



1  
2  
3  
4

5  
6

7 **Technical note: tidal motions in the deep  
8 Mediterranean**

9

10  
11

12 **by Hans van Haren**

13  
14  
15  
16  
17  
18  
19  
20  
21

22 Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg,  
23 the Netherlands.  
24 e-mail: [hans.van.haren@nioz.nl](mailto:hans.van.haren@nioz.nl)

25



26     **Abstract.** The Mediterranean Sea is known for its limited tidal motions. For example, surface barotropic  
27     tidal elevations have an amplitude of 0.1 m in the Northwestern Mediterranean. Nevertheless, these  
28     small tides are noticeable in temperature records at the 2500-m deep seafloor, but only under near-  
29     homogeneous conditions when buoyancy frequency  $N < f$ , the inertial frequency. After transfer of  
30     pressure to temperature units via the local adiabatic lapse rate, the observed internal-wave temperature  
31     signals may thus be corrected for  $1.5 \times 10^{-5}$  °C amplitude semidiurnal barotropic tides. The remaining  
32     baroclinic tides are embedded in the broad and featureless inertio-gravity wave band, with some energy  
33     enhancement near its boundaries, also under tenfold-larger energetic stratified water conditions.

34

### 35     **1 Introduction**

36     In the over 2000-m deep Western Mediterranean Sea milli- to centi-degree variations in temperature  
37     characterize all dynamical processes. This deep sea may be void of sunlight and its waterflow may be  
38     relatively slow at speeds of  $0.05 \text{ m s}^{-1}$ , it is not stagnant but requires precise instrumentation for studying  
39     such processes. Above the generally flat seafloor in the vicinity of its northern continental shelf,  
40     dynamical processes include a large-scale boundary flow (e.g., Crepon et al., 1982), with meanders and  
41     eddies varying at 1-10 day and 1-10 km sub-mesoscales, as well as at 10-30 day and 10-100 km  
42     mesoscales. The variations result from instabilities of the boundary flow and associated fronts,  
43     horizontal density variations between coastal and offshore water masses. These are strongest near the  
44     surface, but can be traced all the way to the seafloor in weaker form. Shorter-period variations involve  
45     waves in the interior of the sea, notably at near-inertial scales, as transients following passages of  
46     atmospheric disturbances induced by, e.g., varying winds from the nearby mountain ranges like the  
47     Alps. Near-inertial motions can penetrate as ‘internal waves’ into the deep sea, e.g. via trapping by (sub-  
48     )mesoscale eddies (Kunze, 1985). They may set-up shorter scale internal waves that eventually dissipate  
49     their energy through irreversible turbulence when they break.

50     In contrast with most seas and oceans, tides are generally weak in the Mediterranean, with a few  
51     local exceptions. Although the weak tides reduce the amount of internal-wave energy by about 60%  
52     (Wunsch and Ferrari, 2004), internal-wave breaking constitutes a non-negligible generator of turbulence  
53     besides geothermal heating in the deep Mediterranean (e.g., van Haren et al., 2014; Ferron et al., 2017;



54 van Haren et al., 2026). The existing motions make the Mediterranean Sea a sample for ocean-dynamics  
55 processes (Garrett, 1994).

56 The weak tides in most of the Mediterranean result from poor resonance conditions so that they  
57 reflect direct generation by the Moon-Sun system. In the Northwestern Mediterranean typical sea-level  
58 amplitudes are 0.1 m (<https://www.tide-forecast.com/locations/Toulon-France/tides/latest>). These  
59 ‘barotropic’ surface tides, which have unattenuated amplitude from surface to bottom, may generate  
60 internal ‘baroclinic’ tides, which have distinct amplitude and phase variations over short distances, when  
61 vertical density-stratification conditions are favourable.

62 In the deep Mediterranean however, the local mean buoyancy frequency has values of  $N = O(f)$ ,  $f =$   
63  $2\Omega \sin \varphi$  denotes the inertial frequency or vertical Coriolis parameter at latitude  $\varphi$  and  $\Omega$  the Earth  
64 rotational frequency. Under such weakly stratified conditions (van Haren and Millot, 2003), the  
65 frequency ( $\omega$ ) range of freely propagating internal waves spreads well into the sub-inertial,  $\omega < f$ , sub-  
66 mesoscale range as not only gravity but also Earth’s rotational momentum play a role as restoring force  
67 (LeBlond and Mysak, 1978): inertio-gravity waves ‘IGW’.

68 This because the common internal-wave band  $f < \omega < N$ , for strong stratification with  $N \gg f$   
69 (LeBlond and Mysak, 1978), becomes modified by the effect of traditionally neglected horizontal  
70 Coriolis parameter  $f_h = 2\Omega \cos \varphi$  under weakly stratified conditions. For  $N = O(f)$ , minimum IGW-bound  
71  $\omega_{\min} \leq f$  and maximum IGW-bound  $\omega_{\max} \geq 2\Omega$  or  $N$ , whatever is largest, are functions of  $N$ ,  $\varphi$ , and the  
72 direction of wave propagation (LeBlond and Mysak, 1978; Gerkema et al., 2008),

$$73 \quad \omega_{\max}, \omega_{\min} = (A \pm (A^2 - B^2)^{1/2})^{1/2} / \sqrt{2}, \quad (1)$$

74 in which  $A = N^2 + f^2 + f_s^2$ ,  $B = 2fN$ , and  $f_s = f_h \sin \alpha$ ,  $\alpha$  the angle to  $\varphi$ . For  $f_s = 0$  or  $N \gg 2\Omega$ , the traditional  
75 bounds  $[f, N]$  are retrieved from (1). One effect of  $f_h$  is turbulent-convection in slantwise direction in the  
76 vertical, meridional  $z, y$ -plane, so that apparently stable stratification observed in  $z$ -direction may  
77 actually reflect homogeneous or unstable conditions in the tilted plane of planetary vorticity, except at  
78 the north pole (e.g., Straneo et al., 2002; Sheremet, 2004). Another effect of  $f_h$  is that semidiurnal tidal  
79 frequencies are always included in IGW, albeit for meridional propagation direction only.



80 Internal-wave bounds may also vary due to (sub-)mesoscale motions. Local time- and space-varying  
81 horizontal waterflow differences such as in meanders and eddies can generate relative vorticity  $\zeta$ , with  
82 reported amplitudes of up to  $|\zeta| = f/2$  around mid-depth in the Western Mediterranean (Testor and  
83 Gascard, 2006). This addition to planetary vorticity  $f$  widens the ‘effective’ near-inertial band by about  
84  $\pm 0.2f$  (Kunze, 1985).

85 In this note, the contribution of barotropic and baroclinic tides to the potentially widened IGW in the  
86 deep Mediterranean is investigated using observations made at a large three-dimensional mooring array  
87 for improved statistics. Pressure information is used to separate dynamically unimportant barotropic  
88 tides, which appear as  $O(0.00001^\circ\text{C})$  amplitudes, from temperature records.

89

## 90 **2 Materials and Methods**

91 Nearly half-a-cubic-hectometer of deep Mediterranean seawater was measured every 2 s using 2925  
92 self-contained high-resolution NIOZ4 T-sensors, which can also record tilt and compass. Temperature-  
93 only sensors were taped at 2-m intervals to 45 vertical lines 125-m tall (van Haren et al., 2021). In  
94 addition, two tilt-temperature sensors were attached near top and bottom of each line, which was  
95 tensioned to 1.3 kN by a single buoy above. Three buoys, equally distributed over the mooring-array,  
96 held an acoustic single-point Nortek AquaDopp current meter ‘CM’ that recorded waterflow and  
97 pressure at a rate of once per 600 s. The lines were attached at 9.5-m horizontal intervals to a steel-cable  
98 grid that was tensioned inside a 70-m diameter steel-tube ring, which functioned as a 140-kN anchor.  
99 This ‘large-ring mooring’ was deployed at the  $<1^\circ$  flat and 2458-m deep seafloor of  $42^\circ 49.50'N$ ,  $006^\circ$   
100  $11.78'E$ , 10 km south of the steep continental slope in the NW-Mediterranean Sea, in October 2020.

101 Probably due to a format error, the T-sensors switched off unintentionally after maximum 20-months  
102 of data-recording. Tilt-temperature sensors recorded only 5.5 months of data, which data are not  
103 considered here. As with previous NIOZ4 T-sensors (for details see van Haren, 2018), the T-sensors’  
104 individual clocks were synchronized to a single standard clock every 4 hours, so that all T-sensors were  
105 recording data within 0.02 s. About 25 T-sensors failed mechanically. During post-processing, some 20  
106 extra T-sensors are not further considered due to general electronics (noise) problems. Data from these



107 sensors are not considered in spectral analyses and linearly interpolated between data from neighbouring  
108 sensors in other analyses. One near-bottom T-sensor failed. Instrumental bias was removed via vertical  
109 smoothing and via low-pass filtering. In addition, because vertical temperature (density) gradients are  
110 so small in the deep Mediterranean, reference was made to periods of typically one hour duration that  
111 were homogeneous with temperature variation smaller than instrumental noise level (van Haren, 2022).

112 For reference, a single shipborne Conductivity-Temperature-Depth ‘CTD’ profile was obtained  
113 within 1 km from the site of large-ring mooring, during the deployment cruise.

114

### 115 **3 Results**

116 The lower 500 m of the CTD-profile shows weak but stratified water ‘SW’ conditions down to  $h \approx 300$   
117 m from the seafloor, and near-homogeneous ‘NH’ conditions closer to the seafloor (Fig. 1a, b). The  
118 transition between the two conditions is quite abruptly in vertical density stratification. However, in both  
119 cases stratification is rather weak, with 100-m-scale buoyancy frequency  $N \approx 2f$  under SW and  $N < 0.5f$   
120 under NH. The generally weak stratification implies that the adiabatic lapse rate  $\Gamma$  of compressibility  
121 dominates the variation in temperature with depth, especially for  $h < 300$  m (Fig. 1a).  $\Gamma$  is a function of  
122 local salinity, temperature and pressure  $p$ , and amounts,

$$123 \quad \Gamma = d\Theta/dp = 1.68 \pm 0.01 \times 10^{-8} \text{ } ^\circ\text{C m}^2 \text{ N}^{-1}, \quad (2)$$

124 for the range in Fig. 1a.

125 The CTD-profile is representative for local conditions within the vertical range  $h < 126$  m of moored  
126 instrumentation (cf. Fig. 1b) during about half their time underwater. During the remainder, SW  
127 conditions reach the moored instrumentation, either from above or from the side. They provide 124-m  
128 vertical temperature differences of up to about  $0.01^\circ\text{C}$  instead of  $<0.0002^\circ\text{C}$  under NH (Fig. 1c). This  
129 variability is attributed to (sub-)mesoscale eddy activity related with variations in continental-boundary  
130 flow by atmospheric forcing. The switch between the two deep-sea conditions occurs about every 20-  
131 30 days and is found year-around, with some increase in activity during winter.

132 Over a relatively long 11-day NH-episode, semidiurnal variations in pressure, which reflect surface  
133 barotropic tidal elevations, match in size near-bottom temperature variations after considering (2), see



134 Fig. 2. We focus on temperature from T-sensors closest to the seafloor, because of all T-sensors these  
135 are least collecting (sub-)mesoscale, baroclinic internal wave and turbulence motions. Lesser diurnal  
136 and fourth-diurnal peaks in pressure do not stand out from the broad variance in temperature. In contrast,  
137 waterflow variations show less semidiurnal variation with time, and instead have dominant response  
138 around  $f$ , and at sub-mesoscales. At the inertial frequency, pressure variations are very weak and  
139 temperature variations are part of a broadband continuum.

140 The 44-line averaged temperature spectra show a considerable smoothing over the 1-line spectrum  
141 at most frequencies, except at the semidiurnal tidal frequency (Fig. 2b, c). This exception suggests a  
142 deterministic signal rather than a quasi-randomly distributed spectral content. Band-pass filtered  
143 temperature matches ( $\Gamma$ -transferred) pressure semidiurnal lunar  $M_2$  peaks thus well (Fig. 2a), especially  
144 in the mid-half of the time series, that the barotropic surface tide explains about 75% of its variance in  
145 this narrow frequency band. The barotropic tide can be relatively easily removed, from this record: The  
146 pressure-data filtered spectrum in Fig. 2 lacks a peak around  $M_2$ .

147 However, in time-depth images the removal of the deterministic-narrowband barotropic tide does  
148 not very clearly show, except in the center of the record (Fig. 3). This is because the barotropic  $M_2$ -  
149 motions are embedded in broadband, less deterministic and more stochastic, baroclinic internal tide  
150 motions that fill the near-bottom IGW-band almost like flat white noise (Fig. 2b, c). As the example is  
151 dominated by turbulent convection from below governed by geothermal heating, apparent near-tidal  
152 columns are most intensified near the seafloor (Fig. 3). The removal of the barotropic tide smooths the  
153 edges of the convection plumes, which have a dominant frequency varying between  $f$  and about  $2\Omega \approx$   
154  $\omega_{\max}$ .

155 From another 11-day example of NH, the IGW bounds retain most IGW-temperature variance in the  
156 otherwise slightly sloping band of baroclinic waves (Fig. 4). Compared with Fig. 2, near-inertial  
157 waterflow motions are slightly reduced in this example, or spread over a wider band of (super-inertial)  
158 frequencies. As in the previous example, barotropic signals take up a considerable part, explaining about  
159 50% of variance of the semidiurnal near-bottom temperature signals. Their removal via the pressure  
160 record and (2) has slightly more visual effect (Fig. 5), not only in the center of the time series, but also



161 near the beginning. In contrast with Fig. 2, the entire IGW- and sub-inertial bands show less smoothing  
162 for the 44-line average spectrum (Fig. 4b, c). This suggests more coherent motions at these frequencies  
163 than in the example of geothermally dominated turbulence convection, possibly associated with the  
164 somewhat larger temperature variance in the IGW band of Fig. 4.

165 The removal of barotropic signals via pressure record is unnecessary under SW conditions, when  
166 temperature variations in the IGW band and at sub-mesoscales are larger by one order of magnitude,  
167 two orders in variance, see the 11-day example in Fig. 6. The IGW-band is almost flat in variance  
168 distribution (Fig. 6b, c), as in Fig. 2. The 44-line average spectrum is only smoothed for  $\omega > 10$  cpd,  
169 which demonstrates a considerable extent in frequency range of coherent motions, in comparison with  
170 Figs 2 and 4. With the increased overall IGW-variance in temperature, which correlates in-phase with  
171 acoustic reflection (van Haren et al., 2026), the waterflow spectrum shows a smaller inertial peak than  
172 in Fig. 4 besides increased sub-mesoscale/sub-inertial-IGW activity.

173 Semidiurnal pressure and temperature signals not only differ strongly in amplitude, but also in phase  
174 (Fig. 6a). As a result, temperature is dominated by baroclinic internal wave signals, which, however,  
175 still show a small semidiurnal peak (Fig. 6b,c). Essentially, this small peak is not at  $M_2$ , but around  $2\Omega$   
176  $\approx \omega_{\max}$  (for  $N < 0.5f$ ). The small temperature peak near the upper IGW-bound is surprising considering  
177 that mean  $N \approx 2.2f \approx 3$  cpd (cycles per day), a clear shift to higher frequencies in comparison with the  
178 NH examples in Figs 2 and 4. However, the relative peak at about 0.27 cpd may be equivalent to  $\omega_{\min}$   
179 for  $N = 0.3f$  (for which  $\omega_{\max} = 2.03$  cpd). This difficult-to-measure small  $N$  suggests that the apparently  
180 stable SW conditions are actually very weakly stratified, in their direction of turbulent convection that  
181 is slanted away from gravity.

182 Slantwise convection leads to a widening of the IGW range, apparently with some enhancements  
183 near its bounds including baroclinic semidiurnal internal wave motions, like observed in the present  
184 deep Mediterranean data. As the convection is governed by highly nonlinear processes, the associated  
185 relatively strong turbulence that is elevated by one order of magnitude over open-ocean values seems to  
186 be important for the replenishment of nutrients in the deep Mediterranean. This is subject of future study.

187



188 **4 Discussion and Conclusions**

189 Future studies using yearlong data in the deep Northwestern Mediterranean need not much concern  
190 about barotropic surface tidal signals spoiling baroclinic internal wave signals. The barotropic tides are  
191 weak, and only show  $O(0.00001^{\circ}\text{C})$  in temperature records under near-homogenous conditions. Such  
192 small temperature signals are successfully corrected using pressure information and local adiabatic lapse  
193 rate. The use of  $\Gamma$  is further investigated for correction of precise positioning of different mooring lines  
194 attached to the doming cable grid (van Haren, 2026, submitted).

195 Indirectly though barotropic tides potentially may have effect after sufficient energy transfer to  
196 baroclinic IGW. In the present data such a transfer is not well observed, as under NH semidiurnal  
197 temperature variations are mainly attributable to barotropic sealevel variations. Under SW, no dominant  
198 lunar semidiurnal signals are observed, and semidiurnal variations are associated with the maximum  
199 IGW bound. Likewise, no semidiurnal lunar peak is observed in waterflow spectra.

200 Under NH, the observed broadband spread of temperature variance throughout IGW is attributable  
201 to  $N < f$ , confirming non-traditional internal wave frequency bounds. Small peaks occur at the bounds  
202 and reflect some wave trapping. The lower IGW-bound extends well into the sub-mesoscale range. No  
203 effect of eddies is observed, although waterflow demonstrates a small peak around  $1.2f$ .

204 Under SW, the elevated temperature variance shows basically the same IGW-spread as under NH,  
205 which does not comply with local mean  $N$ . Instead, it reflects an IGW for very weak  $N \approx 0.3f$ . Or, it  
206 reflects a band-widening indeed by local relative vorticity as the waterflow spectrum suggests peaks at  
207  $0.5f$ ,  $f$ ,  $1.5f$ , in decreasing order. This requires further investigation on the interaction between sub-  
208 mesoscale and IGW motions.

209

210 *Data availability.* Only raw data are stored from the T-sensor mooring-array. Analyses proceed via  
211 extensive post-processing, including manual checks, which are adapted to the specific analysis task.  
212 Because of the complex processing the raw data from the custom-made T-sensors are not made publicly  
213 accessible. Current meter and CTD data are available from van Haren (2025): “Large-ring mooring  
214 current meter and CTD data”, Mendeley Data, V1, <https://doi.org/10.17632/f8kfwcvtdn.1>.

215



216 *Competing interests.* The author has no competing interests.

217

218 *Acknowledgments.* This research was supported in part by NWO, the Netherlands organization for the  
219 advancement of science. Captains and crews of R/V Pelagia are thanked for the very pleasant  
220 cooperation. NIOZ colleagues notably from the NMF department are especially thanked for their  
221 indispensable contributions during the long but very pleasant preparatory and construction phases of the  
222 large-ring mooring to make this unique sea-operation successful. I am indebted to colleagues in the  
223 KM3NeT Collaboration, who demonstrated the feasibility of deployment of large three-dimensional  
224 deep-sea research infrastructures. V. Bertin helped with local organization in La Seyne-sur-mer.

225



226 **References**

227 Crepon, M., Wald, L., and Monget, J. M.: Low frequency waves in the Ligurian Sea during December  
228 1977, *J. Geophys. Res.*, 87, 595-600, 1982.

229 Ferron, B., Bouruet Aubertot, P., Cuypers, Y., Schroeder, K., and Borghini, M.: How important are  
230 diapycnal mixing and geothermal heating for the deep circulation of the Western  
231 Mediterranean? *Geophys. Res. Lett.*, 44, 7845-7854, 2017.

232 Garrett, C.: The Mediterranean Sea as a climate test basin, In: Malanotte-Rizzoli, P., and Robinson, A.  
233 R. eds., *Ocean Processes in Climate Dynamics: Global and Mediterranean Examples*, Kluwer  
234 Academic Publishers, 227-237, 1994.

235 Gerkema, T., Zimmerman, J. T. F., Maas, L. R. M., and van Haren, H.: Geophysical and astrophysical  
236 fluid dynamics beyond the traditional approximation, *Rev. Geophys.*, 46, RG2004,  
237 doi:10.1029/2006RG000220, 2008.

238 IOC, SCOR, and IAPSO: The International Thermodynamic Equation of Seawater – 2010: Calculation  
239 and Use of Thermodynamic Properties, Intergovernmental Oceanographic Commission,  
240 Manuals and Guides No. 56, UNESCO, Paris, 196 pp, 2010.

241 Kunze, E.: Near-inertial wave propagation in geostrophic shear, *J. Phys. Oceanogr.*, 15, 544-565, 1985.

242 LeBlond, P. H., and Mysak, L. A.: *Waves in the Ocean*, Elsevier, New York, 602 pp, 1978.

243 Marshall, J., and Schott, F.: Open-ocean convection: Observations, theory, and models, *Rev. Geophys.*,  
244 37, 1-64, 1999.

245 Sheremet, V. A.: Laboratory experiments with tilted convective plumes on a centrifuge: A finite angle  
246 between the buoyancy force and the axis of rotation, *J. Fluid Mech.*, 506, 217-244, 2004.

247 Straneo, F., Kawase, M., and Riser, S. C.: Idealized models of slantwise convection in a baroclinic flow,  
248 *J. Phys. Oceanogr.*, 32, 558-572, 2002.

249 Testor, P., and Gascard, J.C.: Post-convection spreading phase in the Northwestern Mediterranean Sea,  
250 *Deep-Sea Res.*, 53, 869-893, 2006.

251 van Haren, H.: Philosophy and application of high-resolution temperature sensors for stratified waters,  
252 *Sensors*, 18, 3184, doi:10.3390/s18103184, 2018.



253 van Haren, H.: Thermistor string corrections in data from very weakly stratified deep-ocean waters,  
254 Deep-Sea Res. I, 189, 103870, 2022.

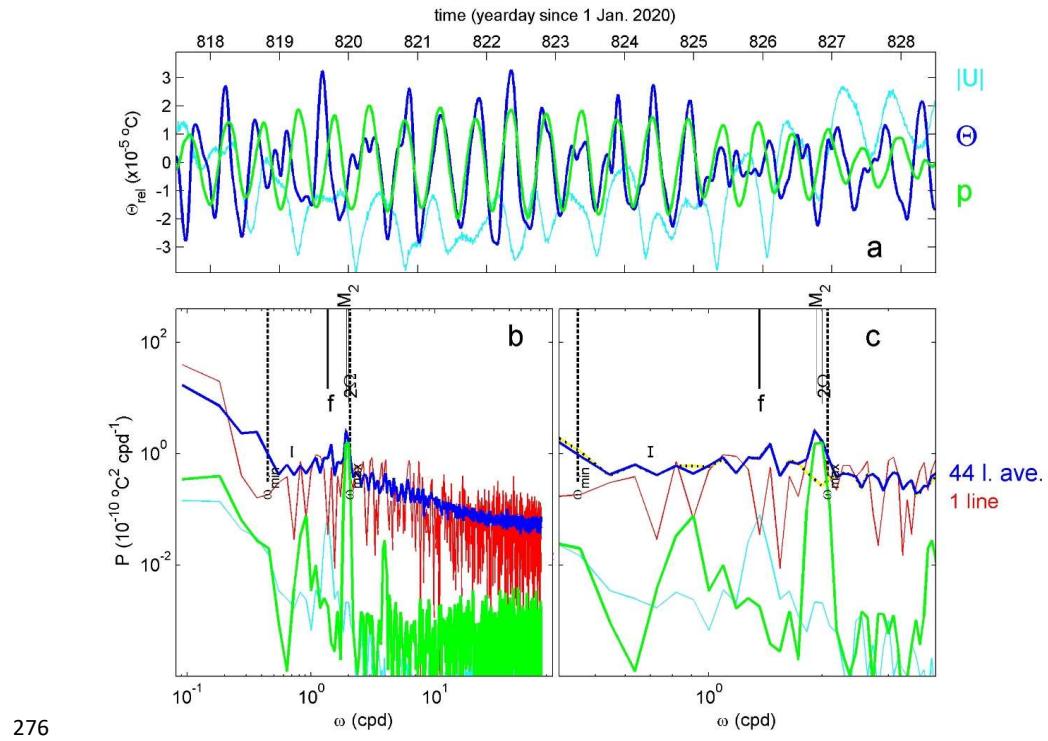
255 van Haren, H., and Millot, C.: Seasonality of internal gravity waves kinetic energy spectra in the  
256 Ligurian Basin, Oceanol. Acta, 26, 635-644, 2003.


257 van Haren, H. et al.: High-frequency internal wave motions at the ANTARES site in the deep Western  
258 Mediterranean, Ocean Dyn., 64, 507-517, 2014.

259 van Haren, H., Bakker, R., Witte, Y., Laan, M., and van Heerwaarden, J.: Half a cubic hectometer  
260 mooring-array 3D-T of 3000 temperature sensors in the deep sea, J. Atmos. Ocean. Technol.,  
261 38, 1585-1597, 2021.

262 van Haren, H., et al.: Whipped and mixed warm clouds in the deep sea, Geophys. Res. Lett., in press,  
263 2026.

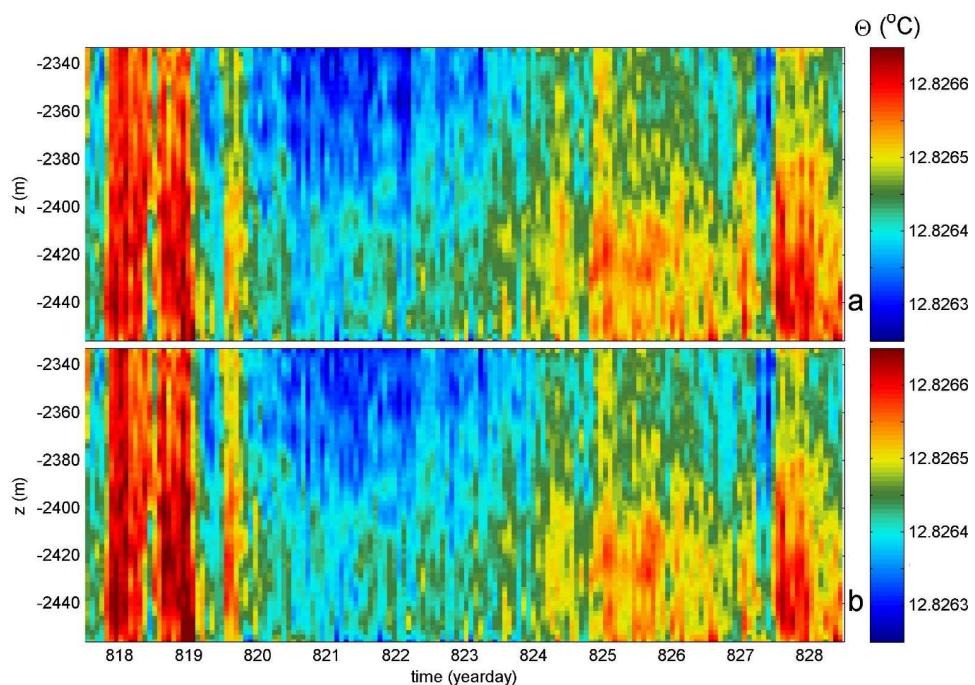
264 Wunsch, C., and Ferrari, R.: Vertical mixing, energy, and the general circulation of the oceans, Annu.  
265 Rev. Fluid Mech., 36, 281-314, 2004.


266



267

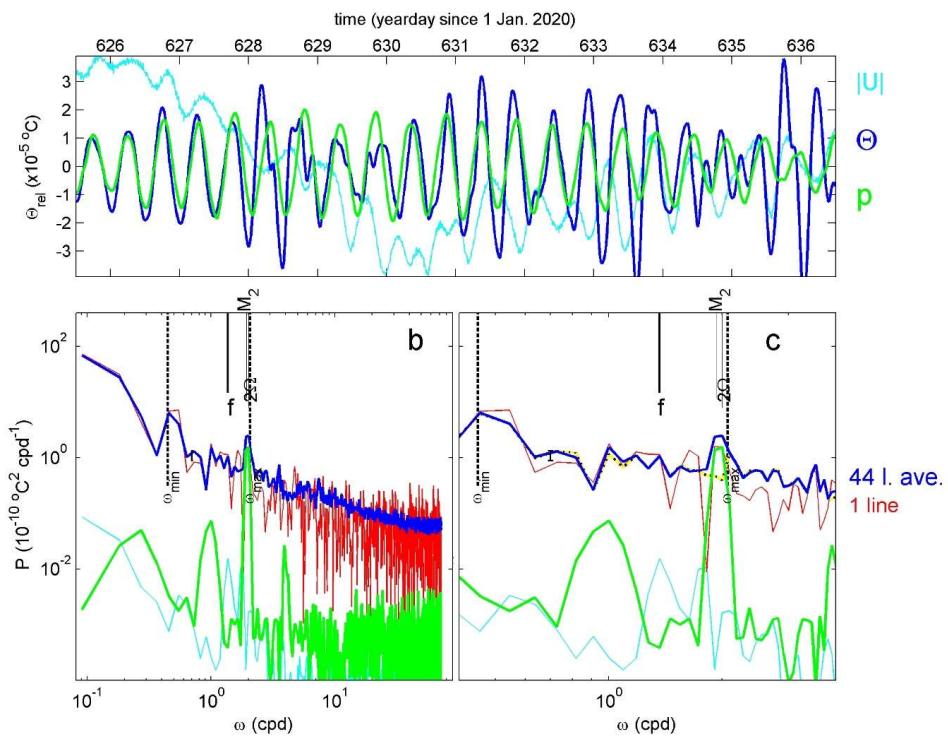
268 **Figure 1.** Data overview from deep Mediterranean at the site of the large-ring mooring. (a) Uncorrected  
269 temperature from lower 500 m of shipborne CTD profile. In green, the local adiabatic lapse rate starting  
270 at the temperature observed at  $h = 0.5$  m above seafloor. (b) Pressure-corrected Conservative  
271 Temperature (IOC et al., 2010) together with locations of uppermost (magenta) and lowest (black)  
272 moored temperature ‘T’-sensors, and (green x) moored current meter ‘CM’. SW = stratified water, NH  
273 = near-homogenous. (c) Entire 600-d time series of uppermost and lowest moored T-sensor data from  
274 one line, with episode in Figs 2, 3 highlighted. Time is given in days of 2020 (+365 in 2021).


275



276

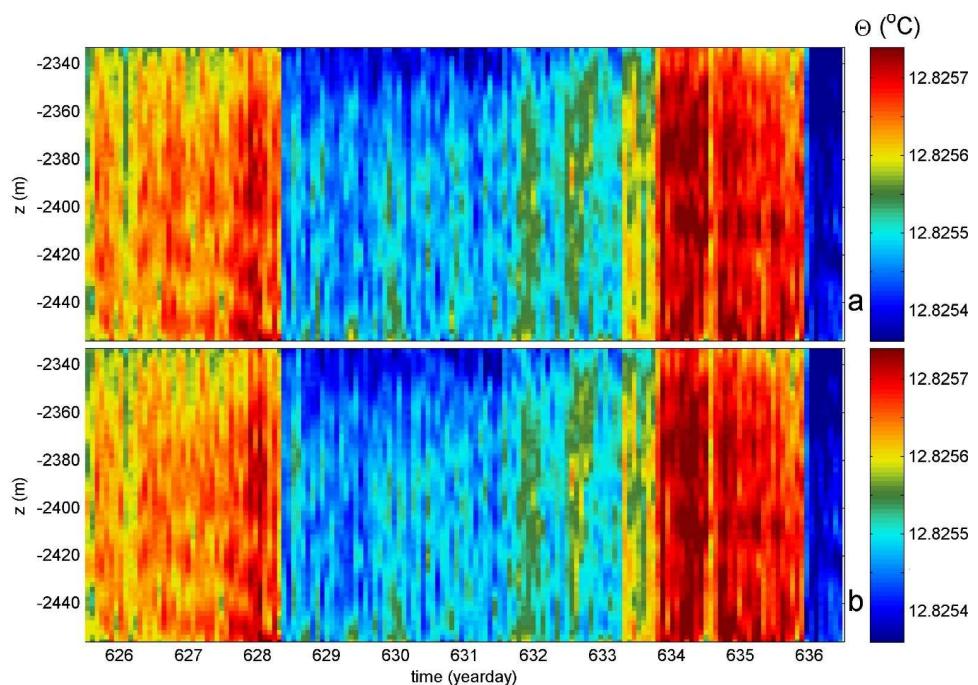
277 **Figure 2.** Magnification of 11 days of data under near-homogeneous 'NH' conditions from near-bottom  
 278 h≈2-m T-sensors and upper-range h=126-m CM's, all (sub-)sampled at once per 600 s. (a) Time series  
 279 comparison between records relative to their mean value of semidiurnal band-pass filtered 'bpf'  
 280 temperature (blue; average over 44 lines), bpf pressure (green; transferred to temperature via the local  
 281 adiabatic lapse rate; average over 3 CM's), and low-pass filtered waterflow amplitude (cyan; arbitrary  
 282 units; average over 3 CM's). (b) Energy spectra for records in a., together with temperature from one  
 283 line (red). The error bar is for 44-line smoothed data. Besides inertial frequency  $f$ , semidiurnal  $2\Omega$ , and  
 284 lunar  $M_2$ , inertio-gravity wave 'IGW' bounds  $[\omega_{\min}, \omega_{\max}]$  are indicated for buoyancy frequency  $N = 0.5f$ .  
 285 (c) One-decade zoom on IGW from b., with the addition of pressure-data filtered 44-line mean  
 286 temperature spectrum (dashed black-yellow).


287



288

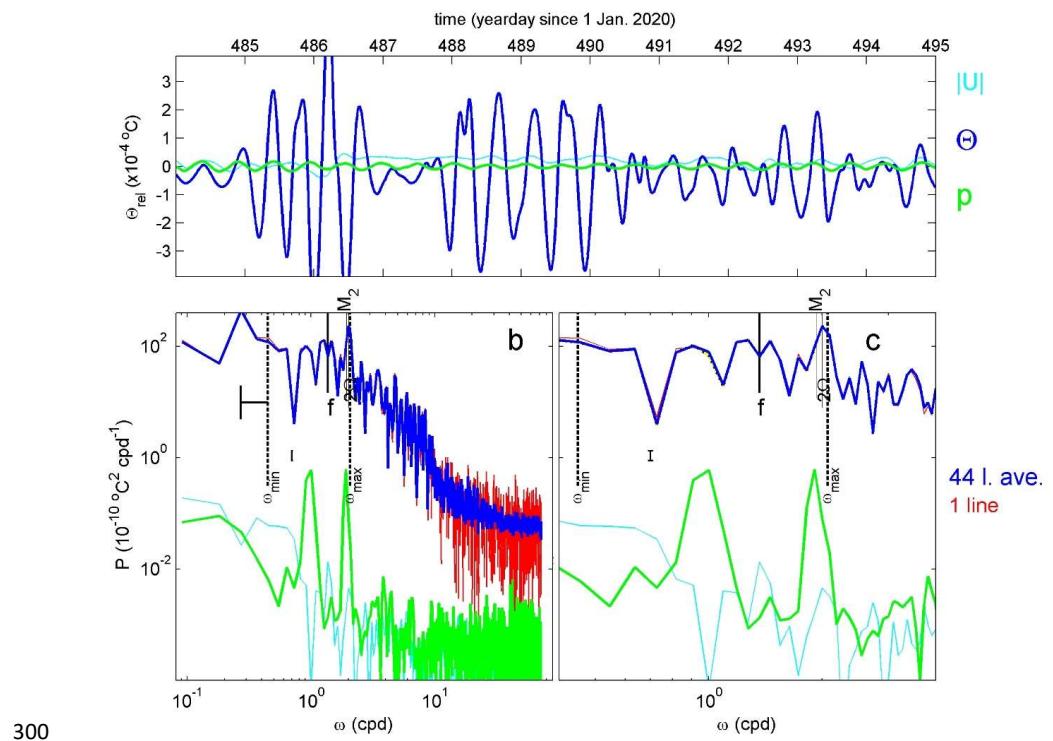
289 **Figure 3.** Effect of pressure-data filtering on 600-s sub-sampled temperature data from one line for NH  
290 in Fig. 2 that is dominated by geothermal heating. (a) Time-depth plot of Conservative Temperature  
291 after common post-processing (van Haren, 2018). (b) Data from a., after additional barotropic-tidal  
292 filtering using pressure data.


293



294

295 **Figure 4.** As Fig. 2, but for different NH-conditions.


296



297

298 **Figure 5.** As Fig. 3, but for NH of Fig. 4, which is dominated by >125-m tall vertical “columns”.

299



301 **Figure 6.** As Fig. 2, but for stratified water conditions. The 90°-rotated-T extension to the  $\omega_{\min}$ -bound  
302 in b. is for  $N = 0.3f$  (see text). The y-axis range in a. is 10 times larger than in Fig. 2a.  
303