

1

2

3

4

5

6 **Technical note: turbulence demonstrates height
7 variations in closely spaced deep-sea
8 mooring lines**

9

10

11

12 **by Hans van Haren**

13

14

15

16

17

18

19

20

21

22 Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg,
23 the Netherlands.

24 e-mail: hans.van.haren@nioz.nl

25

26

27

28

29 **Abstract.** It may be important to precisely know heights of moored oceanographic instrumentation. For
30 example, moorings can be closely spaced or accidentally be located on small rocks or in small gullies.
31 Height variations $O(1 \text{ m})$ will yield registration of different values when conditions such as small-scale
32 density stratification vary strongly. Such little height variations may prove difficult to measure in the
33 deep sea, requiring high-accuracy pressure sensors preferably on all instruments in a mooring-array. In
34 this paper, an alternative method for relative height determination is presented using high-resolution
35 temperature sensors moored on multiple densely-spaced lines in the deep Western Mediterranean. While
36 it was anticipated that height variations between lines could be detected under near-homogeneous
37 conditions via adiabatic lapse rate $O(0.0001^\circ\text{C m}^{-1})$ by the 0.00003°C -noise-level sensors, such was
38 prevented by the impossibility of properly correcting for short-term bias due to electronic drift. Instead,
39 a satisfactory height determination was found during a period of relatively strong stratification and large
40 turbulence activity. By band-pass filtering data of the highest-resolved turbulent motions across the
41 strongest temperature gradient, significant height variations were detectable to within $\pm 0.2 \text{ m}$.

42

43 **1 Introduction**

44 Height variations in moored oceanographic instrumentation can occur above unknown topographic
45 features such as small rocks and gullies and, e.g., due to line stretching under several kN of buoyancy
46 pull. If closely-spaced mooring lines and attached instrumentation are used, one may need to correct for
47 the unknown height variations. Such a correction is possible using high-resolution temperature sensors.

48 In this technical-performance paper, deep-sea instrumental-height determinations will be
49 demonstrated using 45 mooring lines of 125-m tall and 9.5-m apart horizontally each holding 65 self-
50 contained high-resolution temperature ‘T-’sensors in a 70-m diameter steel-pipe ring (van Haren et al.,
51 2021). Each line was pulled up by a net buoyancy of 1.25 kN, imposed by a single buoy on top, and was
52 attached to the anchoring ring via a suspended steel-cable grid. The ring was moored on a flat seafloor
53 in nearly 2500-m deep weakly density-stratified waters of the Western Mediterranean Sea. The ‘large-
54 ring mooring’ was constructed for three-dimensional studies of deep-sea internal waves, their breaking
55 and turbulence generation, to learn more about their dynamical development via short movies (van
56 Haren et al. 2026) and detailed statistics.

57

58 **2 Materials and Methods**

59 A nearly half-cubic-hectometer of seawater was sampled using 2925 self-contained updated high-
60 resolution, stand-alone T-sensors, new version ‘NIOZ4n’. The ensemble large-ring mooring (Fig. 1a)
61 was deployed in drag-parachute controlled free-fall at the <1° flat and 2458-m deep seafloor of 42°
62 49.50’N, 006° 11.78’E of the Northwestern Mediterranean Sea in October 2020. The mooring was near
63 the site of neutrino telescope KM3NeT/ORCA (Adrián-Martinez et al., 2016) off the coast of Toulon,
64 France, just 10 km south of the steep continental slope (and 5 km from its foot in the abyssal plain).

65 Fig. 1b shows the numbering of 45 vertical mooring lines, which were ordered in six groups for
66 synchronisation purposes. As with all NIOZ4 T-sensors (van Haren, 2018), the individual clocks were
67 synchronised via induction to a single standard clock on the mooring-array every 4 hours, so that all T-
68 sensors were sampled within 0.01 s. Three buoys also held a Nortek AquaDopp single-point acoustic
69 current meter. Details of design, construction and deployment are given in van Haren et al. (2021).

70 With the help from Irish Marine Institute Remotely Operated underwater Vehicle (ROV) "Holland
71 I" on board Dutch R/V Pelagia, all lines with T-sensors were successfully cut and recovered in March
72 2024. Of the 45 lines, 43 were in good mechanical order, line 1.8 (line 8 of synchronization group 1;
73 henceforth indicated without decimal point) was hit by the drag parachute whereby 10 sensors were lost,
74 and line 65 was about 0.5 m lower than nominal because of a loop in the vertical line near the cable grid.
75 Only line 36 did not register synchronisation, possibly due to an electric wire failure. Three T-sensors
76 leaked and <10 were shifted in position due to tape malfunctioning. In total 2902 out of 2925 T-sensors
77 functioned as expected mechanically.

78 Due to unknown causes all T-sensors switched off unintentionally when their file-size on the 8-GB
79 Kingston memory card reached 30 MB. It implied that a maximum of 20 months of data was obtained,
80 which were recorded at an interval of once per 2 s. After post-processing, 50-150, depending on moment
81 in the record and type of analysis, extra T-sensors are not further considered due to electronics, noise
82 problems. With respect to previous NIOZ4 version, here named 'NIOZ4o', the slightly modified
83 electronics resulted in about twice lower noise levels of 0.00003°C and twice longer battery life.

84 As detailed elsewhere (van Haren, 2018), laboratory-bath calibration yielded a relative precision of
85 <0.001°C. Instrumental electronic drift of typically 0.001°C mo⁻¹ after aging was primarily corrected by
86 referencing daily-averaged vertical profiles, which must be stable from turbulent-overturning
87 perspective in a stratified environment, to a smooth polynomial without instabilities. In addition,
88 because vertical temperature (density) gradients are so small in the deep Mediterranean, so that
89 buoyancy frequency N = O(f) where f denotes the inertial frequency, reference was made to periods of
90 typically one-hour duration that were quasi-homogeneous with temperature variations smaller than
91 instrumental noise level (van Haren, 2022). Such >125-m tall quasi-homogeneous periods existed on
92 days 350 (in 2020), 453, and 657 (-366 in 2021) in the records. This secondary drift correction allowed
93 for proper calculations of turbulence values using the method of Thorpe (1977) under weakly stratified
94 conditions. As will be demonstrated in Appendix A, under very weakly stratified conditions a tertiary
95 correction involved low-pass filtering of data. This additional correction addresses short-term drift that
96 was about 2-3 times larger in NIOZn than in NIOZo T-sensors.

98 **3 Results**

99 While a single-line mooring attached to an anchor at the seafloor may modify the nominal positions of
100 instrumentation due to buoyancy-stretch of typically 0.1-1% of the total line length, depending on
101 amount of buoyancy and line fabric and make, the large-ring mooring will experience an additional
102 differential positioning due to the variable anchor height of the cable grid. Given the anchor being the
103 steel ring, the distributed buoys on top of each of the 45 lines will pull the steel-cable grid (Fig. 1) up in
104 the form of a dome. Hence, different heights are expected for different lines above the, presumed flat,
105 seafloor.

106 Prior to deployment, stretch-tests were performed with the grid's steel cable. Under nominal tension
107 of the planned buoyancy it was found that the exerted tension delivered a cable stretch so that the typical
108 angle of grid inflection was expected to amount 5°. This angle to the horizontal could not be verified
109 from visual inspection using ROV, although at various images a non-zero angle is discernible, which
110 also seems to vary between different cable sections in the grid (Fig. 2a).

111 Eight 'corner-lines' (Fig. 2b) were also displaced to an amount not precisely verifiable from ROV-
112 inspection. These lines were attached differently to the steel-cable grid as they could not be attached
113 directly to their intersection points at the steel ring. Estimating the height of corner-line can be attempted
114 from Fig. 2b. Visually, the right side of the small ring holding a vertical line in its center does not touch
115 seafloor and the small ring rotates around the smallest of three short assist cables of which the centre is
116 elevated to approximately $h = 0.6$ m above seafloor. If angles are measured on the basis of
117 vertical/horizontal ratio 4/4.5, then the small-ring makes an angle of about 40° to the horizontal, so that
118 its center is 0.8 m above the edge of the small-ring. In that case, the corner-line will start at $h = 1.0$ m.

119

120 **3.1 Parabola model**

121 Taking the 5°-angle due to distributed tension stretch as starting point, some simple models of (half-)
122 cable-grid cross-section can be made (Fig. 3). Quasi-parabola and straight-cable models are considered.
123 Considering that grid attachments are made in the center of the large-ring pipes at 0.3 m, the models
124 start from there.

125 The simplest, albeit unrealistic, straight-cable model makes a fixed angle of 5° (green model in Fig.
126 3). A 5-m discretized parabola model intersecting the straight-cable model halfway will have its top at
127 $h = 2.07$ m above (blue model). The steepest part, exceeding 5°, of the cable in this model has a
128 horizontal distance of 5 m to the large ring, which corresponds with the position of, e.g., line 57 (cf. Fig.
129 1b). In the model, line 57 has its lowest T-sensor at $h = 1.2$ m. If an overall maximum angle of 5° is
130 maintained, the top of that parabola model will be at $h = 1.12$ m, and the first line inside the large ring
131 will have its lowest T-sensor at $h = 0.72$ m (red model).

132 In an attempt to verify these cable-grid models, the altimeter, and in a relative sense the pressure
133 gauge, of the ROV gave a value of $h = 0.7 \pm 0.1$ m after landing on the small-ring of the first line of the
134 grid's centre cable, pushing it to the seafloor from the low side. If the maximum-5° parabola model is
135 correct, all vertical lines are a maximum of 0.4 m, or ± 0.2 m, apart vertically. This is difficult to correct
136 for in practice.

137 Unfortunately no pressure sensors were available, the three mounted on current meters being too
138 inaccurate, to quantify height variations between lines. As a result, quantification is sought using the T-
139 sensor data to verify, and possibly improve when necessary, above model values.

140

141 **3.2 Adiabatic lapse rate height-determination method**

142 Considering that the T-sensors have a noise level of 0.00003°C, potential temperature differences of
143 >0.00005 °C are statistically significantly detectable, in theory. Thus, given local deep Western
144 Mediterranean adiabatic lapse rate of $\Gamma = -0.00017$ °C m⁻¹ (here for simplicity a pressure of 10⁴ Pa is
145 transferred to a vertical distance of 1 m), vertical height differences of >0.3 m are potentially detectable
146 using T-sensor data under near-homogeneous conditions in which temperature variations are
147 predominantly due to compressibility effects. Such conditions do occur in the deep Western
148 Mediterranean regularly, see the lower 250 m above seafloor in a shipborne-CTD profile (Fig. 4). Γ
149 dominates the temperature lapse with the vertical in Fig. 4a. In time series from moored T-sensor data,
150 near-homogeneous conditions over 125-m vertical range occur about 60% of the time (Fig. 5a). These
151 conditions lead to very low temperature variance across all frequencies outside instrumental white noise
152 (Appendix A).

153 However, a complicating factor in ‘adiabatic lapse rate height-determination’ method is the
154 electronic drift of T-sensors, which varies in intensity per sensor but typically amounts about 0.001°C
155 mo^{-1} . While the value is one order of magnitude larger than the adiabatic lapse rate per unit length, in
156 principle T-sensors attached to a particular vertical line can be corrected to within a precision (relative
157 accuracy) of 0.0001°C (van Haren, 2018). All depends on a calibration with a precision of $<0.0005^{\circ}\text{C}$,
158 which is achievable using a thermostatic bath with constant temperature levels to within $\pm 0.0001^{\circ}\text{C}$ of
159 their preset values. The standard post-processing correction is by fitting a smooth curve over sufficiently
160 time-averaged vertical temperature profile that must be stable over an inertial period. When the
161 temperature range is not too large, above precision is obtainable with some effort and careful search in
162 the data. In the weakly stratified deep Mediterranean however, this correction is not achievable between
163 different lines, because the low precision is not transferrable to a low absolute accuracy.

164 As a result, the height determinations from translated temperature differences between lines attached
165 to the steel-cable grid are too large and erratically distributed (Fig. 6). Obviously, there is no consistency
166 between lines in the image of Fig. 6, which shows no signs of expected lower (relative) values at the
167 edges close to the ring and higher values near the center, following parabola models as in Fig. 3.
168 Moreover, the variation in values is nearly an order of magnitude greater than expected from the
169 parabola models in Fig. 3. Clustering per calibration -- approximately 190 T-sensors are used in the
170 thermostatic bath per cycle (van Haren, 2018) -- does not give improvement of consistency in the image
171 (not shown).

172

173 **3.3 Turbulence variance height-determination method**

174 As the adiabatic pressure effect on temperature is not a suitable measuring method for the expected
175 doming of the steel-cable grid inside the large ring, another method is sought. Unexpectedly, such a
176 method is not found during a near-homogeneous period. Instead, it is found when vertical temperature
177 stratification is rather large, with peaks resulting in $N = 6f$, and turbulent temperature variations are large
178 (Figs 5a, 7, 8). The combination of these two conditions, relatively large stratification and large
179 turbulence, seems counter-intuitive, as stratification is generally considered to suppress turbulence.

180 Whilst stratification indeed suppresses the vertical length-scale of turbulence, it may have variable
181 effects on temperature variance.

182 In case of the deep Western Mediterranean, relatively large vertical temperature gradients of a few
183 0.001°C over O(10-100) m occur with the advection of warmer waters (Figs 5a, 7a). The advection is
184 possibly slanted towards the vertical, either induced by internal-wave action and/or by (sub-)mesoscale
185 eddies. When mainly governed by planetary vorticity deflection, it represents in part convection-
186 turbulence that appears in a vertically stratified environment at mid-latitudes (Marshall and Schott,
187 1999). All warming events observed thus far associate with considerable turbulence. In the entire time
188 series (Fig. 5a) no significant cooling events occur. Current speeds (Fig. 5b) seldom exceed 0.1 m s⁻¹
189 and thus do not evidence strong flow events such as associated with deep dense-water formation that
190 might occur in late winter, but is not observed.

191 Due to the relatively low-noise T-sensors, deep Western-Mediterranean waters can be characterized
192 by frequency (ω) spectra in which turbulence manifests itself over a range of at least two orders of
193 magnitude (Fig. 8), approximately across $10 < \omega < 3000$ cpd (cycles per day), under the relatively large
194 turbulence conditions. Outside this band, spectra are dominated by internal waves, for $\omega < 10$ cpd, and
195 roll-off to instrumental white noise, for $\omega > 3000$ cpd. A strong temperature gradient produces high-
196 frequency internal waves, but is also accompanied by turbulent eddies, probably as a result of breaking
197 internal waves.

198 Here, we take the high-frequency portion $\Theta'(t, z)$ of the well-resolved turbulence band and, somewhat
199 arbitrarily, band-pass filter between $600 < \omega < 1800$ cpd that is certainly outside internal wave and white
200 noise bands. Although temperature variations in this range are part of inertial subrange reflecting a
201 continual transfer between large energy-containing turbulence scales and small dissipative scales via
202 shear-induced motions, such are mainly found well away from the seafloor. Within O(10) m from the
203 seafloor, motions are predominantly of convection-turbulence nature in a buoyancy subrange, which
204 manifests at all heights in the range $10 < \omega < 100$ cpd, albeit the spectral smoothing is coarse. Future
205 investigations will be directed to improve statistics in part by averaging data from the 45 lines and data
206 from different periods of stratified turbulence.

207 During such a period of warm waters from above, temperature variance may be relatively low closest
208 to the seafloor, but it increases to high levels well above common interior-values in the first $O(10)$ m
209 above seafloor (Figs 8, 9). In this example, the peak in turbulence-temperature variance is found around
210 $h = 11$ m. Above and below the peak one can take advantage of two depth-levels of high gradients in
211 turbulence temperature-variance. Common interior-values are reached at about $h > 40$ m = h_{sst} , which
212 could reflect the upper limit of layer of strong stratified turbulence 'sst' (Figs 7-9).

213 After scaling local turbulence temperature variance $\Theta'^2(z)$ with the 45-line average $\langle \rangle$ value of its
214 vertical gradient $d\langle \Theta'^2 \rangle / dz$ over $dz = 2$ m, a transfer from temperature to height value is established.
215 Subsequently, below or above the peak value in Fig. 9, a height pattern can be computed relative to
216 values of an arbitrary vertical line, 44 in this case (Fig. 10). Here, the pattern is given for height
217 determination by computing across the largest gradient of temperature-variance, between T-sensors #2
218 and #3 from the seafloor.

219 The difference between this pattern and that in Fig. 6 is obvious. First, all values are between 0 and
220 2 m in Fig. 10, and a consistent statistical significance is found to within ± 0.2 m. Cross-sections of the
221 cable grid also confirm the doming of the pattern (Fig. 11). While the observed doming is close to the
222 parabola models of Fig. 3, larger height-determination values than in the models are observed in the
223 center, with slightly steeper overall grid cables that still roughly obey the maximum 5° slopes (Fig. 11).
224 The ± 0.2 -m error range is easily verifiable after comparison with the provided bar. Corrections to
225 vertical positioning of T-sensors are therefore feasible and necessary, because the difference between
226 the center and edges of the cable grid is approximately 1.5 m.

227

228 **3.4 Stratified turbulence quantification**

229 The temperature variations of the well-stratified day 485 demonstrating the necessary height
230 determination for the doming of the steel-cable grid show a background value of turbulence dissipation
231 rate $O(10^{-10}) \text{ m}^2 \text{ s}^{-3}$. Reduced values $O(10^{-11}) \text{ m}^2 \text{ s}^{-3}$ are basically only found within a few meters from
232 the seafloor, underneath the largest 2-m small-scale stratification with maximum buoyancy-frequency
233 values of $N_{\max} \approx 1.6 \times 10^{-3} \text{ s}^{-1}$ (Fig. 7). This is observable in time-depth plots of temperature, small-scale

234 stratification and non-averaged turbulence dissipation rate ‘values’. Coarsely every two hours, 124-m
235 vertically averaged turbulence dissipation rate peaks, indicating the largest overturns being about 100
236 m in height, given a waterflow speed of 0.03 m s^{-1} . Turbulent overturns reach close to the seafloor, but
237 only sporadically touch it, mostly at begin and end of the warm-water depression. The $h = 40 \text{ m}$ of
238 elevated high-frequency temperature variance (Fig. 9) and stratification (Fig. 7b) show non-negligible
239 turbulence dissipation rate values with further elevated values reaching the seafloor before and after the
240 warm-water passage (Fig. 7c).

241 Time-depth mean values from the 1.3-day period are for turbulence dissipation rate $[\langle \varepsilon \rangle] = 6 \pm 3 \times 10^{-10} \text{ m}^2 \text{s}^{-3}$ and for turbulent diffusivity $[\langle K_d \rangle] = 1.4 \pm 0.7 \times 10^{-3} \text{ m}^2 \text{s}^{-1}$ under $[\langle N \rangle] = 2.8 \pm 0.3 \times 10^{-4} \text{ s}^{-1} \approx 3 \text{ f}$.
242 These 1.3-day, 124-m mean turbulence values are about one order of magnitude larger than open-ocean
243 values observed in stratified waters well away from boundaries (Gregg 1989; de Lavergne et al. 2020;
244 Yasuda et al. 2021).

245 Although the warm-water event of Fig. 7 is relatively strong, it is not exceptional and elevated
246 temperature-stratification and -variance alternate in time with near-homogeneous episodes throughout
247 the 20-month records (Fig. 5a). This will be reported elsewhere in more detail, notably using three-
248 dimensional investigations.

250

251 **4 Conclusions**

252 The expected height variation due to vertical buoyancy pull across a steel-cable grid, which was
253 suspended within a large anchoring steel-pipe ring, was modelled as an inverted parabolic with
254 maximum 5° angle to the horizontal. To verify the height variation of the instrumented vertical mooring
255 lines across the grid, we expected to use an observational period with unmeasurably small vertical
256 density (temperature) stratification so that the adiabatic lapse rate $\Gamma = dT/dz$ would dominate vertical
257 temperature variations $T(z)$. The T-sensors have a noise level of about 0.00003°C , while $|\Gamma| \approx 0.00017^\circ\text{C}$
258 m^{-1} in the deep Western Mediterranean and thus is potentially measurable by sensors nominally 2-m
259 apart vertically. However, the sensor’s electronic drift at all scales turned out insufficiently correctable
260 under near-homogeneous conditions.

261 Instead, a mooring-height determination was found during a period of relatively large stratification,
262 during a slump down of warm water presumably slanted from above and induced by internal waves. By
263 band-pass filtering the highest resolved turbulence variance, mainly from inertial subrange, across the
264 strongest temperature gradient, the dome of pulled-up grid was significantly detectable, and fine-tuned
265 a parabola model with height variations between the moorings of correctable $(0.5\text{--}2.0)\pm0.2$ m.

266 The impact of investigating turbulence signals from high-resolution moored T-sensors the deep
267 Mediterranean is several-fold. First, it demonstrates the dynamics of internal-wave breaking governed
268 by either near-inertial or sub-mesoscale motions slumping relatively warm waters to within a few meters
269 above the seafloor. Thereby, an episodic-average turbulence dissipation rate is provided, which is about
270 ten times larger than ambient values above a flat seafloor. The enhanced turbulence affects deep-sea
271 life. Deep-sea turbulence is studied more elaborately in van Haren (2026 submitted).

272 Second, the strong vertical variation in turbulence temperature-variance profiles, across relatively
273 large local vertical temperature gradients, may be useful for height determinations in nearby moorings
274 over flat seafloors also in shallow seas, and, more difficult, above sloping seafloors, whereby a
275 correction may be applied for (unknown) mooring-line stretch under tensioning by buoyancy. Such
276 height determinations may also be necessary when moorings are accidentally placed on small rocks or
277 in small gullies. The resulting determination demonstrated that the parabola model based on in-house
278 line-tensioning was adequate and required only secondary adjustment in the slightly steeper cables of
279 the underwater large-ring mooring, albeit all showed $<5^\circ$ sloping to the horizontal as anticipated from
280 the in-house tests.

281

282 *Data availability.* Only raw data are stored from the T-sensor mooring-array. Analyses proceed via
283 extensive post-processing, including manual checks, which are adapted to the specific analysis task.
284 Because of the complex processing the raw data from the custom-made T-sensors are not made publicly
285 accessible. Current meter and CTD data are available from van Haren (2025): “Large-ring mooring
286 current meter and CTD data”, Mendeley Data, V1, <https://doi.org/10.17632/f8kfcvtdn.1>.

287

288

289 *Competing interests.* The author has no competing interests.

290

291 *Acknowledgments.* This research was supported in part by NWO, the Netherlands organization for the
292 advancement of science. Captains and crews of R/V Pelagia are thanked for the very pleasant
293 cooperation. The team of ROV Holland I performed an excellent underwater mission to recover the
294 instrumentation of the large ring. NIOZ colleagues notably from the NMF department are especially
295 thanked for their indispensable contributions during the long preparatory and construction phases to
296 make this unique sea-operation successful. I am indebted to colleagues in the KM3NeT Collaboration,
297 who demonstrated unison to get large-scale infrastructural projects funded. M. de Jong and A. Heijboer
298 helped in securing NWO funding.

299

300 **Appendix A Extra drift correction for T-sensors in near-homogeneous waters**

301 When waters are very weakly stratified or near-homogeneous over the range of moored T-sensors, a
302 short-term drift error may emerge. This drift partially causes the impossibility to determine instrumental
303 height variations under such conditions. Albeit electronic drift is well known to occur on long timescales
304 of weeks-months, short-term hourly drift may appear because of nonlinear temperature dependency
305 and/or inadequate contact between the NTC's and the environment through the glass tube and its contact
306 paste. Negative Temperature Coefficient 'NTC' thermistors are the measuring component of NIOZ T-
307 sensors. This short-term drift was previously observed in NIOZ4o deep-trench data and, especially clear,
308 in air (van Haren and Bosveld, 2022). It turned out difficult to correct for. During a 2017/2018 test
309 experiment in the deep Western Mediterranean it did not pose a great problem in NIOZ4o data.
310 Unfortunately, NIOZ4n appear to have about twice larger short-term drift than previous NIOZ4o,
311 despite their smaller long-term drift and smaller instrumental noise, both by a factor of two-three
312 approximately. A correction for short-term drift of NIOZ4n is proposed below, with reference to
313 NIOZ4o.

314 Half-day NIOZ4n data (Fig. A1a-c) from arbitrary line 25 are compared with a 104-m tall set of
315 NIOZ4o data (Fig. A1d-f). The investigated samples are from almost homogeneous waters, with a total
316 colour-range over a Conservative-Temperature difference of only 0.00017°C. Although NIOZ4o are
317 more noisy (Fig. A1a,d), the NIOZ4n show a more horizontal-striped pattern that has different values
318 through time, compared to T-sensors above and below. This is evidence of remaining bias due to short-
319 term drift. Low-pass time filtering does not reduce these (Fig. A1b,e), but additional vertical filtering
320 adequately removes the bias (Fig. A1c,f).

321 As a consequence of near-homogeneity, energetic overturning scales are expected to be large due to
322 the reduced restoring force. In both data sets in the center of images, albeit clearer in the NIOZ4o, one
323 notices a slanting jet of warmer waters over a vertical range of about 60 m in short bursts of 10-20 m.
324 Such jets of convection turbulence were found abundant in the Mariana Trench (van Haren, 2023), but
325 relatively rarely in the deep Mediterranean.

326 Depending on the rate of stratification, the vertical filter cut-off at 0.05-0.2 cpm (cycles per meter)
327 is obtained after fine-tuning in an attempt to retain the relevant overturning scales as much as possible.

328 Under weakly but stable stratified conditions 0.1-0.2 cpm is used, while under near-homogeneous and
329 unstable conditions 0.05-0.1 cpm is used. The fine-tuning of the vertical filter concerns relatively
330 adequate spectral improvement and turbulence calculations. Naturally, all data-corrections yield a
331 certain loss of information, but it is informative to estimate how much the loss may be.

332 In 4-d-average spectra (Fig. A2) that include the 0.5-d period of Fig. A1, the impact of small-scale
333 drift is seen to be larger for NIOZ4n (Fig. A2a) than for NIOZ4o (Fig. A2b). In these plots spectra are
334 scaled with the slope of buoyancy subrange, for clarity. As a reference for the correction, the temperature
335 difference $\Delta\Theta$ (magenta spectrum) is taken between the two neighbouring T-sensors at $h = 29$ and 31
336 m. That difference spectrum is compared with the spectrum of temperature data from the upper T-sensor
337 (green). The magenta spectrum has a higher noise level by about a factor of two for $\omega > 100$ cpd than
338 that of the green spectrum. This is commensurate with random white noise.

339 At lower frequencies, the magenta spectrum crosses the green spectrum around 50 and 150 cpd for
340 Fig. A2a and A2b, respectively. This means that data are no longer dominated by white noise, but by
341 other parametrizations, which are governed either by natural processes or by instrumental flaws other
342 than noise. Around the crossing frequency, temperature spectra become horizontal following buoyancy-
343 subrange scaling, rather abruptly. This scaling, which represents convection turbulence of an active
344 scalar (Bolgiano, 1959; Obukhov, 1959), was no longer dominant at frequencies higher than that of the
345 crossing, more so in Fig. A2a than in Fig. A2b.

346 After correction by applying vertical low-pass-filtering (red), the weak slope towards lower
347 frequencies (especially that of Fig. A2a) is correctly removed and white noise levels are lower. The
348 spectral slope change to white noise is now at the same frequency, 400 cpd, for both data sets. The quasi-
349 transfer function of correction depicted in the blue spectra is less steeply sloping for $\omega < 1000$ cpd in
350 Fig. A2a than in Fig. A2b, which demonstrates the larger effects of short-term drift correction for the
351 NIOZ4n compared to the NIOZ4o. However, in both data sets of very weakly stratified deep-sea waters
352 it prevents resolution of the transition from buoyancy and/or inertial subranges to the viscous turbulence
353 dissipation range.

354 Resuming, after vertical-filtering correction, temperature data at $\omega < 400$ cpd seem useful for
355 turbulence calculations under weakly stratified conditions. Note that this correction is not needed during
356 periods with relatively large temperature variance and stratified, generally more shear-induced,
357 turbulence. For turbulence dissipation rate calculations, 10-30% reduction is obtained from short-term
358 drift correction. This reduction is well within the error range of a factor of two normally achieved for
359 ocean turbulence data.

360 **References**

361 Adrián-Martínez, S. et al.: Letter of intent for KM3NeT 2.0, *J. Phys. G*, 43, 084001, 2016.

362 Bolgiano, R.: Turbulent spectra in a stably stratified atmosphere, *J. Geophys. Res.* 64, 2226-2229, 1959.

363 de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., and Whalen, C. B. et al.: A
364 parameterization of local and remote tidal mixing, *J. Adv. Mod. Earth Sys.*, 12,
365 e2020MS002065, 2020.

366 Gregg, M. C.: Scaling turbulent dissipation in the thermocline, *J. Geophys. Res.*, 94, 9686-9698, 1989.

367 IOC, SCOR, and IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation
368 and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission,
369 Manuals and Guides No. 56, UNESCO, Paris (F), 196 pp, 2010.

370 Marshall, J., and Schott, F.: Open-ocean convection: Observations, theory, and models, *Rev. Geophys.*,
371 37, 1-64, 1999.

372 Obukhov, A. M.: Effect of buoyancy forces on the structure of temperature field in a turbulent flow,
373 *Dokl. Akad. Nauk SSSR*, 125, 1246-1248, 1959.

374 Thorpe, S. A.: Turbulence and mixing in a Scottish loch, *Phil. Trans. Roy. Soc. Lond. A*, 286, 125-181,
375 1977.

376 van Haren, H.: Philosophy and application of high-resolution temperature sensors for stratified waters,
377 *Sensors*, 18, 3184, doi:10.3390/s18103184, 2018.

378 van Haren, H.: Thermistor string corrections in data from very weakly stratified deep-ocean waters,
379 *Deep-Sea Res. I*, 189, 103870, 2022.

380 van Haren, H.: How and what turbulent are deep Mariana Trench waters? *Dyn. Atmos. Oc.*, 103, 101372,
381 2023.

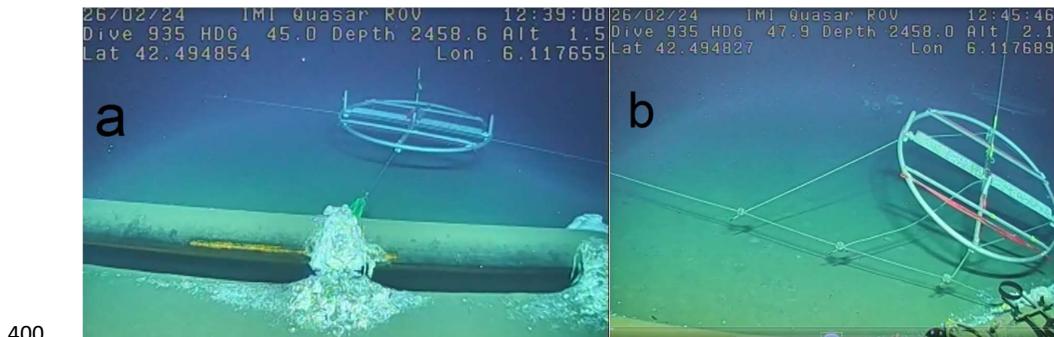
382 van Haren, H., and Bosveld, F. C.: Internal wave and turbulence observations with very high-resolution
383 temperature sensors along the Cabauw mast, *J. Atmos. Ocean. Technol.*, 39, 1149-1165, 2022.

384 van Haren, H., Bakker, R., Witte, Y., Laan, M., and van Heerwaarden, J.: Half a cubic hectometer
385 mooring-array 3D-T of 3000 temperature sensors in the deep sea, *J. Atmos. Ocean. Technol.*,
386 38, 1585-1597, 2021.

387 van Haren, H., et al.: Whipped and mixed warm clouds in the deep sea, Geophys. Res. Lett., in press,
388 2026.

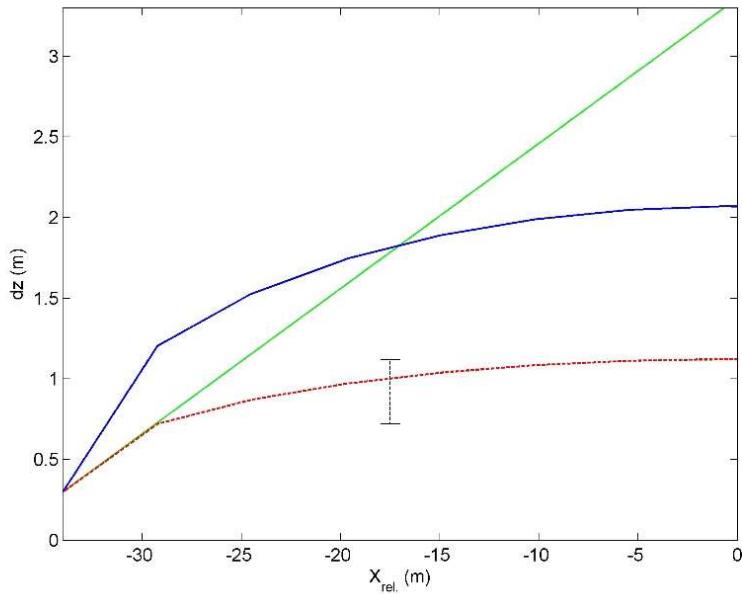
389 Yasuda, I., et al.: Estimate of turbulent energy dissipation rate using free-fall and CTD-attached fast-
390 response thermistors in weak ocean turbulence, J. Oceanogr., 77, 17-28, 2021.

391



392

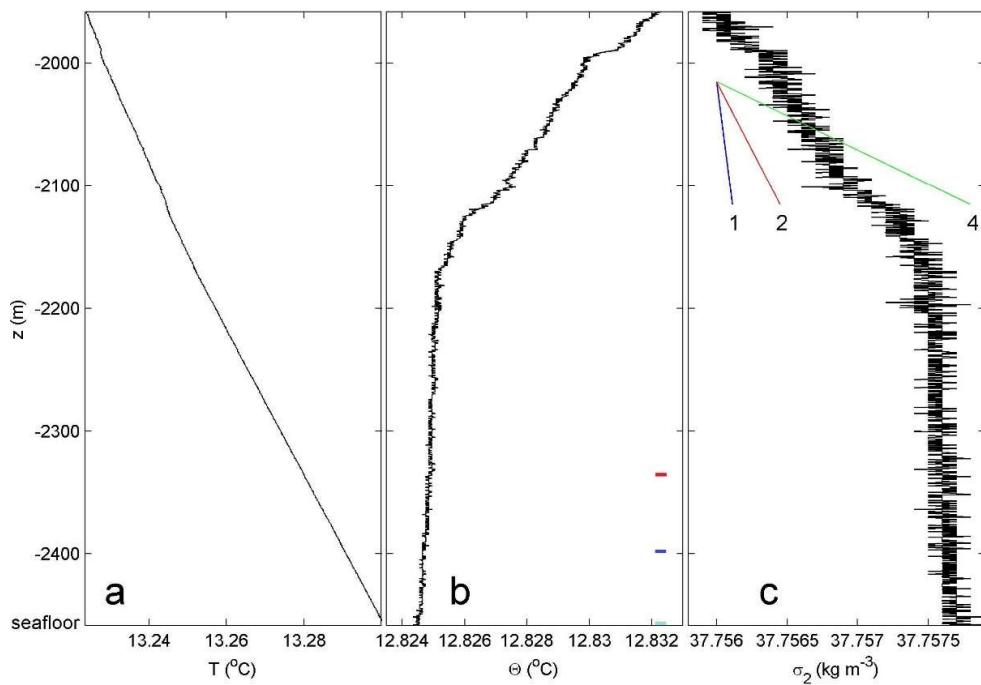
393 **Figure 1.** Large ring in fold-up form at sea, during deployment just prior to finish the opening of air-
394 valves. The front part of the large steel-pipe ring is already underwater. Almost all top-buoys of the 45
395 small-ring-compact mooring lines are visible. In the front still outside the ring, the yellow drag
396 parachute and orange pick-up buoy are floating. (b) Layout of the large-ring mooring, with steel-cable
397 grid and small-rings numbered in six synchronisation groups. Lines 14, 35 and 57 (omitting the decimal
398 point) held a current meter at the top-buoy.


399

400

401 **Figure 2.** Underwater video stills of small-rings demonstrating steel-cable grid elevation and cable-
402 inclinations. The 0.61-m diameter steel pipe in the foreground is part of the large anchoring ring, which
403 sank 0.07 ± 0.02 m in the sediment of the $<1^\circ$ flat seafloor. All steel cables are attached to the middle of
404 the steel pipes, and thus at height $h = 0.24$ m above sediment. (a) Line 44 (cf. Fig. 1b). To the right of
405 the small-ring the wire visibly makes a larger angle to the vertical than to the left. (b) Estimating height
406 of 'corner-line' 47, see text. (Images from video by ROV Holland I).

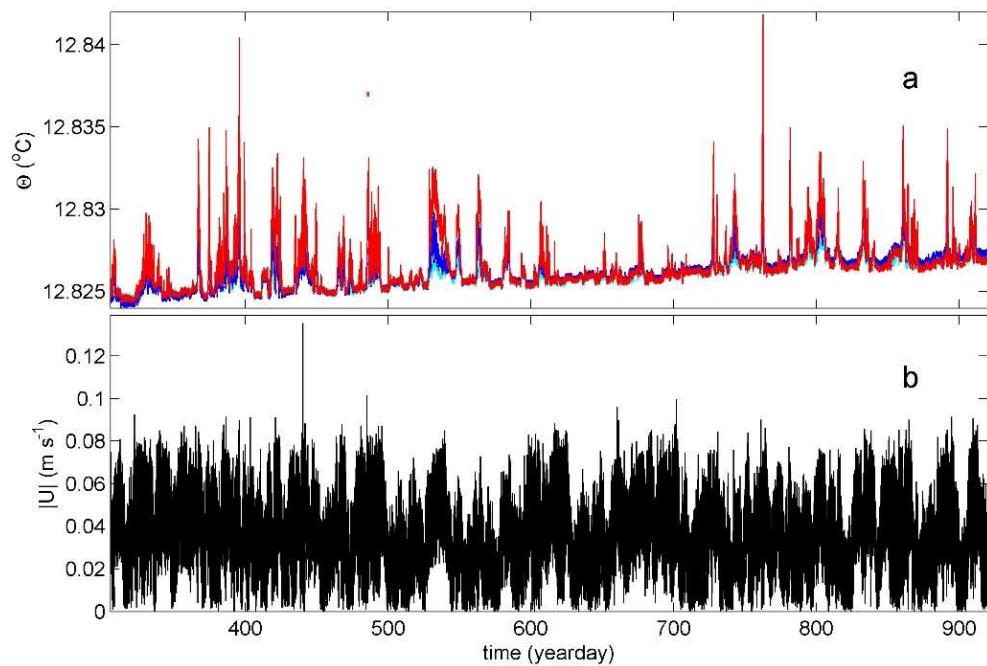
407



408

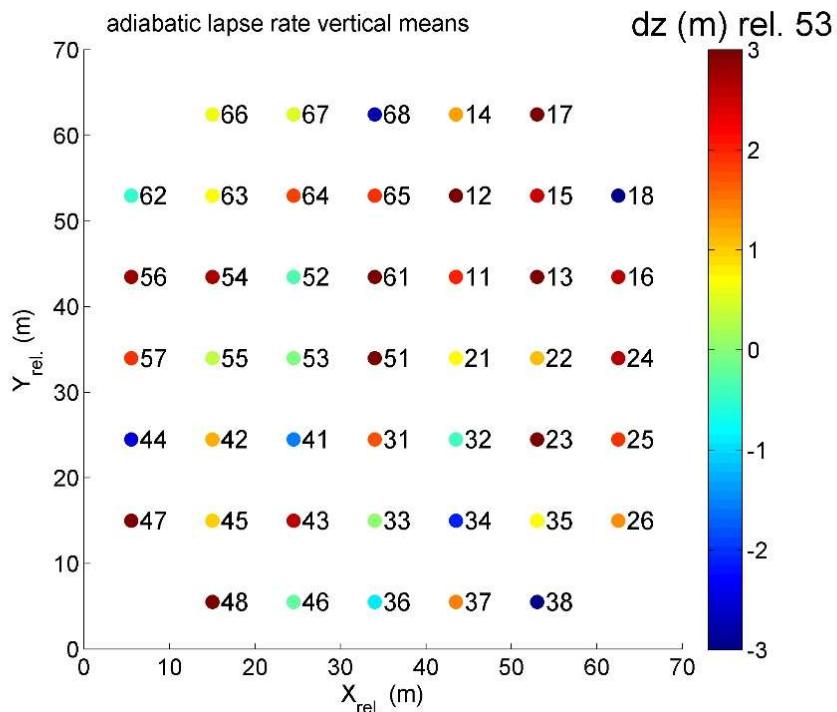
409 **Figure 3.** Quasi-parabola and straight-line models, for half centre steel cable of large-ring mooring grid.

410 The seafloor is at the horizontal axis, the cable-grid attachment to the large-ring is for a steel pipe at a
411 solid floor. The green straight line makes a fixed angle of 5° with the horizontal, which angle was
412 established after in-port tension tests. The blue (solid line, 5-m discretized) parabola model intersects
413 the green line halfway, so that its top is at $h = 2.07 \text{ m}$. If an overall maximum angle of 5° is maintained
414 (red dotted model), the top is at $h = 1.12 \text{ m}$, and the first vertical line attached to relative horizontal
415 position $x_{\text{rel.}} = -29 \text{ m}$ will be at $h = 0.72 \text{ m}$.

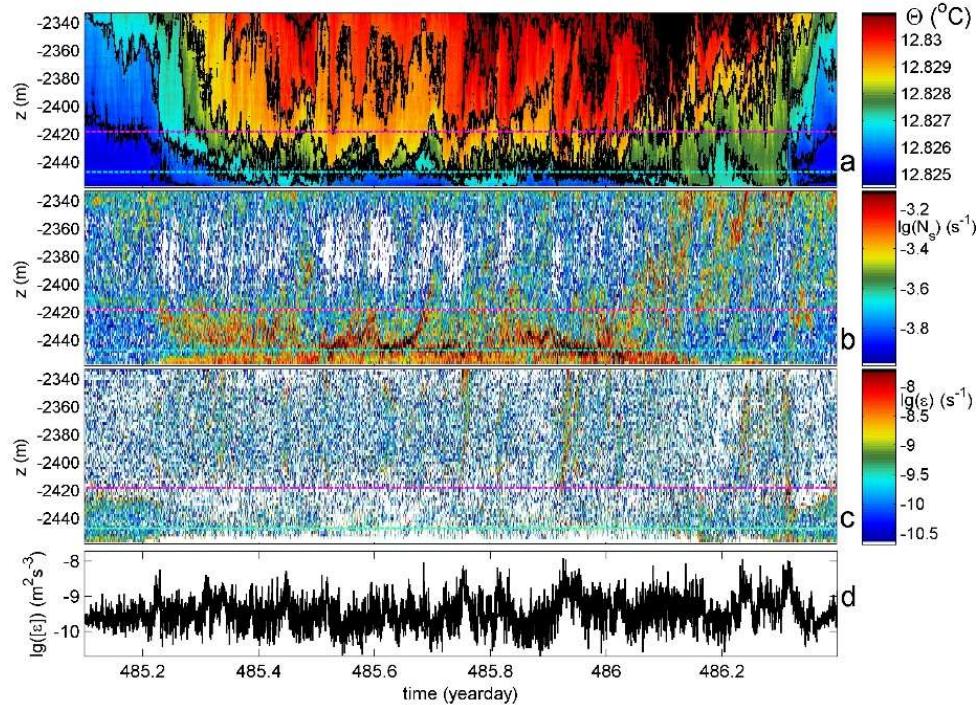

416

417 **Figure 4.** Lower 500 m of shipborne CTD-profile data obtained near the large ring during mooring
418 deployment. (a) Uncorrected temperature. (b) Conservative Temperature (IOC et al., 2010) corrected
419 for compression. Small colour bars indicate nominal heights of moored T-sensors at lowest (cyan),
420 middle (blue) and upper (red) positions. (c) Density anomaly referenced to $2 \times 10^7 \text{ Pa}$. The sloping lines
421 indicate several stratification rates in terms of buoyancy frequency $N = xf$, $x = 1, 2, 4$ times the local
422 inertial frequency f .

424

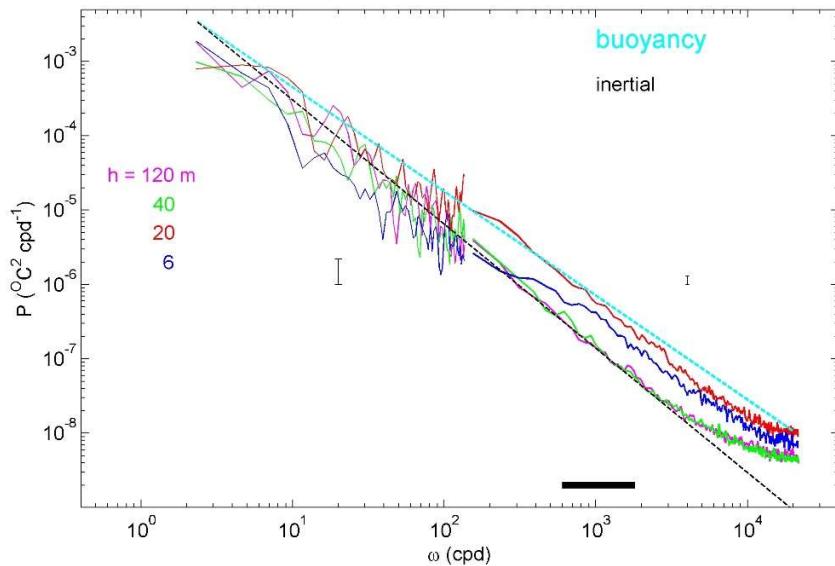

425

426


427 **Figure 5.** Overall 20-month time series of moored temperature and current meter data. (a) Conservative
428 Temperature at $h = 1$ (cyan), 63 (blue) and 125 m (red) cf. Fig. 4b of arbitrary line 53. Data are not
429 corrected for electronic-drift bias. The magenta dot indicates day 485. (b) Unfiltered current speed at h
430 = 126 m of line 14.

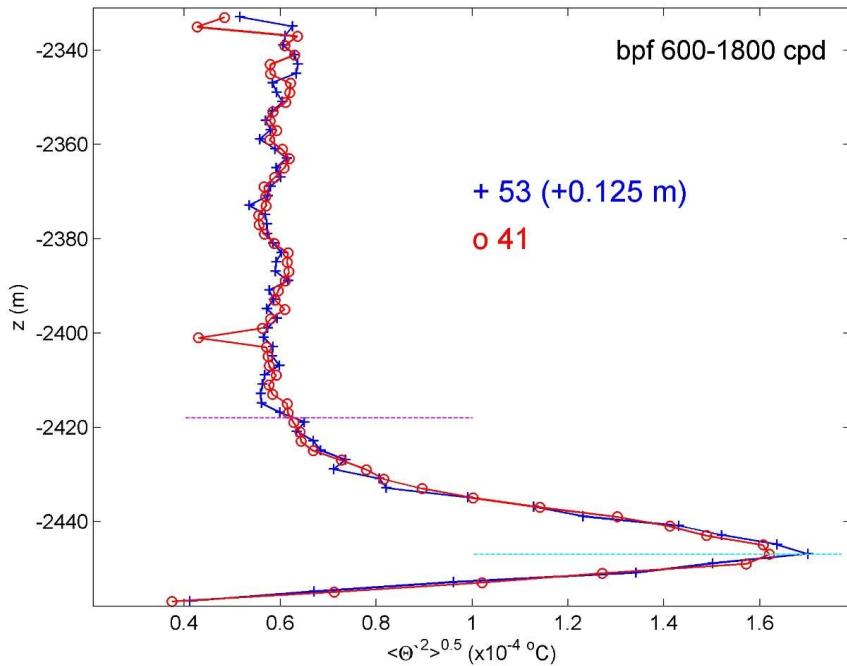
431

432


433 **Figure 6.** Vertical displacement calculation for vertical lines of the large-ring mooring using the local
434 adiabatic lapse rate Γ . This height-determination method is based on temperature shift per line after
435 calibration and drift correction for near-homogeneous period 350.04-350.08, with line 53 as reference.
436 The conversion of meters into degrees Celsius is via $\Gamma = 0.00017^\circ\text{C m}^{-1}$, so that a vertical difference of
437 $dz = 3$ m reflects approximately 0.0005°C . Corner-lines are 17, 18, 26, 38, 47, 48, 62 and 66.

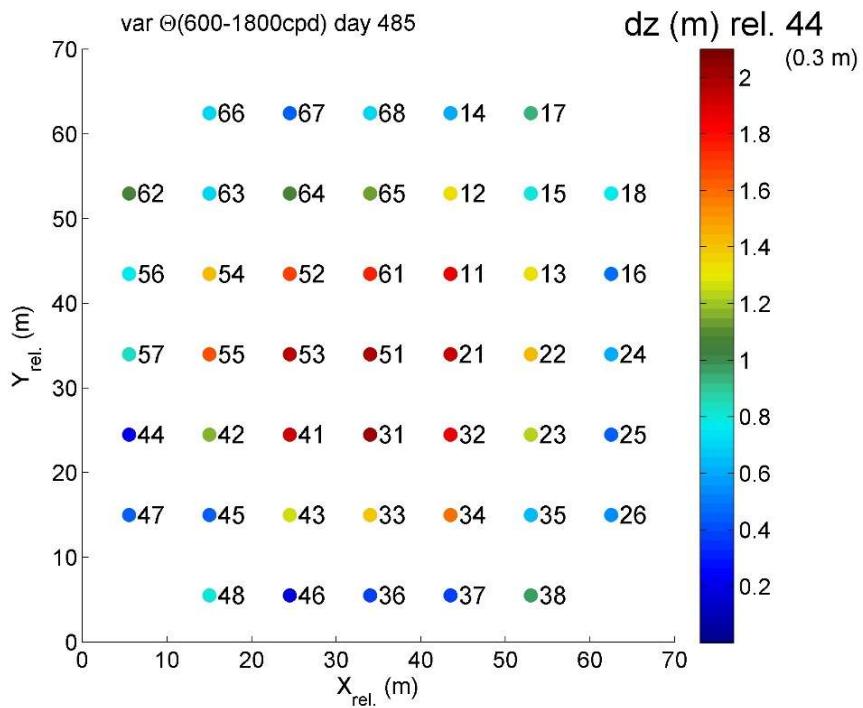
438

439 **Figure 7.** Thirty-one hours of data from line 53 during a turbulent passage of relatively warm water.
440 Horizontal dashed magenta and cyan reference lines are at $h = 40$ and 11 m above seafloor, respectively.
441 (a) Time-depth plot of Conservative Temperature with black contours every 0.001°C . (b) Logarithm of
442 2-m small-scale buoyancy frequency from reordered profiles of data in a. (c) Logarithm of non-averaged
443 turbulence dissipation rate from data in a. (d) Time series of logarithm of turbulence dissipation rate
444 averaged over the 124-m vertical extent of T-sensors.


445

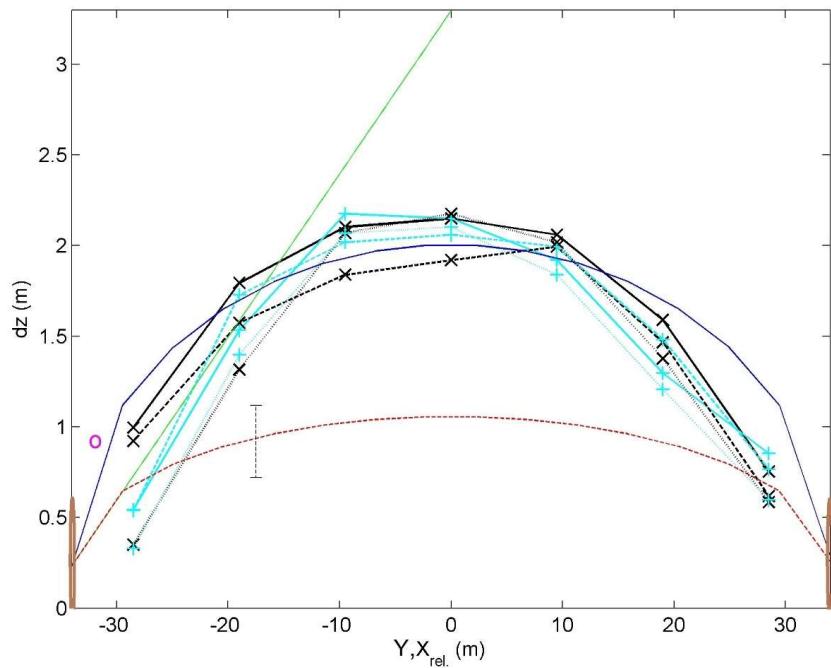
446

447 **Figure 8.** Unscaled frequency spectra, patched from weakly and heavily smoothed parts, for four T-
448 sensors of line 53 at indicated heights h above seafloor, averaged over the 1.3-day period of Fig. 7.
449 Spectral slopes for inertial and buoyancy subranges (of turbulence) are indicated with straight dashed
450 lines. The horizontal black bar indicates the pass-filter band that is applied for the turbulence-variance
451 method of height determination.


452

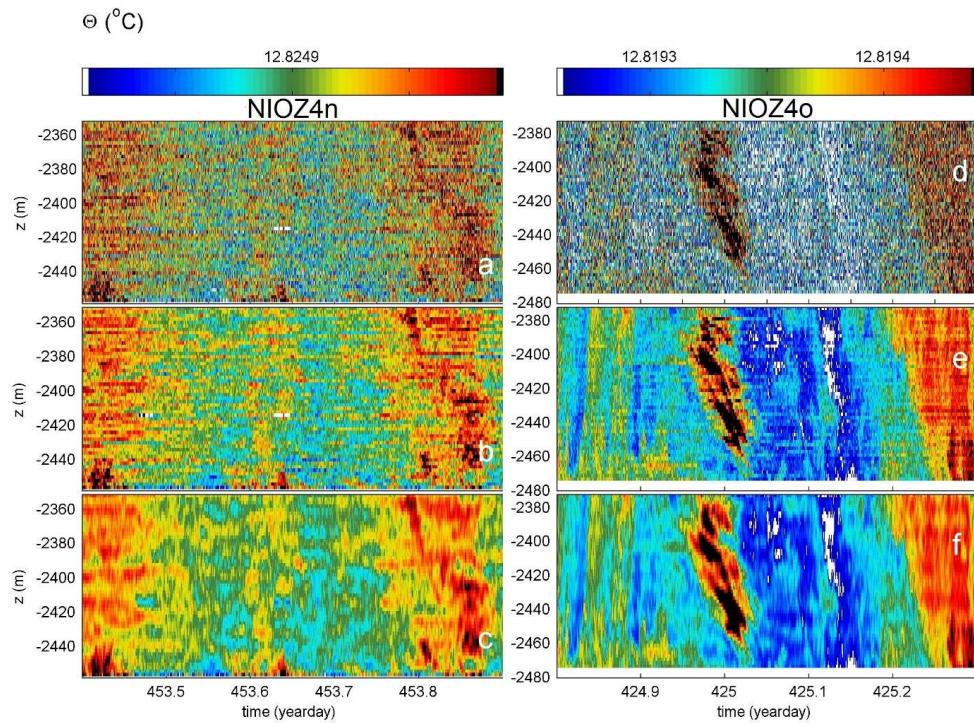
453

454 **Figure 9.** Vertical profiles of standard deviation of band-pass filtered 'bpf' high-frequency turbulence
455 signals for temperature data in Figs 7a, 8 for two neighbouring lines, with off-set relative height
456 determination. The variance-peak height (cyan-dashed line) corresponds also to the height of strongest
457 layering in stratification (sic!) in Fig. 7b. The magenta-dashed line delineates the vertical extent of
458 enhanced temperature variance above interior values.


459

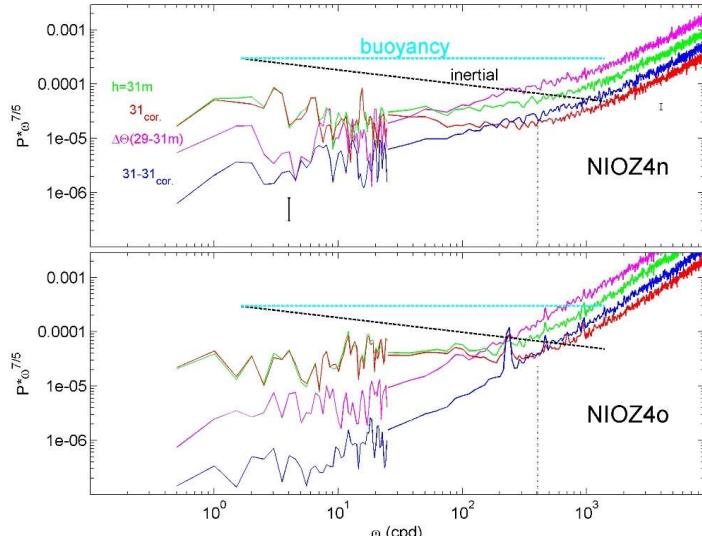
460

461 **Figure 10.** As Fig. 6, but for turbulence-variance height-determination method determined from profiles
462 like in Fig. 9 using T-sensor data between positions 2 and 3 above seafloor, where the gradient in
463 temperature variance is maximum, divided by the average gradient over 2 m. Values are given relative
464 to those of line 44 (0.3 m).


465

466

467 **Figure 11.** Constant-Y (black x graphs) and constant-X (cyan +) cross-sections without corner-lines of
468 height determinations from Fig. 10. Solid lines indicate center lines in both directions. Corner-line height
469 determination is indicated by magenta o. In the background, models are given in green, blue and red of
470 double distance than in Fig. 3.


471

472

473 **Figure A1.** Half-day Conservative-Temperature data from $h = 1$ -104 m demonstrating the correction of
 474 short-term drift. The conditions are near homogeneous, as full the temperature range is only 0.00017°C
 475 during the present experiment in 2020/2021 (left column) and during a test-experiment in 22-m deeper
 476 water in 2017/2018 (right column). (a, d). Unfiltered data, after post-processing involving calibration,
 477 referencing to CTD-, homogeneous-period-, and smooth-polynomial data. (b, e) Low-pass filtered ‘lpf’
 478 with cut-off at 500 cpd. (c, f) Corrected for short-term drift: 500-cpd and 10-m vertical-scale lpf data.

479

480

481 **Figure A2.** Four-day average spectra that are patched together from two, a weakly- and a heavily
482 smoothed part, and scaled with the buoyancy-subrange slope (horizontal cyan). The spectra demonstrate
483 effects of and correction for short-term drift in T-sensor data around $h = 30$ m during near-homogeneous
484 periods between days 453-457, including those of Fig. A1. Plotted are spectra for unfiltered data (green),
485 vertical temperature difference with data from T-sensor 2-m lower (magenta), 500-cpd and 10-m vertical
486 scale corrected data (red), and the difference between green and red spectra (blue). For reference, the
487 relative log-log plot slope is given for inertial subrange (black). The vertical dotted line at 400 cpd is
488 explained in the text. a) NIOZ4n data. b) NIOZ4o data.

489