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Abstract. Current forecasting models for landslides and debris flows mostly look at environmental or 

socio-economic factors on their own. They rarely combine both into a single probabilistic framework 

that might give warning in complicated and uncertain situations. This constraint is especially clear in 15 

Vietnam, where intense subtropical rain, steep and extensively dissected mountainous terrain, and quick 

changes in land use and infrastructure are the main causes of landslides and debris flows. This research 

introduces a novel approach using a Bayesian Belief Network (BBN) to enhance landslide-risk prediction 

through the integrated analysis of environmental and socioeconomic data. The developed BBN model 

incorporates inputs from diverse sources, including Geographic Information Systems (GIS), remote 20 

sensing, and field survey observations. Structural Equation Modeling was employed to align the BBN 

with established relationships between landslides and influencing factors. The analysis explored different 

scenarios by combining rainfall intensity with land-use patterns and assessing the protective role of 

embankments. Results indicate that precipitation exceeding 130 mm over a period longer than three days 

markedly increases the likelihood of landslides and debris flows, particularly in agricultural regions. 25 

Gabion embankments were found to be highly effective in mitigating risks to both human safety and built 

environments. 
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1. Introduction 

Various disasters such as landslides and debris flows have significantly impacted human lives and 30 

infrastructure in mountainous regions (Barnard et al., 2001; Ren, 2015). These hazards commonly occur 

on steep slopes and are primarily triggered by disturbances to the critical balance of forces within slope 

materials. According to the European Civil Protection and Humanitarian Aid Operations – European 

Commission (2022)1, up to 78.3% of global landslides in 2021 occurred in Asia. The consequences of 

these events can be catastrophic: landslides and debris flows claimed more than 1,500 lives in China in 35 

July 2010; 5,000 lives in December 1941 and 600 lives in August 1971 in Peru; over 1,100 lives in the 

Philippines in 2006; and nearly 2,000 lives in Italy in September 1963 (Kang et al., 2023; Palumbo et al., 

2024). 

In Vietnam, records from the Ministry of Natural Disaster Prevention and Search and Rescue indicate 

that the aftermath of Typhoon Yagi in 2024 resulted in human and economic losses amounting to 40 40 

trillion VND (approximately US$1.63 billion), with 329 fatalities and over 2,000 people affected. The 

primary causes were increased precipitation and prolonged rainfall during the tropical cyclone, combined 

with human-induced slope disturbances due to construction activities (Tu et al., 2016; Yamasaki et al., 

2021). 

To mitigate such risks, many countries have developed models and maps aimed at predicting and warning 45 

against landslides and debris flows (Shirzadi et al., 2017; Zhao and Lu, 2018). However, these tools have 

often failed to deliver practical results, a limitation attributed by researchers to the selection of 

inappropriate input variables and the use of unsuitable modelling approaches. Consequently, there is a 

pressing need for more robust and reliable decision-support tools that can effectively guide disaster 

prevention and warning efforts across diverse topographic, environmental, and climatic conditions. 50 

A comprehensive analysis of contributing factors is essential for developing such tools for landslide and 

debris-flow risk assessment. Geographic Information Systems (GIS) have traditionally served as 

platforms for integrating various qualitative and quantitative datasets through weighting systems to 

enhance risk estimation (Barman et al., 2023; Hung et al., 2015; Nichol et al., 2019). Among the 

commonly used methods, the Analytic Hierarchy Process (AHP) and its fuzzy logic extension (Fuzzy-55 

AHP) account for approximately 15% of risk assessments (Kayastha et al., 2013; Mondal and Maiti, 

2012; Saleem et al., 2020). 

Statistical models, which are more effective in handling data with complex correlations, constitute 

another important approach (Damm and Klose, 2015). Linear statistical methods have remained the 

 
1 https://www.statista.com/statistics/267833/number-of-people-affected-by-major-dry-landslides-worldwide/  
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dominant analytical tools for hazard assessments, contributing to 20.51% of modelling approaches, while 60 

probabilistic methods account for 12.82% (Fig. 1). Techniques such as multiple linear regression, 

Bayesian probability, and ROC-plane analysis have proven successful in estimating the likelihood of 

landslide and debris-flow occurrences (Moriguchi et al., 2023; Song et al., 2012). For instance, 

geostatistical analyses in Ghana have revealed that landslide susceptibility is not solely dependent on 

temporal increases in rainfall intensity, but also on geological parameters and their interactions (Segue 65 

et al., 2024). 

 

Figure 1. Frequency of research methods in assessing risks of landslides and debris. 

To date, higher-order machine learning algorithms such as Decision Trees (accounting for 10.26%), 

Support Vector Machines (5.13%), and more advanced models like XGBoost have begun to be 70 

incorporated into geostatistical modeling frameworks to improve predictive capabilities (Bui et al., 

2020). These point-based machine learning and artificial intelligence approaches are well suited to the 

problem because the datasets typically involve numerous interrelated variables, enabling focused, point-

by-point prediction (Ma et al., 2021; Models, 2021). Despite progress in developing risk assessment 

procedures, accurate prediction of landslides remains a significant challenge. This difficulty arises 75 

primarily from the multitude of interacting factors that contribute to mass movement, including diverse 

natural and environmental conditions as well as human activities (Ngo et al., 2025). Consequently, 

further research and methodological advancements are required to enhance model performance, improve 

forecast accuracy, deepen our understanding of landslide mechanisms, and develop more effective 

strategies for risk reduction. 80 
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Figure 2. The number of studies using different factors in assessing risks of landslides and debris 

flows. 

Regarding factors used to assess landslide and debris flow hazards in previous studies, a wide range of 

variables have been considered across tropical and temperate regions, including hazard intensity, 85 

triggering mechanisms, and environmental conditions (Ngo et al., 2025). Most of studies identified 

precipitation and tectonic activity as primary triggering factors (Fig. 2). Heavy or prolonged rainfall 

saturates soils, increases pore-water pressure, and destabilizes rock formations, thereby disturbing slope 

equilibrium (Islam and Ryan, 2016). Natural and environmental factors particularly geomorphological, 

geological, and hydrological variables were cited in more than 50% of studies. These factors contribute 90 

to slope instability by inducing fractures and cracks in rock masses and reducing slope strength, often 

exacerbated by seismic activity (Kuschel et al., 2024). Among these, topographic features such as 

elevation, slope, and lithology were most frequently included, appearing in over 90% of studies, 

highlighting their importance in predicting landslides and debris flows (Sun et al., 2024; Yang et al., 

2024). Geological deposit characteristics were reported in 50% of studies, reflecting their role in 95 

determining the permeability and mechanical stability of slope materials. 

In addition, human activities including road construction, urbanization, and land-use changes have 

increasingly been incorporated into hazard assessment models. Variables such as distance to road 
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networks and land use/land cover (LULC) were used in more than 60% of studies, underscoring the 

anthropogenic contribution to altered runoff patterns, enhanced surface flow, and reduced slope stability 100 

(Agboola et al., 2024; Bachri et al., 2021). Remote-sensing indices, such as vegetation cover (NDVI), 

built-up index (NDBI), and related indicators, were applied in approximately 45% of studies (Wang et 

al., 2019). However, population-related variables (e.g., settlement distribution) remain largely 

underexplored, limiting accurate assessment of the social impacts of landslide hazards in mountainous 

regions (FAO, 2010). The frequency of these variables across studies reflects both their prevalence and 105 

the intricate interconnection between natural and anthropogenic drivers of landslide and debris-flow 

risks. 

Building on this foundation, the present study develops a Bayesian Belief Network (BBN) model to 

predict landslide and debris-flow risks by integrating environmental and socio-economic factors. 

Structural Equation Modeling (SEM) is applied to align the internal dependencies within the BBN 110 

framework to empirically identified relationships (Dang et al., 2025a). SEM further facilitates the 

identification of direct and indirect interactions among topographic, hydrological, and geological 

variables influencing susceptibility. Section 2.3 and 3.2 present the proposed BBN model, incorporating 

GIS and Sentinel-2 remote-sensing data. Section 3.3 details the sensitivity analysis results and their 

implications for hazard risk levels, while Section 3.4 reports on scenario analysis under varying 115 

environmental and land-use conditions. Finally, the performance of the BBN model is demonstrated 

through hazard zoning applications, showing its effectiveness as a decision-support tool for risk 

estimation and sustainable development. 

2. Material and methods 

2.1. Case study 120 

According to statistical data and research in Vietnam, landslides and debris flows frequently occur along 

transportation routes in the provinces of Lai Chau, Dien Bien, Son La, Hoa Binh, Lao Cai, Yen Bai, and 

Phu Tho (Hung et al., 2015) (Fig. 3). These hazards are concentrated in complex, deeply dissected 

mountainous terrain characterized by severe erosion and geological fragmentation. Due to the highly 

variable topography, landslides and debris flows occur in a chaotic and largely uncontrollable manner, 125 

causing extensive damage to human life and property (Tien Bui et al., 2012). Official records indicate 

approximately 8,500 landslide and debris flow sites in the northwestern region during the 2010s (Dang 

et al., 2018, 2025b), with more than 2,700 debris flows exceeding 100,000 m³ in volume. Using high-

resolution remote sensing imagery such as VNREDSat-1 and SPOT-5, Ghasemian et al. (2020) identified 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



6 

 

and manually interpreted landslides and debris flows larger than 20 m² in this region. More than 2,000 130 

cases detected through remote sensing were subsequently verified by field surveys, which also 

documented over 600 additional sites inaccessible for direct field investigation. 

 

Figure 3. Location of landslides and debris flows detected from images collected from Maxar 

Technology and CNES/Airbus sources from 2010 to 2024. 135 

Key research areas include the Hoa Binh and Son La hydropower reservoirs, national highways 6, 12, 

and 4D, as well as critical zones such as Muong Lay, where numerous landslides and debris flows occur 

on slopes ranging from 35° to 45°, particularly within tectonic destruction zones (Hang et al., 2021; 

Nguyen et al., 2021). Large-scale debris flows have been recorded from Tam Duong, Than Uyen, and 

Tan Uyen to highland communes in Phong Tho (Lai Chau), as well as in key locations such as Nam Lay 140 

and Muong Lay (Dien Bien) and Muong Te (Son La) (Dang et al., 2024). A high density of landslides is 

concentrated in areas characterized by rugged terrain and geologically vulnerable conditions. 

Despite the increasing frequency and severity of these hazards, the application of artificial intelligence 

(AI) and remote sensing technologies remains limited in Vietnam (Dang et al., 2025b). The use of high-

resolution remote sensing data and AI-based approaches is still rare due to technological challenges (Ngo 145 

et al., 2025). Current efforts primarily focus on developing risk zoning maps, forecasting events, and 

reducing damage caused by mass movements (Duc et al., 2023; Luu et al., 2023; Thanh et al., 2020). 

However, these studies need to be further expanded and refined, particularly in remote and difficult-to-

access mountainous regions (Nguyen et al., 2025). Enhancing the application of advanced technologies 
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in landslide and debris-flow research is essential to improve forecasting accuracy, strengthen disaster 150 

prevention and mitigation strategies, and support sustainable socio-economic development in Vietnam. 

2.2. BBN development for warning landslides and debris flows 

Step 1: Identification of Influencing Factors 

The primary objective of the model is to support managers, experts, and decision-makers in anticipating 

and issuing warnings about potential landslides and debris flows. An initial compilation of influencing 155 

factors was carried out based on previous research, literature, and specialized documents. These sources 

covered a wide range of aspects including physical characteristics, climatic variables, hydrological 

parameters, and infrastructure conditions related to landslide and debris flow hazards (Tien Bui et al., 

2017; Yousefi and Imaizumi, 2024). 

Subsequently, through consultations with experts and local management agencies, a refined list of critical 160 

factors was developed. This process involved meetings and interviews held in 2023 and 2024 with 

officials from governmental and non-governmental departments, sectoral organizations, and scientists 

from research institutes and local environmental management agencies. For example, the selection of 

natural and environmental factors were reviewed by experts in Vietnam Academy of Science and 

Technology and Vietnam National University, whereas the selection of social factors were reviewed by 165 

experts in Vietnam Academy of Social Sciences. Some factors related to construction activities were 

reviewed by experts in University of Transport and Communications. During this stage, certain 

components were either included or excluded; for example, the role of solar radiation in water 

accumulation was critically examined. The outcome was a finalized list of major influencing factors, 

which served as the foundation for constructing the conceptual hazard-warning model. 170 

Step 2: Development of a Conceptual Model 

Conceptual models are essential tools for examining and evaluating the complex interactions between 

natural and anthropogenic factors that influence the occurrence and risk of landslides and debris flows. 

In this study, the conceptual model was designed to transform geological, climatic, hydrological, and 

land-cover information into specific variables within a Bayesian Belief Network (BBN), thereby 175 

enhancing predictive capability and risk assessment. 

The model integrates multiple dimensions of risk, including susceptibility, hazard, resilience, and 

vulnerability, as illustrated in Fig. 4. Key inputs encompass data on the distribution and frequency of 

landslides and debris flows, climatic and geological conditions, triggering factors, and elements at risk. 

Importantly, vulnerability is explicitly incorporated to capture the ability of communities to withstand or 180 

mitigate the impacts of such hazards (Agboola et al., 2024; Luu et al., 2023). 
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Specifically, landslide and debris flow risks are influenced by a combination of pre-transported material 

conditions, hydrological settings, surface properties, climatic drivers, and exposure factors (Highland, 

2008; Palumbo et al., 2024; Shirzadi et al., 2017). Among these, topographic, geomorphologic, and 

lithologic characteristics strongly determine slope stability, material transport, drainage density, and soil-185 

water dynamics (Ngo et al., 2025). Surface resistance - shaped by vegetation cover and human 

interventions - further modifies hazard likelihood (Tran et al., 2025). Meanwhile, rainfall intensity, 

weathering, and other climatic parameters act as dominant triggers. 

Equally critical are the exposure and resilience dimensions, which reflect population density, existing 

protective infrastructure, and community preparedness. These elements determine not only the potential 190 

scale of damage but also the capacity of vulnerable groups to recover (Alam and Ray-Bennett, 2021; 

Chen et al., 2024b). 

The subsequent step involves the integration and analysis of data corresponding to these components, 

which provides the basis for operational hazard prediction and early-warning systems. 

 195 

Figure 4. Conceptual network depicting the relations between environmental and human-derived 

factors with landslide susceptibility, hazard, and risk. 

Step 3: Data collection 

Landslide and debris flow warnings are influenced by geological, geomorphological, meteorological, 

hydrological, land cover and land use, and infrastructure conditions (Fig. 5). 200 

Geological and Geomorphological Factors 

The first group of data relates to surface features and geological structures, including DEM, geological 

faults, and lithological types (Liu et al., 2025). DEM provides essential information on elevation and 
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terrain shape, enabling the calculation of parameters such as slope, aspect, and curvature indices, which 

are critical in identifying areas vulnerable to landslide and debris flow hazards (Borgomeo et al., 2014; 205 

Nichol et al., 2019). Faults, as structural discontinuities within the earth’s crust, are highly susceptible to 

natural forces (Moore and Sawyer, 2016). Lithological types determine the water retention capacity and 

stability of soils, both of which are crucial in assessing slope stability (Tu et al., 2016). Collectively, 

these data define the geomorphological and geological characteristics that distinguish stable areas from 

unstable ones. 210 

Meteorological and Hydrological Factors 

Rainfall, flow accumulation, the Terrain Wetness Index (TWI), and proximity to rivers are fundamental 

triggers of landslides and debris flows (Jin et al., 2025). Intense or prolonged rainfall saturates soils, 

reducing shear strength and resistance to mass movement. Flow accumulation and TWI highlight zones 

with high water buildup potential, increasing susceptibility to slope failure (Mckean and Roering, 2004; 215 

Yousefi et al., 2025). Areas adjacent to rivers are particularly prone to erosion, further heightening the 

risk of slope instability. This group of factors is central to evaluating meteorological and hydrological 

triggers of landslide and debris flow events. 

Land Cover and Land Use Factors 

Remote sensing indices such as NDVI, BSI, and NDBI, along with land use/land cover (LULC) data, 220 

provide valuable insights into slope stability (Tran et al., 2024; Wang et al., 2019). NDVI measures 

vegetation density, which is inversely correlated with landslide occurrence, as dense vegetation 

particularly forest cover stabilizes slopes through root reinforcement (Tawalo et al., 2025). Conversely, 

BSI and NDBI highlight bare land and urbanized areas, both highly susceptible to slope failures due to 

the absence of vegetation cover. These datasets are therefore indispensable for assessing the influence of 225 

anthropogenic and natural land cover factors on slope hazards. 
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Figure 5. Correlation lines (Red) between independent variables with landslide hazard.  

The regions between green lines are thresholds of landslide hazard higher than 50%. The yellow lines 

are peak of landslide hazard in each variable. 230 

Infrastructure Factors 
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Infrastructure-related data, such as “distance to roads,” reflect the impact of human activities on slope 

stability (Barnard et al., 2001; Stark et al., 2026). Slopes adjacent to roads are often destabilized due to 

excavation, construction, and traffic, making them more vulnerable to shallow landslides. Consequently, 

monitoring and assessing infrastructure-related impacts are vital for anticipating and mitigating risks in 235 

areas with high human activity and traffic (Bachri et al., 2021). 

Integration for Hazard Warning Models 

Through the integrated use of these datasets within a Bayesian Belief Network model, it is possible to 

generate highly accurate landslide and debris flow warnings. The combined consideration of geological, 

geomorphological, meteorological, hydrological, land use, and infrastructure factors enhances the 240 

reliability of hazard prediction and provides a robust framework for risk management. 

Step 4: Preprocessing of Data for BBN Model 

According to the application of landslide hazard warning in BBN model construction, a key challenge is 

defining well-coordinated relationships among input variables (Lan et al., 2021; Xiao et al., 2023). To 

address this, two techniques were employed: the Structural Equation Model (SEM) and multivariate 245 

regression, both of which assess interrelationships between variables and eliminate redundant or 

insignificant factors (Rai et al., 2024). SEM, in particular, is useful for identifying causal relationships 

among input variables (Bac and Bao, 2020; Dang et al., 2021). 

The process began with an analysis of correlation coefficients to select strongly associated variables. 

SEM then used this correlation matrix to characterize relationships based on parameters such as 250 

correlation coefficients, Akaike’s Information Criterion (AIC), and Bayesian Information Criterion 

(BIC). Relationships were retained only if the correlation coefficient was statistically significant (p ≤ 

0.05) for the given dataset and both AIC and BIC values were low. 

In parallel, multivariate regression was applied to examine the linear relationship between the dependent 

variable (landslide risk) and the independent variables. This step identified which predictors had the 255 

strongest influence on landslide risk. Variables lacking statistical significance were eliminated based on 

regression coefficients, p-values, and R² values. This refinement optimized the set of input variables by 

retaining only those with meaningful predictive power. 

The SEM and multivariate regression analyses were conducted in R-Studio (version 2024.12.0+467; 

Zhao, 2014). The validated variables were then integrated into a BBN model using Netica software 260 

(Netica, 2010) to simulate relationships and improve accuracy in risk estimation for landslides and debris 

flows. By combining SEM and multivariate regression, the approach enhances both the efficiency and 

the reliability of the BBN model by incorporating only critical independent variables. 
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Subsequent to building the conceptual model, preparing data and analyzing the variables, the final stage 

is to develop and model the BBN for landslide and debris-flow risk assessment. This process starts with 265 

the construction of the Conditional Probability Table (CPT) (Kleemann et al., 2017), in which the 

frequencies of landslides and debris-flows, environmental conditions, triggering factors, exposure factors 

and resilience in order to evaluate the risk of landslides and debris-flows. 

Allocations for land use, topography, environment, and other factors are spatially combined within the 

study area to determine the percentage of high-risk zones from which the basic CPT is derived. This 270 

provides scientific evidence of how landslide risk depends on the prevalence of favorable and triggering 

factors (Ding et al., 2025; Liang et al., 2025). However, the BBN model building process does not end 

with the construction of CPTs but needs to go in checking loops between the steps to be approved by the 

experts and the stakeholders (Chen et al., 2024a). Model evaluation includes the examination of 

sensitivity using the values as mutual information and entropy reduction to establish the extent to which 275 

each factor is sensitive to landslide and debris-flows risk. Uncertainty reduction is calculated by the 

formula: 

𝐸 = 𝐻(𝑀) − 𝐻(𝑁) =  ∑ ∑
𝑃(𝑚,𝑛)[𝑃(𝑚,𝑛)] 

𝑃(𝑚)𝑃(𝑛)𝑛𝑚    (1) 

H(M∣N) is the amount of uncertainty that is left in node M after the receipt of new data. Once the BBN 

model is set, the network can estimate the posterior probability of landslide and debris flow conditions, 280 

and then issue early warnings for decision makers in risk mitigation (Landuyt et al., 2015). Training and 

testing of BBN model facilitates full incorporation of risk factors in to enable proper forecasting of 

landslide and debris flow hazards which in turn reduces damage and protects the community. 

2.3. Scenario development 
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 285 

Figure 6. Framework to generate scenarios based on changes in boxes: Land uses/covers, 

precipitation and duration of rainfall days. 

Scenarios generated in the BBN model for landslide and debris flow hazard prediction represent a crucial 

step in understanding influencing factors and assessing associated risks (Song et al., 2012; Sun et al., 

2021) (Fig. 6). In particular, land use/land cover (LULC) change and climate change significantly affect 290 

landslide risk. 

Regarding LULC change, alterations in land use policies such as the expansion of shrubland, annual 

crops, rural settlements, or forests or the construction of roads by cutting through mountains can 

substantially modify terrain structure and topsoil properties (Alvarez Jaimes et al., 2025). These changes 

may decrease soil water permeability, increase slope steepness, and reduce soil stability, thereby 295 

elevating the likelihood of landslides and debris flows. 

Similarly, climate change and associated extreme weather events exert profound impacts. Increased 

rainfall, a greater number of rainy days, and more frequent storms or tropical depressions can lead to soil 

saturation (Jin et al., 2025). Since most soils exhibit low bearing capacity when moist especially when 

waterlogged these conditions greatly heighten the probability of landslide and debris flow occurrences. 300 

By constructing such scenarios within the BBN framework, it becomes possible to model the 

interdependencies among these factors and assess how landslide and debris flow risks vary under 

different conditions. This approach enables the identification of the most vulnerable areas, thereby 
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supporting authorities and stakeholders in planning mitigation measures and improving disaster 

management strategies. Furthermore, scenario-based modeling informs the adaptation of land use 305 

planning and construction policies, and provides valuable insights for long-term climate change risk 

management. 

3. Results 

3.1. Statistical analysis of interdependences as a basis to parameterize the BBN  

According to the developed SEM model (Appendix A), three primary parameters related to landslide and 310 

debris flow hazards are water/flow, pre-transported materials, and land use/cover. Based on the statistical 

analysis, the Stream Power Index (SPI) was selected as the key indicator for water/flow, the Sediment 

Transport Index (STI) for materials, and the Bare Soil Index (BSI) for land use/cover. 

In the SEM model, various topographic factors and their relationship with SPI were examined. The 

analysis shows that slope has a minor but positive influence on SPI, with a coefficient of 0.07, indicating 315 

that stream power slightly increases as slope becomes steeper. This relationship is highly statistically 

significant (***). The Topographic Wetness Index (TWI) exhibits a stronger positive effect, with a 

coefficient of 0.45, suggesting that increased soil moisture enhances stream power. By contrast, curvature 

has a negative coefficient of -0.29, meaning that, other conditions being equal, convex curvature reduces 

stream power. 320 

Overall, the model indicates that slope, TWI, and curvature collectively account for 46% of the variation 

in SPI (R² = 0.46), demonstrating their indirect but substantial influence on water/flow dynamics relevant 

to landslide and debris flow hazards. 

The SEM model analyzing the relationships between related hazards and pre-transported materials based 

on topographic and geological factors is presented in the second group. The variables DEM, Fault, and 325 

Aspect directly influence TRI and “Distance to rivers” with coefficients of –0.01, 0.47, 0.03, and –0.18, 

respectively, with DEM exerting the strongest effect. Slope is further influenced by TRI with a coefficient 

of 0.52. Under the combined effects of TRI and distance to rivers, slope shows a strong relationship with 

flow accumulation and the Topographic Wetness Index (TWI). Geological characteristics, flow 

accumulation, and TWI together contribute 40% to the variability of the Sediment Transport Index (STI), 330 

although STI is less directly affected by flow accumulation and TWI. 

Land use/land cover (LULC) change increases vegetation density, as indicated by its positive effect on 

NDVI (0.08), and reduces the Normalized Difference Built-up Index (NDBI) by –0.03, reflecting a 

decrease in built-up areas. Roads also exert a minor influence on NDBI. Both NDVI and NDBI exhibit 
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autoregressive relationships. The dependent variable Bare Soil Index (BSI) explains 89% of its variance 335 

through NDVI and NDBI, with regression coefficients of –0.02 and 0.95, respectively, indicating that 

BSI increases with increasing NDBI and decreases as NDVI rises. 

The final part of the SEM model illustrates the relationships among STI, SPI, BSI, rainfall, and the 

occurrence of landslide and debris flow hazards. Hazard occurrence is most strongly influenced by BSI 

(0.93), followed by rainfall (0.42), SPI (0.34), and STI (0.27). Overall, the model explains 54% of the 340 

variance in landslide and debris flow hazards, as indicated by the coefficient of determination (R² = 0.54). 

3.2. Parameterization of the BBN with classified data  

The BBN model diagram (Fig. 7) illustrates the expanded framework of landslide risk assessment and 

highlights the numerous natural and anthropogenic factors involved. Geo-environmental attributes, 

which are essential for understanding landslide susceptibility, were incorporated into the model’s 345 

development. The “Rise” component is further classified into four categories, where geomorphological 

factors play a critical role in influencing water accumulation and soil erosion. These factors originate 

from variations in river density, soil and rock types, and the distribution of pre-transported materials, all 

of which are shaped by underlying geological structures and available resources. Based on the physical 

properties of soils and rocks in a given geological context, these variables are key to determining the 350 

degree of landslide susceptibility in an area. 

Additionally, other components of the model address the contribution of water flow and the integration 

of rainfall amount and duration to evaluate the combined effects of climate and hydrological conditions 

on landslide and debris-flow hazards. The rainfall classification values applied in the model range from 

1 to 460 mm, with rainfall duration spanning from 1 to 7 days. Furthermore, boxes representing land use 355 

and land cover types are included to assess the impact of human activities on landslide risk. These 

categories encompass various land types such as urban and rural areas, forests, and croplands, providing 

a comprehensive understanding of anthropogenic influences on landslide hazards. 
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The additional exposure factors include buildings, roads, and residents, which are categorized to 

assess their impact on human life and property. The model also incorporates intermediate 

variables, such as surface resistance and flow capacity, which facilitate the estimation of landslide 

occurrence probability. These variables help quantify the extent to which human-induced factors 

contribute to landslide risk. Furthermore, the model accounts for landslide probability, potential 365 

losses related to human life and preventive infrastructure, as well as the effectiveness of protective 

measures such as embankments and soil reinforcement. Consequently, this framework is valuable 

not only for hazard prediction but also for comprehensive risk management, particularly in 

environments where the complex interplay between natural and anthropogenic factors must be 

thoroughly examined. 370 

3.3 Sensitivity analysis  

The sensitivity analysis table compares the effect of all the identified parameters on some specified 

BBN nodes that relate to landslide risk, life risk and property risk (Tab. 1). Thus, the higher the 

perceived rainfall and property risks, the higher the perceived landslide risk. With a belief variance 

of 0.09 for both correlation between the perceived precipitation and risk to property with related 375 

hazards. The correlation coefficient is 0.385 with precipitation and 0.368 with risk to property. 

Despite this, it means that monitoring rainfall or reducing property exposure is a good strategy in 

minimizing land slide risk. While those that include rainfall duration and materials before 

transportation have variance of 0.01, which indicate a very small impact, below 2%. Landslide risk 

was also the most strongly associated with risk to life with a variance of 0.06 and a proportion of 380 

30.7%.  

Table 1. Sensitivity analysis for BBN nodes. 

No. Node Variance of Beliefs 
Mutual Relation 

Percentage 

A Sensitivity of 'Landslide and debris flow hazards' to a finding at another node: 

1 Precipitation 0.09 38.5 

2 Risk to property 0.09 36.8 

3 Risk to life 0.08 30.7 

4 Resistance of surface factors 0.01 3.16 

5 Difference of Built-up 0.01 2 

17  

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



6 Rainfall duration 0.01 1.76 

7 Pre-transported Material 0.01 1.04 

B Sensitivity of 'Risk to life' to a finding at another node: 

1 Landslide and debris flow hazards 0.06 30.7 

2 Risk to property 0.04 21.2 

3 Precipitation 0.02 11.8 

4 Anti-landslide embankment 0.01 6.32 

5 Exposure (Human) 0.01 2.92 

C Sensitivity of 'Risk to property' to a finding at another node: 

1 Landslide and debris flow hazards 0.080 36.8 

2 Risk to life 0.046 21.2 

3 Precipitation 0.031 14.2 

4 Anti-landslide embankment 0.017 7.87 

5 Resistance of surface factors 0.003 1.16 

6 Exposure (Road) 0.002 1.01 

 

Concerning risk to property, this variable exhibited a considerable influence on the risk to life, 

with a coefficient of 0.04 (proportion 21.2%), indicating that property risk contributes to human 385 

risk in an indirect manner. Rainfall also had a significant effect (variance 0.02, proportion 11.8%), 

demonstrating that weather conditions are an important factor in risk assessment and mitigation. 

The risk to property itself is substantial, as changes in landslide risk levels can have major impacts 

on property damage (variance 0.080, proportion 36.8%). Moreover, property risk also contributes 

to risk to life, with a variance of 0.046 and a proportion of 21.2%. The regression analysis further 390 

showed that climate change can affect losses of both life and property, with a variance of 0.031 

(14.2%). Although less significant, factors such as landslide resistance and surface characteristics 

are also relevant and should be considered in strategies aimed at minimizing overall risk. 

3.4. Results of scenarios 

Fig. 8 presents the results of landslide hazard analysis scenarios based on the developed BBN 395 

model. The input factors considered include land-use change, road construction, rainfall, and 

rainfall duration, with the aim of assessing the probability of landslide occurrence under different 

18  
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conditions and across various areas. The analysis first examines the probability of landslides based 

on land-use type and distance from roads. Results show that the likelihood of landslides increases 

significantly in areas close to roads (<240 m), reaching about 57%, and the risk tends to rise with 400 

higher built-up land density or when forest land is converted to agricultural land. For example, in 

forested areas, the probability of a landslide is about 50%, whereas in scrubland or agricultural 

land, it increases to approximately 60%. These findings clearly demonstrate that human activities, 

particularly land-use change and infrastructure development, substantially influence the 

probability of landslides and debris flows, especially near transportation networks. Additionally, 405 

rainfall conditions play a crucial role: precipitation intensity and duration significantly increase 

the probability of landslide occurrence. 

 

 

Figure 8. Scenario results to predict the probability of landslide hazards in different changes 410 

in land uses/covers, increase of precipitation and duration of rainfall days. 
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At low rainfall levels (<20 mm), the risk of landslides is minimal, with an extremely low 

probability ratio (100/0). However, as rainfall increases particularly when it exceeds 240 mm, this 

risk rises sharply, with the probability ratio reaching 12/88. This clearly demonstrates that areas 

exposed to intense and consecutive rainfall are highly vulnerable to landslide occurrences, 415 

especially when the terrain is steep or lacks vegetation cover. Extended rainfall duration further 

compounds the risk, as prolonged precipitation leads to greater water accumulation in the soil, 

increasing instability. A positive statistical correlation is observed between precipitation amount 

and landslide probability at daily, daily accumulation, and total rainfall scales. When storm events 

last longer than 7–15 days, the probability ratio becomes extremely high ranging from 75% to 90% 420 

particularly in areas with easily erodible soils such as agricultural or bare lands. These findings 

underscore the importance of forecasting and issuing warnings for prolonged and continuous 

rainfall events to mitigate potential damage. Moreover, when considering different land use types 

under varying rainfall conditions, the probability of landslide occurrence becomes more complex. 

In scenarios where rainfall exceeds 240 mm and persists for 7–15 days, scrubland and agricultural 425 

land exhibit a very high landslide risk, reaching up to 90%. Although forested areas and perennial 

crops show greater resistance, the risk remains at a hazardous level (60–88%) under conditions of 

heavy and prolonged rainfall. 

Table 2. Probability of risk to life under the protection of different anti-landslide 

embankment. 430 

Case Exposure (to human) Anti-landslide embankment 
Probability of risk to life 

Low (%) High (%) 

1 None None 46 54 

2 None Soil nailing embankment 73 27 

3 None Gabion embankment 91 9 

4 Human None 19 81 

5 Human Soil nailing embankment 45 55 

6 Human Gabion embankment 64 36 

 

 Tab. 2 presents the probability of risk to human life when exposed to landslide and debris 

flow hazards under different types of embankment protection. The values are calculated based on 

the highest probability scenario of the “Landslide and debris flow hazards” category. The results 
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indicate that, in the absence of people or civil structures at the site (Exposure: None), the use of 435 

embankments significantly reduces the risk when people pass through or conduct livelihood 

activities nearby. Without any protective structure, the risk reaches 54%; however, with the 

application of a soil nailing embankment, this risk decreases to 27%, and the use of a gabion 

embankment provides the highest level of safety, reducing the risk to just 9%. In contrast, when 

human presence is involved (Exposure: Human), the risk increases substantially. In the absence of 440 

protective structures, the risk ratio rises to 81%, indicating a high likelihood of severe impacts 

from landslides. With engineering interventions, the risk is significantly mitigated: soil nailing 

embankments reduce the risk to 55%, while gabion revetments lower it further to 36%. These 

results highlight the crucial role of engineering measures such as gabion and soil nailing 

embankments in protecting human life in areas prone to frequent landslides. 445 

Table 3. Probability of risk to building and road under the protection of different anti-

landslide embankment. 

Case 
Exposure 

(to Building) 

Exposure (to 

Road) 

Anti-landslide 

embankment 

Probability of 

risk to property 

Low 

(%) 

High 

(%) 

1 None None None 50 50 

2 None None Soil nailing embankment 80 20 

3 None None Gabion embankment 99 1 

4 None Village road None 15 85 

5 None Village road Soil nailing embankment 35 65 

6 None Village road Gabion embankment 75 25 

7 None District road None 20 80 

8 None District road Soil nailing embankment 45 55 

9 None District road Gabion embankment 85 15 

10 None National road None 30 70 

11 None National road Soil nailing embankment 60 40 

12 None National road Gabion embankment 95 5 

13 Thatched roof house None None 25 75 
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14 Thatched roof house None Soil nailing embankment 55 45 

15 Thatched roof house None Gabion embankment 85 15 

16 Thatched roof house Village road None 15 85 

17 Thatched roof house Village road Soil nailing embankment 45 55 

18 Thatched roof house Village road Gabion embankment 85 15 

19 Thatched roof house District road None 20 80 

20 Thatched roof house District road Soil nailing embankment 45 55 

21 Thatched roof house District road Gabion embankment 85 15 

22 Thatched roof house National road None 30 70 

23 Thatched roof house National road Soil nailing embankment 60 40 

24 Thatched roof house National road Gabion embankment 95 5 

25 Tin roof house None None 15 85 

26 Tin roof house None Soil nailing embankment 45 55 

27 Tin roof house None Gabion embankment 75 25 

28 Tin roof house Village road None 10 90 

29 Tin roof house Village road Soil nailing embankment 35 65 

30 Tin roof house Village road Gabion embankment 75 25 

31 Tin roof house District road None 15 85 

32 Tin roof house District road Soil nailing embankment 40 60 

33 Tin roof house District road Gabion embankment 80 20 

34 Tin roof house National road None 35 65 

35 Tin roof house National road Soil nailing embankment 65 35 

36 Tin roof house National road Gabion embankment 90 10 

37 Store house None None 5 95 

38 Store house None Soil nailing embankment 35 65 

39 Store house None Gabion embankment 65 35 

40 Store house Village road None 1 99 

41 Store house Village road Soil nailing embankment 25 75 

42 Store house Village road Gabion embankment 65 35 

43 Store house District road None 10 90 
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44 Store house District road Soil nailing embankment 35 65 

45 Store house District road Gabion embankment 75 25 

46 Store house National road None 30 70 

47 Store house National road Soil nailing embankment 55 45 

48 Store house National road Gabion embankment 85 15 

 

Similarly, Tab. 3 presents the risk probability for assets (including buildings and roads) under 

different scenarios of landslide exposure and with various types of anti-landslide embankments. 450 

The results show that, without any protective structure, the risk to assets is significantly high, 

particularly in areas near major roads or critical buildings. For example, storehouses face a risk 

level as high as 95% without protection, which decreases to 65% with a soil-nailing embankment 

and further to 35% with a gabion embankment. Likewise, the probability of pavement failure drops 

markedly when protective measures are implemented during road construction. A village road, for 455 

instance, exhibits a 99% risk without protection, but this reduces to 75% with soil-nailing 

embankments and 35% with gabion embankments. Larger roads, such as national highways, show 

a similar trend, with the risk falling from 70% (no protection) to 45% (soil nailing) and 15% 

(gabion). 

These preliminary findings indicate that both structural type and construction quality play pivotal 460 

roles in determining risk levels. Small houses with thatched or tin roofs are far more vulnerable to 

cyclones compared to well-built permanent structures, especially warehouses. Nevertheless, anti-

landslide measures, particularly gabion revetments, substantially mitigate high-risk conditions for 

assets. In practice, implementing protective structures such as soil-nailing and gabion revetments 

not only minimizes property damage but also enhances the safety and resilience of urban 465 

infrastructure and transportation systems in landslide-prone areas. 

4. Discussion  

4.1. Advancements in the Developed BBN Model 

The developed BBN model incorporates a wider range of natural and anthropogenic variables than 

earlier models proposed by Depina et al. (2020) and Hao et al. (2023) for landslide risk warning. 470 

It has been significantly enhanced to improve both its accuracy and practical utility. Unlike 
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previous approaches, the BBN model presented in this study is designed for application at an 

international scale, particularly in subtropical regions, and integrates fundamental geographical 

and climatic parameters such as slope, elevation, rainfall, soil moisture, and terrain curvature. 

These additional variables have been demonstrated based on the SEM model to play a critical role 475 

in predicting landslide risk across large spatial scales, outperforming earlier models developed by 

Lan et al. (2021) and Xiao et al. (2023), which were mainly applied to local settings. As several 

variables overlap with those used in previous studies, earlier methodological frameworks can still 

be retained and updated in line with this new version. 

A key advancement of the present model is the integration of remote sensing data with GIS records 480 

and additional information collected from surveys conducted among officials and local residents. 

Remote sensing and GIS datasets provide comprehensive, large-scale spatial coverage, which 

greatly enhances environmental monitoring and facilitates targeted interventions, as demonstrated 

by Mondini et al. (2013). Furthermore, stakeholder interviews capture qualitative, perception-

based information that cannot be fully expressed numerically, offering valuable insights into how 485 

communities perceive risk and the impacts of human activities, as suggested by Sun et al. (2021). 

In addition, advanced analytical tools such as sensitivity analysis and multivariate scenario 

optimization, as applied by Xiao et al. (2023), were incorporated to enhance model performance 

under dynamic conditions such as changing temperature regimes or terrain variability. As a result 

of these improvements, the BBN model extends beyond simple prediction. It now supports the 490 

generation of a broader and more diverse range of response options tailored to the specific 

conditions of different regions. This represents a major step forward compared to previous models, 

which often relied on single-variable or linear approaches inadequate for capturing the complexity 

of real-world systems. 

4.2. Contributions to Disaster Risk Reduction 495 

The enhanced BBN model can be applied to evaluate the contribution of human-made 

infrastructures to prevent landslide and debris flow risks by accommodating uncertainty and 

multidimensional datasets. It represents a novel addition to the BBN framework compared with 

earlier models. By simulating variables such as housing type (e.g., thatched-roof houses, tin-roof 

houses, storage buildings), geographical location, and proximity to hazard-prone areas, the model 500 

can estimate potential casualties and structural damage. For example, the annual probability of 
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debris flow destruction is eight times higher for thatched-roof houses than for reinforced storage 

facilities. Similarly, the model predicts that reinforced national roads can reduce 80% the risk, 

whereas village roads face a 70% disruption risk. Simulation results also reveal that employing 

gabion embankments can reduce the probability of landslides impacting facilities within a 500 m 505 

radius by approximately 60%. 

The BBN framework also enables cost–benefit analyses of different mitigation options, supporting 

more effective disaster-risk-reduction planning. A case study conducted in the mountainous north-

western region of Vietnam demonstrated that the likelihood of residential property damage 

dropped from 70% to 30%, and mortality risk decreased from 15% to 5% following the installation 510 

of gabion and soil nailing embankments. Accordingly, the model not only forecasts risk but also 

informs the design of effective mitigation strategies. 

Beyond risk assessment, the GIS-based hazard mapping based on the BBN model provides 

spatially explicit data to guide infrastructure development in landslide-prone areas. High-risk 

zones can be clearly delineated to restrict hazardous development and protect vital resources such 515 

as forests and water supplies. The model also aids government agencies in implementing 

ecological strategies for prevention - such as reforestation, installation of natural drainage systems, 

and slope stabilization - while promoting the use of environmentally friendly construction 

materials. Moreover, its early warning capabilities strengthen community resilience by 

safeguarding vulnerable groups and reducing losses of life and property during disasters. 520 

The BBN model further supports scenario analysis to evaluate how urbanization and natural 

resource exploitation influence landslide risk. Decision-makers can use this capability to balance 

development needs with environmental protection. By integrating essential data for urban 

planning, watershed management, and environmental conservation, the model helps anticipate the 

consequences of factors such as climate change, infrastructure density, and agricultural practices. 525 

These analyses can inform solutions including reforestation, construction of eco-friendly drainage 

systems, and restrictions on building in hazardous areas. 

To achieve the above results, the model in the future should incorporate additional data streams 

from geotechnical sensors, weather radar, and satellite observations to improve accuracy and 

support rapid emergency response. Enhanced methods for managing large and complex datasets, 530 

along with user-friendly visualization tools, are also essential to support decision-making by 

authorities and communities. Moreover, the model should integrate long-term climate, social, and 
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economic projections and be compatible with hydrological and climate models to enhance its 

decision-support capabilities. Finally, incorporating feedback from real-world landslide and debris 

flow events will allow continuous refinement of the model’s performance.  535 

These improvements not only increase the model’s practical value but also ensure that it becomes 

a powerful tool for balancing economic development, environmental protection, and community 

safety advancing progress toward sustainability. 

5. Conclusions  

This study demonstrates the value of Bayesian Belief Network (BBN) models in advancing our 540 

understanding of the factors that heighten the likelihood of landslides and debris flow hazards, 

along with their associated risks to people and property. The findings highlight that the north-

western region of Vietnam is particularly vulnerable, with hazard occurrence strongly influenced 

by human-driven factors such as climate change (manifested in increased precipitation and 

prolonged rainfall), land-use change, and road construction. The sensitivity analysis underscores 545 

the critical role of land use/cover and embankment type in minimizing property exposure and 

reducing overall landslide risk. Specifically, the results reveal that cumulative rainfall exceeding 

130 mm over three consecutive days substantially raises the probability of landslides and debris 

flow, especially in cultivated and farming areas. Importantly, gabion embankments were shown to 

provide highly effective protection against both casualties and structural damage. Beyond 550 

identifying risk factors, this research emphasizes the scale of danger posed by such hazards and 

the urgent need for proactive mitigation measures, such as protective slopes and appropriate land-

use planning. Overall, the study affirms that BBN models are powerful tools for hazard assessment, 

regulation, and risk management. By integrating environmental, climatic, and anthropogenic 

factors, they can equip decision-makers with robust, evidence-based insights to guide policies, 555 

improve resilience, and safeguard both communities and ecosystems. 

 

Author contributions: Kinh Bac Dang: Funding acquisition, project administration, data 

curation, methodology, software, writing – original draft. Hieu Nguyen: Conceptualization, 

supervision, methodology, writing –review and editing. Thanh Dat Do: Methodology, resources, 560 

validation, writing – review and editing. Thi Phuong Nga Pham: Methodology, data curation, 

formal analysis, writing – review and editing. Tuan Linh Giang: Data curation, formal analysis, 

26 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



writing – review and editing. Thi Dieu Linh Nguyen, Huu Hao Ngo, and Giuseppe Forino: 

Conceptualization, methodology, writing – review and editing. 

 565 

Acknowledgments 

This research was funded by the research project QG.24.75 of Vietnam National University, 

Hanoi. 

 

References 570 

Agboola, G., Beni, L. H., Elbayoumi, T., and Thompson, G.: Optimizing landslide susceptibility 

mapping using machine learning and geospatial techniques, Ecol. Inform., 81, 102583, 

https://doi.org/10.1016/j.ecoinf.2024.102583, 2024. 

Alam, E. and Ray-Bennett, N. S.: Disaster risk governance for district-level landslide risk 

management in Bangladesh, Int. J. Disaster Risk Reduct., 59, 102220, 575 

https://doi.org/10.1016/j.ijdrr.2021.102220, 2021. 

Alvarez Jaimes, M. A., Roman Quintero, D. C., Ortiz Contreras, J. D., Bedoya Rios, D. F., and 

Tapias Camacho, M. A.: Implications of landslide runout modeling for vulnerability assessment: 

Benchmarking from a case study in the andean region, Int. J. Disaster Risk Reduct., 131, 105920, 

https://doi.org/10.1016/J.IJDRR.2025.105920, 2025. 580 

Bac, D. K. and Bao, D. Van: Analyzing Bio-Geo-Chemical Factors in Relation to Land Use Trends 

on Basalt Terrain in Dong Nai and Nearby Areas, VNU J. Sci. Earth Environ. Sci., 36, 79–89, 

https://doi.org/10.25073/2588-1094/vnuees.4542, 2020. 

Bachri, S., Shrestha, R. P., Yulianto, F., Sumarmi, S., Utomo, K. S. B., and Aldianto, Y. E.: 

Mapping landform and landslide susceptibility using remote sensing, gis and field observation in 585 

the southern cross road, Malang regency, East Java, Indonesia, Geosci., 11, 1–15, 

https://doi.org/10.3390/geosciences11010004, 2021. 

Barman, J., Soren, D. D. L., and Biswas, B.: Landslide Susceptibility Evaluation and Analysis: A 

Review on Articles Published During 2000 to 2020, 211–220 pp., https://doi.org/10.1007/978-3-

031-15377-8_14, 2023. 590 

Barnard, P. L., Owen, L. A., Sharma, M. C., and Finkel, R. C.: Natural and human-induced 

landsliding in the Garhwal Himalaya of northern India, Geomorphology, 40, 21–35, 

https://doi.org/https://doi.org/10.1016/S0169-555X(01)00035-6, 2001. 

27 

 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Borgomeo, E., Hebditch, K. V, Whittaker, A. C., and Lonergan, L.: Characterising the spatial 

distribution, frequency and geomorphic controls on landslide occurrence, Molise, Italy, 595 

Geomorphology, 226, 148–161, https://doi.org/10.1016/j.geomorph.2014.08.004, 2014. 

Bui, D. T., Tsangaratos, P., Nguyen, V. T., Liem, N. Van, and Trinh, P. T.: Comparing the 

prediction performance of a Deep Learning Neural Network model with conventional machine 

learning models in landslide susceptibility assessment, Catena, 188, 

https://doi.org/10.1016/j.catena.2019.104426, 2020. 600 

Chen, F., Jia, H., Du, E., Chen, Y., and Wang, L.: Modeling of the cascading impacts of drought 

and forest fire based on a Bayesian network, Int. J. Disaster Risk Reduct., 111, 

https://doi.org/10.1016/j.ijdrr.2024.104716, 2024a. 

Chen, M., Tang, C., Xiong, J., Chang, M., and Li, N.: Spatio-temporal mapping and long-term 

evolution of debris flow activity after a high magnitude earthquake, Catena, 236, 605 

https://doi.org/10.1016/j.catena.2023.107716, 2024b. 

Damm, B. and Klose, M.: The landslide database for Germany: Closing the gap at national level, 

Geomorphology, 249, 82–93, https://doi.org/10.1016/j.geomorph.2015.03.021, 2015. 

Dang, K. B., Burkhard, B., Müller, F., and Dang, V. B.: Modelling and mapping natural hazard 

regulating ecosystem services in Sapa, Lao Cai province, Vietnam, Paddy Water Environ., 16, 610 

767–781, https://doi.org/10.1007/s10333-018-0667-6, 2018. 

Dang, K. B., Nguyen, T. T., Ngo, H. H., Burkhard, B., Müller, F., Dang, V. B., Nguyen, H., Ngo, 

V. L., and Pham, T. P. N.: Integrated methods and scenarios for assessment of sand dunes 

ecosystem services, J. Environ. Manage., 289, 112485, 

https://doi.org/10.1016/j.jenvman.2021.112485, 2021. 615 

Dang, K. B., Nguyen, C. Q., Tran, Q. C., Nguyen, H., Nguyen, T. T. T. T., Nguyen, D. A., Tran, 

T. H., Bui, P. T., Giang, T. L., Lenh, T. A., Ngo, V. L., Yasir, M., Nguyen, T. T. T. T., Ngo, H. 

H., Quan, C., Cuong, Q., Nguyen, H., Thuy, T., and Hao, H.: Comparison between U-shaped 

structural deep learning models to detect landslide traces, Sci. Total Environ., 912, 169113, 

https://doi.org/10.1016/j.scitotenv.2023.169113, 2024. 620 

Dang, K. B., Pham, T. T., Phan, T. T. H., Nguyen, M. H., Pham, T. P. N., Hoang, T. T., Hoang, T. 

H. N., Nguyen, T. H. T., Nguyen, T. H., Le, Q. D., Tran, N. B. Van, and Tran, T. K. B.: Bayesian 

Belief Network for Assessing Conservation and Tourism Development in UNESCO Geoparks, 

Geoheritage, 17, https://doi.org/10.1007/s12371-025-01083-8, 2025a. 

28 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Dang, K. B., Hoang, T. T. H., Nguyen, H., Vu, K. C., Giang, T. L., Damien, C., Nguyen, T. D. L., 625 

and Do, T. N.: Integrating remote sensing and artificial intelligence for landslide detection and 

susceptibility analysis along tourism routes in Da Bac district, Hoa Binh province, Vietnam, 

Vietnam J. Earth Sci., 47, 430–446, 2025b. 

Depina, I., Oguz, E. A., and Thakur, V.: Novel Bayesian framework for calibration of spatially 

distributed physical-based landslide prediction models., Comput. Geotech., 125, 103660, 630 

https://doi.org/10.1016/j.compgeo.2020.103660, 2020. 

Ding, J. W., Lu, D. G., and Dong, Y.: Seismic spatiotemporal assessment of indoor occupant 

casualties in regional buildings: A Bayesian network approach incorporating population density 

dynamics, Int. J. Disaster Risk Reduct., 126, 105637, 

https://doi.org/10.1016/J.IJDRR.2025.105637, 2025. 635 

Duc, D. M., Minh, V. C., Yen, H. H., Loc, N. T., and Duc, D. M.: Analysis of landslide kinematics 

integrating weather and geotechnical monitoring data at Tan Son slow moving landslide in Ha 

Giang province, Vietnam J. Earth Sci., 45, 131–146, 2023. 

FAO: The role of forests and forestry in the prevention and rehabilitation of lanslides in Asia, For. 

ans landslides, Cent. people For. FAO, 2010. 640 

Ghasemian, B., Asl, D. T., Pham, B. T., Avand, M., Nguyen, H. D., and Janizadeh, S.: Shallow 

landslide susceptibility mapping: A comparison between classification and regression tree and 

reduced error pruning tree algorithms, Vietnam J. Earth Sci., 42, 208–227, 2020. 

Hang, H. T., Hoa, P. D., Tru, V. N., and Phuong, N. V.: Landslide Susceptibility Mapping Along 

National Highway-6, Hoa Binh Province, Vietnam Using Frequency Ratio Model And Gis, Int. J. 645 

GEOMATE, 21, 84–90, https://doi.org/10.21660/2021.85.j2222, 2021. 

Hao, J., Liu, L., Long, Z., Chu, Y., Zhang, D., Chen, X., and Huang, C.: Scenario deduction of 

Natech accident based on dynamic Bayesian network: A case study of landslide accident in a liquor 

storage tank area in Guizhou Province, China, J. Loss Prev. Process Ind., 83, 105067, 

https://doi.org/10.1016/j.jlp.2023.105067, 2023. 650 

Highland, L. M.: Introduction The Landslide Handbook-A Guide to Understanding Landslides, 

Landslide Handb. - A Guid. to Underst. Landslides, 4–42, 2008. 

Hung, P. Van, Sơon, P. Q., and Dung, N. Van: The study evaluated arming of risk of lanslide in 

Hoa Binh and Son La reservoir hydropower area on the basis of analyzing high-resolution remote 

sensing and geographic information systems, Vietnam J. Earth Sci., 37, 193–203, 2015. 655 

29 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Islam, T. and Ryan, J.: Chapter 5 - Hazard Identification—Natural Hazards, in: Hazard Mitigation 

in Emergency Management, edited by: Islam, T. and Ryan, J., Butterworth-Heinemann, 129–170, 

https://doi.org/https://doi.org/10.1016/B978-0-12-420134-7.00005-9, 2016. 

Jin, B., Zeng, T., Liu, S., Li, Y., Gui, L., Zhao, B., Yin, K., Catani, F., and Peduto, D.: Quantitative 

risk assessment for rainfall-induced landslides of transmission line towers: the case of Chongqing 660 

national transmission protection regions, Int. J. Disaster Risk Reduct., 128, 105715, 

https://doi.org/10.1016/J.IJDRR.2025.105715, 2025. 

Kang, Y., Lu, Z., Zhao, C., and Qu, W.: Inferring slip-surface geometry and volume of creeping 

landslides based on InSAR: A case study in Jinsha River basin, Remote Sens. Environ., 294, 

113620, https://doi.org/10.1016/j.rse.2023.113620, 2023. 665 

Kayastha, P., Dhital, M. R., and Smedt, F. De: Computers & Geosciences Application of the 

analytical hierarchy process ( AHP ) for landslide susceptibility mapping : A case study from the 

Tinau watershed , west Nepal, Comput. Geosci., 52, 398–408, 

https://doi.org/10.1016/j.cageo.2012.11.003, 2013. 

Kleemann, J., Celio, E., and Fürst, C.: Validation approaches of an expert-based Bayesian Belief 670 

Network in Northern Ghana, West Africa, Ecol. Modell., 365, 10–29, 

https://doi.org/10.1016/j.ecolmodel.2017.09.018, 2017. 

Kuschel, E., Tolle, F., Klaus, V., Laa, U., Prokop, A., Friedt, J. M., Bernard, E., and Zangerl, C.: 

Meteorological factors control debris slides and debris flows in a high-Arctic glacier basin (Ny-

Ålesund, Svalbard), Geomorphology, 467, https://doi.org/10.1016/j.geomorph.2024.109492, 675 

2024. 

Lan, M., Zhu, J., and Lo, S.: Hybrid Bayesian network-based landslide risk assessment method for 

modeling risk for industrial facilities subjected to landslides, Reliab. Eng. Syst. Saf., 215, 107851, 

https://doi.org/10.1016/j.ress.2021.107851, 2021. 

Landuyt, D., Van der Biest, K., Broekx, S., Staes, J., Meire, P., and Goethals, P. L. M.: A GIS 680 

plug-in for Bayesian belief networks: Towards a transparent software framework to assess and 

visualise uncertainties in ecosystem service mapping, Environ. Model. Softw., 71, 30–38, 

https://doi.org/10.1016/j.envsoft.2015.05.002, 2015. 

Liang, S., Peng, L., Yang, G., Zhang, H., and Jin, Y.: Modeling residents’ long-term adaptation to 

geohazards in mountainous regions using agent-based models and Bayesian networks, Int. J. 685 

Disaster Risk Reduct., 119, 105279, https://doi.org/10.1016/J.IJDRR.2025.105279, 2025. 

30 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Liu, D., Liu, D., He, C., Zhang, C., Jin, W., Sa, W., Xing, X., Wu, C., Tan, C., Qin, Y., Xiang, B., 

and Shao, J.: An integrated framework to quantitatively analyze the potential threat of landslide-

triggered outburst flood hazard chain, a case study in Danba, China, Int. J. Disaster Risk Reduct., 

130, 105864, https://doi.org/10.1016/J.IJDRR.2025.105864, 2025. 690 

Luu, C., Ha, H., Bui, Q. D., Luong, N. D., Khuc, D. T., Vu, H., and Nguyen, D. Q.: Flash flood 

and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial 

modeling, Quat. Sci. Adv., 11, 100083, https://doi.org/10.1016/j.qsa.2023.100083, 2023. 

Ma, Z., Mei, G., and Piccialli, F.: Machine learning for landslides prevention: a survey, Neural 

Comput. Appl., 33, 10881–10907, https://doi.org/10.1007/s00521-020-05529-8, 2021. 695 

Mckean, J. and Roering, J.: Objective landslide detection and surface morphology mapping using 

high-resolution airborne laser altimetry, Geomorphology, 57, 331–351, 

https://doi.org/10.1016/S0169-555X(03)00164-8, 2004. 

Models, M. L.: Automated Landslide-Risk Prediction Using Web GIS and Machine Learning 

Models, 1–32, 2021. 700 

Mondal, S. and Maiti, R.: Landslide Susceptibility Analysis of Shiv-Khola Watershed, Darjiling: 

A Remote Sensing &amp; GIS Based Analytical Hierarchy Process (AHP), J. Indian Soc. Remote 

Sens., 40, 483–496, https://doi.org/10.1007/s12524-011-0160-9, 2012. 

Mondini, A. C., Marchesini, I., Rossi, M., Chang, K. T., Pasquariello, G., and Guzzetti, F.: 

Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing 705 

and topographic data, Geomorphology, 201, 135–147, 

https://doi.org/10.1016/j.geomorph.2013.06.015, 2013. 

Moore, Z. T. and Sawyer, D. E.: Assessing post-failure mobility of submarine landslides from 

seismic geomorphology and physical properties of mass transport deposits: An example from 

seaward of the Kumano Basin, Nankai Trough, offshore Japan, Mar. Geol., 374, 73–84, 710 

https://doi.org/10.1016/j.margeo.2016.02.003, 2016. 

Moriguchi, N., Ito, L., and Tokai, A.: Risk assessment of chemical release accident triggered by 

landslide using Bayesian network, Sci. Total Environ., 890, 164321, 

https://doi.org/10.1016/j.scitotenv.2023.164321, 2023. 

Netica: Netica-J Reference Manual, 119, 2010. 715 

Ngo, V. L., Nguyen, H., Dang, K. B., Giang, T. L., Dang, V. B., Do, T. H., Nguyen, M. H., Dang, 

N. V., and Dao, M. D.: Advancing debris flow detection based on deep learning model and high-

31 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



resolution images, Vietnam J. Earth Sci., 42, 290–214, 2025. 

Nguyen, H., Dang, K. B., Giang, T. L., Dang, V. B., Dang, N. V., and Dao, M. D.: Exploring 

Various Deep Learning Models for High-Precision Landslide Tracing in Very-High Resolution 720 

Remote Sensing Imagery, J. Indian Soc. Remote Sens., https://doi.org/10.1007/s12524-025-

02267-z, 2025. 

Nguyen, M. D., Thang, N. Van, Wakai, A., Sato, G., Karnjana, J., Hung, H. V., Ho, L. S., Prakash, 

I., Quang, H. T., and Pham, B. T.: Identification, monitoring, and assessment of an active landslide 

in tavan-hauthao, sapa, laocai, vietnam – a multidisciplinary approach, J. Disaster Res., 16, 501–725 

511, https://doi.org/10.20965/JDR.2021.P0501, 2021. 

Nichol, J. E., Shaker, A., and Wong, M.-S.: Evaluation of the Global Satellite Mapping of 

Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam, Geomorphology, 44, 94–

104, https://doi.org/https://doi.org/10.15625/2615-9783/16980, 2019. 

Palumbo, M., Ascione, A., Santo, A., and Santangelo, N.: Evaluation of sediment budgets in 730 

catchments prone to flash flood-related debris flows: A case study from the southern Apennines 

(Italy), Geomorphology, 454, https://doi.org/10.1016/j.geomorph.2024.109174, 2024. 

Rai, S. C., Pandey, V. K., Sharma, K. K., and Sharma, S.: Landslide susceptibility analysis in the 

Bhilangana Basin (India) using GIS-based machine learning methods, Geosystems and 

Geoenvironment, 3, 100253, https://doi.org/10.1016/j.geogeo.2024.100253, 2024. 735 

Ren, D.: Storm-triggered landslides in warmer climates, Storm-Triggered Landslides Warmer 

Clim., 1–365, https://doi.org/10.1007/978-3-319-08518-0, 2015. 

Saleem, J., Ahmad, S. S., and Butt, A.: Hazard risk assessment of landslide-prone sub-Himalayan 

region by employing geospatial modeling approach, Nat. Hazards, 102, 1497–1514, 

https://doi.org/10.1007/s11069-020-03980-3, 2020. 740 

Segue, W. S., Njilah, I. K., Fossi, D. H., and Nsangou, D.: Advancements in mapping landslide 

susceptibility in Bafoussam and its surroundings area using multi-criteria decision analysis, 

statistical methods, and machine learning models, J. African Earth Sci., 213, 105237, 

https://doi.org/10.1016/j.jafrearsci.2024.105237, 2024. 

Shirzadi, A., Shahabi, H., Chapi, K., Bui, D. T., Pham, B. T., Shahedi, K., and Ahmad, B. Bin: A 745 

comparative study between popular statistical and machine learning methods for simulating 

volume of landslides, Catena, 157, 213–226, https://doi.org/10.1016/j.catena.2017.05.016, 2017. 

Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., and Wei, B.: Susceptibility assessment of 

32 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



earthquake-induced landslides using Bayesian network: A case study in Beichuan, China, Comput. 

Geosci., 42, 189–199, https://doi.org/10.1016/j.cageo.2011.09.011, 2012. 750 

Stark, T. D., Estes, K. D., Silver, R. C., Holman, E. A., Leshchinsky, B. A., and Vahedifard, F.: 

Objective versus subjective landslide risk: A case of Cache Creek Landslide in California, Int. J. 

Disaster Risk Reduct., 132, 105910, https://doi.org/10.1016/J.IJDRR.2025.105910, 2026. 

Sun, D., Xu, J., Wen, H., and Wang, D.: Assessment of landslide susceptibility mapping based on 

Bayesian hyperparameter optimization: A comparison between logistic regression and random 755 

forest, Eng. Geol., 281, 105972, https://doi.org/10.1016/j.enggeo.2020.105972, 2021. 

Sun, D., Ding, Y., Wen, H., Zhang, F., Zhang, J., Gu, Q., and Zhang, J.: SHAP-PDP hybrid 

interpretation of decision-making mechanism of machine learning-based landslide susceptibility 

mapping: A case study at Wushan District, China, Egypt. J. Remote Sens. Sp. Sci., 27, 508–523, 

https://doi.org/10.1016/j.ejrs.2024.06.005, 2024. 760 

Tawalo, A., Tsinidis, G., and Urciuoli, G.: Numerical framework for risk assessment of buried 

natural gas pipelines subjected to landslide-induced deformations due to rainfall infiltration: The 

Miscano landslide case, Int. J. Disaster Risk Reduct., 129, 105776, 

https://doi.org/10.1016/J.IJDRR.2025.105776, 2025. 

Thanh, D. Q., Nguyen, D. H., Prakash, I., Jaafari, A., Nguyen, V. T., Phong, T. V., and Pham, B. 765 

T.: GIS based frequency ratio method for landslide susceptibility mapping at Da Lat City, Lam 

Dong province, Vietnam, Vietnam J. Earth Sci., 42, 55–66, 2020. 

Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B.: Landslide susceptibility 

assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg-Marquardt and 

Bayesian regularized neural networks, Geomorphology, 171–172, 12–29, 770 

https://doi.org/10.1016/j.geomorph.2012.04.023, 2012. 

Tien Bui, D., Tuan, T. A., Hoang, N. D., Thanh, N. Q., Nguyen, D. B., Van Liem, N., and Pradhan, 

B.: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid 

intelligent approach of least squares support vector machines inference model and artificial bee 

colony optimization, Landslides, 14, 447–458, https://doi.org/10.1007/s10346-016-0711-9, 2017. 775 

Tran, A. T., Pham, V. H., Tran, T. T., Nguyen, T. A. N., Nguyen, V. D., Pham, T. H., and Tran, 

V. P.: Landslide susceptibility in Phuoc Son, Quang Nam: A deep learning approach, Vietnam J. 

Earth Sci., 47, 39–57, 2025. 

Tran, V. A., Khuc, T. D., Truong, X. Q., Nguyen, A. B., and Phi, T. T.: Application of potential 

33 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.



machine learning models in landslide susceptibility assessment: A case study of Van Yen district, 780 

Yen Bai province, Vietnam, Quat. Sci. Adv., 14, 100181, 

https://doi.org/10.1016/j.qsa.2024.100181, 2024. 

Tu, T. Van, Duc, D. M., Tung, N. M., and Cong, V. D.: Preliminary assessments of debris flow 

hazard in relation to geological environment changes in mountainous regions, North Vietnam, 

Vietnam J. Earth Sci., 38, 257–266, https://doi.org/10.15625/0866-7187/38/3/8712, 2016. 785 

Wang, Y., Wang, X., and Jian, J.: Remote sensing landslide recognition based on convolutional 

neural network, Math. Probl. Eng., 2019, https://doi.org/10.1155/2019/8389368, 2019. 

Xiao, P., Wang, T., Tian, Y., Xie, X., You, J., Tan, X., and Chen, H.: A Bayesian Network-Based 

Inhibition Model of the Rainstorm–Landslide–Debris Flow Disaster Chain in Mountainous Areas: 

The Case of the Greater Bay Area, China, Water (Switzerland), 15, 790 

https://doi.org/10.3390/w15173124, 2023. 

Yamasaki, T., Sato, G., Kimura, T., Hung, H. V., Manh, N. D., Ozaki, T., Yokoyama, O., Tosa, 

S., and Wakai, A.: Landslide process revealed by mineralogical properties of landslide deposits in 

the sa pa district, Vietnam, J. Disaster Res., 16, 556–560, 

https://doi.org/10.20965/JDR.2021.P0556, 2021. 795 

Yang, Z. qiang, Qi, W. wen, Xu, C., and Shao, X. yi: Exploring deep learning for landslide 

mapping: A comprehensive review, China Geol., 7, 330–350, https://doi.org/10.31035/cg2024032, 

2024. 

Yousefi, S. and Imaizumi, F.: Assessing the impact of sediment characteristics on vegetation 

recovery in debris flow fans: A case study of the Ohya Region, Japan, Ecol. Eng., 209, 800 

https://doi.org/10.1016/j.ecoleng.2024.107408, 2024. 

Yousefi, S., Imaizumi, F., and Takayama, S.: Spatial distribution and transport characteristics of 

debris flow sediment using high resolution UAV images in the Ohya debris flow fan, 

Geomorphology, 469, 109533, https://doi.org/10.1016/j.geomorph.2024.109533, 2025. 

Zhao, C. and Lu, Z.: Remote sensing of landslides-A review, Remote Sens., 10, 8–13, 805 

https://doi.org/10.3390/rs10020279, 2018. 

Zhao, Y.: R and Data Mining: Examples and Case Studies, 1–160, https://doi.org/10.1016/B978-

0-12-396963-7.00001-5, 2014. 

 

34 

 

https://doi.org/10.5194/egusphere-2026-160
Preprint. Discussion started: 27 January 2026
c© Author(s) 2026. CC BY 4.0 License.


