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Abstract. Sandy shoreline–sandbar systems exhibit complex variability arising from the interplay between hydrodynamic forc-

ing and intrinsic morphological feedbacks. Using long-term satellite-derived shoreline and sandbar observations, we applied

global polynomial modeling to reconstruct low-dimensional deterministic dynamics for four contrasting coastal sites. The

resulting autonomous models reproduce key morphodynamic features, including self-sustained shoreline oscillations, shore-

line–sandbar coupling, and intermittent transitions between quasi-stable configurations. Nonlinear stability analyses reveal5

that these systems behave as chaotic oscillators, characterized by locally divergent yet globally bounded trajectories. Energetic

episodes correspond to rapid shoreline–sandbar exchanges, whereas long low-energy states reflect stable attractor confinement.

Together, these results demonstrate that sandy coasts are governed by deterministic but chaotic dynamics, in which internal

coupling and self-organization control both variability and finite predictability. The proposed framework offers a physically

consistent and data-driven approach to characterize and compare coastal morphodynamics within a unified nonlinear dynamical10

perspective.

1 Introduction

Systems in geosciences are inherently complex, nonlinear, and often display sensitivity to initial and boundary conditions, lead-

ing to behaviors that range from quasi-periodic or near-periodic oscillations to low-dimensional chaos and high-dimensional

stochastic-like dynamics (Lorenz, 1963; Dijkstra, 2013; Jin et al., 1994; Nicolis and Nicolis, 1991). Such systems are typically15

governed by the interplay between internal feedbacks and external forcing (Ghil and Sciamarella, 2023; Maraldi et al., 2025;

Di Capua et al., 2023), operating across multiple spatiotemporal scales (Lovejoy, 2019). The ocean–atmosphere system, river

deltas, dune fields, and coastal morphodynamics all exemplify this type of nonlinear organization, where irregularity coex-

ists with underlying low-dimensional dynamics (Baas, 2002; Coco and Murray, 2007; Murray et al., 2009, 2014; Jerolmack

and Paola, 2010). In particular, coastal environments represent a natural laboratory for studying nonlinear self-organization20
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under continuous external forcing, as they integrate hydrodynamic energy input (waves, tides, sea level anomalies), sediment

transport, and morphological feedback loops within a dynamically evolving boundary system (Castelle and Masselink, 2023).

Recent advances in satellite Earth observation now make it possible to monitor coastal morphology at unprecedented spa-

tiotemporal scales (Vos et al., 2020, 2023; Almar et al., 2023; Graffin et al., 2025a; Frugier et al., 2026; Luijendijk et al., 2018;

Castelle et al., 2023; Konstantinou et al., 2023). Time series of shoreline and active nearshore sandbar positions can be extracted25

from optical satellite imagery, enabling continuous monitoring of beach morphology over decadal timescales with weekly to

monthly resolution. These remote sensing observations have now been extensively validated against in-situ field surveys at

several historical sites for shoreline data (Graffin et al., 2025b; Vos et al., 2023) and at one site for sandbar data (Frugier et al.,

2026, 2025), demonstrating their capacity to resolve the coevolution of the shoreline-sandbar system. The resulting datasets

provide, for the first time, sufficiently long and coherent records to analyze the internal dynamics of beach systems.30

In parallel, data-driven modeling approaches have emerged as a powerful complement to process-based models for exploring

the intrinsic dynamics of complex geophysical systems (Guo et al., 2025; Brunton et al., 2016; Simmons and Splinter, 2025).

Among these and derived from the theory of non-linear dynamical systems, the global modeling technique aims to reconstruct

deterministic dynamical systems directly from observational time series, without making strong assumptions about predefined

governing equations, and has shown promising results from both synthetic (Gouesbet and Letellier, 1994; Aguirre and Letellier,35

2009; Mangiarotti and Huc, 2019; Letellier et al., 2009), experimental (Letellier et al., 1995) and real world data (Mangiarotti

and Le Jean, 2023; Mangiarotti et al., 2016; Mangiarotti, 2015). One of the few existing frameworks offering a semi-automated

implementation of the global modeling approach is the Global Polynomial Modeling (GPoM) package (Mangiarotti et al.,

2012). Developed in R, this package integrates a suite of algorithms designed to reconstruct low-dimensional deterministic

systems directly from time series. GPoM identifies parsimonious polynomial equations capable of reproducing the observed40

phase-space geometry and attractor structure by iteratively selecting the minimal subset of nonlinear terms that preserves the

variance and structural properties of the reconstructed trajectories. This procedure provides an interpretable representation of

the underlying feedbacks and coupling mechanisms between variables involved, and enables testing for deterministic structure

within empirical dynamical systems. Such an approach is particularly relevant given that inferring the underlying dynamics of

chaotic geophysical systems from noisy and incomplete observations remains a fundamental challenge in the environmental45

context characterized by low predictability (Ruiz et al., 2022; Jardak and Talagrand, 2018).

In this study, we apply GPoM to a multi-site dataset of satellite-derived shoreline and sandbar time series, representing

diverse morphodynamic contexts along wave-dominated coasts. We show that, despite differences in local forcing and sedi-

mentary setting, these systems exhibit a common dynamical structure characterized by nonlinear coupling between the shore-

line and the sandbar. The recovered equations capture the essential features of the observed oscillations and reveal a regime50

of chaos, in which the system remains bounded but sensitive to perturbations. Furthermore, by comparing the reconstructed

feedback loops across sites, we propose a preliminary typology of shoreline-sandbar systems, depending on their coupling di-

rection and mechanisms. These results suggest that low-dimensional nonlinear models can provide an interpretable framework

for understanding and classifying beach internal dynamics.
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The remainder of the paper is structured as follows. Section 2 describes the dataset and the methodology for GPoM usage.55

Section 3 presents the model validation and physical interpretation. Section 4 summarizes the main conclusions and outlines

future research perspectives.

2 Methods

2.1 Dataset

2.1.1 Satellite images60

The Python API of Google Earth Engine (GEE) was used to download satellite images, providing access to publicly available

Top Of Atmosphere (TOA) reflectance images (Level-1C) from various collections (Gorelick et al., 2017; Chander et al., 2009).

Sentinel-2 images with a 10-m resolution and 5-day revisit time were downloaded for the four sites: Torrey Pines, Ensenada,

Duck and Gold Coast. The blue (B), green (G), and red (R) bands corresponding to visible light wavelengths, the Near-InfraRed

(NIR) band just beyond visible red, and the Short-Wave InfraRed (SWIR1 and SWIR2) bands covering longer wavelengths65

beyond NIR, were downloaded. Bicubic interpolation was applied to the SWIR1 and SWIR2 bands, which originally have a

20 m resolution and are resampled to 10 m resolution like the other bands. To further refine the data quality, a cloud cover

threshold was applied using GEE’s built-in tools. However, this threshold applies to the entire satellite image tile, which may

result in rejecting images that are cloud-free in the Region Of Interest (ROI). To address this issue, all images with total cloud

cover below 90% were included in our analysis, and a custom function developed by Graffin et al. (2025a) was applied to filter70

out images with cloud cover specifically within the ROI.

2.1.2 Satellite-derived shoreline position

The shoreline is detected and extracted using the method developed by Bergsma et al. (2024), specifically designed for sandy

beaches. This approach combines a multi-spectral index, the Subtractive Coastal Water Index (SCoWI) with Otsu’s threshold

refinement method and Marching Squares algorithm to derive sub-pixel shoreline positions (Otsu, 1979; Cipolletti et al., 2012)75

as:

SCoWI = B + 2× (G−NIR)− 0.75× SWIR1− 0.5× SWIR2, (1)

where B, G, NIR, SWIR1 and SWIR2 represent the reflectance values of the respective spectral bands: blue, green, near-

infrared, short-wave infrared 1 and 2. The shoreline proxy corresponds to the waterline, which reflects variations in sea level

including minor tidal effects, as well as other sea-level fluctuations occurring across different timescales.80
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2.1.3 Satellite-derived sandbar position

Unlike the shoreline, sandbars are submerged features and cannot be directly observed. However, their presence induces wave

breaking when incident waves are energetic enough to shoal and dissipate over the bar. The resulting foam pattern provides a

visual signature that can be used to infer the sandbar position. Lippmann and Holman (1989) were the first to exploit video

imagery to track sandbar positions through time-averaged sequences (time-exposures). Similarly, following the principle of85

the SCoWI index developed for shoreline detection, the SandBar Index (SBI) proposed by Frugier et al. (2025) automatically

identifies and extracts sandbar positions by maximizing the contribution of high-intensity (breaking) pixels while minimizing

contributions from other environments (land, sand, and water). However, because the different satellite missions used in this

study (e.g., Landsat, VENµS, Sentinel-2) cover distinct radiometric ranges and sensor-specific reflectance characteristics, we

introduced a normalized version of the index (NSBI) to ensure methodological consistency and cross-sensor comparability90

throughout the monitoring period and across all study sites. This normalization allows the reliable detection of breaker zones

in satellite imagery and the estimation of sandbar positions through wave-breaking patterns:

SBI = 2× (B−R) + G− 0.25×NIR, (2)

and:

NSBI =
SBI−SBImin

SBI90− SBImin
. (3)95

Normalization is applied using the 90th percentile (SBI90) of the data rather than the absolute maximum to remove outliers

influence, such as excessive reflections or sensor errors, which do not represent typical conditions. A threshold of NSBI > 1.2

allows the identification of breaking zones within a given region of interest and has been shown to be valid across different

sites and satellite missions (Frugier et al., 2025, 2026).

2.1.4 Transects100

Transects were manually constructed within QGIS framework (QGIS Development Team, 2025) by first drawing a baseline

along the landward edge of the beach, following its shape, and then generating perpendicular transects directed seaward with

origin on land and spaced 30 m apart with lengths adapted to each beach.

2.1.5 SDS and SDSb time series

Waterlines were projected onto the cross-shore transects and the shoreline position xs was measured along each transect relative105

to its land origin. The mean shoreline position xs across all transects was then estimated for each satellite image, producing the

Satellite-Derived Shoreline (SDS) time series. Breaking lines were projected onto the same transects, and the breaking position

xb was measured relative to the land origin. As wave breaking is instantaneous, its spatial pattern can differ between transects.
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On single-bar beaches, some transects show breaking over the bar while others do not; on double-bar beaches, breaking may

occur at the inner bar and/or at the outer bar (Wright and Short, 1984). To consistently identify the offshore breaking associated110

with the bars, K-means clustering was applied along the cross-shore axis. Only well-separated clusters (silhouette score > 0.65)

were retained. Within each reliable cluster, breaking positions were extracted, and the offshore cluster was selected. When

clustering was unreliable, a single breaking line was assumed. The mean sandbar position xb across all transects was then

computed for each satellite image, capturing the representative active sandbar position. Clusters were considered valid only if

at least 20% of transects exhibited breaking; otherwise, they were discarded and the next well-separated offshore cluster was115

evaluated in the same way. The resulting Satellite-Derived Sandbar (SDSb) time series therefore reflects the typical offshore

breaking position associated with sandbars. The time series start just before 2018 as between 2015 and 2018, only Sentinel-2A

was operating, providing very sparse data.

Figure 1. Study sites locations along with illustrative snapshot of the shoreline and sandbar detection via satellite imagery. Each

beach is presented on a specific date: (a) Torrey Pines (2021/07/14), (b) Ensenada (2022/03/21), (c) Gold Coast (2022/07/30), and (d) Duck

(2021/11/13). Imagery © 2022 CNES/Airbus, Map data © 2022 Google.
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Fig. 1 shows the geolocation of the four sites along with Sentinel-2 images highlighting the detection of the shoreline (xs,

light pink) as well as the submerged active sandbar (xb, offshore breaking, dark pink) along the transects for each beach on a120

specific date.

2.2 Sites overview

The four study sites capture a range of morphodynamic conditions along wave-dominated sandy coasts: Torrey Pines (Califor-

nia, USA) is a medium-grained barred beach (D50 ≈ 0.2 mm) backed by steep cliffs and influenced by complex wave refraction

from offshore islands (Ludka et al., 2019). Yearly-averaged significant wave height conditions are Hs ≈ 1–1.5 m with peak125

periods of Tp ≈ 10–12 s. Ensenada Beach (Baja California, Mexico) is an intermediate mesotidal system with a single active

sandbar (D50 = 0.25 mm) responding to a bimodal swell regime: energetic north-westerly winter waves (Hs up to 4 m) and

milder south-westerly summer waves (Hs ≈ 0.7 m) (Ruiz De Alegría-Arzaburu and Vidal-Ruiz, 2018). Duck (North Carolina,

USA) is a double-bar beach exposed to high-energy Atlantic forcing (Hs ≈ 1.2–1.8 m, Tp ≈ 8–10 s) exhibiting strong seasonal

variability in sandbar dynamics (Lippmann and Holman, 1990). Gold Coast (Queensland, Australia) is a double-barred quartz-130

sand beach (D50 ≈ 0.25 mm) exposed to persistent south-easterly swells (Hs ≈ 0.8 m, Tp ≈ 9–10 s) and an intense northward

littoral drift of about 5× 105 m3/yr (Price et al., 2011).

Together these sites encompass the principal morphodynamic regimes described by Wright and Short (1984) and Masselink

and Short (1993): from micro- to mesotidal, single- to double-bar, and reflective to dissipative states, forming a coherent natural

laboratory for analyzing shoreline–sandbar coupling.135

2.3 Data preprocessing

To account for local 3D-variability, we computed the mean shoreline and sandbar positions (xs,xb) across all available transect

using a robust interquartile range (IQR) estimator (Whaley III, 2005), which mitigates the influence of outliers and ensures

stability in the composite signal, particularly during energetic events or data gaps. Because satellite-derived shoreline and

nearshore sandbar positions exhibit different levels of noise, typically higher for the sandbar as the variability of offshore140

breaking is much more sensitive to stochastic day-to-day variations in wave forcing, temporal smoothing windows were indi-

vidually adjusted to retain intra-seasonal to interannual variability (typically 1–3 months smoothing) while filtering out high-

frequency noise. The resulting time series were then standardized (zero mean, unit variance) and resampled onto a common

daily grid using spline interpolation to ensure continuous and smooth first- and second-order temporal derivatives, yielding a

single representative time series for shoreline and sandbar positions at each site (Fig. 2).145
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Figure 2. Study sites time-series overview. Satellite-derived shoreline (SDS) and nearshore sandbar (SDSb) time series and their first-

and second-order temporal derivatives (blue and red, respectively) for the four study sites: Torrey Pines (USA), Gold Coast (Australia),

Ensenada (Mexico) and Duck (USA). Raw daily observations (blue dots) and smoothed trajectories (black lines) are shown together with the

corresponding time derivatives computed using a Savitzky–Golay filter.

2.4 Global modeling using GPoM

The global modeling approach provides a fully data-driven framework to retrieve a minimal set of ordinary differential equa-

tions (ODEs) capable of reproducing, from observations, both the temporal trajectories (over short timescales) and the set of

states toward which the system evolves over time, without prior assumptions about the underlying physical processes (Man-

giarotti and Huc, 2019).150

2.4.1 Concept and theoretical background

According to the embedding theorem of Takens (1981), the dynamics of a deterministic system can be reconstructed from a

limited number of observables by using either delays, time derivatives, or a combination of both (Sauer et al., 1991), provided

that the embedding dimension is sufficiently large and the observability of the variables (i.e. the amount of information about

the system dynamics contained in each observable) is sufficiently high (Aguirre et al., 2018; Letellier et al., 2018). Global155

modeling exploits this principle to infer the functional form of the governing equations as:

dXi

dt
=

Np∑

j=1

Kij Φj(X1,X2, . . . ,Xm), i = 1, . . . ,m, (4)

where Xi denotes the i-th state variable (with m the total number of variables), Φj(X1,X2, . . . ,Xm) denotes the j-th polyno-

mial monomial constructed from the state variables up to degree dmax (e.g., X2
1 , X1X2, X3

2 , etc.), forming the functional basis
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of the model, and Kij the coefficients estimated by linear regression. Each equation thus represents the temporal evolution of160

one variable as a polynomial combination of all others.

In practice, time derivatives of the observables are estimated through Savitzky–Golay filtering, which preserves local poly-

nomial consistency and minimizes noise amplification in comparison to finite-difference schemes (Ahnert and Abel, 2007).

The resulting derivatives (Fig. 2) form the basis for constructing candidate differential equations, which are then combined into

a full dynamical system.165

2.4.2 Implementation in the GPoM package

The GPoM package (Mangiarotti et al., 2012; Mangiarotti and Huc, 2019) implements this approach in R and provides a semi-

automated framework for model discovery, selection, and validation. It systematically explores combinations of polynomial

terms given the number of state variables m, the maximum polynomial degree dmax, and the maximum derivative order.

Each candidate model is numerically integrated and compared with observations using statistical and geometric criteria such as170

variance preservation, correlation between observed and simulated variables, as well as structure reliability of the reconstructed

attractor in the phase space.

By iteratively selecting the most informative, dynamically consistent, and parsimonious subset of terms, GPoM builds low-

dimensional polynomial models that capture the essential nonlinear coupling and feedback mechanisms among variables (Man-

giarotti et al., 2025). These models can then be used to investigate the deterministic structure of the system, assess its stability175

properties, and explore potential bifurcations or chaotic regimes emerging from the coupled dynamics.

In this study, GPoM is applied to the coupled evolution of shoreline and active sandbar systems. The objective is to identify

minimal polynomial models capable of reproducing the observed phase-space geometry and the dynamical interplay between

shoreline position and sandbar migration, thereby revealing the feedbacks governing coastal morphological variability.

2.5 Protocol180

In order to explore system complexity and potential chaos, model dimensions m = 3 and m = 4 were tested within GPoM,

with polynomial degree ranging from dmax = 2 to 4. According to the Poincaré–Bendixson theorem, continuous autonomous

systems of dimension m≤ 2 can only display a very low level of complexity, as their trajectories are confined to fixed points

or period-1 limit cycles (Poincaré, 1893), thus precluding the stretching and folding dynamics required for chaos (Gilmore and

Lefranc, 2002). Hence, higher-dimensional embeddings (m≥ 3) were explored to enable the capture of complex feedbacks185

and non-trivial oscillatory regimes. All possible variable combinations among (X1,X2,X3,X4) satisfying m = 3 or 4 were

systematically explored after truncating 100 days from both ends of the time series to minimize edge effects associated with

smoothing and derivative estimation. Each final model was thus inferred from approximately 95% of the total record length

(∼ 10 years of Sentinel-2 revisits), which, in cases where robust deterministic models were obtained, provides strong evidence

for determinism within the real-world data dynamics. A moving window of ω = 51 days was used for derivative smoothing190

using the Savitzky–Golay filter. Sensitivity tests around this window size showed no significant change in the resulting model

structure, confirming the robustness of the reconstruction. The number of polynomial terms K (Eq. (4)) allowed in the models
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was set between K = 6 and K = 26, covering a broad range of configurations while limiting overfitting due to excessively

complex models. Finally, candidate models that were neither fixed points nor simple limit cycles and remained numerically

stable for at least 80 years of integration were visually inspected. Model quality was primarily assessed through phase-space195

consistency and amplitude preservation rather than pointwise prediction accuracy, as GPoM aims to reproduce the system’s

underlying geometry rather than forecast individual states. Among these, the most parsimonious model (i.e., the one with the

smallest combination of K, m, and dmax) was retained for further dynamical analysis.

Repeated runs with slightly perturbed preprocessing parameters yielded consistent model structures, suggesting that the

inferred couplings are robust features of the underlying dynamics.200

3 Results

3.1 Model–data comparison and spectral validation

3.1.1 Phase space projections

The phase spaces derived from the GPoM autonomous models (see system equations in SubSec 3.2) closely reproduce, both

in term of amplitude and density occupation, the observed dynamics of shoreline–sandbar systems across all study sites (Fig.205

3). For the three-dimensional models (Gold Coast, Torrey Pines, Ensenada), each projection of the attractor reveals a coherent

morphodynamic coupling between shoreline position (X1), its temporal derivative (X2), and sandbar position (X3). At Torrey

Pines and Ensenada (Eqs. (5), (7)), the system oscillates along a quasi-linear negative correlation between shoreline and sandbar

positions (X1–X3) at seasonal timescales, consistent with a coupled retreat–recovery mechanism: when wave energy increases

during winter, the sandbar migrates offshore while the shoreline retreats. This correlation suggests that the sandbar response210

is not fast enough to dissipate the enhanced wave energy, reducing its protective role and leading to greater shoreline retreat.

During calmer periods, the sandbar slowly migrates landward, promoting shoreline recovery and closing the oscillatory cycle

captured by the model. In contrast, the Gold Coast system (Eq. (6)) displays an inverted correlation pattern, showing that the

shoreline-sandbar system evolves as one, responding similarly to incoming forcing.

For the three models, the (X2–X1) portrait is the typical projection of a differential phase space involving an observable and215

its first-order derivative (Fig. 3). In such a representation, the shape of the trajectory reflects the underlying restoring and dis-

sipative mechanisms of the system. The attractors observed here indicate a combination of two oscillatory processes in which

shoreline position (X1) oscillates around a single equilibrium point for Torrey Pines and Ensenada, under the restoring action

of sandbar-mediated feedbacks and the cyclicity imposed by the annual cycle. For Gold Coast, the attractor evolves around

two equilibrium points (located close to (−1,0) and (1,0) in the (X1,X2) projection), and a third one situated between them220

(close to (0,0)), which enables alternation between the two equilibria or the emergence of larger loops connecting them. The

amplitude of the loops provide insight into the system’s stability and rate of energy exchange. Extended, large-amplitude loops

indicate stronger seasonal variability and larger-scale shoreline adjustments, whereas numerous smaller, short-lived loops re-

flect disruptive short-term events (e.g., storms, intra-seasonal variability). The amplitude of these smaller loops further reveals
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the system’s capacity to damp the morphological imprint of such disturbances, thus reflecting its resilience. At Torrey Pines,225

the observational data (dark blue within Fig. 3) exhibit wide, extended loops involving two main branches, indicative of a

highly energetic system dominated by strong seasonal variability and pronounced morphological exchanges. The numerous

more rounded shorter loops suggest a superimposed contribution of storm-scale fluctuations. The model reproduces the over-

all extent of the attractor, capturing the main envelope of variability and the large-scale cyclic behavior, but with smoother

trajectories, implying that part of the short-term perturbations and their damping–recovery dynamics are smoothed (i.e. high230

dimensional dynamics associated with noise has been filtered). The dynamical complexity observed at Torrey Pines ultimately

converges to a period-two cycle, suggesting a metastable chaotic regime that may be triggered by temporary variations in

the system (e.g. tides, mesoscale eddies, coastal storms). In contrast, at both Gold Coast and Ensenada, the model success-

fully reproduces the occurrence of both small and large loops, suggesting a more representative behavior across the system’s

spatiotemporal scales. The (X3–X2) projection highlights the joint variability between sandbar position and shoreline rate of235

change, reflecting the co-evolution of both components within the same morphodynamic feedback loop. The sandbar position

(X3) encapsulates the system’s longer-term adjustment to hydrodynamic conditions, while the shoreline rate (X2) expresses

the more immediate response of the beach. The attractor geometry thus encompasses the phase relationship between these

two timescales (making it the less evident projection to interpret only through observations). At Torrey Pines, Gold Coast

and Ensenada, the trajectories form elongated, looping structures, indicating that sandbar migration and shoreline motion are240

phase-shifted, with delayed recovery of the shoreline once the sandbar returns landward. This reflects a coupled oscillatory

system where energy is alternately stored in sandbar migration and released through shoreline adjustment. Therefore, these

portraits reveal the mutual, rather than unidirectional, influence between the sandbar and shoreline components of the system

for all three sites.

The four-dimensional model obtained at Duck exhibits a markedly more intricate phase-space organization, with multiple245

intertwined trajectories and a complex structure reflecting strong nonlinear coupling among the shoreline, sandbar, and their

respective derivatives (X2, X4). In the (X2–X1) projection, broad nested loops and secondary sub-cycles indicate an oscillator

governed by several interacting timescales, consistent with a system where rapid morphological responses are superimposed on

slower morphodynamic adjustments. The (X3–X1) projection displays a folded, asymmetric attractor in which the trajectory

slope reverses across the domain. This departure from the more linear correlation observed at other sites suggests that the250

coupling between shoreline and sandbar is not stationary but alternates between regimes of weak and strong interaction. In the

(X3–X2) plane, spiral-like loops around the origin denote delayed responses between sandbar position and shoreline velocity as

the shoreline adjusts to sandbar migration with a phase lag. The amplitude variability within these spirals reflects intermittent

shifts in coupling strength, possibly associated with episodic energetic events or memory effects in sediment redistribution.

The (X4–X1) projection, linking shoreline position to sandbar migration rate, reveals a pronounced asymmetry: rapid offshore255

sandbar motion (X4 < 0) corresponds to abrupt shoreline retreat, whereas onshore sandbar migration (X4 > 0) is associated

with a slower and more gradual recovery. This hysteresis indicates that the system retains a morphodynamic memory of past

energetic states and/or that the threshold required to trigger significant morphological change depends on whether energy

is increasing or decreasing. The (X4–X2) projection reveals a nonlinear relationship, showing that shoreline and sandbar
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velocities are not independent. Their interaction varies with the system state, suggesting a potentially intermittent coupling.260

The (X3–X4) projection isolates the intrinsic sandbar dynamics, showing concentric, nested cycles that are typical of systems

organized around two main pseudo-periods. The observed dynamics are not quasi-periodic but may derive from such behavior,

suggesting toroidal chaos.

The high complexity of the Duck model derived using GPoM is consistent with field observations of sandbar dynamics,

where the inherited fall morphology exerts a strong control on the subsequent year’s morphological evolution (Anderson et al.,265

2023). This behavior reflects a pronounced sensitivity to initial conditions, as the pre-existing sandbar configuration constrains

the system’s response to comparable hydrodynamic forcing, leading to path-dependent and potentially hysteresis dynamics.

Moreover, Duck belongs to a beach type characterized by an active sandbar that slowly migrates offshore with aperiodic

consistency, before being replaced by a newly active bar forming at the breaker line ; a behavior commonly referred to as

Net Offshore Migration (NOM) (Ruessink et al., 2009). In this study, only the active sandbar is considered, and therefore270

this phenomenon does not explicitly appear within our dataset. Nevertheless, this additional level of complexity may not be

uncorrelated with the complex attractor geometry and higher-order nonlinear terms revealed by the model as the NOM behavior

is known to be strongly conditioned by the antecedent beach state (Plant et al., 1999; Ruessink et al., 2003), which could reflect

the memory and cumulative effects inherent to these episodic-to-interannual bar exchanges.

Broadly, the modeled attractors successfully reproduce the geometry of the observed systems, capturing their characteristic275

oscillatory loops, asymmetries, twisting and folding, and state-dependent variability. The models were integrated over extended

periods (80 years) to assess their numerical stability and to allow the full attractor to unfold in phase space. As a result, the

system may occasionally visit states that were not sampled during the observational time window, yet remain dynamically

consistent with the reconstructed equations. This property illustrates the model’s ability to generalize beyond the training

dataset while preserving its intrinsic dynamical organization.280
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Figure 3. Comparison of observed (dark blue) and modeled (light blue) phase spaces. For the three-dimensional models (Gold Coast,

Torrey Pines, Ensenada), each portrait of the reconstructed attractor is shown. All systems exhibit a coherent shoreline–sandbar (X1–X3)

coupling, with a clear negative linear relationship in Torrey Pines and Ensenada, whereas Gold Coast displays an inverted correlation pattern

at seasonal scale. The four-dimensional model (Duck) reveals a markedly more intricate structure, characterized by strong nonlinear inter-

actions among variables and the absence of any simple linear dependency between shoreline and sandbar positions (X1–X3). The inferred

GPoM models successfully reproduce site-specific attractors and capture the essential geometry of the underlying morphodynamic phase

space.
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3.1.2 Models spectral validation

The spectral analysis provides a detailed verification of the temporal consistency between observed and modeled dynamics

(Fig. 4). For each site, the normalized power spectra of the modeled variables (light purple) closely reproduce those derived

from the observations (light orange) over several orders of magnitude in frequency. At low frequencies (10−4–10−3 day−1),

the models capture the slow morphodynamic components associated with long-term shoreline–sandbar co-variability, reflecting285

the system’s memory and adjustment at interannual timescales. At intermediate frequencies (10−3–10−2 day−1), both observed

and modeled spectra exhibit distinct shoulders or inflection points, corresponding to the annual to intra-seasonal response of the

system to modulations in wave energy. This indicates that the inferred equations successfully embed the transfer mechanisms

linking external forcing to shoreline–sandbar exchanges. At higher frequencies (> 10−2 day−1), the energetic slope remains

consistent between models and observations, without evidence of artificial energy accumulation or damping. The fact that the290

model spectra maintain realistic decay at small scales demonstrates that the deterministic GPoM formulations can mimic the

natural dissipation of energy across scales even in the absence of explicit stochastic forcing.

To quantitatively assess model–data fidelity, the comparison of spectral slopes and correlations provides a complementary

validation of the models’ dynamical realism (Fig. 5). Across all sites, the spectral exponents derived from the models remain

consistent with those obtained from the observations, confirming that both share similar scaling laws and temporal persistence295

(α≈ 2.5–4). Spectral correlations exceeding r > 0.8 in most cases indicate that the models reproduce not only the dominant

frequencies but also the overall energy distribution across temporal scales. Slightly flatter spectral slopes in the modeled

series likely reflect the smoothing effect inherent to deterministic low-dimensional reconstructions, which capture organized

dynamics but not high-frequency stochastic variability (Mangiarotti et al., 2012, 2016). Nevertheless, the agreement across

frequencies spanning more than three decades supports the conclusion that the GPoM-derived equations capture the multiscale300

organization and memory-driven nature of real shoreline–sandbar dynamics. It is important to note that these models are

entirely autonomous: no external forcing has been prescribed, and the variability observed in their dynamics arises solely

from the intrinsic couplings reconstructed from the data. The influence of external drivers such as wave climate or sea level

modulations is thus implicitly embedded in the model structure itself.

Taken together, these results show that the GPoM models successfully reconstruct the essential physics of the sites ob-305

servables directly from observational data. They capture the nonlinear coupling between shoreline and sandbar, the charac-

teristic oscillatory attractors, and the broadband red spectral behavior; typical from natural coastal systems (Pianca et al.,

2015; Ruessink et al., 2007). The models thus represent compact, deterministic analogs of the observed systems capable of

reproducing their key dynamic and statistical properties without external forcing (implicitly embedded in the model struc-

ture itself), thereby validating the GPoM approach as a robust framework for identifying the intrinsic dynamics governing310

shoreline-sandbar evolutions (i.e. the system’s response to the forcing input).
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Figure 4. Comparison of normalized spectral power density between observations and models. Each variable’s spectrum obtained from

the model (light purple) is plotted against its corresponding observation (light orange). The modeled energy distribution closely matches

that of the observed data, indicating that the models successfully reproduce the dynamical variability of the systems they were inferred

from. At low frequencies (10−4–10−3 day−1), the slow components of the shoreline–sandbar system are well captured, reflecting a realistic

long-term memory and morphodynamic coupling. The model also reproduces the seasonal to monthly dynamics (around 10−2 day−1) with

good accuracy. At higher frequencies (> 10−2 day−1), the energetic slope remains consistent between model and observations, without

overestimation of short-term variability, suggesting that the GPoM-based dynamics naturally filter the high-frequency noise while preserving

the dominant physical scales of variability. The broadband power-law spectra (P (f)∼ f−α) indicate that the shoreline–sandbar system

exhibits long-term memory and self-organized, chaotic dynamics, with energy cascading smoothly from low-frequency morphodynamic

cycles to higher-frequency storm-driven responses.
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Figure 5. Spectral comparison between observed and modeled dynamics. (a) Comparison of spectral slopes (α) for each variable and

site. Both observations (blue) and GPoM models (red) exhibit red-to-brown noise behavior (α≈ 2.5–4), indicating scale-invariant, long-

memory morphodynamic variability. (b) Spectral correlations (log–log) between observed and modeled spectra show consistently high values

(r > 0.8), confirming that the inferred nonlinear dynamics reproduce the observed energy distribution across temporal scales. The GPoM

models capture both the scaling and spectral energy structure of the shoreline–sandbar systems, reflecting a realistic transfer of energy from

low-frequency morphodynamic oscillations to higher-frequency storm-driven variability.

3.2 Reconstructed equations, model structures and physical interpreation of dominant terms

The autonomous polynomial models reconstructed for each site are presented in Eqs. (5)–(8). All systems follow a canonical

form in which the first equation expresses the temporal derivative of the shoreline position (Ẋ1 = X2), while the subsequent

equations describe the nonlinear coupling between shoreline acceleration (Ẋ2) and sandbar dynamics (X3, and X4 for Duck).315
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Torrey Pines





Ẋ1 = X2,

Ẋ2 = a1X3 + a2X
3
3 + a3X2X

2
3 + a4X

2
2X3 + a5X1X

2
3 + a6X

2
1X3 + a7X

3
1 ,

Ẋ3 = b1 + b2X3 + b3X2 + b4X
3
3 + b5X2X

2
3 + b6X

2
2 + b7X

2
2X3

+ b8X1 + b9X1X2X3 + b10X1X
2
2 + b11X

2
1X2.

(5)

Gold Coast





Ẋ1 = X2,

Ẋ2 = a1X3 + a2X
3
3 + a3X2X3 + a4X

2
2X3 + a5X1 + a6X1X

2
3 + a7X1X

2
2 + a8X

2
1X3 + a9X

3
1 ,

Ẋ3 = b1 + b2X3 + b3X2 + b4X2X
2
3 + b5X

2
1 .

(6)

Ensenada:





Ẋ1 = X2,

Ẋ2 = a1X3 + a2X1X
2
3 + a3X2 + a4X1X2 + a5X1X2X3 + a6X

2
1X3 + a7X

2
1X2 + a8X

3
1 ,

Ẋ3 = b1 + b2X3 + b3X2 + b4X
3
2 + b5X1X

2
3 + b6X

2
1X3 + b7X

3
1

(7)320

Duck:





Ẋ1 = X2,

Ẋ2 = a1X4 + a2X
2
3X4 + a3X2X4 + a4X

2
2X3 + a5X

3
2 + a6X1 + a7X1X4 + a8X1X

2
4

+ a9X1X2 + a10X1X2X4 + a11X1X
2
2 + a12X

2
1 + a13X

3
1 ,

Ẋ3 = X4,

Ẋ4 = c1X
3
3 + c2X1X2 + c3X

3
1 .

(8)

The reconstructed equations are third-order polynomial systems, containing respectively 19, 15, 16, and 18 K terms for

Torrey Pines, Gold Coast, Ensenada, and Duck. Each model combines quadratic and cubic cross-interactions together with325

self-interacting terms. In these models, feedbacks between shoreline position, sandbar position, and their respective temporal

derivatives jointly govern the observed variability. Although several of their respective terms exhibit relatively small ampli-

tudes (Table 1), they contribute critically to the global stability of the reconstructed attractor by shaping its fine-scale curvature

and preventing divergence during long integrations. This behavior is consistent with the GPoM algorithm design, which pri-

oritizes preservation of the phase-space geometry over direct time-series correlation between data and model (Mangiarotti330
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et al., 2012). As such, the equations obtained are an approximate and reduced formulation of the original ones. Hence, several

physical processes may have been compressed into a single shared monomial, which limits the mechanical interpretation, since

each term can no longer be viewed as an independent process. Likewise, complementary contributions may not appear in the

equations derived by GPoM, which makes it more difficult to clearly distinguish the physical processes underlying the system

dynamics. Consequently, the interpretation should focus on the dominant terms (those with the largest variance within their335

respective equations) while acknowledging that weaker nonlinearities collectively ensure attractor coherence and long-term

stability. Here, for each model, we provide a rewritten form of the equation from a mechanistic viewpoint in terms of the

forces F i applied to the sand masses (Eqs. (9)-(12)), positions Xi and speed V i, and using only the terms with a variance of

V areq ≥ 10% (Tables 2-5), accompanied by fluence diagrams (Fig. 6) to support the physical interpretation. V1 and V3 notation

are fostered instead of X2 and X4 to facilitate the interpretation. The details of these rewritten forms are given in the appendix340

(see Appendix A).

Torrey Pines





F 1 =−a7X
2
1X1 + a2X

2
3X3− a6X

2
1X3,

F 3 =−b3F 1− 3b4X
2
3V 3

(9)

Gold Coast





F 1 =−a9X
2
1X1 + a5X1− a1X3,

F 3 = b3F 1− 2b5X1V 1

(10)

345

Ensenada:





F 1 =−a8X
2
1X1− a6X

2
1X3 + a1X3,

F 3 =−b3F 1 + 3b4X
2
2F 1

(11)

Duck:





F 1 = a4V
2
1 X3− a5V

2
1 V1− a10V1V3X1− a11V

2
1 X1− a8V

2
3 X1,

F 3 = c1X
2
3X3 + c3X

2
1X1

(12)

3.2.1 Torrey Pines350

The variance-significant terms contributing to the shoreline dynamics (first equation in Eqs. (9)) highlight both the natural

oscillatory behavior of the shoreline and the feedback exerted by the sandbar on its adjustment. The term −a7X
2
1X1 acts as a

nonlinear restoring force that drives the shoreline position back toward the imposed equilibrium (X1 = 0). Its cubic dependence
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implies a very weak response near equilibrium and a rapidly increasing restoring tendency for large excursions, consistent with

the oscillatory behavior typically observed on wave-dominated sandy shorelines in the absence of other major external forcings355

(Dean, 1991; Yates et al., 2009). In contrast, the term +a2X
2
3X3 introduces a nonlinear destabilizing contribution transmitted

from the sandbar dynamics to the shoreline. Because it scales with X3
3 , it strengthens the shoreline response when the sandbar

undergoes large displacements. Generally speaking, the sandbar acts as an energy buffer when located close to the shoreline,

reducing the effective wave energy forcing reaching the shore, whereas large offshore excursions reduce this buffering capacity

and allow stronger forcing to be transmitted to the shoreline. As a result, far-from-equilibrium sandbar positions feed back onto360

the shoreline as an increasingly strong driving force, pushing its motion away from equilibrium. Finally, the term −a6X
2
1X3

represents a nonlinear cross–coupling between the shoreline position and the sandbar. Because X2
1 modulates its magnitude,

this contribution becomes significant only when the shoreline is strongly displaced. Its sign is controlled by X3: sandbar

excursions generate a forcing on the shoreline that opposes the sign of X3, thereby acting as a nonlinear corrective influence

transmitted from the sandbar to the shoreline.365

The equation governing the sandbar dynamics involves two variance-significant terms (second equation in Eqs. (9)). The first

one, −b2F1, represents an anticorrelated coupling whereby the bar responds in the opposite direction to the forcing applied

to the shoreline. Altogether with −a6X
2
1X3, this term captures the seasonal coupling within the shoreline–sandbar system:

during winter, offshore sandbar migration accompanies shoreline retreat, while during summer, onshore bar migration accom-

panies shoreline advance. This behavior reflects an adaptive surf-zone system whose effective dissipation length adjusts to the370

seasonal modulation of incoming wave forcing, thereby enhancing system resilience between seasonal returns via dynamic

feedback. This dynamical interpretation is supported by field observations at Torrey Pines, where the surf-zone width is well

preserved between equivalent seasonal states each year (Winant et al., 1975; Aubrey et al., 1980). The second term,−3b4X
2
3V3,

acts as a nonlinear damping of the bar motion. Because the dissipation scales with X2
3 , the migration of the sandbar is only

weakly damped near its mean position but becomes increasingly inhibited for large excursions. This cubic-like friction prevents375

unbounded bar migration and reflects the enhanced energy dissipation occurring when the surf-zone width becomes large.

3.2.2 Gold Coast

For the Gold Coast system (Eqs. (10)), the variance-significant terms reveal a shoreline dynamics combining both destabilizing

and stabilizing contributions. The cubic term−a9X
2
1X1 acts as a nonlinear restoring force that drives the shoreline back toward

its equilibrium, with a weak effect near X1 = 0 and a rapidly increasing restoring action for large excursions. In contrast, the380

linear term +a5X1 introduces a weak intrinsic instability that tends to amplify shoreline displacements. The additional linear

coupling term −a1X3 reflects a stabilizing sandbar–shoreline feedback: offshore (onshore) bar positions pull the shoreline

landward (seaward), acting to counter shoreline excursions rather than reinforce them. This opposite–signed response limits

the net shoreline displacement generated by sandbar migration and contributes to the stability of the system.

The sandbar dynamics include two variance-significant terms. The first one, +b3F1, represents a direct coupling whereby a385

fraction of the shoreline forcing is transmitted to the sandbar, depicting a striking difference with Torrey Pines. Here, the surf

zone tend to translate rather than extend/shorten, independently of the season, suggesting a surf zone geometry conservation
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at Gold Coast. The second one, −2b5X1V1, acts as a cross-damping mechanism: the sandbar motion is increasingly inhibited

when the shoreline moves rapidly, indicating a strongly coupled shoreline-sandbar system in which sandbar migration is limited

(i.e. lagged in relation to) by the instantaneous shoreline adjustment rather than by its own displacement.390

3.2.3 Ensenada

For the Ensenada system (Eqs. (11)), the shoreline dynamics combine a nonlinear intrinsic restoring mechanism with both

stabilizing and destabilizing shoreline-sandbar feedbacks. The cubic term −a8X
2
1X1 acts as a nonlinear restoring force that

drives the shoreline back toward equilibrium, with weak influence near X1 = 0 and rapidly increasing restoration for large

excursions. The nonlinear cross-coupling term −a6X
2
1X3 reflects a stabilizing influence of the sandbar on the shoreline that395

becomes significant only when the shoreline is strongly displaced, indicating a threshold-like buffering role of the sandbar that

depends on its relative position with respect to the shoreline. In contrast, the linear term +a1X3 introduces a destabilizing

shoreline-sandbar interaction: offshore (onshore) sandbar positions push the shoreline seaward (landward), enhancing rather

than counteracting shoreline excursions.

The sandbar dynamics involve two variance-significant terms. The first one, −b3F1, represents an anticorrelated coupling400

whereby the bar responds in the opposite direction to the forcing applied to the shoreline, consistent with a compensatory

sandbar adjustment. The second term, +3b4X
2
2F1, reflects a velocity-modulated strengthening of the shoreline-to-sandbar

coupling: when the shoreline moves rapidly, the forcing transmitted to the bar is amplified and acts in the same direction as

F1. As a result, energetic shoreline motion can override the anticorrelated response induced by −b3F1, causing the sandbar

to migrate in the same direction as the shoreline forcing. This mechanism makes the Ensenada sandbar highly responsive to405

high-energy disruptive events (e.g., coastal storms): rapid shoreline retreat (F1 < 0, often associated with storm erosion) can

generate an amplified onshore migration of the sandbar (X3 < 0) when shoreline velocities are large, inverting the classical

expectation of offshore sandbar migration during storms.

3.2.4 Duck

For Duck (Eqs. (12)), the shoreline dynamics are uniquely controlled by nonlinear velocity–dependent interactions, with no410

autonomous restoring or destabilizing term acting directly on the shoreline position. The shoreline dynamics is influenced by

five significant terms which contributes to the complexity of this beach. The term +a4V
2
1 X3 expresses a sandbar–shoreline

feedback that becomes effective only when the shoreline moves rapidly, whereas −a5V
2
1 X2 provides quadratic damping

of shoreline motion. The terms −a11V
2
1 X1 and −a8V

2
3 X1 contribute nonlinear restoration toward equilibrium, activated

respectively by shoreline and sandbar velocities. Their effect is complemented by the mixed interaction term −a10V1V3X1,415

which modulates shoreline forcing depending on the relative phases of shoreline and bar motion.

In contrast, the sandbar dynamics are dominated by two nonlinear amplification terms. The cubic component +c1X
2
3X3

reflects an intrinsic instability of the sandbar, promoting large offshore or onshore excursions, while the term +c3X
2
1X1

shows that the sandbar responds to large shoreline displacements with a similarly directed migration. Together, these terms

reveal a highly mobile system in which shoreline and sandbar motions interact through strongly nonlinear, velocity-modulated420
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feedbacks indicative of strong complexity where the typical equilibrium beach model may not be sufficient to effectively

capture the beach temporal scales dynamics.

3.2.5 Synthesis: typology of shoreline–sandbar coupling

Despite their contrasting morphodynamic contexts, the three sites (Torrey Pines, Gold Coast, and Ensenada) share a common

structural backbone. (1) At all locations, the shoreline dynamics include a cubic restoring term (−aiX
2
1X1) that provides425

intrinsic stability for large excursions, indicating that the dominant component of shoreline variability is its seasonal response

to changes in wave climate. This shared behavior is clearly visible in Fig. 6, where the fluence diagrams for all sites show a

strong shoreline self-restoring loop, consistent with a common annual-cycle–controlled oscillation.

(2) The analysis further reveals that GPoM effectively captures the sandbar–shoreline morphological feedback loops. Al-

though the underlying monomials differ from site to site, their dynamical interpretation is remarkably consistent: the strength430

and sign of the feedback depend on the relative position of the sandbar with respect to the shoreline, reflecting the degree of

wave-energy buffering exerted by the bar. In all systems, a sandbar located closer to the shoreline tends to reduce shoreline

mobility, while large bar excursions increase the effective forcing reaching the shoreline.

(3) Shared shoreline–sandbar co-evolution mechanisms, although not captured in their full generality through the GPoM

framework, depend strongly on the timescale considered. This highlights that the system’s integrated response may differ435

significantly from the instantaneous forcing. For example, Torrey Pines and Ensenada act as systems whose dissipation length

adjusts to wave climate by moving from both ends of the surf zone (near similar feedback loops in the fluence diagrams

within Fig. 6), whereas Gold Coast exhibits a translation-dominated behavior in which the surf-zone geometry is preserved as

the entire system shifts seasonally. In addition, GPoM identifies enhanced dynamical complexity at Ensenada: the sign of the

shoreline–sandbar correlation depends on the rate of shoreline motion. During rapid shoreline disturbances (e.g. erosive coastal440

storm), the correlation may invert, leading the shoreline and sandbar to migrate in the same direction. This underscores the

critical importance of the timescales used to model beach-profile evolution with physics-simplified approaches. The absence of

such short-timescale reversals in the GPoM models of Torrey Pines and Gold Coast does not imply their non-existence. Indeed,

the phase planes (X1,X3) in Fig. 3 show that short-lived reversals of the typical seasonal correlation are observed in the data

at these two sites as well.445

Duck presents a fully distinct dynamical regime. Its shoreline dynamics are governed exclusively by nonlinear velocity-

dependent interactions, with no autonomous restoring or destabilizing term acting directly on shoreline position. Sandbar–

shoreline feedbacks become effective only when either the shoreline or the sandbar moves rapidly, while quadratic damping

ensures substantial dissipation during energetic events. In contrast, the sandbar dynamics are driven by two nonlinear amplifi-

cation terms (one intrinsic (+c1X
2
3X3), the other associated with large shoreline excursions (+c3X

2
1X1)) revealing a highly450

mobile bar system subject to strong nonlinear forcing. This fully nonlinear, velocity-modulated regime is evident in Fig. 6,

where Duck displays almost exclusively nonlinear feedback loops with little or no linear structure, suggesting that Duck Beach

integrates several forcings acting over multiple timescales while exhibiting a rich internal dynamics. Altogether, this makes

Duck the most complex system of the four, not adequately described solely through its response to wave forcing.
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Figure 6. Fluence diagrams between the variables for the four sites. Fluence diagrams are presented to map the underlying positive (pink)

and negative (light blue) feedback loops between variables, whether linear (solid lines) or nonlinear (dashed lines). The strength and sign

of the feedback influence is derived directly from the variance explained by each term within its equation (Table 2-5) and the sign of the

associated coefficient (Table1), respectively. Only terms accounting for 10% or more of the signal variability are considered.
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Table 1. Models’ coefficient weights comparison for the four sites of study.

Coefficient Torrey Pines Gold Coast Ensenada Duck

a1 −2.95× 10−4 −3.89× 10−4 2.22× 10−4 −1.92× 10−2

a2 2.69× 10−4 2.51× 10−4 −7.65× 10−5 7.73× 10−3

a3 6.09× 10−3 1.08× 10−2 5.68× 10−3 3.31× 10−1

a4 2.30× 10−1 4.81× 10−1 8.78× 10−3 4.56× 10−1

a5 −1.62× 10−4 3.53× 10−4 −6.01× 10−3 −0.528× 101

a6 −2.79× 10−4 −3.50× 10−4 −1.92× 10−4 −6.32× 10−4

a7 −2.24× 10−4 −8.95× 10−1 −5.97× 10−3 1.20× 10−2

a8 — 1.45× 10−4 −1.16× 10−4 −3.48× 10−1

a9 — −2.13× 10−4 — 1.39× 10−2

a10 — — — −5.32× 10−1

a11 — — — −3.44× 10−1

a12 — — — 2.07× 10−4

a13 — — — −6.07× 10−5

b1 4.78× 10−3 6.27× 10−3 1.08× 10−3 —

b2 7.25× 10−3 −2.01× 10−3 −3.43× 10−3 —

b3 −7.94× 10−1 5.35× 10−1 −9.76× 10−1 —

b4 −4.25× 10−3 −3.43× 10−1 3.61× 102 —

b5 −1.81× 10−1 −6.52× 10−3 1.40× 10−3 —

b6 −1.69× 101 — 2.35× 10−3 —

b7 −1.42× 101 — 1.22× 10−3 —

b8 4.46× 10−3 — — —

b9 −5.16× 10−1 — — —

b10 −0.65× 101 — — —

b11 −1.39× 10−1 — — —

c1 — — — −2.92× 10−4

c2 — — — −1.23× 10−2

c3 — — — 9.82× 10−5
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Table 2. Analysis of variance of the GPoM model – site of Torrey Pines. The variances are normalized by equation (Vareq) and at the scale

of the entire model (Varglobal).

Equation Sign Coeff. Term Vareq

Ẋ1 + 1 X2 1.00000

Ẋ2

− a7 X3
1 0.41562

+ a2 X3
3 0.25180

− a6 X2
1X3 0.17950

− a1 X3 0.08843

− a5 X1X
2
3 0.03247

+ a3 X2X
2
3 0.01936

+ a4 X2
2X3 0.01283

Ẋ3

− b3 X2 0.44985

− b4 X3
3 0.10373

− b9 X1X2X3 0.09210

+ b2 X3 0.08788

− b7 X2
2X3 0.08075

− b6 X2
2 0.07506

+ b8 X1 0.04886

− b5 X2X
2
3 0.02817

− b11 X2
1X2 0.02005

− b10 X1X
2
2 0.01356
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Table 3. Analysis of variance of the GPoM model – site of Gold Coast. The variances are normalized by equation (Vareq) and at the scale

of the entire model (Varglobal).

Equation Sign Coeff. Term Vareq

Ẋ1 + 1 X2 1.00000

Ẋ2

− a9 X3
1 0.38335

+ a5 X1 0.36809

− a1 X3 0.10747

− a7 X1X
2
2 0.04760

− a6 X1X
2
3 0.04014

+ a8 X2
1X3 0.02308

+ a3 X2X3 0.01149

+ a2 X3
3 0.01135

+ a4 X2
2X3 0.00743

Ẋ3

+ b3 X2 0.56438

− b5 X2
1 0.38997

− b4 X2X
2
3 0.03071

− b2 X3 0.01495
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Table 4. Analysis of variance of the GPoM model – site of Ensenada. The variances are normalized by equation (Vareq) and at the scale of

the entire model (Varglobal).

Equation Sign Coeff. Term Vareq

Ẋ1 + 1 X2 1.00000

Ẋ2

− a8 X3
1 0.33919

− a6 X2
1X3 0.27605

+ a1 X3 0.17264

− a7 X2
1X2 0.06371

− a2 X1X
2
3 0.05920

+ a4 X1X2 0.04883

− a5 X1X2X3 0.02393

+ a3 X2 0.01645

Ẋ3

− b3 X2 0.56105

+ b4 X3
2 0.27808

+ b6 X2
1X3 0.04767

− b2 X3 0.04744

+ b7 X3
1 0.04288

+ b5 X1X
2
3 0.02288
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Table 5. Analysis of variance of the GPoM model – site of Duck. The variances are normalized by equation (Vareq) and at the scale of the

entire model (Varglobal).

Equation Sign Coeff. Term Vareq

Ẋ1 + 1 X2 1.00000

Ẋ2

+ a4 X2
2X3 0.24364

− a5 X3
2 0.19205

− a10 X1X2X4 0.14097

− a11 X1X
2
2 0.13808

− a8 X1X
2
4 0.10359

+ a2 X2
3X4 0.06405

− a1 X4 0.02660

+ a9 X1X2 0.02105

+ a3 X2X4 0.01964

− a6 X1 0.01906

+ a7 X1X4 0.01385

− a13 X3
1 0.00892

+ a12 X2
1 0.00850

Ẋ3 + 1 X4 1.00000

Ẋ4

− c1 X3
3 0.82360

− c3 X3
1 0.10312

+ c2 X1X2 0.07328

3.3 Chaos within shoreline–sandbar systems455

To exhibit chaos, a dynamical system must be – at the same time – deterministic, highly sensitive to the initial conditions

and bounded. Several properties then follow from these necessary conditions (Bergé et al., 1986; Letellier et al., 2021). Dy-

namically, the time evolution of the system becomes unpredictable in the long term (Wolf et al., 1985; Grond et al., 2003);

geometrically, the trajectories evolve on an attractor with fractal geometry (Ruelle, 1976; Ott, 2002; Grassberger and Procac-

cia, 1983); and topologically, the structure of this attractor involves stretching and folding mechanisms (Gilmore and Lefranc,460

2002). Various tools have been developed to detect these conditions and properties, although they come with limitations and
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impose constraints on both the formulations and the data (Eckmann and Ruelle, 1992; Ding et al., 1993). In all cases, proving

that the system is deterministic remains a necessary condition for which only a few tools exist when working with real-world

observational datasets.

In natural systems, the aforementioned requirements for chaos to emerge are rarely met simultaneously, which makes direct465

evidence of such dynamics elusive. The GPoM framework bridges this gap by reconstructing explicit deterministic equations

directly from observational time series, thus revealing the underlying coupling structure. This approach provides the miss-

ing link between empirical observations and theoretical determinism, allowing the full dynamical characterization of coastal

morphodynamics. Extracting validated equations directly from observed time series allows one to obtain all the necessary

conditions and properties of chaos within a consistent framework. Determinism is guaranteed by the reconstructed equations,470

which converge to an attractor, and their robustness can be checked numerically. These equations also enable a direct compu-

tation of Lyapunov exponents (λi) and attractor dimensions via the corresponding Kaplan–Yorke dimension (DKY ), offering

a rigorous diagnostic of chaos from real-world data. Similarly, topological properties can also be deduced from it.

The Lyapunov spectrum {λi} was estimated numerically following the Benettin algorithm, adapted to the GPoM frame-

work (Benettin et al., 1980). The reconstructed models were integrated over long synthetic trajectories using a fourth-order475

Runge–Kutta scheme. The local tangent flow was estimated by finite differences of the flow map Φh(X), and an orthonormal

basis of perturbations was propagated and reorthonormalized at each step using a QR decomposition (Gander, 1980). The

Lyapunov exponents were then obtained as the time-averaged logarithms of the diagonal elements of the R matrix:

λi =
1

N ∆t

N∑

k=1

log |Rk,ii|. (13)

The Kaplan–Yorke dimension (Kaplan and Yorke, 1979) was obtained as:480

DKY = j +
∑j

i=1 λi

|λj+1|
, where j = max

{
n :

n∑

i=1

λi > 0

}
. (14)

All calculations were performed on the numerically integrated models after transient removal. The leading Lyapunov ex-

ponents (λ1 > 0) confirm that all four systems present a high sensitivity to the initial conditions which – associated with the

determinism guarantied by the obtained equations – provides a first argument for chaos (Table 6). This implies finite predictabil-

ity horizons on the order of months to years, in line with observed study sites shoreline–sandbar main variability. The total485

divergence (
∑

i λi < 0) indicates that the systems remain globally dissipative, with attractor contraction typical of bounded

physical processes.

The non-integer values of the Kaplan–Yorke dimensions ([2.3–2.8]) confirm the fractal nature of these attractors, implying

scale-invariant structures and self-similar organization within the coupled shoreline–sandbar dynamics, and provide another

argument for chaos. The dimensions obtained here are all quite high compared with the strongly dissipative chaos commonly490

observed in systems such as the paradigmatic Lorenz-1963 or Rössler-1976 models, whose dimension does not exceed 2.06.

Very few continuous systems with fractal dimension greater than 2.10 were identified in the early development of chaos,

27

https://doi.org/10.5194/egusphere-2026-154
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



whose lower dissipation gives them a characteristic foliated structure (Lorenz, 1984; Langford, 1984). From this perspective,

the results obtained here are of particular interest because they confirm that this type of dynamics can also be extracted directly

from real-world observational data.495

Table 6. Lyapunov exponents, divergence, Kaplan–Yorke dimension and Horizons of Predictability (HP) for the autonomous GPoM models

identified at each site. Positive λ1 indicates sensitivity to initial conditions, near zero λ2 correspond to the direction of the flow, negative

λ3 reflect energy dissipation (i.e. attractor boundedness) while
∑

i λi measures the system divergence. The deterministic horizon (HPσ)

corresponds to the time when the mean RMS error equals the natural variability (1σ), here typically on semi-annual scales, indicating that

the model retains the large-scale seasonal shoreline–sandbar dynamics. In contrast, the probabilistic horizon (HP25%,90%) marks the time

when 90% of runs exceed a 25% relative error, revealing rapid trajectory divergence and high sensitivity to initial conditions. Together, they

show that the models preserve the global morphodynamic structure but offers forecasting ability at short time scale, as, the annual forcing

imprint remain consequent within the morphological evolutions.

Site λ1 λ2 λ3 λ4 DKY HPσ HP25%,90%

[day−1] [day−1] [day−1] [day−1] [–] [days] [days]

Torrey Pines (1.0± 1.1)× 10−3 (2.4± 1.1)× 10−4 (−3.4± 1.9)× 10−3 — 2.310± 0.139 167 25

Gold Coast (3.4± 0.53)× 10−3 (1.7± 1.2)× 10−3 (−7.0± 1.7)× 10−3 — 2.731± 0.198 173 32

Ensenada (2.4± 1.9)× 10−3 (6.9± 14.0)× 10−4 (−4.5± 1.9)× 10−3 — 2.408± 0.920 241 29

Duck (3.5± 1.8)× 10−3 (1.4± 1.5)× 10−3 (−5.3± 2.3)× 10−3 (−2.0± 0.6)× 10−2 2.846± 0.304 112 17

To analyze the organization of the reconstructed attractors, Poincaré sections were extracted; from which first return maps

were computed (Fig. 7.a-c). Within the figure, each point corresponds to a successive intersection of the trajectory with the

section, producing a discrete sampling of the continuous flow. This representation highlights how the flow stretches, folds,

and squeezes from one passage to the next, making the underlying invariant structure directly visible. For a basic periodic

orbit, the section would collapse into a single point, while quasi-periodic dynamics would produce a smooth closed curve. In500

contrast, deterministic chaos yields discontinuous but characteristic structured patterns of points. In the most common case,

this organization can take an inverted-U shape crossing the median, as is the case for the logistic map (May, 1976), reflecting

a single folding process that generates two distinct branches from a single branch at each iteration. More branches may be

generated, leading to a multimodal distribution of points with multiple crossings of the median. Some situations may require

several Poincaré sections of the same attractor to obtain a proper map-based description of the underlying structure. Branches505

may be clearly visible under strongly dissipative conditions, in which each branch corresponds to a single line, but are more

difficult to depict under weakly dissipative conditions (as is the case here), because each branch can exhibit a thick, foliated

structure.
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Figure 7. First-return maps or Poincaré sections computed for the four reconstructed systems. (a–c) Each dot corresponds to a

successive intersection of the trajectory with the Poincaré section, providing a discrete sampling of the underlying continuous flow. The

corresponding Poincaré section is overlaid (red dots for Torrey Pines and Ensenada, shade of pink for Gold Coast) on a two-dimensional

representation of each attractor within each subpanel. (a) First-return map computed by applying dynamical noise during model integration in

order to prevent the trajectory from falling into the period-2 basin normally reached in case of noise-free run (pink cycle within the subpanel).

(b) First-return map computed for two distinct branches of the attractor (branch A: dark pink; branch B: light pink). (d) Poincaré section

projected onto the (X1,X3) plane. B0 denotes the initial neighborhood selected within the section, and Bi (i = 1,2,3) its successive images

under the first-return map. Because the reconstructed Duck attractor has four embedding dimensions, colored markers are used to track the

deformation and transport of B0 across iterations, allowing the local geometry of the attractor to be visualized despite the two-dimensional

projection.

At Torrey Pines, the trajectory was found to converge toward a stable period-two orbit after a very long transient. The compli-

cated dynamics observed in the model phase portraits (Fig. 3) is therefore only metastable, although it may be easily triggered510

by perturbations. Since the Lyapunov exponents and the Kaplan-Yorke dimension (DKY ≈ 2.31, see Table 6) were estimated

over this transient and thus characterize the associated dynamics, corresponding to metastable, weakly dissipative chaos. In
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order to represent the structure of this metastable transient, the first-return map was constructed by adding dynamical noise

(ϵ = 10−5×σX1 , with σX1 the standard deviation of the variable X1) during model integration to prevent the trajectory from

falling into the stable periodic orbit obtained in the noise-free integration case; enabling to reveal the underlying deterministic515

structure (Fig. 7.a). The resulting map clearly exhibits a structure with an inverted-U shape characteristic of chaos. Its foliation

reveals the folding of at least two main branches, possibly more.

At Gold Coast, the attractor is organized inside a genus-3 torus, which requires defining two Poincaré sections for a proper

description (Rosalie and Letellier, 2014). The two sections were defined on the surface X2 = 0 (see Fig. 7.b): the left one

(A), on the interval X1 ∈ [−2,−0.5], corresponding to a positive crossing (X2 = 0+), and the right one (B), on the interval520

X1 ∈ [0,2], corresponding to a negative crossing (X2 = 0−). To reconstruct the first-return map, these two sections were

assembled using a single coordinate axis. A decreasing orientation was defined for section A as: ρA = (−0.5−X1)/(1.5),

while an increasing orientation was defined for section B as: ρB = 1 + X1/2, yielding a unified return interval ρ ∈ [0,2]. The

global return map ρn+1 = P(ρn) thus explicitly resolves transitions within and between the different parts of the attractor, with

the four quadrants of the map corresponding to A→A; A→B; B→A and B→B transitions. In agreement with the organization525

of the attractor observed in phase space (Fig. 3), the map confirms the presence of the four possible transitions (A→A; A→B;

B→A; and B→B), indicating that the dynamics recurrently explores both parts of the attractor. The double-slash shape observed

in the A→B region corresponds to a three-branch folding structure, but here with the middle branch missing.

At Ensenada, the first-return map (Fig. 7.c) is organized along a foliated bend revealing at least two distinct folding branches

that provide a strong argument for chaos. The foliated structure is characteristic of a weakly dissipative chaotic attractor530

(DKY = 2.4). The attractor involves an extremely thin central branch on which all the trajectories loop at the bottom and

pass through the attractor before reemerging and separating at the top (Fig. 3). This structure is similar to the ‘cord attractor’

discovered in 2011 (Letellier and Aguirre, 2012), although here the thin central cord is completely bent within the attractor,

which may make the detailed analysis of this attractor’s structure particularly challenging.

The case of Duck is even more demanding. Indeed, analyzing the structure of chaotic attractors becomes a hard problem535

when their dimension is larger than three (Gilmore and Lefranc, 2002; Letellier and Gilmore, 2013). Few techniques have been

developed to investigate their structure (Mindlin and Gilmore, 1992; Gilmore and Lefranc, 2002; Mangiarotti et al., 2014).

Recently, promising results have been obtained based on homology (Charó et al., 2021; Sciamarella and Charó, 2024), but

their application remains difficult in many cases. Developed to characterize foliated structures, color tracer mapping can be

an alternative, in particular because it can also be applied to toroidal chaos and to four-dimensional problems (Rosalie and540

Mangiarotti, 2025; Mangiarotti et al., 2023). This technique consists of applying color tracers at a chosen Poincaré section and

examining their reorganization between successive iterations. The tracers allow one to follow the evolution of a small neigh-

borhood of points across successive returns. This technique was applied to investigate the presence of folding and stretching

within the Poincaré section of the Duck attractor (Fig. 7.d), which is very thick as consistently shown by an estimated dimen-

sion close to three (DKY = 2.85). Starting from an initial state B0, points are first selected within a compact region of the545

Poincaré section and colored according to their position along the first principal component obtained from a local PCA. This

color assignment provides a continuous label that allows tracking the deformation of a small neighborhood under successive
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returns of the dynamics. The images of B0 at successive states B1, B2, and B3 reveal (1) very strong stretching: initially

confined to a localized region in B0, the colors spread over almost the entire Poincaré section after a single iteration (B1); (2)

strong mixing, since after several iterations, points carrying very distant colors in B0 come into contact in B3. This behavior550

results from the combined action of folding (where the color gradient remains locally consistent almost everywhere between

successive iterations, as illustrated in B1), and squeezing, evidenced by the local compaction of trajectories in specific regions

of the section.

Together with the positive first Lyapunov exponent and the fractal dimension, and supported by the deterministic nature

guaranteed by the reconstructed equations, the first-return maps and the color tracer mapping provide dynamical, geometrical,555

and topological evidence of weakly dissipative chaos at the four sites either as a transient dynamics recurrently triggered by

external forcing (Torrey Pines) or as permanent dynamics (at the other three sites). This implies that shoreline–sandbar systems

exhibit chaos-prone internal dynamics associated with energy dissipation mechanisms and morphodynamic feedback loops, but

this dissipation remains weak compared to the energy inputs (i.e., forcings). Therefore, this system is not strongly damped, a

marker of long-term memory and sensitivity to small perturbations.560

The bifurcation diagrams (Fig. 8), obtained by slowly varying the coefficient values of specific terms, were also recon-

structed. They present contrasted behaviors over the studied sites. The classical doubling period cascade was not observed at

any of them, which may be an indication of toroidal chaos, as observed in low-dimensional models of atmosphere dynamics.

Figure 8. X1 bifurcation diagram for three of the four sites. (a-b) Torrey Pines and Gold Coast for the term a4X
2
2X3 and (c) Duck for

the term a5X
3
2 within the Ẋ2 equation when varying ai from 0.5 to 1.5 times its original value for 5000 runs over 10 years. The X1 local

maxima over the last 300 days of each run are then scattered. For Gold Coast and Duck, transients have been removed, whereas the stable

regime at Torrey Pines takes approximately ten years to be established; consequently, its bifurcation diagram explores the complexity of the

transient dynamics.

At Torrey Pines, the bifurcation diagram is characterized by abrupt alternation of periodic, either period-1 (single value e.g.

at 0.11 < a4 < 0.18 with an abrupt change of amplitude at a4 = 0.155), or more rarely period-2 (two values e.g. at 0.28 <565

a4 < 0.29) dynamics, and chaotic (complex distribution of points, in the ranges [0.21;0.22], [0.26;0.27], [0.31;0.33]) and

organized around two main regions: around X1 = 1.25 and X1 ∈ [1.0;1.25]. An organization around two main layers is also
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observed at Gold Coast, but the dynamic appears periodic only in very localized regions (e.g. in 0.3 < a4 < 0.32) whereas the

dynamic is chaotic elsewhere. The bifurcation diagram could not be reconstructed at Ensenada, indicating that the inferred

dynamics is quite specific to the parameterization. Finally, at Duck, the dynamic was found chaotic on the whole parameter570

window (−7.8 < a5 <−2.5). Because the model obtained at this site is four-dimensional, the very high value of DKY suggest

a proximity to hyperchaos, which requires two positive Lyapunov exponents (λ1 > λ2 > λ3 = 0≫ λ4), (Rössler, 1979, 1983).

Figure 9. Lyapunov analysis of Duck as a function of various ranges of the control parameter a5. (a) Lyapunov spectrum estimated

after transient removal. Thin black and gray lines show the sums λ2 +λ3 and λ1 +λ2 +λ3, used to diagnose the proximity to a regime with

two expanding directions and to highlight regions of weak dissipation, respectively. (b) Distribution of the Kaplan–Yorke dimension DKY

computed from the Lyapunov spectrum for all tested values of a5. The dimension predominantly lies between approximately 2.7 and 3.3,

with a median value close to 3.

To investigate this question, the Lyapunov spectrum was estimated in three subwindows of the bifurcation diagram, around

a4 = 7.75, −6, and −3.9. Fig. 9.a shows the individual Lyapunov exponents of the Duck system as a function of the control

parameter a5 after transient removal. The largest exponent λ1 is strictly positive over the entire parameter range, indicating575

robust chaotic dynamics. The second exponent λ2 remains close to zero almost everywhere and significantly smaller than λ1,

while λ3 and λ4 are negative. In continuous autonomous systems, one Lyapunov exponent must equal zero, corresponding to

the direction of the flow. Since numerical algorithms do not explicitly isolate this direction, the neutral exponent may be mixed

with nearby weakly stable or unstable directions. As a result, particular care must be taken when interpreting a second small

positive exponent as evidence for hyperchaos. To address this issue, we additionally show the sums λ2 +λ3 and λ1 +λ2 +λ3.580

Negative values of λ2 + λ3 are obtained almost everywhere indicating that λ2 is closer to zero and corresponds to the flow

direction (λ2 ≡ 0). Positive values of λ2 + λ3 indicate λ3 is closer to zero and corresponds to the flow direction (λ3 ≡ 0).

The former condition is observed almost everywhere while the latter one is observed only very locally in parameter space

(a5 =−7.75 and −3.9), suggesting that the dynamical system may reach hyperchaotic regimes under small configuration
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changes and that, overall, the observed dynamics operates close to hyperchaos. The partial sum λ1 + λ2 + λ3 provides an585

estimate of the effective dissipation and highlights parameter regions where the dynamics is weakly dissipative. As shown,

this sum is often close to or above zero for the explored parameter values, supporting the interpretation of a low-dimensional,

weakly dissipative chaotic attractor. The associated DKY distribution mostly lies between 2.7 and 3.3 (Fig. 9.b), with a median

value close to 3. While DKY > 3 is not sufficient to establish hyperchaos, it provides geometric support for the interpretation

that the Duck system operates near the transition between chaotic and hyperchaotic regimes. To conclude, the Duck system590

exhibits robust chaos across the explored parameter range and displays signatures consistent with proximity to hyperchaotic

dynamics, although the identification of a fully developed hyperchaotic regime is limited to narrow regions of parameter space.

In addition, the predictability horizons (HP) were evaluated (Table 6) from the growth of the prediction error over an en-

semble of 50 initial conditions using two complementary criteria (See Supplementary material Fig. S1-12). The first, HPσ ,

corresponds to the time at which the mean RMSE reaches one standard deviation of the observed signal, marking the loss of595

dynamical coherence between simulated and observed trajectories. The second, HP25%,90%, follows the probabilistic approach

proposed by Mangiarotti and Le Jean (2023), defined as the horizon at which 90% of the ensemble members exhibit a relative

error exceeding 25% of the signal amplitude. Across sites, both criteria yield consistent results, with HPσ typically of the order

of half a year and HP25%,90% around one month. This dual structure of predictability indicates that the reconstructed models

retain short-term skill for about one monthly cycle, while maintaining partial dynamical consistency over the semi-annual600

timescale. The semi-annual predictability horizon is consistent with the dominant systems’ annual periodicity, over which the

autocorrelation of the principal morphological proxies of beach evolution remains significant for approximately half a cycle

(Reeve et al., 2014). This suggests that the models reproduce the internal oscillatory memory of the system, while their forecast

skill remains limited in the absence of external forcing driving the dynamics. Conversely, the shorter HP25%,90% reflects the

timescale beyond which small phase errors accumulate to produce significant amplitude mismatches, even though the overall605

trajectory remains within the correct attractor. Beyond their diagnostic value, these horizons also serve as a model validation

metric: obtaining realistic, finite predictability horizons confirms that the reconstructed dynamics capture the intrinsic memory

of the coastal system rather than overfitting the data.

Taken together, these results demonstrate that all four systems operate within a chaotic regime. First, the four dynamics can

be approximated by low-dimensional ordinary differential equations, which are a strong argument in favor of determinism and a610

necessary condition for chaos. The solutions of these equations converge toward attractors of nontrivial structure, characterized

by a strong sensitivity to initial conditions (λ1 > 0) and finite predictability (Table 6), which constitutes another necessary

condition for chaos. The resulting attractors exhibit a fractal structure with single or multiple foldings, a hallmark of chaotic

dynamics. More specifically, the attractors display a thick structure, a property rather rarely encountered in chaotic systems,

as reflected by their Kaplan–Yorke dimensions (2.31 < DKY < 2.85). Such dynamics establish the bridge between short-615

term unpredictability and long-term structural coherence, consistent with the self-regulated nature of coastal morphodynamic

systems driven by processes spanning a broad range of spatiotemporal scales, from storm events to climatic modulations.
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4 Discussion

This study provides direct evidence that the coupled shoreline–sandbar system behaves as a low-dimensional deterministic

dynamical system across a wide range of morphodynamic settings. The ability of the reconstructed models to reproduce both620

the geometry of the phase space and the multiscale spectral structure of the observations indicates that the essential dynamics

are captured by a small number of interacting degrees of freedom. This supports the view that sandy beaches, despite being

continuously forced by waves and other environmental variables, can organize their response through deterministic internal

dynamics. Importantly, the models are fully autonomous: no external forcing is prescribed, yet the reconstructed dynamics

retain realistic amplitudes, oscillatory behavior, and broadband red spectra. This implies that the influence of external drivers625

is effectively embedded within the internal state variables, and that the shoreline–sandbar system integrates forcing over time

through its own nonlinear structure.

Across all sites, the reconstructed equations reveal that shoreline and sandbar dynamics are mutually coupled, rather than

hierarchically driven. The shoreline does not simply respond passively to sandbar migration, nor does the sandbar act as

an independent buffer; instead, both components participate in closed feedback loops whose strength and sign depend on630

the system state. For Torrey Pines and Ensenada, the dominant coupling corresponds to a seasonal exchange mechanism in

which offshore sandbar migration accompanies shoreline retreat, while onshore migration promotes recovery. This behavior is

consistent with a variable surf-zone dissipation length that adapts to wave climate, producing bounded oscillations around a

stable mean state. At Gold Coast, the coupling differs qualitatively: shoreline and sandbar positions tend to evolve coherently,

indicating a translation-dominated regime in which the surf-zone geometry is conserved. The Duck system, operating within a635

regime close to hyperchaos, departs markedly from the other sites. Its dynamics are dominated by velocity-dependent nonlinear

interactions, with no direct restoring term acting on shoreline position. Sandbar dynamics exhibit intrinsic instability and strong

sensitivity to shoreline motion, resulting in a highly complex attractor structure. This supports field-based interpretations of

Duck as a system with strong memory effects and path dependence, where antecedent morphology conditions subsequent

evolution (Anderson et al., 2023). These results indicate that shoreline–sandbar coupling is not universal in form, but universal640

in presence: internal feedbacks are always active, yet their organization depends on the morphodynamic regime.

Therefore, relating these results to established coastal morphodynamic classifications (Wright and Short, 1984; Masselink

and Short, 1993; Castelle and Masselink, 2023) provides a consistent framework to draw implications from the present results.

The conclusion inferred here from the analysis of autonomous models derived from observational data shows that part of the

shoreline and sandbar variability should be interpreted as internally generated, rather than as a direct response to short-term645

fluctuations in external forcings, even if their imprint on morphological evolution remains dominant at the seasonal scale. This

presents implications for both modeling and signal interpretation, since phenomena that are part of the internal dynamics of

sandy beaches (lags, feedback loops, morphodynamic turbulence, and so on) necessarily account for a non-negligible fraction

of the variability, which process-based models that neglect internal nonlinear feedbacks may misattribute to stochastic forcing

or parameter uncertainty. The low dimensionality of the reconstructed systems further implies that shoreline–sandbar dynamics650

may be amenable to reduced-order modeling approaches that explicitly account for nonlinear coupling and instability, rather

34

https://doi.org/10.5194/egusphere-2026-154
Preprint. Discussion started: 22 January 2026
c© Author(s) 2026. CC BY 4.0 License.



than relying solely on equilibrium frameworks (Yates et al., 2009; Davidson et al., 2013; Dean, 1991). While the present models

are not predictive tools for the long term, they provide a dynamical benchmark against which more complex models can be

evaluated. Moreover, the existence of site-specific coupling structures suggests that coastal typologies based solely on external

forcing or mean morphology may be incomplete. Internal dynamics and feedback organization appear to play a central role in655

controlling both variability and resilience of the beach system.

Finally, the estimated Lyapunov spectra imply finite predictability horizons, typically on the order of months to a few

years, consistent with observed limits in shoreline forecasting skill. A recent large-scale benchmarking study have shown that

shoreline prediction skill saturates at levels comparable to observational uncertainty, regardless of model complexity (Mao

et al., 2025). While often attributed to data limitations, our results suggest that this saturation may also reflect an intrinsic660

loss of predictability associated with low-dimensional chaotic dynamics. This result provides a dynamical explanation for

why long-term prediction of shoreline position remains challenging even when wave climate statistics are well characterized:

beyond a certain horizon, forecast uncertainty grows exponentially due to internal instability, not because of incomplete forcing

information. From this perspective, the shoreline–sandbar system behaves as a chaotic oscillator: its dynamics are structured

and deterministic, yet long-term trajectories are inherently unpredictable. This reconciles the apparent contradiction between665

reproducible seasonal patterns and large interannual variability observed in many sandy beaches.

5 Conclusions

This study demonstrates that sandy shoreline–sandbar systems, despite strong environmental variability, can be represented

by low-dimensional deterministic models exhibiting chaotic dynamics. Using global polynomial modeling applied to multi-

year satellite-derived observations, we reconstructed autonomous equations that reproduce the essential coupling between670

shoreline and sandbar motion. The models reveal bounded, chaotic attractors with finite predictability horizons, highlighting

the coexistence of short-term irregularity and long-term structural organization.

Across sites, the nonlinear feedbacks controlling shoreline acceleration and sandbar migration define distinct regimes (from

dissipative to intermittently unstable oscillators) governed by the sign and strength of sandbar-related coupling terms. The

emergence of chaos thus reflects an intrinsic property of morphodynamic systems where energy exchanges between shoreline675

and sandbar sustain self-regulated variability.

Despite these advances, several limitations remain. The GPoM framework relies on empirical reconstruction and is therefore

dependent on the observed variables and time series used for the analysis. Moreover, it does not explicitly resolve physical

processes such as sediment transport or hydrodynamics. Furthermore, the contribution of external forcing is not explicitly

considered in this study. Temporal sampling and noise in satellite observations also constrain the precision of model coefficients680

and Lyapunov estimates. Furthermore, the analysis is restricted to 3–4-dimensional systems, which may overlook higher-order

or non-local interactions present in real coastal dynamics.
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Future work should focus on coupling autonomous data-driven dynamical reconstruction and climate forcing to assess how

external variability (waves, storms, sea-level rise) interacts with intrinsic shoreline–sandbar dynamics. Expanding the analysis

to other coastal settings would help assess for the variety of these nonlinear behaviors.685

Overall, this study provides a novel dynamical framework to interpret shoreline evolution as a self-regulated, chaotic sys-

tem. It bridges satellite observation and system dynamics theory, offering new tools to assess the stability, predictability, and

resilience of sandy coasts under changing environmental conditions.
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Appendix A: Model simplification details

A1 Torrey Pines690

Considering only the terms with a variance of V areq ≥ 10% (see Table 2) leads to:





Ẋ1 = X2

Ẋ2 =−a7X
3
1 + a3X

3
2 − a6X

2
1X3

Ẋ3 =−b3X2− b4X
3
3 .

(A1)

Defining the second order derivatives, we get:





Ẍ1 =−a7X
3
1 + a2X

3
3 − a6X

2
1X3

Ẍ3 =−b3Ẍ1− 3b4X
2
3 Ẋ3,

(A2)

and then:695





A1 =−a7X
2
1X1 + a2X

2
3X3− a6X

2
1X3

A3 =−b3A1− 3b4X
2
3V 3,

(A3)

with Ai and Vi the sand mass acceleration and speed, respectively. Under the hypothesis that both masses are equal (m1 = m3),

we can view the problem as the force applied to the sand masses as:





F 1 =−a7X
2
1 X1 + a2X

2
3 X3− a6X

2
1 X3

F 3 =−b3 F 1− 3b4X
2
3 V 3.

(A4)

A2 Gold Coast700

Considering only the terms with a variance of V areq ≥ 10% (see Table 3) leads to:





Ẋ1 = X2

Ẋ2 =−a9X
3
1 + a5X1− a1X3

Ẋ3 = b3X2− b5X
2
1 .

(A5)
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Defining the second order derivatives, we get:





Ẍ1 =−a9X
3
1 + a5X1− a1X3

Ẍ3 = b3Ẍ1− 2b5Ẋ1X1,

(A6)

and then:705





A1 =−a9X
2
1X1 + a5X1− a1X3

A3 = b3A1− 2b5X1V 1,

(A7)

with Ai and Vi the sand mass acceleration and speed, respectively. Under the hypothesis that both masses are equal (m1 = m3),

we can view the problem as the force applied to the sand masses as:





F 1 =−a9X
2
1X1 + a5X1− a1X3,

F 3 = b3F 1− 2b5X1V 1.

(A8)

A3 Ensenada710

Considering only the terms with a variance of V areq ≥ 10% (see Table 4) leads to:





Ẋ1 = X2

Ẋ2 =−a8X
3
1 − a6X

2
1X3 + a1X3

Ẋ3 =−b3X2 + b4X
3
2 .

(A9)

Defining the second order derivatives, we get:





Ẍ1 =−a8X
3
1 − a6X

2
1X3 + a1X3

Ẍ3 =−b3Ẍ1 + 3b4X
2
2 Ẋ2,

(A10)

and then:715





A1 =−a8X
2
1X1− a6X

2
1X3 + a1X3

A3 =−b3A1 + 3b4X
2
2A1,

(A11)
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with Ai and Vi the sand mass acceleration and speed, respectively. Under the hypothesis that both masses are equal (m1 = m3),

we can view the problem as the force applied to the sand masses as:





F 1 =−a8X
2
1X1− a6X

2
1X3 + a1X3,

F 3 =−b3F 1 + 3b4X
2
2F 1.

(A12)

A4 Duck720

Considering only the terms with a variance of V areq ≥ 10% (see Table 5) leads to:





Ẋ1 = X2

Ẋ2 = a4X
2
2X3− a5X

3
2 − a11X1X2X4− a11X1X

2
2 − a8X1X

2
4

Ẋ3 = X4

Ẋ4 =−c1X
3
3 + c3X1.

(A13)

Defining the second order derivatives, we get:





Ẍ1 = a4X
2
2X3− a5X

3
2 − a11X1X2X4− a11X1X

2
2 − a8X1X

2
4

Ẍ3 =−c1X
3
3 + c3X1,

(A14)

and then:725





A1 = a4X
2
2X3− a5X

2
2X2− a11X1X2X4− a11X1X2

2 − a8X1X2
4

A3 =−c1X
2
3X3 + c3X1,

(A15)

with Ai and Vi the sand mass acceleration and speed, respectively. Under the hypothesis that both masses are equal (m1 = m3),

we can view the problem as the force applied to the sand masses as:





F 1 = a4X
2
2X3− a5X

2
2X2− a10X1X2X4− a11X

2
2X1− a8X

2
4X1,

F 3 = c1X
2
3X3 + c3X

2
1X1.

(A16)
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