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24 Abstract. Compound dry-hot events are intensifying under climate change and pose growing risks to
25 agricultural production. From April to June 2024, the North China Plain (NCP) experienced an extreme
26 compound dry-hot event. Using satellite-based normalized difference vegetation index (NDVI), gross
27 primary productivity (GPP), and crop yield statistics, this study quantified crop growth responses and
28 identified the dominant climatic drivers during this event. The climate anomaly was characterized by
29 pronounced warming in April and June, a continuous decline in precipitation and soil water from April

30  onward, and a record-high vapor pressure deficit (VPD) in June, forming a persistent dry-hot stress. NDVI
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31 and GPP increased markedly in April and remained slightly positive in May, but both collapsed to their

32 lowest levels since 2000 in June. Consistent with these vegetation signals, provincial yield statistics and
33 experimental plot observations showed increased winter wheat yields but reduced summer maize yields.
34 Sensitivity and contribution analyses revealed distinct phenology-modulated mechanisms: in April,

35 elevated temperatures and vegetation carryover effects comparably enhanced vegetation activity in winter-
36 wheat-dominated croplands; in May, vegetation dynamics were controlled almost entirely by the previous-
37 month carryover effect, reflecting the growing influence of accumulated vegetation state; and in June, as
38 winter wheat reached maturity and newly sown maize entered early establishment, VPD emerged as the
39 primary limiting factor, strongly suppressing photosynthetic activity and seedling establishment. These

40 findings demonstrate how phenological transitions modulate crop vulnerability to compound dry-hot events
41 and provide useful insights for agricultural early warning, crop management, and climate adaptation

42 strategies in the NCP.

43 Keywords: Compound dry-hot events, normalized difference vegetation index (NDVI), gross primary

44 productivity (GPP), Crop phenology, North China Plain

45 1 Introduction

46 Climate change accounts for nearly one-third of global crop yield fluctuations (Ray et al., 2015),
47 underscoring the crucial role of climate conditions in sustaining agricultural productivity. As global
48 warming accelerates, the frequency and intensity of weather and climate extremes have increased,
49 surpassing previous records (Fischer et al., 2025). Events, such as droughts and heatwaves, are projected to
50  become more frequent and severe in the future (AghaKouchak et al., 2020). These extremes substantially
51 reduce crop growth and yields, further destabilizing global food markets and driving price volatility
52 (Mehrabi and Ramankutty 2019; Tigchelaar et al., 2018; Vogel et al., 2019).

53 Globally, heatwaves have been found to reduce maize and wheat yields by 12.4% and 4.1%,
54 respectively, while droughts cause declines of about 7% (Jagermeyr and Frieler 2018). In Europe, the 2003
55 drought and heatwave resulted in a 10% reduction in total crop production, including decreases of 11% for
56 wheat and 21% for maize (Garcia-Herrera et al., 2010). However, crop sensitivity to climate varies

57 considerably across regions. For instance, wheat yields in western North America, eastern China, and
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58 Europe are highly sensitive to climatic fluctuations, as are maize yields in North America and China,
59 whereas wheat in northern India and Pakistan exhibits weaker sensitivity (Heino et al., 2023).

60 Although temperature-related indicators generally show stronger associations with crop yields than
61 precipitation-related ones (Lobell et al., 2011; Vogel et al., 2019), other climatic factors within the same
62 growth season can also play substantial roles. Moreover, crop responses to climate anomalies often differ
63 across phenological stages (Kaur and Behl 2010). Yet, it remains unclear which climate factors dominate
64 crop growth at different stages under extreme conditions—an issue that warrants further investigation.

65 The rapid advancement of remote sensing technology now enables continuous monitoring of crop
66 growth and its responses to climate variability at various multiple spatial and temporal scales (Huete 2016).
67 Among remote-sensing-based vegetation indicators, the Normalized Difference Vegetation Index (NDVI)
68 has been widely applied to detect vegetation trends and assess climatic drivers (Chu et al., 2019; Gao et al.,
69 2022; Wei et al., 2022). NDVI has also been used to predict crop yield indicators (Magney et al., 2016) and
70 estimate yield statistical models (Satir and Berberoglu 2016). Gross primary productivity (GPP), in contrast,
71 more directly reflects ecosystem photosynthetic activity and responds rapidly to climatic extremes (Deng et
72 al., 2021). As a key metric for evaluating farmland carbon budgets and crop growth conditions (Peng and
73 Gitelson 2012), GPP complements NDVI in capturing vegetation dynamics under environmental stress.
74 Together, these two indices provide robust tools for quantifying crop responses to climate change.

75 The North China Plain (NCP) is one of China's most vital grain-producing regions, exerting
76 significant influence on national food security. However, this region has faced increasing exposure to
77 extreme weather events—including heatwaves, droughts, heavy rainfall, and floods—that have posed
78 mounting challenges to agricultural stability (Ding et al., 2025; Yu et al., 2016; Zhang et al., 2025).
79 Precipitation across the NCP has declined since the mid-to-late 1970s, accompanied by a shift toward
80  warmer and drier conditions that threaten crop production (Ma 2007). From April to June 2024, the NCP
81 experienced moderate to severe drought conditions (Zhang et al., 2025), severely affecting crop growth
82 during a critical stage of the growing season. This study aims to: (1) identify the spatiotemporal
83 relationship between the 2024 spring-early summer climate anomaly and crop responses in the NCP; (2)
84 analyze the sensitivity of NDVI and GPP to different climate factors from April to June; and (3) quantify

85 the contributions of various climate drivers to abnormal changes in NDVI and GPP. By addressing these
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86  objectives, this study enhances understanding of crop response mechanisms under extreme climatic
87 conditions and provides a scientific foundation for improving regional agricultural risk management and

88 climate adaptation strategies.

89 2 Data and Methods

90 2.1 Study area
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92 Figure 1. Geographic location and land use distribution of the study area, derived from the MODIS

93  MCDI2C1 land cover product.

94

95 The study area is located in the NCP, characterized by a temperate monsoon climate with noticeable

96 seasonal fluctuations. Annual precipitation is predominantly concentrated between June and August and

97 exhibits considerable interannual variability. Land cover data were obtained from the 2023 MODIS

98 MCDI12CI1 version 6.1 product from the Terra and Aqua satellites at a spatial resolution of 0.05°x0.05°.

99 Based on the International Geosphere-Biosphere Programme (IGBP) classification system, the region is
100 mainly composed of croplands (Fig. 1). To focus on agricultural response processes, non-cropland grids
101 were masked. Agricultural production in the NCP primarily relies on a double-cropping rotation system,
102 with winter wheat sown in October and harvested in June; summer maize sown in June and harvested in
103 September as the primary crops—both highly sensitive to climatic anomalies (Ling et al., 2023; Tao and

104  Zhang 2010; Wang et al., 2019). According to the China Statistical Yearbook, Shandong and Hebei
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105 provinces together produced approximately 30% of the nation’s total wheat and 16% of its maize in 2023,
106 underscoring its importance as a key grain-producing region. This study focused on a region within the

107  NCP where the 2024 climatic anomalies were particularly pronounced, to better assess crop responses.

108 2.2 Data sources

109  2.2.1 Climate Data

110 The climate data were obtained from the ERAS5-Land monthly reanalysis dataset, spanning the period
111 2000-2024 with a spatial resolution of 0.1°%0.1° (Mufioz Sabater 2019). The primary variables include 2 m
112 dewpoint temperature (TD), 2 m air temperature (TAS), volumetric soil water (SW), total precipitation
113 (PRE), and surface solar radiation downwards (SSRD). ERAS5-land, developed by the European Centre for
114  Medium-Range Weather Forecasts (ECMWEF), represents the fifth-generation global land reanalysis
115 product. Building upon the ERAS atmospheric reanalysis, in integrates an improved land surface model and
116 higher-resolution grid design, providing enhanced representations of land surface energy and water balance
117  processes.

118 The SW is provided for four soil layers (0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm). Following
119 Wang et al. (2025a), we calculated the depth-weighted mean soil water content for the upper 100 cm, based
120 on the first three layers.

121 Additionally, vapor pressure deficit (VPD) was derived from TAS and TD using Eq. (1) (Wang et al.,

122 2023b):

17.27xTAS 17.27xTD

123 VPD=0.61078x(eTAS+237.29-¢TD+237.29) 1)

124 where TAS and TD are expressed in degrees Celsius, and VPD is measured in kilopascals (kPa). Given the
125 monthly VPD anomalies derived from daily and monthly ERAS data are nearly identical (He et al., 2022),
126 we directly computed VPD using the monthly TAS and TD values in this study.

127 2.2.2 Vegetation and Crop Yield Data

128 The NDVI data were obtained from the MODIS MOD13C1 monthly product from the Terra satellite,
129 covering the period from 2000 to 2024 with a spatial resolution of 0.05°%0.05°. GPP data were sourced
130 from the FluxSat GPP v2.2 product, which provides daily estimates at the same spatial resolution and

131 temporal coverage. The daily GPP data were aggregated to monthly values for comparison with NDVI. The
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132 FluxSat GPP dataset integrates geometrically corrected MODIS reflectance data with eddy covariance flux
133 measurements from the FLUXNET 2015 network. It employs a simplified light-use efficiency (LUE)
134 framework combined with neural network algorithms to estimate GPP at high spatiotemporal resolution
135 (Joiner et al., 2018). To ensure spatial consistency across datasets, both NDVI and GPP were resampled to
136 0.1°%0.1° to match the climate data.

137 We also compiled province-level annual yields of winter wheat and summer maize for 2020-2024
138 from the China Statistical Yearbook. In addition, we used observed yields of winter wheat (varieties Shimai
139 and Jimai) from 2023 to 2025 and summer maize (varieties Lainongl14 and Zhengdan958) from 2022 to
140 2024 at an experimental plot (lat/long: 36.1565°N/117.1607°E). Each variety was grown in two to three
141 replicated trials under a conventional fertilization regime, and all measurements were conducted by the
142 same operator to ensure consistency in procedures and standards. Detailed yield information for all

143 varieties is provided in Table S1 and S2.

144 2.3 Statistical methods

145 2.3.1 Anomaly Calculation

146 Anomalies were defined as the deviation of a variable from its long-term mean for the corresponding
147 month. Using 2001-2023 as the reference period, monthly anomalies of climatic variables and vegetation
148  indices were calculated for 2000-2024. To minimize the influence of long-term CO, fertilization and
149 climate warming on vegetation dynamics, a linear detrended procedure was applied to each variable
150  through ordinary least squares regression. The resulting detrended anomalies were used in subsequent
151 analyses.

152 For the province-level statistics of winter wheat and summer maize yields, we quantified their relative
153 changes (RC) using Eq. (2):

Yieldygp4—Yieldmean

154 RC= x 100% o)

Yieldmean
155 where Yieldygy4 and Yield,,.., denote the yield of winter wheat/summer maize in 2024 and the average
156 yield over 2020-2024 (kg hm), respectively. RC is expressed as a percentage (%).

157 2.3.2 Multiple Linear Regression Model
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158 To investigate the sensitivity and relative contributions of climatic factors on NDVI and GPP
159 anomalies, we applied a multiple linear regression (MLR) analysis for the period March-June during 2000-
160 2024 which was widely used by previous studies (Wang et al., 2023a; Wang et al., 2023b; Wang et al.,
161 2026). The independent variables included TAS, VPD, PRE, SW, SSRD, and the lagged NDVI (or GPP)
162 anomaly from the previous month. The general form of the model uses Eq. (3):

163 Y =B\ TAS AP, VPD,+p3SWAP4PREALsSSRD AP Y, +€ 3)
164  where Y; is the NDVI (or GPP) anomaly in month t (GPP in g€ m?mo™), and Yy, is the anomaly value for
165 previous month. TA4S;, VPD, , SW;, PRE, and SSRD, denote the anomalies of near-surface air temperature
166 (°C), vapor pressure deficit (kPa), soil water (m® m?), total precipitation (mm mo1), and downward
167 shortwave radiation (W m2), respectively. f; represents the regression coefficients, and ¢ is the residual
168 term. The overall model performance was assessed using the F-test and the coefficient of determination
169 (R?). A p-value < 0.05 was taken as the threshold for statistical significance, and the significance of
170 individual predictors was evaluated using t-test.

171 To eliminate the influence of differing variable units, standardized regression coefficients were used
172 to measure the relative sensitivity of NDVI and GPP to each climatic factor. These coefficients were
173 obtained by performing regression on standardized variables, enabling direct comparability across
174 predictors.

175 To quantify the magnitude of each factor’s contribution to the observed NDVI or GPP anomaly, we
176 calculated monthly contributions using Eq. (4):

177 Contribution;, = f;, X X, 4
178 where Contribution;, is the contribution of variable i in month t, §;, is the regression coefficient of
179 variable i in month t in the multiple linear regression model, and X;, is the corresponding detrended

180 anomaly.

181 3 Results

182 3.1 April-June 2024 Compound Dry-Hot Event
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Figure 2. Detrended climate anomalies over the NCP from March to July, including (a) near-surface air
temperature (TAS), (e) soil water (SW), (i) precipitation (PRE), (m) vapor pressure deficit (VPD), and (q)
surface shortwave radiation downward (SSRD). The blue lines denote the anomalies for 2024, while the
green shaded areas indicate the interannual variability represented by one standard deviation (1o) during
2000-2023. Panels (b-d), (f-h), (j-1), (n-p), and (r-t) show the spatial distributions of TAS (°C), SW (m’m™),
PRE (mm mo™), VPD (kPa), and SSRD (W m™) anomalies, respectively, from April to June 2024. Areas

marked with “//” indicate anomalies exceeding 1o, while those labeled “XX” exceed 1.56.

In 2024, we find that significantly higher temperatures occurred in April and June over the NCP, far
exceeding the historical interannual variability represented by one standard deviation (1o) (Fig. 2a). During
these months, precipitation continuously decreased, reaching the lowest in June 2024 (Fig. 2i). Hence,
associated with enhanced evapotranspiration, soil water content continued to decline before July, with the

anomalous values exceeding the historical interannual variability in May and June, exhibiting extreme
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197 droughts (Fig. 2e). Simultaneously, reduced atmospheric actual water vapor induced by the continuous
198 decline in precipitation and enhanced saturated water vapor induced by higher temperatures lead to the
199 continuous increase in VPD, showing the record-breaking atmospheric dryness in June 2024 (Fig. 2m).
200  Additionally, associated with this compound dry-hot event, SSRD showed significant increase in May and
201 June (Fig. 2q).

202 Spatially, April exhibited markedly higher temperatures (>1.50) across nearly the entire Shandong
203 province (Fig. 2b), accompanied by severe droughts (below —1.56) in the northeastern Shandong (Fig. 2d).
204 In May, precipitation further declined in the central and western regions (Fig. 2k), while areas of notably
205 low soil water expanded southward (Fig. 2g). Although the temperature anomalies weakened, VPD began
206  to increase in the southern areas, indicating obvious atmospheric dryness (Fig. 20). SSRD also rose
207 substantially due to reduced cloud cover (Fig. 2s). By June, the entire region again experienced intense
208 warming, with TAS anomalies exceeding 1.5c, while precipitation reached its lowest levels (Figs. 2d and
209 21). Under the combined effects of heat and persistent rainfall deficit, soil water depleted further, VPD

210  reached record highs, and SSRD remained elevated across almost all areas (Figs. 2h, 2p, and 2t).

211 3.2 Influence on crop growth and yields
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213 Figure 3. Detrended vegetation index anomalies over the NCP from March to July, including (a) the
214 normalized difference vegetation index (NDVI) and (e) FluxSat gross primary production (GPP). The blue
215 lines denote vegetation index anomalies for 2024, while the green shaded areas represent interannual
216  variability presented by one standard deviation (1) during 2000-2023. Panels (b-d) and (f-h) show the
217 spatial distributions of NDVI and GPP (gC m™ mo™') anomalies, respectively, from April to June 2024.

218 Areas marked with “//” indicate anomalies exceeding 1o, while those labeled “XX” exceed 1.5c.
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219
220 We find that NDVI in April 2024 exceeded 1.50, reaching its highest value since 2000 (Fig. 3a), while
221 GPP also showed a marked increase (Fig. 3e). These results indicate that elevated temperatures in April

222 substantially enhanced crop growth, overweighing the modest inhibitory effects of mild dryness. Spatially,
223 both NDVI and GPP anomalies were strongly positive across most of the NCP, except in the southwest
224 (Figs. 3b and 3f).

225 In May, temperatures moderated, but drought intensity increased and VPD began to rise (Fig. 2).
226  Although NDVI and GPP decreased notably in the southwest, most regions still exhibited positive
227 anomalies (Figs. 3¢ and 3g), leading to a slight but overall positive regional mean (Figs. 3a and 3e). Despite
228 enhanced soil and atmospheric dryness, NDVI and GPP did not show a pronounced decline.

229 By June, extreme compound heat and drought conditions dominated the NCP (Figs. 2d, 2h and 2p),
230 driving both NDVI and GPP to record lows (Figs. 3a and 3e). Except for a few eastern areas, nearly the
231 entire region exhibited significant decreases in NDVI and GPP, with anomalies falling below —1.5¢ (Figs.
232 3d and 3h). Notably, vegetation responses during June were further complicated by regional cropping
233 practices: winter wheat is typically harvested in early June (Luo et al., 2020), after which maize is sown.
234 The combination of heat and drought conditions likely hindered maize establishment-conditions that can
235 impair germination, suppress early growth, and reduce canopy development-thereby amplifying reductions

236 in NDVI and GPP.

10



https://doi.org/10.5194/egusphere-2026-142
Preprint. Discussion started: 28 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

(a)

0.69% I winter wheat
[7] summer maize

% sample plot

38°N

37°N] Hebei

36°N 4 * -0.26%

Shandong
35°N

115°E 120°E

Shimai

|

Jimai
I Lainongl4
I Zhengdan958

14000

12000

10000

yield (kg hm~2)

8000

6000

2diaslly,

2023 2024 2025 2022 2023 2024
winter wheat summer maize

237
238 Figure 4. Annual yield changes of winter wheat and summer maize. (a) Relative changes (RC) in 2024
239 winter wheat and summer maize yields across key provinces in the study area. The asterisk marks the
240  sample plot located in Shandong province. (b) Field photographs of the sample site. (c) Observed yields of
241 winter wheat (varieties Shimai and Jimai) for 2023-2025 and summer maize (varieties Lainongl4 and
242 Zhengdan958) for 2022-2024 at the plot.

243

244 The climatic conditions in spring can strongly influence tillering, young ear development, and grain

245 filling in winter wheat (He et al., 2020; Li et al., 2015; Xiao et al., 2018), thereby shaping its final yield. In

11
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the study area, early-summer climate also affects maize emergence and seedling vigor (Lin et al., 2015;
Wang et al., 2022), with potential impacts on annual summer maize production. Therefore, using annual
winter wheat and summer maize yield statistics from the National Bureau of Statistics, we compute their
relative changes in 2024 to assess the potential impacts of this compound dry-hot event. Province-level
yield data indicate slight enhancements in winter wheat production (0.69% in Hebei and 0.95% in
Shandong) and reductions in summer maize yield (-0.31% in Hebei and -0.26% in Shandong) in 2024 (Fig.
4a), broadly consistent with the NDVI and GPP anomalies (Fig. 3). Observations from the sample plot also
show that, for the same varieties, winter wheat yields increased while maize yields declined relative to
adjacent years (Fig. 4c). Quantitatively, year-on-year increases in winter wheat reached 15% for both
Shimai and Jimai in 2024, whereas summer maize yields decreased by 13% for Lainongl4 and 10% for

Zhengdan958.

3.3 Sensitivities of Crop Growth to Different Driving Factors

(x) NDVI - April (b) NDVI - May (¢) NDVI - June
05 ().]11 0.}9 0.5 Of‘) 0.5 0}7
0.[23
09 ; X
B 2 ool opr o o of i . of
-0 + - ig ! L T i
j ‘ .0113 -0llo -0|07 J -oln 008
023 07
-05 0.5 03 —_—
W0 g R 0 N g O G
Y;@/ V‘Q/ ?‘@/
(d) GPP - April (¢) GPP - May (1) GPP - June
0.5 OVFS 0.]:0 0.5 0-]“3 0.5 Ulll O'FS
ol2 : o.}e
Lo R 085
TR N B R YT TR
-05 -05 ]
-0ls6
-10 -10 10
R R S PP ¥ g P P S e O F
S Qe LS Qe = s

Figure 5. Standardized sensitivities of (a-c) NDVI and (d-f) GPP anomalies to multiple driving factors
from April to June over the NCP. The driving factors include TAS, VPD, SW, PRE, SSRD, and the

previous month's NDVI or GPP (Pre_NDVI or Pre_GPP).

12
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263 To quantify how crop responses to various environmental drivers, we examined the standardized
264  regression coefficients of NDVI and GPP against multiple factors. In April, both NDVI and GPP exhibited
265 strong positive sensitivities to TAS, with coefficients of 0.42 and 0.35, respectively. They also showed
266 comparable sensitivities to vegetation conditions in the previous month (Pre. NDVI or Pre_GPP; 0.39 and
267 0.40, respectively), suggesting that concurrent higher temperatures and vegetation carryover effects could
268  jointly enhance crop growth during this period (Figs. 5a and 5d). Sensitivities to other climatic factors were
269 relatively weak.

270 In May, as temperatures moderated and dryness began to increase, sensitivities of NDVI and GPP to
271 most climate factors showed relatively weak, though VPD sensitivities increased slightly (Figs. 5b and 5e).
272 Both NDVI and GPP showed significant positive sensitivities to previous-month vegetation conditions
273 (0.49 and 0.48, respectively), indicating that the continued positive anomalies in May were primarily due to
274  the vegetation carryover effect.

275 By June, when compound heat and drought extremes prevailed (Fig. 2), associated with the transition
276 in cropping practices, both NDVI and GPP exhibited their strongest negative sensitivities to VPD (-0.51
277 and -0.56, respectively), while maintaining positive responses to higher temperatures. Notably, GPP still
278 showed a substantial positive sensitivity to previous-month vegetation conditions (0.35), even stronger than
279 its sensitivity to TAS, whereas NDVI displayed no significant dependence on previous-month conditions
280 (Figs. 5¢ and 5f).

281 Spatially, NDVI and GPP exhibited positive sensitivity to TAS across most regions in April and June,
282 with particularly strong responses in eastern regions during April (Figs. Sla, Slc, S2a, and S2c). Sensitivity
283 to previous-month conditions was also pronounced in April and further expanded in May (Figs. Slp, Slq,
284 S2p, and S2q). In June, positive sensitivity to SW intensified in the east, whereas negative sensitivity to

285 VPD strengthened across nearly the entire NCP (Figs. S1f, S11, S2f, and S2I).

286 3.4 Individual Contributions of Different Driving Factors
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288 Figure 6. Geographical distributions of individual contributions from different driving factors. (a-c)
289 Estimated GPP during April-June 2024 based on the multiple linear regression model. Shaded areas labeled
290 “XX” indicate grid cells where the model's F-test p-value is < 0.05. Panels (d-f), (g-i), (j-1), (m-0), (p-r),
291 and (s-u) present the separated contributions from TAS, SW, PRE, VPD, SSRD, and Pre_GPP, respectively.
292

293 Beyond sensitivity analysis, we further quantified the pixel-level contributions of individual drivers to
294  NDVI and GPP anomalies during April-June 2024. Because NDVI and GPP exhibited broadly consistent
295 responses, and GPP variations are more directly linked to crop production, we focus on the spatial patterns
296 of contributions to GPP in Figure 6, while the corresponding NDVI results are provided in supplementary
297 Figure 3. The MLR model reproduced GPP anomalies well, with widespread statistical significance (p <
298 0.05) and R? of ~0.6 (Figs. 6a-c), consistent with the observed anomalies (Figs. 3f-h).

299 In April, enhanced GPP over northern regions was primarily attributable to positive effects from TAS
300 and Pre_GPP, aligning with their strong sensitivities, although their areas of influence differed (Figs. 6a, 6d,
301 and 6s). In May, the persistence of high GPP in the northern and eastern areas was dominated by Pre_ GPP
302 contributions (Fig. 6t), whereas reductions in southwestern regions were mainly driven by VPD (Fig. 6n).
303 By June, widespread GPP declines were largely linked to strong VPD inhibition (Fig. 60), consistent with
304  the strongest negative standardized sensitivity (—0.56; Fig. 5f). Additional reductions over the southeastern
305 areas arose from combined effects of high TAS and soil droughts (Figs. 6f and 6i). Although Pre_ GPP
306 remained a statistically meaningful predictor, its June contribution was relatively weak, despite its high
307 sensitivity (Figs. 5f and 6u). Notably, positive TAS effects mitigated part of the VPD-induced decline in

308 northern areas (Fig. 6f).
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Figure 7. Contributions of individual driving factors to regional mean (a-¢c) NDVI and (d-f) GPP anomalies
during April-June 2024. The explanatory variables include TAS, VPD, SW, PRE, SSRD, and the previous-
month vegetation conditions (Pre NDVI or Pre_GPP). Each panel also displays the estimated anomalies

(estimated_NDVI or estimated_GPP) and observed anomalies (obs_ NDVI or obs_GPP).

To quantify these contributions regionally, Figure 7 compares estimated and observed NDVI and GPP
anomalies, demonstrating good agreement and supporting model robustness. In April, TAS and previous-
month vegetation conditions contributed comparably (both 0.03 for NDVI; 10.86 and 9.42 gC m2 mo' for
GPP). In May, nearly all positive anomalies were attributable to Pre NDVI (0.02) and Pre_ GPP (28.11 gC
m~2 mo™"). By June, VPD became the dominant suppressing factor, contributing —0.09 to NDVI and —26.30
¢C m2 mo ™' to GPP. Consistent with spatial patterns, TAS partially offset this inhibition, contributing 0.05

to NDVI and 7.67 gC m2 mo™! to GPP.

4 Discussion
4.1 Mechanistic Differences in Crop response to Compound Dry-Hot Events
The impacts of compound dry-hot events on crop yields remain insufficiently understood (Feng et al.,

2019; Heino et al., 2023). This study investigated the rapid responses of major crops to the 2024 compound
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326 dry-hot event, a process further complicated by regional cropping practices over the NCP. Through
327 multiple linear regression analysis, we revealed that the dominant drivers of crop vulnerability shifted
328 markedly across different months of the event.

329 In April, winter wheat in the booting-heading stage was highly temperature-responsive, with warming
330  accelerating development and biomass accumulation (He et al., 2020; Wang et al., 2018). The strong
331 contribution from the prior vegetation state also underscores the role of physiological memory effects
332 (Wong et al., 2021; Zhou et al., 2020). By May, crop growth appeared more constrained by accumulated
333 biomass than by concurrent weather variability, as evidenced by declining temperature sensitivity and a
334  rising influence of antecedent vegetation (Fig. 5). This shift aligns with the understanding that after
335 reproductive structures are formed, wheat productivity becomes primarily source-regulated rather than
336 directly climate-driven (Ceglar et al., 2016). A sharp transition in dominant stressors occurred in June.
337 Winter wheat approached maturity while maize entered germination. Elevated VPD increased atmospheric
338 evaporative demand, inducing stomatal closure, restricting carbon assimilation, and ultimately reducing
339 seedling vigor (Fu et al., 2022; Medrano et al., 2002; Schonbeck et al., 2022). Consequently, NDVI and
340 GPP reached their lowest levels since 2000 (Fig. 3). The strong linkage between VPD and maize yield is
341 consistent with evidence suggesting that, under dry-hot conditions, VPD may explain more yield variability

342 than factors like fertilizer or irrigation (Rathore et al., 2024).

343 4.2 Agricultural Implications

344 These contrasting monthly sensitivities imply that a single compound event can simultaneously
345 enhance winter wheat yield while suppressing maize yield, depending on crop phenology and water
346 management. Consequently, adaptation requires stage-specific strategies. For maize during establishment,
347 priorities should include conserving soil moisture and mitigating VPD impacts through practices such as
348 mulching and timely irrigation. For winter wheat during reproductive growth may benefit from warming-
349  induced acceleration where appropriate.

350 Under future global warming scenarios, compound dry-hot events are expected to become more
351 frequent and intense, posing substantial threats to agricultural productivity and food security globally and in
352 China (AghaKouchak et al., 2020; Heino et al., 2023; Mehrabi and Ramankutty 2019). As thermal and

353 drought stresses intensify, maize yield losses across the NCP are likely to increase (Liu et al., 2025),
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354 although irrigation may partially offset these impacts (Wang et al., 2025b). Future efforts should focus on
355 exploring adaptation options—such as optimizing sowing timing, varietal selection, and irrigation
356 scheduling—within scenario analyses to identify robust strategies for increasing compound extremes.
357 Concurrently, developing more heat-resistant and drought-resistant wheat and maize varieties will be

358 essential.

359 4.3 Uncertainties and Limitations

360 Several caveats should be considered when generalizing these findings. The use of monthly vegetation
361 and yield data may limit the detection of rapid phenological responses; higher-frequency monitoring would
362 better capture establishment-phase stress dynamics. Crop production in the NCP heavily depends on
363 groundwater extraction, and long-term overuse has led to severe aquifer depletion (Zhao et al., 2018), with
364  winter wheat irrigation accounting for approximately 70% of total agricultural water use (Zhang et al.,
365 2023). Our study did not explicitly represent irrigation or groundwater extraction processes, although these
366 are critical for buffering climatic stress in this region. Furthermore, remote sensing-derived GPP estimates
367 carry inherent uncertainties when applied to croplands (Gitelson et al., 2008; Zhang et al., 2014),

368  necessitating future ground-truthing for validation.

369 5 Conclusions

370 This study systematically evaluated the impacts of the 2024 spring-early summer compound dry-hot
371 event on major grain crops in the NCP. The key findings are as follows:

372 (1) The regional climate exhibited typical compound-extreme characteristics. April and June
373 experienced pronounced warming, while precipitation and soil moisture declined persistently from April
374 onward and approached record-low levels by June. Concurrently, VPD reached its highest value in the past
375 two decades, indicating exceptionally strong atmospheric drought.

376 (2) Satellite-based vegetation indicators showed strong phenological and climatic imprints: NDVI and
377 GPP increased markedly in April, remained slightly positive overall in May, but dropped to record lows in
378 June. These variations were consistent with both province-level yield statistics and field-observed yields,

379 which jointly indicate increased winter wheat yields but reduced summer maize yields.

18



https://doi.org/10.5194/egusphere-2026-142
Preprint. Discussion started: 28 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

380 (3) Sensitivity and contribution analyses revealed distinct stage-dependent drivers of crop
381 physiological responses. In April, accelerated crop growth was primarily stimulated by elevated
382 temperatures and strong vegetation carryover effects. In May, crop productivity became governed almost
383 exclusively by previous-month vegetation conditions, underscoring the importance of physiological
384  memory. By June—when winter wheat reached maturity and summer maize entered emergence—VPD
385 became the dominant limiting factor, reflecting a sharp month-to-month shift in climatic controls.

386 Overall, this study demonstrates the rapid and phenology-dependent responses of crops in the NCP to
387 compound dry-hot conditions. The results underscore the necessity of explicitly considering crop growth
388 stages when assessing climate risks and identifying dominant stressors. These findings provide scientific
389 support for agricultural disaster early warning, regional food-production management, and climate-
390 adaptation policy development.
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407  Data Availability

408 FluxSat GPP Version 2.2 is available at

409  https:/disc.gsfc.nasa.gov/datasets/FluxSatMGPP_L3_Daily p0O5deg_2.2/summary. The MODIS NDVI is

410 provided at https://www.earthdata.nasa.gov/data/catalog/Ipcloud-mod13c1-061. The MODIS land cover

411 type data is available at https://www.earthdata.nasa.gov/data/catalog/Ipcloud-mcd12¢1-061. The yield data

412 for wheat and maize is available at https://www.stats.gov.cn/sj/ndsj/. ERAS-Land is available at

413 https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview.
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