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Abstract. Strategies for mitigating methane emissions rely on understanding the underlying drivers of methane losses to the
atmosphere. Observations of methane plumes emerging from point sources, combined with correct statistical interpretation,
can provide key information. In this work, we examine a critical parameter, the probability of detection of a plume. For
a given observing system, probability of detection is affected by the properties of the sensor, plume detection algorithm,
observing conditions, and emission rate of the source. We parameterize relevant aspects of remotely sensed scenes containing
plumes using a nondimensional observability parameter that predicts probability of detection. Our probability of detection
model is trained using simulated plumes to capture natural variability in different meteorological conditions, and validated
with data from controlled release experiments. We model probability of detection for two airborne imaging spectrometer
systems, MethaneAIR and Insight M LeakSurveyor™, and one high resolution satellite system, MethaneSAT. Monte Carlo
simulations of emissions distributions implied by data from the extensive 2023 MAIRX campaign of MethaneAIR demonstrate
the importance of an accurate probability of detection model, due to the heavy tailed emission distribution found in most oil

and gas basins.

1 Introduction

Remotely sensed observations of methane (CHy) plumes offer fundamental insight into the crucial climate challenge of
methane emissions (Varon et al. (2018)). To understand the underlying drivers of CH, emissions, we need to characterize
the contributions of different emission rates and processes to total CH4 emissions. A key piece of information needed for this
assessment is the probability of detection (P,) of a CHy plume with different sensors, under different observing conditions,

and using different detection algorithms (Conrad et al. (2023)).
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We set out to answer the question: "How can we integrate plume observations by different remote sensing systems to assess
the emission rate dependent distribution of point sources and their contributions to total emissions?" We develop a generalized
approach to account for the factors that affect P;, and apply it to observations by MethaneAIR, MethaneSAT, and Insight
M LeakSurveyor™. We utilize data from controlled release experiments, extended with image processing techniques, and
supplemented with simulated plumes. Our approach enables us to model systems lacking available controlled release data such
as MethaneSAT. Finally, we demonstrate the effect of the P; term on emissions distribution analyses of observations of the
Permian Basin.

Previous work defines P, as a function of emission rate scaled by wind speed, assuming unobstructed transport of CH,
from the source (Sherwin et al. (2021)). Conrad et al. (2023) fit continuous Py curves to controlled release experiment data
collected by several sensors, using dimensional parameters unique to each system. This approach is limited by the availibility
of controlled release data, which only capture a subset of the variability in observing conditions found in nature. The approach
we use here, extending the training data with simulated plumes, has been used for plume detection algorithms (Rouet-Leduc
and Hulbert (2024)) and for P; models (preprint: Roger et al. (2025)). If they are available, coincident observations by higher
threshold and lower threshold observing systems can be used to estimate P, for the lower threshold system (Ayasse et al.

(2024)). Ayasse et al. (2024) also use their P, estimate to weight an emissions distribution recovered from satellite observations.

2  Methods
2.1 Desiderata of a Probability of Detection Model

A useful model of probability of detection allows integration of plume counts from different scenes and observing systems.
Study of Py is in service of interpreting plume counts. Different observing systems have different nominal pixel areas and gas
sensitivities. Scenes from the same observing system vary in observing conditions, which affect the ability to detect plumes
(Conrad et al. (2023)). These include wind speed, aircraft altitude, solar zenith angle, surface albedo, and aerosol optical
depth. Additionally, there are many algorithms applied to XCH, scenes to detect plumes. An effective P; model enables
intercomparison of XCHy scenes from different observing systems by accounting for: 1) the sensors’ XCH, sensitivity and
spatial resolution 2) the skill of plume detection algorithms 3) the observing conditions of each scene.

Following Conrad et al. (2023), we model P, with a combination of an inverse link function ' : R — [0, 1] and a predictor

function g : x — R:

Pd:F(g(X’¢)79) (1)

where x is the set of variables that affect P; and ¢ and 6 are the coefficients for F' and g. The predictor function g parameterizes
the factors that affect plume observability, while the inverse link function ' : R — [0, 1] converts g to a probability. They tested
a variety of functional forms for F' and g and used Akaike Information Criterion (AIC) ranking to select the optimal model for
each observing system in each controlled release experiment (Akaike (1992)). Selecting from many different functional forms

yields a close P; fit for each controlled release experiment. However, when trying to extend the P; model from the controlled
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release to analysis of observations, this close fit may be a detriment if the controlled release observations are not representative.
In service of our goal of analyzing plume observations from multiple scenes and observing systems, we used a single pair of
forms for the predictor function g and inverse link function F', similar to Bruno et al. (2024).

Bruno et al. (2024) used a dimensionless predictor function of emission rate, wind speed, and pixelwise column concentration
uncertainty they call Observability. In Bruno et al. (2024), Observability is combined with a sigmoid inverse link functional
form. We also use a nondimensional predictor function and sigmoid inverse link function (Section 2.6). To train these Py
models, we use Weather Research Forecasting, Large Eddy Simulation (WRF-LES) plumes (Section 2.4) and controlled release
data for validation (Section 2.3). We use these P; models for an emissions distribution analysis of a comprehensive North

American observation campaign by MethaneAIR (Section 2.7,3.3).
2.2 Imaging Spectrometers

We studied three imaging spectrometers: MethaneAIR, MethaneSAT, and Insight M’s LeakSurveyor™. The MethaneAIR
observing system is an imaging spectrometer flown at a 12 km nominal observing altitude above ground level Staebell et al.
(2021). At this altitude, the footprint of a single XCH,4 sounding is Sm x 25m. MethaneAIR flew the MAIR (summer 2021) and
MAIR-E (summer 2022) research campaigns to develop emissions quantification algorithms. The MAIRX campaign quantified
emissions from basins across North America in May-October 2023. There have been two MethaneAIR aircraft: the NSF
Gulfstream GV operated by NCAR used for MAIR and MAIR-E, and a Learjet Model 35 operated by 10 Aerospace for
MAIRX. The MethaneAIR spectral retrieval is detailed in Conway et al. (2024). XCHy is inverted from retrieved backscattered
solar spectra following the XCO5 proxy method described by Chan Miller et al. (2024), with the prior XCO4 derived from
profiles generated using the GINPUT algorithm (Laughner et al. (2023)).

MethaneAlR is the airborne precursor for the MethaneSAT mission. MethaneSAT is a satellite regional XCH,4 mapper that
can also detect CH,4 plumes. It was launched in March 2024, and made observations at ~590 km observing altitude until the
satellite lost power in June, 2025. MethaneSAT observations have nominal pixel dimensions of 110m x 450m at nadir, with
a wider swath of ~200km compared to MethaneAIR’s Skm. Insight M LeakSurveyor™ is an imaging spectrometer flown on
light aircraft at observation altitudes of 370-900m. At 370m, this observation altitude results in a smaller pixel area of ~5m?,
at the cost of a narrower swath width. It has proprietary spectroscopy and retrieval algorithms. Insight M was previously known
as "Kairos Aerospace"”, the name under which LeakSurveyor™ data were analyzed in Conrad et al. (2023) and Sherwin et al.
(2024).

2.3 Controlled Release Experiments

In a controlled release experiment, research teams attempt to detect and quantify plumes, usually blinded to the emission rate
(Sherwin et al. (2021)). Both airborne and satellite observing systems have been characterized via controlled release (Sherwin
et al. (2023)). MethaneAIR flew controlled release experiments in 2021 in the Permian Basin, Texas, USA and in 2022 in
central Arizona, USA (Chulakadabba et al. (2023); El Abbadi et al. (2024)). LeakSurveyor™ also participated in the 2022

experiment (Sherwin et al. (2023); EI Abbadi et al. (2024)). For these two experiments, the research teams knew the emission
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location but not whether it was emitting for each overpass. LeakSurveyor™ flew at 900 m above ground level for the 2021
experiment, but at 370-540 m observing altitude for the 2022 experiment (Conrad et al. (2023); El Abbadi et al. (2024)).
Controlled release experiments were attempted for MethaneSAT prior to its loss, but coordinating overpasses with release

durations failed on available trials.
2.4 Simulated Plumes

Data from controlled release experiments are valuable because they provide well constrained emission rates and windspeeds,
which are needed to model P;. These data are rare and expensive, with most experiments producing at most hundreds of
observations. As a result, they only describe a subset of the natural variability in observing conditions. For example, the
maximum observed wind speed in the 2021 and 2022 controlled release experiments was 3.3 m/s (Chulakadabba et al. (2023)).
In the summer of 2023, MAIRX saw HRRR wind speeds up to 7.9 m/s. Additionally, controlled release experiments occur in a
single location, which limits the variety of tested surface albedo and topography. The locations of potential emissions are also
often known, affecting P.

To increase the data available to assess Py, we generated simulated plumes using image processing methods to modify the
properties of observed controlled release plumes. This resulted in a training set of ~80,000 simulated scenes and a validation
data set of ~62,000 scenes derived from ~40 controlled release overpasses. These plume simulations and image manipulations
extend our analysis to wind conditions and emission rates that span the wider range of conditions observed in nature. In this
way, effective simulation better represents reality than our limited observations of reality.

To generate artificial plumes, we used the WRF-LES model and image processing. WRF-LES effectively captures the
stochastic behavior of plumes due to boundary layer turbulence Gaudet et al. (2017); Chulakadabba et al. (2023). To reduce
computation times, we used an idealized version of WRF-LES, which uses a time invariant upwind boundary condition. Using
idealized WRF-LES, we simulated plumes evolving under wind speeds between 0 and 15 m/s in the WRF model. To further
extend the training scenes, we used image processing to change the emission rate, pixel area, and gas concentration noise of
each idealized WRF-LES scene. First, we produced plumes of varying emission rates by scaling the XCH, of each pixel by the
ratio of the original WRF-LES emission rate to the desired emission rate. This scaling relies on the linearity of CHy transport.
Next, we aggregated pixels to vary their area. Finally, we added Gaussian noise. We observed a spatial correlation between ad-
jacent pixels of .7 in MethaneAIR scenes, and maintained that level of spatial correlation in the simulated scenes. This process
generated a training data set of ~80,000 simulated plumes. Figure 1 shows examples of the simulated plumes with different
parameters. We applied the same method of scaling noise and emission rate to controlled release scenes to create a more widely
varying validation dataset. These scenes have varying emission rate, pixel area, and gas concentration noise, but wind speed
cannot be changed without changing the shape of the plume. To train P; models, we applied operational MethaneAIR and

MethaneSAT plume detection algorithms to all of these simulations, as described in the next section.
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Example Simulated Plumes
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Figure 1. Example simulated plumes. Color represents XCH4. Each plume has a different combination of emission rate (kg/hr), pixel area

(m?), gas concentration noise (ppb), and wind speed (m/s).

2.5 Detection Algorithms

We analyzed two plume detection algorithms used by Methane AIR and MethaneSAT, the divergence integral and wavelet meth-
ods. The divergence integral method uses Gauss’s theorem to measure the amount of CH, leaving a small area (Chulakadabba
et al. (2023); Warren et al. (2024)). Adapted from medical imagery applications, the wavelet method isolates high frequency
XCH,4 variation, interpreted as noise, and subtracts that structure from the observations. This leaves behind structured low
frequency variation, interpreted as plumes (Hiipfel et al. (2021)).

We apply the plume detection algorithms to the training set of simulated plumes and recorded the successful and failed
detections as binary outcomes. Here, plume detection is fully automated; there is no manual quality assurance step to identify
false positives, which are not a focus of this study. We also analyze output from the Insight M algorithm used to detect plumes
in LeakSurveyor scenes. Insight M provided the data required for our analysis from the 2022 Arizona controlled release
experiment, including gas concentration noise, pixel area, and detection success. Their detection algorithm and controlled

release scenes are not available to the public.
2.6 Logistic Regression on Parameterized Plume Observability

Following Bruno et al. (2024), we use a single log-linear form for g for all systems and scenes because it is simpler than using

a different functional form for each observing system and experiment.

Observability = g(q, ap.7,u) = log ( 4 > )
apnu
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Table 1. Variables and units used in equation 2.

’ Symbol ‘ Name Units
g Observability (predictor function) | Dimensionless
q Emission Rate’ ppbm? s7!
ap Pixel Area m?
n Gas Concentration Noise ppb
U Horizontal Wind Speed ms !

t: Here ppb refers to the enhancement of the column mean dry mole fraction (plume excess XCHy). To convert to kg/s,

multiply ¢ by My, /Mci, -107°/g X Psyry x (1 — X H20)

Observability g parameterizes the observing conditions and observing system characteristics into a single dimensionless
term. Variable names and units for Equation 2 can be found in Table 1. The lack of dimension enables ease of translation
between observability space and relevant features like emission rate and wind speed. We expect the eddy scale wind speed to
be the boundary of viability for the observability parameter. As such, this approach should not necessarily be applied to low
wind night time conditions without further investigation. We further note that the observability parameterization is applicable to
passive remote sensing systems, while active systems would require an additional scaling with the inverse square of observation
altitude to account for power loss over distance. The observability link function is passed to the inverse function F', following
Conrad et al. (2023). Differing from Conrad et al. (2023), and following Bruno et al. (2024), we do not use different functional
forms for F' for different systems and release experiments.

For fitting and validating P; models, the emission rate g is known from a controlled release meter or prescribed when
simulating the plume. For each scene, fitted P; models predicted P, for a range of emission rates. Pixel area is calculated from
the XCH, scene. The gas concentration noise (1) contains noise contributions from the instrument as well as the observing
conditions, including disturbances from upwind sources. For a given scene, 7 is the standard deviation of the XCH, values of a
"clean" portion of the scene. In this context, clean means that there is no variability from proximate emissions. Finding a clean
portion of a scene can be done by visual inspection or by taking the pixels below a percentile cutoff. We collected the pixels
below the 10th percentile. Clean portions of scenes can be found in many ways, but they are confirmed clean by checking
that the XCHy values are normally distributed for the pixels selected. This means that clean XCHy pixels are unstructured,
but unaffected by local emissions. Proximate emissions are a valid source of gas concentration noise— it is harder to identify
a plume in a scene with many sources than a plume from an isolated source. In large scenes, there may be multiple gas
concentration noise values, in which case a more accurate P; may be calculated by considering subscenes. We used wind
speed measured by the anemometer at the controlled release site (Chulakadabba et al. (2023)). To predict P; with a fitted
model for MAIRX scenes, we used the lowest-level High Resolution Rapid Refresh (HRRR) winds averaged for each scene.

We calculated observability for each simulated training scene. Then, we fitted a logistic regression on the simulated scenes.
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2.7 MAIRX Steady State Emissions Distribution

In the summer of 2023, MethaneAIR flew the MAIRX observation campaign. It covered ~80% of the oil and gas production
in the continental United States (Warren et al. (2024)). Figure 2 shows the MAIRX targets over the Permian and contiguous
United States. Plumes were detected via the wavelet and divergence integral methods, and their emission rates quantified by
divergence integral (Chulakadabba et al. (2023); Warren et al. (2024)). The emissions distribution was calculated following
the ergodic, or steady state assumption (Sherwin et al. (2024)). The steady state assumption posits a constant underlying
distribution of plumes, which can be approximated given enough samples. This will produce distributions that do not take
source persistence into account. In addition to CH, plumes, MethaneAIR also observes regional XCH, gradients, which can
be used to infer dispersed emissions. Dispersed emissions can be thought of as the regional XCH, enhancement due to the
combination of plumes too small to be detected as a discrete sources and larger plumes that have spread out after the source
has stopped emitting. We quantify these emissions using an inverse method that combines gridded area enhancements with an
atmospheric transport model, Stochastic Time Integrated Lagrangian Transport (Lin et al. (2003); MacKay et al. (2025)).

We apply our analysis of the effects of P, on inferred emissions distributions to the example of the Permian Basin. We
took the average dispersed emissions estimate of all the valid scenes for the Permian Basin. The total emissions were defined
as the sum of all plume and dispersed emissions. The emissions distribution was defined as the fraction of total emissions
associated with plumes of different binned emission rates. To investigate the effects of P, of different systems on the emissions
distribution, we performed Monte Carlo simulation of the analysis. We examined MethaneAIR, MethaneSAT, and a hypo-
thetical satellite with the same spatial resolution as MethaneSAT but worse CH, sensitivity, represented by a higher nominal
gas concentration noise. We calculated the P, of these three systems for all observed emission rates for each MAIRX scene,
and generated bootstrap samples from MethaneAIR observed plumes. To simulate the observations of MethaneSAT and the

hypothetical satellite, each plume was included in the bootstrap sample with probability P,.

3 Results and Discussion
3.1 Probability of Detection Model

Figure 3 shows the validation comparison for MethaneAIR, using the model trained on the LES simulations. Each point
represents image processed controlled release data binned by detection rate. The P; model works well for the wavelet algorithm
applied to MethaneAIR data, but not as well for the divergence integral algorithm. The difficulty for the divergence integral
algorithm likely reflects its sensitivity to missing data, which were not present in the training set. This is because the divergence
integral algorithm needs intact boxes of XCHy pixels of various sizes within the scene, while the wavelet does not. For example,
clouds prevent imaging spectrometers from measuring reflected solar light, and leave regions of missing data in real XCH,

scenes.
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Figure 2. Map of MAIRX targets. Each colored shape is a flight pattern flown by MAIRX. The major oil and gas basins in the contiguous
United States are marked. Inset: an example MAIR XCH4 scene, in which large CH4 plumes are circled in white. Each colored flight pattern

on the map produced an XCH4 scene like the inset example.

3.2 Observing System Intercomparison

Our probability of detection model quantifies the differences in plume detection capabilities between observing systems and
detection algorithms. Figure 4A shows P, curves modeled for various emission rates and wind speeds for LeakSurveyor™,
MethaneAIR, and MethaneSAT. As anticipated, LeakSurveyor’s™ lower observation altitude allows it to detect lower emission
rate plumes with higher probability than Methane AIR or MethaneSAT.

In the MAIRX campaign, wind speed controlled P; more than gas concentration noise. This might not be true for other
observing systems with less sensitivity to XCHy. Although controlled release data for MethaneSAT is not available, g enables
prediction of Py for the divergence integral and wavelet algorithms applied to MethaneSAT scenes. The predicted difference
in P; between MethaneAIR and MethaneSAT is relatively small at low wind speeds compared to high wind speeds.

Because observability normalizes for all observing system features apart from the algorithm, P, curves in observability space
can be used to compare the skill of plume detection algorithms. Figure 4B shows the P, curves from three different plume
detection algorithms. These curves are fitted using simulated XCH,4 scenes (divergence integral and wavelet) and controlled
release trials (Insight M). The wavelet algorithm performs better on simulated plumes than the divergence integral. When

applied to scenes from the MAIRX campaign, the wavelet algorithm also found more plumes and more low emission rate
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Figure 3. Validation of the probability of detection model using multiplexed aftected release plumes and two detection algorithms: divergence
integral and wavelet. Each point represents the binned model predicted detection rate (x-axis) compared with the true probability of detection
(y-axis). Uncertainty estimates are derived from the binomial central limit theorem. The dotted 1:1 line represents perfect agreement between
model predicted and validation Py. Points above the dotted line represent the model overestimating the probability of detection. The thin
colored lines are the best fit lines for each of the detection algorithms. The divergence integral algorithm’s best fit line has a slope of 1.22, an
intercept of 0.05, and an adjusted R? of 0.83. The wavelet algorithm’s best fit line has a slope of 0.91, an intercept of 0.36, and an adjusted
R? of 0.99.

plumes. The Insight M algorithm and controlled release XCH,4 images are proprietary, and we were not able to fit a P; model
to simulated plumes like we were for the divergence integral and wavelet. However, by calculating the observability of the
controlled release plumes, we are able to compare the divergence integral, wavelet, and Insight M algorithms. Proprietary
Insight M plume detection algorithms are slightly more skillful than the divergence integral and wavelet, independent of
the lower observation altitude of Insight M XCH4 images. The Insight M probability of detection curve has much higher
uncertainty than the other algorithms’ curves because it is derived from ~100 controlled release scenes rather than ~80,000
simulated scenes. Ideally, Insight M images and algorithms would be available for testing. However, our method offers the next

best alternative to isolate the effects of detection algorithm, spectrometer, and altitude on P,.
3.3 MAIRX Steady State Emissions Distribution

Figure 5 shows the observed cumulative emissions distributions for MAIRX, and distributions from simulated observations

from MethaneSAT and a hypothetical satellite with the same spatial resolution as MethaneSAT but lower XCH, sensitivity.
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Figure 4. A: Intercomparison of probability of detection between different observing systems (MethaneAIR, MethaneSAT, Insight M) for a

range of emission rates and wind speeds. Gas concentration noise was set to the system average for controlled release scenes (MethaneAlIR,

LeakSurveyor™) or a sample of observational scenes (MethaneSAT). For Methane AIR and MethaneSAT, the reported P; is for the wavelet

algorithm. B: Py curves for divergence integral, wavelet, and proprietary LeakSurveyor algorithm in observability space. Thick lines are the

mean and thin lines are the 95% CI inferred via bootstrap.

Table 2. Fraction of Total Permian Emissions Due to Small and Large Plumes, and Dispersed Emissions, During MAIRX.

System P, weighting <500 kg/hr >500 kg/hr Dispersed
MethaneAIR No 1% (0%, 2%) | 43% (12%, 63%) | 56% (39%, 72%)
MethaneAIR Yes 3% (1%, 5%) | 43% (13%, 51%) | 55% (38%, 71%)
MethaneSAT No 3% (1%, 3%) | 43% (13%, 62%) | 55% (39%, 71%)
MethaneSAT Yes 3% (1%, 3%) | 42% (13%, 61%) | 55% (38%, 71%)

Hypothetical Satellite No 0% (0%, 0%) | 30% (0%, 54%) | 70% (49%, 91%)
Hypothetical Satellite Yes 1% (0%, 7%) | 40% (0%, 63%) | 59% (41%, 76%)

10
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Cumulative Fraction of Total Emissions due to Steady State Plume Emission Rates
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Figure 5. Steady state cumulative fractional contributions of events of different emission rates observed in the Permian, during MAIRX. Dis-
tributions are colored to indicate observing system. Dashed distributions include Py weighting, solid distributions do not. For uncertainties,
see Table Al.

Each system has two observed emission distributions, one with P; weighting (dashed) and one without (solid). Figure B1 shows
how including a P, reduces the heaviness of the tail of the emission rate distribution. Due to heavy tailed oil and gas emissions
distributions, the value of an accurate model of the probability of detection increases with higher detection thresholds.

Table A1l contains the fraction of total emissions attributed to plumes <500 kg/hr, plumes >500 kg/hr, and dispersed emis-
sions, for each observing system. The dispersed emissions represent CH4 from current plumes too small to be detected and
from extinct plumes that have dispersed. For MethaneAIR, there is close agreement between the cumulative distribution with
P, weighting and the one without, indicating that measurements capture the most significant plumes. The P, term shifts a small
fractional contribution of ~1% from dispersed emissions to plumes <500 kg/hr (Table A1). These results indicate that for the
Permian, an observing system with a nominal P, inflecting in the hundreds of kg/hr CH, range is sufficient for characterizing
the small population of plumes >500 kg/hr that control total plume associated emissions. This assessment is contingent on
well constrained dispersed emissions—in this case, generated by MethaneAlIR.

MethaneSAT has coarser spatial resolution than MethaneAIR, but higher XCH, sensitivity, resulting in a lower average scene
gas concentration noise. It retains the ability to detect moderate plumes, inflecting at ~500 kg/hr compared to MethaneAIR’s
~200 kg/hr at 5 m/s wind speed (Figure 4A). This difference in P, is not enough for P; to materially affect the inferred

contribution of emission rates >500 kg/hr to total emissions.

11



225

230

235

240

245

250

https://doi.org/10.5194/egusphere-2026-115
Preprint. Discussion started: 3 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

We also analyze a hypothetical satellite with lower XCH, sensitivity to show a case where the P; term is important. In
Figure 5, the distribution produced by the hypothetical lower sensitivity instrument (orange) diverges from those produced by
the higher sensitivity instruments (yellow and blue). However, the P; weighted distribution (dashed orange) is more similar
to the "ground truth" from MethaneAIR (yellow), indicating that the P, term recovers most of the missed emissions from
both large and small plumes (Table Al). However, these P; weighted estimates have much wider CI’s, due to fewer plume
observations. Pandey et al. (2024) also note P, controlled transfer between dispersed and plume emissions. Analysis of low
XCHy sensitivity systems is relevant to projects attempting to detect CH, plumes with multispectral satellites, which may only
have one radiation band with CH4 absorption, such as Rouet-Leduc and Hulbert (2024).

Our estimated emissions distributions differ from other analysis of MethaneAIR plume observations of the Permian (Warren
et al. (2024)). We find a higher fraction of total emissions due to plumes. One explanantion is that Warren et al. (2024) only
used plumes detected by the divergence integral, while we included both wavelet and divergence integral detected plumes.
Additionally, Warren et al. (2024) use a persistence weighting approach (Cusworth et al (2021)). Persistence weighting accounts

for intermittency of sources by multiplying their steady state emission rate by lee , where IV, is the number of times the source

was observed emitting and NN, is the number of times it was observed. This would decrease the inferred fraction of total
emission from plumes. There are large uncertainties in the steady state fraction of emissions attributable to large plumes (Table
Al). These uncertainties reflect the importance of a good assessment of the duration and arrival intensity of ephemeral plumes.

In our consideration of the effect of P; on emissions distributions, we adopted the steady state assumption. It is not clear how
many repeat observations of the same domain are needed for a steady state model to recover the true emissions distribution. In
light of difference with emissions distributions that incorporate persistence weighting (Warren et al. (2024)), a more complex

model of intermittent plumes may be justified.

4 Conclusions

Probability of detection is critical for interpretation of observations of plumes and inference of emissions distributions. Our
approach to modeling P; can dispense with controlled release data, which makes it is particularly relevant for satellites and
for designing future missions. This approach could also be used to predict the probability of detection of plumes of gasses
other than CHy, such as carbon dioxide plumes emitted by combustion power plants. Missions that seek to constrain the
fractional contribution of emission rates >500 kg/hr should prioritize observational coverage and capturing regional diffuse
emissions. Capturing dispersed emissions is equivalent for this objective to discerning small plumes (Table A1). MethaneAIR
and MethaneSAT are capable of detecting small enough plumes to effectively probe the heavy tailed emission rate distributions

found in the Permian, as well other North American basins.

Code availability. See git@ github.com:emanninen/probabilities_of_detection_of_methane_plumes_by_remote_sensing_code.git
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Table A1. Fitted Logistic Regression Parameters for MethaneAIR, MethaneSAT, and Insight M

Algorithm Intercept (standard error) | Slope (standard error)
Divergence Integral -1.62 (0.02) 1.52 (0.02)
Wavelet -2.26 (0.04) 3.44 (0.05)
Insight M 1.18 (0.79) 9.9 (3.36)

Data availability. MethaneAIR data can be found for MAIR at https://www.eol.ucar.edu/field_projects/methaneair, for MAIR-E, at https:
/Iwww.eol.ucar.edu/field_projects/mair-e, and for MAIRX on Google Earth Engine at https://developers.google.com/earth-engine/datasets/

catalog/EDF_MethaneSAT_ MethaneAIR_L4point.
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ROC's of LeakSurveyor P4 Models
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Figure A1l. Receiver Operator Curve of fitted P; models tested on controlled release data. X-axis is the true positive rate, or sensitivity,
y-axis is the false positive rate, or the complement of specificity. Teal curve is for the model fitted by Conrad et al. (2023). Red curve is for

the model fitted in this work.

Figure A1 shows receiver operator curves (ROC) generated by predicting Py of LeakSurveyor’s controlled release detection
results from the 2022 controlled release using our methodology and Conrad et al. (2023)’s P; model fit with 2021 controlled
release data. Our model has more area under the ROC than Conrad et al. (2023)’s, indicating more predictive skill. However,
this difference is not statistically significant. This is because we only are able to use ~100 controlled release overpasses from
the 2022 Arizona controlled release for comparison of the two models. With more data, the two ROC’s may diverge further.
The Conrad et al. (2023) model is fit to the observing conditions of the 2021 controlled release experiment. Additionally, it was
fit at the 2021 900 m observing altitude, while in 2022, they flew at a much lower altitude, resulting in a smaller native pixel
area and higher P;’s. Conrad et al. (2023)’s model does not have a term to adjust the observing altitude and thus pixel area and
gas concentration noise.

Figure B1 shows the Cumulative Distribution Functions (CDF) of emission rates detected by the two MethaneAIR plume
detection algorithms. Two emission rate distributions are presented, one with a P; weighting term defined as Nyeighted =
Nobserved/ Pa for a number of plumes N. For the CDF’s without P; weighting, the wavelet’s higher probability to detect low
emission rate plumes results in a less heavy tailed distribution. Including P; weighting results in less heavy tailed distributions
for both algorithms. However, the two P; weighted CDF’s still diverge, indicating that the P; weighting did not fully recover

possible distribution. This is likely due to the overestimate of Py for the divergence integral algorithm (Figure 3).
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Histogram of emission rates detected by MethaneAIR and MethaneS
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Figure B1. A: Empirical CDF of emission rates. The x-axis is emission rate g; the y-axis shows F'(q) = P(gobs < ¢). Two pairs of curves

are shown for each operational detection algorithm (indicated by color). Solid lines do not include P; weighting, dashed lines include Py
weighting. For N plumes, Nyecighted = Nobserved/ Pa-
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