

1 Benthic foraminiferal species tolerance for hydrothermal activity: a case of study from the
2 Lucky Strike vent field.

3 Pierre-Antoine Dessandier¹, Giuliana Panieri², Riwan Leroux¹, Ewan Pelleter³, Sandra Fuchs¹,
4 Alizé Bouriat¹, Audrey Boissier³, Sandrine Cheron³, Jozée Sarrazin¹

5

6 1 Univ Brest, Ifremer, BEEP, F-29280 Plouzané, France

7 2 Department of Geosciences, UiT - The Arctic University of Norway, 9037, Tromsø, Norway

8 3 Geo-Ocean, University Brest, CNRS, Ifremer, UMR6538, Plouzane, France

9 Corresponding author: Pierre-Antoine Dessandier, pierre.antoine.dessandier@ifremer.fr

10

11 Abstract

12 Hydrothermal vent fields represent dynamic environments hosting rich ecosystems. At the Mid-
13 Atlantic Ridge, the Lucky Strike (LS) vent field has been the focus of multiple biological
14 studies. While ecological studies have been focusing on microbial and macrofaunal
15 communities, some groups still remained out of the scope. We present here the first ecological
16 study of benthic foraminifera inhabiting soft sediments in the peripheries of hydrothermal
17 edifices at LS. A total of fifteen blade cores were analyzed. We combine microhabitat
18 environmental descriptors with faunal density and diversity of benthic foraminifera (living &
19 fossil) to investigate the impact of hydrothermal activity on their ecology. The far periphery,
20 ~150 m away from vents, harbors a community of diverse foraminifera feeding on pre-degraded
21 organic matter characterized by a phytoplankton detrital signal. Communities located at
22 intermediate distance (~ 50 m) from venting showed the presence of opportunistic species likely
23 feeding on chemosynthetic microorganisms. Finally, environments closer to active sites (few

24 meters) showed very low abundance of living individuals, as the presence of harsh
25 environmental conditions may limit foraminiferal growth. Unexpectedly, the presence of
26 widespread iron-oxidizer bacterial biofilms was associated to the dissolution of all biogenic
27 carbonate content raising questions on their impact on regional carbon budget.

28 Key words: Benthic foraminifera, hydrothermal activity, Lucky Strike vent filed, microbial
29 biofilm.

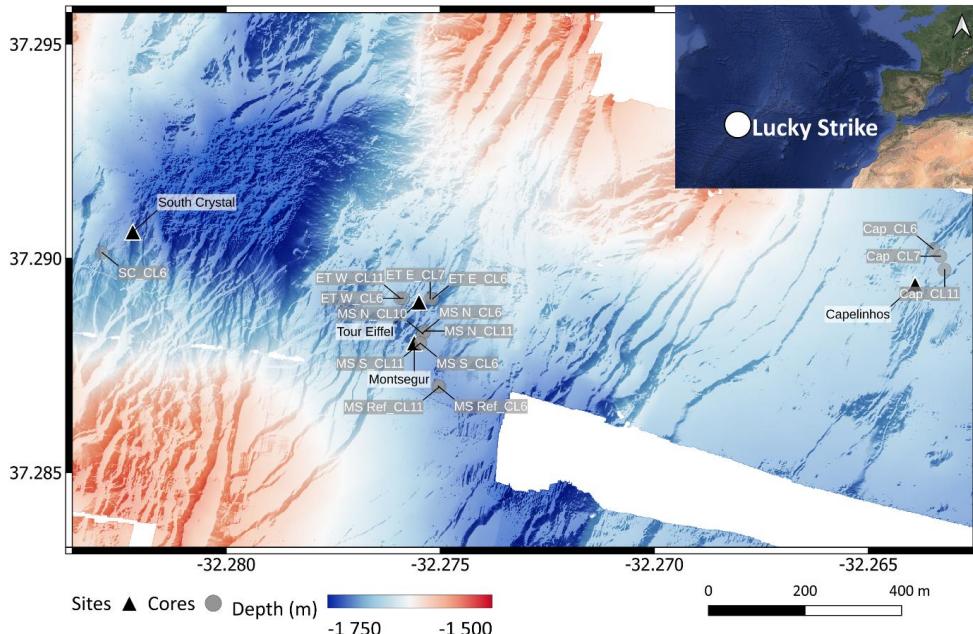
30

31 1. Introduction

32 Benthic foraminifera are marine micro-organisms that represent more than 50% of the
33 eukaryotic biomass in many deep-sea habitats and influence the structure and dynamics of
34 marine biological communities, with benthic organisms as predators and microorganisms as
35 preys (Gooday et al., 1994). These organisms have been widely studied as fossils in marine
36 systems for more than a century and as living individuals for ecological purpose over the last
37 decades. However, very few studies have been conducted on benthic foraminifera from deep-
38 sea hydrothermal vents (Molina-Cruz and Ayala-Lopez, 1988; Jonasson et al., 1995; Burkett et
39 al., 2018; Krüger et al., 2025) because of complex sampling techniques (hard substrates) and
40 the usual focus on microbes and macrofauna in these environments.

41 Benthic foraminiferal distribution in the marine sediment is mainly controlled by the spatially
42 opposed contents of organic matter and oxygen (Jorissen et al., 1995), but also by organic matter
43 quality and source (e.g., Dessandier et al., 2016). In deep-sea environments, the food source for
44 benthic foraminifera is often limited to degraded detrital material and microbial organic matter
45 (Gooday et al., 1992). In extreme environments, where fluids enhance microbial activities,
46 benthic foraminifera can thrive feeding on certain groups of bacteria, where the conditions
47 allow them to survive (Dessandier et al., 2019).

48 Extreme environments thus offer a nutrient-rich microbial food source for benthic foraminifera,
49 yet they also represent a potentially harsh environment due to their challenging physical and
50 chemical conditions. Hydrothermal vents are dynamic systems where cold seawater penetrate
51 through cracks in the ocean crust and is heated and enriched in dissolved metals and sulfur in
52 contact with rocks overlying the magma chamber. This process results in the emergence of hot,
53 slightly acidic and chemically reduced fluids. Most of the metals dissolved in the ascending
54 vent fluids precipitate when they mix with the surrounding cold seawater, resulting in black-
55 and white smoker chimneys, large sulfide edifices and later, extensive mounds of accumulated
56 massive sulfide. Hydrothermal vent fields are commonly referred as to “oases of life”,
57 harboring luxuriant endemic chemosynthetic faunal communities (Fisher et al., 2007).
58 Associated food webs are mainly based on local microbial chemosynthesis (Childress and
59 Fisher, 1992), performed by free-living and symbiotic chemoautotrophic microorganisms that
60 utilize the chemical energy released by the oxidation of reduced chemicals species (H_2 , H_2S ,
61 CH_4 , Fe) present in the hydrothermal fluids (Childress and Fisher, 1992, Schmidt et al. 2008).
62 In Juan de Fuca Ridge (North Pacific Ocean), the distribution of foraminifera was shown to be
63 influenced by temperature, pH and substratum types, resulting in their absence at temperature
64 higher than 20°C and on unstable surfaces such as friable anhydrite which prevents the
65 attachment of agglutinated species (Jonasson et al., 1995). Among hydrothermal vent systems,
66 the Lucky Strike vent field has been one of the most studied ecosystems since its discovery in
67 1992 and with more than 15 years of continuous multidisciplinary observations through the
68 EMSO-Azores observatory deployed in 2010 (Matabos et al., 2025). Over these studies, it has
69 been pointed out that regional distributions of macro- and meiofauna depend on abiotic
70 parameters such as pH, temperature, sulfides and metals (e.g., Sarrazin et al., 2015, see Matabos
71 et al., 2025 for a review). However, no studies yet filled the gaps about the role of the
72 foraminiferal compartment in this system. Given its numerous active vent sites and well



73 documented biotic and abiotic conditions, the Lucky Strike vent field provides an ideal setting
74 for investigating benthic foraminiferal ecology in hydrothermal ecosystems and their role in
75 influencing regional biodiversity. This study presents the first analysis of benthic foraminifera
76 from the Lucky Strike vent field, integrating living and fossil foraminiferal individuals and
77 environmental conditions across gradients of hydrothermal influence and associated microbial
78 biofilms.

79

80 2. Study area

81 The Lucky Strike hydrothermal vent field on the Mid-Atlantic Ridge (MAR) at 37°17'N is one
82 of the largest fields. It is located at ~1,700 m water depth and its ~25 active edifices are
83 surrounding a 200 m diameter lava lake (Ondréas et al., 2009). Biological and geological
84 evidence indicate a long venting history at Lucky Strike, with recent lava footprint analyses
85 suggesting that modern volcanic activity has driven the resurgence of hydrothermal venting
86 (Langmuir et al., 1997). Several active and inactive edifices have been identified since the first
87 exploration of the field in 1993 (Fouquet et al., 1995). In addition to the sulfide structures, the
88 seafloor is characterized by sulfide deposits and covered by hydrothermal slab corresponding
89 to breccia of basaltic glass and plagioclase crystals indurated by silica and barite (Langmuir et
90 al., 1997). The sediments surrounding the structures contain high concentration of metals such
91 as Fe, Cu and Zn, particularly enriched at the Capelinhos vent site where the fault configuration
92 enables hot fluid outflow (>300°C) (Fig. 1, Cotte et al., 2020).

93

94 Fig. 1. Location of the Lucky Strike vent field on the Mid-Atlantic Ridge (inset) and of the
95 sediment cores (grey circles) collected in 2020 near four active hydrothermal edifices (black
96 triangle).

97

98 As observed in many different hydrothermal fields, the local biology is greatly enhanced by
99 symbiosis with chemosynthetic microorganisms. That results at Lucky Strike in a strong
100 dominance of *Bathymodiolus azoricus* mussel assemblages (Van Dover, 1995; Desbruyeres et
101 al., 2001) that create habitats hosting at least 79 associated species, each occupying distinct
102 ecological niches (Sarrazin et al., 2015; Husson et al., 2017; Sarrazin et al., 2020). Two other
103 assemblages, dominated respectively by *Mirocaris fortunata* shrimp and by *Peltospira*
104 *smaragdina* gastropods, dominate warmer areas (Sarrazin et al., 2022). The geochemistry of
105 the plumes showed a strong dilution of the fluid a few meters (5 to 10 m) away from the venting
106 locations, as suggested by measurements of temperature and pH gradients near one of the
107 largest and most studied edifices (i.e., Eiffel Tower; Sarradin et al., 2009). The area of exported

108 particles does not reach 500 m and the influence of the vent field on the open ocean remains
109 restricted (Khripounoff et al., 2000). Even though the Lucky Strike vent field differs from the
110 other Mid-Atlantic Ridge vent sites by the absence of well-developed peripheral macrofauna
111 (Van Dover et al., 1996), the vent primary chemosynthetic production is exported at least as far
112 as ~90 m in the field (Alfaro-Lucas et al., 2020). The peripheral fauna harbors unique species
113 and functional entities that contribute to increase the biodiversity at the vent field scale (Alfaro-
114 Lucas et al., 2020).

115

116 3. Material and methods

117 During the MoMARSAT cruise in September 2020, 15 sediment blade cores have been
118 collected using the remotely operated vehicle *Victor6000* (Ifremer, Fig.1). Among them, 1 core
119 was not analyzed due to missing sedimentary material, and 3 of them targeted microbial mats,
120 visually attributed to iron-oxidizers biofilms, most likely zetaproteobacteria (Astorch-Cardona
121 et al., 2023). Various venting locations were targeted (i.e., near Eiffel Tower, Montsegur,
122 Capelinhos and South Crystal edifices) in addition to a more distal location ~100 m away from
123 active venting (called Montsegur-Ref, Fig. 1). Each core has been sliced on board every
124 centimeter and split in two equivalent volumes for each horizon, one preserved at -20°C for
125 geochemical analyses and one preserved in a solution of Rose Bengal 2 g L⁻¹ in 96% ethanol
126 for living benthic foraminiferal identification (Table 1). The taxonomy of benthic foraminiferal
127 species has been realized thanks to the Atlas of Benthic Foraminifera (Holbourn et al., 2013)
128 and Loeblich and Tappan (1988). Scanning electronic microscope images of the most abundant
129 species are represented in plate 1 (supplementary 1). Specimens were considered living when
130 all chambers, except the last one, were stained. In case of doubt, notably for the miliolids, tests
131 were broken to ensure that the staining came from internal cytoplasm.

132 Table 1. List of collected samples. Note that Cap_CL11 was analyzed for geochemistry only
133 and Cap_CL6 for foraminifera only.

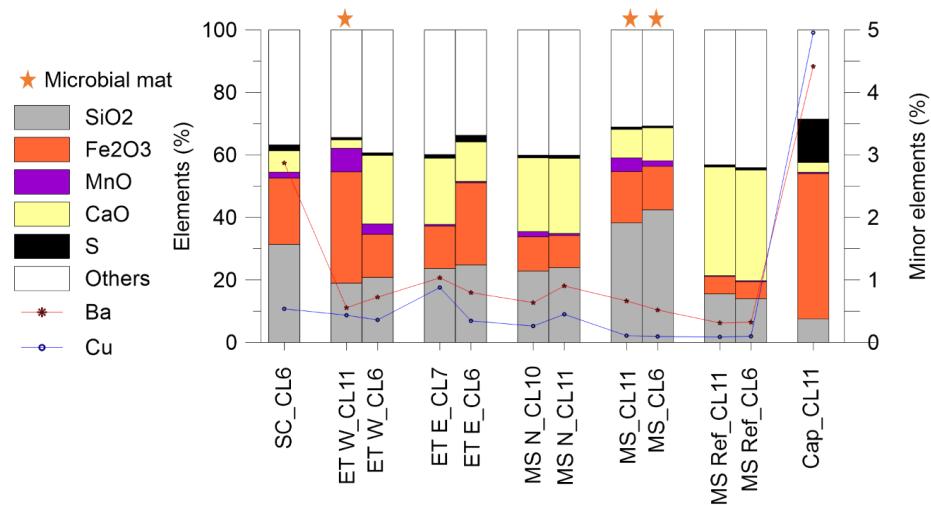
Core name	Site	Station code	Day	Lat. N	Long. W	Water depth (m)	Geoch.	Foram.	Indiv.	S	H'	E
755-3_CL6	Montsegur N	MS N_CL6	15.09.2020	37 17.296	32 16.524	1703	0-5 cm	0-1 cm	16	8	1,808	0,7623
755-3_CL10	Montsegur N	MS N_CL10	15.09.2020	37 17.294	32 16.524	1703	0-8 cm	0-5 cm	33	14	2,317	0,7249
755-3_CL11	Montsegur N	MS N_CL11	15.09.2020	37 17.298	32 16.522	1703	0-6 cm	0-5 cm	34	7	1,582	0,695
757-5_CL6	Capelinhos	Cap_CL6	17.09.2020	37 17.413	32 15.809	1684	NA	0-1 cm	1	1	0	1
757-5_CL11	Capelinhos	Cap_CL11	17.09.2020	37 17.384	32 15.793	1684	0-6 cm	NA	NA	NA	NA	NA
757-5_CL7	Capelinhos	Cap_CL7	17.09.2020	37 17.403	32 15.799	1684	5-7 cm	0-5 cm	3	2	0,6365	0,9449
759-7_CL11	Eiffel Tower W	ET W_CL11	21.09.2020	37 17.344	32 16.556	1697	0-5 cm	0-5 cm	NA	NA	NA	NA
759-7_CL6	Eiffel Tower W	ET W_CL6	21.09.2020	37 17.344	32 16.552	1697	0-5 cm	0-5 cm	81	20	2,525	0,6245
760-8_CL7	Eiffel Tower E	ET E_CL7	22.09.2020	37 17.343	32 16.514	1701	0-7 cm	0-5 cm	7	5	1,475	0,8743
760-8_CL6	Eiffel Tower E	ET E_CL6	22.09.2020	37 17.343	32 16.511	1701	0-5 cm	0-5 cm	83	14	2,205	0,6476
761-9_CL6	South Crystal	SC_CL6	22.09.2020	37 17.408	32 16.974	1719	0-9 cm	0-5 cm	38	11	2,025	0,6886
762-10_CL6	Montsegur	MS_CL6	24.09.2020	37 17.281	32 16.528	1702	0-4 cm	0-4 cm	1	1	0	1
762-10_CL11	Montsegur	MS_CL11	24.09.2020	37 17.281	32 16.528	1702	0-4 cm	0-4 cm	NA	NA	NA	NA
763-11_CL11	Montsegur Ref	MS Ref_CL11	24.09.2020	37 17.220	32 16.501	1712	0-8 cm	0-5 cm	58	16	2,497	0,7592
763-11_CL6	Montsegur Ref	MS Ref_CL6	24.09.2020	37 17.221	32 16.503	1712	0-8 cm	0-5 cm	101	22	2,333	0,4684

134
135 Bulk chemical composition of each surface sediment (0-1 cm) sample was determined using a
136 wavelength dispersive X-ray fluorescence spectrometer (BRUCKER AXS S8 Tiger) at Ifremer.
137 Samples were ground to a powder (90% of particles < 80 μ m) using an agate pestle and mortar.
138 Major elements and selected trace elements were analyzed on pressed pellets and fused beads
139 (with a specific preparation for S analysis of sulfide-rich sediment; supplementary 2). After
140 acquisition, the measured net peak intensities, corrected for inter-element effects, were
141 converted into concentrations using calibration curves generated from analysis of certified
142 geochemical standard powders (measured under identical analytical conditions).

143 Total organic carbon and its isotopic signature (TOC, $\delta^{13}\text{C}_{\text{TOC}}$) have been measured using a
144 LECO TruMac, after carbonate dissolution (HCl 1N) at Ifremer. Accelerator Mass
145 Spectrometry ^{14}C dating has been performed on 7 samples from two blade cores, in order to
146 estimate sedimentation rates near the active Eiffel Tower edifice (ET E_CL7) and at the
147 periphery of the vent field (MS Ref_CL6). Radiocarbon dating was carried out at the Beta

148 Analytic Radiocarbon Dating facilities in Miami, US. The age was converted into calendar
149 years using the calibration program Calib 7.1 (Stuiver et al., 2014) with a marine reservoir age
150 of -400 years that was incorporated within the Marine13 calibration curve (Reimer et al., 2013).
151 Faunal and environmental statistics have been performed using the software Primer v6.0
152 (Clarke and Warwick, 1994), for diversity indices (specific richness, Shannon and Evenness
153 indices), principal component analysis (PCA) and matrices calculations (BioEnv). A PCA has
154 been performed including standardized (minus average, divided by standard deviation)
155 environmental parameters (Fe₂O₃, S, Cu, Ba, MnO, SiO₂, CaO, TC, TOC, δ¹³C and grain size)
156 and standardized living faunal descriptors (individuals, specific richness and Shannon Index
157 values) in order to investigate the control factors of the faunal distribution. A redundancy
158 analysis (RDA) was performed to investigate the influence of environmental variables on the
159 distribution of dead and living most abundant taxa in the 0-1 cm layer. Dead and living
160 organisms were pooled together in order to restrain taphonomical impacts, such as
161 disappearance of soft-bodied foraminifera and seasonal effects and to ensure robust
162 interpretations as rarefaction curves tend to show underestimation through living fauna
163 (supplementary 3). Six species and two taxonomic groups were kept for the RDA analysis:
164 *Quinqueloculina auberiana*, *Cibicides wuellerstorfi*, *Cibicides pachyderma*, *Cruciloculina*
165 *triangulifera*, *Epistominella exigua*, *Gavelinopsis translucens*, pooled *Fissurina* species and
166 pooled non calcareous species. RDA was performed with the R software (R core team, 2025)
167 and the vegan package (Oksanen et al., 2001). A forward selection was implemented to select
168 the environmental variables significantly explaining the species distribution (function ordistep
169 of the vegan package).
170 A correlation of environmental (Euclidean distance) and faunal (Bray-Curtis dissimilarity)
171 matrices has been performed through the test BEST (BioEnv) to determine the main elements
172 impacting the distribution of both fossil and living fauna on the study area (2 tests on total

173 abundances). Environmental parameters considered in the calculation were grain size, SiO₂,
174 Fe₂O₃, MnO, CaO, S, Ba, Cu, $\delta^{13}\text{C}$ TOC, TOC and TC.


175

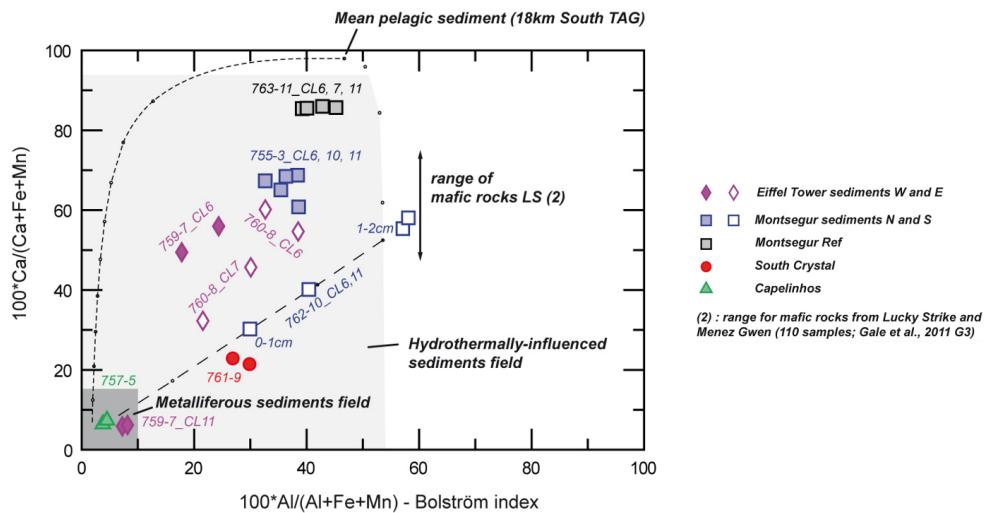
176 4. Results

177 4.1. Microhabitat characterization

178 Sediment microhabitats have been studied through their particulate element composition, the
179 main elements measured in each core surface (0-1 cm) have been represented as bar charts of
180 relative abundance (Fig. 2) and secondary elements as superposed curves.

Sediment geochemistry (0-1 cm)

181


182 Fig. 2. XRF analyses of top layers (0-1 cm) of the 12 sediment cores sampled in 2020 on the
183 Lucky Strike vent field (Mid-Atlantic Ridge). Ba and Cu are plotted as minor elements (right
184 scale).

185

186 CaO represented the main component of stations MS N and MS Ref ranging from 24 to 35%.
187 SiO₂ values ranged from 8% (station Cap_CL6) to 42% (station MS_CL6). Fe₂O₃ and S were

188 the most abundant elements in station Cap_CL6, reaching 46% and 14%, respectively. This
 189 station also showed peaks of Ba (4.4%) and Cu (4.9%). Fe₂O₃ (36%) and MnO (8%) were high
 190 in station ET W_CL6. Finally, relatively high Fe₂O₃ (21%) and Ba (2.8%) have been measured
 191 in station SC_CL6. Major elements signature of surface sediments is related to mixing of
 192 particles from three different origin (Fig. 3): (1) pure pelagic sediments (carbonate), (2) pure
 193 metalliferous sediments (sulfides and/or oxides) and (3) mafic rocks (i.e., basalt) from the
 194 oceanic crust.

195
 196 Fig. 3. Bolström diagram representing the geochemical analyses of the top sediment layers (0-
 197 1 cm) in the peripheries of four active edifices on the Lucky Strike vent field (Mid-Atlantic
 198 Ridge).

199
 200 Sediments from Montsegur_Ref shows only little hydrothermal particles contribution and plot
 201 close to the mean pelagic sediment composition. Sediments from Capelinhos and two from
 202 Eiffel Tower W plot inside the metalliferous sediment field (Fig. 3) indicating a strong
 203 hydrothermal influence. Sediments from Montsegur S and South Crystal plot on a mixing line
 204 between metalliferous sediments and mafic rocks. Distribution of other sediments in Figure 3

205 indicate a variable mixture of pelagic sediments, mafic rocks fragments and metalliferous
206 sediments.

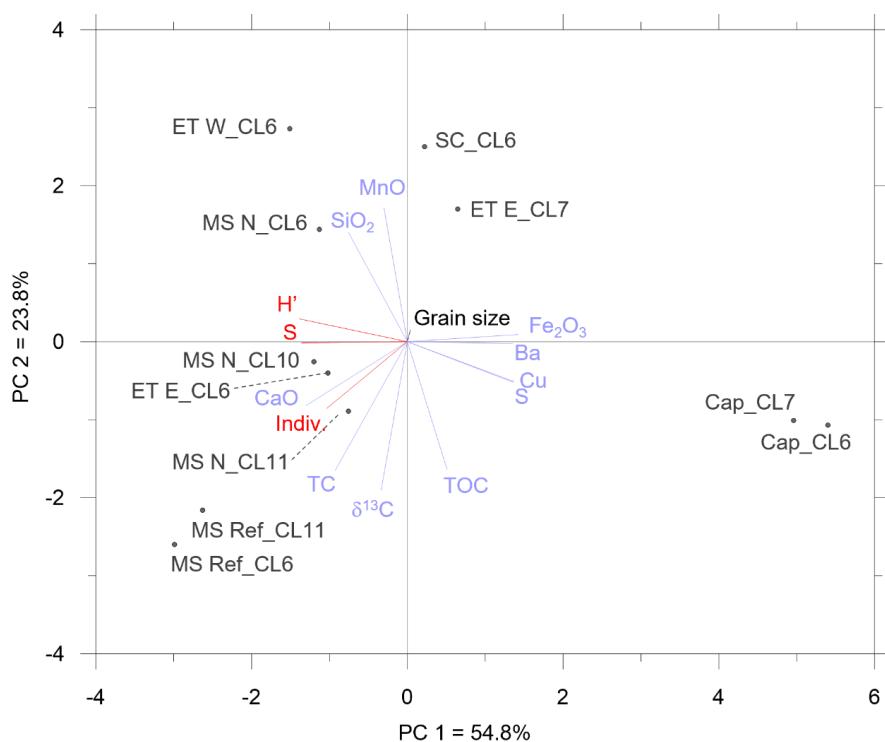
207 Sedimentation rates have been calculated from two different sites (supplementary 4), one in the
208 vicinity of the Eiffel Tower edifice (ET E_CL7) and one in the south periphery of Lucky Strike
209 (MS Ref_CL6). These sedimentation rates showed relatively stable trends, especially for the
210 station MS Ref_CL6, indicating a mean value of 2.3 cm.kyr⁻¹. At the basis of the Eiffel Tower
211 edifice, the sedimentation rate was 4.3 cm.kyr⁻¹.

212 Inorganic and organic carbon as well as $\delta^{13}\text{C}$ of organic carbon have been measured on surface
213 sediment samples (0-1 cm) and summarized in Table 2. Total carbon (TC) data showed
214 maximal values in MS Ref stations, exceeding 7.5%. Minimum values (<1%) were obtained in
215 the three cores targeting microbial mats (ET W_CL11, MS_CL6 and MS_CL11) and in the
216 SC_CL6 core. Maximal total organic carbon (TOC) values were obtained in station MS
217 N_CL11, Cap_CL6 and MS Ref. $\delta^{13}\text{C}_{\text{TOC}}$ ranged from -25.4‰ (ET W_CL11) to -22.3‰ (MS
218 Ref_CL11).

219 Table 2. Organic and inorganic carbon data.

Core	TC (%)	TOC (%)	TOC st. dev.	$\delta^{13}\text{C}_{\text{TOC}}$	$\delta^{13}\text{C}_{\text{TOC}}$ st. dev.
MS N_CL6	2.19	0.17	0.002	-23.40	0.01
MS N_CL10	4.68	0.22	0.012	-22.63	0.35
MS N_CL11	4.90	0.32	0.033	-23.13	0.11
Cap_CL11	1.21	0.30	0.000	-23.58	0.00
ET W_CL11	0.80	0.18	0.012	-25.35	0.91
ET W_CL6	4.43	0.23	0.007	-23.35	0.11
ET E_CL7	1.99	0.19	0.010	-25.34	0.46
ET E_CL6	4.13	0.29	0.014	-23.87	0.15
SC_CL6	0.73	0.22	0.014	-25.11	0.35
MS_CL6	0.21	0.21	0.016	-24.35	0.53
MS_CL11	0.39	0.17	0.013	-24.66	0.41
MS Ref_CL11	7.66	0.26	0.004	-22.30	0.10
MS Ref_CL6	8.02	0.27	0.002	-22.34	0.11

220



221 4.2. Foraminiferal distribution

222 In total, 54 species have been identified on the whole study area. Living individuals showed
223 contrasted densities and diversities (Table 1) with the highest number of individuals (101) and
224 specific richness (22) in station MS Ref_CL6 and a minimum of 1 individual in station
225 Cap_CL6. Relatively high diversity characterized stations MS Ref_CL6 and ET E_CL6 with
226 Shannon indexes of 2.5. The rest of the stations displayed Shannon index values ranging from
227 0.6 to 2.3.

228 When combining both living and dead individuals, the relationship between the specific
229 richness and the number of identified individuals showed similar trends for most of the stations
230 indicating that more than 90% of the species are identified within the first 300 individuals of
231 the total assemblages. Stations ET E_CL6 and MS Ref_CL6 showed the highest diversity with
232 30 and 28 species for 300 individuals, respectively. A minimum of 13 species for 300
233 individuals was observed in MS N stations. Three cores revealed the absence (or only one
234 individual) of benthic foraminifera (MS_CL6 and CL11 and ET W_CL11) where microbial
235 mats have been targeted for the sampling.

236 A PCA was conducted to investigate the environmental factors influencing living benthic
237 foraminiferal communities (Fig. 4).

238

239 Fig. 4. Principal Component Analysis with environmental parameters in blue and biological
240 metrics in red. H' = shannon index, S = specific richness, Indiv. = number of individuals.

241

242 The first two axes account for 78.6% of the total data variability, with PC1 explaining 54.8%
243 and PC2 explaining 23.8% of the variance. PC1 seemed to correspond to hydrothermal inputs
244 with positive loadings for the elements Fe_2O_3 , S, Cu and Ba and slightly positive loading for
245 TOC, while CaO displayed the most negative loading. Hence, the hydrothermal-derived
246 elements on the PC1 particularly isolated the cores Cap_CL7 and Cap_CL6, representing the
247 hydrothermal domain. SC_CL6 and ET E_CL7 also showed positive loading on PC1,
248 suggesting a significant hydrothermal signal. The second axis suggested a control of the organic
249 matter source with negative loadings of TC and $\delta^{13}C$ and CaO. Positive loadings on the PC2
250 were characterized by MnO and SiO₂. All cores showing negative loadings for both PC1 and

251 PC2 were characterized by a pelagic sedimentation dominated by phytodetrital organic matter
252 ($\delta^{13}\text{C} \sim -20 \text{ ‰}$ and high CaO content), representing the reference domain with cores MS
253 Ref_CL11 and MS Ref_CL6. The last domain visible on the PCA was intermediate, showing a
254 lower contribution of elements from the pelagic sedimentation (CaO) or from hydrothermal
255 input (Fe_2O_3 , S, Cu and Ba), resulting in higher contribution of SiO_2 . MnO content suggested a
256 slight influence of hydrothermal-derived particles, probably originating from low temperature
257 Mn-oxides precipitation. The abundance of living benthic foraminifera was well correlated with
258 the reference domain while faunal diversity better corresponded to the intermediate domain,
259 suggesting an influence of the source of organic matter. BioEnv statistical tests (BEST, Primer
260 v.06) was performed on both dead and living faunal communities with environmental data
261 (Table 3). Both tests highlighted the control of Fe_2O_3 alone for the living communities and
262 Fe_2O_3 with Ba for the dead ones as main control of faunal variability (Table 3), confirming the
263 impact of hydrothermal-derived microhabitats at a regional scale.

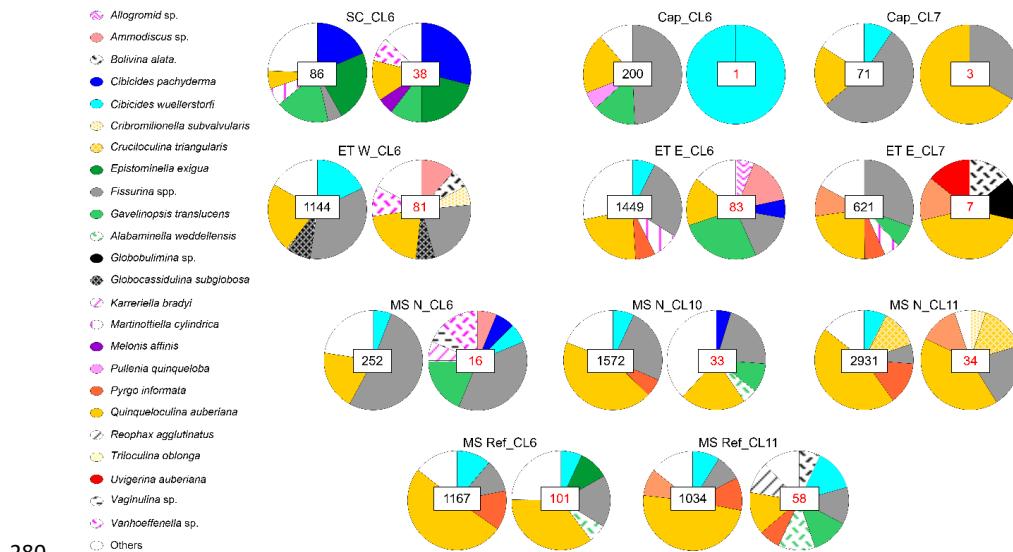
264

265 Table 3. Statistical test BioEnv (matrices correlation).

BioEnv (living fauna). significance: 4%

Variables number	R ²	Variables
1	0.664	Fe_2O_3
2	0.659	Fe_2O_3 , Ba
2	0.652	Fe_2O_3 , Cu
3	0.651	Fe_2O_3 , Ba, Cu

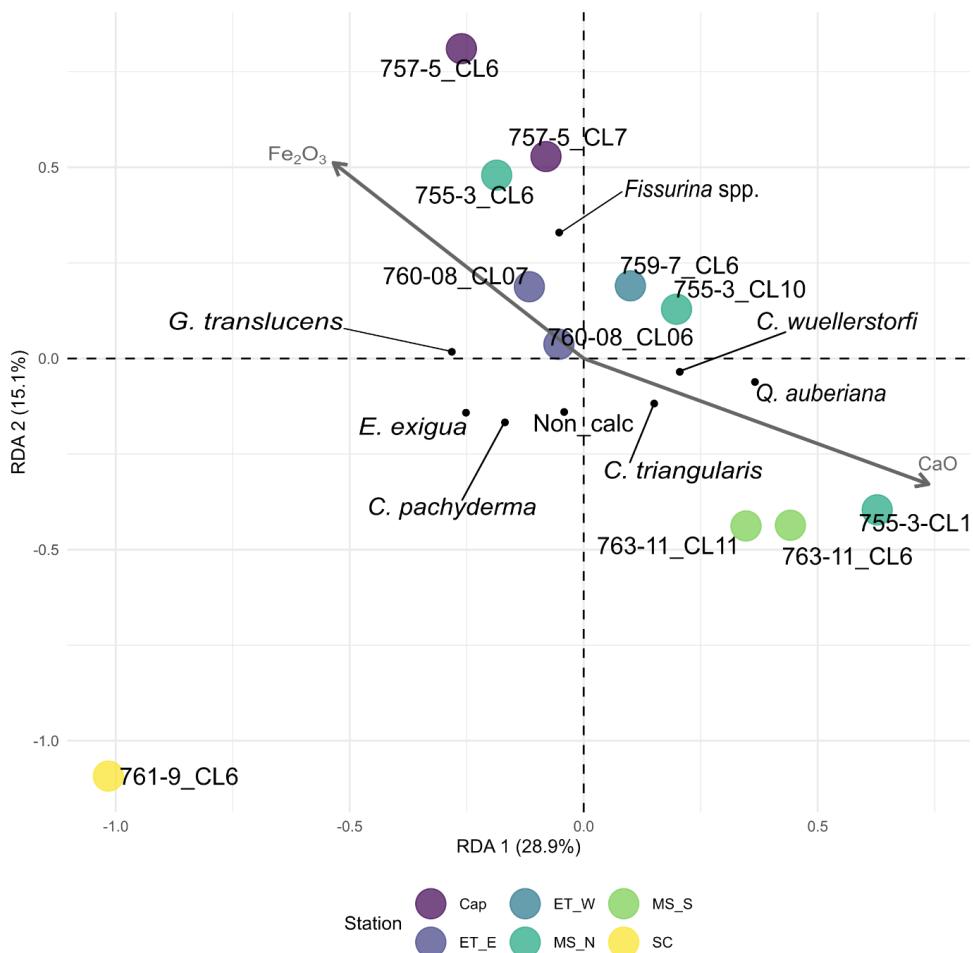
BioEnv (dead fauna). significance: 2%


Variables number	R ²	Variables
2	0.796	Fe_2O_3 , Ba
3	0.796	Fe_2O_3 , S, Ba
3	0.795	Fe_2O_3 , Ba, Cu
4	0.795	Fe_2O_3 , S, Ba, Cu

266

267

268 The whole study area was dominated by *Quinqueloculina auberiana* and *Fissurina orbignyana*
269 (the most abundant species among the *Fissurina* genus) (Fig. 5). In the southern most station,
270 the Miliolid order was well represented with *Q. auberiana*, *Pyrgo informata*, *Cribromiliolinella*
271 *subvalvularis*, *Cruciloculina triangularis* and *Triloculina oblonga* as well as other calcareous
272 species *Cibicides wuellerstorfi* and *Fissurina orbignyana*. Non-calcareous species
273 (agglutinated and allogromids) were mainly present in intermediate stations (MS N; ET W and
274 ET E) such as *Martinottiella cylindrica*, *Karreriella bradyi* and *Vanhoeffenella* sp. Among the
275 most abundant species, *Gavelinopsis translucens* had its highest relative contribution in stations
276 ET E_CL6 and SC_CL6, in the latter associated with *Epistominella exigua* and *Cibicides*
277 *pachyderma*. Stations Cap_CL6 and Cap_CL7 were characterized by a strong dominance of
278 *Fissurina* spp, (~50%) including all identified species from this genus (*F. orbignyana*, *F.*
279 *annectens*, *F. foliformis*, *F. laevigata*).



281 Fig. 5. Relative abundance (pie charts) and absolute number of individuals of the main benthic
282 foraminiferal species (e.g., representing >5%) of the total abundance with dead communities
283 represented on the left (black numbers) and living communities on the right (red numbers).

284

285 The RDA performed on the main species distribution selected only CaO and Fe₂O₃ ($p < 0.05$)
286 when implementing the forward selection on environmental variables (Fig. 6).

287
288 Fig. 6. Redundancy Analysis of the main benthic foraminiferal species (>5% of the total
289 abundance) of the Lucky Strike vent field based on dead + living communities and
290 environmental parameters of the top sediment layers (0-1 cm).

291

292 The first two axes represent together 44% of the data variability. Main distinctions are visible
293 along the pelagic to hydrothermal gradient with *Q. auberiana* dominant in the reference cores
294 on the bottom right quadrant of the RDA, associated with pelagic sedimentation (correlated to

295 CaO) while *Fissurina* spp. were dominant in cores Cap_CL6 and Cap_CL7, in the most intense
296 hydrothermal domain in the top left quadrant (correlated to Fe₂O₃). Cores in other venting
297 locations are intermediate, with an exception with the South Crystal's core, showing a distinct
298 pattern with the dominance of *E. exigua* and *C. pachyderma* species.

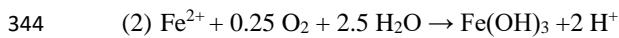
299

300 5. Discussion

301 5.1. Environmental control on faunal distribution

302 The Lucky Strike vent field developed on the summit of a large volcano (Ondréas et al., 2009)
303 mainly composed of enriched mid-ocean ridge basalt (EMORB) characterized by high barium
304 contents compared to normal MORB. This geological context allowed the enrichment in Fe and
305 H₂S in the area as well as Cu, S, Zn and Ba in the close vicinity of the black smokers (Cotte et
306 al., 2020). Our results confirm a sedimentary content enriched in these elements at close
307 periphery of active edifices, while further periphery mainly represents phytodetritic influence.
308 The contribution of hydrothermal-derived material close to Eiffel Tower edifice hence
309 represents about 2.0 cm kyr⁻¹ that corresponds to half of the sediment material. The elements
310 measured in Capelinhos and South Crystal suggest an important geochemical maturation
311 originating from the hydrothermally-derived metalliferous sediments, or more likely in
312 Capelinhos from vestiges of inactive chimneys covering the sediment, as suggested by the pore
313 water dissolved metals profiles (supplementary 5) thus implying a different potential impact on
314 faunal distribution.

315 Inorganic carbon data appeared correlated with CaO content, mainly derived from the presence
316 of planktonic foraminifera that were the most abundant in MS Ref stations according to visual
317 stereoscopic microscope observations. Stable isotopic signature of carbon in these stations
318 demonstrated a classical marine signal of phytodetritic material (Meyers, 1994). More depleted




319 $\delta^{13}\text{C}$ of the sedimentary organic carbon measured in the vicinity of hydrothermal edifices Eiffel
320 Tower, Capelinhos and South Crystal and within microbial mats suggested a microbial ^{13}C
321 depletion. Hence, the benthic foraminiferal food source varied from exclusive phytodetritic
322 material in the MS Ref stations to mixed pelagic and microbial carbon sources in periphery
323 stations, and exclusive microbial source in mats.

324 Even though statistical tests on environmental control on fauna indicate a first variance
325 explanation based on sedimentary content (i.e., Fe, Ba and CaO), these parameters showed
326 significant autocorrelations with TOC and $\delta^{13}\text{C}$ of the organic carbon, suggesting that
327 hydrothermal-derived material is strongly linked with the quantity and source of organic matter
328 available for foraminiferal communities and should be considered for faunal interpretation.
329 Additionally, microbial biofilms were not included in statistical tests because of the absence of
330 fauna, being nevertheless key for distribution understanding.

331 5.2. A toxic microbial biofilm for foraminifera?

332 The abundance of both living and fossil benthic foraminifera suggested a main control by
333 organic carbon content in the sediment that was not directly connected to the influence of
334 venting activity. In particular, the cores collected on the zetaproteobacteria microbial mats
335 (MS_CL11, MS_CL6 and ET_W_CL11) revealed the absence of foraminifera. The visual
336 observations of sediment samples pointed out the absence of all carbonated material, such as
337 planktonic foraminifera, resulting in a very low total carbon and carbonate content (Table 2).
338 These stalk-forming iron-oxidizing bacteria are known to produce flocculent iron oxide mats,
339 which can be meters thick and cover hundreds of square meters (Emerson and Moyer, 2002).
340 While oxidizing iron, they use Fe(II) and oxygen producing Fe(III) (eq. 1), that also occurs
341 through abiotic reaction that almost directly results in the production of iron oxyhydroxides at
342 circumneutral pH through the reaction (eq. 2) (Emerson et al., 2010).

345 In order to limit the precipitation of Fe(III); as well as produced by the abiotic iron oxidation in
346 iron oxyhydroxides; they excrete acidic polysaccharids that acidify (to pH = 6) their
347 microhabitat outside their cells in order to bind the Fe(III) and prevent its precipitation in
348 minerals (Cohen, 2020). Hence, zetaproteobacteria biofilms may significantly decrease the
349 microenvironmental pH in their mats, resulting in the dissolution of fossil planktonic
350 foraminifera and preventing benthic foraminiferal colonization in surrounding sediments.
351 These microbial communities are abundant on basaltic-rich substrates at the Lucky Strike vent
352 field where they use the structural Fe(II) from the basaltic glass (Henri et al., 2016). Whether
353 the absence of benthic foraminifera is explained by the presence of the microbial mats
354 themselves (competition or lack of sediment substratum) or by the pH of the biofilm is unclear.
355 However, the absence of all carbonated tests (planktonic foraminifera, ostracods, bivalves,
356 gastropods) in these cores, combined with a very low inorganic carbon content in the three
357 “microbial mat” cores further support the hypothesis of a dissolution of all carbonates in the
358 mat. The organic carbon source there, might be limited to the microbial community itself,
359 without pelagic contribution. Considering the sedimentation rate (2.3 cm kyr.⁻¹) and the
360 carbonate content in the pelagic end-member, this dissolution would result in a rate of 0.5
361 mg(CaCO₃).cm⁻³.yr⁻¹, that might have a significant impact on regional carbon budget
362 considering the area covered by these mats.

363 5.3. The pelagic end-member

364 In the control stations (MS Ref), the organic carbon content showed its higher values in the
365 study area, though it remained low compared to classical deep-sea environments (e.g.,
366 Dessandier et al., 2016; 2019; Krüger et al., 2025). Notably, these stations were characterized
367 by the most abundant and diverse communities of both fossil and living benthic foraminifera.

368 The presence of miliolid species and *C. wuellerstorfi*, characterizing these stations, suggests a
369 pre-degraded organic matter, which might correspond to phytodetritic deposits from the last
370 spring. The main difference in the assemblages of benthic foraminifera between the reference
371 and intermediate stations corresponds to the decrease of miliolid relative abundance with
372 increasing proximity to the vents. This may be explained by the calcification strategy of this
373 order that precipitate a shell with high Mg/Ca carbonate, hence necessitating an elevated pH in
374 comparison with that of the surrounding water (de Nooijer et al., 2009). Since the pH in
375 sediments and water at Lucky Strike drastically decreases from the periphery to the edifices
376 (Sarradin et al., 1999), the energetic effort to precipitate these shells may be limiting. These
377 results are in contradiction with a recent study conducted at the Rainbow vent field (Krüger et
378 al., 2025) where miliolids have been observed in the closest relationship with hydrothermal
379 plume. This could be explained by both a different geochemical context in Rainbow vent field
380 and a different sampling strategy, with cores collected between 200 m and 41 km of distance to
381 vents in Krüger et al. (2025) while all cores were distant from less than 50 m to chimneys in
382 the present study (except for MS_Ref stations). Some *C. wuellerstorfi* individuals observed in
383 the present study morphologically resembles *Cibicides lobatulus* taxon, conforming the shape
384 of their test to the substrate where they are attached. Recently, it has been demonstrated that
385 genetically identified *C. wuellerstorfi* flourishing on hard substrata present different
386 morphologies from “classical” *C. wuellerstorfi* to ecophenotype *C. wuellerstorfi* var. *lobatulus*
387 (Burkett et al., 2020). These authors proposed that both the substratum and microbial
388 colonization influence the distribution of *Cibicides* species. *Cibicides pachyderma* is a
389 facultative epifaunal species that preferentially lives as an infaunal dweller in moderate carbon
390 flux areas, able to cover parts of its test by aggregates or algae in low pH environments
391 (Wollenburg et al., 2018). Hence, this species may replace *C. wuellerstorfi* in environments
392 characterized by harsher environmental conditions, such as slightly lower pH.

393 5.4. Intermediate habitats, a pool of diversity

394 The stations in the vicinity of hydrothermal edifices Eiffel Tower and Montsegur harbored
395 abundant and diverse fossil fauna while the living community remained less developed.

396 Interestingly, the faunal diversity of the living community around Eiffel Tower appeared
397 relatively high, showing abundant non-calcareous species (e.g., *Vanhoeffela* sp., *Reophax*
398 *agglutinatus*, *Martinorinella cylindrica* and allogromid sp.) and *Globocassidulina subglobosa*
399 that were rare in the rest of the stations. Monothalamids may be present in a greater extent due
400 to harder substrata where they can attach their test, preferentially to most of the calcareous taxa.

401 Their occurrence at Lucky Strike was however limited, in comparison with other deep-sea
402 environments (e.g., Koho et al., 2007) potentially because of low pH microenvironments. As
403 observed for agglutinated species in cold seeps (e.g., Dessandier et al., 2019), these species
404 might not easily tolerate the environmental conditions derived from hydrothermal venting.

405 Nevertheless, several of these species represent pioneer recolonizers following the end of
406 venting or sediment disturbance (Kitazato, 1995; Panieri et al., 2005) and may flourish on
407 inactive chimneys. The cores collected in sediments enriched in iron and sulfur (Capelinhos)
408 displayed generally lower dead faunal abundances than those from the intermediate stations.

409 Interestingly, South Crystal site, that is more a mix of basalt and metalliferous sediment, is
410 characterized by a substantial living individuals' density and a slightly different faunal
411 distribution, with *G. translucens*, *E. exigua* and *C. pachyderma* as the most abundant species.

412 This assemblage highlights a potential fresher organic material than in the other stations that
413 may be linked to a higher microbial productivity, triggered by the high content in iron and
414 sulfur. Sen Gupta and Aharon (1994) observed *G. translucens* as a dominant taxon in a bathyal
415 vent community of the Gulf of Mexico, associated with bacterial (*Beggiatoa*) mats and tolerant
416 to anoxic conditions and high H₂S concentrations in sediments. Most of the deep-sea species
417 may experience dormancy phases during periods of starvation and are likely able to switch to a

418 biologically active phase when phytodetritus pulses reach the seafloor (Gooday and Rathburn,
419 1999), with a response that differs at daily to seasonal scales. In bathyal north Atlantic
420 environment, *Quinqueloculina* sp. has been observed as dominant in late summer, after the
421 degradation of fresh phytodetritic material, replacing opportunistic species (e.g., *Alabaminella*
422 *weddellensis*, *E. exigua*) at the sediment water interface, after a probable migration up from a
423 shallow infaunal microhabitat (Gooday and Rathburn, 1999). This phenomenon could explain
424 the dominance of *Q. auberiana* in our study area sampled in September while opportunistic
425 species (*G. translucens* and *E. exigua* and *A. weddellensis*) are restricted to sediments harboring
426 additional food sources represented by microbial communities. *Epistominella exigua* and *A.*
427 *weddellensis* represent the most common species in the deep-sea Atlantic Ocean in the >63 µm
428 size fraction (Sun et al., 2006). These opportunistic species flourish whenever suitable food
429 sources -such as phytoplankton or microorganisms (Turley et al., 1993)- become available
430 (Gooday, 1988).

431 5.5. Capelinhos, the sulfide-rich metalliferous microhabitat
432 This living community was absent in Capelinhos where the very high content in hydrothermal-
433 derived elements have probably directly or indirectly restrained foraminiferal growth.
434 However, considering the elevated number of fossils in these two stations, it is clear that the
435 microenvironment is not preventing colonization by benthic foraminifera as observed in the
436 zetaproteobacterial mats. An equilibrium between the source of energy that promotes microbial
437 communities and the more classical marine conditions represented in the reference stations
438 seems to be necessary for the development of these opportunistic species that can thrive in
439 sediments slightly impacted by venting. Surprisingly, a strong dominance of *Fissurina*
440 *orbignyana* has been observed in the two Capelinhos stations as well as in one of the
441 intermediate stations around Montsegur edifice. Very little is known about the ecology of the
442 genus *Fissurina*, often observed in deep-sea environments, but never abundant enough to

443 decipher its ecology. Its occurrence in both the intermediate and extreme environments (i.e.,
444 rich in Fe, S and Cu) suggest a wide range of tolerance for these single chambered specimens.
445 Even though Capelinhos edifice lies in a different chemical domain than other edifices of the
446 Lucky Strike vent field (Chavagnac et al. 2018), with the most enriched metal content (Cotte et
447 al., 2020), we cannot exclude that the fossils observed of *Fissurina* species come from a period
448 of a less intense vent activity. Alternatively, the more intense hydrothermal impact observed in
449 this particular core may reflect a different source of particles that could originate from
450 dismantled past chimneys, hence representing harsher environment than diffusion of metal from
451 particles deposited through the hydrothermal plume. Further investigations on the tolerance of
452 these species for high metallic content may be of interest in the future to better understand the
453 ecology of this group.

454

455 6. Conclusions

456 Extensive symbiotic relationships between microorganisms and macrofauna lead to a bypass of
457 meiofauna as major contributors in the vent trophic network. This limited role in energy transfer
458 may explain why meiofauna -especially foraminifera- has received relatively little attention in
459 these ecosystems. However, benthic foraminifera represent an essential chain of the deep-sea
460 food web, making a link between phytoplanktonic and microbial communities on which they
461 feed and a substantial number of predators from the metazoans feeding on foraminifera. In
462 hydrothermal systems, the environmental conditions represent a challenge for these organisms
463 to thrive (e.g., low pH, high H₂S content, hard substrates and in particular low organic carbon
464 content), hence leading to a crucial role of microbial communities as an additional food source
465 but also by the role they have in changing the environment (e.g., consuming H₂S).

466 Our results demonstrated that the microbial food source allowed benthic foraminiferal
467 opportunistic species to flourish in the direct vicinity to active chimneys where the elements
468 present in the sediment (Fe, S) originated high microbial content. In the reference cores, the
469 foraminiferal community showed adaptation for more refractory organic matter, which is
470 partially explained by the period of sampling. Directly opposed to this trend, the establishment
471 of biofilm from Zetaproteobacteria seems to trigger the dissolution of all carbonated shells. The
472 absence of agglutinated or organic-walled specimens in these mats even revealed a toxic
473 environment for all benthic foraminifera. This observation questions the role of these extended
474 microbial mats in the carbon fluxes in hydrothermal vent systems, with the dissolution of
475 foraminiferal tests that might export carbon from the sediment to the water column. The reasons
476 for the establishment of mats of Zetaproteobacteria remains uncertain (Emerson et al., 2010),
477 and no direct link can be made when focusing on the iron content in the sediment. This
478 observation points out the extreme heterogeneity of the hydrothermal-derived microhabitats
479 that affects the regional biodiversity where benthic foraminifera represent a powerful bio-
480 indicator.

481 In the absence of symbiosis between microbes and macrofauna that occurs only in active
482 hydrothermal vents, benthic foraminifera may represent a key trophic chain for the inactive
483 systems. The intermediate stations observed in this study represent good analogues for inactive
484 hydrothermal chimneys inhabiting microbial communities that use reduced elements
485 accumulated in the sediments. There, benthic foraminiferal communities showed their highest
486 diversities. These systems are nowadays under the scope of the society for economic interests
487 in metalliferous sediment associated to sulfides deposits. There, the local biodiversity may be
488 clearly impacted by removal the life conditions of benthic foraminifera. Hence, a good
489 knowledge on benthic foraminiferal ecology from these environments, close to active vents, in

490 the periphery and on inactive chimneys appears essential to prevent any damage in the deep-
491 sea biodiversity.

492

493 Acknowledgements

494 The authors would like to thank the captain and the crew of the *R/V Pourquoi Pas?* and the
495 chief scientist P.M. Sarradin. This work was supported by ISblue project, Interdisciplinary
496 graduate school for the blue planet (ANR-17-EURE-0015) and co-funded by a grant from the
497 French government under the program "Investissements d'Avenir", and by a grant from the
498 Regional Council of Brittany (SAD programme). We thank J.H. Ogor, M. Hubert, Y. Germain
499 and N. Gayet for their technical help in data acquisition.

500

501 References

502 Alfaro-Lucas, J.M., Pradillon, F., Zeppilli, D., Michel, L.N., Martinez-Arbizu, P., Tanaka, H.,
503 Foviaux, M., Sarrazin, J., 2020. High environmental stress and productivity increase functional
504 diversity along a deep-sea hydrothermal vent gradient. *Ecology* 101(11), e031144.

505 Astorch-Cardona, A., Odin, G. P., Chavagnac, V., Dolla, A., Gaussier, H., & Rommevaux, C.,
506 2024. Linking Zetaproteobacterial diversity and substratum type in iron-rich microbial mats
507 from the Lucky Strike hydrothermal field (EMSO-Azores observatory). *Applied and*
508 *Environmental Microbiology*, 90(2), e02041-23.

509 Burkett, A.M., Rathburn, A., Elena Pérez, M., Martin, J.B., 2018. Influences of thermal and
510 fluid characteristics of methane and hydrothermal seeps on the stable oxygen isotopes of living
511 benthic foraminifera. *Marine and Petroleum Geology* 93, 344-355.

512 Burkett, A., Rathburn, A., Pratt, R.B., Holzmann, M., 2020. Insights into the ecology of
513 epibenthic calcareous foraminifera from a colonization study at 4000 m (Station M) in the NE
514 Pacific Ocean. *Deep Sea Research II: Topical Studies in Oceanography* 173, 104709.

515 Childress, J.J., and Fisher, C.R., 1992. The biology of hydrothermal vent animals: physiology,
516 bio-chemistry and autotrophic symbioses. *Oceanography and Marine Biology* 30:337–441

517 Cohen, 2020. The Ecophysiology of Iron-Oxidizing Zetaproteobacteria: Microbe-Mineral
518 Interactions, Transcriptomic Responses, and Biomineralization. PhD Thesis

519 Cotte, L., Chavagnac, V., Pelleter, E., Laës-Huon, A., Cathalot, C., Dulaquais, G., Riso, R.D.,
520 Sarradin, P.-M., Waeles, M., 2020. Metal partitioning after in situ filtration at deep-sea vents
521 of the Lucky Strike hydrothermal field (EMSO-Azores, Mid-Atlantic Ridge, 37°N). *Deep Sea*
522 *Research I: Oceanographic Research Papers* 157, 103204.

523 de Nooijer, L., Toyofuku, T., Kitazato, H., 2009. Foraminifera promote calcification by
524 elevating their intracellular pH. *Proceedings of the National Academy of Sciences of the United*
525 *States of America* 106 (36), 15374-15378.

526 Desbruyeres, D., Biscoito, M., Caprais, J.-C., Colaço, A., Comtet, T., Crassous, P., Fouquet,
527 Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.-M., Vangriesheim, A., 2001.
528 Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the
529 Azores plateau. *Deep Sea Research I: Oceanographic Research Papers* 48 (5), 1325-1346.

530 Dessandier, P.-A., Bonnin, J., Kim, J.-H., Bichon, S., Deflandre, B., Grémare, A., Sinninghe
531 Damsté, J.S., 2016. Impact of organic matter source and quality on living benthic foraminiferal
532 distribution on a river-dominated continental margin: a study of the Portuguese margin. *Journal*
533 *of Geophysical Research, Biogeosciences* 121, 1689–1714.

534 Dessandier, P.-A., Borrelli, C., Kalenitchenko, D., Panieri, G., 2019. Benthic foraminifera in
535 Arctic methane hydrate bearing sediments. *Frontier in Marine Science* 6:765.
536 <https://doi.org/10.3389/fmars.2019.00765>

537 Emerson, D., and Moyer, C.L., 2002. Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the
538 Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition. *Applied*
539 *and Environmental Microbiology* 68 (6), 3085-3093.

540 Fisher, C., Takai, K., Le Bris, N., 2007. Hydrothermal vent ecosystems. *Oceanography* 20: 14-
541 23

542 Fouquet, Y., Ondréas, H., Charlou, J.-L., Donval, J.-P., Radford-Knoery, J., Costa, I., Lourenço,
543 N., Tivey, M.K., 1995. Atlantic lava lakes and hot vents. *Nature* 377, 201.

544 Gooday, A.J., 1988. A response by benthic foraminifera to phytodetritus deposition in the deep
545 sea. *Nature* 332, 70–73

546 Gooday, A.J., 1994. The biology of deep-sea foraminifera: A review of some advances and
547 their applications in paleoceanography. *Palaios* 9, 14-31.

548 Gooday, A.J., and Rathburn, A., 1999. Temporal variability in living deep-sea benthic
549 foraminifera: a review. *Earth-Science Reviews* 46 (1-4), 187-212.

550 Henri, P.A., Rommevaux-Jestin, C., Lesongeur, F., Mumford, A., Emerson, D., Godfroy, A.,
551 Ménez, B., 2016. Structural Iron (II) of Basaltic Glass as an Energy Source for
552 Zetaproteobacteria in an Abyssal Plain Environment, Off the Mid Atlantic Ridge. *Frontiers in*
553 *Microbiology*. <https://doi.org/10.3389/fmicb.2015.01518>

554 Hollander D.J., Smith M.A., 2001. Microbially mediated carbon cycling as a control on the
555 d13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting
556 isotopic excursions in the sedimentary record. *Geochim Cosmochim Acta* 65, 4321-4377.

557 Husson, B., Sarradin, P.M., Zeppilli, D., Sarrazin, J., 2017. Picturing thermal niches and
558 biomass of hydrothermal vent species. *Deep-Sea Res. II Top. Stud. Oceanogr.* 137, 6–25.
559 <https://doi.org/10.1016/j.dsr2.2016.05.028>.

560 Jonasson, K.E., Schröder-Adams, C.J., Patterson, R.T., 1995. Benthic foraminiferal distribution
561 at Middle Valley, Juan de Fuca Ridge, a northeast Pacific hydrothermal venting site. *Marine*
562 *Micropaleontology* 25 (2-3), 151-167.

563 Jorissen, F.J., de Stigter, H.C., Widmark, J.G., 1995. A conceptual model explaining benthic
564 foraminiferal microhabitats. *Marine Micropaleontology* 26, 3–15.

565 Khripounoff, A., Comtet, T., Vangriesheim, A., Crassous, P., 2000. Near-bottom biological and
566 mineral particle flux in the Lucky Strike hydrothermal vent area (Mid-Atlantic Ridge). *Journal*
567 *of Marine Systems* 25 (2), 101-118.

568 Kitazato, H., 1995. Recolonization by deep-sea benthic foraminifera: possible substrate
569 preferences. *Marine Micropaleontology* 26 (1-4), 65-74.

570 Koho, K.A., Kouwenhoven, T.J., de Stigter, H.C., van der Zwaan, G.J., 2007. Benthic
571 foraminifera in the Nazaré Canyon, Portuguese continental margin: Sedimentary environments
572 and disturbance. *Marine Micropaleontology* 66, 27-51.

573 Krüger, H., Schmiedl, G., Steiner, Z., Zhang, Z., Achterberg, E. P., & Glock, N., 2025. Change
574 in biodiversity and abundance of benthic foraminifera with distance from the Rainbow
575 hydrothermal vent field, Mid-Atlantic Ridge. *Journal of Micropalaeontology*, 44(2), 193-211.

576 Langmuir, C., Humphris, S., Fornari, D., Van Dover, C., Von Damn, K., Tivey, M.K.,
577 Colodner, D., Charlou, J.-L., Desonie, D., Wilson, C., Fouquet, Y., Klinkhammer, G., Bougault,
578 H., 1997. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on
579 the Mid-Atlantic Ridge. *Earth and Planetary Science Letters* 148 (1-2), 69-91.

580 Matabos, M., Cannat, M., Ballu, V., Barreyre, T., Blandin, J., Castillo, A., ... & Sarradin, P. M.,
581 2025. The EMSO-Azores deep-sea observatory: 15 years of multidisciplinary studies of the
582 lucky strike hydrothermal system, from sub-seafloor to the water column. *Journal of Sea*
583 *Research*, 102625.

584 Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary
585 organic matter. *Chemical Geology* 114, 289-302.

586 Molina-Cruz, A., and Ayala-Lopez, A., 1988. Influence of the hydrothermal vents on the
587 distribution of benthic foraminifera from the Guaymas Basin, Mexico. *Geo-Marine Letters* 8,
588 49-56.

589 Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., ... &
590 Weedon, J. (2001). Vegan: community ecology package.

591 Ondréas, H., Cannat, M., Fouquet, Y., Normand, A., Sarradin, P.-M., Sarrazin, J., 2009. Recent
592 volcanic events and the distribution of hydrothermal venting at the Lucky Strike hydrothermal
593 field, Mid-Atlantic Ridge. *Geochemistry, Geophysics, Geosystems* 10 (2).
594 <https://doi.org/10.1029/2008GC002171>

595 Panieri, G., 2005. Benthic foraminifera associated with a hydrocarbon seep in the Rockall
596 Trough (NE Atlantic). *Geobios* 38, 247–255.

597 Pelleter, E., Fouquet, Y., Etoubleau, J., Cheron, S., Labanieh, S., Josso, P., Bollinger, C.,
598 Langlade, J., 2017. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and
599 Futuna back-arc environment (SW Pacific). *Ore Geology Reviews* 87, 126-146.

600 R Core Team (2025). R: A language and environment for statistical computing. R Foundation
601 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

602 Reimer, P.J., et al., 2013. Intcal13 and Marine13 radiocarbon age calibration curves 0-50,000
603 years cal bp. *Radiocarbon* 55 (4), 1869e1887.

604 Sarradin, P.-M., Caprais, J.-C., Riso, R., Kérouel, R., Aminot, A., 1999. Chemical environment
605 of the hydrothermal mussel communities in the Lucky Strike and Menez Gwen vent fields, Mid
606 Atlantic Ridge. *Cahiers de Biologie Marine* 40, 93-104

607 Sarradin, P.-M., M. Waeles, S. Bernagout, C. Gall, J. Sarrazin, and R. Riso. 2009. Speciation
608 of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR,
609 37°N). *Science of the Total Environment* 407:869–878.

610 Sarrazin, J., P. Legendre, F. de Busserolles, M.-C. Fabri, K. Guilini, V. N. Ivanenko, M.
611 Morineaux, A. Vanreusel, and P.-M. Sarradin. 2015. Biodiversity patterns, environmental
612 drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge.
613 *Deep Sea Research Part II: Topical Studies in Oceanography* 121:177–192.

614 Sarrazin, J., Portail, M., Legrand, E., Cathalot, C., Laes, A., Lahaye, N., Husson, B., 2020.
615 Endogenous versus exogenous factors: what matters for vent mussel communities? *Deep-Sea
616 Res. I Oceanogr. Res. Pap.* 160, 103260. <https://doi.org/10.1016/j.dsr.2020.103260>.

617 Schmidt, C., Vuillemin, R., Le Gall, C., Gaill, F., & Le Bris, N., 2008. Geochemical energy
618 sources for microbial primary production in the environment of hydrothermal vent shrimps.
619 *Marine Chemistry*, 108(1-2), 18-31.

620 Sen Gupta, B.K., Aharon, P., 1994. Benthic foraminifera of bathyal hydrocarbon vents of the
621 Gulf of Mexico: initial report on communities and stable isotopes. *Geo-Marine Letters* 14, 88–
622 96.

623 Stuiver, M., Reimer, P.J., Reimer, R., 2014. CALIB radiocarbon calibration execute, version
624 7.0.html. Available online at: <http://calib.qub.ac.uk/calib/>.

625 Sun, X., Corliss, B., Brown, C.W., Showers, W.J., 2006. The effect of primary productivity and
626 seasonality on the distribution of deep-sea benthic foraminifera in the North Atlantic. *Deep Sea
627 Research Part I: Oceanographic Research Papers* 53 (1), 28-47

628 Turley, C.M., Gooday, A.J., Green, J.C., 1993. Maintenance of abyssal benthic foraminifera
629 under high pressure and low temperature: some preliminary results. *Deep Sea Research Part I:
630 Oceanographic Research Papers* 40 (4), 643-652

631 Van Dover, C.L., 1995. Ecology of Mid-Atlantic Ridge hydrothermal vents. In: Parson, L.M.,
632 Walker, C.L., Dixon, D.R. (Eds.), *Hydrothermal Vents and Processes* 87. The Geological
633 Society of London Special Publication 257–294.
634 Van Dover et al., 1996

635 Wollenburg, J.E., Zittler, Z.M., Bijma, J., 2018. Insight into deep-sea life—Cibicidoides
636 pachyderma substrate and pH-dependent behaviour following disturbance. *Deep Sea Research*
637 Part I: *Oceanographic Research Papers* 138, 34–45

638

639 Conflicts of Interest
640 The authors declare no conflicts of interest.

641

642 Data Availability Statement
643 All data have been provided as supplementary material

644

645 Authors contribution
646 PAD designed the experiments, identified benthic foraminifera and analyzed the data. GP and
647 JS supervised the project. RL contributed to statistical analyses and figures. EP, AB and SC
648 analyzed and interpreted the geological data. AB and SF contributed to biological sampling and
649 samples processing. All authors revised the manuscript.

650