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Abstract. Strategies for mitigating methane emissions rely on understanding the underlying drivers of methane losses to the

atmosphere. Observations of methane plumes emerging from point sources, combined with correct statistical interpretation,

can provide key information. In this work, we examine a critical parameter, the probability of detection of a plume. For

a given observing system, probability of detection is affected by the properties of the sensor, plume detection algorithm,

observing conditions, and emission rate of the source. We parameterize relevant aspects of remotely sensed scenes containing5

plumes using a nondimensional observability parameter that predicts probability of detection. Our probability of detection

model is trained using simulated plumes to capture natural variability in different meteorological conditions, and validated

with data from controlled release experiments. We model probability of detection for two airborne imaging spectrometer

systems, MethaneAIR and Insight M LeakSurveyor™, and one high resolution satellite system, MethaneSAT. Monte Carlo

simulations of emissions distributions implied by data from the extensive 2023 MAIRX campaign of MethaneAIR demonstrate10

the importance of an accurate probability of detection model, due to the heavy tailed emission distribution found in most oil

and gas basins.

1 Introduction

Remotely sensed observations of methane (CH4) plumes offer fundamental insight into the crucial climate challenge of

methane emissions (Varon et al. (2018)). To understand the underlying drivers of CH4 emissions, we need to characterize15

the contributions of different emission rates and processes to total CH4 emissions. A key piece of information needed for this

assessment is the probability of detection (Pd) of a CH4 plume with different sensors, under different observing conditions,

and using different detection algorithms (Conrad et al. (2023)).
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We set out to answer the question: "How can we integrate plume observations by different remote sensing systems to assess

the emission rate dependent distribution of point sources and their contributions to total emissions?" We develop a generalized20

approach to account for the factors that affect Pd, and apply it to observations by MethaneAIR, MethaneSAT, and Insight

M LeakSurveyor™. We utilize data from controlled release experiments, extended with image processing techniques, and

supplemented with simulated plumes. Our approach enables us to model systems lacking available controlled release data such

as MethaneSAT. Finally, we demonstrate the effect of the Pd term on emissions distribution analyses of observations of the

Permian Basin.25

Previous work defines Pd as a function of emission rate scaled by wind speed, assuming unobstructed transport of CH4

from the source (Sherwin et al. (2021)). Conrad et al. (2023) fit continuous Pd curves to controlled release experiment data

collected by several sensors, using dimensional parameters unique to each system. This approach is limited by the availibility

of controlled release data, which only capture a subset of the variability in observing conditions found in nature. The approach

we use here, extending the training data with simulated plumes, has been used for plume detection algorithms (Rouet-Leduc30

and Hulbert (2024)) and for Pd models (preprint: Roger et al. (2025)). If they are available, coincident observations by higher

threshold and lower threshold observing systems can be used to estimate Pd for the lower threshold system (Ayasse et al.

(2024)). Ayasse et al. (2024) also use their Pd estimate to weight an emissions distribution recovered from satellite observations.

2 Methods

2.1 Desiderata of a Probability of Detection Model35

A useful model of probability of detection allows integration of plume counts from different scenes and observing systems.

Study of Pd is in service of interpreting plume counts. Different observing systems have different nominal pixel areas and gas

sensitivities. Scenes from the same observing system vary in observing conditions, which affect the ability to detect plumes

(Conrad et al. (2023)). These include wind speed, aircraft altitude, solar zenith angle, surface albedo, and aerosol optical

depth. Additionally, there are many algorithms applied to XCH4 scenes to detect plumes. An effective Pd model enables40

intercomparison of XCH4 scenes from different observing systems by accounting for: 1) the sensors’ XCH4 sensitivity and

spatial resolution 2) the skill of plume detection algorithms 3) the observing conditions of each scene.

Following Conrad et al. (2023), we model Pd with a combination of an inverse link function F : R→ [0,1] and a predictor

function g : x→ R:

Pd = F (g(x,φ),θ) (1)45

where x is the set of variables that affect Pd and φ and θ are the coefficients for F and g. The predictor function g parameterizes

the factors that affect plume observability, while the inverse link function F : R→ [0,1] converts g to a probability. They tested

a variety of functional forms for F and g and used Akaike Information Criterion (AIC) ranking to select the optimal model for

each observing system in each controlled release experiment (Akaike (1992)). Selecting from many different functional forms

yields a close Pd fit for each controlled release experiment. However, when trying to extend the Pd model from the controlled50
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release to analysis of observations, this close fit may be a detriment if the controlled release observations are not representative.

In service of our goal of analyzing plume observations from multiple scenes and observing systems, we used a single pair of

forms for the predictor function g and inverse link function F , similar to Bruno et al. (2024).

Bruno et al. (2024) used a dimensionless predictor function of emission rate, wind speed, and pixelwise column concentration

uncertainty they call Observability. In Bruno et al. (2024), Observability is combined with a sigmoid inverse link functional55

form. We also use a nondimensional predictor function and sigmoid inverse link function (Section 2.6). To train these Pd

models, we use Weather Research Forecasting, Large Eddy Simulation (WRF-LES) plumes (Section 2.4) and controlled release

data for validation (Section 2.3). We use these Pd models for an emissions distribution analysis of a comprehensive North

American observation campaign by MethaneAIR (Section 2.7,3.3).

2.2 Imaging Spectrometers60

We studied three imaging spectrometers: MethaneAIR, MethaneSAT, and Insight M’s LeakSurveyor™. The MethaneAIR

observing system is an imaging spectrometer flown at a 12 km nominal observing altitude above ground level Staebell et al.

(2021). At this altitude, the footprint of a single XCH4 sounding is 5m x 25m. MethaneAIR flew the MAIR (summer 2021) and

MAIR-E (summer 2022) research campaigns to develop emissions quantification algorithms. The MAIRX campaign quantified

emissions from basins across North America in May-October 2023. There have been two MethaneAIR aircraft: the NSF65

Gulfstream GV operated by NCAR used for MAIR and MAIR-E, and a Learjet Model 35 operated by IO Aerospace for

MAIRX. The MethaneAIR spectral retrieval is detailed in Conway et al. (2024). XCH4 is inverted from retrieved backscattered

solar spectra following the XCO2 proxy method described by Chan Miller et al. (2024), with the prior XCO2 derived from

profiles generated using the GINPUT algorithm (Laughner et al. (2023)).

MethaneAIR is the airborne precursor for the MethaneSAT mission. MethaneSAT is a satellite regional XCH4 mapper that70

can also detect CH4 plumes. It was launched in March 2024, and made observations at ∼590 km observing altitude until the

satellite lost power in June, 2025. MethaneSAT observations have nominal pixel dimensions of 110m x 450m at nadir, with

a wider swath of ∼200km compared to MethaneAIR’s 5km. Insight M LeakSurveyor™ is an imaging spectrometer flown on

light aircraft at observation altitudes of 370-900m. At 370m, this observation altitude results in a smaller pixel area of ∼5m2,

at the cost of a narrower swath width. It has proprietary spectroscopy and retrieval algorithms. Insight M was previously known75

as "Kairos Aerospace", the name under which LeakSurveyor™ data were analyzed in Conrad et al. (2023) and Sherwin et al.

(2024).

2.3 Controlled Release Experiments

In a controlled release experiment, research teams attempt to detect and quantify plumes, usually blinded to the emission rate

(Sherwin et al. (2021)). Both airborne and satellite observing systems have been characterized via controlled release (Sherwin80

et al. (2023)). MethaneAIR flew controlled release experiments in 2021 in the Permian Basin, Texas, USA and in 2022 in

central Arizona, USA (Chulakadabba et al. (2023); El Abbadi et al. (2024)). LeakSurveyor™ also participated in the 2022

experiment (Sherwin et al. (2023); El Abbadi et al. (2024)). For these two experiments, the research teams knew the emission
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location but not whether it was emitting for each overpass. LeakSurveyor™ flew at 900 m above ground level for the 2021

experiment, but at 370-540 m observing altitude for the 2022 experiment (Conrad et al. (2023); El Abbadi et al. (2024)).85

Controlled release experiments were attempted for MethaneSAT prior to its loss, but coordinating overpasses with release

durations failed on available trials.

2.4 Simulated Plumes

Data from controlled release experiments are valuable because they provide well constrained emission rates and windspeeds,

which are needed to model Pd. These data are rare and expensive, with most experiments producing at most hundreds of90

observations. As a result, they only describe a subset of the natural variability in observing conditions. For example, the

maximum observed wind speed in the 2021 and 2022 controlled release experiments was 3.3 m/s (Chulakadabba et al. (2023)).

In the summer of 2023, MAIRX saw HRRR wind speeds up to 7.9 m/s. Additionally, controlled release experiments occur in a

single location, which limits the variety of tested surface albedo and topography. The locations of potential emissions are also

often known, affecting Pd.95

To increase the data available to assess Pd, we generated simulated plumes using image processing methods to modify the

properties of observed controlled release plumes. This resulted in a training set of ∼80,000 simulated scenes and a validation

data set of∼62,000 scenes derived from∼40 controlled release overpasses. These plume simulations and image manipulations

extend our analysis to wind conditions and emission rates that span the wider range of conditions observed in nature. In this

way, effective simulation better represents reality than our limited observations of reality.100

To generate artificial plumes, we used the WRF-LES model and image processing. WRF-LES effectively captures the

stochastic behavior of plumes due to boundary layer turbulence Gaudet et al. (2017); Chulakadabba et al. (2023). To reduce

computation times, we used an idealized version of WRF-LES, which uses a time invariant upwind boundary condition. Using

idealized WRF-LES, we simulated plumes evolving under wind speeds between 0 and 15 m/s in the WRF model. To further

extend the training scenes, we used image processing to change the emission rate, pixel area, and gas concentration noise of105

each idealized WRF-LES scene. First, we produced plumes of varying emission rates by scaling the XCH4 of each pixel by the

ratio of the original WRF-LES emission rate to the desired emission rate. This scaling relies on the linearity of CH4 transport.

Next, we aggregated pixels to vary their area. Finally, we added Gaussian noise. We observed a spatial correlation between ad-

jacent pixels of .7 in MethaneAIR scenes, and maintained that level of spatial correlation in the simulated scenes. This process

generated a training data set of ∼80,000 simulated plumes. Figure 1 shows examples of the simulated plumes with different110

parameters. We applied the same method of scaling noise and emission rate to controlled release scenes to create a more widely

varying validation dataset. These scenes have varying emission rate, pixel area, and gas concentration noise, but wind speed

cannot be changed without changing the shape of the plume. To train Pd models, we applied operational MethaneAIR and

MethaneSAT plume detection algorithms to all of these simulations, as described in the next section.
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Figure 1. Example simulated plumes. Color represents XCH4. Each plume has a different combination of emission rate (kg/hr), pixel area

(m2), gas concentration noise (ppb), and wind speed (m/s).

2.5 Detection Algorithms115

We analyzed two plume detection algorithms used by MethaneAIR and MethaneSAT, the divergence integral and wavelet meth-

ods. The divergence integral method uses Gauss’s theorem to measure the amount of CH4 leaving a small area (Chulakadabba

et al. (2023); Warren et al. (2024)). Adapted from medical imagery applications, the wavelet method isolates high frequency

XCH4 variation, interpreted as noise, and subtracts that structure from the observations. This leaves behind structured low

frequency variation, interpreted as plumes (Hüpfel et al. (2021)).120

We apply the plume detection algorithms to the training set of simulated plumes and recorded the successful and failed

detections as binary outcomes. Here, plume detection is fully automated; there is no manual quality assurance step to identify

false positives, which are not a focus of this study. We also analyze output from the Insight M algorithm used to detect plumes

in LeakSurveyor scenes. Insight M provided the data required for our analysis from the 2022 Arizona controlled release

experiment, including gas concentration noise, pixel area, and detection success. Their detection algorithm and controlled125

release scenes are not available to the public.

2.6 Logistic Regression on Parameterized Plume Observability

Following Bruno et al. (2024), we use a single log-linear form for g for all systems and scenes because it is simpler than using

a different functional form for each observing system and experiment.

Observability≡ g(q,ap, ñ,u) = log

(
q

√
apñu

)
(2)130
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Table 1. Variables and units used in equation 2.

Symbol Name Units

g Observability (predictor function) Dimensionless

q Emission Rate† ppb m2 s−1

ap Pixel Area m2

ñ Gas Concentration Noise ppb

u Horizontal Wind Speed ms−1

†: Here ppb refers to the enhancement of the column mean dry mole fraction (plume excess XCH4). To convert to kg/s,

multiply q by Mair/MCH4 · 10−9/g×Psurf × (1−XH2O)

Observability g parameterizes the observing conditions and observing system characteristics into a single dimensionless

term. Variable names and units for Equation 2 can be found in Table 1. The lack of dimension enables ease of translation

between observability space and relevant features like emission rate and wind speed. We expect the eddy scale wind speed to

be the boundary of viability for the observability parameter. As such, this approach should not necessarily be applied to low

wind night time conditions without further investigation. We further note that the observability parameterization is applicable to135

passive remote sensing systems, while active systems would require an additional scaling with the inverse square of observation

altitude to account for power loss over distance. The observability link function is passed to the inverse function F , following

Conrad et al. (2023). Differing from Conrad et al. (2023), and following Bruno et al. (2024), we do not use different functional

forms for F for different systems and release experiments.

For fitting and validating Pd models, the emission rate q is known from a controlled release meter or prescribed when140

simulating the plume. For each scene, fitted Pd models predicted Pd for a range of emission rates. Pixel area is calculated from

the XCH4 scene. The gas concentration noise (ñ) contains noise contributions from the instrument as well as the observing

conditions, including disturbances from upwind sources. For a given scene, ñ is the standard deviation of the XCH4 values of a

"clean" portion of the scene. In this context, clean means that there is no variability from proximate emissions. Finding a clean

portion of a scene can be done by visual inspection or by taking the pixels below a percentile cutoff. We collected the pixels145

below the 10th percentile. Clean portions of scenes can be found in many ways, but they are confirmed clean by checking

that the XCH4 values are normally distributed for the pixels selected. This means that clean XCH4 pixels are unstructured,

but unaffected by local emissions. Proximate emissions are a valid source of gas concentration noise— it is harder to identify

a plume in a scene with many sources than a plume from an isolated source. In large scenes, there may be multiple gas

concentration noise values, in which case a more accurate Pd may be calculated by considering subscenes. We used wind150

speed measured by the anemometer at the controlled release site (Chulakadabba et al. (2023)). To predict Pd with a fitted

model for MAIRX scenes, we used the lowest-level High Resolution Rapid Refresh (HRRR) winds averaged for each scene.

We calculated observability for each simulated training scene. Then, we fitted a logistic regression on the simulated scenes.
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2.7 MAIRX Steady State Emissions Distribution

In the summer of 2023, MethaneAIR flew the MAIRX observation campaign. It covered ∼80% of the oil and gas production155

in the continental United States (Warren et al. (2024)). Figure 2 shows the MAIRX targets over the Permian and contiguous

United States. Plumes were detected via the wavelet and divergence integral methods, and their emission rates quantified by

divergence integral (Chulakadabba et al. (2023); Warren et al. (2024)). The emissions distribution was calculated following

the ergodic, or steady state assumption (Sherwin et al. (2024)). The steady state assumption posits a constant underlying

distribution of plumes, which can be approximated given enough samples. This will produce distributions that do not take160

source persistence into account. In addition to CH4 plumes, MethaneAIR also observes regional XCH4 gradients, which can

be used to infer dispersed emissions. Dispersed emissions can be thought of as the regional XCH4 enhancement due to the

combination of plumes too small to be detected as a discrete sources and larger plumes that have spread out after the source

has stopped emitting. We quantify these emissions using an inverse method that combines gridded area enhancements with an

atmospheric transport model, Stochastic Time Integrated Lagrangian Transport (Lin et al. (2003); MacKay et al. (2025)).165

We apply our analysis of the effects of Pd on inferred emissions distributions to the example of the Permian Basin. We

took the average dispersed emissions estimate of all the valid scenes for the Permian Basin. The total emissions were defined

as the sum of all plume and dispersed emissions. The emissions distribution was defined as the fraction of total emissions

associated with plumes of different binned emission rates. To investigate the effects of Pd of different systems on the emissions

distribution, we performed Monte Carlo simulation of the analysis. We examined MethaneAIR, MethaneSAT, and a hypo-170

thetical satellite with the same spatial resolution as MethaneSAT but worse CH4 sensitivity, represented by a higher nominal

gas concentration noise. We calculated the Pd of these three systems for all observed emission rates for each MAIRX scene,

and generated bootstrap samples from MethaneAIR observed plumes. To simulate the observations of MethaneSAT and the

hypothetical satellite, each plume was included in the bootstrap sample with probability Pd.

3 Results and Discussion175

3.1 Probability of Detection Model

Figure 3 shows the validation comparison for MethaneAIR, using the model trained on the LES simulations. Each point

represents image processed controlled release data binned by detection rate. The Pd model works well for the wavelet algorithm

applied to MethaneAIR data, but not as well for the divergence integral algorithm. The difficulty for the divergence integral

algorithm likely reflects its sensitivity to missing data, which were not present in the training set. This is because the divergence180

integral algorithm needs intact boxes of XCH4 pixels of various sizes within the scene, while the wavelet does not. For example,

clouds prevent imaging spectrometers from measuring reflected solar light, and leave regions of missing data in real XCH4

scenes.
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Figure 2. Map of MAIRX targets. Each colored shape is a flight pattern flown by MAIRX. The major oil and gas basins in the contiguous

United States are marked. Inset: an example MAIR XCH4 scene, in which large CH4 plumes are circled in white. Each colored flight pattern

on the map produced an XCH4 scene like the inset example.

3.2 Observing System Intercomparison

Our probability of detection model quantifies the differences in plume detection capabilities between observing systems and185

detection algorithms. Figure 4A shows Pd curves modeled for various emission rates and wind speeds for LeakSurveyor™,

MethaneAIR, and MethaneSAT. As anticipated, LeakSurveyor’s™ lower observation altitude allows it to detect lower emission

rate plumes with higher probability than MethaneAIR or MethaneSAT.

In the MAIRX campaign, wind speed controlled Pd more than gas concentration noise. This might not be true for other

observing systems with less sensitivity to XCH4. Although controlled release data for MethaneSAT is not available, g enables190

prediction of Pd for the divergence integral and wavelet algorithms applied to MethaneSAT scenes. The predicted difference

in Pd between MethaneAIR and MethaneSAT is relatively small at low wind speeds compared to high wind speeds.

Because observability normalizes for all observing system features apart from the algorithm, Pd curves in observability space

can be used to compare the skill of plume detection algorithms. Figure 4B shows the Pd curves from three different plume

detection algorithms. These curves are fitted using simulated XCH4 scenes (divergence integral and wavelet) and controlled195

release trials (Insight M). The wavelet algorithm performs better on simulated plumes than the divergence integral. When

applied to scenes from the MAIRX campaign, the wavelet algorithm also found more plumes and more low emission rate
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Figure 3. Validation of the probability of detection model using multiplexed affected release plumes and two detection algorithms: divergence

integral and wavelet. Each point represents the binned model predicted detection rate (x-axis) compared with the true probability of detection

(y-axis). Uncertainty estimates are derived from the binomial central limit theorem. The dotted 1:1 line represents perfect agreement between

model predicted and validation Pd. Points above the dotted line represent the model overestimating the probability of detection. The thin

colored lines are the best fit lines for each of the detection algorithms. The divergence integral algorithm’s best fit line has a slope of 1.22, an

intercept of 0.05, and an adjusted R2 of 0.83. The wavelet algorithm’s best fit line has a slope of 0.91, an intercept of 0.36, and an adjusted

R2 of 0.99.

plumes. The Insight M algorithm and controlled release XCH4 images are proprietary, and we were not able to fit a Pd model

to simulated plumes like we were for the divergence integral and wavelet. However, by calculating the observability of the

controlled release plumes, we are able to compare the divergence integral, wavelet, and Insight M algorithms. Proprietary200

Insight M plume detection algorithms are slightly more skillful than the divergence integral and wavelet, independent of

the lower observation altitude of Insight M XCH4 images. The Insight M probability of detection curve has much higher

uncertainty than the other algorithms’ curves because it is derived from ∼100 controlled release scenes rather than ∼80,000

simulated scenes. Ideally, Insight M images and algorithms would be available for testing. However, our method offers the next

best alternative to isolate the effects of detection algorithm, spectrometer, and altitude on Pd.205

3.3 MAIRX Steady State Emissions Distribution

Figure 5 shows the observed cumulative emissions distributions for MAIRX, and distributions from simulated observations

from MethaneSAT and a hypothetical satellite with the same spatial resolution as MethaneSAT but lower XCH4 sensitivity.
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Figure 4. A: Intercomparison of probability of detection between different observing systems (MethaneAIR, MethaneSAT, Insight M) for a

range of emission rates and wind speeds. Gas concentration noise was set to the system average for controlled release scenes (MethaneAIR,

LeakSurveyor™) or a sample of observational scenes (MethaneSAT). For MethaneAIR and MethaneSAT, the reported Pd is for the wavelet

algorithm. B: Pd curves for divergence integral, wavelet, and proprietary LeakSurveyor algorithm in observability space. Thick lines are the

mean and thin lines are the 95% CI inferred via bootstrap.

Table 2. Fraction of Total Permian Emissions Due to Small and Large Plumes, and Dispersed Emissions, During MAIRX.

System Pd weighting ≤500 kg/hr >500 kg/hr Dispersed

MethaneAIR No 1% (0%, 2%) 43% (12%, 63%) 56% (39%, 72%)

MethaneAIR Yes 3% (1%, 5%) 43% (13%, 51%) 55% (38%, 71%)

MethaneSAT No 3% (1%, 3%) 43% (13%, 62%) 55% (39%, 71%)

MethaneSAT Yes 3% (1%, 3%) 42% (13%, 61%) 55% (38%, 71%)

Hypothetical Satellite No 0% (0%, 0%) 30% (0%, 54%) 70% (49%, 91%)

Hypothetical Satellite Yes 1% (0%, 7%) 40% (0%, 63%) 59% (41%, 76%)
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Figure 5. Steady state cumulative fractional contributions of events of different emission rates observed in the Permian, during MAIRX. Dis-

tributions are colored to indicate observing system. Dashed distributions include Pd weighting, solid distributions do not. For uncertainties,

see Table A1.

Each system has two observed emission distributions, one with Pd weighting (dashed) and one without (solid). Figure B1 shows

how including a Pd reduces the heaviness of the tail of the emission rate distribution. Due to heavy tailed oil and gas emissions210

distributions, the value of an accurate model of the probability of detection increases with higher detection thresholds.

Table A1 contains the fraction of total emissions attributed to plumes <500 kg/hr, plumes >500 kg/hr, and dispersed emis-

sions, for each observing system. The dispersed emissions represent CH4 from current plumes too small to be detected and

from extinct plumes that have dispersed. For MethaneAIR, there is close agreement between the cumulative distribution with

Pd weighting and the one without, indicating that measurements capture the most significant plumes. The Pd term shifts a small215

fractional contribution of ∼1% from dispersed emissions to plumes <500 kg/hr (Table A1). These results indicate that for the

Permian, an observing system with a nominal Pd inflecting in the hundreds of kg/hr CH4 range is sufficient for characterizing

the small population of plumes >500 kg/hr that control total plume associated emissions. This assessment is contingent on

well constrained dispersed emissions—in this case, generated by MethaneAIR.

MethaneSAT has coarser spatial resolution than MethaneAIR, but higher XCH4 sensitivity, resulting in a lower average scene220

gas concentration noise. It retains the ability to detect moderate plumes, inflecting at ∼500 kg/hr compared to MethaneAIR’s

∼200 kg/hr at 5 m/s wind speed (Figure 4A). This difference in Pd is not enough for Pd to materially affect the inferred

contribution of emission rates >500 kg/hr to total emissions.
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We also analyze a hypothetical satellite with lower XCH4 sensitivity to show a case where the Pd term is important. In

Figure 5, the distribution produced by the hypothetical lower sensitivity instrument (orange) diverges from those produced by225

the higher sensitivity instruments (yellow and blue). However, the Pd weighted distribution (dashed orange) is more similar

to the "ground truth" from MethaneAIR (yellow), indicating that the Pd term recovers most of the missed emissions from

both large and small plumes (Table A1). However, these Pd weighted estimates have much wider CI’s, due to fewer plume

observations. Pandey et al. (2024) also note Pd controlled transfer between dispersed and plume emissions. Analysis of low

XCH4 sensitivity systems is relevant to projects attempting to detect CH4 plumes with multispectral satellites, which may only230

have one radiation band with CH4 absorption, such as Rouet-Leduc and Hulbert (2024).

Our estimated emissions distributions differ from other analysis of MethaneAIR plume observations of the Permian (Warren

et al. (2024)). We find a higher fraction of total emissions due to plumes. One explanantion is that Warren et al. (2024) only

used plumes detected by the divergence integral, while we included both wavelet and divergence integral detected plumes.

Additionally, Warren et al. (2024) use a persistence weighting approach (Cusworth et al (2021)). Persistence weighting accounts235

for intermittency of sources by multiplying their steady state emission rate by Ne

No
, where Ne is the number of times the source

was observed emitting and No is the number of times it was observed. This would decrease the inferred fraction of total

emission from plumes. There are large uncertainties in the steady state fraction of emissions attributable to large plumes (Table

A1). These uncertainties reflect the importance of a good assessment of the duration and arrival intensity of ephemeral plumes.

In our consideration of the effect of Pd on emissions distributions, we adopted the steady state assumption. It is not clear how240

many repeat observations of the same domain are needed for a steady state model to recover the true emissions distribution. In

light of difference with emissions distributions that incorporate persistence weighting (Warren et al. (2024)), a more complex

model of intermittent plumes may be justified.

4 Conclusions

Probability of detection is critical for interpretation of observations of plumes and inference of emissions distributions. Our245

approach to modeling Pd can dispense with controlled release data, which makes it is particularly relevant for satellites and

for designing future missions. This approach could also be used to predict the probability of detection of plumes of gasses

other than CH4, such as carbon dioxide plumes emitted by combustion power plants. Missions that seek to constrain the

fractional contribution of emission rates >500 kg/hr should prioritize observational coverage and capturing regional diffuse

emissions. Capturing dispersed emissions is equivalent for this objective to discerning small plumes (Table A1). MethaneAIR250

and MethaneSAT are capable of detecting small enough plumes to effectively probe the heavy tailed emission rate distributions

found in the Permian, as well other North American basins.

Code availability. See git@github.com:emanninen/probabilities_of_detection_of_methane_plumes_by_remote_sensing_code.git
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Table A1. Fitted Logistic Regression Parameters for MethaneAIR, MethaneSAT, and Insight M

Algorithm Intercept (standard error) Slope (standard error)

Divergence Integral -1.62 (0.02) 1.52 (0.02)

Wavelet -2.26 (0.04) 3.44 (0.05)

Insight M 1.18 (0.79) 9.9 (3.36)

Data availability. MethaneAIR data can be found for MAIR at https://www.eol.ucar.edu/field_projects/methaneair, for MAIR-E, at https:

//www.eol.ucar.edu/field_projects/mair-e, and for MAIRX on Google Earth Engine at https://developers.google.com/earth-engine/datasets/255

catalog/EDF_MethaneSAT_MethaneAIR_L4point.
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Figure A1. Receiver Operator Curve of fitted Pd models tested on controlled release data. X-axis is the true positive rate, or sensitivity,

y-axis is the false positive rate, or the complement of specificity. Teal curve is for the model fitted by Conrad et al. (2023). Red curve is for

the model fitted in this work.

Figure A1 shows receiver operator curves (ROC) generated by predicting Pd of LeakSurveyor’s controlled release detection

results from the 2022 controlled release using our methodology and Conrad et al. (2023)’s Pd model fit with 2021 controlled

release data. Our model has more area under the ROC than Conrad et al. (2023)’s, indicating more predictive skill. However,

this difference is not statistically significant. This is because we only are able to use ∼100 controlled release overpasses from260

the 2022 Arizona controlled release for comparison of the two models. With more data, the two ROC’s may diverge further.

The Conrad et al. (2023) model is fit to the observing conditions of the 2021 controlled release experiment. Additionally, it was

fit at the 2021 900 m observing altitude, while in 2022, they flew at a much lower altitude, resulting in a smaller native pixel

area and higher Pd’s. Conrad et al. (2023)’s model does not have a term to adjust the observing altitude and thus pixel area and

gas concentration noise.265

Figure B1 shows the Cumulative Distribution Functions (CDF) of emission rates detected by the two MethaneAIR plume

detection algorithms. Two emission rate distributions are presented, one with a Pd weighting term defined as Nweighted =

Nobserved/Pd for a number of plumes N . For the CDF’s without Pd weighting, the wavelet’s higher probability to detect low

emission rate plumes results in a less heavy tailed distribution. Including Pd weighting results in less heavy tailed distributions

for both algorithms. However, the two Pd weighted CDF’s still diverge, indicating that the Pd weighting did not fully recover270

possible distribution. This is likely due to the overestimate of Pd for the divergence integral algorithm (Figure 3).
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Figure B1. A: Empirical CDF of emission rates. The x-axis is emission rate q; the y-axis shows F (q) = P (qobs < q). Two pairs of curves

are shown for each operational detection algorithm (indicated by color). Solid lines do not include Pd weighting, dashed lines include Pd

weighting. For N plumes, Nweighted = Nobserved/Pd.
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