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Abstract. We present a high-resolution snow dataset that provides daily estimates of snow depth, snow water equivalent, snow

cover fraction, and snowmelt runoff for Switzerland and hydrologically connected bordering regions, covering water years

2016 to 2025. The dataset is based on fully distributed simulations at 250 m resolution using the multi-layer, physics-based

snow model FSM2OSHD, operated by the Swiss Operational Snow Hydrological Service. To capture the high spatial het-

erogeneity of snow cover dynamics in complex mountainous terrain, the modeling framework combines dedicated dynamical5

and statistical downscaling of numerical weather prediction data with the upscaling of hyper-resolution terrain, forest, and

light-availability datasets, explicitly accounting for subgrid variability. The particle filter-based assimilation of in situ snow

depth observations from 444 monitoring stations across the domain dynamically corrects spatiotemporal error patterns in the

meteorological forcing data. This approach ensures consistent input data quality over the entire 10-year period and mitigates

potential discontinuities caused by changes within the numerical weather prediction system. Example applications demon-10

strate the dataset’s ability to capture regional and interannual variability of snow water resources, snow cover extent, and snow

duration. With 10 years of physically consistent estimates at high spatial and temporal resolution, this dataset represents, to

our knowledge, the most accurate and comprehensive record of snow cover dynamics for Switzerland to date. It expands the

snow data record for the European Alps and bridges the gap between coarse global reanalyses and detailed local observations.

The dataset is publicly and freely available providing a valuable resource for a wide range of scientific and applied studies in15

hydrology, ecology, climate, and cryospheric research.

1 Introduction

Seasonal snow drives numerous hydrological and ecological processes (Han et al., 2024; Hale et al., 2023; Slatyer et al., 2022)

and affects many socioeconomic aspects (Rasul and Molden, 2019). Snow-cover extent, as well as timing and intensity of

snowmelt, have a direct impact on avalanche and flood hazards (Musselman et al., 2018; Li et al., 2019; Eckert et al., 2024),20

freshwater availability (Musselman et al., 2021; Siirila-Woodburn et al., 2021), hydropower production (Magnusson et al.,

2020; Hou et al., 2025), and winter tourism (Moreno-Gené et al., 2018; Morin et al., 2021). However, estimating snow water
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resources in mountainous regions is particularly challenging due to the substantial spatial variability of the terrain and the

snowpack (Grünewald et al., 2010; López-Moreno et al., 2013; Mott et al., 2018), the lack of accurate distributed measure-

ments (Dozier et al., 2016; Gascoin et al., 2024), and the uncertainties inherent in snowpack estimated from numerical models25

(Menard et al., 2021).

The mountain snowpack remains severely undersampled despite continuous monitoring efforts (Largeron et al., 2020). De-

tailed, high-resolution hydrometeorological and snow datasets exist for small Alpine catchments, such as the Dischma catch-

ment in Switzerland (Magnusson et al., 2025) or the Izas catchment in the Spanish Pyrenees (Revuelto et al., 2017), but

their spatial coverage is limited. Similarly, airborne lidar- or photogrammetry-based snow depth maps are available only for30

a few select catchments and at specific times during the season (Painter et al., 2016; Bührle et al., 2023). For larger scales

and with roughly weekly temporal resolution, spaceborne optical sensors provide observations of snow cover extent and snow

cover fraction (SCF) (Gascoin et al., 2019), but cannot provide direct information on snow depth or snow water equivalent

(SWE). The NorSWE dataset (Mortimer and Vionnet, 2025) compiles SWE observations from more than 10,000 locations

across the Northern Hemisphere over three decades, with the Alps represented by manual point measurements from 11 sites in35

Switzerland only. Spatially explicit snow depth observations from Sentinel-1 retrievals are possible under dry-snow conditions

(Lievens et al., 2019, 2022), but truly reliable, high-resolution, spatiotemporally continuous SWE estimates remain elusive

(Gascoin et al., 2024; Mortimer et al., 2020). While numerical models can provide such continuous estimates at any desirable

spatial and temporal resolution, they are subject to inherent uncertainties in the parametrization and forcing data (Günther et al.,

2019; Menard et al., 2021).40

Reanalysis products provide estimates of past states by constraining numerical simulations through the assimilation of

observational datasets. While global reanalyses within numerical weather prediction (NWP) systems, such as ECMWF’s ERA5

(Hersbach et al., 2020), are widely used for climate monitoring, their snow-related variables offer only low resolution and

accuracy in mountainous regions (Li et al., 2022; Monteiro and Morin, 2023; Kouki et al., 2023). Fiddes et al. (2019) presented

an efficient method that couples sub-grid clustering of complex terrain, downscaling of global meteorological reanalysis data,45

and the assimilation of spaceborn SCF observations, to enable high-resolution ensemble-based snow reanalyses in mountain

regions. Other recent efforts in the snow modeling community have produced detailed and dedicated long-term snowpack

reanalysis datasets: the modeling and data assimilation system SNODAS provides daily snowpack and precipitation data at

1 km resolution over the contiguous United States from 2003 onward (Barrett, 2003); daily estimates of SWE and SCF based

on the assimilation Landsat SCF observations into a land surface model, coupled with a snow depletion curve, are available50

for the Sierra Nevada (Margulis et al., 2016) and the western United States (Fang et al., 2022), at a resolution of 90 m and

500 m, respectively; a similar dataset based on the joint assimilation of Landsat and MODIS SCF observations is available for

High Mountain Asia (Liu et al., 2021); a daily 10 km gridded snow depth and SWE estimates over the Iberian Peninsula since

1980 are available based on the physics-based snow model FSM forced with downscaled ERA-interim data (Alonso-González

et al., 2018, and references therein); daily 1 km gridded estimates of snow depth and snow cover duration between 1961 and55

2020 are available for Austria, based on simulations of the SNOWGRID model in a climate configuration forced with gridded

meteorological observatiions (Olefs et al., 2020); the IT-SNOW reanalysis provides daily estimates of snow states for Italy
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from water year 2010 onward by combining model simulations with in-situ and spaceborne osbervations (Avanzi et al., 2023);

the S2M meteorological and snow cover reanalysis combines the meteorological analysis SAFRAN and the high complexity

snow model CROCUS within the SURFEX/ISBA land surface model, covering the semi-distributed massifs of the French60

Alps, Pyrenees, and Corsica from 1958 onwards (Vernay et al., 2022, and references therein).

Here, we present a continuous 10-year snow reanalysis dataset for Switzerland and hydrologically connected bordering re-

gions, produced within the near-real-time modeling framework of the Swiss Operational Snow Hydrological Service (OSHD).

The dataset provides daily estimates of snow depth, SWE, SCF, and snowmelt runoff by combining high-resolution simula-

tions from the intermediate-complexity, physics-based snow model FSM2OSHD (Mott et al., 2023) with in situ snow depth65

observations from 444 stations (Oberrauch et al., 2024). To capture the high spatial variability of snow processes in complex

Alpine terrain, the modeling chain employs dedicated dynamical and statistical downscaling of NWP forcing data to a spatial

resolution of 250 m, solves the coupled mass- and energy-balance equation for multiple numerical snow layers, and explicitely

accounts for differences in the atmospheric and snowpack procsesses of open, forested, and glaciated areas (Mazzotti et al.,

2021). The simulations are based on upscaled versions of the most accurate hyper-resolution datasets currently available, in-70

cluding a 10 m digital elevation model and terrain surface model (swissALTIRegio, 2025; swissSurface3D, 2025), as well as

light availability maps that resolve terrain and vegetation shading down to individual trees for every hour of the year (Webster

et al., 2025). Temporal consistency across the whole period is ensured through an assimilation scheme that homogenizes me-

teorological inputs despite changes in the source and processing level of the forcing data (Oberrauch et al., 2025; MeteoSwiss,

2024). The model has been tuned and validated continuously over the past decade against snow depth, SWE, SCF, and new75

snow observations from a dense station network (Mott et al., 2023; Cluzet et al., 2024; Haagmans et al., 2025).

To our knowledge, this dataset represents the most accurate and comprehensive snow reanalysis for Switzerland to date. By

providing 10 years of physically consistent estimates of snow cover dynamics at a subkilometric resolution across a large part

of the European Alps, it contributes to the snow database of a region characterized by highly complex terrain and diverse hydro-

climatic regimes. The dataset helps bridge existing scale and knowledge gaps between coarse global products (e.g., Hersbach80

et al., 2020) and detailed local observations (e.g., Magnusson et al., 2025) and provides a robust foundation for hydrological,

ecological, and cryospheric analyses (e.g., Jenicek et al., 2016; Xie et al., 2018; Floriancic et al., 2020; Publications Office of

the European Union, 2023). The data is publicly and freely available under https://zenodo.org/records/17313889?preview=1&

token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6IjhkOTgwNDcyLWI3ZWYtNGZmOS1iY2VkLTFjZTkyMmNmMzFhZCIsImR

hdGEiOnt9LCJyYW5kb20iOiI2ZTEwZjVhZDdmNGZlZWE2NjIyYjBlMzkzM2M2NGFmMyJ9.cu88BUCkEuh0UH37WT85

vSZTIbDiqw331U6yF7T51TbhQMUvOv4pmmrA2bN2LEs6NJhW1Pp4Zdm7BTqNUvU0O7Lw (Oberrauch et al., 2026),

offering substantial value to a wide range of scientific and applied users.

2 Data and model chain

The basis for the presented dataset is the fully distributed, physics-based, multi-layer snow model FSM2OSHD (Mott et al.,

2023), operated by the OSHD. Forcing data from the Federal Office of Meteorology and Climatology, MeteoSwiss, are debiased90
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Figure 1. Terrain representation of the model domain based on the 250 m resolution digital elevation model. Major water bodies are shown

in grey, the Swiss national border is outlined in black, and a shaded relief is used as a background map. The panel on the bottom right shows

the distribution of model grid elevations in 250 m bands.

and downscaled to the 250 m model resolution and dynamically corrected through the assimilation of in situ snow depth

observations (Oberrauch et al., 2024). The following section provides a brief overview of the study area, the datasets used, the

modeling chain, and the particle filter (PF) based assimilation scheme.

2.1 Study area

The presented dataset spans Switzerland and hydrologically connected neighboring regions of Austria, France, Germany, Italy,95

and Liechtenstein. The model domain has a latitudinal and longitudinal extent of 272 km and 365 km, respectively. It comprises

928 155 grid cells at a spatial resolution of 250 m, for a total area of over 58 000 km2. Model elevations range from 180 m a.s.l.

to 4750 m a.s.l., with 50 % of the grid points located above 966 m a.s.l.. Roughly 40 % of the domain is forested, with forest

cover extending up to 2 400 m a.s.l., although less than half of the forest is situated above 1 000 m a.s.l. (Szerencsits, 2012;

Haagmans et al., 2025).100

Switzerland lies in Central Europe and spans both sides of the European Alps and the adjacent lowlands, each characterized

by distinct hydroclimatic regimes. The main Alpine ridge forms a climatic divide between Mediterranean air masses to the

south and Atlantic air masses to the north (Gubler et al., 2023). Precipitation is generally high in the Alps, the Alpine foothills,

and the Jura mountains (in the northwest of the country), with annual totals of around 2 000 mm. In contrast, certain inner-

Alpine valleys are sheltered from moist air masses and are therefore comparatively dry, with annual totals of about 700 mm105
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Figure 2. Monthly climatology of near-surface air temperature (left) and snowfall sums (right) stratified by elevation bands over the period

between September 2015 and August 2025, based on the meteorological forcing data. Results are averaged over all model grid points within

the respective elevation bands. Solid lines represent mean values, while the shading indicates the standard deviation across the 10 seasons.

or less (MeteoSwiss, 2025). Figure 2 displays average monthly air temperature and solid precipitation aggregated into four

elevation bands, based on the forcing data over the presented 10-year period (with the interannual variability indicated by

shadings).

2.2 Used datasets

MeteoSwiss officially replaced its operational forecasting model in June 2024 (MeteoSwiss, 2024), shifting from COSMO110

(Baldauf et al., 2011) to ICON (Zängl et al., 2015) as the dynamical core. Moreover, ICON data was reprocessed for a tran-

sitional period between 2020 and 2024. ICON is the higher-resolution successor to COSMO, and provides an improved rep-

resentation of terrain-induced variability (Zängl et al., 2015; MeteoSwiss, 2023). Hence, for the water years 2016 to 2020,

we use analysis data from COSMO, while from 2021 onward, ICON data were employed at different processing levels: (re-

)forecast data for the water years 2021 to 2023 and analysis data from 2024 onward. Oberrauch et al. (2025) demonstrated that115

correcting spatiotemporal error patterns in the forcing data through the assimilation of point observations homogenizes snow

model performance. Thereby, potential temporal discontinuities arising from changes in the forcing data sources are mitigated,

as detailed below in Section 2.4.

The hourly NWP data are downscaled from 1 km to the 250 m model resolution using various statistical and dynamic

downscaling schemes (detailed below in Section 2.3), all based on a detailed land-use and land-cover dataset. The basis is120

the swissALTIRegio digital elevation model (DEM) with a resolution of 10 m (swissALTIRegio, 2025), used to compute the

250 m model DEM, as well as the topographic position index, slope, aspect, and subgrid terrain variability for each grid cell.

The CORINE land cover dataset (European Union’s Copernicus Land Monitoring Service information, 2020) was used to

distinguish between open, forested, and glaciated areas, which are handled differently by the FSM2OSHD model (detailed

below in Section 2.3). Large water bodies where snow does not accumulate are excluded from the domain, indicated as grey125

areas in Figure 1 and subsequent figures.

5

https://doi.org/10.5194/egusphere-2026-159
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



Downscaling hourly meteorological forcing data:

air temperature, air pressure, long and shortwave radiation,

solid and liquid precipitation, relative humidity, wind speed

Ensemble of
point simulations

In situ snow depth
observations

PF-based
assimilation

Forcing corrections

Assimilation scheme

Spatial simulations at 250 m resolution
Daily SCF, SWE, snow depth, and meltwater runoff data

3D-Gaussian
Interpolation

Figure 3. Simplified flowchart of the modeling chain, including the PF-based assimilation scheme to correct meteorological forcing inputs.

The SwissRad10 dataset provides domain-wide estimates of direct and diffuse radiation at 10 m resolution across Switzer-

land, accounting for vegetation and terrain shadowing as well as the sky view fraction (Webster et al., 2025). The dataset is

derived from high-resolution airborne lidar data that resolves individual trees (swissSurface3D, 2025), using the Canopy Radi-

ation Model (Webster et al., 2023). It provides terrain-only and leaf-on and leaf-off canopy scenarios (of which only the latter130

is used in FSM2OSHD) at hourly resolution over a full annual solar cycle.

2.3 The OSHD modeling chain

FSM2OSHD is a multi-layer, physics-based model solving the coupled mass and energy balance for individual numerical

snow layers at an hourly resolution, without directly accounting for snow microstructures and metamorphism (Mott et al.,

2023). FSM2OSHD was originally based on the Flexible Snow Model (FSM2, Essery, 2015; Essery et al., 2025), incorporating135

additional process-based refinements adapted and tuned for the application within the OSHD.

The implemented snowpack process parameterizations (FSM2OSHD code available at https://github.com/oshd-slf/FSM

2oshd) are briefly outlined below; please refer Mott et al. (2023, and references therein) for more detailed information. Fresh

snow density is estimated from air temperature and wind speed during the snowfall (Vionnet et al., 2012), fine-tuned against

observations of fresh snow fallen and settled over a period of 24 hours. The settling of the snowpack and the associated140

changes in snow density are computed via a viscosity-based overburden scheme adapted from Vionnet et al. (2012). Increasing

snow weight compresses the underlying layers depending on the layer’s viscosity, which, in turn, depends on layer density,

temperature, and liquid water content. Thermal conductivity between snow layers is diagnosed from snow density (Douville
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et al., 1995; Essery, 2015), while the ground heat flux is estimated using a five-layer soil model (Cox et al., 1999; Essery, 2015).

Turbulent fluxes at the snow–atmosphere boundary are parameterized following Essery (2015, Section 2.3.4), with transfer145

coefficients adjusted according to the Richardson number (Ri, Louis, 1979) and capped at Ri = 0.2 to prevent an unrealistic

stability-induced shutdown of the turbulent exchange. Liquid water retention in each layer follows a bucket-storage approach,

whereby the storage capacity depends on snow density (Anderson, 1976; Boone and Etchevers, 2001). Broadband snow albedo

is computed with a snow-age-dependent decay function, following a linear rate for cold snow and an exponential rate for

melting snow (Douville et al., 1995). Albedo values are reset to their maximum fresh-snow values after a minimum of 10 mm150

w.e. new snow accumulation over 24 hours. Additional tuning accounts for bare ground piercing through thin snowpacks, as

well as aspect- and slope-dependent differences in the albedo decay based on a comparison with spaceborne snow wetness

and SCF observations (Cluzet et al., 2024). SCF in open, non-forested areas is estimated by tracking the seasonal evolution of

snow depth and SWE depending on subgrid terrain variability (Helbig et al., 2021), while a simpler hyperbolic tangent model

is applied within forests (Essery, 2015).155

FSM2OSHD differentiates between open, forested, and glaciated terrain by simulating the snow cover separately for each

land cover type and aggregating the results as a weighted average according to the respective land cover fractions within each

grid cell. Glaciated terrain is simulated analogously to open terrain but with a modified ground heat flux and roughness length.

For forest-covered grid cells, FSM2OSHD explicitly accounts for key snow–canopy and canopy–atmosphere interactions,

including snowfall interception, snow unloading and sublimation from the canopy, shortwave radiation transmission, longwave160

radiation enhancement, and wind attenuation (Mazzotti et al., 2020a, 2021; Essery et al., 2025). Forest processes and vegetation

shading extend beyond the forest edges, thereby influencing adjacent open terrain.

The hourly NWP data is bias corrected and downscaled to the 250 m model grid and station locations (see Section 4 and

Table 1 in Mott et al., 2023) by statistically downscaling the wind fields (Winstral et al., 2017), dynamically downscaling

the radiation input (Jonas et al., 2020; Webster et al., 2025), and linearly interpolating air temperature, relative humidity and165

precipitation with corresponding lapse rate corrections. Slope-dependent precipitation adjustment accounts for not explicitly

resolved redistribution processes in mountainous terrain. (Griessinger et al., 2016). For ICON data, we use the provided solid

and liquid precipitation fractions, while COSMO precipitation data are partitioned into rain and snow based on air temperature

(Kavetski and Kuczera, 2007; Magnusson et al., 2014; Oberrauch et al., 2024). This partitioning also enables the assimilation

scheme to modify the precipitation phase through small adjustments in air temperature (detailed below in Section 2.4).170

Analogous to the operational products of the OSHD, the presented dataset represents seasonal snow for individual water

years, defined as the period from September 1 to August 31 of the following year. Accordingly, at the beginning of each

water year, all snow is removed, disregarding the buildup of any perennial snow and firn at high elevations and on glaciers. A

one-year spin-up simulation is performed to initialize the soil layer temperatures for the water year 2016. Subsequently, the

end-of-season soil temperatures are used to initialize the following season.175
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2.4 PF-based assimilation

The particle filter (PF, Chopin and Papaspiliopoulos, 2020) is a Bayesian data assimilation method that estimates the state of

a system from a weighted set of ensemble members, referred to as particles. The ensemble simulation represents the initial

uncertainty of the prior estimate. Particle weights are sequentially updated based on the likelihood of the given observation,

under the assumption that the respective particle represents the true state of the system. The resulting posterior distribution180

combines prior information and observations, accounting for their respective uncertainties. Particles are propagated from one

assimilation step to the next according to the model dynamics, with a potential resampling step to ensure adequate dispersion.

Given spatially correlated priors, it is possible to update unobserved locations indirectly (e.g., Odry et al., 2022; Alonso-

González et al., 2023).

We employ the PF-based assimilation scheme described by Oberrauch et al. (2024) to correct spatiotemporal error patterns185

in the meteorological forcing data by assimilating point snow depth observations from 444 stations across the domain. Local

corrections are inferred independently for each station location and three-day assimilation window, and subsequentially in-

terpolated to unobserved locations across the domain. The assimilation procedure is performed on a separate "offline" set of

point simulations, allowing for computationally efficient updates of the fully distributed simulations over such a large domain

without the need for a gridded ensemble.190

The prior ensemble is generated by stochastically perturbing incoming longwave radiation and air temperature additively, and

precipitation amount multiplicatively via a scaling factor. The additive perturbations and scaling factors are drawn from normal

and lognormal distributions, respectively, all centered around the non-perturbed state. This perturbation strategy provides direct

and largely independent handles on the radiative energy budget, as well as the amount and phase of precipitation (the latter

via small perturbations of air temperature), thereby minimizing equifinality issues (Oberrauch et al., 2024). Best results were195

achieved by allowing sufficient flexibility in correcting the given forcing variables, which was accomplished by defining less

constrained perturbation priors. The additional perturbation of model parameters, namely the snow viscosity, did not notably

improve the final estimate (Oberrauch et al., 2025). Hence, to create this dataset, we applied the "METEO" perturbation strategy

from Oberrauch et al. (2025), which draws perturbations from more relaxed prior distributions and assumes an observation error

of 5 % of the observed snow depth, with bounds of 5 and 20 cm. Further details are given in Section 2.8 and Tables 2 and 3 of200

Oberrauch et al. (2025).

For each station and assimilation window, a set of optimal forcing corrections is defined based on the probability density

distribution of the perturbation posterior. At the end of each three-day assimilation window, the posterior distribution is com-

puted from the weight of each particle ωi based on the difference between simulated snow depth di
sim and observed value dobs:

205

ωi = exp

(
−0.5

(
di

sim− dobs

σobs

)2
)

, (1)

whereby σobs represents the observation uncertainty. The most conservative local mode of the resulting multivariate distribution,

i.e., the point with the highest probability density closest to the unperturbed state, is chosen as the optimal set of forcing
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corrections. For a more in-depth explanation, please refer to Oberrauch et al. (2024, Section 2.4.1). This deliberate collapse

of the probabilistic information onto a deterministic estimate forms the basis for the subsequent propagation of the inferred210

information to unobserved locations.

The independently inferred local forcing corrections are interpolated in space via a three-dimensional Gaussian interpolation

scheme (Jörg-Hess et al., 2014). The corrections at each grid point are a weighted average of all stations within a 35 km radius,

weighted by the three-dimensional distance to the station location, whereby the vertical distance is scaled by a factor γ = 50

relative to the horizontal distance (following Oberrauch et al., 2024, Section 2.4.3). The gridded corrections obtained from the215

spatial interpolation are then applied to the downscaled gridded meteorological input data, forcing the distributed simulations.

The assimilation scheme notably improves snowpack simulations at unobserved locations across the domain at subregional

scales, whereby its performance is ultimately constrained by the information content of the assimilated observations (Oberrauch

et al., 2025). As a result, input datasets of varying quality and processing levels from the COSMO and ICON forecasting

systems can be effectively corrected, yielding snowpack simulations of comparable accuracy regardless of the input data. This220

homogenization of the meteorological forcing ensures consistent quality of the provided dataset throughout the entire 10-year

period, preventing year-to-year discontinuities, which may arise when switching NWP models (between COSMO and ICON)

or processing levels (between forecast and analysis). A detailed evaluation of the assimilation scheme, comparing multiple

assimilation settings over two seasons and a range of model complexities and input data qualities, is provided in Oberrauch

et al. (2025).225

3 Evaluation and Limitations

The OSHD model system has been successfully employed in an operational context for over a decade, delivering daily analyses

and forecasts of snow cover dynamics across Switzerland, thereby providing critical information to the avalanche warning

service, the Federal Office for the Environment, and other partners (Mott et al., 2023). In addition to its operational use, which

relies on the system’s robustness and the consistent quality of the data products delivered, continuous tuning, validation, and230

integration of advances from snow modeling research further contribute to the high quality of the data provided.

A recent validation study by Cluzet et al. (2024) compared snow wetness and snow cover fraction observations from Sentinel-

1 and Sentinel-2 retrievals, respectively, against a pre-operational version of FSM2OSHD over five winter seasons from 2017

to 2021. They identified a delayed melt onset, particularly in southern aspects. Refining the albedo parameterization improved

the modeled melt patterns, thereby substantially reducing biases in both the wet-snow line and the snow line of the model235

instance used here.

The representation of snow-canopy and canopy-atmosphere interactions within FSM2OSHD has been extensively validated

at a process-level and for hyper-resolution simulations between 1 and 50 m (Mazzotti et al., 2020b, 2021, 2023). At the pre-

sented 250 m resolution, a comparison against PlanetScope RGB composites showed that FSM2OSHD accurately reproduces

the observed differences in seasonal, interannual, and regional evolutions of the snowpack between open, densely, and sparsely240

forested areas (Haagmans et al., 2025).
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Figure 4. Simulated (blue line) and observed (orange dots) snow depth at 444 station locations between September 2015 and August 2025.

Values are averaged over all stations within each elevation band. RMSE and bias are calculated over the entire period for all snow-covered

days within the respective elevation bands (i.e., excluding days when both simulated and observed values are zero).

To provide an estimate of the uncertainties in the presented data, we compare snow depth estimates to 444 point observations

covering the entire simulation period from September 2016 to September 2025. Average snow depths shown in Figure 4,

aggregated into four distinct elevation bands, exhibit RMSE and bias values on the order of only a few centimeters. Even in

the highest elevation band, with peak snow depths exceeding 2 m, the RMSE remains as low as 6 cm, with a slightly negative245

bias of 4 cm. It should be noted that these point observations are used during the assimilation step and are therefore not

entirely independent. However, since the locally inferred corrections are interpolated in space, the presented validation against

station data can be assumed to represent dataset errors at the targeted sub-regional scale. For a more in-depth validation of the

assimilation scheme, please refer to (Oberrauch et al., 2024).
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Figure 5. Daily time series of average SWE (orange shading, left axis) and total meltwater runoff (blue line, right axis) over the whole

domain from September 2015 to August 2025.

The research model variant FSM2trans (Quéno et al., 2024) includes dedicated modules for snow redistribution by gravity-250

and wind-driven processes (Bernhardt and Schulz, 2010; Liston et al., 2007), as well as an updated density-dependent layering

scheme to represent erodible snow. While accounting for horizontal redistribution of snow enables a more realistic representa-

tion of small-scale accumulation and erosion patterns, it requires simulations at hectometre or finer spatial resolutions, along

with appropriate downscaling of wind fields (Quéno et al., 2024; Berg et al., 2024; Reynolds et al., 2024). At the resolution of

250 m of the presented dataset, FSM2OSHD does not explicitly account for snow redistribution, which may affect the accuracy255

of local-scale snow distribution patterns.

Snowpack estimates may be less reliable at very high elevations above 3 000 m a.s.l., where uncertainties are difficult to

quantify due to the lack of comprehensive observational data. Moreover, a limited number of the highest grid cells are lo-

cated outside the range of influence of any snow monitoring station. Hence, the assimilation scheme cannot infer any forcing

corrections, and the input corresponds to the raw downscaled and bias-corrected NWP data.260

4 Example usage

The presented dataset provides daily values of snow depth, SWE, SCF, and meltwater runoff over an area of 58 000 km2 and

a period of 10 years, enabling analyses across different temporal and spatial scales. Below, we highlight several illustrative

examples of its use.

Figure 5 shows time series of the average SWE (orange shading, left axis) and total meltwater runoff over the entire domain265

(blue line, right axis). Over all 10 seasons, average peak-SWE amounts to 130 mm w.e., with around 90 mm w.e. for low-snow

years and above 160 mm w.e. for high-snow years. Interannual variations in peak-SWE values are even more pronounced,

ranging from up to 197 mm w.e. in water year 2018 down to 85 mm w.e. in water year 2025. While the overall seasonality is

consistent, the magnitude of seasonal accumulation and melt varies notably. On average, peak-SWE typically occurs on March

24±18 days, but can be as early as the end of February and as late as the beginning of May (corresponding to a range of 65270

days). Meltwater runoff also follows a clear seasonal pattern, with low values in autumn and winter, peak values in spring, and
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Figure 6. Map of average pixel-wise peak SWE between September 2015 and August 2025. The Swiss national border is outlined in black,

and a shaded relief is used as background map.

a gradual reduction during summer. Day-to-day variability is, however, much higher, with pronounced spikes throughout the

season and maximum values occurring as early as December (see water year 2021).

The average pixel-wise peak SWE over all 10 seasons, shown in Figure 6, reveals a distinct elevation-dependent pattern.

In the high mountains and glaciated areas along the Alpine Main Ridge, peak SWE values regularly exceed 1 000 mm w.e.275

and even surpass 2 000 mm w.e.. In the mid-elevation mountain ranges between 2 000 m and 3 000 m a.s.l., average peak SWE

is approximately 550 mm w.e.. Over the Swiss Plateau, the snowpack remains shallow, with considerably higher peak-SWE

values observable in the adjacent Jura Mountains.

Figure 7 shows the snow melt-out date for each season, defined as the last day of the water year with at least 5 cm of snow

cover, following a minimum of 30 consecutive days of snow cover. The Swiss Plateau rarely experiences a whole month of280

continuous snow cover, so a melt-out date cannot be computed for most of the region. In the Jura and Alpine foothills, the

melt-out date typically falls between December and March, while snow cover can be observed up to June and later along the

Main Alpine Ridge. Nevertheless, the interannual variability is considerable and total domain-wide SWE (shown in Figure 5)

and melt-out dates are not necessarily correlated: in the low-snow year 2016, for instance, the average peak SWE was only

120 mm w.e., yet melt-out dates above 2 000 m ranged from June to September.285

Figure 8 shows maps of the number of snow days per season (defined as days with a minimum snow depth of 5 cm) grouped

into discrete classes between 1, 15, 30, 60, 120, and more than 365 days. Across all 10 years, much of the Swiss Alps exhibits

a persistent seasonal snowpack with more than 120 snow days, while the Alpine foothills, Jura Mountains, and Swiss Plateau

generally experience far fewer snow days. The water year 2020 shows a particularly distinct bimodal pattern, with areas
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Figure 7. Maps of snow melt-out date for the water years 2016–2025. The snow melt-out date is defined as the last day of the water year with

at least 5 cm of snow depth, following a minimum of 30 consecutive days of continuous snow cover. The Swiss national border is outlined

in black, and a shaded relief is used as background map.

experiencing either more than 120 snow days or fewer than 15, and only narrow transition zones in between. The interannual290

variability is pronounced, not only between low and high elevations but also between the northern and southern slopes of the

Alps. In most years, at least one day of snow cover occurs across the majority of the domain, although some exceptionally

warm and/or dry years (e.g., 2020, 2022, and 2023) show snow-free conditions in the lowlands. Regions with 120 or more

snow days and a snow cover that persists until the end of the season (labeled as > 365 in the figure) are confined to small areas

in the highest and glaciated parts of the Alps and are virtually absent in certain years, such as 2017.295
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Figure 8. Maps of the number of snow days per season (defined as days with a minimum snow depth of 5 cm) for water years 2016 to 2025.

Regions with 120 or more snow days and a snow cover that persists until the end of the season are labeled as > 365 . The Swiss national

border is outlined in black, and a shaded relief is used as background map.

5 Data format

The dataset provides daily estimates of snow depth (m), snow water equivalent (mm w.e. ≡ kg m−2), snow cover fraction

(unitless), and snowmelt runoff (mm day−1 ≡ kg m−2 day−1) for each grid cell within the domain. The reference time for

daily values is 06:00 Central European Time (CET≡ UTC+01:00), with snow depth, SWE, and SCF representing states at that

time, and runoff corresponding to the accumulated total over the preceding 24 hours. Given that on September 1 at 6:00 CET300

of each season, all snow is removed, all variables for that day in the dataset are zero because the end-states from the previous

season are not carried over.

The data are stored in self-explanatory monthly NetCDF files (e.g., OSHD_DATA_2020-01.nc for January 2020) within

individual zip archives for each water year (e.g., OSHD_DATA_WY2020.zip for water year 2020). Variable names, attributes,

and metadata adhere to the CF 1.12 and ACDD 1.3 conventions. The data variables are structured as three-dimensional ar-305
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rays, with time, easting, and northing coordinates. The temporal coordinate denotes the number of days since the first day of

the corresponding month. The horizontal coordinates refer to the center of the respective grid cell, given in the local Swiss

CH1903+/LV95 reference system (EPSG: 2056). The total spatial extent is also specified by the minimum and maximum

longitude and latitude in WGS84 coordinates (EPSG:4326). Additional metadata contains title, keywords, summary, contact

information, and version history. The model DEM is provided as a GeoTiff (OSHD_MODEL_DEM.tif). Compatibility with310

the NASA Panoply NetCDF Viewer (NASA GISS, 2025) was verified using Panoply v5.7.1 under Windows 11.

6 Conclusions

We present a reanalysis dataset of spatially explicit seasonal snow cover dynamics for Switzerland and its bordering re-

gions for water years 2016 to 2025, based on the high-resolution simulations with the physics-based, multi-layer snow model

FSM2OSHD and the assimilation of snow depth observations from 444 stations across the domain. The combination of ded-315

icated downscaling of NWP forcing data with the upscaling of state-of-the-art hyper-resolution DEM and light-availability

datasets enables simulations that account for subgrid variability within the 250 m model resolution, which is crucial for cap-

turing the spatial heterogeneity of the mountainous snowpack. The coupled energy- and mass-balance equation, solved for

individual numerical snow layers, explicitly accounts for different atmospheric and snowpack processes of open, forested, and

glaciated areas. Finally, the assimilation of in situ snow depth observations dynamically corrects spatiotemporal error patterns320

in the meteorological input data, ensuring consistent forcing quality over the presented 10-year period.

Spanning 10 years of physically consistent snow cover estimates across a large part of the European Alps, the dataset

contributes to the snow data record for a region characterized by complex terrain and diverse hydroclimatic regimes. With

its high spatial and temporal resolution, the dataset helps bridge the gap between coarse global products and detailed local

observations. The data are publicly and freely available at https://zenodo.org/records/17313889?preview=1&token=eyJhbGci325

OiJIUzUxMiJ9.eyJpZCI6IjhkOTgwNDcyLWI3ZWYtNGZmOS1iY2VkLTFjZTkyMmNmMzFhZCIsImRhdGEiOnt9LCJyY

W5kb20iOiI2ZTEwZjVhZDdmNGZlZWE2NjIyYjBlMzkzM2M2NGFmMyJ9.cu88BUCkEuh0UH37WTvSZTIbDiqw331U

6yF7T51TbhQMUvOv4pmmrA2bN2LEs6NJhW1Pp4Zdm7BTqNUvU0O7Lw (Oberrauch et al., 2026), providing a robust

foundation for hydrological, ecological, and cryospheric analyses.

Data availability. The dataset is publicly available at https://zenodo.org/records/17313889?preview=1&token=eyJhbGciOiJIUzUxMiJ9330

.eyJpZCI6IjhkOTgwNDcyLWI3ZWYtNGZmOS1iY2VkLTFjZTkyMmNmMzFhZCIsImRhdGEiOnt9LCJyYW5kb20iOiI2ZTEwZjVhZ

DdmNGZlZWE2NjIyYjBlMzkzM2M2NGFmMyJ9.cu88BUCkEuh0UH37WTvSZTIbDiqw331U6yF7T51TbhQMUvOv4pmmrA2bN2

LEs6NJhW1Pp4Zdm7BTqNUvU0O7Lw (Oberrauch et al., 2026) under a CC BY 4.0 license, permitting use, adaptation, and redistribution

with appropriate attribution to the creators and the original dataset. Data are compressed into self-explanatory zip archives for each water

year (e.g., OSHD_DATA_WY2020.zip for water year 2020), containing monthly NetCDF files (e.g., OSHD_DATA_2020-01.nc for335

January 2020) with all relevant metadata conforming to the CF 1.12 and ACDD 1.3 conventions. The model digital elevation model (DEM)

15

https://doi.org/10.5194/egusphere-2026-159
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



is distributed as a GeoTIFF file named OSHD_MODEL_DEM.tif. Sources of all input datasets and model codes used in this study are

detailed in the accompanying publication.
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