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Table S1. List of training datasets used for the parameterization of ERH in organic-inorganic 
aerosol systems. The datasets include OIR, oxygen-to-carbon ratios calculated from OIR (O:C), 
Tg(ωorg), ωorg, viscosity, the estimated sensitivity/uncertainty of the viscosity, and ERH. All 
viscosity values were computed using the AIOMFAC model. 
 

Compound OIR ωorg O:C Tg(ωorg) ERH log10(η/[P

a.s]) 

±

log10(η se

ns./[Pa.s]) 

Reference 

Glucose 
(C6H12O6)/AS 

0.25 0.19 0.2 146.09  37  -1.56  0.02  Chang(Ch
ang, 2020) 0.33 0.24 0.25 149.41  34.5  -1.31  0.03  

0.50 0.33 0.33 155.49  31.5  -0.83  0.05  
Sucrose 

(C12H22O11)/AS 
0.25 0.32  0.18 169.80  32.3 -0.74  0.03  Xu et 

al.(Xu et 
al., 2022) 

0.50 
0.50  

0.30 
197.97  24.4 0.80  0.18  

0.25 0.33  0.18 171.79  25.4 -0.44  0.05  Wang et 
al.(Wang 

et al., 
2017a) 

0.33 0.41  0.23 182.97  21.2 0.05  0.14  
0.50 

0.51  
0.30 

199.51  21.1 1.28  0.28  

Glycerol 
(C3H8O3)/AS 

0.25 0.10  0.2 137.87  51.20  -2.12  0.01  Xu et 
al.(Xu et 
al., 2022) 

0.50 0.18  0.33 139.56  49.50  -2.00  0.01  
1.00 0.30  0.5 142.61  45.60  -1.77  0.02  
2.00 0.50  0.67 149.00  29.70  -1.03  0.05  
3.00 0.61  0.75 153.53  22.80  -0.67  0.08  
0.14 0.09  0.13 137.81  30.5 -1.78  0.02  
0.5 0.19  0.33 139.83  41.00  -1.85  0.01  Cai et 

al.(Cai et 
al., 2017) 

0.33 0.13  0.25 138.64  42.00  -1.94  0.01  
0.25 0.10  0.2 138.02  43.00  -1.98  0.01  

Malonic acid 
C₃H₄O₄/AS 

0.25 0.18  0.67 141.65  36.70  -1.09  0.04  Xu et 
al.(Xu et 
al., 2022) 

0.50 0.25  0.44 144.32  26.50  -0.38  0.09  
1.00 0.41  0.67 151.11  21.50  0.34  0.19  
2.00 0.55  0.89 159.03  28.7 0.23  0.15  

0.4286 0.23  0.4 143.45  22.6 -0.25  0.11  Braban et 
al.(Braban 

and 
Abbatt, 
2004) 

0.1428 0.09  0.17 138.60  28 -0.99  0.05  
0.0833 

0.05  
0.10 

137.50  
31 

-1.27  0.04  

0.6 0.17  0.5 141.41  24.3 -0.51  0.08  Parsons et 
al.(Parson

s et al., 
2004) 

0.33 
0.18  

0.33 
141.64  

30.3 
-0.74  

0.06  

Citric acid 
C₆H₈O₇/AS 

0.25 0.21  0.29 148.97  37.30  -1.05 0.04  Xu et al2. 
0.50 0.36  0.38 161.31  24.80  0.73 0.23  
0.33 0.29  0.29 155.60  23 0.19 0.18  Shi at 
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al.(Shi et 
al., 2017) 

1,2,6-Hexanetriol 
C6H14O3/AS 

1.00 0.37 0.25 146.84  47.45 -1.70  0.02  Ma et 
al.(Ma et 
al., 2021) 

0.25 0.13 0.1 139.31  46.4 -2.07  0.01  
2.00 0.56 0.34 154.76  43.2 -1.07  0.05  

Oxalic acid 
C2H2O4/AS 

1.00 0.34 1 148.31  44.3 0.06  0.07  Wang et 
al.(Wang 

et al., 
2017b) 

3.00 0.45 1.50 154.08  64.4 -2.79  0.02  
0.33 0.17 0.5 

141.42  
34.4 0.27 0.13  

Glutaric acid 
C5H8O4/AS 

1.5 0.24  0.48 144.07  22 0.34 0.24  Pant et 
al.(Pant et 
al., 2004) 

0.1111 
0.02  

0.08 
136.65  

32 
-1.50  0.02  

1.00 
0.07  

0.4 
137.96  

36.5 
-0.81  0.07  

Wu(Wu, 
2017) 

DEMA/AS 
Diethyl malonic acid 

2.00 0.63 0.38 167.99 43.06 -0.20  0.13  
Huang et 
al.(Huang 

et al., 
2024) 

DMSA/AS  
2,2-Dimethyl succinic 

acid 
2.00 0.60 0.45 164.55 42.04 -0.39  0.11  

DMGA/AS 
3,3-Dimethyl glutaric acid 

2.00 0.63 0.38 167.99 43.49 -0.20  0.13  

HMMA/AS  
DL-4-Hydroxy-3-

methoxymandelic acid 
2.00 0.65 0.38 180.87 38.74 -0.13  0.11  

Oxalic acid/KCl 
C2H2O4 

0.33 0.12 0.5 139.90 73 -2.59  0.00  Wang(Wa
ng, 2018) 1 0.27 1 145.59 72 -2.23  0.01  

3 0.40 1.5 151.47 75 -1.97  0.00  
Malonic acid/KCl 

C3H4O4 
0.33 0.19 0.33 141.20  53 -2.27  0.01  

1 0.03 0.67 153.00  42 -1.48  0.03  
Maleic acid/KCl 

C4H4O4 
0.33 0.22 0.25 143.36  44 -2.13  0.01  

1 0.51 0.5 156.45  33 -1.13  0.06  
3 0.72 0.75 172.18  33 -1.90  0.12  

Glutaric acid/NaCl 
C5H8O4 

0.33 0.18 0.2 141.95  66 -2.34  0.00  Ghorai et 
al.(Ghorai 

et al., 
2014) 

1 0.01 0.4 152.97  59 -1.89  0.01  

0.25 0.20 0.16 142.41  45 -2.07  0.01  Pant et 
al.(Pant et 
al., 2004) 

1.5 0.64 0.48 165.94  39 -0.85  0.07  
2.33 0.75 0.56 175.63  31 0.02  0.16 

Malonic acid /NaCl 
C3H4O4 0.33 0.56 0.33 141.20  62 -2.22  0.00  

Ghorai et 
al.(Ghorai 

et al., 
2014) 

0.50 0.63 0.44 146.81  36.2 -1.48  0.02  Laskina et 
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al.(Laskin
a et al., 
2015) 

Glycerol /NaNO3 
(C3H8O3) 

1.00 0.43 0.5 146.49  32 -0.66  0.08  Yu et 
al.(Yu et 
al., 2012) 

0.50 0.27 0.33 141.84  35.7 -1.07  0.05  

0.125 0.07 0.11 137.37  57 -2.03  0.01  Ren et 
al.(Ren et 
al., 2016) 

0.25 0.14 0.2 138.77  51 -1.76  0.02  
0.5 0.52 0.33 141.15  47 -1.57  0.03  
1 0.42 0.5 146.19  35 -0.86  0.06  
2 0.64 0.67 154.92  15 0.35  0.26  

Sucrose/NaNO3 
(C12H22O11) 

0.25 0.45 0.18 189.01 20.7 1.95 0.07  Ji et al.(Ji 
et al., 
2017) 

0.125 0.28 0.10 164.79 25.4 0.27 0.05  
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Table S2. The validation dataset for predicting ERH in mixed aerosol systems consists of 12 
organic compounds and 4 inorganic salts. 
a calculated using the AIOMFAC model 
b experimentally measured 
 

Compound OIR ERH log10(η/[Pa.s]) Reference 

HXT/AS/SUS 

1:1:0 46 -1.70 a 

Hu et al.(Hu et 
al., 2025) 

1:1:0.1 46.8 -1.53 a 

1:1:0.25 41 -0.98 a 
1:1:0.5 25 0.78 a 
1:1:0.75 25 1.43 a 

HXT/AS/GLY 

1:1:0 45 -1.68 a 
1:1:0.1 46 -1.66 a 
1:1:0.25 48 -1.67 a 
1:1:0.5 48 -1.58 a 
1:1:0.75 46 -1.46 a 

1:1:1 42 -1.27 a 

HXT/AS/CA 

1:1:0 45 -1.68 a 
1:1:0.1 40 -1.25 a 
1:1:0.25 37.5 -0.73 a 
1:1:0.5 35 -0.019 a 
1:1:0.75 35 0.45 a 

HMMA/AS 
0.34 40.3 -1.57 a 

Bertram et 
al.(Bertram et 

al., 2011) 

0.92 39.8 -0.99 a 
2.06 37.8 -0.057 a 

DHBA/AS 

0.21 33.6 -0.76 a 
0.39 36.7 -0.82 a 
0.63 34.2 -0.84 a 
0.95 32.9 -0.83 a 

DMSA/AS 

0.35 32.9 -1.35 a 
0.61 33.9 -1.07 a 
1.12 40.3 -0.82 a 
1.38 32.1 -0.12 a 

Maleic acid/ 
NaNO3 

1：3 0 3.75 a 
Chang(Chang, 

2020) 
1：1 0 3.73 a 
3：1 0 3.72 a 

Glutaric 
acid/NaCl 

3：1 0 3.38 a 
Pant et 

al.(Pant et al., 
2004) 

Malonic acid /KCl 3：1 0 3.51 a 
Wang(Wang, 

2018)  

Raffinose/AS 1：1 0 6.00 b 
Ushijima et 
al.(Ushijima 
et al., 2021) 
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Citric acid 
/AS 

1：1 0 7.54 b   Sheldon et 
al.(S. Sheldon 
et al., 2023) 

2：1 0 7.54 b 
3：1 0 7.70 b 
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Table S3. Functional group decomposition of organic compounds in AIOMFAC. 
 

Compound Subgroup Quantity 

Sucrose 
(C12H22O11) 

CH2_hydroxy 3 
CH_hydroxy 5 

OH 8 
CHO(ether) 3 

C 1 

Glucose 
(C6H12O6) 

CH2_hydroxy 1 
CH_hydroxy 4 

OH 5 
CHO(ether) 1 

1,2,6-Hexanetriol 
(C6H14O3) 

CH2[alc] 3 
CH 1 
CH2 2 
OH 3 

DMSA 
2,2-Dimethyl succinic 

C 1 
CH3 2 
CH2 1 

COOH 2 

DMGA 
3,3-Dimethyl glutaric acid 

CH3 2 
CH2 2 

C 1 
COOH 2 

DEMA 
Diethyl malonic acid 

C 1 
CH3 2 
CH2 2 

COOH 2 

DHBA 
2,5-Dihydroxybenzoic acid 

ACH 3 
AC 1 

ACOH 2 
COOH 1 

HMMA 
DL-4-Hydroxy-3-

methoxymandelic acid 

ACH 3 
ACH 2 

ACOH 1 
CH3O 1 

CH-[OH] 1 
OH 1 

COOH 1 
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Table S4. Comparison of the experimentally measured Tg of organic compounds with values 
predicted using the method of Li et al. and the method of Armeli et al. 
 

Tg/K Glucose Sucrose Glycerol 
Citric 
acid 

1,2,6-
Hexanetriol 

Tg literature(Armeli 
Iapichino et al., 2023) 

303 334 186 284.35 204.15 

Tg Li(Li et al., 2020) 253.32  350.97  181.38 274.53 192.25 
Tg Armeli(Armeli et al., 

2023) 
188.4 230.5 156.6 186.3 167.7 

 
 

Model 
Mean 
Error 

Mean Absolute 
Error 

 Relative Mean Absolute 
Error 

 Standard 
Deviation 

Tg Li -11.81 K 18.60 K 24.02 K 24.07 K 
Tg Armeli -76.40 K 76.40 K 87.18 K 40.21 K 
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Table S5. The equation obtained after linearly regressing various physicochemical parameters 
with ERH and the R2. 
 

Parameter R2 Fitting equation 
O:C 0.08 y=32.96+13.46x 
ωorg 0.06 y=44.00-17.042x 

Tg(ωorg) 0.14 y=89.79-0.34x 
Viscosity 0.65 y=27.40-10.23x 
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Table S6. Prediction model for ERH using multivariate function fitting with O:C, ωorg, and Tg 
as input variables. 
 

Parameter R2 Fitting equation 

O:C, Tg(ωorg),ωorg 0.25 
ERH=68.93+18.15(O:C)-
0.22(Tg(ωorg)) -15.83(ωorg) 

 

 Value Std. Error t-value Prob>t 
Constant 68.933 19.708 3.498 0.001 
"O:C" 18.148 5.924 3.064 0.003 
" Tg(ωorg)" -0.217 0.140 -1..544 0.128 
"ωorg" -15.827 11.709 -1.352 0.181 
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Table S7. Comparison of multivariate ERH prediction models incorporating viscosity, O:C, 
ωorg, and Tg with the viscosity-ERH model. 
 

Parameter R2 Fitting equation Sig F change 
Viscosity 0.65 y=-10.23(viscosity)+27.40 0.000 

Viscosity, O:C,  
Tg(ωorg), ωorg 

0.69 
y=3.57(O:C)+0.25 (Tg(ωorg)) -
2.62(ωorg)-12.157(viscosity)-

13.43 
0.031 

 

 Parameter Value Std. Error t-value Prob>|t| 
 Constant 27.390 1.439 19.029 0.000 
 "Viscosity" -10.230 0.946 -10.833 0.000 
 Constant 13.428 15.434 -0.870 0.388   
 "O:C" 3.569 4.121 0.866 0.390 
 "Viscosity" -12.157 1.294 -9.394     0.000 
 "Tg(ωorg)" 0.250 0.103 2.425     0.018 
 "ωorg" -2.621 7.676 -0.341 0.734 
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Table S8. Comparison and parameter analysis of the multivariate ERH prediction model (using 
viscosity, O:C, ωorg, and Tg as input variables) versus the bivariate viscosity-Tg model. 
 

Parameter R2 Fitting equation Sig F change 

Viscosity, Tg(ωorg) 0.691 
y=0.251(Tg(ωorg))-

12.579(Viscosity)-13.284 
<0.001 

Viscosity, O:C, 
Tg(ωorg), ωorg 

0.695 
y=3.569(O:C)+0.25 (Tg(ωorg)) 

–2.621(ωorg)-
12.157(Viscosity)-13.428 

0.685 

 

 Parameter Value Std. Error t-value Prob>|t| 
 Constant -13.284 13.700 0.970 0.336 
 "Viscosity" -12.579 1.187 10.598 0.000 
 "Tg(ωorg)" 0.251 0.084 2.984 0.004 
 Intercept -13.428 15.434 -0.870 0.388 
 "O:C" 3.569 4.121 0.866 0.390 
 "Viscosity" -12.157 1.294 -9.394 0.000 
 "Tg(ωorg)" 0.250 0.103 2.425 0.018 
 "ωorg" -2.621 7.676 -0.341 0.734 
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Figure S1. Linear fitting of aerosol normalized ERH for different organic-inorganic aerosols by using 
viscosity (log!" η) as the predictor. The ERH of the organic-inorganic mixture systems was normalized 
according to the ERH of the inorganic salt in the mixture, i.e., ERH/ERHIng. Data points are color- and 
shape-coded to distinguish between different organic and inorganic aerosol species. The red solid line 
represents the linear regression fit between viscosity and ERH. The dark pink band indicates the 95% 
confidence interval, while the light pink band shows the prediction interval. DEMA represents Diethyl 
malonic acid, DMSA represents 2,2-Dimethyl succinic acid, DMGA represents 3,3-Dimethyl glutaric 
acid, HMMA represents DL-4-Hydroxy-3-methoxymandelic acid and DHBA represents 2,5-
Dihydroxybenzoic acid. 
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Fig S2. Comparison of measured ERH values versus model predicted ERH values based on the 
viscosity-Tg-ERH model. The black dashed line denotes the y=x, and the red line representing 
the linear regression fit to the data, along with the corresponding coefficient of determination 
(R²), R²=0.978. The pale pink shading represents the 95% confidence interval. 
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