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23

Abstract. Compound dry-hot events are intensifying under climate change and pose growing risks to24

agricultural production. From April to June 2024, the North China Plain (NCP) experienced an extreme25

compound dry-hot event. Using satellite-based normalized difference vegetation index (NDVI), gross26

primary productivity (GPP), and crop yield statistics, this study quantified crop growth responses and27

identified the dominant climatic drivers during this event. The climate anomaly was characterized by28

pronounced warming in April and June, a continuous decline in precipitation and soil water from April29

onward, and a record-high vapor pressure deficit (VPD) in June, forming a persistent dry-hot stress. NDVI30
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and GPP increased markedly in April and remained slightly positive in May, but both collapsed to their31

lowest levels since 2000 in June. Consistent with these vegetation signals, provincial yield statistics and32

experimental plot observations showed increased winter wheat yields but reduced summer maize yields.33

Sensitivity and contribution analyses revealed distinct phenology-modulated mechanisms: in April,34

elevated temperatures and vegetation carryover effects comparably enhanced vegetation activity in winter-35

wheat-dominated croplands; in May, vegetation dynamics were controlled almost entirely by the previous-36

month carryover effect, reflecting the growing influence of accumulated vegetation state; and in June, as37

winter wheat reached maturity and newly sown maize entered early establishment, VPD emerged as the38

primary limiting factor, strongly suppressing photosynthetic activity and seedling establishment. These39

findings demonstrate how phenological transitions modulate crop vulnerability to compound dry-hot events40

and provide useful insights for agricultural early warning, crop management, and climate adaptation41

strategies in the NCP.42

Keywords: Compound dry-hot events, normalized difference vegetation index (NDVI), gross primary43

productivity (GPP), Crop phenology, North China Plain44

1 Introduction45

Climate change accounts for nearly one-third of global crop yield fluctuations (Ray et al., 2015),46

underscoring the crucial role of climate conditions in sustaining agricultural productivity. As global47

warming accelerates, the frequency and intensity of weather and climate extremes have increased,48

surpassing previous records (Fischer et al., 2025). Events, such as droughts and heatwaves, are projected to49

become more frequent and severe in the future (AghaKouchak et al., 2020). These extremes substantially50

reduce crop growth and yields, further destabilizing global food markets and driving price volatility51

(Mehrabi and Ramankutty 2019; Tigchelaar et al., 2018; Vogel et al., 2019).52

Globally, heatwaves have been found to reduce maize and wheat yields by 12.4% and 4.1%,53

respectively, while droughts cause declines of about 7% (Jägermeyr and Frieler 2018). In Europe, the 200354

drought and heatwave resulted in a 10% reduction in total crop production, including decreases of 11% for55

wheat and 21% for maize (García-Herrera et al., 2010). However, crop sensitivity to climate varies56

considerably across regions. For instance, wheat yields in western North America, eastern China, and57
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Europe are highly sensitive to climatic fluctuations, as are maize yields in North America and China,58

whereas wheat in northern India and Pakistan exhibits weaker sensitivity (Heino et al., 2023).59

Although temperature-related indicators generally show stronger associations with crop yields than60

precipitation-related ones (Lobell et al., 2011; Vogel et al., 2019), other climatic factors within the same61

growth season can also play substantial roles. Moreover, crop responses to climate anomalies often differ62

across phenological stages (Kaur and Behl 2010). Yet, it remains unclear which climate factors dominate63

crop growth at different stages under extreme conditions—an issue that warrants further investigation.64

The rapid advancement of remote sensing technology now enables continuous monitoring of crop65

growth and its responses to climate variability at various multiple spatial and temporal scales (Huete 2016).66

Among remote-sensing-based vegetation indicators, the Normalized Difference Vegetation Index (NDVI)67

has been widely applied to detect vegetation trends and assess climatic drivers (Chu et al., 2019; Gao et al.,68

2022; Wei et al., 2022). NDVI has also been used to predict crop yield indicators (Magney et al., 2016) and69

estimate yield statistical models (Satir and Berberoglu 2016). Gross primary productivity (GPP), in contrast,70

more directly reflects ecosystem photosynthetic activity and responds rapidly to climatic extremes (Deng et71

al., 2021). As a key metric for evaluating farmland carbon budgets and crop growth conditions (Peng and72

Gitelson 2012), GPP complements NDVI in capturing vegetation dynamics under environmental stress.73

Together, these two indices provide robust tools for quantifying crop responses to climate change.74

The North China Plain (NCP) is one of China's most vital grain-producing regions, exerting75

significant influence on national food security. However, this region has faced increasing exposure to76

extreme weather events—including heatwaves, droughts, heavy rainfall, and floods—that have posed77

mounting challenges to agricultural stability (Ding et al., 2025; Yu et al., 2016; Zhang et al., 2025).78

Precipitation across the NCP has declined since the mid-to-late 1970s, accompanied by a shift toward79

warmer and drier conditions that threaten crop production (Ma 2007). From April to June 2024, the NCP80

experienced moderate to severe drought conditions (Zhang et al., 2025), severely affecting crop growth81

during a critical stage of the growing season. This study aims to: (1) identify the spatiotemporal82

relationship between the 2024 spring-early summer climate anomaly and crop responses in the NCP; (2)83

analyze the sensitivity of NDVI and GPP to different climate factors from April to June; and (3) quantify84

the contributions of various climate drivers to abnormal changes in NDVI and GPP. By addressing these85
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objectives, this study enhances understanding of crop response mechanisms under extreme climatic86

conditions and provides a scientific foundation for improving regional agricultural risk management and87

climate adaptation strategies.88

2 Data and Methods89

2.1 Study area90

91

Figure 1. Geographic location and land use distribution of the study area, derived from the MODIS92

MCD12C1 land cover product.93

94

The study area is located in the NCP, characterized by a temperate monsoon climate with noticeable95

seasonal fluctuations. Annual precipitation is predominantly concentrated between June and August and96

exhibits considerable interannual variability. Land cover data were obtained from the 2023 MODIS97

MCD12C1 version 6.1 product from the Terra and Aqua satellites at a spatial resolution of 0.05°×0.05°.98

Based on the International Geosphere-Biosphere Programme (IGBP) classification system, the region is99

mainly composed of croplands (Fig. 1). To focus on agricultural response processes, non-cropland grids100

were masked. Agricultural production in the NCP primarily relies on a double-cropping rotation system,101

with winter wheat sown in October and harvested in June; summer maize sown in June and harvested in102

September as the primary crops—both highly sensitive to climatic anomalies (Ling et al., 2023; Tao and103

Zhang 2010; Wang et al., 2019). According to the China Statistical Yearbook, Shandong and Hebei104
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provinces together produced approximately 30% of the nation’s total wheat and 16% of its maize in 2023,105

underscoring its importance as a key grain-producing region. This study focused on a region within the106

NCP where the 2024 climatic anomalies were particularly pronounced, to better assess crop responses.107

2.2 Data sources108

2.2.1 Climate Data109

The climate data were obtained from the ERA5-Land monthly reanalysis dataset, spanning the period110

2000-2024 with a spatial resolution of 0.1°×0.1° (Muñoz Sabater 2019). The primary variables include 2 m111

dewpoint temperature (TD), 2 m air temperature (TAS), volumetric soil water (SW), total precipitation112

(PRE), and surface solar radiation downwards (SSRD). ERA5-land, developed by the European Centre for113

Medium-Range Weather Forecasts (ECMWF), represents the fifth-generation global land reanalysis114

product. Building upon the ERA5 atmospheric reanalysis, in integrates an improved land surface model and115

higher-resolution grid design, providing enhanced representations of land surface energy and water balance116

processes.117

The SW is provided for four soil layers (0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm). Following118

Wang et al. (2025a), we calculated the depth-weighted mean soil water content for the upper 100 cm, based119

on the first three layers.120

Additionally, vapor pressure deficit (VPD) was derived from TAS and TD using Eq. (1) (Wang et al.,121

2023b):122

VPD=0.61078×(e
17.27×TAS
TAS+237.29-e

17.27×TD
TD+237.29) (1)123

where TAS and TD are expressed in degrees Celsius, and VPD is measured in kilopascals (kPa). Given the124

monthly VPD anomalies derived from daily and monthly ERA5 data are nearly identical (He et al., 2022),125

we directly computed VPD using the monthly TAS and TD values in this study.126

2.2.2 Vegetation and Crop Yield Data127

The NDVI data were obtained from the MODIS MOD13C1 monthly product from the Terra satellite,128

covering the period from 2000 to 2024 with a spatial resolution of 0.05°×0.05°. GPP data were sourced129

from the FluxSat GPP v2.2 product, which provides daily estimates at the same spatial resolution and130

temporal coverage. The daily GPP data were aggregated to monthly values for comparison with NDVI. The131

https://doi.org/10.5194/egusphere-2026-142
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



6

FluxSat GPP dataset integrates geometrically corrected MODIS reflectance data with eddy covariance flux132

measurements from the FLUXNET 2015 network. It employs a simplified light-use efficiency (LUE)133

framework combined with neural network algorithms to estimate GPP at high spatiotemporal resolution134

(Joiner et al., 2018). To ensure spatial consistency across datasets, both NDVI and GPP were resampled to135

0.1°×0.1° to match the climate data.136

We also compiled province-level annual yields of winter wheat and summer maize for 2020-2024137

from the China Statistical Yearbook. In addition, we used observed yields of winter wheat (varieties Shimai138

and Jimai) from 2023 to 2025 and summer maize (varieties Lainong14 and Zhengdan958) from 2022 to139

2024 at an experimental plot (lat/long: 36.1565°N/117.1607°E). Each variety was grown in two to three140

replicated trials under a conventional fertilization regime, and all measurements were conducted by the141

same operator to ensure consistency in procedures and standards. Detailed yield information for all142

varieties is provided in Table S1 and S2.143

2.3 Statistical methods144

2.3.1 Anomaly Calculation145

Anomalies were defined as the deviation of a variable from its long-term mean for the corresponding146

month. Using 2001-2023 as the reference period, monthly anomalies of climatic variables and vegetation147

indices were calculated for 2000-2024. To minimize the influence of long-term CO2 fertilization and148

climate warming on vegetation dynamics, a linear detrended procedure was applied to each variable149

through ordinary least squares regression. The resulting detrended anomalies were used in subsequent150

analyses.151

For the province-level statistics of winter wheat and summer maize yields, we quantified their relative152

changes (RC) using Eq. (2):153

푅퐶 = 푌푖푒푙푑2024−푌푖푒푙푑푚푒푎푛
푌푖푒푙푑푚푒푎푛

× 100% (2)154

where 푌푖푒푙푑2024 and 푌푖푒푙푑푚푒푎푛 denote the yield of winter wheat/summer maize in 2024 and the average155

yield over 2020-2024 (kg hm-2), respectively. 푅퐶 is expressed as a percentage (%).156

2.3.2 Multiple Linear Regression Model157
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To investigate the sensitivity and relative contributions of climatic factors on NDVI and GPP158

anomalies, we applied a multiple linear regression (MLR) analysis for the period March-June during 2000-159

2024 which was widely used by previous studies (Wang et al., 2023a; Wang et al., 2023b; Wang et al.,160

2026). The independent variables included TAS, VPD, PRE, SW, SSRD, and the lagged NDVI (or GPP)161

anomaly from the previous month. The general form of the model uses Eq. (3):162

Yt=β1TASt+β2VPDt +β3SWt+β4PREt+β5SSRDt+β6Yt-1+휀 (3)163

where Yt is the NDVI (or GPP) anomaly in month t (GPP in gC m-2mo-1), and Yt-1 is the anomaly value for164

previous month. TASt , VPDt , SWt , PREt and SSRDt denote the anomalies of near-surface air temperature165

(℃), vapor pressure deficit (kPa), soil water (m3 m-3), total precipitation (mm mo-1), and downward166

shortwave radiation (W m-2), respectively. βi represents the regression coefficients, and 휀 is the residual167

term. The overall model performance was assessed using the F-test and the coefficient of determination168

(R2). A p-value < 0.05 was taken as the threshold for statistical significance, and the significance of169

individual predictors was evaluated using t-test.170

To eliminate the influence of differing variable units, standardized regression coefficients were used171

to measure the relative sensitivity of NDVI and GPP to each climatic factor. These coefficients were172

obtained by performing regression on standardized variables, enabling direct comparability across173

predictors.174

To quantify the magnitude of each factor’s contribution to the observed NDVI or GPP anomaly, we175

calculated monthly contributions using Eq. (4):176

퐶표푛푡푟푖푏푢푡푖표푛푖,푡 = 훽푖,푡 × 푋푖,푡 (4)177

where 퐶표푛푡푟푖푏푢푡푖표푛푖,푡 is the contribution of variable i in month t, 훽푖,푡 is the regression coefficient of178

variable i in month t in the multiple linear regression model, and 푋푖,푡 is the corresponding detrended179

anomaly.180

3 Results181

3.1 April-June 2024 Compound Dry-Hot Event182
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183

Figure 2. Detrended climate anomalies over the NCP from March to July, including (a) near-surface air184

temperature (TAS), (e) soil water (SW), (i) precipitation (PRE), (m) vapor pressure deficit (VPD), and (q)185

surface shortwave radiation downward (SSRD). The blue lines denote the anomalies for 2024, while the186

green shaded areas indicate the interannual variability represented by one standard deviation (1σ) during187

2000-2023. Panels (b-d), (f-h), (j-l), (n-p), and (r-t) show the spatial distributions of TAS (℃), SW (m3m-3),188

PRE (mm mo-1), VPD (kPa), and SSRD (W m-2) anomalies, respectively, from April to June 2024. Areas189

marked with “//” indicate anomalies exceeding 1σ, while those labeled “XX” exceed 1.5σ.190

191

In 2024, we find that significantly higher temperatures occurred in April and June over the NCP, far192

exceeding the historical interannual variability represented by one standard deviation (1σ) (Fig. 2a). During193

these months, precipitation continuously decreased, reaching the lowest in June 2024 (Fig. 2i). Hence,194

associated with enhanced evapotranspiration, soil water content continued to decline before July, with the195

anomalous values exceeding the historical interannual variability in May and June, exhibiting extreme196
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droughts (Fig. 2e). Simultaneously, reduced atmospheric actual water vapor induced by the continuous197

decline in precipitation and enhanced saturated water vapor induced by higher temperatures lead to the198

continuous increase in VPD, showing the record-breaking atmospheric dryness in June 2024 (Fig. 2m).199

Additionally, associated with this compound dry-hot event, SSRD showed significant increase in May and200

June (Fig. 2q).201

Spatially, April exhibited markedly higher temperatures (>1.5σ) across nearly the entire Shandong202

province (Fig. 2b), accompanied by severe droughts (below −1.5σ) in the northeastern Shandong (Fig. 2d).203

In May, precipitation further declined in the central and western regions (Fig. 2k), while areas of notably204

low soil water expanded southward (Fig. 2g). Although the temperature anomalies weakened, VPD began205

to increase in the southern areas, indicating obvious atmospheric dryness (Fig. 2o). SSRD also rose206

substantially due to reduced cloud cover (Fig. 2s). By June, the entire region again experienced intense207

warming, with TAS anomalies exceeding 1.5σ, while precipitation reached its lowest levels (Figs. 2d and208

2l). Under the combined effects of heat and persistent rainfall deficit, soil water depleted further, VPD209

reached record highs, and SSRD remained elevated across almost all areas (Figs. 2h, 2p, and 2t).210

3.2 Influence on crop growth and yields211

212

Figure 3. Detrended vegetation index anomalies over the NCP from March to July, including (a) the213

normalized difference vegetation index (NDVI) and (e) FluxSat gross primary production (GPP). The blue214

lines denote vegetation index anomalies for 2024, while the green shaded areas represent interannual215

variability presented by one standard deviation (1σ) during 2000-2023. Panels (b-d) and (f-h) show the216

spatial distributions of NDVI and GPP (gC m-2 mo-1) anomalies, respectively, from April to June 2024.217

Areas marked with “//” indicate anomalies exceeding 1σ, while those labeled “XX” exceed 1.5σ.218
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219

We find that NDVI in April 2024 exceeded 1.5σ, reaching its highest value since 2000 (Fig. 3a), while220

GPP also showed a marked increase (Fig. 3e). These results indicate that elevated temperatures in April221

substantially enhanced crop growth, overweighing the modest inhibitory effects of mild dryness. Spatially,222

both NDVI and GPP anomalies were strongly positive across most of the NCP, except in the southwest223

(Figs. 3b and 3f).224

In May, temperatures moderated, but drought intensity increased and VPD began to rise (Fig. 2).225

Although NDVI and GPP decreased notably in the southwest, most regions still exhibited positive226

anomalies (Figs. 3c and 3g), leading to a slight but overall positive regional mean (Figs. 3a and 3e). Despite227

enhanced soil and atmospheric dryness, NDVI and GPP did not show a pronounced decline.228

By June, extreme compound heat and drought conditions dominated the NCP (Figs. 2d, 2h and 2p),229

driving both NDVI and GPP to record lows (Figs. 3a and 3e). Except for a few eastern areas, nearly the230

entire region exhibited significant decreases in NDVI and GPP, with anomalies falling below −1.5σ (Figs.231

3d and 3h). Notably, vegetation responses during June were further complicated by regional cropping232

practices: winter wheat is typically harvested in early June (Luo et al., 2020), after which maize is sown.233

The combination of heat and drought conditions likely hindered maize establishment-conditions that can234

impair germination, suppress early growth, and reduce canopy development-thereby amplifying reductions235

in NDVI and GPP.236
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237

Figure 4. Annual yield changes of winter wheat and summer maize. (a) Relative changes (RC) in 2024238

winter wheat and summer maize yields across key provinces in the study area. The asterisk marks the239

sample plot located in Shandong province. (b) Field photographs of the sample site. (c) Observed yields of240

winter wheat (varieties Shimai and Jimai) for 2023-2025 and summer maize (varieties Lainong14 and241

Zhengdan958) for 2022-2024 at the plot.242

243

The climatic conditions in spring can strongly influence tillering, young ear development, and grain244

filling in winter wheat (He et al., 2020; Li et al., 2015; Xiao et al., 2018), thereby shaping its final yield. In245
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the study area, early-summer climate also affects maize emergence and seedling vigor (Lin et al., 2015;246

Wang et al., 2022), with potential impacts on annual summer maize production. Therefore, using annual247

winter wheat and summer maize yield statistics from the National Bureau of Statistics, we compute their248

relative changes in 2024 to assess the potential impacts of this compound dry-hot event. Province-level249

yield data indicate slight enhancements in winter wheat production (0.69% in Hebei and 0.95% in250

Shandong) and reductions in summer maize yield (-0.31% in Hebei and -0.26% in Shandong) in 2024 (Fig.251

4a), broadly consistent with the NDVI and GPP anomalies (Fig. 3). Observations from the sample plot also252

show that, for the same varieties, winter wheat yields increased while maize yields declined relative to253

adjacent years (Fig. 4c). Quantitatively, year-on-year increases in winter wheat reached 15% for both254

Shimai and Jimai in 2024, whereas summer maize yields decreased by 13% for Lainong14 and 10% for255

Zhengdan958.256

3.3 Sensitivities of Crop Growth to Different Driving Factors257

258

Figure 5. Standardized sensitivities of (a-c) NDVI and (d-f) GPP anomalies to multiple driving factors259

from April to June over the NCP. The driving factors include TAS, VPD, SW, PRE, SSRD, and the260

previous month's NDVI or GPP (Pre_NDVI or Pre_GPP).261

262
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To quantify how crop responses to various environmental drivers, we examined the standardized263

regression coefficients of NDVI and GPP against multiple factors. In April, both NDVI and GPP exhibited264

strong positive sensitivities to TAS, with coefficients of 0.42 and 0.35, respectively. They also showed265

comparable sensitivities to vegetation conditions in the previous month (Pre_NDVI or Pre_GPP; 0.39 and266

0.40, respectively), suggesting that concurrent higher temperatures and vegetation carryover effects could267

jointly enhance crop growth during this period (Figs. 5a and 5d). Sensitivities to other climatic factors were268

relatively weak.269

In May, as temperatures moderated and dryness began to increase, sensitivities of NDVI and GPP to270

most climate factors showed relatively weak, though VPD sensitivities increased slightly (Figs. 5b and 5e).271

Both NDVI and GPP showed significant positive sensitivities to previous-month vegetation conditions272

(0.49 and 0.48, respectively), indicating that the continued positive anomalies in May were primarily due to273

the vegetation carryover effect.274

By June, when compound heat and drought extremes prevailed (Fig. 2), associated with the transition275

in cropping practices, both NDVI and GPP exhibited their strongest negative sensitivities to VPD (-0.51276

and -0.56, respectively), while maintaining positive responses to higher temperatures. Notably, GPP still277

showed a substantial positive sensitivity to previous-month vegetation conditions (0.35), even stronger than278

its sensitivity to TAS, whereas NDVI displayed no significant dependence on previous-month conditions279

(Figs. 5c and 5f).280

Spatially, NDVI and GPP exhibited positive sensitivity to TAS across most regions in April and June,281

with particularly strong responses in eastern regions during April (Figs. S1a, S1c, S2a, and S2c). Sensitivity282

to previous-month conditions was also pronounced in April and further expanded in May (Figs. S1p, S1q,283

S2p, and S2q). In June, positive sensitivity to SW intensified in the east, whereas negative sensitivity to284

VPD strengthened across nearly the entire NCP (Figs. S1f, S1l, S2f, and S2l).285

3.4 Individual Contributions of Different Driving Factors286
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287
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Figure 6. Geographical distributions of individual contributions from different driving factors. (a-c)288

Estimated GPP during April-June 2024 based on the multiple linear regression model. Shaded areas labeled289

“XX” indicate grid cells where the model's F-test p-value is < 0.05. Panels (d-f), (g-i), (j-l), (m-o), (p-r),290

and (s-u) present the separated contributions from TAS, SW, PRE, VPD, SSRD, and Pre_GPP, respectively.291

292

Beyond sensitivity analysis, we further quantified the pixel-level contributions of individual drivers to293

NDVI and GPP anomalies during April-June 2024. Because NDVI and GPP exhibited broadly consistent294

responses, and GPP variations are more directly linked to crop production, we focus on the spatial patterns295

of contributions to GPP in Figure 6, while the corresponding NDVI results are provided in supplementary296

Figure 3. The MLR model reproduced GPP anomalies well, with widespread statistical significance (p <297

0.05) and R2 of ~0.6 (Figs. 6a-c), consistent with the observed anomalies (Figs. 3f-h).298

In April, enhanced GPP over northern regions was primarily attributable to positive effects from TAS299

and Pre_GPP, aligning with their strong sensitivities, although their areas of influence differed (Figs. 6a, 6d,300

and 6s). In May, the persistence of high GPP in the northern and eastern areas was dominated by Pre_GPP301

contributions (Fig. 6t), whereas reductions in southwestern regions were mainly driven by VPD (Fig. 6n).302

By June, widespread GPP declines were largely linked to strong VPD inhibition (Fig. 6o), consistent with303

the strongest negative standardized sensitivity (−0.56; Fig. 5f). Additional reductions over the southeastern304

areas arose from combined effects of high TAS and soil droughts (Figs. 6f and 6i). Although Pre_GPP305

remained a statistically meaningful predictor, its June contribution was relatively weak, despite its high306

sensitivity (Figs. 5f and 6u). Notably, positive TAS effects mitigated part of the VPD-induced decline in307

northern areas (Fig. 6f).308
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309

Figure 7. Contributions of individual driving factors to regional mean (a-c) NDVI and (d-f) GPP anomalies310

during April-June 2024. The explanatory variables include TAS, VPD, SW, PRE, SSRD, and the previous-311

month vegetation conditions (Pre_NDVI or Pre_GPP). Each panel also displays the estimated anomalies312

(estimated_NDVI or estimated_GPP) and observed anomalies (obs_NDVI or obs_GPP).313

314

To quantify these contributions regionally, Figure 7 compares estimated and observed NDVI and GPP315

anomalies, demonstrating good agreement and supporting model robustness. In April, TAS and previous-316

month vegetation conditions contributed comparably (both 0.03 for NDVI; 10.86 and 9.42 gC m−2 mo−1 for317

GPP). In May, nearly all positive anomalies were attributable to Pre_NDVI (0.02) and Pre_GPP (28.11 gC318

m−2 mo−1). By June, VPD became the dominant suppressing factor, contributing −0.09 to NDVI and −26.30319

gC m−2 mo−1 to GPP. Consistent with spatial patterns, TAS partially offset this inhibition, contributing 0.05320

to NDVI and 7.67 gC m−2 mo−1 to GPP.321

4 Discussion322

4.1 Mechanistic Differences in Crop response to Compound Dry-Hot Events323

The impacts of compound dry-hot events on crop yields remain insufficiently understood (Feng et al.,324

2019; Heino et al., 2023). This study investigated the rapid responses of major crops to the 2024 compound325
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dry-hot event, a process further complicated by regional cropping practices over the NCP. Through326

multiple linear regression analysis, we revealed that the dominant drivers of crop vulnerability shifted327

markedly across different months of the event.328

In April, winter wheat in the booting-heading stage was highly temperature-responsive, with warming329

accelerating development and biomass accumulation (He et al., 2020; Wang et al., 2018). The strong330

contribution from the prior vegetation state also underscores the role of physiological memory effects331

(Wong et al., 2021; Zhou et al., 2020). By May, crop growth appeared more constrained by accumulated332

biomass than by concurrent weather variability, as evidenced by declining temperature sensitivity and a333

rising influence of antecedent vegetation (Fig. 5). This shift aligns with the understanding that after334

reproductive structures are formed, wheat productivity becomes primarily source-regulated rather than335

directly climate-driven (Ceglar et al., 2016). A sharp transition in dominant stressors occurred in June.336

Winter wheat approached maturity while maize entered germination. Elevated VPD increased atmospheric337

evaporative demand, inducing stomatal closure, restricting carbon assimilation, and ultimately reducing338

seedling vigor (Fu et al., 2022; Medrano et al., 2002; Schönbeck et al., 2022). Consequently, NDVI and339

GPP reached their lowest levels since 2000 (Fig. 3). The strong linkage between VPD and maize yield is340

consistent with evidence suggesting that, under dry-hot conditions, VPD may explain more yield variability341

than factors like fertilizer or irrigation (Rathore et al., 2024).342

4.2 Agricultural Implications343

These contrasting monthly sensitivities imply that a single compound event can simultaneously344

enhance winter wheat yield while suppressing maize yield, depending on crop phenology and water345

management. Consequently, adaptation requires stage-specific strategies. For maize during establishment,346

priorities should include conserving soil moisture and mitigating VPD impacts through practices such as347

mulching and timely irrigation. For winter wheat during reproductive growth may benefit from warming-348

induced acceleration where appropriate.349

Under future global warming scenarios, compound dry-hot events are expected to become more350

frequent and intense, posing substantial threats to agricultural productivity and food security globally and in351

China (AghaKouchak et al., 2020; Heino et al., 2023; Mehrabi and Ramankutty 2019). As thermal and352

drought stresses intensify, maize yield losses across the NCP are likely to increase (Liu et al., 2025),353
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although irrigation may partially offset these impacts (Wang et al., 2025b). Future efforts should focus on354

exploring adaptation options—such as optimizing sowing timing, varietal selection, and irrigation355

scheduling—within scenario analyses to identify robust strategies for increasing compound extremes.356

Concurrently, developing more heat-resistant and drought-resistant wheat and maize varieties will be357

essential.358

4.3 Uncertainties and Limitations359

Several caveats should be considered when generalizing these findings. The use of monthly vegetation360

and yield data may limit the detection of rapid phenological responses; higher-frequency monitoring would361

better capture establishment-phase stress dynamics. Crop production in the NCP heavily depends on362

groundwater extraction, and long-term overuse has led to severe aquifer depletion (Zhao et al., 2018), with363

winter wheat irrigation accounting for approximately 70% of total agricultural water use (Zhang et al.,364

2023). Our study did not explicitly represent irrigation or groundwater extraction processes, although these365

are critical for buffering climatic stress in this region. Furthermore, remote sensing-derived GPP estimates366

carry inherent uncertainties when applied to croplands (Gitelson et al., 2008; Zhang et al., 2014),367

necessitating future ground-truthing for validation.368

5 Conclusions369

This study systematically evaluated the impacts of the 2024 spring-early summer compound dry-hot370

event on major grain crops in the NCP. The key findings are as follows:371

(1) The regional climate exhibited typical compound-extreme characteristics. April and June372

experienced pronounced warming, while precipitation and soil moisture declined persistently from April373

onward and approached record-low levels by June. Concurrently, VPD reached its highest value in the past374

two decades, indicating exceptionally strong atmospheric drought.375

(2) Satellite-based vegetation indicators showed strong phenological and climatic imprints: NDVI and376

GPP increased markedly in April, remained slightly positive overall in May, but dropped to record lows in377

June. These variations were consistent with both province-level yield statistics and field-observed yields,378

which jointly indicate increased winter wheat yields but reduced summer maize yields.379

https://doi.org/10.5194/egusphere-2026-142
Preprint. Discussion started: 28 January 2026
c© Author(s) 2026. CC BY 4.0 License.



19

(3) Sensitivity and contribution analyses revealed distinct stage-dependent drivers of crop380

physiological responses. In April, accelerated crop growth was primarily stimulated by elevated381

temperatures and strong vegetation carryover effects. In May, crop productivity became governed almost382

exclusively by previous-month vegetation conditions, underscoring the importance of physiological383

memory. By June—when winter wheat reached maturity and summer maize entered emergence—VPD384

became the dominant limiting factor, reflecting a sharp month-to-month shift in climatic controls.385

Overall, this study demonstrates the rapid and phenology-dependent responses of crops in the NCP to386

compound dry-hot conditions. The results underscore the necessity of explicitly considering crop growth387

stages when assessing climate risks and identifying dominant stressors. These findings provide scientific388

support for agricultural disaster early warning, regional food-production management, and climate-389

adaptation policy development.390
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