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Abstract 19 

China's Clean Air Action (CAA) plan implemented since 2013 has significantly altered atmos-20 

pheric composition, and yet its impact on the terrestrial carbon sink remains unclear. This study 21 

employed the Regional Earth System Model (RegESM), an online-coupled climate–chemistry–22 

ecosystem modeling framework, to quantify the impacts of aerosols, surface ozone (O3), and 23 

nitrogen deposition on China’s net ecosystem productivity (NEP) from 2010 to 2020. The re-24 

sults show that aerosols enhanced China’s NEP by 17.93 TgC yr-1 (4.49% of the total NEP), 25 

primarily by increasing diffuse radiation, with the most pronounced effects in Southern and 26 

Eastern China. Nitrogen deposition further increased NEP by 37.98 TgC yr-1 (9.52%), 27 
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concentrated in Central and Southern regions. In contrast, O3 pollution reduced NEP by 51.33 28 

TgC yr-1 (12.9%), particularly in the forest-dominated Southeast. The positive impacts of aer-29 

osols and nitrogen deposition on the carbon sink weakened over time, whereas the negative 30 

influence of O3 was increasing. The combined effects indicate that CAA-induced atmospheric 31 

chemistry changes reversed the dominant atmospheric drivers of China’s terrestrial carbon sink, 32 

from enhancement by aerosols and nitrogen deposition to suppression by ozone. Our findings 33 

highlight the need for stronger O3 pollution control to achieve co-benefits between air-quality 34 

improvement and carbon neutrality. 35 

1 Introduction 36 

Terrestrial ecosystems act as major carbon sinks, sequestering atmospheric carbon dioxide 37 

(CO2) through plant photosynthesis, and constitute a fundamental natural process for mitigating 38 

global climate change (Friedlingstein et al., 2023; Piao et al., 2013; Yuan et al., 2025). Under 39 

ongoing global warming, the dynamics of carbon sinks are regulated not only by climatic fac-40 

tors such as temperature and precipitation (Cao et al., 2023; Post et al., 2018; Ren et al., 2020), 41 

but also by variations in atmospheric composition (Zhou et al., 2021). Among these, aerosols, 42 

O3, and atmospheric nitrogen deposition have been identified as key atmospheric pollutants 43 

affecting terrestrial carbon sequestration (Liu et al., 2022; Zhou et al., 2024). As a crucial com-44 

ponent of the global carbon cycle, terrestrial ecosystems in China sequester approximately 45 

0.20–0.25 PgC yr-1, playing an essential role in supporting the achievement of the national car-46 

bon neutrality target (Piao et al., 2022; Xia et al., 2025; Yue et al., 2021). Therefore, assessing 47 

the responses of carbon sinks to multiple atmospheric composition changes is of great scientific 48 

significance for understanding both the global carbon cycle and climate feedback mechanisms. 49 

Aerosols influence vegetation photosynthesis and carbon sequestration primarily through 50 

radiative forcing (Shu et al., 2022; Zhou et al., 2022). Aerosol scattering and absorption reduce 51 

surface solar radiation and can suppress vegetation photosynthesis (Doughty et al., 2010; 52 

Kuniyal and Guleria, 2019). In the meantime, enhanced diffuse radiation increases light use 53 

efficiency of plants, leading to the diffuse fertilization effect (Gu et al., 2003; Mercado et al., 54 

2009). Aerosols also influence cloud microphysics by modifying droplet formation and lifetime, 55 
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which further affects regional precipitation and water availability for vegetation (Li et al., 2020; 56 

Unger et al., 2017). Consequently, the net effect of aerosols on photosynthesis exhibits marked 57 

spatial heterogeneity, with both enhancement and suppression reported in highly polluted re-58 

gions such as eastern China (Strada and Unger, 2016; Wang et al., 2018; Xie et al., 2020). 59 

In addition, near‐surface O3 impairs plant carbon uptake through direct physiological 60 

damage (Lei et al., 2022; Unger et al., 2020). O3 enters leaves through stomata and induces 61 

reactive oxygen species at the cellular level, leading to degradation of photosynthetic pigments, 62 

suppressed Rubisco activity, premature leaf senescence, and defoliation, all of which inhibit 63 

photosynthetic carbon assimilation (Wittig et al., 2007). Evidence from O3-FACE (free-air O3 64 

concentration enrichment) experiments shows that a 10 ppb increase in O₃ concentration can 65 

lower crop productivity by 5–15% (Feng et al., 2015). In China, summertime O3 peaks often 66 

coincide with the peak growing season of vegetation, particularly in the North China Plain and 67 

the Yangtze River Delta, posing a notable threat to regional carbon sequestration (Lei et al., 68 

2022; Li et al., 2024; Yue et al., 2017). 69 

Furthermore, atmospheric nitrogen deposition is a major external nitrogen source for ter-70 

restrial ecosystems and exerts both positive and negative effects on carbon sinks (Chen et al., 71 

2015; Lu et al., 2021). In nitrogen-limited systems, such as temperate forests and grasslands, 72 

moderate deposition can enhance photosynthesis and biomass accumulation, thereby increas-73 

ing carbon sequestration (Cen et al., 2025; Lu et al., 2016; Peng et al., 2025). When inputs 74 

become excessive, however, they can induce soil acidification, biodiversity loss, and broader 75 

ecosystem degradation, a condition known as nitrogen saturation (Chen et al., 2015; Yue et al., 76 

2016). China receives some of the highest nitrogen deposition levels globally, with annual av-77 

erages of 15–20 kg N ha-1 yr-1 and hotspots surpassing 30 kg N ha-1 yr-1, raising increasing 78 

concerns about long-term ecological impacts (Liu et al., 2022; Liu et al., 2013; Yu et al., 2019). 79 

China has long faced the dual pressures of severe air pollution and growing greenhouse 80 

gas emissions (Tu et al., 2019; Wang et al., 2024). Rapid economic expansion in the early 2010s 81 

was accompanied by persistent increases in fine particulate matter (PM2.5) concentrations (Hao 82 

et al., 2020). Since 2013, successive Clean Air Action Plans have led to a substantial decline in 83 

PM2.5 levels (Xue et al., 2019; Yue et al., 2020; Zheng et al., 2018). At the same time, near-84 
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surface summertime O₃ has risen sharply (Liu et al., 2018; Zhou et al., 2024), while nitrogen 85 

deposition has slowed in growth but remains at a high level (Liu et al., 2024). These changes 86 

not only reflect the outcomes of emission control policies but also reshape the regional atmos-87 

pheric chemical environment, potentially exerting complex and combined effects on carbon 88 

sinks (Liu et al., 2022; Zhou et al., 2024). The rapid transition in atmospheric composition 89 

during 2010–2020 provides an unprecedented large-scale natural experiment for disentangling 90 

the relative roles of aerosols, O₃, and nitrogen deposition in altering China’s carbon sink. How-91 

ever, most existing studies have examined these drivers in isolation, relied on offline or statis-92 

tical frameworks that cannot capture dynamic climate–chemistry–ecosystem feedbacks, and 93 

rarely compared responses across ecological regions (Unger et al., 2020; Yue et al., 2017; Zhou 94 

et al., 2024). 95 

Here, we employ an improved regional climate–chemistry–ecosystem online‐coupling 96 

model, RegESM (Xie et al., 2024; Zhang et al., 2025), to quantify the impacts of aerosols, O₃, 97 

and nitrogen deposition on China’s terrestrial carbon sinks during 2010–2020. RegESM incor-98 

porates two-way interactions among climate, atmospheric chemistry, and biogeochemical pro-99 

cesses and has been extensively evaluated over East Asia (Ma et al., 2023; Xie et al., 2024; Xie 100 

et al., 2020; Zhang et al., 2025). Our objective is to isolate the contributions of individual at-101 

mospheric components to changes in China’s carbon sinks based on RegESM after its assess-102 

ment using multiple observational datasets. These results offer new insight into the ecological 103 

consequences of rapid atmospheric composition changes and provide a scientific foundation 104 

for coordinated multi-pollutant control and ecosystem management under China’s carbon-neu-105 

trality goals. 106 

2 Data and Methods 107 

2.1 The RegESM model 108 

In this study, we employed the RegESM, an improved extension of the RegCM-Chem-109 

YIBs regional climate–chemistry–ecosystem modeling framework (Xie et al., 2024; Xie et al., 110 

2019; Zhang et al., 2025). The original RegCM-Chem-YIBs couples the RegCM4 regional 111 
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climate model (Giorgi et al., 2012), the radiative interactive gas-phase chemistry module Chem 112 

(Shalaby et al., 2012), and the YIBs terrestrial ecosystem model (Yue and Unger, 2015) to 113 

represent interactive processes among atmospheric dynamics, chemistry, and terrestrial carbon 114 

cycles (Xie et al., 2024). Building upon this foundation, RegESM strengthens two-way feed-115 

back among the atmosphere, atmospheric chemistry, and land surface processes, enabling a 116 

more realistic simulation of biogeochemical cycles (Zhang et al., 2025). The enhanced coupling 117 

allows land surface changes, such as vegetation dynamics and soil moisture variations, to more 118 

directly influence atmospheric composition, radiation, and meteorology, while atmospheric 119 

and chemical variations simultaneously affect ecosystem processes (Xie et al., 2024; Zhang et 120 

al., 2025). This bidirectional integration improves the model’s capability to capture transient 121 

and spatially heterogeneous climate–ecosystem–chemistry interactions, which are crucial for 122 

regional climate change and carbon budget assessments (Zhang et al., 2025). 123 

The RegESM framework used in this study integrates RegCM4 as the dynamical core for 124 

simulating regional climate processes at a high resolution, the Chem module for interactive 125 

gas-phase and aerosol chemistry coupled with radiation and meteorology, and the YIBs land 126 

surface model for calculating biophysical processes such as photosynthesis, transpiration, and 127 

energy balance, along with biogeochemical cycles of carbon and nitrogen (Giorgi et al., 2012; 128 

Shalaby et al., 2012; Xie et al., 2024; Yue and Unger, 2015). These components are linked 129 

through an improved coupling mechanism that ensures the consistent exchange of meteorolog-130 

ical, chemical, and biogeophysical variables at each model timestep, enabling fully interactive 131 

simulations in which land, atmosphere, and chemistry evolve in a physically coherent manner 132 

(Xie et al., 2024; Zhang et al., 2025). This model has been widely applied in East Asia (Xie et 133 

al., 2025; Xie et al., 2019; Zhang et al., 2025; Zhang et al., 2024).  134 

We used net ecosystem productivity (NEP) as an indicator for characterizing carbon 135 

sources and sinks (NEP > 0 suggests a carbon sink). NEP was calculated as the difference 136 

between gross primary production (GPP) and the sum of autotrophic respiration (Ra) and het-137 

erotrophic respiration (Rh) (Xie et al., 2025; Yue et al., 2021). It is noteworthy that the NEP 138 

estimated in this study does not account for lateral carbon transfers. 139 

2.2 Ozone Damage Scheme 140 
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Once surface O3 enters plants through the stomata, it directly damages plant cellular struc-141 

tures and suppresses the photosynthetic rate, thereby reducing vegetation productivity. In the 142 

YIBs vegetation module of the RegESM model, a semi-mechanistic parameterization scheme 143 

is employed to represent the impacts of O3 on plants (Sitch et al., 2007; Yue and Unger, 2015): 144 

𝐵 = 𝐵𝑡𝑜𝑡 ∙ 𝐾 ,                                                     (1) 145 

where B denotes the photosynthetic rate under O3 exposure, 𝐵𝑡𝑜𝑡 represents the total leaf pho-146 

tosynthetic rate, and K is the remaining proportion of photosynthetic capacity after O3 stress. 147 

This proportion is determined by the stomatal O3 flux that exceeds a specified threshold: 148 

𝐾 = 1 − 𝑏 ∙ max[(𝐾𝑜𝑧𝑛 − 𝐾𝑜𝑧𝑛𝑐𝑟𝑖𝑡), 0] ,       (2) 149 

where b denotes the vegetation sensitivity parameter to O3 derived from observational data. 150 

𝐾𝑜𝑧𝑛𝑐𝑟𝑖𝑡 represents the threshold of O3-induced damage to vegetation, and 𝐾𝑜𝑧𝑛 denotes the 151 

O3 flux entering the leaf through stomata: 152 

𝐾𝑜𝑧𝑛 =
[𝑂3]

𝑟𝑏 +
𝜅𝑂3

𝑟𝑠

 ,                                                   (3) 153 

where [O3] denotes the O3 concentration at the canopy top, 𝑟𝑏 is the boundary layer resistance, 154 

𝜅𝑂3 is the ratio of O3 leaf resistance to water vapor blade resistance, and 𝑟𝑠 is the stomatal 155 

resistance accounting for the effects of O3: 156 

𝑟𝑠 = 𝑔𝑠 ∙ 𝐾 .                                                        (4) 157 

𝑔𝑠 denotes the leaf conductance unaffected by O3 exposure. By simultaneously solving Equa-158 

tions (2), (3), and (4), a quadratic term with respect to 𝐾 is obtained, which can be solved 159 

analytically. 160 

2.3 Experimental design and input data 161 

The simulation domain covers most of East Asia (Fig. S1), centered at 36° N and 107° E. 162 

The horizontal resolution is 30 km, with 18 vertical layers. To quantify the independent con-163 

tributions of aerosol, O3 damage, and atmospheric nitrogen deposition to China’s terrestrial 164 

carbon sink during 2010–2020, four sensitivity experiments were conducted (Table 1)：a base-165 

line simulation without these effects (Base), and three single-factor cases that enabled only 166 

aerosol (Ctrl_AOD), O3-induced vegetation damage (Ctrl_O3), and nitrogen deposition 167 
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impacts (Ctrl_Ndep). The difference between each sensitivity case and the Base run represents 168 

the corresponding individual effect. All simulations were preceded by a one-year spin-up to 169 

reduce the influence of initial conditions. To further assess regional responses, China was di-170 

vided into six representative subregions (Fig. S2), and statistical analyses were performed for 171 

each. 172 

 173 

Table 1. Numerical model experiments. 174 

Simulations  Periods  
Aerosol 

radiative effect 
O3 damage 

atmospheric 

nitrogen 

deposition 

Base 2010-2020 off off off 

Ctrl_AOD 2010-2020 open off off 

Ctrl_O3 2010-2020 off open off 

Ctrl_Ndep 2010-2020 off off open 

 175 

The initial and boundary meteorological fields were taken from the ECMWF (European 176 

Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis with a temporal reso-177 

lution of 6 h and a horizontal resolution of 1.5° × 1.5° (Hersbach et al., 2020). Aerosol initial 178 

and boundary conditions were provided by the global chemical transport model (MOZART) 179 

(Emmons et al., 2010; Horowitz et al., 2003). Background CO2 fields were constrained by 180 

three-dimensional concentrations from NOAA CarbonTracker (CT) reanalysis (Peters et al., 181 

2007). The initial parameters for the YIBs model were derived from soil carbon stocks based 182 

on equilibrium tree height and a 30-year harvest cycle (Yue and Unger, 2015). Vegetation 183 

cover was prescribed from MODIS and AVHRR (Advanced Very High Resolution Radiometer) 184 

datasets (Lawrence and Chase, 2007). Anthropogenic emissions in China were taken from the 185 

Multi-resolution Emission Inventory for China (MEIC) (Geng et al., 2024; Li et al., 2017; 186 

Zheng et al., 2018). 187 

2.4 Validation data 188 
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We employed monthly mean aerosol optical depth (AOD) data from the MODIS sensor 189 

onboard NASA’s Terra satellite (MOD08_M3.061). The data have a spatial resolution of 1° × 190 

1° and are retrieved using three algorithms: the Dark Target, Deep Blue, and combined ap-191 

proaches (Levy et al., 2013). Ground-level O3 observations were obtained from 366 monitoring 192 

stations operated by the China National Environmental Monitoring Center (CNEMC). To eval-193 

uate the model’s capability in simulating atmospheric nitrogen deposition, we employed pub-194 

licly available datasets (Liu et al., 2024; Zhu et al., 2025). These datasets integrate observations 195 

with model outputs to provide nitrogen deposition estimates at both global and regional scales 196 

over China. To assess the reliability of simulated CO2, we used observations from the World 197 

Data Centre for Greenhouse Gases (WDCGG). This dataset provides measured surface atmos-198 

pheric CO2 concentrations and was used to evaluate the model’s ability to reproduce observed 199 

CO2 levels. For the spatial distribution of CO2, we additionally used CO2 concentration fields 200 

from CT (Peters et al., 2007). For GPP and net primary production (NPP) validation, we used 201 

the global MODIS products MOD17A2H and MOD17A3H (Collection 6). The GPP data, at 202 

8-day resolution, were derived using the radiation use efficiency algorithm, while NPP 203 

(NPP=GPP-Ra) data were produced by annually accumulating GPP values, with a spatial res-204 

olution of 500 m (He et al., 2018; Madani et al., 2014). 205 

2.5 Analytical Approach 206 

Aerosol-induced meteorological changes are highly interdependent, making it challenging 207 

to isolate their individual effects on terrestrial carbon cycling. To quantify the relative contri-208 

butions of these meteorological responses to vegetation carbon fluxes, we applied a multiple 209 

linear regression framework. Standardized regression coefficients were used to assess the rel-210 

ative influence of each climate variable. This approach has been widely demonstrated as effec-211 

tive for disentangling the impacts of multiple environmental drivers on ecosystem processes 212 

(Jung et al., 2017; Xie et al., 2025; Zhang et al., 2024). 213 

The regression model is expressed as follows: 214 

∆𝑌 = 𝐴1 × ∆𝑋1
𝑅𝑎𝑑𝐷 + 𝐴2 × ∆𝑋2

𝑅𝑎𝑑𝐹 + 𝐴3 × ∆𝑋3
𝑇𝑒𝑚𝑝 + 𝐴4 × ∆𝑋4

𝑃𝑟𝑒𝑐𝑖𝑝 + 𝐴5 × ∆𝑋5
𝑉𝑃𝐷215 

+ 𝜀        (5) 216 
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where ∆𝑌 denotes the difference in terrestrial carbon flux between the simulations Base and 217 

Ctrl_AOD, respectively. ∆𝑋1
𝑅𝑎𝑑𝐷 ,∆𝑋2

𝑅𝑎𝑑𝐹  , ∆𝑋3
𝑇𝑒𝑚𝑝  , ∆𝑋4

𝑃𝑟𝑒𝑐𝑖𝑝  and ∆𝑋5
𝑉𝑃𝐷  denote 218 

the differences in direct radiation, diffuse radiation, temperature, precipitation, and vapor pres-219 

sure deficit (VPD) between the simulations Base and Ctrl_AOD, respectively. 𝐴𝑖 represents 220 

the partial regression coefficient for different meteorological factors, indicating the sensitivity 221 

of carbon flux to variations in these factors. 𝜀 is the residual term of the regression model. We 222 

use the following equation to calculate the standardized regression coefficient 𝐵𝑖 for compar-223 

ing the relative impacts of different meteorological factors: 224 

𝐵𝑖 = 𝐴𝑖 × 𝑆𝐷(∆𝑋𝑖) ÷ 𝑆𝐷(∆𝑌)                          (6) 225 

where 𝑆𝐷(∆𝑋𝑖) and 𝑆𝐷(∆𝑌) represent the standard deviations of the changes in each mete-226 

orological factor and carbon flux, respectively. 𝐵𝑖 quantifies the relative contribution of dif-227 

ferent meteorological factors to variations in carbon flux. This approach enables a quantitative 228 

assessment of the individual impacts of changes in each meteorological factor induced by aer-229 

osol radiative effects on terrestrial carbon flux. 230 

3 Results 231 

3.1 Model validations 232 

3.1.1 Aerosols, surface ozone, and atmospheric nitrogen deposition 233 

We assessed the RegESM performance by comparing the 2010–2020 simulations with 234 

multi-source observations. Simulated AOD showed good agreement with MODIS products in 235 

both spatial distribution and magnitude (Fig. 1a, b). High AOD values are located over the 236 

North China Plain and the Sichuan Basin, consistent with dense anthropogenic emissions in 237 

these regions (Luo et al., 2014). The observations indicate that the national mean AOD de-238 

creased from 0.36 in 2010 to 0.28 in 2020, driven by air quality improvement policies. We 239 

calculated statistical metrics, including the correlation coefficient (R), mean bias (MB), and 240 

root mean square error (RMSE), to evaluate the model performance (Fig. S3). The RegESM 241 

captures this trend with a correlation coefficient (R) of 0.71. However, compared with monthly 242 

MODIS AOD, the model shows a minor underestimation (MB = −0.02), which can be 243 
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attributed primarily to uncertainties in the anthropogenic emission inventories (Xie et al., 2020). 244 

Surface O3 simulations reproduce both spatial patterns (Fig. 1c, d). The correlation with site 245 

observations reaches 0.72 (Fig. S4). High concentrations in the North China Plain, the Yangtze 246 

River Delta, and the Sichuan Basin are captured well, highlighting the model’s skill in simu-247 

lating O3 fields. The simulated annual mean atmospheric nitrogen deposition flux ranges from 248 

20 to 40 kg N ha-1 yr-1 in eastern agricultural and urban areas, consistent with reported values 249 

of 25–35 kg N ha-1 yr-1 (Fig. 1e, f). The simulated national mean of 15.09 kg N ha-1 yr-1 is close 250 

to the dataset range of 13.45–15.39 kg N ha-1 yr-1. The model also reproduces the observed 251 

decline after the implementation of air pollution control policies in 2013, with a gradual de-252 

crease after 2015 (Fig. S5). These evaluations indicate that RegESM reliably simulates AOD, 253 

O3, and nitrogen deposition fields across China. 254 

 255 
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 256 

Figure 1. Annual mean AOD (a, b), maximum daily 8 h average (MDA8) O3 (c, d), and At-257 

mospheric nitrogen deposition (e, f) from model simulation (a, c, e) and observations (b, d, f).  258 

 259 

3.1.2 Atmospheric CO2 concentrations, GPP, and NPP 260 

Simulated CO2 concentrations were compared with six stations from the WDCGG. The 261 

correlation coefficients range from 0.83 to 0.96 (Table S1). The YON site shows the best agree-262 

ment (R = 0.96, MB = −1.1 ppm), likely due to minimal influence from terrestrial emissions. 263 

In contrast, HKG and HKO show larger biases, with overestimates of 3.1 ppm (R = 0.83) and 264 

3.3 ppm (R = 0.84), probably linked to unaccounted variability in urban sources in monthly 265 
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inventories. Nevertheless, the seasonal cycle is reproduced well at all sites (Fig. S6). 266 

We further compared simulated CO2 with the CarbonTracker CT2022 assimilation dataset 267 

(Peters et al., 2007). The spatial correlation coefficient reaches 0.72 (Fig. 2a, b). High CO2 268 

concentrations appear over the Beijing–Tianjin–Hebei region, the Yangtze River Delta, the 269 

Pearl River Delta, and the Sichuan Basin, consistent with intense industrial emissions. The 270 

model slightly overestimates values in the Pearl River Delta, likely due to underrepresented 271 

local sources and complex topography. Overall, RegESM effectively captures the spatial dis-272 

tribution of CO2 concentrations. 273 

Simulated GPP agrees well with MODIS in spatial distribution (Fig. 2c, d), with a spatial 274 

correlation of 0.89. However, GPP from this study is larger than MODIS GPP by 7.4%, with 275 

largest differences in Central (11.6%) and Southeast China (5.7%). Other studies also found 276 

that MODIS GPP was underestimated at high values (Xie et al., 2019; Zhang et al., 2012). The 277 

southeast-to-northwest decreasing gradient is reproduced, with high values over regions dom-278 

inated by forest ecosystems. The seasonal cycle of GPP is also captured (Fig. S7). The simu-279 

lated NPP exhibits a spatial distribution consistent with the MODIS (Fig. 2e, f), with a spatial 280 

correlation coefficient of 0.86. Similar to GPP, the model overestimates NPP by 8.4%, mainly 281 

due to the overestimation in Central (14.3%) and Northeastern (6.2%) China. These results 282 

confirm the model’s ability to represent terrestrial carbon fluxes. 283 
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 284 

Figure 2. Annual mean CO2 (a, b), GPP (c, d), and NPP (e, f) from model simulation (a, c, e) 285 

and observations (b, d, f).  286 

 287 

3.2 Impacts of Aerosols on Meteorology and Carbon Sinks  288 

3.2.1 Impacts of Aerosols on Meteorological Factors 289 

During 2010–2020, the aerosol exerted a substantial influence on China’s surface radia-290 

tion and near-surface climate (Fig. 3). Nationally, aerosols reduced downward direct solar ra-291 

diation by 8.81 W m-2, while increasing diffuse radiation by 3.04 W m-2, leading to an overall 292 

reduction of 5.77 W m-2 in total shortwave radiation reaching the surface. Spatially, these 293 
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radiative changes were most pronounced over major urban agglomerations such as the North 294 

China Plain, the Yangtze River Delta, and the Sichuan Basin, coinciding with regions of high 295 

AOD associated with intensive anthropogenic emissions. These results are consistent with pre-296 

vious modeling and satellite-based analyses (Wang et al., 2017; Xie et al., 2020), confirming 297 

the robustness of the simulated radiative forcing patterns. 298 

The reduction in surface solar radiation directly perturbed the regional energy balance and 299 

atmospheric thermodynamics, resulting in a cooling effect over most of eastern and central 300 

China. As shown in Fig. 3d, surface air temperature decreased significantly in the Sichuan Ba-301 

sin and coastal regions, with local maxima reaching -1.1 °C. In contrast, western and north-302 

eastern China experienced weaker changes, consistent with lower AOD levels. The simulated 303 

national mean temperature decline of 0.32 °C agrees well with previous RegCM-based studies 304 

(Wang et al., 2015; Xie et al., 2020). This widespread cooling is primarily attributed to aerosol-305 

induced dimming, which suppresses surface shortwave absorption and weakens boundary-306 

layer turbulence, thereby inhibiting vertical heat exchange and reducing near-surface tempera-307 

tures. 308 

Aerosol also exerted a marked influence on regional hydrological processes. Precipitation 309 

decreased across much of southern and southwestern China, with notable reductions in Guang-310 

dong, Fujian, Yunnan, and Sichuan provinces, where daily rainfall decreased by up to 2 mm 311 

day-1 (Fig. 3e). On average, national precipitation declined by 0.23 mm day-1. The reduction in 312 

rainfall reflects the combined effects of radiative cooling and weakened convective activity. 313 

Specifically, aerosol-induced surface dimming stabilizes the lower atmosphere and suppresses 314 

the upward transport of moisture, while reduced latent heating further limits convective cloud 315 

formation. These mechanisms together explain the widespread drying observed in the simula-316 

tions. 317 

The VPD, a key indicator of plant water stress, also responded sensitively to aerosol forc-318 

ing. As shown in Fig. 3f, aerosols significantly reduced VPD over central and southeastern 319 

China, with decreases of -0.3 to -0.6 hPa, and locally up to -1.2 hPa in Sichuan, Hebei, and 320 

Jiangsu. The national mean reduction was -0.11 hPa. Lower VPD values imply a moister near-321 

surface environment and weaker atmospheric demand for evapotranspiration. Ecologically, this 322 
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alleviation of plant water stress can enhance stomatal conductance and facilitate photosynthetic 323 

carbon uptake, thereby partially compensating for the productivity loss caused by reduced solar 324 

radiation. Thus, the aerosol-induced decline in VPD represents an important indirect pathway 325 

through which aerosols modulate the terrestrial carbon cycle, linking atmospheric radiative 326 

forcing to ecosystem function. 327 

 328 

 329 

Figure 3. Annual mean changes in meteorological variables due to aerosol direct radiative 330 

effect during 2010–2020. (a) RadD, direct radiation; (b) RadF, diffuse radiation; (c) RadTot, 331 

total radiation; (d) Temp, air temperature; (e) Precip, precipitation; (f) VPD, vapor pressure 332 

deficit. 333 

 334 

3.2.2 Effects of Aerosols on the Terrestrial Carbon Sink 335 

During 2010–2020, the aerosol overall enhanced the productivity of China’s terrestrial 336 

ecosystems, increasing GPP and NEP by 293.28 TgC yr-1 and 17.93 TgC yr-1, accounting for 337 

3.98% and 4.49% of the national totals, respectively. Spatially, the responses of GPP and NEP 338 

to the aerosol radiative effect displayed significant heterogeneity, with pronounced enhance-339 

ments in southern and eastern China (Fig. 4a, b). The most significant enhancements occurred 340 

in South-Central and East China, where GPP increased by 0.32 gC m-2 day-1 and 0.31 gC m-2 341 

day-1, respectively. These regions are characterized by dense forests and cropland ecosystems 342 

with high leaf area index, enabling them to fully exploit the additional diffuse radiation induced 343 
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by aerosols. Meanwhile, the high aerosol loading in these regions ensured sufficient radiative 344 

perturbation, amplifying the improvement in canopy light-use efficiency. In the Southwest, the 345 

response was more complex. Although the mean GPP increased by 0.20 gC m-2 day-1, parts of 346 

Yunnan showed a negative effect. This reduction likely results from excessive attenuation of 347 

solar radiation under the region’s unique topographic and climatic conditions, which con-348 

strained photosynthetic activity. Nevertheless, NEP in this region remained positive (approxi-349 

mately 0.01 gC m-2 day-1), suggesting that the cooling effect of aerosols substantially sup-350 

pressed ecosystem respiration, thereby compensating for the reduced photosynthesis. In con-351 

trast, the North and Northwest exhibited weak positive responses (<0.07 gC m-2 day-1), while 352 

the Northeast showed slight inhibition (-0.04 gC m-2 day-1), probably due to aerosol-induced 353 

cooling delaying the onset of the growing season. Overall, the spatial patterns of GPP and NEP 354 

responses to the aerosol radiative effect show a clear latitudinal gradient: the humid, high-bio-355 

mass ecosystems in southern and eastern China are most sensitive to diffuse radiation enhance-356 

ment, whereas the high-latitude and arid regions experience limited or even negative responses 357 

due to temperature and radiation constraints. 358 

From 2010 to 2020, the influence of aerosols on carbon fluxes exhibited distinct interan-359 

nual variability (Fig. 4c, d). Both GPP and NEP showed an upward trend before 2016, with 360 

GPP increasing from 214.66 TgC yr-1 in 2010 to 384 TgC yr-1 in 2016, and NEP rising from 361 

13.54 TgC yr-1 to 21.31 TgC yr-1. The synchronous growth of GPP and NEP indicates that the 362 

aerosol radiative effect enhanced terrestrial carbon uptake mainly through photosynthetic ac-363 

tivity. The strong enhancement during 2015–2017 coincided with years of high aerosol loading 364 

and a greater proportion of diffuse radiation, which improved canopy light-use efficiency under 365 

humid and cloudy conditions. After 2018, the positive effect weakened slightly and stabilized 366 

at a lower level. This reduction likely reflects the combined influence of cleaner atmospheric 367 

conditions and changing meteorological patterns, including increased direct radiation and a 368 

reduced diffuse fraction. Year-to-year variations were further modulated by hydroclimatic con-369 

ditions: higher humidity and cloud cover enhanced aerosol scattering efficiency, while drier or 370 

cleaner years favored direct radiation and weakened the diffuse light advantage. Moreover, the 371 

smaller NEP fluctuations compared to GPP imply a delayed response of ecosystem respiration, 372 
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as aerosol-induced cooling moderates’ respiration more gradually than photosynthesis. Overall, 373 

the interannual variability of GPP and NEP responses to the aerosol radiative effect highlights 374 

the coupled influences of aerosol loading, radiation balance, and regional climate variability 375 

on China’s terrestrial carbon sink dynamics. 376 

The effects of aerosols on GPP and NEP show pronounced seasonal variation (Fig. S8), 377 

driven by the dynamic coupling between vegetation phenology and environmental factors. In 378 

spring (March–May), aerosols increase GPP by 42.35 TgC (14.4%) and NEP by 2.82 TgC 379 

(15.7%), making a notable contribution at the start of the growing season as rising temperatures 380 

and rapid canopy expansion enhance diffuse radiation benefits, improving light-use efficiency; 381 

meanwhile, moderate cooling suppresses respiration without causing thermal stress, further 382 

boosting NEP. In summer (June–August), positive effects peak, with GPP rising by 173.62 TgC 383 

(59.2%) and NEP by 10.15 TgC (56.6%); under high solar radiation and full canopy closure, 384 

diffuse light penetration reaches its maximum, while cooling alleviates heat stress and reduces 385 

respiration, driving NEP to its annual maximum. In autumn (September–November), aerosols 386 

add 88.38 TgC to GPP (30.1%) and 3.95 TgC to NEP (22.0%), effectively extending the pho-387 

tosynthetic period as shorter days and reduced total radiation increase the proportion of diffuse 388 

light, sustaining carbon storage. In winter (December–February), GPP declines slightly (-389 

11.07 TgC, -3.8%), but NEP shows a small positive gain (1.01 TgC, 5.6%) because cooling 390 

strongly suppresses respiration, offsetting reduced photosynthesis. Overall, aerosol radiative 391 

effects regulate seasonal carbon cycling by modifying radiation and thermal conditions. The 392 

net impact depends on the trade-off between the fertilization effect of diffuse radiation and the 393 

opposing effects of reduced total radiation and cooling. Summer emerges as the primary driver 394 

of the annual net positive effect. Accurately quantifying this seasonal dynamic is crucial for 395 

assessing the ecological and climatic consequences of anthropogenic aerosols. 396 

 397 
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 398 

Figure 4. Spatiotemporal variations in carbon flux changes caused by the aerosol radiative 399 

effect during 2010–2020. (a–b) Multi-year mean spatial patterns of GPP and NEP changes 400 

caused by the aerosol radiative effect. National totals are shown in each panel. Black dots de-401 

note significant changes (p<0.01). (c–d) Interannual variations of GPP and NEP changes 402 

caused by the aerosol radiative effect. 403 

 404 

3.2.3 Contributions of Meteorological Factors to Carbon Sink Changes 405 

We quantified the independent contributions of aerosol-induced meteorological changes 406 

to carbon fluxes using the multiple linear regression analysis described in Section 2.5 (Fig. 5a, 407 

b). Overall, aerosol substantially influenced China’s terrestrial carbon uptake by altering radi-408 

ation composition and meteorological conditions. At the national scale, the increase in diffuse 409 

radiation emerged as the dominant positive driver, contributing to GPP (325.07 TgC yr-1) and 410 

NEP (11.46 TgC yr-1). This highlights the crucial role of the diffuse radiation fertilization effect, 411 

particularly in regions with high aerosol loading across eastern and southwestern China, where 412 

enhanced diffuse light improves canopy light distribution and photosynthetic efficiency. In 413 
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contrast, the reduction in direct radiation suppressed GPP (94.78 TgC yr-1) and NEP (2.59 TgC 414 

yr-1) due to insufficient illumination, though the impact on NEP was weaker, reflecting partial 415 

offset by the reduction in ecosystem respiration under aerosol-induced cooling. Cooling alone 416 

reduced GPP by 59.62 TgC yr-1 and NEP by 4.73 TgC yr-1. This decline in NEP occurred 417 

because the decrease in GPP (driven by reduced transpiration and stomatal conductance) out-418 

weighed the concurrent reduction in ecosystem respiration. Meanwhile, lower VPD enhanced 419 

GPP by 114.44 TgC yr-1 and NEP by 8.25 TgC yr-1 by alleviating water stress, reinforcing 420 

photosynthetic carbon uptake. Changes in precipitation played only a minor role, slightly re-421 

ducing GPP (8.17 TgC yr-1) and NEP (0.62 TgC yr-1), with limited influence even in the mon-422 

soon regions of southern China. These findings indicate that variations in radiation components, 423 

rather than hydrometeorological perturbations, serve as the primary pathway through which 424 

aerosols modulate terrestrial carbon sinks. 425 

Regionally, among these factors, diffuse radiation exerted the strongest positive influence 426 

on GPP across all regions, particularly in the southwest (115.92 TgC yr-1), east (67.04 TgC yr-427 

1), and south-central (93.08 TgC yr-1) China (Fig. 5a, b). Enhanced diffuse light under elevated 428 

aerosol loading improved the vertical distribution of photosynthetically active radiation within 429 

the canopy and increased photosynthetic efficiency. In contrast, direct radiation consistently 430 

exhibited negative effects, most evident in the southwest (-42.32 TgC yr-1) and east (-22.92 431 

TgC yr-1), indicating that aerosol-induced solar dimming partly offset the diffuse radiation fer-432 

tilization benefit. Temperature changes associated with aerosol cooling suppressed GPP na-433 

tionwide, especially in the southwest (-29.07 TgC yr-1) and south-central regions (-16.19 TgC 434 

yr-1), by lowering canopy temperature and reducing evapotranspiration. The contributions of 435 

precipitation were minor (-1 to -3 TgC yr-1), while VPD exerted a positive effect, particularly 436 

in humid southern regions (55.76 TgC yr-1 in the southwest), suggesting that aerosol-induced 437 

cooling and moistening alleviated water stress and indirectly promoted carbon uptake. For NEP, 438 

diffuse radiation remained the dominant positive driver, with the largest increases in the south-439 

west (4.06 TgC yr-1) and south-central (3.35 TgC yr-1) China, while direct radiation continued 440 

to exert negative effects. The temperature effect was moderate but consistent with GPP, 441 
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implying that aerosol cooling simultaneously suppressed photosynthesis and respiration, with 442 

a net positive outcome for NEP. Taken together, these spatial contrasts highlight the combined 443 

effects of aerosol composition, vegetation structure, and regional hydroclimate, emphasizing 444 

that radiative forcing dominates in humid, high-biomass ecosystems, whereas climatic con-445 

straints prevail in arid zones. 446 

To further clarify the dominant controls of these spatial differences, we identified the pri-447 

mary meteorological drivers of GPP and NEP based on the standardized regression coefficients 448 

(Fig. 5c, d, and Table 2). The results indicate that for GPP, diffuse radiation accounts for the 449 

largest proportion (77.83%), followed by vapor pressure deficit (9.27%) and direct radiation 450 

(8.4%), while the influence of temperature (4.45%) and precipitation (0.05%) is relatively 451 

small. For NEP, diffuse radiation remains the dominant driver (72.2%), followed by direct 452 

radiation (15.92%) and temperature (5.64%). These results highlight that aerosols modify the 453 

radiation composition, particularly by enhancing diffuse radiation, which substantially in-454 

creases photosynthetic efficiency and strengthens the regional carbon sink. In contrast, the ef-455 

fects of temperature and VPD are weaker overall but more pronounced in northern arid and 456 

semi-arid regions, where water limitation constrains carbon uptake. Collectively, these findings 457 

confirm that radiation composition primarily controls the spatiotemporal dynamics of China’s 458 

terrestrial carbon sink, while temperature and moisture factors exert region-dependent modu-459 

lations. 460 

 461 

Table 2. Proportion of dominant meteorological factors for GPP and NEP across China 462 

(Units: %). 463 

Factors RadD (%) RadF (%) Temp (%) Precip (%) VPD(%) 

GPP 8.4 77.83 4.45 0.05 9.27 

NEP 15.92 72.2 5.64 0.14 6.1 

 464 

 465 

 466 

 467 

 468 
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 469 

 470 

 471 

Figure 5. Effect of aerosol-induced changes in meteorological factors on GPP and NEP, and 472 

spatial patterns of dominant factors. (a) Regional contributions of individual meteorological 473 

factors to GPP; (b) Regional contributions of individual meteorological factors to NEP; (c) 474 

Spatial distribution of the dominant meteorological factor for GPP; (d) Spatial distribution of 475 

the dominant meteorological factor for NEP. 476 

 477 

3.3 Effects of surface ozone on carbon sinks 478 

During 2010–2020, surface O3 in China increased and imposed a persistent suppression 479 

on terrestrial carbon sinks. Simulations show a strong reduction of GPP by 0.4–0.6 gC m-2 day-480 

1 in most regions, with more than 0.8 gC m-2 day-1 in Southeast and Southwest China (Fig. 6a). 481 

NEP shows a similar spatial pattern (Fig. 6b). The largest decline occurs in the southeast (Yang-482 

tze River basin and South China coast), with NEP reduced by 0.06–0.08 gC m-2 day-1 and 483 

locally above 0.1 gC m-2 day-1, consistent with high O3 and evergreen broadleaf forests (Yue et 484 

al., 2017). In the southwest (Sichuan Basin and Yunnan–Guizhou Plateau), NEP decreases by 485 

0.03–0.06 gC m-2 day-1, related to complex terrain and dense forests. Impacts are weaker in 486 

Northeast and Northwest China, mostly below 0.02 gC m-2 day-1. In Shandong, Henan, and 487 

northern Jiangsu, the simulated losses are small, reflecting cropland-dominated land cover. 488 
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However, earlier studies reported strong O3 effects on crops (Ren et al., 2012), suggesting pos-489 

sible underestimation. This bias may stem from the simplified crop representation in the model 490 

(Fig. S2). Nationwide, O3 reduces GPP and NEP by 749.44 TgC yr-1 and 51.33 TgC yr-1, ac-491 

counting for 10.17 % and 12.9 % of the totals. The suppression is attributed to reduced photo-492 

synthesis, altered stomatal conductance, and shifts in carbon allocation, which together weaken 493 

ecosystem sinks. 494 

The annual effect intensifies until 2018 and then weakens (Fig. 6c). In 2010, O3 reduces 495 

NEP by 42.93 TgC yr-1, reaching 55.71 TgC yr-1 in 2018. It then decreases to 51.98 TgC yr-1 496 

in 2019 and 51.77 TgC yr-1 in 2020. These variations reflect air pollution control policies. Be-497 

tween 2013 and 2017, the first Clean Air Action reduced PM2.5 and NOx but left volatile or-498 

ganic compounds (VOCs) largely uncontrolled, thereby enhancing O3 formation, especially in 499 

VOCs-limited regions (Lu et al., 2020). Both model and observations show higher O3 during 500 

this stage (Fig. S4). After 2018, the second Clean Air Action introduced coordinated control of 501 

NOx and VOCs in the Yangtze River Delta and Pearl River Delta, reducing O3 during summer 502 

and easing sink suppression in 2019–2020. In contrast, O3 continued to rise in North China, 503 

indicating uneven policy outcomes across regions. 504 

Seasonal effects are distinct (Fig. 6d and Fig. S9). Summer shows the strongest suppres-505 

sion, with NEP reduced by 29.1 TgC (56.69 % of the annual effect). This results from the 506 

overlap of peak O3 and peak photosynthesis, when high temperature and humidity keep stomata 507 

open and allow O3 uptake. Spring is second, with NEP reduced by 11.67 TgC (22.74 %). The 508 

effect is linked to leaf expansion, rapid growth, and frequent transport events. Autumn and 509 

winter show weaker impacts due to lower photosynthesis, unfavorable O3 chemistry, and re-510 

duced stomatal conductance. Regional differences are evident: in the south, suppression ex-511 

tends from spring to late autumn, while in the north it is confined to summer. This highlights 512 

the role of climate and phenology in modulating the impact of O3 on carbon sinks. 513 

 514 
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 515 

Figure 6. Spatiotemporal variations in O3‑induced changes in carbon fluxes during 2010–2020. 516 

(a–b) Multi‑year mean spatial patterns of O3‑induced changes in GPP and NEP. National totals 517 

are shown in each panel. Black dots denote significant changes (p < 0.01). (c) Interannual 518 

variation of O3‑induced NEP. (d) O3-induced monthly variations in GPP, NPP, and NEP. 519 

 520 

3.4 Effects of atmospheric nitrogen deposition on carbon sinks 521 

The response of China’s terrestrial ecosystems to atmospheric nitrogen deposition during 522 

2010–2020 shows pronounced spatial heterogeneity (Fig. 7a, b). At the national scale, nitrogen 523 

deposition increased GPP and NEP by 668.88 TgC yr-1 and 37.98 TgC yr-1, respectively. These 524 

increases account for 9.08% of total GPP and 9.52% of total NEP. The net gains were mainly 525 

concentrated in the southeastern, southwestern, and central regions. In these areas, NEP in-526 

creased by 0.04–0.08 g C m-2 day-1, forming the dominant contribution to the nitrogen-induced 527 

carbon sink. Although atmospheric nitrogen deposition is highest in eastern China (Fig. 2e, f), 528 

the regional variations in GPP and NEP induced by nitrogen deposition are more pronounced 529 
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in southern China than in the east. The strong spatial gradient highlights that the ecological 530 

effects of nitrogen deposition are not uniform, but tightly linked to anthropogenic nitrogen 531 

emissions and ecosystem sensitivity (Shang et al., 2024). High responses were observed in 532 

regions with intensive agriculture and industry, where deposition exceeded 15 kg N ha-1 yr-1. 533 

Vegetation dominated by subtropical evergreen broadleaf forests, mixed forests, and croplands 534 

is generally nitrogen-limited. Additional nitrogen input alleviated nutrient constraints, en-535 

hanced photosynthesis and biomass accumulation, and shifted soil microbial processes. When 536 

stimulation of GPP and NPP outweighed the increase in ER, NEP rose. Warm and humid cli-537 

mates, together with long growing seasons, further amplified these effects. 538 

The impacts of nitrogen deposition on GPP and NEP varied strongly over time (Fig. 7c, 539 

d). In 2010, deposition enhanced NEP by 36.45 TgC yr-1. The effect increased to a peak of 42.5 540 

TgC yr-1 in 2012, but then declined, reaching 34.65 TgC yr-1 by 2020. This trajectory reflects 541 

the influence of China’s air pollution control policies on ecosystem carbon dynamics. The tem-542 

poral trend corresponds to changes in nitrogen deposition fluxes. Between 2010 and 2012, rapid 543 

industrialization and agriculture raised deposition from 15.85 to 17.91 kg N ha-1 yr-1 (+13%). 544 

After 2013, emission reduction policies reduced nitrogen deposition, which fell to 13.25 kg N 545 

ha-1 yr-1 in 2020 (−26.02%). Notably, the effect of nitrogen deposition on NEP leveled off after 546 

2015, which can be attributed to the slower decline rate of atmospheric nitrogen deposition 547 

since 2015 (Fig. S5). The reduction in NEP (−18.47%) was smaller than that in nitrogen input. 548 

This lagged response suggests that soil nitrogen pools accumulated from long-term deposition 549 

continued to supply nitrogen to vegetation, buffering the decline. 550 
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 551 

Figure 7. Spatiotemporal variations in Ndep‑induced changes in carbon fluxes during 2010–552 

2020. (a–b) Multi‑year mean spatial patterns of Ndep‑induced changes in GPP and NEP. Na-553 

tional totals are shown in each panel. Black dots denote significant changes (p < 0.01). (c-d) 554 

Interannual variation of Ndep‑induced in GPP and NEP.  555 

 556 

The influence of nitrogen deposition on NEP displayed clear seasonality (Fig. 8). Strong 557 

positive effects occurred in summer and spring, while autumn and winter showed suppression. 558 

Summer accounted for the largest gain, with an NEP increase of 27.16 TgC. Spring followed 559 

with 14.12 TgC. In contrast, autumn and winter reduced NEP by 0.2 and 3.1 TgC, respectively. 560 

These seasonal differences result from the combined influence of multiple factors. During sum-561 

mer, optimal temperature, light, and water supported vigorous canopy photosynthesis. Plants 562 

assimilated nitrogen efficiently, leading to higher GPP and biomass accumulation. Spring 563 

growth stages were also nitrogen-sensitive, producing strong positive responses. In autumn and 564 

winter, however, plant activity slowed. Nitrogen inputs mainly stimulated heterotrophic respi-565 

ration, while GPP and NPP remained low. As a result, NEP decreased, and carbon sink strength 566 

weakened outside the growing season. 567 
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 568 

 569 

Figure 8. Spatial distribution of Ndep‑induced seasonal variations in NEP during 2010–2020 570 

(units: gC m-2 day-1). (a) Spring, including March, April, and May. (b) Summer, including June, 571 

July, and August. (c) Autumn, including September, October, and November. (d) Winter, in-572 

cluding January, February, and December.  573 

 574 

3.5 Integrated Impact Analysis 575 

To assess the combined influence of aerosols, O3, and atmospheric nitrogen deposition on 576 

China’s terrestrial carbon sink, the three independent effects were algebraically summed. Dur-577 

ing 2010–2020, the co-evolution of these atmospheric factors jointly drove substantial interan-578 

nual variability and stage-dependent changes in carbon uptake, closely linked to the implemen-579 

tation of the CAA plan. The interannual trend (Fig. 9) shows that although aerosols and nitrogen 580 

deposition generally enhanced carbon sequestration, the strong carbon loss caused by O3 581 

largely offset these positive effects. The mean net effect was 4.58 TgC yr-1, exhibiting pro-582 

nounced fluctuations and a declining trend. Net enhancement was strong in the early years of 583 

the decade but weakened steadily and approached neutral levels by 2018–2020, when a slight 584 
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negative value (-0.14 TgC yr-1) first appeared. These changes indicate a gradual transition from 585 

an enhancement-dominated to an inhibition-dominated regime. 586 

To further interpret this transition, the study period was divided into three phases accord-587 

ing to key CAA milestones, and the dominant factors were identified (Fig. 9a). In pre-CAA 588 

(2010–2013), the mean annual net effect reached 8.22 TgC yr-1, characterized by nitrogen-589 

deposition-dominated enhancement. Nitrogen deposition provided the largest positive contri-590 

bution (+39.47 TgC yr-1), while the diffuse-radiation fertilization effect of aerosols offered a 591 

secondary gain (+16.08 TgC yr-1). The negative impact of O3 (-47.33 TgC yr-1) was largely 592 

compensated by the two positive drivers, resulting in a pronounced increase in carbon sink 593 

strength. During CAA Phase I (2014–2017), the mean net effect decreased sharply to 3.50 TgC 594 

yr-1, marking a transitional stage with competing influences. The positive effect of aerosols 595 

peaked (+19.22 TgC yr-1), likely due to enhanced scattering as absorbing components were 596 

preferentially reduced. However, this gain was largely offset by intensified O3-induced inhibi-597 

tion (-53.80 TgC yr-1). In CAA Phase II (2018–2020), the mean net effect further declined to 598 

1.19 TgC yr-1, forming an O3-dominated pattern. With continued emission control, the aerosol-599 

induced enhancement decreased from its peak (+18.66 TgC yr-1), and the nitrogen-deposition 600 

gain weakened (+35.68 TgC yr-1). Although O3 suppression slightly eased (-53.15 TgC yr-1), it 601 

still nearly balanced the combined positive contributions, indicating a fundamental shift in at-602 

mospheric drivers controlling China’s terrestrial carbon sink. 603 

The spatial overlay further supports these findings (Fig. 9b, c, d). In forested and indus-604 

trialized regions of eastern and southern China, the cancellation between positive and negative 605 

effects was most pronounced. These areas, benefiting from nitrogen and aerosol fertilization 606 

but suffering from intense O3 pollution, became hotspots of weakened or even reversed net 607 

effects. Overall, the CAA plan not only improved air quality but also altered atmospheric com-608 

position in ways that substantially affected China’s terrestrial carbon sinks. Policy-driven emis-609 

sion changes transformed the system from a nitrogen–aerosol-enhanced regime to an O3-dom-610 

inated offset pattern. These results suggest that achieving synergistic benefits between air-qual-611 

ity improvement and carbon neutrality requires elevating O3 mitigation to a higher strategic 612 

priority. 613 
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 614 

 615 

Figure 9. The overall impacts of aerosols, O3, and atmospheric nitrogen deposition on the ter-616 

restrial carbon sink in China during 2010–2020. (a) Interannual variations of the combined 617 

effects. Pre-CAA represents the period before the implementation of the Clean Air Action 618 

(2010–2013); CAA Phase I and CAA Phase II represent the first (2014–2017) and second 619 

(2018–2020) stages of the CAA, respectively. (b–d) Spatial distributions of the annual means 620 

during the Pre-CAA, CAA Phase I, and CAA Phase II periods. 621 

 622 

3.6 Uncertainties 623 

Although the RegESM framework captures the overall spatiotemporal variations of 624 

China’s terrestrial carbon sink in response to atmospheric composition changes, several uncer-625 

tainties remain that may influence the quantitative assessment of the individual and combined 626 

effects of aerosols, O3, and nitrogen deposition. 627 

First, this study only considered the direct radiative effects of aerosols, while aerosol–628 

cloud interactions were excluded. The first and second indirect effects of aerosols on cloud 629 

formation and albedo involve large uncertainties (Haywood and Boucher, 2000) and were 630 
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therefore not represented in our simulations. However, observations have shown that terrestrial 631 

carbon fluxes are highly sensitive to sky conditions and diffuse radiation changes (Oliphant et 632 

al., 2011; Yue and Unger, 2017). The omission of aerosol–cloud interactions may affect the 633 

magnitude and spatial pattern of aerosol impacts on radiation and photosynthesis, as cloud-634 

mediated diffuse radiation responses remain uncertain. Future work should explicitly include 635 

aerosol–cloud–radiation feedbacks to better quantify their effects on ecosystem carbon ex-636 

change.  637 

Second, uncertainties remain in evaluating vegetation responses to O3 exposure. Field-638 

based O3 fumigation experiments across China are still limited, making it difficult to compre-639 

hensively assess ecosystem-level damage. In this study, the YIBs model applied different O3 640 

damage coefficients for plant functional types, and the parameterization has shown reasonable 641 

regional performance in simulating GPP–O3 responses (Yue et al., 2017). Nevertheless, a wider 642 

range of site-level observations is required to constrain the O3 damage functions across various 643 

vegetation types and climate zones at the national scale.  644 

Third, nonlinear coupling among aerosols, O3, and nitrogen deposition introduces sys-645 

temic uncertainty in estimating their combined effects. Aerosol reduction alters photolysis rates 646 

and thereby affects O3 formation (Tang et al., 2017; Yan et al., 2023; Yang et al., 2022), while 647 

O3 and nitrogen jointly regulate stomatal conductance, photosynthetic efficiency, and water-648 

use dynamics (Sitch et al., 2007; Zhang et al., 2018). These interactions may amplify or offset 649 

each other under changing climatic conditions, emphasizing the need for high-resolution, fully 650 

coupled chemistry–ecosystem modeling frameworks to capture the co-evolution of multiple 651 

atmospheric processes. 652 

In summary, despite these uncertainties, this study provides robust quantitative evidence 653 

that aerosols, O3, and nitrogen deposition jointly modified the magnitude and spatial distribu-654 

tion of China’s terrestrial carbon sink during 2010–2020. Future efforts should focus on incor-655 

porating aerosol–cloud interactions, expanding field-based O3 response networks, and improv-656 

ing representation of multi-process coupling to further constrain atmospheric–biosphere feed-657 

backs under China’s evolving air quality and carbon neutrality goals. 658 

 659 
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4 Conclusions 660 

This study employed the RegESM to quantify the effects of aerosol, surface O3, and ni-661 

trogen deposition on China’s terrestrial carbon sink during 2010–2020. The model effectively 662 

reproduced the spatial and temporal variations of aerosol optical depth, O3, nitrogen deposition, 663 

and carbon fluxes, providing a solid basis for process-level attribution analysis. 664 

Aerosols exerted a substantial positive influence on China’s terrestrial carbon sink. On 665 

average, aerosols enhanced GPP and NEP by 293.28 TgC yr-1 (3.98%) and 17.93 TgC yr-1 666 

(4.49%), respectively, primarily through the diffuse radiation fertilization effect. The strongest 667 

enhancement appeared in southern and eastern China, where high aerosol loading and dense 668 

vegetation synergistically improved canopy light-use efficiency. Aerosol-induced surface cool-669 

ing and reduced VPD further alleviated water stress and stimulated carbon uptake. The en-670 

hancement peaked during 2015–2017, coinciding with elevated diffuse radiation fractions, and 671 

weakened slightly under cleaner atmospheric conditions after 2018. 672 

In contrast, surface O3 persistently suppressed ecosystem carbon uptake, reducing GPP 673 

and NEP by 749.44 TgC yr-1 (10.17%) and 51.33 TgC yr-1 (12.9%), respectively. The strongest 674 

suppression occurred in southeastern and southwestern China, where dense forest ecosystems 675 

coincided with high O3 concentrations. O3-induced damage peaked in 2018, consistent with the 676 

exceptionally high O3 levels. Subsequent coordinated NOx–VOCs management under the sec-677 

ond Clean Air Action partially mitigated O3 levels and NEP suppression. O3 exerted a strongly 678 

seasonal negative impact on NEP, with the strongest suppression occurring in summer. 679 

Atmospheric nitrogen deposition enhanced the terrestrial carbon sink by 9.08% for GPP 680 

and 9.52% for NEP, with effects concentrated in southern and central China. The enhancement 681 

peaked around 2012, declined gradually after 2013 following reduced anthropogenic emissions, 682 

and leveled off after 2015, corresponding to a slower decline in deposition and a lagged eco-683 

system response due to soil nitrogen accumulation. Seasonal variations showed stronger stim-684 

ulation in summer and spring, while autumn and winter exhibited minor reductions linked to 685 

enhanced respiration. 686 

During 2010–2020, the combined effects of aerosols, surface O3, and atmospheric nitro-687 

gen deposition on China’s terrestrial carbon sink exhibited marked interannual variability and 688 
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a distinct transition under the Clean Air Action (CAA). The net atmospheric contribution de-689 

clined from +8.22 Tg C yr-1 during the Pre-CAA period (2010–2013) to +1.19 Tg C yr-1 in 690 

Phase II (2018–2020), as the increasing suppression from O3 (-53.15 Tg C yr-1) gradually offset 691 

the positive impacts of aerosols and nitrogen deposition. These results indicate that China’s air-692 

pollution control not only improved air quality but also altered atmospheric chemical compo-693 

sition in ways that significantly affected ecosystem carbon uptake, with O3 becoming the dom-694 

inant limiting factor in the later period. 695 

Overall, aerosols, O3, and nitrogen deposition exerted interconnected yet contrasting in-696 

fluences on China’s terrestrial carbon sink. Aerosols and nitrogen deposition enhanced carbon 697 

uptake through diffuse radiation and nutrient input, whereas O3 caused physiological damage 698 

that suppressed it. The evolving interplay among these factors illustrates how emission reduc-699 

tions, atmospheric chemistry, and ecosystem feedbacks jointly impact carbon sink dynamics 700 

under China’s clean-air policies. Strengthening integrated O3 control is therefore essential to 701 

secure co-benefits for air quality improvement and carbon neutrality goals. 702 
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