Sloping lines indicate other
 989 potential scalings with p-values for unscaled plots on: intermittency Im $p = -1$, KO $p = -5/3$, IW (or
 990 finestructure) $p = -2$ (see text). The frequency of largest isotropic overturn in stratified waters is indicated
 991 by $\omega_0 = U/L_0$ for mean waterflow speed U and length scale L_0 (Ozmidov, 1965b). The x-axis range
 992 differs from that in previous spectra.


993

994

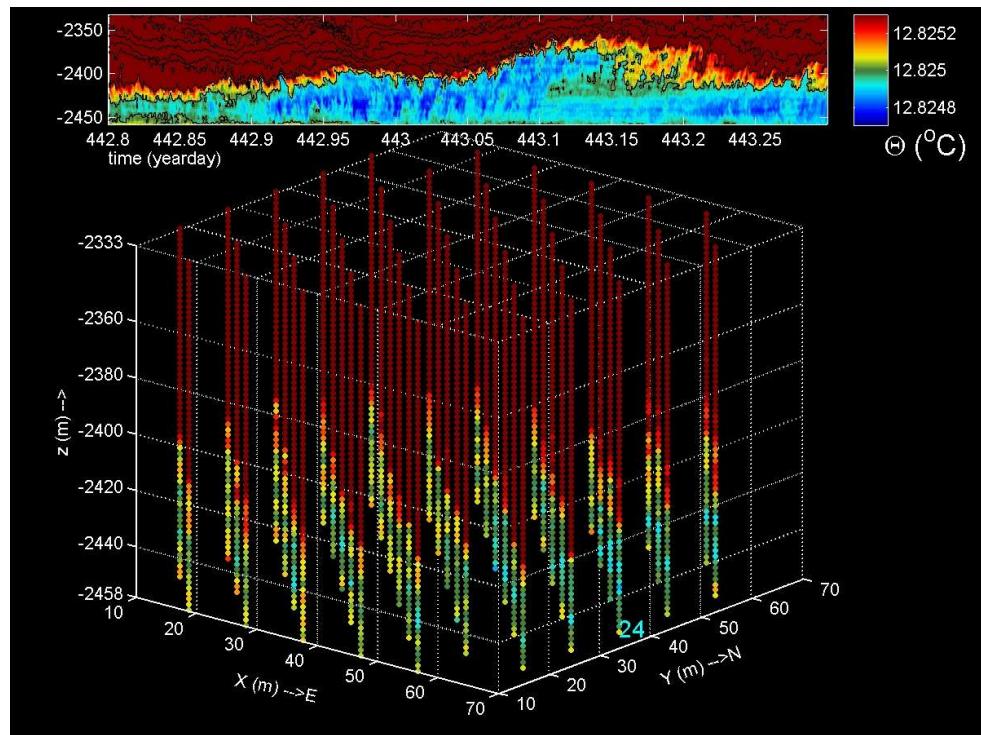
995 **Figure 10.** 600-d distribution of logarithm of 2-m-small-scale buoyancy frequency around T-sensors 50
996 ($h = 99$ m) and 10 ($h = 19$ m) from a single line. The vertical coloured lines indicate the distributions'
997 median (cyan), mean (green) and maximum (blue) values. The dashed magenta curve indicates a
998 threshold number of values > time/interval, i.e. $> \omega_{Nyquist}/\omega$. The x-axis range is the same as in Fig. 9.


999

1000

1001 **Figure 11.** As Fig.1a, but with added information inferred from Figs 8, 9's deep Mediterranean Sea
1002 observations in heavy-solid blue lines and lettering. Double arrows indicate energy cascade direction
1003 associated with BO-scaling. (In the deep-sea wind waves are not observed.)

1004



1005

1006 **Figure A1.** Similar to Fig. 7, but magnifying the internal wave / turbulence range and including phase

1007 differences for 10- and 60-m scales, under SW conditions only.

1008

1009

1010 **Figure A2.** Half-day quasi-3D movie of 3000-cpd lpf temperature data from about 2800 T-sensors under
1011 SW conditions. In the cube, which is vertically depressed by a factor of two relative to horizontal scales,
1012 each sensor is represented by a small filled circle of which the colour represents Conservative
1013 Temperature in the scale above. In the movie's upper panel, a white time-line progresses in a 0.5-d/124-
1014 m time/depth image from line 24 on the east-side of the cube. Black contour lines are drawn every
1015 0.0002°C. The 72-s movie is accelerated by a factor of 600 with respect to real-time.

1016