

1 **Phenology-modulated Crop Responses to the 2024 Spring-
2 Early Summer Compound Dry-Hot Event in the North
3 China Plain**

4 Linying Ma^{1,2}, Jun Wang^{1,2,*}, Zishan Wang^{1,2}, Qian Zhang^{3,*}, Ran Yan³, Zhi Huang^{1,2},
5 Yabin Ye^{1,2}, Hao Zheng^{1,2}, Shuyue Xiao^{1,2}, Xiaokang Zhang³, Zhenhai Li³, Hongzhang
6 Wang⁴, Tao Wei⁵, Haijin Dai⁶, Meirong Wang⁷, Xiuying Zhang^{1,2}

7
8 ¹ International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China

9 ² Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory
10 for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography
11 and Ocean Science, Nanjing University, Nanjing, Jiangsu 210023, China

12 ³ College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590,
13 China

14 ⁴ College of Agronomy, Shandong Agricultural University, Tai'an, Shandong 271018, China

15 ⁵ MountTai Management Committee, Tai'an, Shandong 271000, China

16 ⁶ College of Meteorology and Oceanography, National University of Defense Technology, Changsha,
17 China

18 ⁷ State Key Laboratory of Climate System Prediction and Risk Management, Key Laboratory of
19 Meteorological Disaster, Ministry of Education, Collaborative Innovation Center on Forecast and
20 Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology,
21 Nanjing, China

22 *Correspondence to: Jun Wang (wangjun@nju.edu.cn); Qian Zhang (skd994880@sdust.edu.cn)

23

24 **Abstract.** Compound dry-hot events are intensifying under climate change and pose growing risks to
25 agricultural production. From April to June 2024, the North China Plain (NCP) experienced an extreme
26 compound dry-hot event. Using satellite-based normalized difference vegetation index (NDVI), gross
27 primary productivity (GPP), and crop yield statistics, this study quantified crop growth responses and
28 identified the dominant climatic drivers during this event. The climate anomaly was characterized by
29 pronounced warming in April and June, a continuous decline in precipitation and soil water from April
30 onward, and a record-high vapor pressure deficit (VPD) in June, forming a persistent dry-hot stress. NDVI

31 and GPP increased markedly in April and remained slightly positive in May, but both collapsed to their
32 lowest levels since 2000 in June. Consistent with these vegetation signals, provincial yield statistics and
33 experimental plot observations showed increased winter wheat yields but reduced summer maize yields.
34 Sensitivity and contribution analyses revealed distinct phenology-modulated mechanisms: in April,
35 elevated temperatures and vegetation carryover effects comparably enhanced vegetation activity in winter-
36 wheat-dominated croplands; in May, vegetation dynamics were controlled almost entirely by the previous-
37 month carryover effect, reflecting the growing influence of accumulated vegetation state; and in June, as
38 winter wheat reached maturity and newly sown maize entered early establishment, VPD emerged as the
39 primary limiting factor, strongly suppressing photosynthetic activity and seedling establishment. These
40 findings demonstrate how phenological transitions modulate crop vulnerability to compound dry-hot events
41 and provide useful insights for agricultural early warning, crop management, and climate adaptation
42 strategies in the NCP.

43 **Keywords:** Compound dry-hot events, normalized difference vegetation index (NDVI), gross primary
44 productivity (GPP), Crop phenology, North China Plain

45 **1 Introduction**

46 Climate change accounts for nearly one-third of global crop yield fluctuations (Ray et al., 2015),
47 underscoring the crucial role of climate conditions in sustaining agricultural productivity. As global
48 warming accelerates, the frequency and intensity of weather and climate extremes have increased,
49 surpassing previous records (Fischer et al., 2025). Events, such as droughts and heatwaves, are projected to
50 become more frequent and severe in the future (AghaKouchak et al., 2020). These extremes substantially
51 reduce crop growth and yields, further destabilizing global food markets and driving price volatility
52 (Mehrabi and Ramankutty 2019; Tigchelaar et al., 2018; Vogel et al., 2019).

53 Globally, heatwaves have been found to reduce maize and wheat yields by 12.4% and 4.1%,
54 respectively, while droughts cause declines of about 7% (Jägermeyr and Frieler 2018). In Europe, the 2003
55 drought and heatwave resulted in a 10% reduction in total crop production, including decreases of 11% for
56 wheat and 21% for maize (García-Herrera et al., 2010). However, crop sensitivity to climate varies
57 considerably across regions. For instance, wheat yields in western North America, eastern China, and

58 Europe are highly sensitive to climatic fluctuations, as are maize yields in North America and China,
59 whereas wheat in northern India and Pakistan exhibits weaker sensitivity (Heino et al., 2023).

60 Although temperature-related indicators generally show stronger associations with crop yields than
61 precipitation-related ones (Lobell et al., 2011; Vogel et al., 2019), other climatic factors within the same
62 growth season can also play substantial roles. Moreover, crop responses to climate anomalies often differ
63 across phenological stages (Kaur and Behl 2010). Yet, it remains unclear which climate factors dominate
64 crop growth at different stages under extreme conditions—an issue that warrants further investigation.

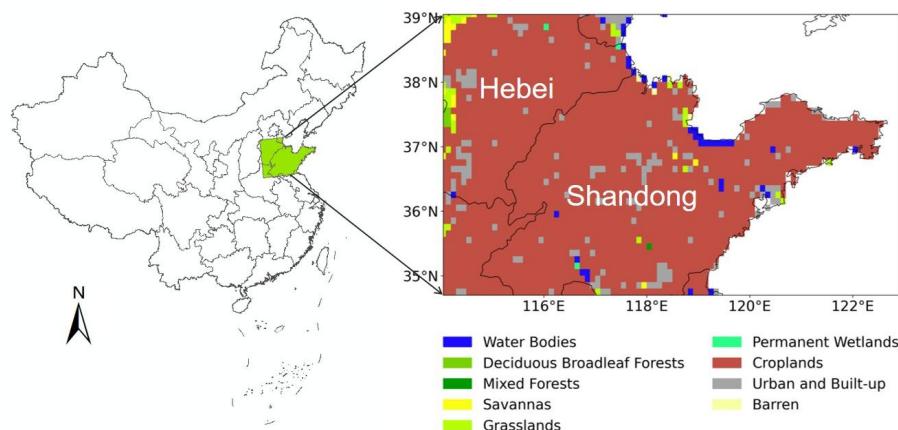
65 The rapid advancement of remote sensing technology now enables continuous monitoring of crop
66 growth and its responses to climate variability at various multiple spatial and temporal scales (Huete 2016).
67 Among remote-sensing-based vegetation indicators, the Normalized Difference Vegetation Index (NDVI)
68 has been widely applied to detect vegetation trends and assess climatic drivers (Chu et al., 2019; Gao et al.,
69 2022; Wei et al., 2022). NDVI has also been used to predict crop yield indicators (Magney et al., 2016) and
70 estimate yield statistical models (Satir and Berberoglu 2016). Gross primary productivity (GPP), in contrast,
71 more directly reflects ecosystem photosynthetic activity and responds rapidly to climatic extremes (Deng et
72 al., 2021). As a key metric for evaluating farmland carbon budgets and crop growth conditions (Peng and
73 Gitelson 2012), GPP complements NDVI in capturing vegetation dynamics under environmental stress.
74 Together, these two indices provide robust tools for quantifying crop responses to climate change.

75 The North China Plain (NCP) is one of China's most vital grain-producing regions, exerting
76 significant influence on national food security. However, this region has faced increasing exposure to
77 extreme weather events—including heatwaves, droughts, heavy rainfall, and floods—that have posed
78 mounting challenges to agricultural stability (Ding et al., 2025; Yu et al., 2016; Zhang et al., 2025).
79 Precipitation across the NCP has declined since the mid-to-late 1970s, accompanied by a shift toward
80 warmer and drier conditions that threaten crop production (Ma 2007). From April to June 2024, the NCP
81 experienced moderate to severe drought conditions (Zhang et al., 2025), severely affecting crop growth
82 during a critical stage of the growing season. This study aims to: (1) identify the spatiotemporal
83 relationship between the 2024 spring-early summer climate anomaly and crop responses in the NCP; (2)
84 analyze the sensitivity of NDVI and GPP to different climate factors from April to June; and (3) quantify
85 the contributions of various climate drivers to abnormal changes in NDVI and GPP. By addressing these

86 objectives, this study enhances understanding of crop response mechanisms under extreme climatic
87 conditions and provides a scientific foundation for improving regional agricultural risk management and
88 climate adaptation strategies.

89 **2 Data and Methods**

90 **2.1 Study area**



91

92 **Figure 1.** Geographic location and land use distribution of the study area, derived from the MODIS
93 MCD12C1 land cover product.

94

95 The study area is located in the NCP, characterized by a temperate monsoon climate with noticeable
96 seasonal fluctuations. Annual precipitation is predominantly concentrated between June and August and
97 exhibits considerable interannual variability. Land cover data were obtained from the 2023 MODIS
98 MCD12C1 version 6.1 product from the Terra and Aqua satellites at a spatial resolution of $0.05^{\circ} \times 0.05^{\circ}$.
99 Based on the International Geosphere-Biosphere Programme (IGBP) classification system, the region is
100 mainly composed of croplands (Fig. 1). To focus on agricultural response processes, non-cropland grids
101 were masked. Agricultural production in the NCP primarily relies on a double-cropping rotation system,
102 with winter wheat sown in October and harvested in June; summer maize sown in June and harvested in
103 September as the primary crops—both highly sensitive to climatic anomalies (Ling et al., 2023; Tao and
104 Zhang 2010; Wang et al., 2019). According to the China Statistical Yearbook, Shandong and Hebei

105 provinces together produced approximately 30% of the nation's total wheat and 16% of its maize in 2023,
106 underscoring its importance as a key grain-producing region. This study focused on a region within the
107 NCP where the 2024 climatic anomalies were particularly pronounced, to better assess crop responses.

108 **2.2 Data sources**

109 **2.2.1 Climate Data**

110 The climate data were obtained from the ERA5-Land monthly reanalysis dataset, spanning the period
111 2000-2024 with a spatial resolution of $0.1^\circ \times 0.1^\circ$ (Muñoz Sabater 2019). The primary variables include 2 m
112 dewpoint temperature (TD), 2 m air temperature (TAS), volumetric soil water (SW), total precipitation
113 (PRE), and surface solar radiation downwards (SSRD). ERA5-land, developed by the European Centre for
114 Medium-Range Weather Forecasts (ECMWF), represents the fifth-generation global land reanalysis
115 product. Building upon the ERA5 atmospheric reanalysis, it integrates an improved land surface model and
116 higher-resolution grid design, providing enhanced representations of land surface energy and water balance
117 processes.

118 The SW is provided for four soil layers (0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm). Following
119 Wang et al. (2025a), we calculated the depth-weighted mean soil water content for the upper 100 cm, based
120 on the first three layers.

121 Additionally, vapor pressure deficit (VPD) was derived from TAS and TD using Eq. (1) (Wang et al.,
122 2023b):

$$123 \quad VPD = 0.61078 \times \left(\frac{17.27 \times TAS}{e^{TAS+237.29}} - \frac{17.27 \times TD}{e^{TD+237.29}} \right) \quad (1)$$

124 where TAS and TD are expressed in degrees Celsius, and VPD is measured in kilopascals (kPa). Given the
125 monthly VPD anomalies derived from daily and monthly ERA5 data are nearly identical (He et al., 2022),
126 we directly computed VPD using the monthly TAS and TD values in this study.

127 **2.2.2 Vegetation and Crop Yield Data**

128 The NDVI data were obtained from the MODIS MOD13C1 monthly product from the Terra satellite,
129 covering the period from 2000 to 2024 with a spatial resolution of $0.05^\circ \times 0.05^\circ$. GPP data were sourced
130 from the FluxSat GPP v2.2 product, which provides daily estimates at the same spatial resolution and
131 temporal coverage. The daily GPP data were aggregated to monthly values for comparison with NDVI. The

132 FluxSat GPP dataset integrates geometrically corrected MODIS reflectance data with eddy covariance flux
133 measurements from the FLUXNET 2015 network. It employs a simplified light-use efficiency (LUE)
134 framework combined with neural network algorithms to estimate GPP at high spatiotemporal resolution
135 (Joiner et al., 2018). To ensure spatial consistency across datasets, both NDVI and GPP were resampled to
136 $0.1^\circ \times 0.1^\circ$ to match the climate data.

137 We also compiled province-level annual yields of winter wheat and summer maize for 2020-2024
138 from the China Statistical Yearbook. In addition, we used observed yields of winter wheat (varieties Shimai
139 and Jimai) from 2023 to 2025 and summer maize (varieties Lainong14 and Zhengdan958) from 2022 to
140 2024 at an experimental plot (lat/long: $36.1565^\circ\text{N}/117.1607^\circ\text{E}$). Each variety was grown in two to three
141 replicated trials under a conventional fertilization regime, and all measurements were conducted by the
142 same operator to ensure consistency in procedures and standards. Detailed yield information for all
143 varieties is provided in Table S1 and S2.

144 **2.3 Statistical methods**

145 **2.3.1 Anomaly Calculation**

146 Anomalies were defined as the deviation of a variable from its long-term mean for the corresponding
147 month. Using 2001-2023 as the reference period, monthly anomalies of climatic variables and vegetation
148 indices were calculated for 2000-2024. To minimize the influence of long-term CO_2 fertilization and
149 climate warming on vegetation dynamics, a linear detrended procedure was applied to each variable
150 through ordinary least squares regression. The resulting detrended anomalies were used in subsequent
151 analyses.

152 For the province-level statistics of winter wheat and summer maize yields, we quantified their relative
153 changes (RC) using Eq. (2):

$$154 \quad RC = \frac{Yield_{2024} - Yield_{mean}}{Yield_{mean}} \times 100\% \quad (2)$$

155 where $Yield_{2024}$ and $Yield_{mean}$ denote the yield of winter wheat/summer maize in 2024 and the average
156 yield over 2020-2024 (kg hm^{-2}), respectively. RC is expressed as a percentage (%).

157 **2.3.2 Multiple Linear Regression Model**

158 To investigate the sensitivity and relative contributions of climatic factors on NDVI and GPP
159 anomalies, we applied a multiple linear regression (MLR) analysis for the period March-June during 2000-
160 2024 which was widely used by previous studies (Wang et al., 2023a; Wang et al., 2023b; Wang et al.,
161 2026). The independent variables included TAS, VPD, PRE, SW, SSRD, and the lagged NDVI (or GPP)
162 anomaly from the previous month. The general form of the model uses Eq. (3):

$$163 \quad Y_t = \beta_1 TAS_t + \beta_2 VPD_t + \beta_3 SW_t + \beta_4 PRE_t + \beta_5 SSRD_t + \beta_6 Y_{t-1} + \varepsilon \quad (3)$$

164 where Y_t is the NDVI (or GPP) anomaly in month t (GPP in $\text{gC m}^{-2} \text{mo}^{-1}$), and Y_{t-1} is the anomaly value for
165 previous month. TAS_t , VPD_t , SW_t , PRE_t and $SSRD_t$ denote the anomalies of near-surface air temperature
166 ($^{\circ}\text{C}$), vapor pressure deficit (kPa), soil water ($\text{m}^3 \text{m}^{-3}$), total precipitation (mm mo^{-1}), and downward
167 shortwave radiation (W m^{-2}), respectively. β_i represents the regression coefficients, and ε is the residual
168 term. The overall model performance was assessed using the F-test and the coefficient of determination
169 (R^2). A p-value < 0.05 was taken as the threshold for statistical significance, and the significance of
170 individual predictors was evaluated using t-test.

171 To eliminate the influence of differing variable units, standardized regression coefficients were used
172 to measure the relative sensitivity of NDVI and GPP to each climatic factor. These coefficients were
173 obtained by performing regression on standardized variables, enabling direct comparability across
174 predictors.

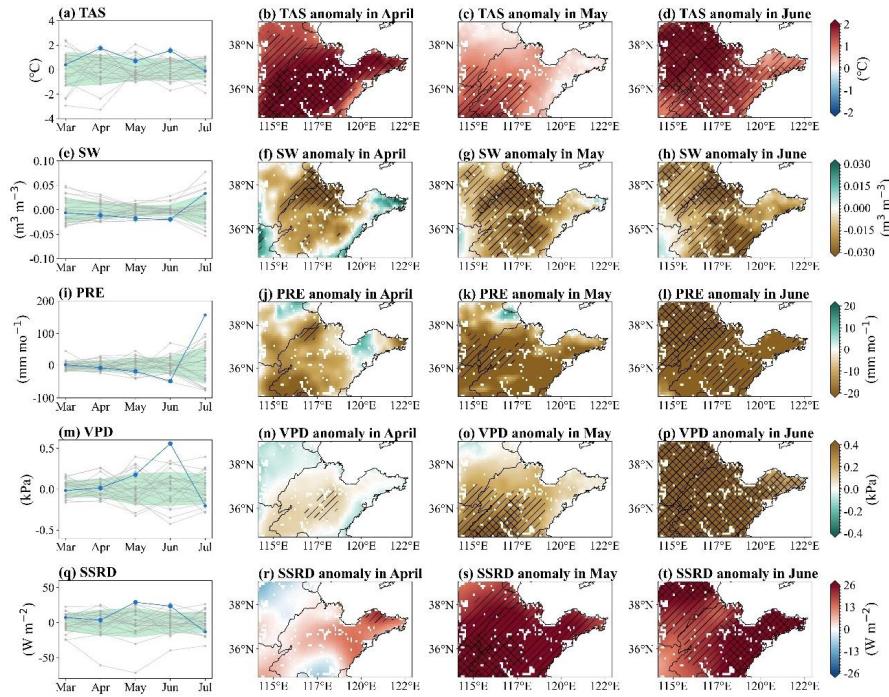
175 To quantify the magnitude of each factor's contribution to the observed NDVI or GPP anomaly, we
176 calculated monthly contributions using Eq. (4):

$$177 \quad Contribution_{i,t} = \beta_{i,t} \times X_{i,t} \quad (4)$$

178 where $Contribution_{i,t}$ is the contribution of variable i in month t , $\beta_{i,t}$ is the regression coefficient of
179 variable i in month t in the multiple linear regression model, and $X_{i,t}$ is the corresponding detrended
180 anomaly.

181 **3 Results**

182 **3.1 April-June 2024 Compound Dry-Hot Event**



183

184 **Figure 2.** Detrended climate anomalies over the NCP from March to July, including (a) near-surface air
 185 temperature (TAS), (e) soil water (SW), (i) precipitation (PRE), (m) vapor pressure deficit (VPD), and (q)
 186 surface shortwave radiation downward (SSRD). The blue lines denote the anomalies for 2024, while the
 187 green shaded areas indicate the interannual variability represented by one standard deviation (1σ) during
 188 2000-2023. Panels (b-d), (f-h), (j-l), (n-p), and (r-t) show the spatial distributions of TAS ($^{\circ}\text{C}$), SW ($\text{m}^3 \text{m}^{-3}$),
 189 PRE (mm mo^{-1}), VPD (kPa), and SSRD (W m^{-2}) anomalies, respectively, from April to June 2024. Areas
 190 marked with “//” indicate anomalies exceeding 1σ , while those labeled “XX” exceed 1.5σ .

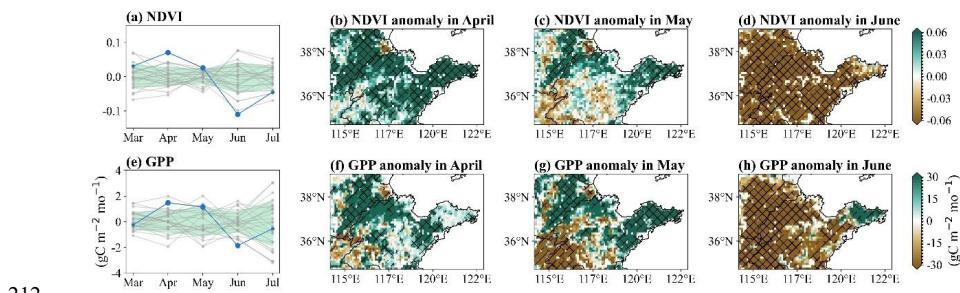
191

192 In 2024, we find that significantly higher temperatures occurred in April and June over the NCP, far
 193 exceeding the historical interannual variability represented by one standard deviation (1σ) (Fig. 2a). During
 194 these months, precipitation continuously decreased, reaching the lowest in June 2024 (Fig. 2i). Hence,
 195 associated with enhanced evapotranspiration, soil water content continued to decline before July, with the
 196 anomalous values exceeding the historical interannual variability in May and June, exhibiting extreme

197 droughts (Fig. 2e). Simultaneously, reduced atmospheric actual water vapor induced by the continuous
198 decline in precipitation and enhanced saturated water vapor induced by higher temperatures lead to the
199 continuous increase in VPD, showing the record-breaking atmospheric dryness in June 2024 (Fig. 2m).
200 Additionally, associated with this compound dry-hot event, SSRD showed significant increase in May and
201 June (Fig. 2q).

202 Spatially, April exhibited markedly higher temperatures ($>1.5\sigma$) across nearly the entire Shandong
203 province (Fig. 2b), accompanied by severe droughts (below -1.5σ) in the northeastern Shandong (Fig. 2d).
204 In May, precipitation further declined in the central and western regions (Fig. 2k), while areas of notably
205 low soil water expanded southward (Fig. 2g). Although the temperature anomalies weakened, VPD began
206 to increase in the southern areas, indicating obvious atmospheric dryness (Fig. 2o). SSRD also rose
207 substantially due to reduced cloud cover (Fig. 2s). By June, the entire region again experienced intense
208 warming, with TAS anomalies exceeding 1.5σ , while precipitation reached its lowest levels (Figs. 2d and
209 2l). Under the combined effects of heat and persistent rainfall deficit, soil water depleted further, VPD
210 reached record highs, and SSRD remained elevated across almost all areas (Figs. 2h, 2p, and 2t).

211 3.2 Influence on crop growth and yields



212 **Figure 3.** Detrended vegetation index anomalies over the NCP from March to July, including (a) the
213 normalized difference vegetation index (NDVI) and (e) FluxSat gross primary production (GPP). The blue
214 lines denote vegetation index anomalies for 2024, while the green shaded areas represent interannual
215 variability presented by one standard deviation (1σ) during 2000-2023. Panels (b-d) and (f-h) show the
216 spatial distributions of NDVI and GPP ($\text{gC m}^{-2} \text{ mo}^{-1}$) anomalies, respectively, from April to June 2024.
217 Areas marked with “//” indicate anomalies exceeding 1σ , while those labeled “XX” exceed 1.5σ .
218

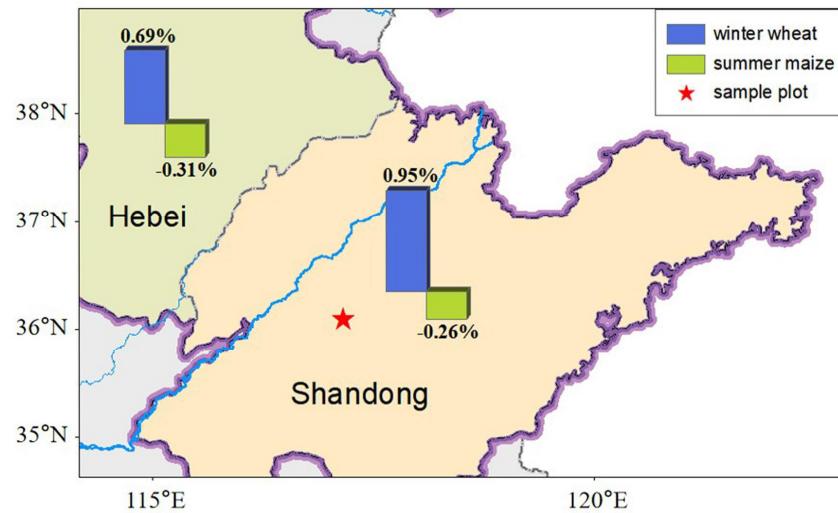
219

220 We find that NDVI in April 2024 exceeded 1.5σ , reaching its highest value since 2000 (Fig. 3a), while
221 GPP also showed a marked increase (Fig. 3e). These results indicate that elevated temperatures in April
222 substantially enhanced crop growth, outweighing the modest inhibitory effects of mild dryness. Spatially,
223 both NDVI and GPP anomalies were strongly positive across most of the NCP, except in the southwest
224 (Figs. 3b and 3f).

225 In May, temperatures moderated, but drought intensity increased and VPD began to rise (Fig. 2).
226 Although NDVI and GPP decreased notably in the southwest, most regions still exhibited positive
227 anomalies (Figs. 3c and 3g), leading to a slight but overall positive regional mean (Figs. 3a and 3e). Despite
228 enhanced soil and atmospheric dryness, NDVI and GPP did not show a pronounced decline.

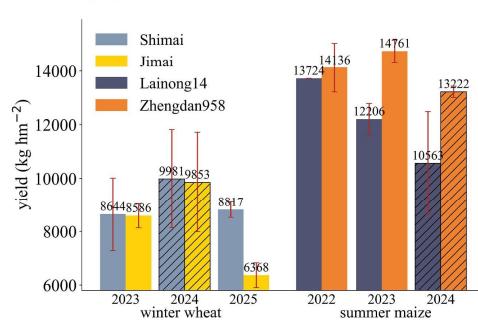
229 By June, extreme compound heat and drought conditions dominated the NCP (Figs. 2d, 2h and 2p),
230 driving both NDVI and GPP to record lows (Figs. 3a and 3e). Except for a few eastern areas, nearly the
231 entire region exhibited significant decreases in NDVI and GPP, with anomalies falling below -1.5σ (Figs.
232 3d and 3h). Notably, vegetation responses during June were further complicated by regional cropping
233 practices: winter wheat is typically harvested in early June (Luo et al., 2020), after which maize is sown.
234 The combination of heat and drought conditions likely hindered maize establishment-conditions that can
235 impair germination, suppress early growth, and reduce canopy development-thereby amplifying reductions
236 in NDVI and GPP.

(a)



(b)

(c)



237

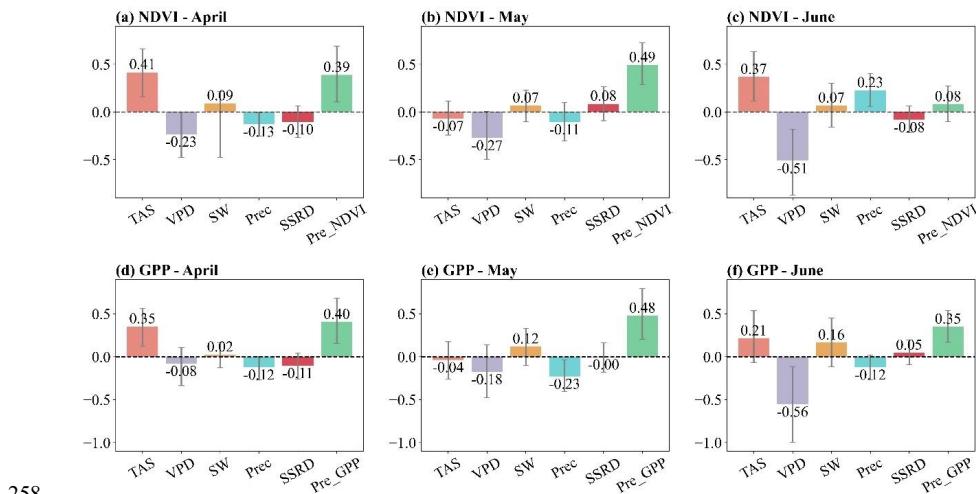
238 **Figure 4.** Annual yield changes of winter wheat and summer maize. (a) Relative changes (RC) in 2024
239 winter wheat and summer maize yields across key provinces in the study area. The asterisk marks the
240 sample plot located in Shandong province. (b) Field photographs of the sample site. (c) Observed yields of
241 winter wheat (varieties Shimai and Jimai) for 2023-2025 and summer maize (varieties Lainong14 and
242 Zhengdan958) for 2022-2024 at the plot.

243

244 The climatic conditions in spring can strongly influence tillering, young ear development, and grain
245 filling in winter wheat (He et al., 2020; Li et al., 2015; Xiao et al., 2018), thereby shaping its final yield. In

246 the study area, early-summer climate also affects maize emergence and seedling vigor (Lin et al., 2015;
247 Wang et al., 2022), with potential impacts on annual summer maize production. Therefore, using annual
248 winter wheat and summer maize yield statistics from the National Bureau of Statistics, we compute their
249 relative changes in 2024 to assess the potential impacts of this compound dry-hot event. Province-level
250 yield data indicate slight enhancements in winter wheat production (0.69% in Hebei and 0.95% in
251 Shandong) and reductions in summer maize yield (-0.31% in Hebei and -0.26% in Shandong) in 2024 (Fig.
252 4a), broadly consistent with the NDVI and GPP anomalies (Fig. 3). Observations from the sample plot also
253 show that, for the same varieties, winter wheat yields increased while maize yields declined relative to
254 adjacent years (Fig. 4c). Quantitatively, year-on-year increases in winter wheat reached 15% for both
255 Shimai and Jimai in 2024, whereas summer maize yields decreased by 13% for Lainong14 and 10% for
256 Zhengdan958.

257 **3.3 Sensitivities of Crop Growth to Different Driving Factors**



258 **Figure 5.** Standardized sensitivities of (a-c) NDVI and (d-f) GPP anomalies to multiple driving factors
259 from April to June over the NCP. The driving factors include TAS, VPD, SW, PRE, SSRD, and the
260 previous month's NDVI or GPP (Pre_NDVI or Pre_GPP).

262

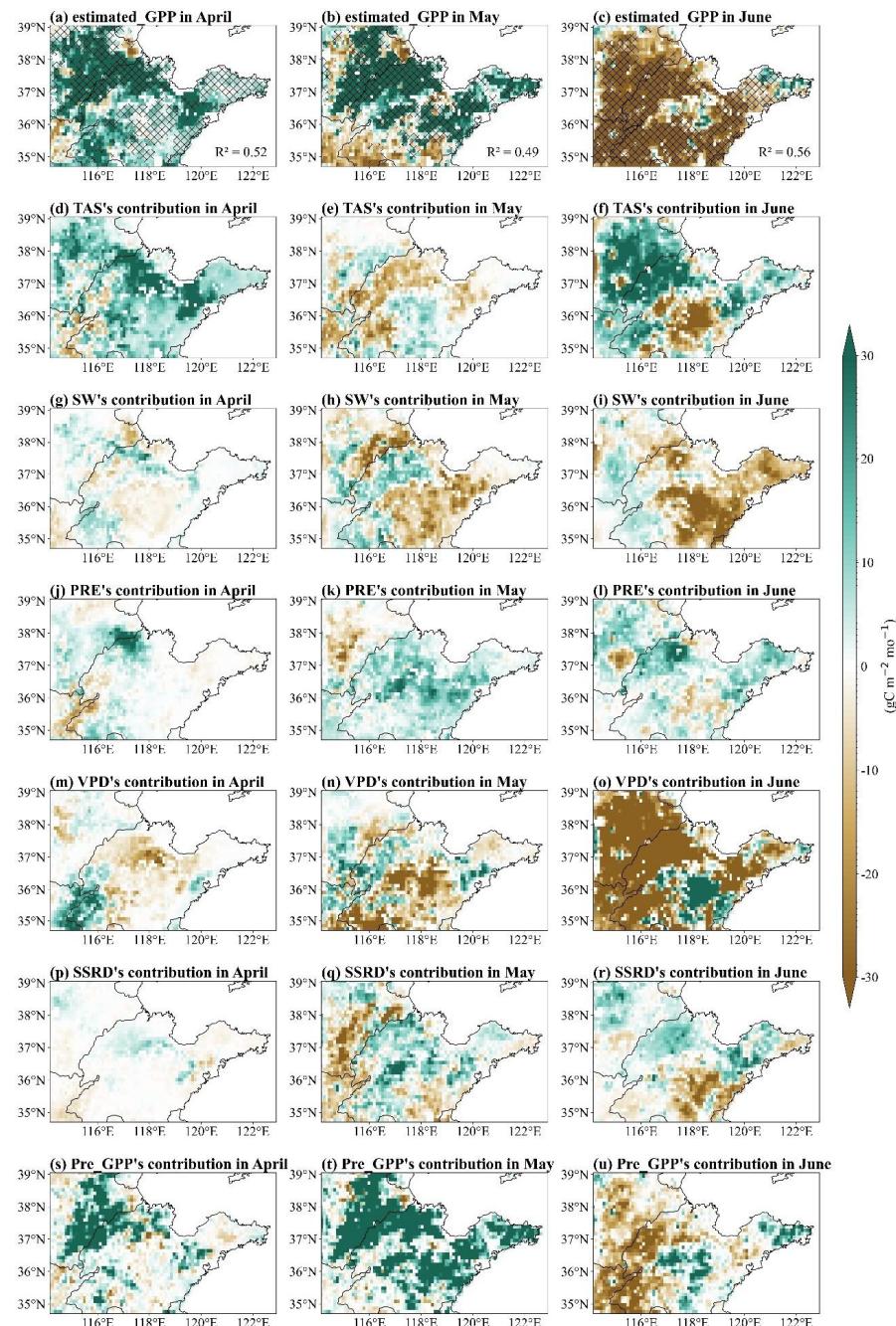
263 To quantify how crop responses to various environmental drivers, we examined the standardized
264 regression coefficients of NDVI and GPP against multiple factors. In April, both NDVI and GPP exhibited
265 strong positive sensitivities to TAS, with coefficients of 0.42 and 0.35, respectively. They also showed
266 comparable sensitivities to vegetation conditions in the previous month (Pre_NDVI or Pre_GPP; 0.39 and
267 0.40, respectively), suggesting that concurrent higher temperatures and vegetation carryover effects could
268 jointly enhance crop growth during this period (Figs. 5a and 5d). Sensitivities to other climatic factors were
269 relatively weak.

270 In May, as temperatures moderated and dryness began to increase, sensitivities of NDVI and GPP to
271 most climate factors showed relatively weak, though VPD sensitivities increased slightly (Figs. 5b and 5e).
272 Both NDVI and GPP showed significant positive sensitivities to previous-month vegetation conditions
273 (0.49 and 0.48, respectively), indicating that the continued positive anomalies in May were primarily due to
274 the vegetation carryover effect.

275 By June, when compound heat and drought extremes prevailed (Fig. 2), associated with the transition
276 in cropping practices, both NDVI and GPP exhibited their strongest negative sensitivities to VPD (-0.51
277 and -0.56, respectively), while maintaining positive responses to higher temperatures. Notably, GPP still
278 showed a substantial positive sensitivity to previous-month vegetation conditions (0.35), even stronger than
279 its sensitivity to TAS, whereas NDVI displayed no significant dependence on previous-month conditions
280 (Figs. 5c and 5f).

281 Spatially, NDVI and GPP exhibited positive sensitivity to TAS across most regions in April and June,
282 with particularly strong responses in eastern regions during April (Figs. S1a, S1c, S2a, and S2c). Sensitivity
283 to previous-month conditions was also pronounced in April and further expanded in May (Figs. S1p, S1q,
284 S2p, and S2q). In June, positive sensitivity to SW intensified in the east, whereas negative sensitivity to
285 VPD strengthened across nearly the entire NCP (Figs. S1f, S1l, S2f, and S2l).

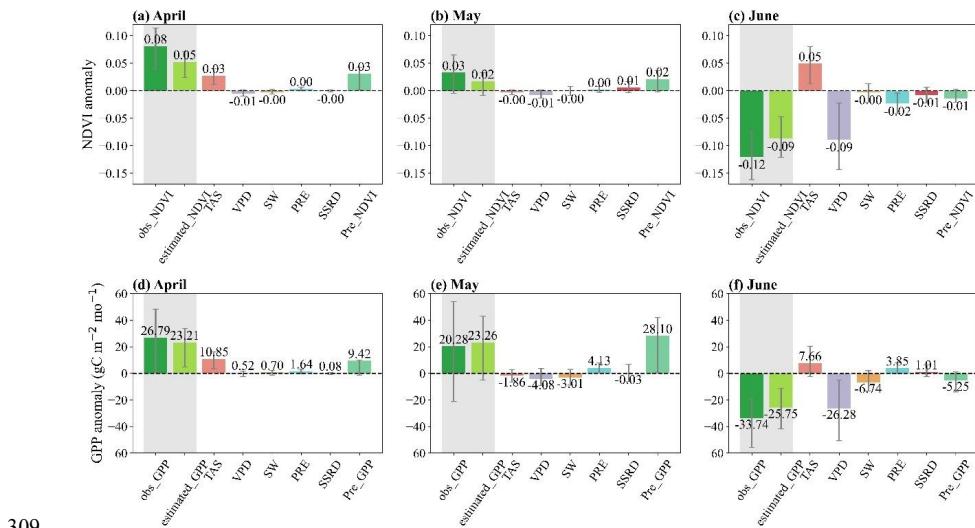
286 **3.4 Individual Contributions of Different Driving Factors**



288 **Figure 6.** Geographical distributions of individual contributions from different driving factors. (a-c)
289 Estimated GPP during April-June 2024 based on the multiple linear regression model. Shaded areas labeled
290 "XX" indicate grid cells where the model's F-test p-value is < 0.05 . Panels (d-f), (g-i), (j-l), (m-o), (p-r),
291 and (s-u) present the separated contributions from TAS, SW, PRE, VPD, SSRD, and Pre_GPP, respectively.
292

293 Beyond sensitivity analysis, we further quantified the pixel-level contributions of individual drivers to
294 NDVI and GPP anomalies during April-June 2024. Because NDVI and GPP exhibited broadly consistent
295 responses, and GPP variations are more directly linked to crop production, we focus on the spatial patterns
296 of contributions to GPP in Figure 6, while the corresponding NDVI results are provided in supplementary
297 Figure 3. The MLR model reproduced GPP anomalies well, with widespread statistical significance ($p <$
298 0.05) and R^2 of ~ 0.6 (Figs. 6a-c), consistent with the observed anomalies (Figs. 3f-h).

299 In April, enhanced GPP over northern regions was primarily attributable to positive effects from TAS
300 and Pre_GPP, aligning with their strong sensitivities, although their areas of influence differed (Figs. 6a, 6d,
301 and 6s). In May, the persistence of high GPP in the northern and eastern areas was dominated by Pre_GPP
302 contributions (Fig. 6t), whereas reductions in southwestern regions were mainly driven by VPD (Fig. 6n).
303 By June, widespread GPP declines were largely linked to strong VPD inhibition (Fig. 6o), consistent with
304 the strongest negative standardized sensitivity (-0.56 ; Fig. 5f). Additional reductions over the southeastern
305 areas arose from combined effects of high TAS and soil droughts (Figs. 6f and 6i). Although Pre_GPP
306 remained a statistically meaningful predictor, its June contribution was relatively weak, despite its high
307 sensitivity (Figs. 5f and 6u). Notably, positive TAS effects mitigated part of the VPD-induced decline in
308 northern areas (Fig. 6f).



309

310 **Figure 7.** Contributions of individual driving factors to regional mean (a-c) NDVI and (d-f) GPP anomalies
 311 during April-June 2024. The explanatory variables include TAS, VPD, SW, PRE, SSRD, and the previous-
 312 month vegetation conditions (Pre_NDVI or Pre_GPP). Each panel also displays the estimated anomalies
 313 (estimated_NDVI or estimated_GPP) and observed anomalies (obs_NDVI or obs_GPP).

314

315 To quantify these contributions regionally, Figure 7 compares estimated and observed NDVI and GPP
 316 anomalies, demonstrating good agreement and supporting model robustness. In April, TAS and previous-
 317 month vegetation conditions contributed comparably (both 0.03 for NDVI; 10.86 and 9.42 gC m⁻² mo⁻¹ for
 318 GPP). In May, nearly all positive anomalies were attributable to Pre_NDVI (0.02) and Pre_GPP (28.11 gC
 319 m⁻² mo⁻¹). By June, VPD became the dominant suppressing factor, contributing -0.09 to NDVI and -26.30
 320 gC m⁻² mo⁻¹ to GPP. Consistent with spatial patterns, TAS partially offset this inhibition, contributing 0.05
 321 to NDVI and 7.67 gC m⁻² mo⁻¹ to GPP.

322 4 Discussion

323 4.1 Mechanistic Differences in Crop response to Compound Dry-Hot Events

324 The impacts of compound dry-hot events on crop yields remain insufficiently understood (Feng et al.,
 325 2019; Heino et al., 2023). This study investigated the rapid responses of major crops to the 2024 compound

326 dry-hot event, a process further complicated by regional cropping practices over the NCP. Through
327 multiple linear regression analysis, we revealed that the dominant drivers of crop vulnerability shifted
328 markedly across different months of the event.

329 In April, winter wheat in the booting-heading stage was highly temperature-responsive, with warming
330 accelerating development and biomass accumulation (He et al., 2020; Wang et al., 2018). The strong
331 contribution from the prior vegetation state also underscores the role of physiological memory effects
332 (Wong et al., 2021; Zhou et al., 2020). By May, crop growth appeared more constrained by accumulated
333 biomass than by concurrent weather variability, as evidenced by declining temperature sensitivity and a
334 rising influence of antecedent vegetation (Fig. 5). This shift aligns with the understanding that after
335 reproductive structures are formed, wheat productivity becomes primarily source-regulated rather than
336 directly climate-driven (Ceglar et al., 2016). A sharp transition in dominant stressors occurred in June.
337 Winter wheat approached maturity while maize entered germination. Elevated VPD increased atmospheric
338 evaporative demand, inducing stomatal closure, restricting carbon assimilation, and ultimately reducing
339 seedling vigor (Fu et al., 2022; Medrano et al., 2002; Schönbeck et al., 2022). Consequently, NDVI and
340 GPP reached their lowest levels since 2000 (Fig. 3). The strong linkage between VPD and maize yield is
341 consistent with evidence suggesting that, under dry-hot conditions, VPD may explain more yield variability
342 than factors like fertilizer or irrigation (Rathore et al., 2024).

343 **4.2 Agricultural Implications**

344 These contrasting monthly sensitivities imply that a single compound event can simultaneously
345 enhance winter wheat yield while suppressing maize yield, depending on crop phenology and water
346 management. Consequently, adaptation requires stage-specific strategies. For maize during establishment,
347 priorities should include conserving soil moisture and mitigating VPD impacts through practices such as
348 mulching and timely irrigation. For winter wheat during reproductive growth may benefit from warming-
349 induced acceleration where appropriate.

350 Under future global warming scenarios, compound dry-hot events are expected to become more
351 frequent and intense, posing substantial threats to agricultural productivity and food security globally and in
352 China (AghaKouchak et al., 2020; Heino et al., 2023; Mehrabi and Ramankutty 2019). As thermal and
353 drought stresses intensify, maize yield losses across the NCP are likely to increase (Liu et al., 2025),

354 although irrigation may partially offset these impacts (Wang et al., 2025b). Future efforts should focus on
355 exploring adaptation options—such as optimizing sowing timing, varietal selection, and irrigation
356 scheduling—within scenario analyses to identify robust strategies for increasing compound extremes.
357 Concurrently, developing more heat-resistant and drought-resistant wheat and maize varieties will be
358 essential.

359 **4.3 Uncertainties and Limitations**

360 Several caveats should be considered when generalizing these findings. The use of monthly vegetation
361 and yield data may limit the detection of rapid phenological responses; higher-frequency monitoring would
362 better capture establishment-phase stress dynamics. Crop production in the NCP heavily depends on
363 groundwater extraction, and long-term overuse has led to severe aquifer depletion (Zhao et al., 2018), with
364 winter wheat irrigation accounting for approximately 70% of total agricultural water use (Zhang et al.,
365 2023). Our study did not explicitly represent irrigation or groundwater extraction processes, although these
366 are critical for buffering climatic stress in this region. Furthermore, remote sensing-derived GPP estimates
367 carry inherent uncertainties when applied to croplands (Gitelson et al., 2008; Zhang et al., 2014),
368 necessitating future ground-truthing for validation.

369 **5 Conclusions**

370 This study systematically evaluated the impacts of the 2024 spring-early summer compound dry-hot
371 event on major grain crops in the NCP. The key findings are as follows:

372 (1) The regional climate exhibited typical compound-extreme characteristics. April and June
373 experienced pronounced warming, while precipitation and soil moisture declined persistently from April
374 onward and approached record-low levels by June. Concurrently, VPD reached its highest value in the past
375 two decades, indicating exceptionally strong atmospheric drought.

376 (2) Satellite-based vegetation indicators showed strong phenological and climatic imprints: NDVI and
377 GPP increased markedly in April, remained slightly positive overall in May, but dropped to record lows in
378 June. These variations were consistent with both province-level yield statistics and field-observed yields,
379 which jointly indicate increased winter wheat yields but reduced summer maize yields.

380 (3) Sensitivity and contribution analyses revealed distinct stage-dependent drivers of crop
381 physiological responses. In April, accelerated crop growth was primarily stimulated by elevated
382 temperatures and strong vegetation carryover effects. In May, crop productivity became governed almost
383 exclusively by previous-month vegetation conditions, underscoring the importance of physiological
384 memory. By June—when winter wheat reached maturity and summer maize entered emergence—VPD
385 became the dominant limiting factor, reflecting a sharp month-to-month shift in climatic controls.

386 Overall, this study demonstrates the rapid and phenology-dependent responses of crops in the NCP to
387 compound dry-hot conditions. The results underscore the necessity of explicitly considering crop growth
388 stages when assessing climate risks and identifying dominant stressors. These findings provide scientific
389 support for agricultural disaster early warning, regional food-production management, and climate-
390 adaptation policy development.

391

392 **Author contribution**

393 LM: Writing – original draft. JW: Writing – review & editing. ZW: Writing – review & editing. QZ:
394 Writing – review & editing. RY: Writing – review & editing. ZH: Writing – review & editing. YY: Writing
395 – review & editing. HZ: Writing – review & editing. SX: Writing – review & editing. XZ: Writing – review
396 & editing. ZL: Writing – review & editing. HW: Writing – review & editing. HD: Writing – review &
397 editing. TW: Writing – review & editing. MW: Writing – review & editing. XZ: Writing – review &
398 editing.

399 **Competing interests**

400 The contact author has declared that none of the authors has any competing interests.

401 **Acknowledgments**

402 The calculations in this paper have been done on the computing facilities in the High Performance
403 Computing Center (HPCC) of Nanjing University. This study was supported by the National Key Research
404 and Development Program of China (grant no. 2023YFF0805401). This study was supported by the
405 National Natural Science Foundation of China (Grants 42475129). QZ was supported by the Taishan
406 Scholar project (tsqn202306210).

407 **Data Availability**

408 FluxSat GPP Version 2.2 is available at
409 https://disc.gsfc.nasa.gov/datasets/FluxSatMGPP_L3_Daily_p05deg_2.2/summary. The MODIS NDVI is
410 provided at <https://www.earthdata.nasa.gov/data/catalog/lpccloud-mod13c1-061>. The MODIS land cover
411 type data is available at <https://www.earthdata.nasa.gov/data/catalog/lpccloud-med12c1-061>. The yield data
412 for wheat and maize is available at <https://www.stats.gov.cn/sj/ndsj/>. ERA5-Land is available at
413 <https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview>.

414

415 **References**

416 Aghakouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., Moftakhari, H.,
417 Papalexiou, S. M., Ragno, E. and Sadegh, M.: Climate extremes and compound hazards in a warming
418 world, *Annu. Rev. Earth Planet. Sci.*, 48, 519–548, <https://doi.org/10.1146/annurev-earth-071719-055228>, 2020.

420 Ceglar, A., Toreti, A., Lecerf, R., Van Der Velde, M. and Dentener, F.: Impact of meteorological drivers on
421 regional inter-annual crop yield variability in France, *Agric. For. Meteorol.*, 216, 58–67,
422 <https://doi.org/DOI10.1016/j.agrformet.2015.10.004>, 2016.

423 Chu, H., Venevsky, S., Wu, C. and Wang, M.: NDVI-based vegetation dynamics and its response to climate
424 changes at Amur-Heilongjiang River Basin from 1982 to 2015, *Sci. Total Environ.*, 650, 2051–2062,
425 <https://doi.org/DOI10.1016/j.scitotenv.2018.09.115>, 2019.

426 Deng, Y., Wang, X., Wang, K., Ciais, P., Tang, S., Jin, L., Li, L. and Piao, S.: Responses of vegetation
427 greenness and carbon cycle to extreme droughts in China, *Agric. For. Meteorol.*, 298, 108307,
428 <https://doi.org/DOI10.1016/j.agrformet.2020.108307>, 2021.

429 Ding, T., Xie, T., Gao, H. and Zhang, S.: Alternation Between the Extreme Drought-Flood Event in the
430 North China Plain in Summer 2024, *Int. J. Climatol.*, 45, e8831, <https://doi.org/DOI10.1002/joc.8831>,
431 2025.

432 Feng, S., Hao, Z., Zhang, X. and Hao, F.: Probabilistic evaluation of the impact of compound dry-hot
433 events on global maize yields, Sci. Total Environ., 689, 1228–1234,
434 <https://doi.org/10.1016/j.scitotenv.2019.06.373>, 2019.

435 Fischer, E. M., Bador, M., Huser, R., Kendon, E. J., Robinson, A. and Sippel, S.: Record-breaking extremes
436 in a warming climate, Nat. Rev. Earth Environ., 6, 456–470, <https://doi.org/10.1038/s43017-025-00681-y>, 2025.

437

438 Fu, Z., Ciais, P., Prentice, I. C., Gentile, P., Makowski, D., Bastos, A., Luo, X., Green, J. K., Stoy, P. C. and
439 Yang, H.: Atmospheric dryness reduces photosynthesis along a large range of soil water deficits, Nat.
440 Commun., 13, 989, <https://doi.org/10.1038/s41467-022-28652-7>, 2022.

441 Gao, W., Zheng, C., Liu, X., Lu, Y., Chen, Y., Wei, Y. and Ma, Y.: NDVI-based vegetation dynamics and
442 their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us
443 Sandy Land, China, Ecol. Indic., 137, 108745, <https://doi.org/10.1016/j.ecolind.2022.108745>, 2022.

444 García-Herrera, R., Díaz, J., Trigo, R. M., Luterbacher, J. and Fischer, E. M.: A review of the European
445 summer heat wave of 2003, Crit. Rev. Environ. Sci. Technol., 40, 267–306,
446 <https://doi.org/10.1080/10643380802238137>, 2010.

447 Gitelson, A., Vina, A., Masek, J., Verma, S. and Suyker, A.: Synoptic monitoring of gross primary
448 productivity of maize using Landsat data, IEEE Geosci. Remote Sens. Lett., 5, 133–137,
449 <https://doi.org/10.1109/lgrs.2008.915598>, 2008.

450 He, B., Chen, C., Lin, S., Yuan, W., Chen, H. W., Chen, D., Zhang, Y., Guo, L., Zhao, X. and Liu, X.:
451 Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial
452 carbon sinks, Natl. Sci. Rev., 9, nwab150, <https://doi.org/10.1093/nsr/nwab150>, 2022.

453 He, D., Fang, S., Liang, H., Wang, E. and Wu, D.: Contrasting yield responses of winter and spring wheat
454 to temperature rise in China, Environ. Res. Lett., 15, 124038, <https://doi.org/10.1088/1748-9326/abc71a>,
455 2020.

456 Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Varis, O., Siebert, S. and Kummu, M.:
457 Increased probability of hot and dry weather extremes during the growing season threatens global crop
458 yields, Sci. Rep., 13, 3583, <https://doi.org/10.1038/s41598-023-29378-2>, 2023.

459 Huete, A.: Vegetation's responses to climate variability, *Nature*, 531, 181–182,
460 <https://doi.org/10.1038/nature17301>, 2016.

461 Jägermeyr, J. and Frieler, K.: Spatial variations in crop growing seasons pivotal to reproduce global
462 fluctuations in maize and wheat yields, *Sci. Adv.*, 4, 10, <https://doi.org/10.1126/sciadv.aat4517>, 2018.

463 Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., Wang, Y. and Tucker, C. J.:
464 Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and
465 eddy covariance flux data, *Remote Sens.*, 10, 1346, <https://doi.org/10.3390/rs10091346>, 2018.

466 Kaur, V. and Behl, R.: Grain yield in wheat as affected by short periods of high temperature, drought and
467 their interaction during pre-and post-anthesis stages, *Cereal Res. Commun.*, 38, 514–520,
468 <https://doi.org/10.1556/CRC.38.2010.4.8>, 2010.

469 Li, X., Cai, J., Liu, F., Dai, T., Cao, W. and Jiang, D.: Spring Freeze Effect on Wheat Yield is Modulated by
470 Winter Temperature Fluctuations: Evidence from Meta-Analysis and Simulating Experiment, *J. Agron.*
471 *Crop Sci.*, 201, 288–300, <https://doi.org/10.1111/jac.12115>, 2015.

472 Lin, M., Xinjian, L., Dingrong, W. and Chunyi, W.: Responses of Summer Maize Main Phenology to
473 Climate Change in the North China Plain, *Chin. J. Agrometeorol.*, 36, 375–382,
474 <https://doi.org/10.3969/j.issn.1000-6362.2015.04.001>, 2015.

475 Ling, M., Han, H., Hu, X., Xia, Q. and Guo, X.: Drought characteristics and causes during summer maize
476 growth period on Huang-Huai-Hai Plain based on daily scale SPEI, *Agric. Water Manag.*, 280, 108198,
477 <https://doi.org/10.1016/j.agwat.2023.108198>, 2023.

478 Liu, Z., Qiu, R. and Zhang, Q.: Differences in effects of varying compound extreme temperature and
479 precipitation events on summer maize yield in North China, *Agric. Water Manag.*, 307, 109237,
480 <https://doi.org/10.1016/j.agwat.2024.109237>, 2025.

481 Lobell, D. B., Schlenker, W. and Costa-Roberts, J.: Climate trends and global crop production since 1980,
482 *Science*, 333, 616–620, 2011.

483 Luo, Y., Zhang, Z., Chen, Y., Li, Z. and Tao, F.: ChinaCropPhen1km: a high-resolution crop phenological
484 dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products, *Earth*
485 *Syst. Sci. Data*, 12, 197–214, <https://doi.org/10.5194/essd-12-197-2020>, 2020.

486 Ma, Z.: The interdecadal trend and shift of dry/wet over the central part of North China and their
487 relationship to the Pacific Decadal Oscillation (PDO), Chin. Sci. Bull., 52, 2130–2139,
488 <https://doi.org/10.1007/s11434-007-0284-z>, 2007.

489 Magney, T. S., Eitel, J. U., Huggins, D. R. and Vierling, L. A.: Proximal NDVI derived phenology improves
490 in-season predictions of wheat quantity and quality, Agric. For. Meteorol., 217, 46–60,
491 <https://doi.org/10.1016/j.agrformet.2015.11.009>, 2016.

492 Medrano, H., Escalona, J. M., Bota, J., Gulías, J. and Flexas, J.: Regulation of photosynthesis of C3 plants
493 in response to progressive drought: stomatal conductance as a reference parameter, Ann. Bot., 89, 895–
494 905, <https://doi.org/10.1093/aob/mcf079>, 2002.

495 Mehrabi, Z. and Ramankutty, N.: Synchronized failure of global crop production, Nat. Ecol. Evol., 3, 780–
496 786, <https://doi.org/10.1038/s41559-019-0862-x>, 2019.

497 Muñoz Sabater, J. 2019. ERA5-Land monthly averaged data from 1950 to present. Climate Data Store
498 (CDS): Copernicus Climate Change Service (C3S)

499 Peng, Y. and Gitelson, A. A.: Remote estimation of gross primary productivity in soybean and maize based
500 on total crop chlorophyll content, Remote Sens. Environ., 117, 440–448,
501 <https://doi.org/10.1016/j.rse.2011.10.021>, 2012.

502 Rathore, L. S., Kumar, M., Moftakhari, H. and Ganguli, P.: Divergent changes in crop yield loss risk due to
503 droughts over time in the US, Environ. Res. Lett., 19, 114008, <https://doi.org/10.1088/1748-9326/ad7618>, 2024.

505 Ray, D., Gerber, J., Macdonald, G. and West, P.: Climate variation explains a third of global crop yield
506 variability, Nat. Commun., 6, 9, <https://doi.org/10.1038/ncomms6989>, 2015.

507 Satir, O. and Berberoglu, S.: Crop yield prediction under soil salinity using satellite derived vegetation
508 indices, Field Crops Res., 192, 134–143, <https://doi.org/10.1016/j.fcr.2016.04.028>, 2016.

509 Schönbeck, L. C., Schuler, P., Lehmann, M. M., Mas, E., Mekarni, L., Pivovaroff, A. L., Turberg, P. and
510 Grossiord, C.: Increasing temperature and vapour pressure deficit lead to hydraulic damages in the
511 absence of soil drought, Plant Cell Environ., 45, 3275–3289, <https://doi.org/10.1111/pce.14425>, 2022.

512 Tao, F. and Zhang, Z.: Adaptation of maize production to climate change in North China Plain: quantify the
513 relative contributions of adaptation options, Eur. J. Agron., 33, 103–116,
514 <https://doi.org/10.1016/j.eja.2010.04.002>, 2010.

515 Tigchelaar, M., Battisti, D. S., Naylor, R. L. and Ray, D. K.: Future warming increases probability of
516 globally synchronized maize production shocks, Proc. Natl. Acad. Sci., 115, 6644–6649,
517 <https://doi.org/10.1073/pnas.1718031115>, 2018.

518 Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N. and
519 Frieler, K.: The effects of climate extremes on global agricultural yields, Environ. Res. Lett., 14, 054010,
520 <https://doi.org/10.1088/1748-9326/ab154b>, 2019.

521 Wang, J., Yan, R., Wu, G., Liu, Y., Wang, M., Zeng, N., Jiang, F., Wang, H., He, W., Wu, M., et al.:
522 Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-
523 heatwave over Yangtze River Basin, Sci. Bull., 68, 2160–2163,
524 <https://doi.org/10.1016/j.scib.2023.08.011>, 2023a.

525 Wang, J., Yang, Y., Huang, J. and Adhikari, B.: Adaptive irrigation measures in response to extreme
526 weather events: empirical evidence from the North China plain, Reg. Envir. Chang., 19, 1009–1022,
527 <https://doi.org/10.1007/s10113-018-1442-3>, 2019.

528 Wang, J., Zeng, N., Wang, M., Jiang, F., Chevallier, F., Crowell, S., He, W., Johnson, M., Liu, J., Liu, Z., et
529 al.: Anomalous Net Biome Exchange Over Amazonian Rainforests Induced by the 2015/16 El Nino:
530 Soil Dryness-Shaped Spatial Pattern but Temperature-dominated Total Flux, Geophys. Res. Lett., 50, 11,
531 <https://doi.org/10.1029/2023gl103379>, 2023b.

532 Wang, T., Li, N., Li, Y., Lin, H., Yao, N., Chen, X., Li Liu, D., Yu, Q. and Feng, H.: Impact of climate
533 variability on grain yields of spring and summer maize, Comput. Electron. Agric., 199, 16,
534 <https://doi.org/10.1016/j.compag.2022.107101>, 2022.

535 Wang, T., Zhang, J., Li, Z., Lin, K., Zhou, W., Wu, G., Pan, M. and Chen, X.: Roles of soil and atmospheric
536 dryness on terrestrial vegetation productivity in China-which dominates at what thresholds, Earth's
537 Future, 13, e2024EF005469, <https://doi.org/10.1029/2024EF005469>, 2025a.

538 Wang, Y., Shen, Y.-J., Yu, S., Zhang, X. and Xiao, D.: Climate extremes are critical to maize yield and will
539 be severer in North China, *Clim. Risk Manag.*, 100710, <https://doi.org/10.1016/j.crm.2025.100710>,
540 2025b.

541 Wang, Z., Chen, J., Tong, W., Xu, C. and Chen, F.: Impacts of Climate Change and Varietal Replacement on
542 Winter Wheat Phenology in the North China Plain, *Int. J. Plant Prod.*, 12, 251–263,
543 <https://doi.org/10.1007/s42106-018-0024-0>, 2018.

544 Wang, Z., Wang, J., Zhou, H., Cai, Q., Yan, R., Wang, H., Huang, Z., Wang, M. and Ju, W.: Loss and
545 recovery of terrestrial carbon sinks induced by 2020 extreme precipitation in the Yangtze River Valley, *J.*
546 *Hydrol.*, 664, 12, <https://doi.org/10.1016/j.jhydrol.2025.134390>, 2026.

547 Wei, Y., Lu, H., Wang, J., Wang, X. and Sun, J.: Dual influence of climate change and anthropogenic
548 activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan plateau from 1981 to
549 2015, *Earth's Future*, 10, e2021EF002566, <https://doi.org/10.1029/2021EF002566>, 2022.

550 Wong, C., Young, D., Latimer, A., Buckley, T. and Magney, T.: Importance of the legacy effect for
551 assessing spatiotemporal correspondence between interannual tree-ring width and remote sensing
552 products in the Sierra Nevada, *Remote Sens. Environ.*, 265, 12,
553 <https://doi.org/10.1016/j.rse.2021.112635>, 2021.

554 Xiao, L., Liu, L., Asseng, S., Xia, Y., Tang, L., Liu, B., Cao, W. and Zhu, Y.: Estimating spring frost and its
555 impact on yield across winter wheat in China, *Agric. For. Meteorol.*, 260, 154–164,
556 <https://doi.org/10.1016/j.agrformet.2018.06.006>, 2018.

557 Yu, Y., Jinxia, W. and Jikun, H.: The adaptive irrigation behavior of farmers and impacts on yield during
558 extreme drought events in the North China Plain, *Resour. Sci.*, 38, 900–908,
559 <https://doi.org/10.18402/resci.2016.05.09>, 2016.

560 Zhang, J., Ge, J., Ma, W., Ding, Z., Wang, X., Li, C., Zhou, B. and Zhao, M.: Research advance on annual
561 water use efficiency of winter wheat-summer maize cropping system in North China Plain, *Acta Agron.*
562 *Sin.*, 49, 879–892, <https://doi.org/10.3724/SPJ.1006.2023.21034>, 2023.

563 Zhang, Q., Cheng, Y., Lyapustin, A., Wang, Y., Gao, F., Suyker, A., Verma, S. and Middleton, E.:
564 Estimation of crop gross primary production (GPP): fAPARchl versus MOD15A2 FPAR, *Remote Sens.*
565 *Environ.*, 153, 1–6, <https://doi.org/10.1016/j.rse.2014.07.012>, 2014.

566 Zhang, W., Zhou, T., Ye, W., Zhang, T., Zhang, L., Wolski, P., Risbey, J., Wang, Z., Min, S.-K. and Ramsay,
567 H.: A Year Marked by Extreme Precipitation and Floods: Weather and Climate Extremes in 2024, *Adv.*
568 *Atmos. Sci.*, 42, 1045–1063, <https://doi.org/10.1007/s00376-025-4540-4>, 2025.

569 Zhao, Z., Qin, X., Wang, Z. and Wang, E.: Performance of different cropping systems across precipitation
570 gradient in North China Plain, *Agric. For. Meteorol.*, 259, 162–172,
571 <https://doi.org/10.1016/j.agrformet.2018.04.019>, 2018.

572 Zhou, X., Geng, X., Yin, G., Hänninen, H., Hao, F., Zhang, X. and Fu, Y. H.: Legacy effect of spring
573 phenology on vegetation growth in temperate China, *Agric. For. Meteorol.*, 281, 107845,
574 <https://doi.org/10.1016/j.agrformet.2019.107845>, 2020.

575

576