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Abstract. Current forecasting models for landslides and debris flows mostly look at environmental or
socio-economic factors on their own. They rarely combine both into a single probabilistic framework

15 that might give warning in complicated and uncertain situations. This constraint is especially clear in
Vietnam, where intense subtropical rain, steep and extensively dissected mountainous terrain, and quick
changes in land use and infrastructure are the main causes of landslides and debris flows. This research
introduces a novel approach using a Bayesian Belief Network (BBN) to enhance landslide-risk prediction
through the integrated analysis of environmental and socioeconomic data. The developed BBN model

20  incorporates inputs from diverse sources, including Geographic Information Systems (GIS), remote
sensing, and field survey observations. Structural Equation Modeling was employed to align the BBN
with established relationships between landslides and influencing factors. The analysis explored different
scenarios by combining rainfall intensity with land-use patterns and assessing the protective role of
embankments. Results indicate that precipitation exceeding 130 mm over a period longer than three days

25 markedly increases the likelihood of landslides and debris flows, particularly in agricultural regions.
Gabion embankments were found to be highly effective in mitigating risks to both human safety and built
environments.
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1. Introduction

30 Various disasters such as landslides and debris flows have significantly impacted human lives and
infrastructure in mountainous regions (Barnard et al., 2001; Ren, 2015). These hazards commonly occur
on steep slopes and are primarily triggered by disturbances to the critical balance of forces within slope
materials. According to the European Civil Protection and Humanitarian Aid Operations — European
Commission (2022)%, up to 78.3% of global landslides in 2021 occurred in Asia. The consequences of

35  these events can be catastrophic: landslides and debris flows claimed more than 1,500 lives in China in
July 2010; 5,000 lives in December 1941 and 600 lives in August 1971 in Peru; over 1,100 lives in the
Philippines in 2006; and nearly 2,000 lives in Italy in September 1963 (Kang et al., 2023; Palumbo et al.,
2024).

In Vietnam, records from the Ministry of Natural Disaster Prevention and Search and Rescue indicate

40 that the aftermath of Typhoon Yagi in 2024 resulted in human and economic losses amounting to 40
trillion VND (approximately US$1.63 billion), with 329 fatalities and over 2,000 people affected. The
primary causes were increased precipitation and prolonged rainfall during the tropical cyclone, combined
with human-induced slope disturbances due to construction activities (Tu et al., 2016; Yamasaki et al.,
2021).

45  To mitigate such risks, many countries have developed models and maps aimed at predicting and warning
against landslides and debris flows (Shirzadi et al., 2017; Zhao and Lu, 2018). However, these tools have
often failed to deliver practical results, a limitation attributed by researchers to the selection of
inappropriate input variables and the use of unsuitable modelling approaches. Consequently, there is a
pressing need for more robust and reliable decision-support tools that can effectively guide disaster

50  prevention and warning efforts across diverse topographic, environmental, and climatic conditions.

A comprehensive analysis of contributing factors is essential for developing such tools for landslide and
debris-flow risk assessment. Geographic Information Systems (GIS) have traditionally served as
platforms for integrating various qualitative and quantitative datasets through weighting systems to
enhance risk estimation (Barman et al., 2023; Hung et al., 2015; Nichol et al., 2019). Among the

55  commonly used methods, the Analytic Hierarchy Process (AHP) and its fuzzy logic extension (Fuzzy-
AHP) account for approximately 15% of risk assessments (Kayastha et al., 2013; Mondal and Maiti,
2012; Saleem et al., 2020).

Statistical models, which are more effective in handling data with complex correlations, constitute

another important approach (Damm and Klose, 2015). Linear statistical methods have remained the

1 https://www.statista.com/statistics/267833/number-of-people-affected-by-major-dry-landslides-worldwide/
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60 dominant analytical tools for hazard assessments, contributing to 20.51% of modelling approaches, while
probabilistic methods account for 12.82% (Fig. 1). Techniques such as multiple linear regression,
Bayesian probability, and ROC-plane analysis have proven successful in estimating the likelihood of
landslide and debris-flow occurrences (Moriguchi et al., 2023; Song et al., 2012). For instance,
geostatistical analyses in Ghana have revealed that landslide susceptibility is not solely dependent on

65 temporal increases in rainfall intensity, but also on geological parameters and their interactions (Segue

et al., 2024).
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Figure 1. Frequency of research methods in assessing risks of landslides and debris.
To date, higher-order machine learning algorithms such as Decision Trees (accounting for 10.26%),
70  Support Vector Machines (5.13%), and more advanced models like XGBoost have begun to be
incorporated into geostatistical modeling frameworks to improve predictive capabilities (Bui et al.,
2020). These point-based machine learning and artificial intelligence approaches are well suited to the
problem because the datasets typically involve numerous interrelated variables, enabling focused, point-
by-point prediction (Ma et al., 2021; Models, 2021). Despite progress in developing risk assessment
75  procedures, accurate prediction of landslides remains a significant challenge. This difficulty arises
primarily from the multitude of interacting factors that contribute to mass movement, including diverse
natural and environmental conditions as well as human activities (Ngo et al., 2025). Consequently,
further research and methodological advancements are required to enhance model performance, improve
forecast accuracy, deepen our understanding of landslide mechanisms, and develop more effective
80 strategies for risk reduction.
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Figure 2. The number of studies using different factors in assessing risks of landslides and debris
flows.

Regarding factors used to assess landslide and debris flow hazards in previous studies, a wide range of
variables have been considered across tropical and temperate regions, including hazard intensity,
triggering mechanisms, and environmental conditions (Ngo et al., 2025). Most of studies identified
precipitation and tectonic activity as primary triggering factors (Fig. 2). Heavy or prolonged rainfall
saturates soils, increases pore-water pressure, and destabilizes rock formations, thereby disturbing slope
equilibrium (Islam and Ryan, 2016). Natural and environmental factors particularly geomorphological,
geological, and hydrological variables were cited in more than 50% of studies. These factors contribute
to slope instability by inducing fractures and cracks in rock masses and reducing slope strength, often
exacerbated by seismic activity (Kuschel et al., 2024). Among these, topographic features such as
elevation, slope, and lithology were most frequently included, appearing in over 90% of studies,
highlighting their importance in predicting landslides and debris flows (Sun et al., 2024; Yang et al.,
2024). Geological deposit characteristics were reported in 50% of studies, reflecting their role in
determining the permeability and mechanical stability of slope materials.

In addition, human activities including road construction, urbanization, and land-use changes have

increasingly been incorporated into hazard assessment models. Variables such as distance to road

EGUsphere\
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networks and land use/land cover (LULC) were used in more than 60% of studies, underscoring the
100 anthropogenic contribution to altered runoff patterns, enhanced surface flow, and reduced slope stability
(Agboola et al., 2024; Bachri et al., 2021). Remote-sensing indices, such as vegetation cover (NDVI),
built-up index (NDBI), and related indicators, were applied in approximately 45% of studies (Wang et
al., 2019). However, population-related variables (e.g., settlement distribution) remain largely
underexplored, limiting accurate assessment of the social impacts of landslide hazards in mountainous
105 regions (FAO, 2010). The frequency of these variables across studies reflects both their prevalence and
the intricate interconnection between natural and anthropogenic drivers of landslide and debris-flow
risks.
Building on this foundation, the present study develops a Bayesian Belief Network (BBN) model to
predict landslide and debris-flow risks by integrating environmental and socio-economic factors.
110  Structural Equation Modeling (SEM) is applied to align the internal dependencies within the BBN
framework to empirically identified relationships (Dang et al., 2025a). SEM further facilitates the
identification of direct and indirect interactions among topographic, hydrological, and geological
variables influencing susceptibility. Section 2.3 and 3.2 present the proposed BBN model, incorporating
GIS and Sentinel-2 remote-sensing data. Section 3.3 details the sensitivity analysis results and their
115 implications for hazard risk levels, while Section 3.4 reports on scenario analysis under varying
environmental and land-use conditions. Finally, the performance of the BBN model is demonstrated
through hazard zoning applications, showing its effectiveness as a decision-support tool for risk

estimation and sustainable development.

2. Material and methods
120  2.1. Case study

According to statistical data and research in Vietnam, landslides and debris flows frequently occur along
transportation routes in the provinces of Lai Chau, Dien Bien, Son La, Hoa Binh, Lao Cai, Yen Bai, and
Phu Tho (Hung et al., 2015) (Fig. 3). These hazards are concentrated in complex, deeply dissected
mountainous terrain characterized by severe erosion and geological fragmentation. Due to the highly
125  variable topography, landslides and debris flows occur in a chaotic and largely uncontrollable manner,
causing extensive damage to human life and property (Tien Bui et al., 2012). Official records indicate
approximately 8,500 landslide and debris flow sites in the northwestern region during the 2010s (Dang
et al., 2018, 2025b), with more than 2,700 debris flows exceeding 100,000 m? in volume. Using high-
resolution remote sensing imagery such as VNREDSat-1 and SPOT-5, Ghasemian et al. (2020) identified
5
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and manually interpreted landslides and debris flows larger than 20 m2 in this region. More than 2,000
cases detected through remote sensing were subsequently verified by field surveys, which also
documented over 600 additional sites inaccessible for direct field investigation.
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Figure 3. Location of landslides and debris flows detected from images collected from Maxar
Technology and CNES/Airbus sources from 2010 to 2024.

Key research areas include the Hoa Binh and Son La hydropower reservoirs, national highways 6, 12,
and 4D, as well as critical zones such as Muong Lay, where numerous landslides and debris flows occur
on slopes ranging from 35° to 45°, particularly within tectonic destruction zones (Hang et al., 2021;
Nguyen et al., 2021). Large-scale debris flows have been recorded from Tam Duong, Than Uyen, and
Tan Uyen to highland communes in Phong Tho (Lai Chau), as well as in key locations such as Nam Lay
and Muong Lay (Dien Bien) and Muong Te (Son La) (Dang et al., 2024). A high density of landslides is
concentrated in areas characterized by rugged terrain and geologically vulnerable conditions.

Despite the increasing frequency and severity of these hazards, the application of artificial intelligence
(Al) and remote sensing technologies remains limited in Vietham (Dang et al., 2025b). The use of high-
resolution remote sensing data and Al-based approaches is still rare due to technological challenges (Ngo
et al., 2025). Current efforts primarily focus on developing risk zoning maps, forecasting events, and
reducing damage caused by mass movements (Duc et al., 2023; Luu et al., 2023; Thanh et al., 2020).
However, these studies need to be further expanded and refined, particularly in remote and difficult-to-

access mountainous regions (Nguyen et al., 2025). Enhancing the application of advanced technologies

6
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150 in landslide and debris-flow research is essential to improve forecasting accuracy, strengthen disaster

prevention and mitigation strategies, and support sustainable socio-economic development in Vietnam.

2.2. BBN development for warning landslides and debris flows

Step 1: Identification of Influencing Factors
The primary objective of the model is to support managers, experts, and decision-makers in anticipating

155  and issuing warnings about potential landslides and debris flows. An initial compilation of influencing
factors was carried out based on previous research, literature, and specialized documents. These sources
covered a wide range of aspects including physical characteristics, climatic variables, hydrological
parameters, and infrastructure conditions related to landslide and debris flow hazards (Tien Bui et al.,
2017; Yousefi and Imaizumi, 2024).

160  Subsequently, through consultations with experts and local management agencies, a refined list of critical
factors was developed. This process involved meetings and interviews held in 2023 and 2024 with
officials from governmental and non-governmental departments, sectoral organizations, and scientists
from research institutes and local environmental management agencies. For example, the selection of
natural and environmental factors were reviewed by experts in Vietnam Academy of Science and

165  Technology and Vietnam National University, whereas the selection of social factors were reviewed by
experts in Vietnam Academy of Social Sciences. Some factors related to construction activities were
reviewed by experts in University of Transport and Communications. During this stage, certain
components were either included or excluded; for example, the role of solar radiation in water
accumulation was critically examined. The outcome was a finalized list of major influencing factors,

170  which served as the foundation for constructing the conceptual hazard-warning model.

Step 2: Development of a Conceptual Model

Conceptual models are essential tools for examining and evaluating the complex interactions between
natural and anthropogenic factors that influence the occurrence and risk of landslides and debris flows.
In this study, the conceptual model was designed to transform geological, climatic, hydrological, and

175 land-cover information into specific variables within a Bayesian Belief Network (BBN), thereby
enhancing predictive capability and risk assessment.

The model integrates multiple dimensions of risk, including susceptibility, hazard, resilience, and
vulnerability, as illustrated in Fig. 4. Key inputs encompass data on the distribution and frequency of
landslides and debris flows, climatic and geological conditions, triggering factors, and elements at risk.

180 Importantly, vulnerability is explicitly incorporated to capture the ability of communities to withstand or

mitigate the impacts of such hazards (Agboola et al., 2024; Luu et al., 2023).
7
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Specifically, landslide and debris flow risks are influenced by a combination of pre-transported material
conditions, hydrological settings, surface properties, climatic drivers, and exposure factors (Highland,
2008; Palumbo et al., 2024; Shirzadi et al., 2017). Among these, topographic, geomorphologic, and
185 lithologic characteristics strongly determine slope stability, material transport, drainage density, and soil-
water dynamics (Ngo et al., 2025). Surface resistance - shaped by vegetation cover and human
interventions - further modifies hazard likelihood (Tran et al., 2025). Meanwhile, rainfall intensity,
weathering, and other climatic parameters act as dominant triggers.
Equally critical are the exposure and resilience dimensions, which reflect population density, existing
190  protective infrastructure, and community preparedness. These elements determine not only the potential
scale of damage but also the capacity of vulnerable groups to recover (Alam and Ray-Bennett, 2021;
Chen et al., 2024b).
The subsequent step involves the integration and analysis of data corresponding to these components,
which provides the basis for operational hazard prediction and early-warning systems.

Locatlc'm and intensity of Hazard
landslide events/traces

Environment factors Landslide Susceptibility

Resilience

Y

Triggering factors Landslide Hazard

Vulnerability

Exposure fath.m Landslide Risk Landslide Resilience
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Figure 4. Conceptual network depicting the relations between environmental and human-derived

195

factors with landslide susceptibility, hazard, and risk.

Step 3: Data collection

Landslide and debris flow warnings are influenced by geological, geomorphological, meteorological,
200  hydrological, land cover and land use, and infrastructure conditions (Fig. 5).

Geological and Geomorphological Factors

The first group of data relates to surface features and geological structures, including DEM, geological

faults, and lithological types (Liu et al., 2025). DEM provides essential information on elevation and
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terrain shape, enabling the calculation of parameters such as slope, aspect, and curvature indices, which
205 are critical in identifying areas vulnerable to landslide and debris flow hazards (Borgomeo et al., 2014;
Nichol et al., 2019). Faults, as structural discontinuities within the earth’s crust, are highly susceptible to
natural forces (Moore and Sawyer, 2016). Lithological types determine the water retention capacity and
stability of soils, both of which are crucial in assessing slope stability (Tu et al., 2016). Collectively,
these data define the geomorphological and geological characteristics that distinguish stable areas from
210  unstable ones.
Meteorological and Hydrological Factors
Rainfall, flow accumulation, the Terrain Wetness Index (TWI), and proximity to rivers are fundamental
triggers of landslides and debris flows (Jin et al., 2025). Intense or prolonged rainfall saturates soils,
reducing shear strength and resistance to mass movement. Flow accumulation and TWI1 highlight zones
215  with high water buildup potential, increasing susceptibility to slope failure (Mckean and Roering, 2004;
Yousefi et al., 2025). Areas adjacent to rivers are particularly prone to erosion, further heightening the
risk of slope instability. This group of factors is central to evaluating meteorological and hydrological
triggers of landslide and debris flow events.
Land Cover and Land Use Factors
220  Remote sensing indices such as NDVI, BSI, and NDBI, along with land use/land cover (LULC) data,
provide valuable insights into slope stability (Tran et al., 2024; Wang et al., 2019). NDVI measures
vegetation density, which is inversely correlated with landslide occurrence, as dense vegetation
particularly forest cover stabilizes slopes through root reinforcement (Tawalo et al., 2025). Conversely,
BSI and NDBI highlight bare land and urbanized areas, both highly susceptible to slope failures due to
225  the absence of vegetation cover. These datasets are therefore indispensable for assessing the influence of
anthropogenic and natural land cover factors on slope hazards.
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Infrastructure-related data, such as “distance to roads,” reflect the impact of human activities on slope

stability (Barnard et al., 2001; Stark et al., 2026). Slopes adjacent to roads are often destabilized due to

excavation, construction, and traffic, making them more vulnerable to shallow landslides. Consequently,
235  monitoring and assessing infrastructure-related impacts are vital for anticipating and mitigating risks in

areas with high human activity and traffic (Bachri et al., 2021).

Integration for Hazard Warning Models

Through the integrated use of these datasets within a Bayesian Belief Network model, it is possible to

generate highly accurate landslide and debris flow warnings. The combined consideration of geological,
240  geomorphological, meteorological, hydrological, land use, and infrastructure factors enhances the

reliability of hazard prediction and provides a robust framework for risk management.

Step 4: Preprocessing of Data for BBN Model

According to the application of landslide hazard warning in BBN model construction, a key challenge is

defining well-coordinated relationships among input variables (Lan et al., 2021; Xiao et al., 2023). To
245  address this, two techniques were employed: the Structural Equation Model (SEM) and multivariate

regression, both of which assess interrelationships between variables and eliminate redundant or

insignificant factors (Rai et al., 2024). SEM, in particular, is useful for identifying causal relationships

among input variables (Bac and Bao, 2020; Dang et al., 2021).

The process began with an analysis of correlation coefficients to select strongly associated variables.
250 SEM then used this correlation matrix to characterize relationships based on parameters such as

correlation coefficients, Akaike’s Information Criterion (AIC), and Bayesian Information Criterion

(BIC). Relationships were retained only if the correlation coefficient was statistically significant (p <

0.05) for the given dataset and both AIC and BIC values were low.

In parallel, multivariate regression was applied to examine the linear relationship between the dependent
255  variable (landslide risk) and the independent variables. This step identified which predictors had the

strongest influence on landslide risk. Variables lacking statistical significance were eliminated based on

regression coefficients, p-values, and R2 values. This refinement optimized the set of input variables by

retaining only those with meaningful predictive power.

The SEM and multivariate regression analyses were conducted in R-Studio (version 2024.12.0+467;
260  Zhao, 2014). The validated variables were then integrated into a BBN model using Netica software

(Netica, 2010) to simulate relationships and improve accuracy in risk estimation for landslides and debris

flows. By combining SEM and multivariate regression, the approach enhances both the efficiency and

the reliability of the BBN model by incorporating only critical independent variables.

11
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Subsequent to building the conceptual model, preparing data and analyzing the variables, the final stage
265 s to develop and model the BBN for landslide and debris-flow risk assessment. This process starts with
the construction of the Conditional Probability Table (CPT) (Kleemann et al., 2017), in which the
frequencies of landslides and debris-flows, environmental conditions, triggering factors, exposure factors
and resilience in order to evaluate the risk of landslides and debris-flows.
Allocations for land use, topography, environment, and other factors are spatially combined within the
270  study area to determine the percentage of high-risk zones from which the basic CPT is derived. This
provides scientific evidence of how landslide risk depends on the prevalence of favorable and triggering
factors (Ding et al., 2025; Liang et al., 2025). However, the BBN model building process does not end
with the construction of CPTs but needs to go in checking loops between the steps to be approved by the
experts and the stakeholders (Chen et al., 2024a). Model evaluation includes the examination of
275  sensitivity using the values as mutual information and entropy reduction to establish the extent to which
each factor is sensitive to landslide and debris-flows risk. Uncertainty reduction is calculated by the
formula:

P(m,n)[P(m,n)]

E=HM) = HIN) = Ty Tp o 0 (1)
H(MIN) is the amount of uncertainty that is left in node M after the receipt of new data. Once the BBN
280  model is set, the network can estimate the posterior probability of landslide and debris flow conditions,
and then issue early warnings for decision makers in risk mitigation (Landuyt et al., 2015). Training and
testing of BBN model facilitates full incorporation of risk factors in to enable proper forecasting of
landslide and debris flow hazards which in turn reduces damage and protects the community.

2.3. Scenario development

12
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Figure 6. Framework to generate scenarios based on changes in boxes: Land uses/covers,

precipitation and duration of rainfall days.
Scenarios generated in the BBN model for landslide and debris flow hazard prediction represent a crucial
step in understanding influencing factors and assessing associated risks (Song et al., 2012; Sun et al.,
290  2021) (Fig. 6). In particular, land use/land cover (LULC) change and climate change significantly affect
landslide risk.
Regarding LULC change, alterations in land use policies such as the expansion of shrubland, annual
crops, rural settlements, or forests or the construction of roads by cutting through mountains can
substantially modify terrain structure and topsoil properties (Alvarez Jaimes et al., 2025). These changes
295 may decrease soil water permeability, increase slope steepness, and reduce soil stability, thereby
elevating the likelihood of landslides and debris flows.
Similarly, climate change and associated extreme weather events exert profound impacts. Increased
rainfall, a greater number of rainy days, and more frequent storms or tropical depressions can lead to soil
saturation (Jin et al., 2025). Since most soils exhibit low bearing capacity when moist especially when
300 waterlogged these conditions greatly heighten the probability of landslide and debris flow occurrences.
By constructing such scenarios within the BBN framework, it becomes possible to model the
interdependencies among these factors and assess how landslide and debris flow risks vary under
different conditions. This approach enables the identification of the most vulnerable areas, thereby

13
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supporting authorities and stakeholders in planning mitigation measures and improving disaster
305 management strategies. Furthermore, scenario-based modeling informs the adaptation of land use
planning and construction policies, and provides valuable insights for long-term climate change risk

management.

3. Results
3.1. Statistical analysis of interdependences as a basis to parameterize the BBN

310  According to the developed SEM model (Appendix A), three primary parameters related to landslide and
debris flow hazards are water/flow, pre-transported materials, and land use/cover. Based on the statistical
analysis, the Stream Power Index (SPI) was selected as the key indicator for water/flow, the Sediment
Transport Index (STI) for materials, and the Bare Soil Index (BSI) for land use/cover.

In the SEM model, various topographic factors and their relationship with SPI were examined. The

315 analysis shows that slope has a minor but positive influence on SPI, with a coefficient of 0.07, indicating
that stream power slightly increases as slope becomes steeper. This relationship is highly statistically
significant (***). The Topographic Wetness Index (TWI) exhibits a stronger positive effect, with a
coefficient of 0.45, suggesting that increased soil moisture enhances stream power. By contrast, curvature
has a negative coefficient of -0.29, meaning that, other conditions being equal, convex curvature reduces

320  stream power.

Overall, the model indicates that slope, TWI, and curvature collectively account for 46% of the variation
in SP1 (R?=0.46), demonstrating their indirect but substantial influence on water/flow dynamics relevant
to landslide and debris flow hazards.

The SEM model analyzing the relationships between related hazards and pre-transported materials based

325  on topographic and geological factors is presented in the second group. The variables DEM, Fault, and
Aspect directly influence TRI and “Distance to rivers” with coefficients of —0.01, 0.47, 0.03, and —0.18,
respectively, with DEM exerting the strongest effect. Slope is further influenced by TRI with a coefficient
of 0.52. Under the combined effects of TRI and distance to rivers, slope shows a strong relationship with
flow accumulation and the Topographic Wetness Index (TWI). Geological characteristics, flow

330  accumulation, and TWI together contribute 40% to the variability of the Sediment Transport Index (STI),
although STI is less directly affected by flow accumulation and TWI.

Land use/land cover (LULC) change increases vegetation density, as indicated by its positive effect on

NDVI (0.08), and reduces the Normalized Difference Built-up Index (NDBI) by —0.03, reflecting a

decrease in built-up areas. Roads also exert a minor influence on NDBI. Both NDVI and NDBI exhibit
14
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335  autoregressive relationships. The dependent variable Bare Soil Index (BSI) explains 89% of its variance
through NDVI and NDBI, with regression coefficients of —0.02 and 0.95, respectively, indicating that
BSI increases with increasing NDBI and decreases as NDVI rises.
The final part of the SEM model illustrates the relationships among STI, SPI, BSlI, rainfall, and the
occurrence of landslide and debris flow hazards. Hazard occurrence is most strongly influenced by BSI
340  (0.93), followed by rainfall (0.42), SPI (0.34), and STI (0.27). Overall, the model explains 54% of the
variance in landslide and debris flow hazards, as indicated by the coefficient of determination (R2=0.54).

3.2. Parameterization of the BBN with classified data

The BBN model diagram (Fig. 7) illustrates the expanded framework of landslide risk assessment and
highlights the numerous natural and anthropogenic factors involved. Geo-environmental attributes,
345  which are essential for understanding landslide susceptibility, were incorporated into the model’s
development. The “Rise” component is further classified into four categories, where geomorphological
factors play a critical role in influencing water accumulation and soil erosion. These factors originate
from variations in river density, soil and rock types, and the distribution of pre-transported materials, all
of which are shaped by underlying geological structures and available resources. Based on the physical
350 properties of soils and rocks in a given geological context, these variables are key to determining the
degree of landslide susceptibility in an area.
Additionally, other components of the model address the contribution of water flow and the integration
of rainfall amount and duration to evaluate the combined effects of climate and hydrological conditions
on landslide and debris-flow hazards. The rainfall classification values applied in the model range from
355  1to 460 mm, with rainfall duration spanning from 1 to 7 days. Furthermore, boxes representing land use
and land cover types are included to assess the impact of human activities on landslide risk. These
categories encompass various land types such as urban and rural areas, forests, and croplands, providing
a comprehensive understanding of anthropogenic influences on landslide hazards.
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The additional exposure factors include buildings, roads, and residents, which are categorized to
assess their impact on human life and property. The model also incorporates intermediate
variables, such as surface resistance and flow capacity, which facilitate the estimation of landslide
occurrence probability. These variables help quantify the extent to which human-induced factors
365  contribute to landslide risk. Furthermore, the model accounts for landslide probability, potential
losses related to human life and preventive infrastructure, as well as the effectiveness of protective
measures such as embankments and soil reinforcement. Consequently, this framework is valuable
not only for hazard prediction but also for comprehensive risk management, particularly in
environments where the complex interplay between natural and anthropogenic factors must be

370  thoroughly examined.

3.3 Sensitivity analysis

The sensitivity analysis table compares the effect of all the identified parameters on some specified
BBN nodes that relate to landslide risk, life risk and property risk (Tab. 1). Thus, the higher the
perceived rainfall and property risks, the higher the perceived landslide risk. With a belief variance
375  of 0.09 for both correlation between the perceived precipitation and risk to property with related
hazards. The correlation coefficient is 0.385 with precipitation and 0.368 with risk to property.
Despite this, it means that monitoring rainfall or reducing property exposure is a good strategy in
minimizing land slide risk. While those that include rainfall duration and materials before
transportation have variance of 0.01, which indicate a very small impact, below 2%. Landslide risk
380  was also the most strongly associated with risk to life with a variance of 0.06 and a proportion of
30.7%.
Table 1. Sensitivity analysis for BBN nodes.

No. Node Variance of Beliefs Mutual Relation
Percentage

A Sensitivity of 'Landslide and debris flow hazards' to a finding at another node:
1 | Precipitation 0.09 38.5

2 | Risk to property 0.09 36.8

3 | Risk to life 0.08 30.7

4 | Resistance of surface factors 0.01 3.16

5 | Difference of Built-up 0.01 2

17
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6 | Rainfall duration 0.01 1.76
7 | Pre-transported Material 0.01 1.04
B Sensitivity of 'Risk to life' to a finding at another node:

1 | Landslide and debris flow hazards 0.06 30.7
2 | Risk to property 0.04 21.2
3 | Precipitation 0.02 11.8
4 | Anti-landslide embankment 0.01 6.32
5 | Exposure (Human) 0.01 2.92
C Sensitivity of 'Risk to property' to a finding at another node:

1 | Landslide and debris flow hazards 0.080 36.8
2 | Risk to life 0.046 21.2
3 | Precipitation 0.031 14.2
4 | Anti-landslide embankment 0.017 7.87
5 | Resistance of surface factors 0.003 1.16
6 | Exposure (Road) 0.002 1.01

Concerning risk to property, this variable exhibited a considerable influence on the risk to life,
385  with a coefficient of 0.04 (proportion 21.2%), indicating that property risk contributes to human
risk in an indirect manner. Rainfall also had a significant effect (variance 0.02, proportion 11.8%),
demonstrating that weather conditions are an important factor in risk assessment and mitigation.
The risk to property itself is substantial, as changes in landslide risk levels can have major impacts
on property damage (variance 0.080, proportion 36.8%). Moreover, property risk also contributes
390 torisk to life, with a variance of 0.046 and a proportion of 21.2%. The regression analysis further
showed that climate change can affect losses of both life and property, with a variance of 0.031
(14.2%). Although less significant, factors such as landslide resistance and surface characteristics

are also relevant and should be considered in strategies aimed at minimizing overall risk.

3.4. Results of scenarios

395  Fig. 8 presents the results of landslide hazard analysis scenarios based on the developed BBN
model. The input factors considered include land-use change, road construction, rainfall, and
rainfall duration, with the aim of assessing the probability of landslide occurrence under different

18
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conditions and across various areas. The analysis first examines the probability of landslides based

on land-use type and distance from roads. Results show that the likelihood of landslides increases

400 significantly in areas close to roads (<240 m), reaching about 57%, and the risk tends to rise with
higher built-up land density or when forest land is converted to agricultural land. For example, in
forested areas, the probability of a landslide is about 50%, whereas in scrubland or agricultural
land, it increases to approximately 60%. These findings clearly demonstrate that human activities,
particularly land-use change and infrastructure development, substantially influence the

405 probability of landslides and debris flows, especially near transportation networks. Additionally,
rainfall conditions play a crucial role: precipitation intensity and duration significantly increase
the probability of landslide occurrence.

|
Changes‘in land : ) Effects of Effects of
use/cover policy Soadleapsiiliction Storm/Tropical Depression Storm/Tropical Depression/Climate Change
| }
Ratio of landslide probability in Ratio of landslide probability in
precipitation state: precipitation and rainfall duration state:
<20 - 100/0 - <20 All cases > 90/10
1-3 > 90/10
Business as usual (45/55) > 20-70 > 54/46 20-70 3-7 > 41/59
7-15 -> 33/67
70-130 -> 33/67 1-3 > 35/65
130-240 > 23/77 - >70 3-7 - 25/75
>240 > 12/88 7-15 > 10/90
[
Ratio of landslide
probability (close to road)
T in precipitation state: !
(<240m) > Ny = LU0 > 2%
43/57 20-70 > 53/47
70-130 -> 31/69
\ 130-240 > 22/78
> 240 -> 11/89
Ratio of landslide Ratio of landslide Ratio of landslide Ratio of landslide Ratio of landslide Ratio of landslide
probability in: probability in: probability in probability in probability in rainfall | | probability in rainfall
- Scrub 40/60 - Scrub 38/61 precipitation state: precipitation state: duration state: duration state:
- Rural areas 39/61 - Rural areas 38/61
- Paddy fields 41/59 - Paddy field 40/60 SCON A 0D <20 > GICES = EE AllieEs = R
- Forest 50/50 - Forest 42/58 20-70 > 47/53 20-70 ->62/38 =3 - 90/10 i1=3 - 90/10
=7 > 31/69 e - 54/46
70-130 -> 24/76 70-130 -> 43/56 7-15 > 24/76 7-15 > 44/56
130-240 > 17/82 130-240 > 30/70
. . . >240 > 10/90 >240  >12/88 1=3 > 26/74 1-3 > 46/53
Ratio of landslide probability: Scrub & Rural areas | | Forest & Annual Crops 3-7 > 21/79 3-7 - 40/60
7-15 - 10/90 7/=1l5 > 12/88
None/Happen Scrub & Rural areas Forest & Annual Crops
410  Figure 8. Scenario results to predict the probability of landslide hazards in different changes

in land uses/covers, increase of precipitation and duration of rainfall days.
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At low rainfall levels (<20 mm), the risk of landslides is minimal, with an extremely low
probability ratio (100/0). However, as rainfall increases particularly when it exceeds 240 mm, this
risk rises sharply, with the probability ratio reaching 12/88. This clearly demonstrates that areas
415 exposed to intense and consecutive rainfall are highly vulnerable to landslide occurrences,
especially when the terrain is steep or lacks vegetation cover. Extended rainfall duration further
compounds the risk, as prolonged precipitation leads to greater water accumulation in the soil,
increasing instability. A positive statistical correlation is observed between precipitation amount
and landslide probability at daily, daily accumulation, and total rainfall scales. When storm events
420 last longer than 7—15 days, the probability ratio becomes extremely high ranging from 75% to 90%
particularly in areas with easily erodible soils such as agricultural or bare lands. These findings
underscore the importance of forecasting and issuing warnings for prolonged and continuous
rainfall events to mitigate potential damage. Moreover, when considering different land use types
under varying rainfall conditions, the probability of landslide occurrence becomes more complex.
425  Inscenarios where rainfall exceeds 240 mm and persists for 7-15 days, scrubland and agricultural
land exhibit a very high landslide risk, reaching up to 90%. Although forested areas and perennial
crops show greater resistance, the risk remains at a hazardous level (60-88%) under conditions of
heavy and prolonged rainfall.
Table 2. Probability of risk to life under the protection of different anti-landslide

430 embankment.

Case | Exposure (to human) Anti-landslide embankment Probability of risk to life

Low (%) High (%)
1 None None 46 54
2 None Soil nailing embankment 73 27
3 None Gabion embankment 91 9
4 Human None 19 81
5 Human Soil nailing embankment 45 55
6 Human Gabion embankment 64 36

Tab. 2 presents the probability of risk to human life when exposed to landslide and debris
flow hazards under different types of embankment protection. The values are calculated based on

the highest probability scenario of the “Landslide and debris flow hazards” category. The results
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435 indicate that, in the absence of people or civil structures at the site (Exposure: None), the use of
embankments significantly reduces the risk when people pass through or conduct livelihood
activities nearby. Without any protective structure, the risk reaches 54%; however, with the
application of a soil nailing embankment, this risk decreases to 27%, and the use of a gabion
embankment provides the highest level of safety, reducing the risk to just 9%. In contrast, when
440  human presence is involved (Exposure: Human), the risk increases substantially. In the absence of
protective structures, the risk ratio rises to 81%, indicating a high likelihood of severe impacts
from landslides. With engineering interventions, the risk is significantly mitigated: soil nailing
embankments reduce the risk to 55%, while gabion revetments lower it further to 36%. These
results highlight the crucial role of engineering measures such as gabion and soil nailing
445  embankments in protecting human life in areas prone to frequent landslides.

Table 3. Probability of risk to building and road under the protection of different anti-

landslide embankment.

Probability of
Case Exposure Exposure (to Anti-landslide risk to property
(to Building) Road) embankment Low | High
(%) | (%)
1 | None None None 50 50
2 | None None Soil nailing embankment 80 20
3 | None None Gabion embankment 99 1
4 | None Village road None 15 85
5 | None Village road Soil nailing embankment 35 65
6 | None Village road Gabion embankment 75 25
7 | None District road None 20 80
8 | None District road Soil nailing embankment 45 55
9 | None District road Gabion embankment 85 15
10 | None National road | None 30 70
11 | None National road | Soil nailing embankment 60 40
12 | None National road | Gabion embankment 95 5
13 | Thatched roof house | None None 25 75
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14 | Thatched roof house | None Soil nailing embankment 55 45
15 | Thatched roof house | None Gabion embankment 85 15
16 | Thatched roof house | Village road None 15 85
17 | Thatched roof house | Village road Soil nailing embankment 45 55
18 | Thatched roof house | Village road Gabion embankment 85 15
19 | Thatched roof house | District road None 20 80
20 | Thatched roof house | District road Soil nailing embankment 45 55
21 | Thatched roof house | District road Gabion embankment 85 15
22 | Thatched roof house | National road | None 30 70
23 | Thatched roof house | National road | Soil nailing embankment 60 40
24 | Thatched roof house | National road | Gabion embankment 95 5
25 | Tin roof house None None 15 85
26 | Tin roof house None Soil nailing embankment 45 55
27 | Tin roof house None Gabion embankment 75 25
28 | Tin roof house Village road None 10 90
29 | Tin roof house Village road Soil nailing embankment 35 65
30 | Tin roof house Village road Gabion embankment 75 25
31 | Tin roof house District road None 15 85
32 | Tin roof house District road Soil nailing embankment 40 60
33 | Tin roof house District road Gabion embankment 80 20
34 | Tin roof house National road | None 35 65
35 | Tin roof house National road | Soil nailing embankment 65 35
36 | Tin roof house National road | Gabion embankment 90 10
37 | Store house None None 5 95
38 | Store house None Soil nailing embankment 35 65
39 | Store house None Gabion embankment 65 35
40 | Store house Village road None 1 99
41 | Store house Village road Soil nailing embankment 25 75
42 | Store house Village road Gabion embankment 65 35
43 | Store house District road None 10 90
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44 | Store house District road Soil nailing embankment 35 65
45 | Store house District road Gabion embankment 75 25
46 | Store house National road | None 30 70
47 | Store house National road | Soil nailing embankment 55 45
48 | Store house National road | Gabion embankment 85 15

Similarly, Tab. 3 presents the risk probability for assets (including buildings and roads) under

450  different scenarios of landslide exposure and with various types of anti-landslide embankments.
The results show that, without any protective structure, the risk to assets is significantly high,
particularly in areas near major roads or critical buildings. For example, storehouses face a risk
level as high as 95% without protection, which decreases to 65% with a soil-nailing embankment
and further to 35% with a gabion embankment. Likewise, the probability of pavement failure drops

455  markedly when protective measures are implemented during road construction. A village road, for
instance, exhibits a 99% risk without protection, but this reduces to 75% with soil-nailing
embankments and 35% with gabion embankments. Larger roads, such as national highways, show
a similar trend, with the risk falling from 70% (no protection) to 45% (soil nailing) and 15%
(gabion).

460  These preliminary findings indicate that both structural type and construction quality play pivotal
roles in determining risk levels. Small houses with thatched or tin roofs are far more vulnerable to
cyclones compared to well-built permanent structures, especially warehouses. Nevertheless, anti-
landslide measures, particularly gabion revetments, substantially mitigate high-risk conditions for
assets. In practice, implementing protective structures such as soil-nailing and gabion revetments

465 not only minimizes property damage but also enhances the safety and resilience of urban
infrastructure and transportation systems in landslide-prone areas.

4. Discussion
4.1. Advancements in the Developed BBN Model

The developed BBN model incorporates a wider range of natural and anthropogenic variables than
470  earlier models proposed by Depina et al. (2020) and Hao et al. (2023) for landslide risk warning.
It has been significantly enhanced to improve both its accuracy and practical utility. Unlike
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previous approaches, the BBN model presented in this study is designed for application at an
international scale, particularly in subtropical regions, and integrates fundamental geographical
and climatic parameters such as slope, elevation, rainfall, soil moisture, and terrain curvature.

475  These additional variables have been demonstrated based on the SEM model to play a critical role
in predicting landslide risk across large spatial scales, outperforming earlier models developed by
Lan et al. (2021) and Xiao et al. (2023), which were mainly applied to local settings. As several
variables overlap with those used in previous studies, earlier methodological frameworks can still
be retained and updated in line with this new version.

480 A key advancement of the present model is the integration of remote sensing data with GIS records
and additional information collected from surveys conducted among officials and local residents.
Remote sensing and GIS datasets provide comprehensive, large-scale spatial coverage, which
greatly enhances environmental monitoring and facilitates targeted interventions, as demonstrated
by Mondini et al. (2013). Furthermore, stakeholder interviews capture qualitative, perception-

485  based information that cannot be fully expressed numerically, offering valuable insights into how
communities perceive risk and the impacts of human activities, as suggested by Sun et al. (2021).
In addition, advanced analytical tools such as sensitivity analysis and multivariate scenario
optimization, as applied by Xiao et al. (2023), were incorporated to enhance model performance
under dynamic conditions such as changing temperature regimes or terrain variability. As a result

490 of these improvements, the BBN model extends beyond simple prediction. It now supports the
generation of a broader and more diverse range of response options tailored to the specific
conditions of different regions. This represents a major step forward compared to previous models,
which often relied on single-variable or linear approaches inadequate for capturing the complexity

of real-world systems.

495  4.2. Contributions to Disaster Risk Reduction

The enhanced BBN model can be applied to evaluate the contribution of human-made
infrastructures to prevent landslide and debris flow risks by accommodating uncertainty and
multidimensional datasets. It represents a novel addition to the BBN framework compared with
earlier models. By simulating variables such as housing type (e.g., thatched-roof houses, tin-roof
500 houses, storage buildings), geographical location, and proximity to hazard-prone areas, the model

can estimate potential casualties and structural damage. For example, the annual probability of
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debris flow destruction is eight times higher for thatched-roof houses than for reinforced storage
facilities. Similarly, the model predicts that reinforced national roads can reduce 80% the risk,
whereas village roads face a 70% disruption risk. Simulation results also reveal that employing
505 gabion embankments can reduce the probability of landslides impacting facilities within a 500 m
radius by approximately 60%.
The BBN framework also enables cost—benefit analyses of different mitigation options, supporting
more effective disaster-risk-reduction planning. A case study conducted in the mountainous north-
western region of Vietnam demonstrated that the likelihood of residential property damage
510  dropped from 70% to 30%, and mortality risk decreased from 15% to 5% following the installation
of gabion and soil nailing embankments. Accordingly, the model not only forecasts risk but also
informs the design of effective mitigation strategies.
Beyond risk assessment, the GIS-based hazard mapping based on the BBN model provides
spatially explicit data to guide infrastructure development in landslide-prone areas. High-risk
515  zones can be clearly delineated to restrict hazardous development and protect vital resources such
as forests and water supplies. The model also aids government agencies in implementing
ecological strategies for prevention - such as reforestation, installation of natural drainage systems,
and slope stabilization - while promoting the use of environmentally friendly construction
materials. Moreover, its early warning capabilities strengthen community resilience by
520  safeguarding vulnerable groups and reducing losses of life and property during disasters.
The BBN model further supports scenario analysis to evaluate how urbanization and natural
resource exploitation influence landslide risk. Decision-makers can use this capability to balance
development needs with environmental protection. By integrating essential data for urban
planning, watershed management, and environmental conservation, the model helps anticipate the
525  consequences of factors such as climate change, infrastructure density, and agricultural practices.
These analyses can inform solutions including reforestation, construction of eco-friendly drainage
systems, and restrictions on building in hazardous areas.
To achieve the above results, the model in the future should incorporate additional data streams
from geotechnical sensors, weather radar, and satellite observations to improve accuracy and
530  support rapid emergency response. Enhanced methods for managing large and complex datasets,
along with user-friendly visualization tools, are also essential to support decision-making by

authorities and communities. Moreover, the model should integrate long-term climate, social, and
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economic projections and be compatible with hydrological and climate models to enhance its

decision-support capabilities. Finally, incorporating feedback from real-world landslide and debris
535  flow events will allow continuous refinement of the model’s performance.

These improvements not only increase the model’s practical value but also ensure that it becomes

a powerful tool for balancing economic development, environmental protection, and community

safety advancing progress toward sustainability.

5. Conclusions

540  This study demonstrates the value of Bayesian Belief Network (BBN) models in advancing our
understanding of the factors that heighten the likelihood of landslides and debris flow hazards,
along with their associated risks to people and property. The findings highlight that the north-
western region of Vietnam is particularly vulnerable, with hazard occurrence strongly influenced
by human-driven factors such as climate change (manifested in increased precipitation and

545  prolonged rainfall), land-use change, and road construction. The sensitivity analysis underscores
the critical role of land use/cover and embankment type in minimizing property exposure and
reducing overall landslide risk. Specifically, the results reveal that cumulative rainfall exceeding
130 mm over three consecutive days substantially raises the probability of landslides and debris
flow, especially in cultivated and farming areas. Importantly, gabion embankments were shown to

550 provide highly effective protection against both casualties and structural damage. Beyond
identifying risk factors, this research emphasizes the scale of danger posed by such hazards and
the urgent need for proactive mitigation measures, such as protective slopes and appropriate land-
use planning. Overall, the study affirms that BBN models are powerful tools for hazard assessment,
regulation, and risk management. By integrating environmental, climatic, and anthropogenic

555  factors, they can equip decision-makers with robust, evidence-based insights to guide policies,

improve resilience, and safeguard both communities and ecosystems.

Author contributions: Kinh Bac Dang: Funding acquisition, project administration, data
curation, methodology, software, writing — original draft. Hieu Nguyen: Conceptualization,
560  supervision, methodology, writing —review and editing. Thanh Dat Do: Methodology, resources,
validation, writing — review and editing. Thi Phuong Nga Pham: Methodology, data curation,

formal analysis, writing — review and editing. Tuan Linh Giang: Data curation, formal analysis,

26



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

writing — review and editing. Thi Dieu Linh Nguyen, Huu Hao Ngo, and Giuseppe Forino:
Conceptualization, methodology, writing — review and editing.

565
Acknowledgments
This research was funded by the research project QG.24.75 of Vietnam National University,
Hanoi.

570  References
Agboola, G., Beni, L. H., Elbayoumi, T., and Thompson, G.: Optimizing landslide susceptibility
mapping using machine learning and geospatial techniques, Ecol. Inform., 81, 102583,
https://doi.org/10.1016/j.ecoinf.2024.102583, 2024.
Alam, E. and Ray-Bennett, N. S.: Disaster risk governance for district-level landslide risk
575 management in  Bangladesh, Int. J. Disaster Risk Reduct., 59, 102220,
https://doi.org/10.1016/j.ijdrr.2021.102220, 2021.
Alvarez Jaimes, M. A., Roman Quintero, D. C., Ortiz Contreras, J. D., Bedoya Rios, D. F., and
Tapias Camacho, M. A.: Implications of landslide runout modeling for vulnerability assessment:
Benchmarking from a case study in the andean region, Int. J. Disaster Risk Reduct., 131, 105920,
580  https://doi.org/10.1016/J.1JDRR.2025.105920, 2025.
Bac, D. K. and Bao, D. Van: Analyzing Bio-Geo-Chemical Factors in Relation to Land Use Trends
on Basalt Terrain in Dong Nai and Nearby Areas, VNU J. Sci. Earth Environ. Sci., 36, 79-89,
https://doi.org/10.25073/2588-1094/vnuees.4542, 2020.
Bachri, S., Shrestha, R. P., Yulianto, F., Sumarmi, S., Utomo, K. S. B., and Aldianto, Y. E.:
585  Mapping landform and landslide susceptibility using remote sensing, gis and field observation in
the southern cross road, Malang regency, East Java, Indonesia, Geosci., 11, 1-15,
https://doi.org/10.3390/geosciences11010004, 2021.
Barman, J., Soren, D. D. L., and Biswas, B.: Landslide Susceptibility Evaluation and Analysis: A
Review on Articles Published During 2000 to 2020, 211-220 pp., https://doi.org/10.1007/978-3-
590 031-15377-8_14, 2023.
Barnard, P. L., Owen, L. A., Sharma, M. C., and Finkel, R. C.: Natural and human-induced
landsliding in the Garhwal Himalaya of northern India, Geomorphology, 40, 21-35,
https://doi.org/https://doi.org/10.1016/S0169-555X(01)00035-6, 2001.

27



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Borgomeo, E., Hebditch, K. V, Whittaker, A. C., and Lonergan, L.: Characterising the spatial
595  distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy,

Geomorphology, 226, 148-161, https://doi.org/10.1016/j.geomorph.2014.08.004, 2014.

Bui, D. T., Tsangaratos, P., Nguyen, V. T., Liem, N. Van, and Trinh, P. T.. Comparing the

prediction performance of a Deep Learning Neural Network model with conventional machine

learning models in landslide susceptibility assessment, Catena, 188,
600 https://doi.org/10.1016/j.catena.2019.104426, 2020.

Chen, F., Jia, H., Du, E., Chen, Y., and Wang, L.: Modeling of the cascading impacts of drought

and forest fire based on a Bayesian network, Int. J. Disaster Risk Reduct., 111,

https://doi.org/10.1016/j.ijdrr.2024.104716, 2024a.

Chen, M., Tang, C., Xiong, J., Chang, M., and Li, N.: Spatio-temporal mapping and long-term
605 evolution of debris flow activity after a high magnitude earthquake, Catena, 236,

https://doi.org/10.1016/j.catena.2023.107716, 2024b.

Damm, B. and Klose, M.: The landslide database for Germany: Closing the gap at national level,

Geomorphology, 249, 82-93, https://doi.org/10.1016/j.geomorph.2015.03.021, 2015.

Dang, K. B., Burkhard, B., Miller, F., and Dang, V. B.: Modelling and mapping natural hazard
610 regulating ecosystem services in Sapa, Lao Cai province, Vietnam, Paddy Water Environ., 16,

767-781, https://doi.org/10.1007/s10333-018-0667-6, 2018.

Dang, K. B., Nguyen, T. T., Ngo, H. H., Burkhard, B., Miller, F., Dang, V. B., Nguyen, H., Ngo,

V. L., and Pham, T. P. N.: Integrated methods and scenarios for assessment of sand dunes

ecosystem services, J. Environ. Manage., 289, 112485,
615  https://doi.org/10.1016/j.jenvman.2021.112485, 2021.

Dang, K. B., Nguyen, C. Q., Tran, Q. C., Nguyen, H., Nguyen, T. T. T. T., Nguyen, D. A,, Tran,

T. H., Bui, P. T,, Giang, T. L., Lenh, T. A., Ngo, V. L., Yasir, M., Nguyen, T. T. T. T., Ngo, H.

H., Quan, C., Cuong, Q., Nguyen, H., Thuy, T., and Hao, H.: Comparison between U-shaped

structural deep learning models to detect landslide traces, Sci. Total Environ., 912, 169113,
620  https://doi.org/10.1016/j.scitotenv.2023.169113, 2024.

Dang, K. B., Pham, T. T., Phan, T. T. H., Nguyen, M. H., Pham, T. P. N., Hoang, T. T., Hoang, T.

H. N., Nguyen, T. H. T., Nguyen, T. H., Le, Q. D., Tran, N. B. Van, and Tran, T. K. B.: Bayesian

Belief Network for Assessing Conservation and Tourism Development in UNESCO Geoparks,

Geoheritage, 17, https://doi.org/10.1007/s12371-025-01083-8, 2025a.

28



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

625 Dang, K. B., Hoang, T. T. H., Nguyen, H., Vu, K. C., Giang, T. L., Damien, C., Nguyen, T. D. L.,
and Do, T. N.: Integrating remote sensing and artificial intelligence for landslide detection and
susceptibility analysis along tourism routes in Da Bac district, Hoa Binh province, Vietnam,
Vietnam J. Earth Sci., 47, 430-446, 2025b.

Depina, I., Oguz, E. A., and Thakur, V.: Novel Bayesian framework for calibration of spatially

630 distributed physical-based landslide prediction models., Comput. Geotech., 125, 103660,
https://doi.org/10.1016/j.compgeo.2020.103660, 2020.

Ding, J. W., Lu, D. G., and Dong, Y.: Seismic spatiotemporal assessment of indoor occupant
casualties in regional buildings: A Bayesian network approach incorporating population density
dynamics, Int. J. Disaster Risk Reduct., 126, 105637,

635  https://doi.org/10.1016/J.1JDRR.2025.105637, 2025.

Duc, D. M., Minh, V. C., Yen, H. H., Loc, N. T., and Duc, D. M.: Analysis of landslide kinematics
integrating weather and geotechnical monitoring data at Tan Son slow moving landslide in Ha
Giang province, Vietnam J. Earth Sci., 45, 131-146, 2023.

FAOQO: The role of forests and forestry in the prevention and rehabilitation of lanslides in Asia, For.

640 ans landslides, Cent. people For. FAO, 2010.

Ghasemian, B., Asl, D. T., Pham, B. T., Avand, M., Nguyen, H. D., and Janizadeh, S.: Shallow
landslide susceptibility mapping: A comparison between classification and regression tree and
reduced error pruning tree algorithms, Vietnam J. Earth Sci., 42, 208-227, 2020.

Hang, H. T., Hoa, P. D., Tru, V. N., and Phuong, N. V.: Landslide Susceptibility Mapping Along

645  National Highway-6, Hoa Binh Province, Vietnam Using Frequency Ratio Model And Gis, Int. J.
GEOMATE, 21, 84-90, https://doi.org/10.21660/2021.85.j2222, 2021.

Hao, J., Liu, L., Long, Z., Chu, Y., Zhang, D., Chen, X., and Huang, C.: Scenario deduction of
Natech accident based on dynamic Bayesian network: A case study of landslide accident in a liquor
storage tank area in Guizhou Province, China, J. Loss Prev. Process Ind., 83, 105067,

650 https://doi.org/10.1016/j.jlp.2023.105067, 2023.

Highland, L. M.: Introduction The Landslide Handbook-A Guide to Understanding Landslides,
Landslide Handb. - A Guid. to Underst. Landslides, 4-42, 2008.

Hung, P. Van, Soon, P. Q., and Dung, N. Van: The study evaluated arming of risk of lanslide in
Hoa Binh and Son La reservoir hydropower area on the basis of analyzing high-resolution remote

655  sensing and geographic information systems, Vietnam J. Earth Sci., 37, 193-203, 2015.

29



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Islam, T. and Ryan, J.: Chapter 5 - Hazard Identification—Natural Hazards, in: Hazard Mitigation
in Emergency Management, edited by: Islam, T. and Ryan, J., Butterworth-Heinemann, 129-170,
https://doi.org/https://doi.org/10.1016/B978-0-12-420134-7.00005-9, 2016.

Jin, B., Zeng, T., Liuy, S., Li, Y., Gui, L., Zhao, B., Yin, K., Catani, F., and Peduto, D.: Quantitative

660  risk assessment for rainfall-induced landslides of transmission line towers: the case of Chongging
national transmission protection regions, Int. J. Disaster Risk Reduct., 128, 105715,
https://doi.org/10.1016/J.1JDRR.2025.105715, 2025.

Kang, Y., Lu, Z., Zhao, C., and Qu, W.: Inferring slip-surface geometry and volume of creeping
landslides based on INSAR: A case study in Jinsha River basin, Remote Sens. Environ., 294,

665 113620, https://doi.org/10.1016/j.rse.2023.113620, 2023.

Kayastha, P., Dhital, M. R., and Smedt, F. De: Computers & Geosciences Application of the
analytical hierarchy process ( AHP ) for landslide susceptibility mapping : A case study from the
Tinau watershed : west Nepal, Comput. Geosci., 52, 398-408,
https://doi.org/10.1016/j.cageo.2012.11.003, 2013.

670 Kleemann, J., Celio, E., and First, C.: Validation approaches of an expert-based Bayesian Belief
Network in  Northern Ghana, West Africa, Ecol. Modell.,, 365,  10-29,
https://doi.org/10.1016/j.ecolmodel.2017.09.018, 2017.

Kuschel, E., Tolle, F., Klaus, V., Laa, U., Prokop, A., Friedt, J. M., Bernard, E., and Zangerl, C.:
Meteorological factors control debris slides and debris flows in a high-Arctic glacier basin (Ny-

675 Alesund, Svalbard), Geomorphology, 467, https://doi.org/10.1016/j.geomorph.2024.109492,
2024.

Lan, M., Zhu, J., and Lo, S.: Hybrid Bayesian network-based landslide risk assessment method for
modeling risk for industrial facilities subjected to landslides, Reliab. Eng. Syst. Saf., 215, 107851,
https://doi.org/10.1016/j.ress.2021.107851, 2021.

680 Landuyt, D., Van der Biest, K., Broekx, S., Staes, J., Meire, P., and Goethals, P. L. M.: A GIS
plug-in for Bayesian belief networks: Towards a transparent software framework to assess and
visualise uncertainties in ecosystem service mapping, Environ. Model. Softw., 71, 30-38,
https://doi.org/10.1016/j.envsoft.2015.05.002, 2015.

Liang, S., Peng, L., Yang, G., Zhang, H., and Jin, Y.: Modeling residents’ long-term adaptation to

685 geohazards in mountainous regions using agent-based models and Bayesian networks, Int. J.
Disaster Risk Reduct., 119, 105279, https://doi.org/10.1016/J.1JDRR.2025.105279, 2025.

30



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Liu, D., Liu, D., He, C., Zhang, C., Jin, W., Sa, W., Xing, X., Wu, C., Tan, C., Qin, Y., Xiang, B.,

and Shao, J.: An integrated framework to quantitatively analyze the potential threat of landslide-

triggered outburst flood hazard chain, a case study in Danba, China, Int. J. Disaster Risk Reduct.,
690 130, 105864, https://doi.org/10.1016/J.1JDRR.2025.105864, 2025.

Luu, C., Ha, H., Bui, Q. D., Luong, N. D., Khuc, D. T., Vu, H., and Nguyen, D. Q.: Flash flood

and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial

modeling, Quat. Sci. Adv., 11, 100083, https://doi.org/10.1016/j.qsa.2023.100083, 2023.

Ma, Z., Mei, G., and Piccialli, F.: Machine learning for landslides prevention: a survey, Neural
695  Comput. Appl., 33, 10881-10907, https://doi.org/10.1007/s00521-020-05529-8, 2021.

Mckean, J. and Roering, J.: Objective landslide detection and surface morphology mapping using

high-resolution airborne laser altimetry, Geomorphology, 57, 331-351,

https://doi.org/10.1016/S0169-555X(03)00164-8, 2004.

Models, M. L.: Automated Landslide-Risk Prediction Using Web GIS and Machine Learning
700  Models, 1-32, 2021.

Mondal, S. and Maiti, R.: Landslide Susceptibility Analysis of Shiv-Khola Watershed, Darjiling:

A Remote Sensing &amp; GIS Based Analytical Hierarchy Process (AHP), J. Indian Soc. Remote

Sens., 40, 483-496, https://doi.org/10.1007/s12524-011-0160-9, 2012.

Mondini, A. C., Marchesini, I., Rossi, M., Chang, K. T., Pasquariello, G., and Guzzetti, F.:
705  Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing

and topographic data, Geomorphology, 201, 135-147,

https://doi.org/10.1016/j.geomorph.2013.06.015, 2013.

Moore, Z. T. and Sawyer, D. E.: Assessing post-failure mobility of submarine landslides from

seismic geomorphology and physical properties of mass transport deposits: An example from
710 seaward of the Kumano Basin, Nankai Trough, offshore Japan, Mar. Geol., 374, 73-84,

https://doi.org/10.1016/j.margeo.2016.02.003, 2016.

Moriguchi, N., Ito, L., and Tokai, A.: Risk assessment of chemical release accident triggered by

landslide  using  Bayesian  network, Sci.  Total  Environ.,, 890, 164321,

https://doi.org/10.1016/j.scitotenv.2023.164321, 2023.
715  Netica: Netica-J Reference Manual, 119, 2010.

Ngo, V. L., Nguyen, H., Dang, K. B., Giang, T. L., Dang, V. B., Do, T. H., Nguyen, M. H., Dang,

N. V., and Dao, M. D.: Advancing debris flow detection based on deep learning model and high-

31



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

resolution images, Vietnam J. Earth Sci., 42, 290-214, 2025.
Nguyen, H., Dang, K. B., Giang, T. L., Dang, V. B., Dang, N. V., and Dao, M. D.: Exploring

720  Various Deep Learning Models for High-Precision Landslide Tracing in Very-High Resolution
Remote Sensing Imagery, J. Indian Soc. Remote Sens., https://doi.org/10.1007/s12524-025-
02267-z, 2025.

Nguyen, M. D., Thang, N. Van, Wakai, A., Sato, G., Karnjana, J., Hung, H. V., Ho, L. S., Prakash,
I., Quang, H. T., and Pham, B. T.: Identification, monitoring, and assessment of an active landslide

725 in tavan-hauthao, sapa, laocai, vietnam — a multidisciplinary approach, J. Disaster Res., 16, 501—
511, https://doi.org/10.20965/JDR.2021.P0501, 2021.

Nichol, J. E., Shaker, A., and Wong, M.-S.: Evaluation of the Global Satellite Mapping of
Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam, Geomorphology, 44, 94—
104, https://doi.org/https://doi.org/10.15625/2615-9783/16980, 2019.

730  Palumbo, M., Ascione, A., Santo, A., and Santangelo, N.: Evaluation of sediment budgets in
catchments prone to flash flood-related debris flows: A case study from the southern Apennines
(Italy), Geomorphology, 454, https://doi.org/10.1016/j.geomorph.2024.109174, 2024,

Rai, S. C., Pandey, V. K., Sharma, K. K., and Sharma, S.: Landslide susceptibility analysis in the
Bhilangana Basin (India) using GIS-based machine learning methods, Geosystems and

735  Geoenvironment, 3, 100253, https://doi.org/10.1016/j.geogeo.2024.100253, 2024.

Ren, D.: Storm-triggered landslides in warmer climates, Storm-Triggered Landslides Warmer
Clim., 1-365, https://doi.org/10.1007/978-3-319-08518-0, 2015.

Saleem, J., Ahmad, S. S., and Butt, A.: Hazard risk assessment of landslide-prone sub-Himalayan
region by employing geospatial modeling approach, Nat. Hazards, 102, 1497-1514,

740  https://doi.org/10.1007/s11069-020-03980-3, 2020.

Segue, W. S., Njilah, I. K., Fossi, D. H., and Nsangou, D.: Advancements in mapping landslide
susceptibility in Bafoussam and its surroundings area using multi-criteria decision analysis,
statistical methods, and machine learning models, J. African Earth Sci., 213, 105237,
https://doi.org/10.1016/j.jafrearsci.2024.105237, 2024.

745  Shirzadi, A., Shahabi, H., Chapi, K., Bui, D. T., Pham, B. T., Shahedi, K., and Ahmad, B. Bin: A
comparative study between popular statistical and machine learning methods for simulating
volume of landslides, Catena, 157, 213-226, https://doi.org/10.1016/j.catena.2017.05.016, 2017.
Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., and Wei, B.: Susceptibility assessment of

32



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

earthquake-induced landslides using Bayesian network: A case study in Beichuan, China, Comput.
750  Geosci., 42, 189-199, https://doi.org/10.1016/j.cageo.2011.09.011, 2012.

Stark, T. D., Estes, K. D., Silver, R. C., Holman, E. A., Leshchinsky, B. A., and Vahedifard, F.:

Obijective versus subjective landslide risk: A case of Cache Creek Landslide in California, Int. J.

Disaster Risk Reduct., 132, 105910, https://doi.org/10.1016/J.1JDRR.2025.105910, 2026.

Sun, D., Xu, J., Wen, H., and Wang, D.: Assessment of landslide susceptibility mapping based on
755  Bayesian hyperparameter optimization: A comparison between logistic regression and random

forest, Eng. Geol., 281, 105972, https://doi.org/10.1016/j.engge0.2020.105972, 2021.

Sun, D., Ding, Y., Wen, H., Zhang, F., Zhang, J., Gu, Q., and Zhang, J.: SHAP-PDP hybrid

interpretation of decision-making mechanism of machine learning-based landslide susceptibility

mapping: A case study at Wushan District, China, Egypt. J. Remote Sens. Sp. Sci., 27, 508-523,
760  https://doi.org/10.1016/j.ejrs.2024.06.005, 2024.

Tawalo, A., Tsinidis, G., and Urciuoli, G.: Numerical framework for risk assessment of buried

natural gas pipelines subjected to landslide-induced deformations due to rainfall infiltration: The

Miscano  landslide case, Int. J.  Disaster Risk Reduct., 129, 105776,

https://doi.org/10.1016/J.1JDRR.2025.105776, 2025.
765  Thanh, D. Q., Nguyen, D. H., Prakash, I., Jaafari, A., Nguyen, V. T., Phong, T. V., and Pham, B.

T.: GIS based frequency ratio method for landslide susceptibility mapping at Da Lat City, Lam

Dong province, Vietnam, Vietnam J. Earth Sci., 42, 55-66, 2020.

Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B.: Landslide susceptibility

assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg-Marquardt and
770  Bayesian regularized neural networks, Geomorphology, 171-172, 12-29,

https://doi.org/10.1016/j.geomorph.2012.04.023, 2012,

Tien Bui, D., Tuan, T. A, Hoang, N. D., Thanh, N. Q., Nguyen, D. B., Van Liem, N., and Pradhan,

B.: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid

intelligent approach of least squares support vector machines inference model and artificial bee
775  colony optimization, Landslides, 14, 447-458, https://doi.org/10.1007/s10346-016-0711-9, 2017.

Tran, A. T., Pham, V. H., Tran, T. T., Nguyen, T. A. N., Nguyen, V. D., Pham, T. H., and Tran,

V. P.: Landslide susceptibility in Phuoc Son, Quang Nam: A deep learning approach, Vietnam J.

Earth Sci., 47, 39-57, 2025.

Tran, V. A, Khuc, T. D., Truong, X. Q., Nguyen, A. B., and Phi, T. T.: Application of potential

33



https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

780  machine learning models in landslide susceptibility assessment: A case study of Van Yen district,
Yen Bai province, Vietnam, Quat. Sci. Adv., 14, 100181,
https://doi.org/10.1016/j.gsa.2024.100181, 2024.

Tu, T. Van, Duc, D. M., Tung, N. M., and Cong, V. D.: Preliminary assessments of debris flow
hazard in relation to geological environment changes in mountainous regions, North Vietnam,

785  Vietnam J. Earth Sci., 38, 257266, https://doi.org/10.15625/0866-7187/38/3/8712, 2016.

Wang, Y., Wang, X., and Jian, J.: Remote sensing landslide recognition based on convolutional
neural network, Math. Probl. Eng., 2019, https://doi.org/10.1155/2019/8389368, 2019.

Xiao, P., Wang, T., Tian, Y., Xie, X,, You, J,, Tan, X., and Chen, H.: A Bayesian Network-Based
Inhibition Model of the Rainstorm—Landslide—Debris Flow Disaster Chain in Mountainous Areas:

790 The Case of the Greater Bay Area, China, Water (Switzerland), 15,
https://doi.org/10.3390/w15173124, 2023.

Yamasaki, T., Sato, G., Kimura, T., Hung, H. V., Manh, N. D., Ozaki, T., Yokoyama, O., Tosa,
S., and Wakai, A.: Landslide process revealed by mineralogical properties of landslide deposits in
the sa pa district, Vietnam, J. Disaster Res., 16, 556-560,

795  https://doi.org/10.20965/JDR.2021.P0556, 2021.

Yang, Z. giang, Qi, W. wen, Xu, C., and Shao, X. yi: Exploring deep learning for landslide
mapping: A comprehensive review, China Geol., 7, 330-350, https://doi.org/10.31035/cg2024032,
2024.

Yousefi, S. and Imaizumi, F.: Assessing the impact of sediment characteristics on vegetation

800 recovery in debris flow fans: A case study of the Ohya Region, Japan, Ecol. Eng., 209,
https://doi.org/10.1016/j.ecoleng.2024.107408, 2024.

Yousefi, S., Imaizumi, F., and Takayama, S.: Spatial distribution and transport characteristics of
debris flow sediment using high resolution UAV images in the Ohya debris flow fan,
Geomorphology, 469, 109533, https://doi.org/10.1016/j.geomorph.2024.109533, 2025.

805 Zhao, C. and Lu, Z.: Remote sensing of landslides-A review, Remote Sens., 10, 8-13,
https://doi.org/10.3390/rs10020279, 2018.

Zhao, Y.: R and Data Mining: Examples and Case Studies, 1-160, https://doi.org/10.1016/B978-
0-12-396963-7.00001-5, 2014.

34



