

Quantitative assessment of parameterization sensitivity and uncertainty in Noah-MP multi-physics ensemble simulations of gross primary productivity across China's terrestrial ecosystem

4 Jie Lai^{a,b}, Anzhi Wang^a, Yage Liu^a, Lidu Shen^a, Yuan Zhang^a, Yiwei Diao^c, Rongrong Cai^a,
5 Rongping Li^d, Wenli Fei^{a,*}, Jiabing Wu^{a,*}

⁶ ⁷ ^aCAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China

⁸ ^bUniversity of Chinese Academy of Sciences, Beijing, China

^c Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration, Wuxi University, Wuxi, China

^d Institute of Atmospheric Environment, China Meteorological Administration, Shenyang, China

¹² ¹³ * Corresponding author.

E-mail: Wenli Fei (feiwenli@iae.ac.cn) and Jiabing Wu (wujb@iae.ac.cn)

14

16 Abstract

17 Understanding the carbon cycle and its interactions with climate systems requires precise
18 simulation of Gross Primary Productivity (GPP). However, achieving this remains challenging
19 due to the inherent complexity of the models. Current research lacks quantification of how
20 uncertainties in physical process parameterization affect GPP simulation across various
21 regions and land types, which is crucial for improving GPP predictability and identifying

To address these issues, this study generated a 48-member Noah Land Surface Model with multi-parameterization options (Noah-MP) ensemble by manipulating key physical parameterization schemes. The model was validated using ChinaFlux tower measurements and Penman-Monteith-Leuning Version 2 data. We employed the Sobol' total sensitivity index to assess the influence of four key physical processes on GPP: radiation transfer, the soil moisture limitation factor for transpiration (β -factor), turbulence, and runoff generation. Results demonstrate that Noah-MP effectively captured GPP's spatiotemporal patterns in Chinese ecosystems but overestimated GPP in forest and cropland during spring and summer. Sensitivity analysis indicates that the β -factor dominates GPP simulations across most of China, while radiation transfer is the primary

31 driver on the Tibetan Plateau. The main difference between the two radiation transfer schemes
32 lies in whether vegetation gaps fraction are considered. On the Tibetan Plateau, where grasslands
33 and shrublands exhibit large canopy gaps, consider it or not could lead to in substantial
34 differences in simulated radiation and consequently in GPP, making GPP highly sensitive to the
35 choice of radiation scheme. Across ecosystems, water-related factors (β -factor and runoff)
36 mainly affect croplands and savannas, radiation transfer dominates grasslands and shrublands,
37 and turbulence is most influential in forests. There are also distinct seasonal patterns: radiation
38 and turbulence dominate in spring and summer, while radiation and β -factor prevail in autumn
39 and winter, especially in arid regions. Based on systematic performance evaluations and
40 sensitivity analyses, this study proposes optimized Noah-MP model configurations for China's
41 terrestrial ecosystems. The radiation transfer scheme considering the three-dimensional canopy
42 structure (option 1) is recommended for grasslands and shrublands. Our findings offer insights
43 for enhancing GPP simulation accuracy in Noah-MP, thereby improving the model's ability to
44 represent carbon–water dynamics from regional to continental scales.

45

46 **Keywords:** Gross Primary Productivity; Noah-MP; Uncertainty; Parameterization sensitivity;
47 China

48

49 **1 Introduction**

50 Gross primary productivity (GPP) is an important indicator representing the total carbon
51 assimilated by plants through photosynthesis (Qian et al., 2024; Wang et al., 2023). Precise
52 estimation of GPP is crucial for examining ecosystem carbon cycles and evaluating ecosystem
53 responses to global environmental changes (Chang et al., 2023; H. Wang et al., 2023; Zhang and
54 Ye, 2022). The eddy covariance technique, often regarded as the most reliable approach for
55 quantifying CO₂ fluxes between ecosystems and the atmosphere, is nonetheless limited in spatial
56 coverage, being applicable primarily at local scales (Chen et al., 2020; Yu et al., 2016). Land
57 surface models (LSMs) provide a powerful framework for enabling continuous simulation of
58 GPP at regional scales, thereby advancing understanding of carbon cycle processes and their
59 feedbacks with the climate system (Wei et al., 2017; Sims et al., 2008; Running et al., 2004).

60 During the last few decades, LSMs have undergone significant advancements through
61 three major stages, each aimed at improving the realism of physical parameterization and
62 achieving higher accuracy in simulating carbon, water, and energy cycles (Pitman, 2003; Sellers
63 et al., 1997). First-generation LSMs conceptualize the land surface as a simple bucket with a
64 constant water-holding capacity, significantly oversimplifying soil moisture dynamics and
65 vegetation effects (Manabe, 1969). This simplification leads to unrealistic simulations of energy
66 partitioning and water transferring. Second-generation LSMs are built on the Soil-Vegetation-
67 Atmosphere-Transfer Model, explicitly incorporating interactions and feedback mechanisms
68 among vegetation, atmosphere, and soil (Deardorff, 1977). These models provide a more realistic
69 depiction of land surface processes by integrating stomatal conductance, which regulates
70 transpiration, along with soil layer water exchange. Third-generation LSMs evolve from the
71 second-generation LSMs by incorporating biochemical processes. They recognize vegetation's
72 critical role in terrestrial carbon-water cycles, including its contribution to land
73 evapotranspiration (Jasechko et al., 2013), its modulation of heat and water vapor exchanges to
74 influence precipitation (Green et al., 2017), and its absorption of carbon dioxide via
75 photosynthesis (Vicca, 2018). Currently, the typical third-generation LSMs, such as the Simple
76 Biosphere Model (Denning et al., 1996), the Community Land Model (CLM, Oleson et al., 2010),
77 and the Noah Model with Multiple Parameterizations (Noah-MP, Niu et al., 2011; Yang et al.,
78 2011), have become mainstream tools for land surface research. Take Noah-MP as an example, it
79 introduces a dynamic vegetation module to simulate canopy density and plant coverage across

80 different vegetation types while accounting for carbon allocation within plants (Yang and Niu,
81 2003; Dickinson et al., 1998). The model incorporates stomatal-photosynthesis coupling for
82 sunlit and shaded leaves, with distinct parameterizations for photosynthesis and respiration in C3
83 versus C4 plants (Ball et al., 1987; Bonan, 1996). The canopy gaps are considered to compute
84 the absorption of solar radiation by sunlit and shaded leaves (Niu and Yang, 2004; Yang and
85 Friedl, 2003). Third-generation LSMs improve simulation accuracy and allow for the coupling of
86 terrestrial-atmospheric carbon and nitrogen cycles with energy and water fluxes by
87 comprehensively modeling processes such as canopy radiation transfer, soil heat and water
88 transport, and biochemical activity (Pitman, 2003; Dickinson et al., 1998). These advancements
89 have significantly propelled multi-scale studies of climate, ecosystems, and land-atmosphere
90 interactions, thereby improving comprehension of land surface dynamics and their impacts on
91 regional climate variability (He et al., 2024; Yang et al., 2021; Zhang et al., 2016; W. Cai et al.,
92 2014; Baker et al., 2003).

93 Notwithstanding their broad application, these models continue to suffer from persistent
94 issues that affect the reliability of GPP estimates over China (Wang et al., 2024; Li et al., 2022).
95 For example, Zheng et al. (2023) found that CLM4.5 underestimated GPP in some temperate
96 forests and C3 grasslands, while overestimating GPP in temperate broadleaf evergreen forests.
97 This bias is linked to the model's tendency to overestimate specific leaf area, particularly at the
98 canopy top and on sloped terrain. Similarly, Zhang et al. (2016) reported that while CLM4.5
99 improved GPP simulation compared to CLM4.0, particularly in subtropical forests, it still
100 exhibited a positive bias in annual GPP. These findings highlight the necessity for improving
101 parameterizations of structural, physiological, and growth-status parameters under different
102 vegetation types. Additionally, Li et al. (2022) noted that Noah-MP shows uncertainty in
103 simulating GPP over China, with relative biases exceeding 40% in grasslands and reaching 100%
104 in drylands, while it performs better in humid areas. The above results indicate that further
105 uncertainty assessments are essential across China's diverse ecosystems. This will facilitate the
106 identification of uncertainty sources and the optimization of parameterization schemes.

107 Among the above-mentioned LSMs, Noah-MP is particularly suited for uncertainty
108 attribution because it offers multiple parameterization schemes for key physical processes (Clark
109 et al., 2011). Parameterizations for a single physical process often rely on conflicting
110 assumptions. This divergence, rooted in incomplete process knowledge, is a major source of

111 uncertainty in multi-physics ensemble modeling (Clark et al., 2015). By systematically
112 comparing these schemes, researchers can identify optimal configurations tailored to specific
113 climatic and surface conditions, thereby enhancing model adaptability and reliability across
114 diverse environmental scenarios (Chang et al., 2020; Clark et al., 2016). Moreover, Noah-MP
115 can generate ensembles by perturbing specific physical process parameterizations, and enable the
116 quantification of the relative contributions of different parameterizations to total uncertainties
117 through sensitivity analyses. For instance, Zheng et al. (2019) utilized a 48-member Noah-MP
118 multi-physics ensemble with the Sobol' variance decomposition method (Saltelli et al., 2010;
119 Sobol', 2001; Saltelli and Sobol, 1995) to assess the sensitivity of precipitation partitioning to the
120 parameterizations of relevant physical processes. Yang et al. (2011) and You et al. (2024)
121 employed the Noah-MP multi-physics ensemble to investigate various physical processes'
122 contributions to soil moisture, ET, runoff, and snow depth. For carbon cycle simulations, Yang et
123 al. (2021) employed Noah-MP to analyze the sensitivity of net ecosystem exchange (NEE) at the
124 site scale, highlighting the soil moisture factor for stomatal resistance and surface layer
125 turbulence as the most sensitive processes. Some studies (You et al., 2020; Li et al., 2019) also
126 demonstrated that the primary source of uncertainty in multi-parameter ensemble simulations is
127 attributed to sensitive parameterization schemes. Thus, sensitivity analyses on the Noah-MP
128 multi-physics ensemble can facilitate the selection of effective parameterization scheme
129 combinations, which is vital for enhancing GPP estimation accuracy in diverse ecosystems.
130 Furthermore, quantitative analysis of the impacts of different physical processes on GPP can
131 identify the key factors and driving mechanisms affecting carbon absorption across various
132 ecosystems.

133 However, existing uncertainty attribution studies based on the Noah-MP multi-physics
134 ensemble have largely focused on hydrological processes at global and regional scales (Zheng et
135 al., 2023; Li et al., 2022), while analyses specific to terrestrial carbon cycle processes remain
136 limited, especially in China. Yang et al. (2021) investigated the key physical processes affecting
137 GPP at the site scale, but their study was constrained to a relatively short period (less than 10
138 years) and limited sites (eight sites). To date, there is a lack of comprehensive uncertainty
139 attribution studies on GPP simulations over China that account for different vegetation types and
140 both multi-year and seasonal scales. The contributions of different physical processes to GPP
141 simulation uncertainty across China have not been quantitatively determined. The dominant

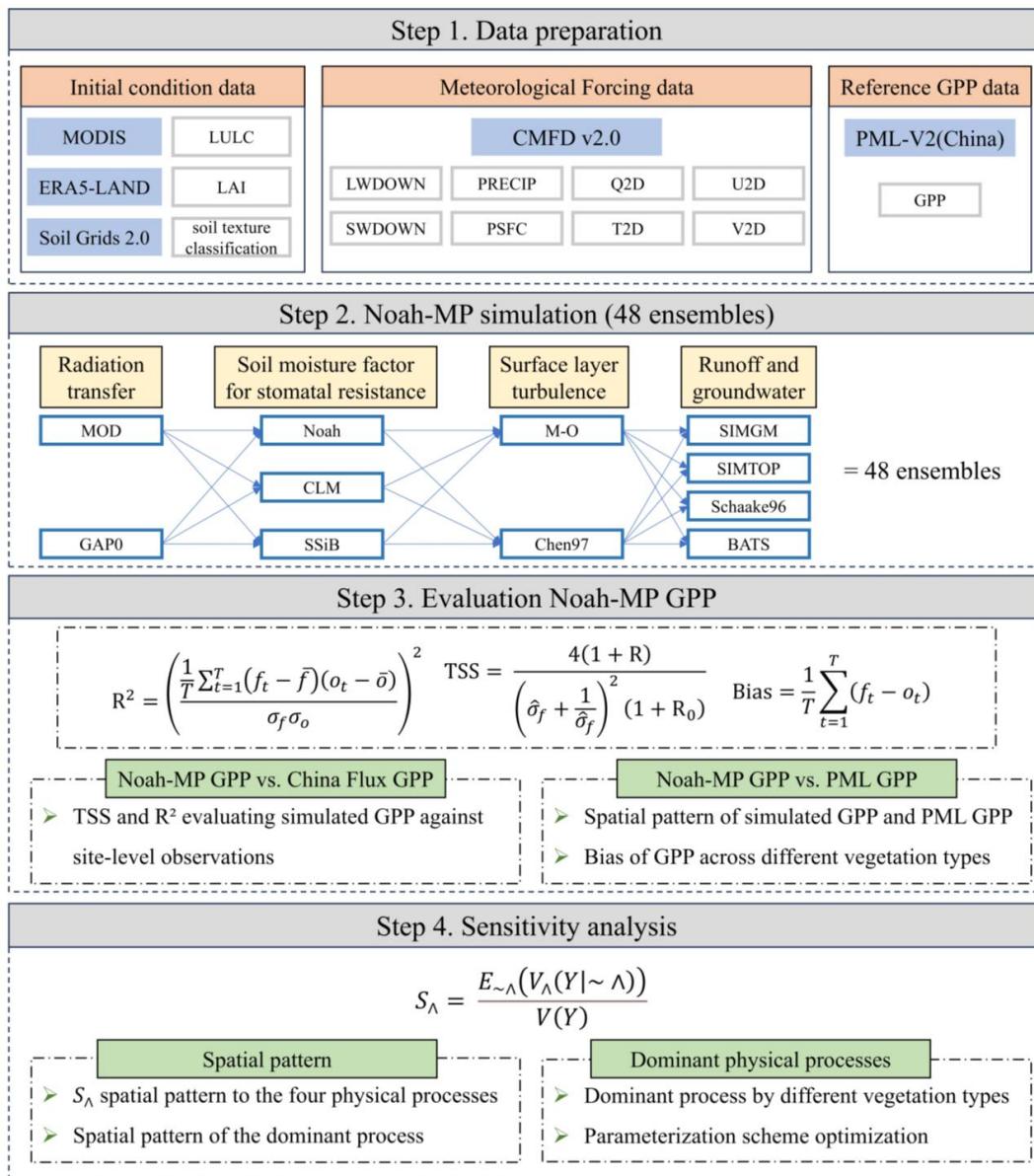
142 processes affecting GPP across different vegetation types remain unknown. This limitation
143 restricts the improvement of Noah-MP, hindering its practical application in carbon sink
144 assessments and policy-making in China.

145 To better understand model uncertainties, this study applied the Sobol' sensitivity
146 analysis on a 48-member Noah-MP ensemble across different vegetation types in China over a
147 20-year period (2001–2020). First, we evaluated the ensemble's uncertainty in simulating GPP
148 over China at seasonal and multi-year mean scales against China Flux sites data and the Penman-
149 Monteith-Leuning Version 2 (PML-V2) GPP dataset, to assess the accuracy and applicability of
150 Noah-MP over China. Subsequently, we quantified and compared the sensitivity of four key
151 physical processes—radiation transfer, soil moisture limitation factor to transpiration (β -factor),
152 surface turbulent exchange (turbulence), and runoff in simulating GPP across China's diverse
153 ecosystems. This study focuses on two main scientific questions: (1) the performance of the
154 Noah-MP ensemble in simulating GPP for different vegetation types in China over seasonal and
155 multi-year periods, and (2) the identification of key physical processes and mechanisms that
156 govern GPP in diverse ecosystems. The study clarifies the influence of physical process
157 parameterizations on GPP simulation within Noah-MP and provides ecosystem-specific
158 recommendations for model configuration, offering valuable insights to enhance the accuracy of
159 terrestrial carbon flux modeling in China. The flowchart of this study is shown in **Figure 1**.

160 The paper is structured as follows. Section 2 provides a description of the model and
161 datasets, while Section 3 outlines the methods for model evaluation and sensitivity analysis. The
162 results are presented in Section 4, followed by conclusions and discussion in Section 5.

163

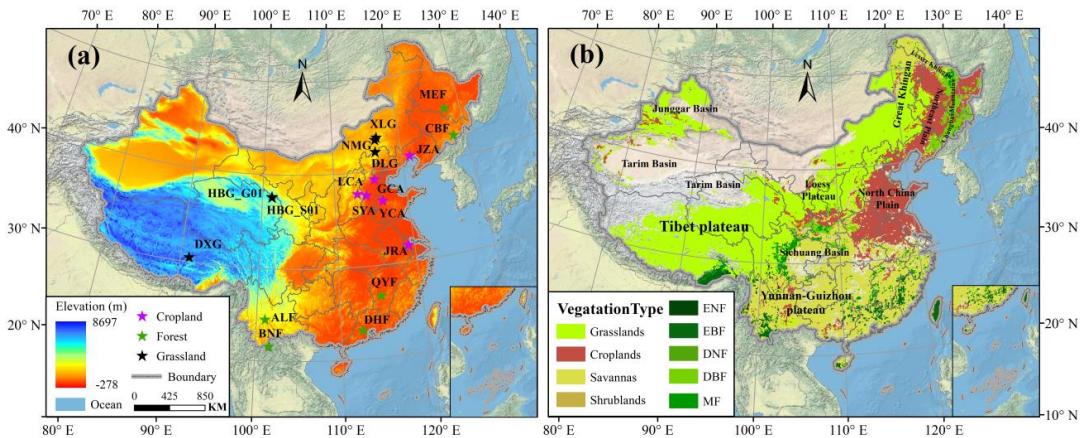
164



167 **2 Model and datasets**

168 **2.1 Study domain**

169 This study selected China (18.5°N–53.75°N, 73.25°E–135.25°E) as the study domain, as
170 shown in **Figure 1**. China covers a land area of about 9.6 million square kilometers, extending
171 across much of East Asia along the western Pacific margin.. The domain features a west-high-
172 east-low topography, diverse land-cover types, and significant ecosystem variations influenced
173 by climate and elevation. This study considered the following land-cover types in the domain:
174 forests (evergreen needleleaf (ENF), evergreen broadleaf (EBF), deciduous needleleaf (DNF),
175 deciduous broadleaf (DBF), and mixed forests (MF)), grasslands, croplands, savannas, and
176 shrublands, as shown in **Figure 2(b)**. China's vast territory features diverse climatic types.
177 Eastern China experiences a monsoon climate, characterized by cold, dry continental monsoons
178 in winter and warm, humid oceanic monsoons in summer, driving seasonal rainfall patterns. The
179 region is dominated by forests, savannas, grasslands, and croplands. The Tibetan Plateau, with its
180 high altitude and vast area, creates a unique alpine climate. The region is dominated by
181 grasslands and bare soil areas. Northwest China, situated far inland, experiences minimal
182 influence from oceanic monsoons, resulting in an arid climate primarily driven by westerlies.
183 The region is dominated by grasslands and croplands.



184
185 **Figure 2.** Spatial patterns of (a) elevation and (b) vegetation type in China. The vegetation map only includes
186 the land-cover types analyzed in this study, while blank areas represent land-cover types excluded from the
187 analysis. Vegetation classification follows the MODIS Land-cover type (MCD12Q1) dataset, including forests
188 (ENF, EBF, DNF, DBF, MF), shrublands, savannas, grasslands, and croplands. Elevation data are from the

189 SRTM Digital Elevation Model (Version 4). The basemap is provided by the US National Park Service
190 (<https://services.arcgisonline.com/arcgis/services>).

191 **2.2 The Noah-MP ensemble**

192 We applied the Noah-MP LSM (Niu et al., 2011; Yang et al., 2011), which represents an
193 improved version of the original Noah LSM. The model features structural enhancements by
194 separating vegetation canopy, snow, and soil into independent layers and incorporating key
195 parameters (He et al., 2023). It adopts a multi-hypothesis framework (Clark et al., 2011), offering
196 multiple parameterization options for key physical processes. The design enhances flexibility and
197 improves performance across diverse environments. Moreover, the multi-parameterization
198 structure enables generating large ensembles by altering certain physical parameterizations. This
199 capability is particularly useful for analyzing the sources of uncertainty.

200 A 48-member ensemble of Noah-MP (version 5.0) was produced in this study by altering
201 two radiative transfer schemes (MOD, GAP0), three β -factor schemes (NOAHB, CLM, SSiB),
202 two turbulence schemes (M-O, Chen97), and four runoff generation schemes (SIMGM,
203 SIMTOP, NOAHR, BATS). The parameterization schemes are provided in **Table 1**.

204 The processes considered here were chosen due to their crucial roles in photosynthesis
205 and carbon sequestration in vegetation, as highlighted in previous research. Radiative transfer
206 regulates the energy input for photosynthesis, with optimal light intensity and duration enhancing
207 carbon assimilation (Chen et al., 2012). However, too much radiation exposure can damage the
208 photosynthetic apparatus and a decline in GPP (Misson et al., 2007). β -factor directly controls
209 plant water availability, thus affecting stomatal conductance and photosynthetic efficiency
210 (Wang et al., 2008; Yuan et al., 2007; Schlesinger et al., 1990). Insufficient soil moisture leads to
211 stomatal closure, restricting carbon dioxide uptake and suppressing GPP (Niu et al., 2011).
212 Turbulent processes influence the movement of CO_2 and water vapor between vegetation and the
213 atmosphere, affecting the rate of photosynthetic carbon uptake (Bonan et al., 2018, 2014). Strong
214 turbulence enhances carbon dioxide supply and removes excess water vapor, optimizing
215 photosynthesis and promoting GPP (Zheng et al., 2019). Runoff generation affects soil moisture
216 availability, which in turn influences plant water status (Niu and Yang, 2007). Excessive runoff
217 depletes soil moisture, intensifies water stress, and reduces GPP. In contrast, moderate runoff
218 maintains favorable soil water conditions, sustaining photosynthesis and carbon accumulation
219 (Zheng et al., 2019; Gan et al., 2019; Niu et al., 2011). These processes interact, regulating

220 carbon assimilation and plant productivity, and ultimately determining the carbon sequestration
221 capacity of ecosystems. Besides, this study excluded the radiative transfer scheme 3 (two-stream
222 applied to vegetated fraction, SELLERS, 1985; Dickinson, 1983) of Noah-MP, as it shares the
223 same origin as scheme 1, and may overexpose understory vegetation or snow to solar radiation,
224 potentially causing biased energy partitioning (Niu et al., 2011). Canopy stomatal resistance
225 schemes can also influence GPP simulation, but due to model framework limitations, only the
226 Ball-Berry scheme (Ball et al., 1987) is available. The dynamic vegetation scheme (Yang and
227 Niu, 2003; Dickinson et al., 1998) was activated, and other schemes used default settings.

228 **Table 1**

229 Selected Noah-MP parameterization schemes for the four key physical processes in this study.

Symbol	Physical Process	Options	Notes
RAD	Radiation transfer	1	MOD: Standing for the modified two-stream approach (Niu and Yang, 2004). This improves upon the classical Two-Stream Model.
		2	GAP0: Two-stream with gap=0 (Niu and Yang, 2004). This version assumes no gaps or uneven distribution in the canopy, making it suitable for uniform canopy structures.
BTR	β -factor	1	Noah: The Noah scheme, which focuses on soil moisture (Chen and Dudhia, 2001). The control factor β for transpiration is a function of soil volumetric water content.
		2	CLM: The scheme used in the CLM (Oleson et al., 2010) assumes that the control factor β for transpiration, related to soil moisture, is a function of soil water potential.
		3	SSiB: The scheme used in the SSiB (Xue et al., 1991) also considers the control factor β for transpiration as a function of soil water potential. Compared to the CLM scheme, this model shows a more pronounced response to changes in soil moisture.
SFC	Turbulence	1	M-O: Monin-Obukhov Similarity Theory (Dyer, 1974). This scheme considers zero plane displacement.
		2	Chen97: The scheme used in the Noah LSM (Chen et al., 1997). It does not consider zero-plane displacements but does take into account the difference between thermodynamic roughness and kinetic roughness.
RUN	Runoff generation	1	SIMGM: The scheme used in CLM 4.5 (Niu and Yang, 2007), takes into account the dynamics of groundwater. Runoff is a function of groundwater level, the same as in the TOPMODEL model.
		2	SIMTOP: TOPMODEL with an equilibrium water table (Niu et al., 2005). TOPMODEL Modeling the interaction between groundwater and surface water flow based on soil moisture distribution and hydrologic response.

		3	Schaake96: The scheme used in the Noah LSM(Schaake et al., 1996), does not consider groundwater. Runoff is obtained by subtracting soil infiltration from precipitation, which is determined by soil moisture and soil texture.
		4	BATS: The scheme used in the BATS LSM (Yang and Dickinson, 1996), does not consider groundwater. Runoff depends on soil moisture and takes into account a sub-grid distribution of soil moisture saturation zones. Infiltration is the difference between precipitation and runoff.

230

231 2.3 CMFD v2.0 forcings

232 The China Meteorological Forcing Dataset Version 2 (He et al., 2025)
233 (<https://doi.org/10.11888/Atmos.tpdc.302088>), including near-surface air temperature, surface
234 pressure, relative humidity, precipitation, downward longwave radiation, and shortwave
235 radiation, was used to force Noah-MP in this study. CMFD v2.0 is a gridded meteorological
236 dataset at high resolution, which combines data from multiple sources: remote sensing,
237 reanalysis, and in-situ observations.. It is specifically developed for land surface process studies
238 in China (Wang et al., 2025; Zhang and Chen, 2025; Bu et al., 2024). Spanning January 1951 to
239 December 2020, the dataset has a three-hourly temporal resolution and a 0.1° spatial resolution.

240 2.4 Eddy covariance data

241 Eddy covariance (EC) data were obtained from the Science Data Bank for sites within the
242 ChinaFlux network (<https://www.scidb.cn/en>), comprising 6 forest sites, 6 grassland sites, and 6
243 cropland sites (**Table 2**). High-temporal-resolution flux and meteorological data were logged
244 every half hour across all sites. These datasets underwent rigorous standardization protocols,
245 including quality control checks and post-processing corrections, ensuring high reliability for
246 validating diverse GPP products (Yang et al., 2017).

247 **Table 2**

248 Basic information on the 18 flux sites.

Site	Station name	Longitude (°E)	Latitude (°N)	Vegetation type	Time Range
ALF	Ailaoshan	101.028	24.541	EBF	2009-2013
BNF	Xishuangbanna	101.577	21.614	EBF	2003-2015
CBF	Changbaishan	128.096	42.403	MMF	2003-2010
DHF	Dinghushan	112.534	23.173	EBF	2003-2010

MEF	Maoershan	127.668	45.417	DBF	2016-2018
QYF	Qianyanzhou	115.058	26.741	ENF	2003-2010
DLG	Duolun	116.284	42.047	Grassland	2006-2015
DXG	Dangxiong	91.066	30.497	Alpine meadow	2003-2010
HBG_G01	Haibei	101.313	37.613	Alpine meadow	2015-2020
HBG_S01	Haibei	101.331	37.665	Alpine meadow	2003-2013
NMG	Neimenggu	116.404	43.326	Grassland	2003-2010
XLG	Xilin	116.671	43.554	Grassland	2006-2014
GCA	Gucheng	115.735	39.149	Cropland	2020-2022
JRA	Jurong	119.21	31.807	Cropland	2015-2020
JZA	Jinzhou	121.202	41.148	Cropland	2005-2014
LCA	Luancheng	114.413	37.531	Cropland	2013-2017
SYA	Shouyang	113.200	37.750	Cropland	2012-2014
YCA	Yucheng	116.570	36.829	Cropland	2003-2010

249

250 **2.5 PML-V2 (China) dataset**

251 The Penman-Monteith–Leuning Version 2 (PML-V2) (China) terrestrial ET and GPP
252 dataset (He et al., 2022), obtained from the National Tibetan Plateau Data Center
253 (<https://data.tpdc.ac.cn/en/data/40f57c67-33a6-402d-bd37-6ede91919f23/>), was used as
254 validation data. This dataset offers daily GPP estimates from February 26, 2000, to December 31,
255 2020, at a 500 m spatial resolution. Generated via the PML-V2 water-carbon coupled model, the
256 dataset estimates ET and GPP by integrating atmospheric and vegetation data. Specifically, it
257 uses the Penman-Monteith equation for ET and a modified Leuning equation for GPP. Calibrated
258 against 26 eddy covariance flux towers in China, it demonstrates high accuracy, particularly for
259 GPP, outperforming the global PML version (Qian et al., 2024; He et al., 2022). Consequently, it
260 is widely used in ecological research, carbon/water cycle modeling, and evaluation studies (Shi
261 et al., 2024; Huang et al., 2023).

262 **2.6 MODIS LULC dataset**

263 The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Use/Land-cover
264 (LULC) product (MCD12Q1) ([https://developers.google.com/earth-
265 engine/datasets/catalog/MODIS_061_MCD12Q1](https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD12Q1)), derived from the MODIS sensors onboard
266 NASA's Terra and Aqua satellites, was used to set the land-cover types in Noah-MP. The dataset

267 offers global land-cover classification on an annual basis at 500 m resolution, covering the
268 period from 2001 to the present. In this study, we employed the LC_Type1 classification scheme
269 from the MCD12Q1 product, which follows the International Geosphere-Biosphere Programme
270 system (Sulla-Menashe and Friedl, 2022). To ensure consistency across all datasets, the land-
271 cover dataset was converted to a 0.1° spatial resolution using interpolation and resampling,
272 aligning with the CMFD dataset grid points. This study used land-cover types from 2001 and did
273 not account for land-cover changes.

274 **2.7 ERA5-Land dataset**

275 The ERA5-Land dataset ([https://developers.google.com/earth-
276 engine/datasets/catalog/ECMWF ERA5 LAND HOURLY](https://developers.google.com/earth-engine/datasets/catalog/ECMWF ERA5 LAND HOURLY)), developed by the European Centre
277 for Medium-Range Weather Forecasts, was used to initialize the land surface states of Noah-MP.
278 This dataset provides a global land surface reanalysis at 0.1° spatial resolution with hourly
279 outputs, spanning from January 1981 to the present. It is generated by integrating a state-of-the-
280 art land surface model with data assimilation, offering a wide range of land surface variables..
281 ERA5-LAND land surface variables were bilinearly interpolated to the CMFD grid for model
282 initialization.

283 **2.8 SoilGrids 2.0 dataset**

284 In this study, the SoilGrids 2.0 dataset (Poggio et al., 2021)
285 ([https://developers.google.com/earth-
286 engine/datasets/catalog/OpenLandMap SOL SOL_TEXTURE-CLASS USDA-TT M v02](https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap SOL SOL_TEXTURE-CLASS USDA-TT M v02))
287 was used to set soil types in Noah-MP. This dataset provides global soil property predictions at a
288 250m spatial resolution, which is derived from machine learning-based integration of soil profile
289 observations, remote sensing, and environmental covariates. In this study, we used the United
290 States Department of Agriculture soil texture classification (Soil Survey Staff. 2022). It divides
291 soils into 12 primary classes (e.g., sandy loam, silty clay) depending on the relative amounts of
292 sand, silt, and clay. The soil type was also resampled to a 0.1° resolution, based on the dominant
293 type.

294 3 Methods

295 3.1 Simulation experiment design

296 A two-stage spin-up process (Yang et al., 2021; Zheng et al., 2019) was conducted before
297 each of the 48 Noah-MP simulations to establish initial conditions for January 1, 2000 (see Table
298 S1). In the first stage, the atmospheric forcing from 1999 was cycled 30 times. In the second
299 stage, a 1-year forcing period from January 1, 2000, to January 1, 2001, was applied. With a total
300 spin-up period of 31 years, Noah-MP reached equilibrium under all climatic conditions and
301 parameter configurations (Cai et al., 2014).

302 The subsequent 48 simulations covered the period from 2001 to 2020, using a 15-minute
303 time step. The output frequency is every 8 days. Subsequently, we aggregated the outputs into
304 monthly, seasonal, and annual scales.

305 3.2 Evaluation metrics

306 In this study, the Taylor Skill Score (TSS) was employed to provide a concise assessment
307 of the Noah-MP ensemble (Taylor, 2001).

$$TSS = \frac{4(1+R)}{\left(\hat{\sigma}_f + \frac{1}{\hat{\sigma}_f}\right)^2(1+R_0)}, \quad (1)$$

308 where R is a metric for the agreement between observed and simulated time series, and R_0 is the
309 highest correlation among the ensemble simulations. $\hat{\sigma}_f$ is the normalized standard deviation
310 (NSD), which is calculated as the ratio between the standard deviation of observations and that
311 of simulations (see **Equation (4)**). TSS is a metric bounded between 0 and 1, where the upper
312 limit of 1 represents a perfect match between simulation and observation.

313 To calculate the TSS, R , and NSD were computed. For a model simulation (f) and its
314 corresponding observation (o), the formulas are as follows:

$$\sigma_o = \sqrt{\frac{1}{T} \sum_{t=1}^T ((o_t - \bar{o})^2)}, \quad (2)$$

$$R = \frac{\frac{1}{T} \sum_{t=1}^T (f_t - \bar{f})(o_t - \bar{o})}{\sigma_f \sigma_o}, \quad (3)$$

$$\hat{\sigma}_f = \frac{\sigma_f}{\sigma_o} = \frac{1}{\sigma_o} \sqrt{\frac{1}{T} \sum_{t=1}^T ((f_t - \bar{f})^2)}, \quad (4)$$

315 where o_t represents the observation value at time step t , \bar{o} is the temporal mean of the
316 observation values, and T is the total time step number. Similarly, f_t denotes the model output at
317 time step t , \bar{f} and \bar{o} are the mean values of the model output (f_t) and observation (o_t),
318 respectively. σ_f and σ_o are their respective standard deviations.

319 To ensure the diversity and comprehensiveness of evaluation metrics, bias, root-mean-
320 square error (RMSE), and the square of the correlation coefficient (R^2) was also employed, as
321 follows:

$$\text{Bias} = \frac{1}{T} \sum_{t=1}^T (f_t - o_t). \quad (5)$$

$$\text{RMSE} = \sqrt{\frac{1}{T} \sum_{t=1}^T [(f_t - \bar{f}) - (o_t - \bar{o})]^2}, \quad (6)$$

322 A positive bias indicates an overestimation by Noah-MP compared to PML GPP, while a
323 negative bias indicates an underestimation. Since RMSE quantifies the average error magnitude,
324 values nearer to 0 therefore serve as a direct indicator of superior simulation accuracy.. R^2
325 corresponds to the square of the R and indicates how well the Noah-MP model fits the
326 observations.

327 3.3 Sobol' total sensitivity index

328 To determine which physical processes exert the greatest control on GPP, we utilized the
329 Sobol' total sensitivity index (Saltelli et al., 2010; Sobol', 2001; Saltelli and Sobol, 1995). The
330 Sobol' total sensitivity index (S_P) is defined as:

$$S_\Lambda = \frac{E_{\sim\Lambda}(V_\Lambda(Y|\sim\Lambda))}{V(Y)}, \quad (7)$$

331 where S_Λ denotes the Sobol' total sensitivity associated with the schemes of a specific process Λ ;
332 $\sim\Lambda$ represents all processes except Λ ; Y refers to the 48 Noah-MP model outputs, which include
333 both multi-year means and seasonal averages; $V(Y)$ represents the variance among the 48
334 outputs; $V_\Lambda(Y|\sim\Lambda)$ measures the variance induced by the Λ schemes, and $E_{\sim\Lambda}$ is the average
335 across all other parameterization combinations.

336 The Sobol' total sensitivity index measures the proportion of variance in model outputs
337 attributable to the parameterization of process Λ , relative to the total ensemble variance. This

338 index is scaled between 0 and 1, where 0 indicates that Λ 's parameterization has no impact on
339 the simulations, while 1 denotes complete control of the simulations by Λ . A higher value
340 denotes a greater degree of dependence of the simulations on Λ .

341 **4 Results**

342 **4.1 Evaluation of the Noah-MP ensemble**

343 To comprehensively assess Noah-MP's performance in simulating GPP across 48 physics
344 configurations, we adopted a two-tier validation approach. First, site-level evaluations leveraged
345 eddy covariance flux tower observations at selected sites. This approach supports process-
346 oriented assessment of model accuracy under diverse environmental and vegetation conditions.
347 Second, regional-scale evaluations utilized the remote-sensing-based PML-GPP dataset. This
348 provides spatially continuous estimates, enabling assessment of the model's performance to
349 capture broad-scale spatial patterns and interannual variability, serving as a complementary and
350 independent benchmark to site-level observations.

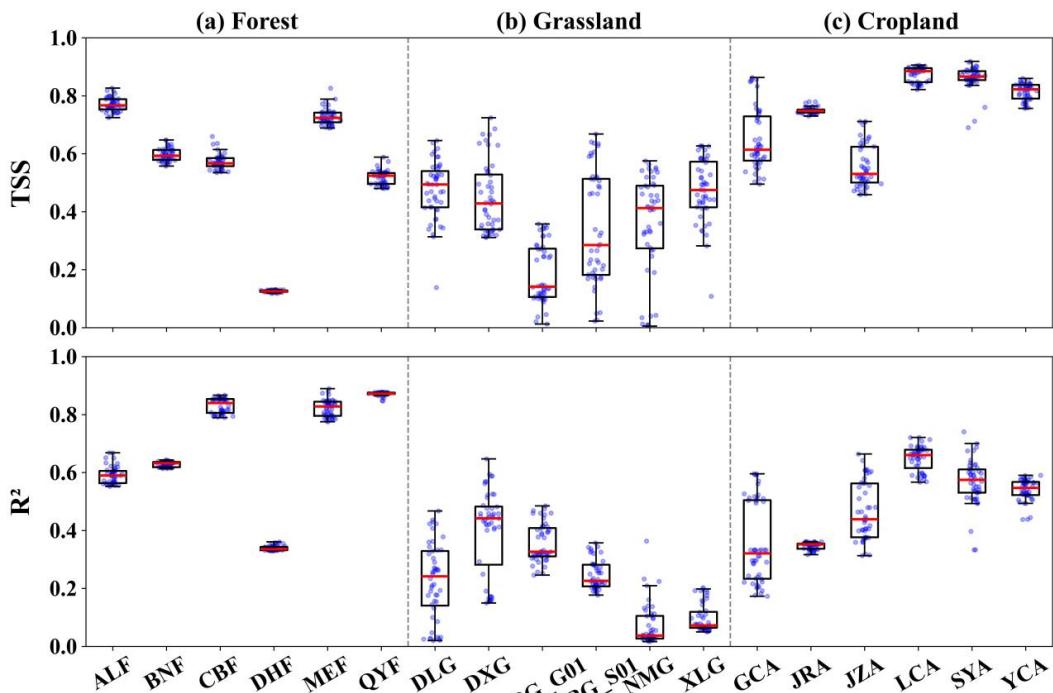
351 **4.1.1 Site-Based Validation Using Eddy Covariance Flux Towers**

352 The site-level performance of Noah-MP was examined by comparing model outputs with
353 observations from individual flux tower sites. Figure 3 shows a boxplot representing the
354 distribution of TSS (max, min, median) from 48 site-level simulations.

355 Median TSS values consistently exceeded 0.50 at all cropland sites. For forest sites, TSS
356 and R^2 exceeded 0.50 at all sites except DHF. In contrast, both TSS and R^2 values were generally
357 below 0.60 at grassland and cropland sites. Specifically, the median TSS values at LCA, SYA,
358 and YCA sites were greater than 0.80, while those at ALF, MEF, and JRA ranged between 0.60
359 and 0.80. The DHF site and all grassland sites had median TSS values below 0.50, indicating
360 limited GPP simulation capabilities at these locations as demonstrated by the notably low TSS.

361 The TSS range reflects the performance variability among different ensemble members.
362 As shown in **Figure 3**, forest sites exhibited relatively small ensemble spreads, suggesting
363 consistent performance across ensemble members. In contrast, all grassland sites showed large
364 ensemble spreads. Among cropland sites, both GCA and JZA exhibited substantial TSS
365 variability. These findings reveal considerable model performance divergence in grassland and

366 cropland ecosystems, under different parameterization schemes. In forest ecosystems, however,
367 the model exhibited excellent performance with low sensitive to parameterizations choices,
368 suggesting greater robustness across ensemble members.

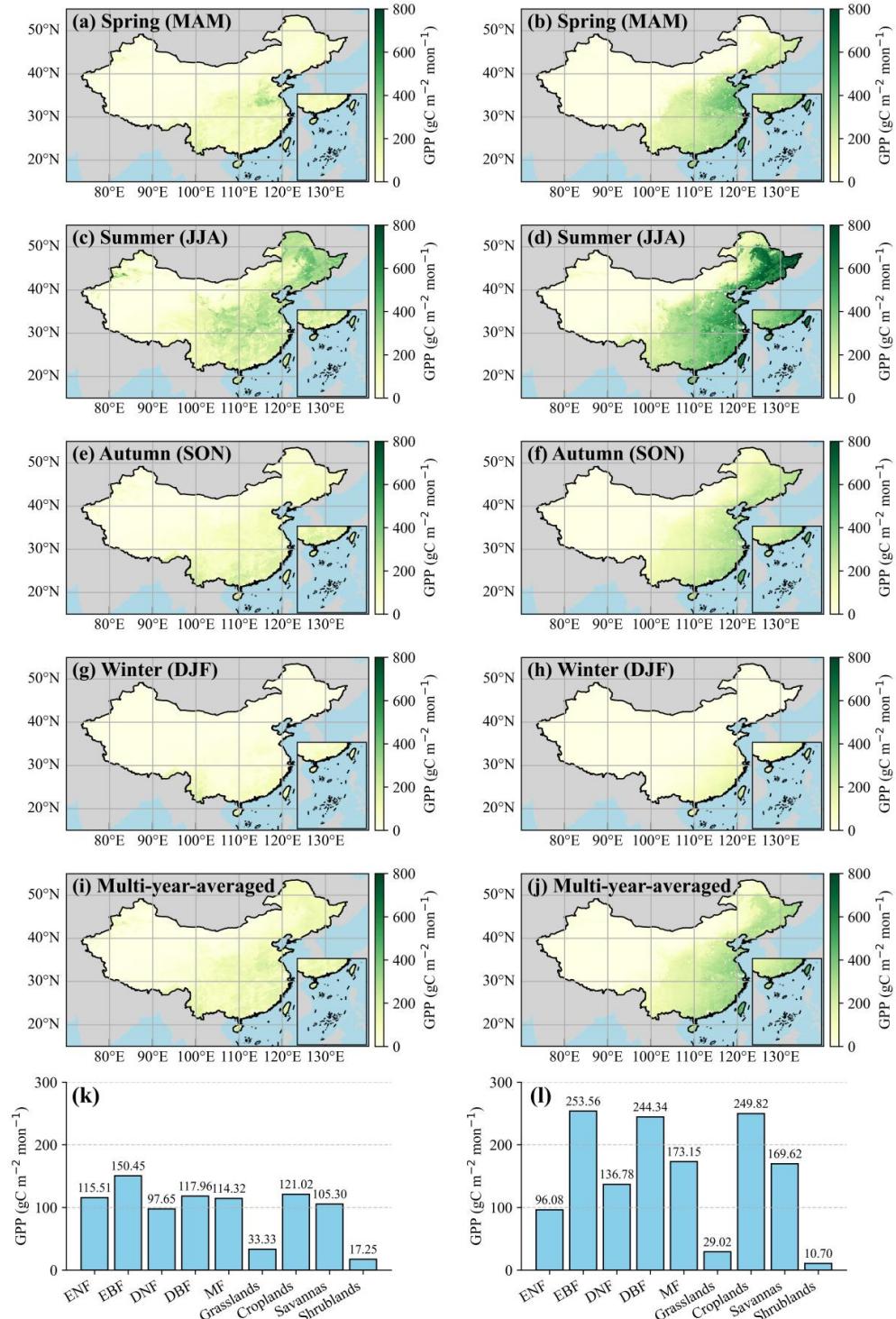


369
370 **Figure 3.** Taylor skill score (TSS) and squared correlation coefficient (R^2) evaluating Noah-MP simulated
371 GPP against site-level observations across 48 ensemble experiments. Box plots represent the distribution of
372 results from 48 ensemble experiments, showing the minimum, first quartile, median, third quartile, and
373 maximum values.

374 4.1.2 Spatial Validation Using the PML GPP Dataset

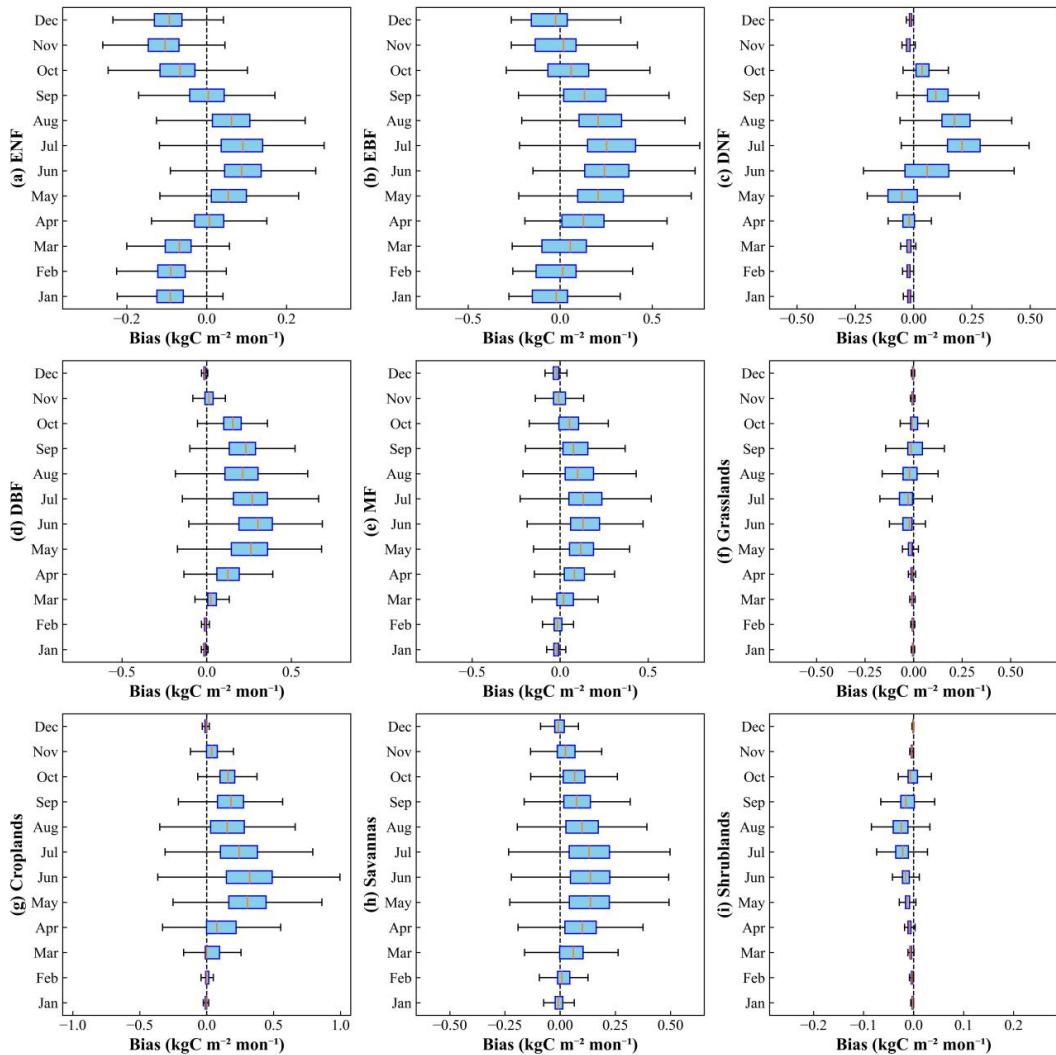
375 To further evaluate the spatial representativeness of Noah-MP simulated GPP, we
376 conducted a spatial comparison with the PML-GPP product. **Figure 3** presents the spatial
377 distribution and seasonal variations of GPP across China from two sources: the PML dataset
378 (**Figures 3a, c, e, g, i, k**), serving as reference data, and the Noah-MP multi-physics ensemble
379 mean (**Figures 3b, d, f, h, j, l**). Both datasets revealed clear seasonal GPP patterns, characterized
380 by summer peaks and winter valleys, highlighting climate phenology carbon uptake. In spring,
381 GPP in China showed a northwest-to-southeast increasing gradient, reaching highest values
382 appearing in the central and lower Yangtze River Basin. During summer, GPP reached its peak

383 in the high-productivity zones, including eastern, southern, and northeastern China, probably
384 attributed to favorable radiation, temperature, and precipitation conditions. In autumn, GPP
385 declined along a southeast-to-northwest gradient. During winter, photosynthetic activity was
386 minimal, with near-zero GPP in northern and high-altitude regions, while southern China
387 maintained modest productivity. The multi-year mean GPP follows hydroclimatic patterns:
388 highest in warm-humid southeast, lowest in cold-arid northwest. Vegetation growth is promoted
389 by sufficient water and heat in water-rich regions, whereas in water-limited regions, extreme
390 temperatures and scarcity of moisture often constrain vegetation productivity (Piao et al., 2013).
391 **Figures 3k and 3l** show GPP variations across different vegetation types. Forests, croplands, and
392 savannas exhibited relatively higher GPP, while grasslands and shrublands showed lower GPP.
393 Vegetation exhibiting lower productivity is generally located in the northern drylands, where
394 both moisture and temperature act as constraints (Li et al., 2023; Qiu et al., 2020). Additionally,
395 GPP across different vegetation types is determined not only by climatic hydrological drivers but
396 also by the physiological characteristics of the species (Waring et al., 1998; Reich et al., 1997).



398 **Figure 4.** Spatial distribution of GPP for different seasons and the multi-year mean. The left column presents
399 the GPP distribution derived from the PML dataset, while the right column shows the ensemble mean GPP
400 distribution from the Noah-MP model.

401 Monthly biases of the Noah-MP ensemble mean, compared to the PML dataset across
402 vegetation types, are depicted in **Figure 5**. The results revealed substantial variability in monthly
403 GPP bias. Grasslands and shrublands exhibited minimal biases, whereas EBF and croplands
404 displayed notably larger positive biases, particularly during the growing season. The
405 overestimation was more pronounced in high-productivity ecosystems in eastern China, which
406 have substantial carbon sequestration capacity. The underlying causes of these discrepancies,
407 especially in high-productivity seasons and regions, need further exploration.



408

409 **Figure 5.** Monthly bias of Noah-MP ensemble mean GPP across vegetation types. The box show pixel-level
 410 variability and red lines indicate the mean.

411 4.2 Physical process sensitivity

412 **Figure 6** presents the spatial pattern of the Sobol' sensitivity of the four physical
 413 processes at multi-year and seasonal scales. Focusing on the multi-year scale, radiation transfer
 414 exhibited the highest sensitivity on the Tibetan Plateau. Across most Chinese regions excluding
 415 the Tibetan Plateau and the western part of the Yunnan-Guizhou Plateau, GPP showed the
 416 highest sensitivity to the β -factor, indicating that water availability is the main factor limiting

417 carbon assimilation. The turbulence process showed low sensitivity to GPP simulation. The
418 runoff generation schemes showed slight sensitivity across China, particularly in the Hai River
419 Basin, Huai River Basin, and the Yunnan-Guizhou Plateau.

420 The Tibetan Plateau and northeastern Inner Mongolia exhibited the strongest GPP
421 response to changes in radiation transfer (**Figure 6a**). Theoretically, in such radiation-rich
422 environments, radiation transfer should not be the dominant limiting factor for GPP. However,
423 Figure S2 reveals substantial differences in APAR (and thus GPP) between the RAD01 and
424 RAD02 parameterization schemes across these areas. This discrepancy primarily arises from
425 RAD01 incorporating vegetation gap effects in radiation transfer calculation, while RAD02 does
426 not (Niu and Yang, 2004). For densely forested canopies with closed structures (Fig. S3-S7),
427 differences between the two schemes are relatively small. In contrast, grasslands and sparse
428 shrubs are the predominant vegetation types across the Tibetan Plateau and northeastern Inner
429 Mongolia, where vegetation aggregation and gap distribution are more pronounced, thereby
430 amplifying differences in canopy radiation transfer.

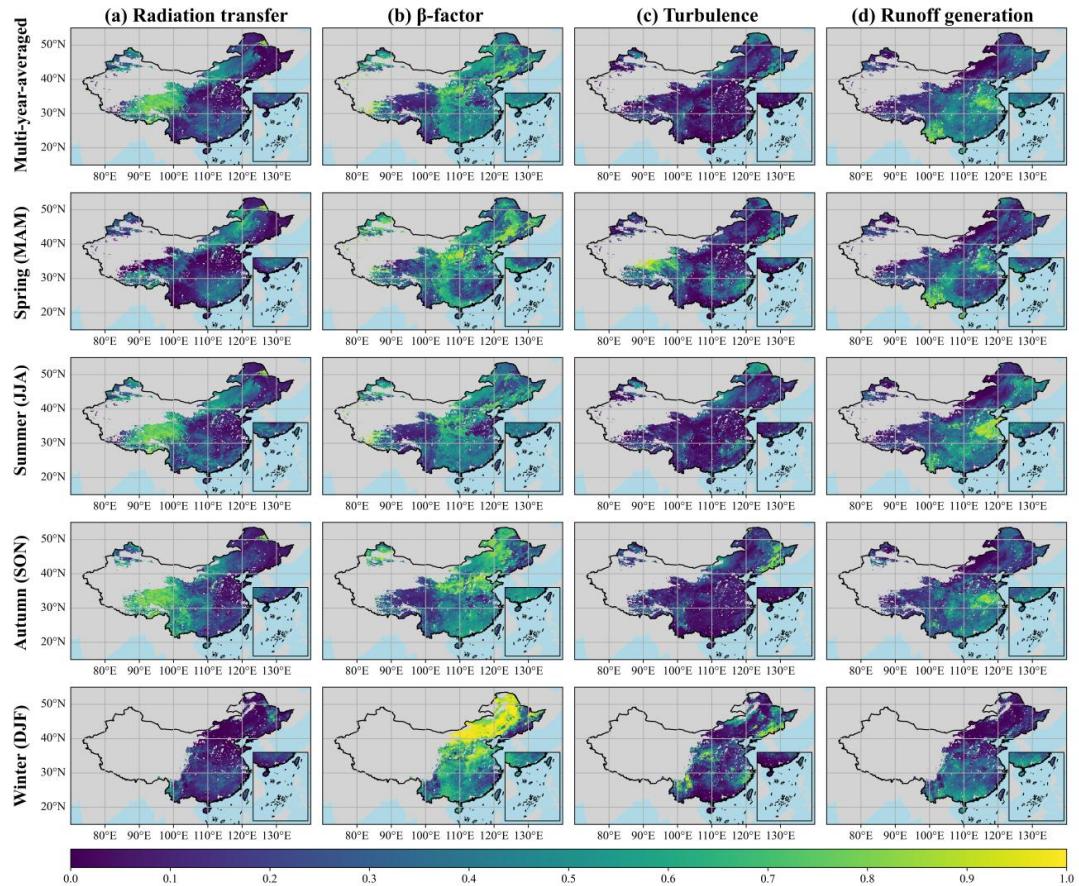
431 GPP simulations were more strongly influenced by the β -factor across most Chinese
432 regions, particularly the northern arid and semi-arid areas (**Figure 6b**). These regions are
433 characterized by abundant available energy, but are primarily constrained by water availability.
434 During spring and summer, increased ET intensified soil moisture stress, with the β -factor
435 critically regulating GPP. This water-driven effect was predominantly observed in Northwest
436 China and the Songliao Plain. In Northwest China, low precipitation made water the primary
437 constraint on carbon assimilation. Similarly, in the Songliao River Basin, a key Chinese
438 agricultural zone, high crop water demand, meant droughts substantially affected GPP dynamics.
439 Although winter vegetation dormancy reduced GPP, the β -factor remained sensitive due to its
440 "lag effect" on soil moisture, which influenced vegetation recovery in the subsequent spring
441 (Knapp et al., 2008; Schwinnig and Sala, 2004). As other processes showed low sensitivities in
442 winter, the sensitivity of the β -factor became particularly pronounced.

443 At the multi-year scale, turbulence exhibited low sensitivity to GPP across most of China,
444 with detectable effects confined to the forested area in eastern Northeast China. This is primarily
445 because turbulence operates as a short-term micrometeorological process that typically fluctuates
446 at sub-hourly to hourly timescales (Baldocchi, 2003). In addition, ecosystems such as grasslands,

447 croplands, and savannas usually exhibit weak vertical gradients of CO₂ and water vapor, making
448 them less dependent on turbulent mixing. In contrast, forest ecosystems in eastern Northeast
449 China are characterized by tall and dense canopies, where pronounced vertical stratification
450 requires effective turbulent transport to facilitate the transfer of gases from the canopy to the
451 atmosphere (Stoy et al., 2006).

452 Runoff generation exhibited high sensitivity in China's eastern regions, particularly in the
453 Hai River Basin, the Huai River Basin, and Yunnan Province, with consistent spatial patterns
454 in all seasons except winter. In Yunnan Province, runoff generation is most sensitive in spring.
455 Yunnan's complex terrain and uneven water distribution make runoff vital for water
456 redistribution during dry seasons (Winkler et al., 2018; Immerzeel et al., 2010). The region's
457 warm climate and high elevation cause early spring snowmelt, which boosts soil moisture and
458 supports timely vegetation growth (Barnett et al., 2005). Runoff generation is most sensitive in
459 summer in the Hai River Basin and Huai River Basin. In these basins, concentrated summer
460 precipitation and irrigation are crucial for maintaining cropland GPP during drier periods. During
461 winter, the sensitivity weakened and was largely restricted to southern regions. Winter
462 precipitation reduction and vegetation dormancy decreased runoff sensitivity to GPP simulations,
463 yet some regions in southern China remained sensitive as winter soil moisture and water
464 availability affected spring vegetation recovery.

465 Soil moisture stress (β -factor) and radiation transfer were the main limiting factors for
466 GPP in dry regions, including Northwest China. By contrast, in wet regions such as southern
467 China, runoff generation and turbulence seasonally regulated carbon assimilation. During peak
468 growth periods (spring and summer), radiation transfer and soil moisture stress more strongly
469 impacted GPP, increasing sensitivity. Although GPP was low in winter, soil moisture stress still
470 impacted model outputs in eastern Inner Mongolia and Northwest China by influencing
471 vegetation recovery, showing notable seasonal lag effects.



472
 473 **Figure 6.** The Sobol' index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the
 474 four physical processes (i.e., radiation transfer, β -factor, turbulence, and runoff generation). Notably, blank
 475 areas represent regions with zero GPP under all 48 simulation schemes due to a lack of vegetation cover,
 476 making it impossible to assess sensitivity.

477 **Figure 7** shows the seasonal patterns of the processes exerting the strongest control on
 478 GPP. As in **Figure 6**, radiation transfer was dominant process over the Tibetan Plateau at the
 479 multi-year scale as well as in summer and autumn while winter GPP in this region dropped to
 480 nearly zero. The β -factor dominated in the water-limited regions (i.e., northwest China, the
 481 Northeast Plain, and parts of southern China), reflecting its broad significance. Runoff mostly
 482 affected Yunnan and the North China Plain. Turbulence was the key influence in high-elevation
 483 forest areas (i.e., Changbai Mountains forest region) in spring and winter.

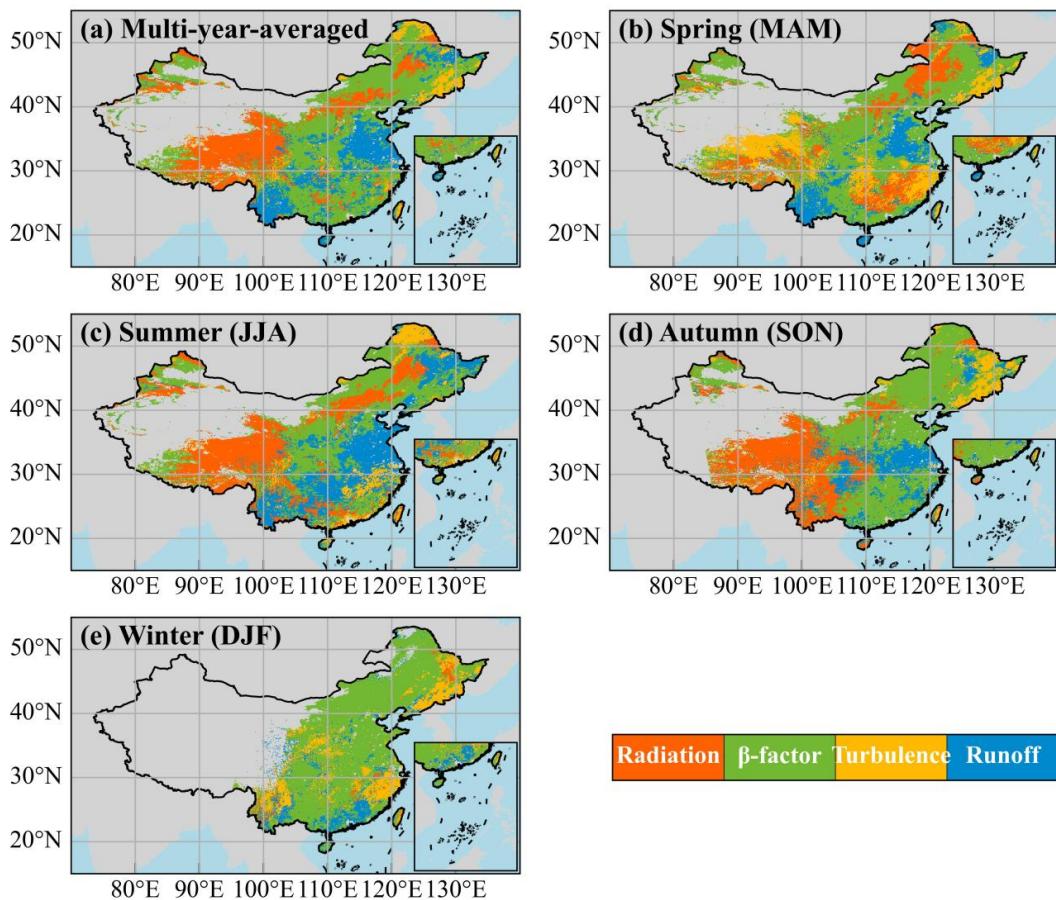
484 Spatially, the dominant factors controlling GPP exhibit significant spatial variability
 485 across China. At multi-year scales, radiation transfer was the primary controlling factor of GPP

486 in the northeastern Inner Mongolia and Tibetan Plateau. This mainly results from the divergent
487 performance of radiation schemes in grasslands and sparse shrubs (Figs. S2). The β -factor was
488 particularly influential in most regions of China. In the arid northwest and northeast, as well as
489 southern regions with seasonal water shortages, low soil moisture limited GPP, making the β -
490 factor a key control, as water scarcity reduced photosynthetic efficiency. In high-elevation forest
491 regions such as the Lesser Khingan and Changbai Mountains, turbulent heat flux plays a key role
492 in regulating GPP, especially during cold seasons. Turbulent heat exchange helps maintain
493 canopy temperatures above freezing, thereby extending the photosynthetic period (Bonan et al.,
494 2018; Ensminger et al., 2006). In areas with enclosed terrain, including valleys and basins,
495 turbulence mitigates the buildup of cold air, making this effect more noticeable (Wang et al.,
496 2016).. Runoff played a dominant role in southwestern and eastern China, where complex terrain
497 and uneven precipitation led to increased sensitivity to GPP in areas like river basins.

498 The dominant processes controlling GPP varied significantly across the four seasons.
499 Turbulence became more influential in spring, dominating GPP dynamics in the Tibetan Plateau,
500 Changbai Mountains, and parts of central and eastern China. Rising temperatures and winds
501 increased surface heating and atmospheric instability, enhancing turbulence. As plants enter their
502 growing season with higher CO₂ demand, turbulence enhances gas exchange, boosting
503 photosynthesis and thus increasing its impact on GPP (Baldocchi, 2014; Finnigan, 2000). In
504 summer, the distribution of dominant physical processes closely resembled the multi-year
505 average, likely because the Noah-MP ensemble showed the largest spread during summer. In
506 autumn, the main processes in the Yunnan-Guizhou Plateau shifted from runoff generation to
507 radiation transfer. Runoff generation was less impactful due to reduced rainfall and smaller
508 runoff differences. Solar radiation became the main limiting factor (Wang et al., 2023). When
509 radiation levels were sufficiently high, photosynthetic activity stayed high. In winter, the β -factor
510 was the main driver of GPP, while radiation had minimal effect. This is because low
511 temperatures suppress vegetation activity, making radiation less sensitive to GPP changes (Fu et
512 al., 2017). Conversely, in regions with winter-spring dry seasons like Southwest China, soil
513 moisture becomes the dominant control on GPP (Zhou et al., 2019).

514 Overall, the dominant physical processes controlling GPP exhibit both seasonal and
515 spatial variability. Spatially, radiation transfer was the primary driver of GPP on the Tibetan
516 Plateau, while the β -factor, which represents vegetation stomatal response to soil moisture,

517 played a dominant role across most other regions of China, including the northwest, the
518 Northeast Plains, and parts of southern China. Notably, the β -factor is the principal control on
519 GPP throughout most of the year, particularly in winter, when its influence extends nearly the
520 whole of China. During spring and winter, turbulence primarily affects GPP, whereas in summer,
521 runoff generation plays a larger role; overall, the β -factor remains the key driver..



522
523 **Figure 7.** Spatial distributions of the dominant physical process for the Noah-MP ensemble-simulated multi-
524 year-averaged and seasonal GPP.

525 4.3 Parameterization scheme optimization across different vegetation types

526 To determine the best parameterization scheme for dominant physical processes in GPP
527 simulations across different vegetation types, we analyzed the process with the highest Sobol'
528 sensitivity index for each vegetation type. Figure 8 presents the total Sobol' sensitivity indices of

529 Noah-MP-simulated GPP (multi-year average and seasonal) for four physical processes across
530 vegetation types. These variations suggest that the dominant processes governing GPP differ
531 depending on the balance between water and energy limitations.

532 The sensitivity of GPP simulations to key physical processes varied significantly across
533 vegetation types, with shrubland ecosystems being most sensitive to the radiation transfer
534 process (**Figure 8**). Shrublands, widely distributed in arid regions and the eastern Tibetan
535 Plateau, exhibited high sensitivity to radiation transfer (index = 0.92), but showed minimal
536 sensitivity to the β -factor, turbulence, and runoff generation. The RAD process directly
537 influences the amount of shortwave radiation absorbed by vegetation (SAV) and the absorbed
538 photosynthetically active radiation (APAR). As shown in **Figure S8**, simulations using the
539 RAD01 scheme produced greater SAV and APAR values. In the Noah-MP model, the radiation
540 process indirectly regulates vegetation growth and leaf area index (LAI) by modulating
541 photosynthesis, which mainly depend on solar radiation and canopy PAR absorption.
542 Consequently, the simulated LAI and fraction of vegetated area (FVEG) varied significantly
543 across different radiation transfer schemes. The results suggest that the RAD01 scheme yields
544 more realistic simulations and better aligning with actual conditions.

545 The β -factor process exhibited the highest sensitivity in GPP simulations over ENF,
546 savannas, croplands, and grasslands (**Figure 8**). Although all β -factor parameterization schemes
547 regulate photosynthetic and transpiration through modulating stomatal resistance, their
548 performance varied substantially among ecosystem. Specifically, in ENF ecosystems, all three
549 schemes showed a sharp increase in transpiration rate starting around DOY 60, quickly reaching
550 a peak (**Figure S9**). Meanwhile, APAR exhibited a bimodal pattern, resulting in simulated GPP
551 to peak earlier than observations. For savannas and croplands, the differences among the three
552 schemes were minor but schemes systematically overestimated GPP. In grassland ecosystems,
553 although the BTR03 scheme significantly enhanced the simulated APAR and transpiration rate,
554 GPP was still substantially underestimated. These findings demonstrate systemic limitations in
555 current β -factor parameterizations across different ecosystems, as even the most favorable
556 scheme fails to accurately capture ecosystem-specific GPP dynamics.

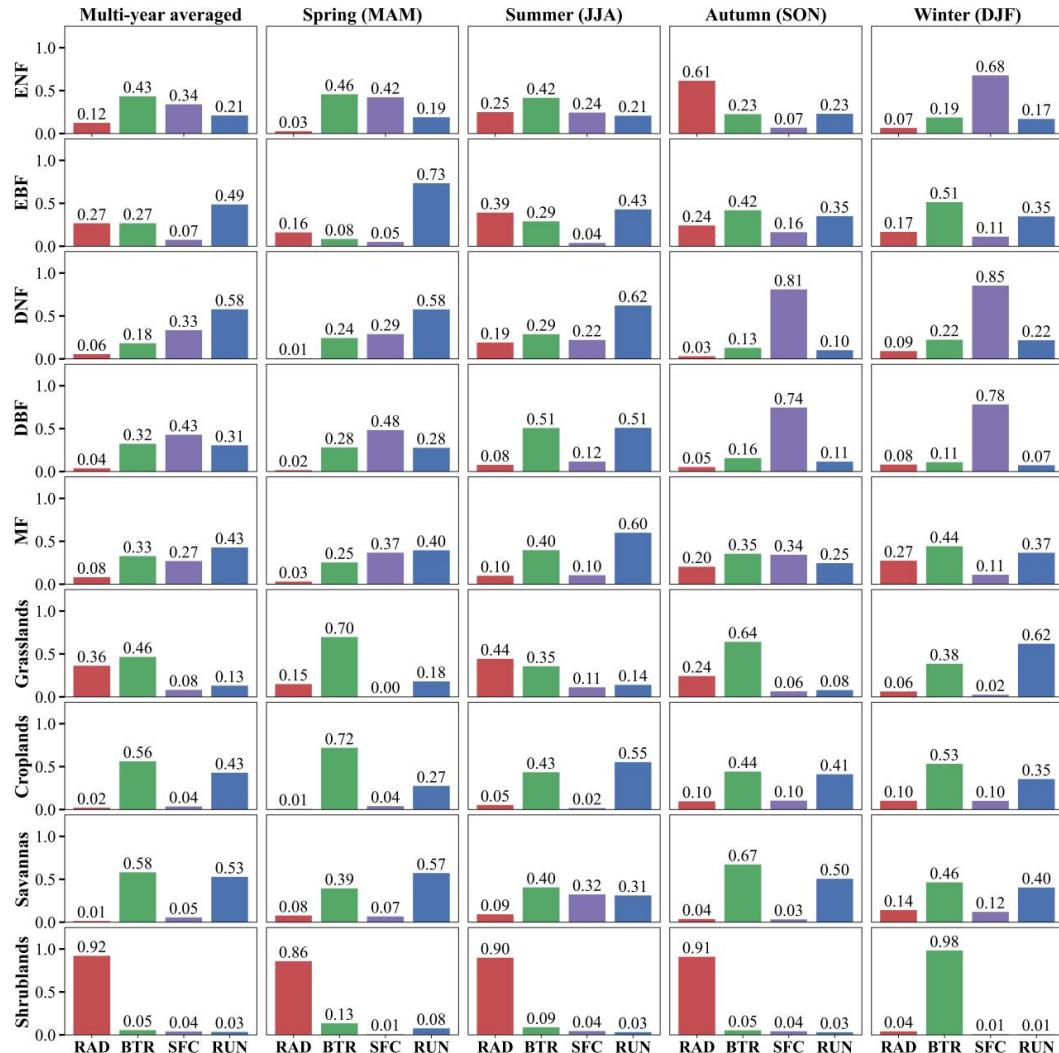
557 The turbulence process exhibited the highest Sobol' sensitivity index of GPP in DBF
558 ecosystems. Noah-MP simulations revealed that the surface exchange coefficient directly

559 influences the vegetation-atmosphere exchanges of sensible and latent heat flux. The SFC01
560 scheme generated higher sensible heat flux and turbulent exchange coefficients than to the
561 SFC02 scheme, whereas SFC02 resulted in relatively higher latent heat values (**Figure S10**).
562 Despite the substantial differences in energy flux simulations between the two schemes, their
563 simulated GPP values differed only slightly. Compared with observations, both schemes showed
564 systematic GPP overestimation, suggesting that vegetation energy-use efficiency may be
565 overrepresented in the model.

566 The runoff generation process exhibited the highest sensitivity in GPP simulations for
567 EBF, DNF, and MF (**Figure 8**). Different runoff parameterization schemes alter the partitioning
568 of surface and subsurface runoff, which in turn modifies soil moisture conditions and drives
569 differences in simulated vegetation dynamics, including LAI, fraction of vegetated area (FVEG),
570 and ultimately GPP (**Figure S11**). The impact of runoff generation parameterizations on GPP is
571 primarily mediated through changes in soil moisture. However, the four runoff generation
572 schemes produced similar GPP simulations, with only minor differences relative to observed
573 GPP. Moreover, all Noah-MP scheme combinations systematically overestimated GPP. These
574 results suggest that further refinement of model parameterizations is necessary to improve the
575 accuracy of GPP simulations.

576 This systematic analysis reveals distinct ecosystem-dependent controls on GPP
577 simulations in Noah-MP. Among the key physical processes, the radiation transfer scheme
578 dominates in shrublands, with RAD01 performing best due to its better capturing radiation
579 absorption (SAV/APAR) and subsequent vegetation dynamics (LAI/FVEG) (**Table S2, S3**). For
580 β -factor, while exhibiting high sensitivity across ENF, savannas and croplands, all current
581 schemes show critical limitations - even the optimal BTR03 scheme substantially underestimates
582 GPP. The turbulence process proves most influential in DBF ecosystems, though both SFC01
583 and SFC02 similarly overestimate GPP, suggesting fundamental issues in energy-carbon
584 coupling. Similarly, for runoff generation processes in tropical/temperate forests, all four
585 parameterizations produce comparable but consistently overestimated GPP results. Importantly,
586 these systematic biases across multiple ecosystems indicate the model's inherent tendency to
587 overestimate vegetation resource use efficiency. These findings collectively underscore the need
588 for: (1) adopting RAD01 for shrubland simulations, (2) comprehensive recalibration of energy-

589 water-carbon coupling mechanisms across all ecosystems to reduce persistent overestimation
 590 biases.



591
 592 **Figure 8.** The Sobol' index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the
 593 four physical processes across different vegetation types. Here, RAD denotes radiation transfer, BTR denotes
 594 the β -factor, SFC denotes turbulence, and RUN denotes runoff generation.

595 5 Conclusions and discussion

596 We examined the performance of the Noah-MP ensemble with multiple
 597 parameterizations in reproducing GPP, based on flux tower measurements and PML GPP
 598 datasets. The Noah-MP ensemble was generated by perturbing parameterization schemes of four

599 key physical processes: radiation transfer, turbulence, the β -factor, and runoff generation. In
600 China, GPP showed significant spatial-temporal variation, with spring/summer as peak seasons
601 and southeastern/northeastern regions acting as major carbon sinks. Vegetation type greatly
602 shaped GPP, with forests being the largest carbon contributors, while grasslands and shrublands
603 exhibited lower productivity. The Noah-MP effectively captured the spatiotemporal patterns of
604 GPP, but overestimated forest and cropland GPP in peak seasons, potentially due to
605 underestimating the photosynthesis inhibition under soil moisture deficits. The model exhibited
606 strong performance across most Chinese ecosystems, with moderate accuracy in shrublands, and
607 notably inferior results in evergreen forest, demonstrating its applicability in GPP simulation for
608 Chinese terrestrial ecosystem.

609 Our results align with Arsenault et al. (2018), indicating that Noah-MP overestimates
610 GPP throughout the growing season, notably in forests and croplands. This overestimation likely
611 arises from the model's insufficient response to water stress and stomatal regulation under
612 drought conditions, which leads to the overestimation of carbon assimilation rates. Additionally,
613 limitations in phenology-related parameterizations and the dynamic vegetation module might
614 lead to excessive carbon allocation to photosynthetic organs, such as buds in spring (Ma et al.,
615 2017; Niu et al., 2011). Addressing current model limitations requires advancing carbon
616 allocation schemes, refining photosynthetic temperature regulation, and integrating nutrient
617 constraints, with an emphasis on nitrogen, within vegetation processes (Gim et al., 2017; Cai et
618 al., 2016; Schaefer et al., 2012; Stöckli et al., 2008).

619 With the Noah-MP ensemble, the Sobol' total sensitivity index was applied to determine
620 the impact of major physical processes on GPP in China's terrestrial ecosystems. China's
621 ecosystem GPP was influenced by multiple processes, showing spatial heterogeneity. In arid
622 regions like Northwest China, the β -factor (soil moisture stress) and radiation transfer limited
623 GPP, while in humid southern China, runoff generation and turbulence regulated carbon
624 assimilation. During peak growth periods, radiation transfer and the β -factor strongly impacted
625 GPP. For different ecosystems, water-related factors, including the β -factor and runoff
626 generation, mainly influenced cropland and savanna GPP, while radiation transfer and turbulence
627 affected shrublands and forests respectively. GPP's dominant processes varied seasonally and
628 spatially, with the β -factor dominated in most Chinese regions and radiation transfer showed
629 stronger control on the Tibetan Plateau. Except in summer, the β -factor was the main GPP driver,

630 especially in winter. In spring, there are no obvious limiting factors, except for a slight sensitivity
631 exhibited by turbulence; in summer, both radiation transfer and runoff generation show moderate
632 influence on GPP; in autumn, the dominant process was radiation transfer.

633 The sensitivity of physical process parameterizations is critical for identifying the
634 primary drivers and mechanisms underlying the spatiotemporal variations of GPP. In spring,
635 turbulence significantly influences GPP by modulating surface energy fluxes, which in turn
636 regulate vegetation–atmosphere gas exchange and surface temperature (Misson et al., 2007).
637 Specifically, turbulent transport of heat and moisture helps maintain canopy temperatures above
638 freezing and enhances carbon dioxide exchange efficiency, thereby extending the active
639 photosynthetic period (Misson et al., 2007). Additionally, turbulence mitigates cold air
640 accumulation in topographically enclosed areas such as valleys and basins, further supporting
641 microclimatic conditions favorable for vegetation growth (Ensminger et al., 2006). In China's
642 arid and semi-arid regions, including the Northwest and Northeast Plain, the β -factor exerted a
643 pronounced influence on autumn and winter GPP (Kannenberg et al., 2024), emphasizing the
644 critical influence of soil moisture availability on transpiration and carbon uptake in these water-
645 limited ecosystems, aligning with previous findings (Wang et al., 2023; Zheng et al., 2019;
646 Nelson et al., 2018; Wolf et al., 2016). Runoff played a significant role in controlling GPP in
647 humid regions, including the Yunnan-Guizhou Plateau and eastern China. It impacts
648 photosynthetic efficiency by altering surface and subsurface water availability (Lei et al., 2014).
649 Incorporating detailed runoff-soil moisture interactions and vegetation-specific hydrological
650 processes may enhance simulation accuracy in these regions. Overall, GPP variability in China
651 arose from complex interactions of climatic drivers, vegetation types, and ecosystem-specific
652 physiology. This highlights the need for model improvements in simulating radiation transfer,
653 soil moisture transport, and vegetation dynamics to reduce uncertainties. Notably, sensitivity
654 patterns varied regionally even within the same vegetation type, reflecting local climate and
655 hydrological influences. Such spatial heterogeneity indicates the importance of conducting
656 region-specific modeling and implementing targeted management, such as optimizing water
657 resources in arid areas and boosting light-use efficiency in humid regions.

658 Based on systematic model performance evaluations and parameterization scheme
659 sensitivity analyses, this study proposes optimized Noah-MP model configurations for terrestrial
660 ecosystems in China. The findings indicate that the modified two-stream approximation scheme

661 (RAD01) exhibits superior performance in simulating radiation transfer processes, particularly
662 showing significant advantages in grasslands and shrubland ecosystems. For β -factor, while the
663 three β -factor schemes show minimal differences across most vegetation types, BTR03
664 demonstrates relatively better performance in cropland ecosystems. Importantly, both surface
665 exchange (SFC01/SFC02) and runoff parameterizations consistently overestimate GPP without
666 showing substantial inter-scheme performance variations. Consequently, we recommend: (1)
667 adopting RAD01 for radiation transfer simulations, (2) prioritizing BTR03 for cropland
668 applications, and (3) focusing on fundamental improvements in energy-carbon coupling and
669 hydro-vegetation interaction mechanisms to address the identified systematic biases and enhance
670 overall model accuracy.

671 This study assessed the ability of Noah-MP to simulate GPP across Chinese ecosystems,
672 explored key physical processes shaping GPP variations, and offered optimal parameterization
673 scheme recommendations for GPP modeling. The findings contribute to improving ecosystem
674 carbon uptake modeling and support the improvement of carbon management strategies.
675 However, several limitations warrant attention in future work:

676 (1) Parameterization schemes limitations: only a subset of parameterization schemes was
677 included due to computational constraints, with other parameters and parameterization schemes
678 remaining not considered. Future research should expand the ensemble by incorporating more
679 parameters and schemes related to vegetation carbon sequestration, such as canopy height and
680 rain-snow partitioning schemes. Furthermore, plant physiology-related processes, like plant
681 hydraulics, were not incorporated in the Noah-MP 5.0 version used (Li et al., 2021). Subsequent
682 research is needed to include these processes and evaluate their influence on GPP. (2) Validation
683 data uncertainty: though the PML GPP (China) dataset used here was deemed superior by prior
684 studies, it still deviates from site observations. The PML GPP shows strong agreement with flux
685 tower observations, with an NSE of 0.82 and an RMSE of $1.71 \text{ g C m}^{-2} \text{ d}^{-1}$ (He et al., 2022). (3)
686 Model structural constraints: current physical process models like Noah-MP simplify the
687 parameterization of vegetation carbon fluxes, introducing uncertainties in GPP simulation.
688 Integrate data assimilation and machine-learning-based modeling can effectively reduce such
689 uncertainties and enhance simulation accuracy.

690 **Acknowledgment**

691 This work was funded by the National Key Research and Development Program of China
692 (Grant No. 2022YFF1300501), the Natural Science Foundation of Liaoning Province (Grant No.
693 2024-BSBA-62), the Open Research Fund Project of Key Laboratory of Ecosystem Carbon
694 Source and Sink, China Meteorological Administration (Grant No. ECSS-CMA202305), the
695 Fundamental Research Funds of the Chinese Academy of Meteorological Sciences (Grant No.
696 2024Z001).

697 **Data availability statement**

698 All public datasets used in this study (including CMFD, PML-V2, MCD12Q1, ERA5-
699 Land, and SoilGrids 2.0) were obtained from their respective official sources cited in the article.
700 The source code and simulated data generated in this study have been uploaded to Zenodo
701 (<https://doi.org/10.5281/zenodo.18158937>, Lai, 2026).

702 **CRediT authorship contribution statement**

703 J.L. conceived the study, processed and analyzed the data, and wrote the original draft.
704 W.F. and J.W. secured funding, supervised the project, and contributed to conceptualization and
705 manuscript revision. A.W., Y.L., L.S., Y.Z., Y.D., R.C., and R.L. participated in reviewing and
706 editing the manuscript. All authors contributed to the final version and approved its submission.

707 **Declaration of competing interest**

708 The authors declare no conflicts of interest.

709 **References**

710 Arsenault, K.R., Nearing, G.S., Wang, S., Yatheendradas, S., Peters-Lidard, C.D., 2018. Parameter Sensitivity of the
711 Noah-MP Land Surface Model with Dynamic Vegetation. *Journal of Hydrometeorology* 19, 815–830.
712 <https://doi.org/10.1175/jhm-d-17-0205.1>

713 Baker, I., Denning, A.S., Hanan, N., Prihodko, L., Uliasz, M., Vidale, P.-L., Davis, K., Bakwin, P., 2003. Simulated
714 and observed fluxes of sensible and latent heat and CO₂ at the WLEF-TV tower using SiB2.5. *Global
715 Change Biology* 9, 1262–1277. <https://doi.org/10.1046/j.1365-2486.2003.00671.x>

716 Baldocchi, D., 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – the state
717 and future of the eddy covariance method. *Global Change Biology* 20, 3600–3609.
718 <https://doi.org/10.1111/gcb.12649>

719 Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of
720 ecosystems: past, present and future.

721 Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A Model Predicting Stomatal Conductance and its Contribution to the
722 Control of Photosynthesis under Different Environmental Conditions, in: Biggins, J. (Ed.), *Progress in
723 Photosynthesis Research: Volume 4 Proceedings of the VIIth International Congress on Photosynthesis*
724 Providence, Rhode Island, USA, August 10–15, 1986. Springer Netherlands, Dordrecht, pp. 221–224.
725 https://doi.org/10.1007/978-94-017-0519-6_48

726 Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2005. Potential impacts of a warming climate on water availability in
727 snow-dominated regions. *Nature* 438, 303–309. <https://doi.org/10.1038/nature04141>

728 Bonan, A.G., 1996. A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric
729 Studies: Technical Description and User's Guide.

730 Bonan, G.B., Patton, E.G., Harman, I.N., Oleson, K.W., Finnigan, J.J., Lu, Y., Burakowski, E.A., 2018. Modeling
731 canopy-induced turbulence in the Earth system: a unified parameterization of turbulent exchange within
732 plant canopies and the roughness sublayer (CLM-ml v0). *Geoscientific Model Development* 11, 1467–1496.
733 <https://doi.org/10.5194/gmd-11-1467-2018>

734 Bonan, G.B., Williams, M., Fisher, R.A., Oleson, K.W., 2014. Modeling stomatal conductance in the earth system:
735 linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum.
736 *Geoscientific Model Development* 7, 2193–2222. <https://doi.org/10.5194/gmd-7-2193-2014>

737 Bu, T., Wang, C., Chen, H., Meng, X., Li, Z., Chen, Y., Sheng, D., Zhao, C., 2024. An Investigation into the
738 Applicability of the SHUD Model for Streamflow Simulation Based on CMFD Meteorological Data in the
739 Yellow River Source Region. *Water* 16, 3583. <https://doi.org/10.3390/w16243583>

740 Cai, W., Yuan, W., Liang, S., Liu, S., Dong, W., Chen, Y., Liu, D., Zhang, H., 2014. Large Differences in
741 Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. *Remote
742 Sensing* 6, 8945–8965. <https://doi.org/10.3390/rs6098945>

743 Cai, X., Yang, Z.-L., David, C.H., Niu, G.-Y., Rodell, M., 2014. Hydrological evaluation of the Noah-MP land
744 surface model for the Mississippi River Basin. *Journal of Geophysical Research: Atmospheres* 119, 23–38.
745 <https://doi.org/10.1002/2013JD020792>

746 Cai, X., Yang, Z.-L., Fisher, J.B., Zhang, X., Barlage, M., Chen, F., 2016. Integration of nitrogen dynamics into the
747 Noah-MP land surface model v1.1 for climate and environmental predictions. *Geoscientific Model
748 Development* 9, 1–15. <https://doi.org/10.5194/gmd-9-1-2016>

749 Chang, M., Liao, W., Wang, X., Zhang, Q., Chen, W., Wu, Z., Hu, Z., 2020. An optimal ensemble of the Noah-MP
750 land surface model for simulating surface heat fluxes over a typical subtropical forest in South China.
751 *Agricultural and Forest Meteorology* 281, 107815. <https://doi.org/10.1016/j.agrformet.2019.107815>

752 Chang, X., Xing, Y., Gong, W., Yang, C., Guo, Z., Wang, D., Wang, J., Yang, H., Xue, G., Yang, S., 2023.
753 Evaluating gross primary productivity over 9 ChinaFlux sites based on random forest regression models,
754 remote sensing, and eddy covariance data. *Science of The Total Environment* 875, 162601.
755 <https://doi.org/10.1016/j.scitotenv.2023.162601>

756 Chen, F., Dudhia, J., 2001. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR
757 MM5 Modeling System. Part I: Model Implementation and Sensitivity. *Monthly Weather Review* 129,
758 569–585. [https://doi.org/10.1175/1520-0493\(2001\)129%253C0569:CAALSH%253E2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129%253C0569:CAALSH%253E2.0.CO;2)

759 Chen, F., Janjić, Z., Mitchell, K., 1997. Impact of Atmospheric Surface-layer Parameterizations in the new Land-
760 surface Scheme of the NCEP Mesoscale Eta Model. *Boundary-Layer Meteorology* 85, 391–421.
761 <https://doi.org/10.1023/A:1000531001463>

762 Chen, J.M., Mo, G., Pisek, J., Liu, J., Deng, F., Ishizawa, M., Chan, D., 2012. Effects of foliage clumping on the
763 estimation of global terrestrial gross primary productivity. *Global Biogeochemical Cycles* 26.
764 <https://doi.org/10.1029/2010GB003996>

765 Chen, S.-P., Cui-Hai, Y.O.U., Zhong-Min, H.U., Zhi, C., Lei-Ming, Z., Qiu-Feng, W., 2020. Eddy covariance
766 technique and its applications in flux observations of terrestrial ecosystems. *Chinese Journal of Plant
767 Ecology* 44, 291. <https://doi.org/10.17521/cjpe.2019.0351>

768 Clark, M.P., Kavetski, D., Fenicia, F., 2011. Pursuing the method of multiple working hypotheses for hydrological
769 modeling. *Water Resources Research* 47. <https://doi.org/10.1029/2010WR009827>

770 Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E., Gutmann, E.D., Wood,
771 A.W., Gochis, D.J., Rasmussen, R.M., Tarboton, D.G., Mahat, V., Flerchinger, G.N., Marks, D.G., 2015. A
772 unified approach for process-based hydrologic modeling: 2. Model implementation and case studies. *Water
773 Resources Research* 51, 2515–2542. <https://doi.org/10.1002/2015WR017200>

774 Clark, M.P., Schaeefli, B., Schymanski, S.J., Samaniego, L., Luce, C.H., Jackson, B.M., Freer, J.E., Arnold, J.R.,
775 Moore, R.D., Istanbulluoglu, E., Ceola, S., 2016. Improving the theoretical underpinnings of process-based
776 hydrologic models. *Water Resources Research* 52, 2350–2365. <https://doi.org/10.1002/2015WR017910>

777 Deardorff, J.W., 1977. A Parameterization of Ground-Surface Moisture Content for Use in Atmospheric Prediction
778 Models.

779 Denning, A.S., Collatz, G.J., Zhang, C., Randall, D.A., Berry, J.A., Sellers, P.J., Colello, G.D., Dazlich, D.A., 1996.
780 Simulations of terrestrial carbon metabolism and atmospheric CO₂ in a general circulation model: Part 1:

781 Surface carbon fluxes. Tellus B: Chemical and Physical Meteorology 48, 521.
782 <https://doi.org/10.3402/tellusb.v48i4.15930>

783 Dickinson, R.E., 1983. Land Surface Processes and Climate—Surface Albedos and Energy Balance, in: Saltzman, B.
784 (Ed.), *Advances in Geophysics, Theory of Climate*. Elsevier, pp. 305–353. [https://doi.org/10.1016/S0065-2687\(08\)60176-4](https://doi.org/10.1016/S0065-2687(08)60176-4)

785 Dickinson, R.E., Shaikh, M., Bryant, R., Graumlich, L., 1998. Interactive Canopies for a Climate Model.
786 Dyer, A.J., 1974. A review of flux-profile relationships. *Boundary-Layer Meteorol* 7, 363–372.
787 <https://doi.org/10.1007/BF00240838>

788 Ensminger, I., Busch, F., Huner, N.P.A., 2006. Photostasis and cold acclimation: sensing low temperature through
789 photosynthesis.

790 Finnigan, J., 2000. Turbulence in Plant Canopies. *Annual Review of Fluid Mechanics* 32, 519–571.
791 <https://doi.org/10.1146/annurev.fluid.32.1.519>

792 Fu, Z., Stoy, P.C., Luo, Y., Chen, J., Sun, J., Montagnani, L., Wohlfahrt, G., Rahman, A.F., Rambal, S., Bernhofer,
793 C., Wang, J., Shirkey, G., Niu, S., 2017. Climate controls over the net carbon uptake period and amplitude
794 of net ecosystem production in temperate and boreal ecosystems. *Agricultural and Forest Meteorology* 243,
795 9–18. <https://doi.org/10.1016/j.agrformet.2017.05.009>

796 Gan, Y., Liang, X.-Z., Duan, Q., Chen, F., Li, J., Zhang, Y., 2019. Assessment and Reduction of the Physical
797 Parameterization Uncertainty for Noah-MP Land Surface Model. *Water Resources Research* 55, 5518–
798 5538. <https://doi.org/10.1029/2019WR024814>

799 Gim, H.-J., Park, S.K., Kang, M., Thakuri, B.M., Kim, J., Ho, C.-H., 2017. An improved parameterization of the
800 allocation of assimilated carbon to plant parts in vegetation dynamics for Noah-MP. *Journal of Advances in
801 Modeling Earth Systems* 9, 1776–1794. <https://doi.org/10.1002/2016MS000890>

802 Green, J.K., Konings, A.G., Alemohammad, S.H., Berry, J., Entekhabi, D., Kolassa, J., Lee, J.-E., Gentine, P., 2017.
803 Regionally strong feedbacks between the atmosphere and terrestrial biosphere. *Nature Geosci* 10, 410–414.
804 <https://doi.org/10.1038/ngeo2957>

805 He, C., Chen, F., Barlage, M., Yang, Z.-L., Wegiel, J.W., Niu, G.-Y., Gochis, D., Mocko, D.M., Abolafia-
806 Rosenzweig, R., Zhang, Z., Lin, T.-S., Valayamkunath, P., Ek, M., Niyogi, D., 2023. Enhancing the
807 Community Noah-MP Land Model Capabilities for Earth Sciences and Applications. *Bulletin of the
808 American Meteorological Society* 104, E2023–E2029. <https://doi.org/10.1175/BAMS-D-23-0249.1>

809 He, J., Yang, K., Li, X., Tang, W., SHAO Changkun,JIANG Yaozhi,DING Baohong, 2025. China meteorological
810 forcing dataset v2.0 (1951–2020). National Tibetan Plateau Data Center.
811 <https://doi.org/10.11888/Atmos.tpdc.302088>

812 He, S., Zhang, Y., Ma, N., Tian, J., Kong, D., Liu, C., 2022. A daily and 500m coupled evapotranspiration and gross
813 primary production product across China during 2000–2020. *Earth System Science Data* 14, 5463–5488.
814 <https://doi.org/10.5194/essd-14-5463-2022>

815 He, X., Liu, S., Bateni, S.M., Xu, T., Jun, C., Kim, D., Li, X., Song, L., Zhao, L., Xu, Z., Wei, J., 2024. Innovative
816 approach for estimating evapotranspiration and gross primary productivity by integrating land data
817 assimilation, machine learning, and multi-source observations. *Agricultural and Forest Meteorology* 355,
818 110136. <https://doi.org/10.1016/j.agrformet.2024.110136>

819 Huang, L., Liu, M., Yao, N., 2023. Evaluation of Ecosystem Water Use Efficiency Based on Coupled and
820 Uncoupled Remote Sensing Products for Maize and Soybean. *Remote Sensing* 15, 4922.
821 <https://doi.org/10.3390/rs15204922>

822 Immerzeel, W.W., van Beek, L.P.H., Bierkens, M.F.P., 2010. Climate Change Will Affect the Asian Water Towers.
823 *Science* 328, 1382–1385. <https://doi.org/10.1126/science.1183188>

824 Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J., 2013. Terrestrial water fluxes dominated by
825 transpiration. *Nature* 496, 347–350. <https://doi.org/10.1038/nature11983>

826 Kannenberg, S.A., Anderegg, W.R.L., Barnes, M.L., Dannenberg, M.P., Knapp, A.K., 2024. Dominant role of soil
827 moisture in mediating carbon and water fluxes in dryland ecosystems. *Nat. Geosci.* 17, 38–43.
828 <https://doi.org/10.1038/s41561-023-01351-8>

829 Keys to Soil Taxonomy, 13th Edition, n.d.

830 Knapp, A.K., Beier, C., Briske, D.D., Classen, A.T., Luo, Y., Reichstein, M., Smith, M.D., Smith, S.D., Bell, J.E.,
831 Fay, P.A., Heisler, J.L., Leavitt, S.W., Sherry, R., Smith, B., Weng, E., 2008. Consequences of More
832 Extreme Precipitation Regimes for Terrestrial Ecosystems. *BioScience* 58, 811–821.
833 <https://doi.org/10.1641/B580908>

834 lai, jie, 2026. Code and Data. <https://doi.org/10.5281/zenodo.18158937>

836 Lei, H., Huang, M., Leung, L.R., Yang, D., Shi, X., Mao, J., Hayes, D.J., Schwalm, C.R., Wei, Y., Liu, S., 2014.
837 Sensitivity of global terrestrial gross primary production to hydrologic states simulated by the Community
838 Land Model using two runoff parameterizations. *Journal of Advances in Modeling Earth Systems* 6, 658–
839 679. <https://doi.org/10.1002/2013MS000252>

840 Li, J., Miao, C., Zhang, G., Fang, Y.-H., Shangguan, W., Niu, G.-Y., 2022. Global Evaluation of the Noah-MP Land
841 Surface Model and Suggestions for Selecting Parameterization Schemes. *Journal of Geophysical Research: Atmospheres* 127, e2021JD035753. <https://doi.org/10.1029/2021JD035753>

842 Li, L., Yang, Z.-L., Matheny, A.M., Zheng, H., Swenson, S.C., Lawrence, D.M., Barlage, M., Yan, B., McDowell,
843 N.G., Leung, L.R., 2021. Representation of Plant Hydraulics in the Noah-MP Land Surface Model: Model
844 Development and Multiscale Evaluation. *Journal of Advances in Modeling Earth Systems* 13,
845 e2020MS002214. <https://doi.org/10.1029/2020MS002214>

846 Li, W.-P., Zhang, Y.-W., Mu, M., Shi, X.-L., Zhou, W.-Y., Ji, J.-J., 2023. Spatial and temporal variations of gross
847 primary production simulated by land surface model BCC_AVIM2.0. *Advances in Climate Change
848 Research, Special Issue on Changing Boreal-Arctic Permafrost and Snow-cover and Their Impacts* 14,
849 286–299. <https://doi.org/10.1016/j.accre.2023.02.001>

850 Li, X., Hu, Z.-Z., Liang, P., Zhu, J., 2019. Contrastive Influence of ENSO and PNA on Variability and Predictability
851 of North American Winter Precipitation. <https://doi.org/10.1175/JCLI-D-19-0033.1>

852 Ma, N., Niu, G.-Y., Xia, Y., Cai, X., Zhang, Y., Ma, Y., Fang, Y., 2017. A Systematic Evaluation of Noah-MP in
853 Simulating Land-Atmosphere Energy, Water, and Carbon Exchanges Over the Continental United States.
854 *Journal of Geophysical Research: Atmospheres* 122, 12,245–12,268. <https://doi.org/10.1002/2017JD027597>

855 Manabe, S., 1969. CLIMATE AND THE OCEAN CIRCULATION.

856 Misson, L., Baldocchi, D.D., Black, T.A., Blanken, P.D., Brunet, Y., Curiel Yuste, J., Dorsey, J.R., Falk, M.,
857 Granier, A., Irvine, M.R., Jarosz, N., Lamaud, E., Launiainen, S., Law, B.E., Longdoz, B., Loustau, D.,
858 McKay, M., Paw U, K.T., Vesala, T., Vickers, D., Wilson, K.B., Goldstein, A.H., 2007. Partitioning forest
859 carbon fluxes with overstory and understory eddy-covariance measurements: A synthesis based on
860 FLUXNET data. *Agricultural and Forest Meteorology* 144, 14–31.
861 <https://doi.org/10.1016/j.agrformet.2007.01.006>

862 Nelson, J.A., Carvalhais, N., Migliavacca, M., Reichstein, M., Jung, M., 2018. Water-stress-induced breakdown of
863 carbon–water relations: indicators from diurnal FLUXNET patterns. *Biogeosciences* 15, 2433–2447.
864 <https://doi.org/10.5194/bg-15-2433-2018>

865 Niu, G.-Y., Yang, Z.-L., 2007. An observation-based formulation of snow cover fraction and its evaluation over
866 large North American river basins. *Journal of Geophysical Research: Atmospheres* 112.
867 <https://doi.org/10.1029/2007JD008674>

868 Niu, G.-Y., Yang, Z.-L., 2004. Effects of vegetation canopy processes on snow surface energy and mass balances.
869 *Journal of Geophysical Research: Atmospheres* 109. <https://doi.org/10.1029/2004JD004884>

870 Niu, G.-Y., Yang, Z.-L., Dickinson, R.E., Gulden, L.E., 2005. A simple TOPMODEL-based runoff parameterization
871 (SIMTOP) for use in global climate models. *Journal of Geophysical Research: Atmospheres* 110.
872 <https://doi.org/10.1029/2005JD006111>

873 Niu, G.-Y., Yang, Z.-L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D.,
874 Rosero, E., Tewari, M., Xia, Y., 2011. The community Noah land surface model with
875 multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale
876 measurements. *Journal of Geophysical Research: Atmospheres* 116. <https://doi.org/10.1029/2010JD015139>

877 Oleson, A.K., Lawrence, A.D., Bonan, A.G., Flanner, A.M., Kluzek, A.E., Lawrence, A.P., Levis, A.S., Swenson,
878 A.S., Thornton, A.P., Dai, A.A., Decker, A.M., Dickinson, A.R., Feddema, A.J., Heald, A.C., Hoffman,
879 A.F., Lamarque, A.J., Mahowald, A.N., Niu, A.G., Qian, A.T., Randerson, A.J., Running, A.S., Sakaguchi,
880 A.K., Slater, A.A., Stockli, A.R., Wang, A.A., Yang, A.Z., Zeng, A.X., Division (CGD), C.U.C.F.A.R.
881 (UCAR):National C. for A.R. (NCAR):NCAR E.S.L. (NESL):Climate and G.D., 2010. Technical
882 Description of version 4.0 of the Community Land Model (CLM). University Corporation for Atmospheric
883 Research. <https://doi.org/10.5065/D6FB50WZ>

884 Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J., Cong, N.,
885 Huntingford, C., Jung, M., Levis, S., Levy, P.E., Li, J., Lin, X., Lomas, M., Lu, M., Luo, Y., Ma, Y.,
886 Myneni, R., Poulter, B., Sun, Z., Wang, T., Viovy, N., Zaehle, S., Zeng, N., 2013. Evaluation of terrestrial
887 carbon cycle models for their response to climate variability and to CO₂ trends. *Global Change Biology* 19,
888 2117–2132. <https://doi.org/10.1111/gcb.12187>

889 Pitman, A.J., 2003. The evolution of, and revolution in, land surface schemes designed for climate models. *Intl
890 Journal of Climatology* 23, 479–510. <https://doi.org/10.1002/joc.893>

892 Poggio, L., de Sousa, L.M., Batjes, N.H., Heuvelink, G.B.M., Kempen, B., Ribeiro, E., Rossiter, D., 2021. SoilGrids
893 2.0: producing soil information for the globe with quantified spatial uncertainty. *SOIL* 7, 217–240.
894 <https://doi.org/10.5194/soil-7-217-2021>

895 Qian, L., Yu, X., Zhang, Z., Wu, L., Fan, J., Xiang, Y., Chen, J., Liu, X., 2024. Assessing and improving the high
896 uncertainty of global gross primary productivity products based on deep learning under extreme climatic
897 conditions. *Science of The Total Environment* 957, 177344.
898 <https://doi.org/10.1016/j.scitotenv.2024.177344>

899 Qiu, R., Han, G., Ma, X., Xu, H., Shi, T., Zhang, M., 2020. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF
900 Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. *Remote*
901 *Sensing* 12, 258. <https://doi.org/10.3390/rs12020258>

902 Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: Global convergence in plant functioning.
903 *Proceedings of the National Academy of Sciences* 94, 13730–13734.
904 <https://doi.org/10.1073/pnas.94.25.13730>

905 Running, S.W., Nemani, R.R., Heinsch, F.A., Zhao, M., Reeves, M., Hashimoto, H., 2004. A Continuous Satellite-
906 Derived Measure of Global Terrestrial Primary Production. *BioScience* 54, 547–560.
907 [https://doi.org/10.1641/0006-3568\(2004\)054%255B0547:ACSMOG%255D2.0.CO;2](https://doi.org/10.1641/0006-3568(2004)054%255B0547:ACSMOG%255D2.0.CO;2)

908 Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S., 2010. Variance based sensitivity
909 analysis of model output. Design and estimator for the total sensitivity index. *Computer Physics*
910 *Communications* 181, 259–270. <https://doi.org/10.1016/j.cpc.2009.09.018>

911 Saltelli, A., Sobol, I.M., 1995. Sensitivity Analysis for Nonlinear Mathematical Models. *Numerical Experience*
912 *Sensitivity Analysis for Nonlinear Mathematical Models. Numerical Experience*. Matematicheskoe
913 Modelirovaniye.

914 Schaake, J.C., Koren, V.I., Duan, Q.-Y., Mitchell, K., Chen, F., 1996. Simple water balance model for estimating
915 runoff at different spatial and temporal scales. *Journal of Geophysical Research: Atmospheres* 101, 7461–
916 7475. <https://doi.org/10.1029/95JD02892>

917 Schaefer, K., Schwalm, C.R., Williams, C., Arain, M.A., Barr, A., Chen, J.M., Davis, K.J., Dimitrov, D., Hilton,
918 T.W., Hollinger, D.Y., Humphreys, E., Poulter, B., Racza, B.M., Richardson, A.D., Sahoo, A., Thornton,
919 P., Vargas, R., Verbeeck, H., Anderson, R., Baker, I., Black, T.A., Bolstad, P., Chen, J., Curtis, P.S., Desai,
920 A.R., Dietze, M., Dragoni, D., Gough, C., Grant, R.F., Gu, L., Jain, A., Kucharik, C., Law, B., Liu, S.,
921 Lokipitiya, E., Margolis, H.A., Matamala, R., McCaughey, J.H., Monson, R., Munger, J.W., Oechel, W.,
922 Peng, C., Price, D.T., Ricciuto, D., Riley, W.J., Roulet, N., Tian, H., Tonitto, C., Torn, M., Weng, E., Zhou,
923 X., 2012. A model-data comparison of gross primary productivity: Results from the North American
924 Carbon Program site synthesis. *Journal of Geophysical Research: Biogeosciences* 117.
925 <https://doi.org/10.1029/2012JG001960>

926 Schlesinger, W.H., Reynolds, J.F., Cunningham, G.L., Huenneke, L.F., Jarrell, W.M., Virginia, R.A., Whitford,
927 W.G., 1990. Biological Feedbacks in Global Desertification. *Science* 247, 1043–1048.
928 <https://doi.org/10.1126/science.247.4946.1043>

929 Schwinnig, S., Sala, O.E., 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.
930 *Oecologia* 141, 211–220. <https://doi.org/10.1007/s00442-004-1520-8>

931 SELLERS, P.J., 1985. Canopy reflectance, photosynthesis and transpiration. *International Journal of Remote*
932 *Sensing* 6, 1335–1372. <https://doi.org/10.1080/01431168508948283>

933 Sellers, P.J., Dickinson, R.E., Randall, D.A., Betts, A.K., Hall, F.G., Berry, J.A., Collatz, G.J., Denning, A.S.,
934 Mooney, H.A., Nobre, C.A., Sato, N., Field, C.B., Henderson-Sellers, A., 1997. Modeling the Exchanges of
935 Energy, Water, and Carbon Between Continents and the Atmosphere. *Science* 275, 502–509.
936 <https://doi.org/10.1126/science.275.5299.502>

937 Shi, X., She, D., Xia, J., Liu, R., Wang, T., 2024. The intercomparison of six $0.1^\circ \times 0.1^\circ$ spatial resolution
938 evapotranspiration products across mainland China. *Journal of Hydrology* 633, 130949.
939 <https://doi.org/10.1016/j.jhydrol.2024.130949>

940 Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi, D.D., Bolstad, P.V., Flanagan, L.B.,
941 Goldstein, A.H., Hollinger, D.Y., Misson, L., Monson, R.K., Oechel, W.C., Schmid, H.P., Wofsy, S.C., Xu,
942 L., 2008. A new model of gross primary productivity for North American ecosystems based solely on the
943 enhanced vegetation index and land surface temperature from MODIS. *Remote Sensing of Environment*,
944 *Remote Sensing Data Assimilation Special Issue* 112, 1633–1646. <https://doi.org/10.1016/j.rse.2007.08.004>

945 Sobol', I.M., 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates.
946 *Mathematics and Computers in Simulation* 55, 271–280. [https://doi.org/10.1016/S0378-4754\(00\)00270-6](https://doi.org/10.1016/S0378-4754(00)00270-6)

947 Stöckli, R., Lawrence, D.M., Niu, G.-Y., Oleson, K.W., Thornton, P.E., Yang, Z.-L., Bonan, G.B., Denning, A.S.,
948 Running, S.W., 2008. Use of FLUXNET in the Community Land Model development. *Journal of*
949 *Geophysical Research: Biogeosciences* 113. <https://doi.org/10.1029/2007JG000562>

950 Stoy, P.C., Katul, G.G., Siqueira, M.B.S., Juang, J.-Y., Novick, K.A., Uebelherr, J.M., Oren, R., 2006. An
951 evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into
952 photosynthesis and respiration. *Agricultural and Forest Meteorology* 141, 2–18.
953 <https://doi.org/10.1016/j.agrformet.2006.09.001>

954 Sulla-Menashe, D., Friedl, M.A., 2022. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1)
955 Product.

956 Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. *Journal of*
957 *Geophysical Research: Atmospheres* 106, 7183–7192. <https://doi.org/10.1029/2000JD900719>

958 Vicca, S., 2018. Global vegetation's CO₂ uptake. *Nat Ecol Evol* 2, 1840–1841. <https://doi.org/10.1038/s41559-018-0730-0>

959 Wang, B., Zhu, G.-F., Zhong, J.-T., Ma, C.-F., Zhang, L., Tan, M.-B., Li, X., 2025. Uncertainty analysis and
960 parameter optimization of a water yield ecosystem service model: A case study of the Qilian Mountains,
961 China. *Science of The Total Environment* 966, 178772. <https://doi.org/10.1016/j.scitotenv.2025.178772>

962 Wang, F., Li, Y., Li, Z., Cai, X., Lin, X., Guo, L., Han, D., Fang, J., 2024. Enhancing Winter Wheat Representation
963 in Noah-MP-Crop for Improved Dynamic Crop Growth Simulation in the North China Plain. *Journal of*
964 *Geophysical Research: Biogeosciences* 129, e2024JG008150. <https://doi.org/10.1029/2024JG008150>

965 Wang, H., Shao, W., Hu, Y., Cao, W., Zhang, Y., 2023. Assessment of Six Machine Learning Methods for
966 Predicting Gross Primary Productivity in Grassland. *Remote Sensing* 15, 3475.
967 <https://doi.org/10.3390/rs15143475>

968 Wang, L., Yu, M., Ye, S., Yan, J., 2023. Seasonal patterns of carbon and water flux responses to precipitation and
969 solar radiation variability in a subtropical evergreen forest, South China. *Agricultural and Forest*
970 *Meteorology* 342, 109760. <https://doi.org/10.1016/j.agrformet.2023.109760>

971 Wang, S., Fu, B., Wei, F., Piao, S., Maestre, F.T., Wang, L., Jiao, W., Liu, Y., Li, Y., Li, C., Zhao, W., 2023.
972 Drylands contribute disproportionately to observed global productivity increases. *Science Bulletin* 68, 224–
973 232. <https://doi.org/10.1016/j.scib.2023.01.014>

974 Wang, Y., Xu, X., Liu, H., Li, Yueqing, Li, Yaohui, Hu, Z., Gao, X., Ma, Y., Sun, J., Lenschow, D.H., Zhong, S.,
975 Zhou, M., Bian, X., Zhao, P., 2016. Analysis of land surface parameters and turbulence characteristics over
976 the Tibetan Plateau and surrounding region. *Journal of Geophysical Research: Atmospheres* 121, 9540–
977 9560. <https://doi.org/10.1002/2016JD025401>

978 Wang, Yunlong, Zhou, G., Wang, Yuhui, 2008. Environmental effects on net ecosystem CO₂ exchange at half-hour
979 and month scales over *Stipa krylovii* steppe in northern China. *Agricultural and Forest Meteorology*,
980 *AsiaFlux Special Issue* 148, 714–722. <https://doi.org/10.1016/j.agrformet.2008.01.013>

981 Waring, R.H., Landsberg, J.J., Williams, M., 1998. Net primary production of forests: a constant fraction of gross
982 primary production? *Tree Physiology* 18, 129–134. <https://doi.org/10.1093/treephys/18.2.129>

983 Wei, S., Yi, C., Fang, W., Hendrey, G., 2017. A global study of GPP focusing on light-use efficiency in a random
984 forest regression model. *Ecosphere* 8, e01724. <https://doi.org/10.1002/ecs2.1724>

985 Winkler, D.E., Butz, R.J., Germino, M.J., Reinhardt, K., Kueppers, L.M., 2018. Snowmelt Timing Regulates
986 Community Composition, Phenology, and Physiological Performance of Alpine Plants. *Front. Plant Sci.* 9.
987 <https://doi.org/10.3389/fpls.2018.01140>

988 Wolf, S., Keenan, T.F., Fisher, J.B., Baldocchi, D.D., Desai, A.R., Richardson, A.D., Scott, R.L., Law, B.E., Litvak,
989 M.E., Brunsell, N.A., Peters, W., van der Laan-Luijkx, I.T., 2016. Warm spring reduced carbon cycle
990 impact of the 2012 US summer drought. *Proceedings of the National Academy of Sciences* 113, 5880–5885.
991 <https://doi.org/10.1073/pnas.1519620113>

992 Xue, Y., Sellers, P.J., Kinter, J.L., Shukla, J., 1991. A Simplified Biosphere Model for Global Climate Studies.
993 *Journal of Climate* 4, 345–364. [https://doi.org/10.1175/1520-0442\(1991\)004%253C0345:ASBMFG%253E2.0.CO;2](https://doi.org/10.1175/1520-0442(1991)004%253C0345:ASBMFG%253E2.0.CO;2)

994 Yang, Q., Dan, L., Lv, M., Wu, J., Li, W., Dong, W., 2021. Quantitative assessment of the parameterization
995 sensitivity of the Noah-MP land surface model with dynamic vegetation using ChinaFLUX data.
996 *Agricultural and Forest Meteorology* 307, 108542. <https://doi.org/10.1016/j.agrformet.2021.108542>

997 Yang, R., Friedl, M.A., 2003. Modeling the effects of three-dimensional vegetation structure on surface radiation
998 and energy balance in boreal forests. *Journal of Geophysical Research: Atmospheres* 108.
999 <https://doi.org/10.1029/2002JD003109>

1000 1001

1002 Yang, X., Yong, B., Ren, L., Zhang, Y., Long, D., 2017. Multi-scale validation of GLEAM evapotranspiration
1003 products over China via ChinaFLUX ET measurements. *International Journal of Remote Sensing*.
1004 Yang, Z.-L., Dickinson, R.E., 1996. Description of the Biosphere-Atmosphere Transfer Scheme (BATS) for the Soil
1005 Moisture Workshop and evaluation of its performance. *Global and Planetary Change, Soil Moisture*
1006 *Simulation* 13, 117–134. [https://doi.org/10.1016/0921-8181\(95\)00041-0](https://doi.org/10.1016/0921-8181(95)00041-0)
1007 Yang, Z.-L., Niu, G.-Y., 2003. The Versatile Integrator of Surface and Atmosphere processes: Part 1. Model
1008 description. *Global and Planetary Change, Project for Intercomparison of Land-surface Parameterization*
1009 *Schemes, Phase 2(e)* 38, 175–189. [https://doi.org/10.1016/S0921-8181\(03\)00028-6](https://doi.org/10.1016/S0921-8181(03)00028-6)
1010 Yang, Z.-L., Niu, G.-Y., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Longuevergne, L., Manning, K., Niyogi,
1011 D., Tewari, M., Xia, Y., 2011. The community Noah land surface model with multiparameterization
1012 options (Noah-MP): 2. Evaluation over global river basins. *Journal of Geophysical Research: Atmospheres*
1013 116. <https://doi.org/10.1029/2010JD015140>
1014 You, Y., Huang, C., Yang, Z., Zhang, Y., Bai, Y., Gu, J., 2020. Assessing Noah-MP Parameterization Sensitivity
1015 and Uncertainty Interval Across Snow Climates. *Journal of Geophysical Research: Atmospheres* 125,
1016 [e2019JD030417](https://doi.org/10.1029/2019JD030417). <https://doi.org/10.1029/2019JD030417>
1017 You, Y., Huang, C., Zhang, Y., 2024. Assessing the Sensitivity of Snow Depth Simulations to Land Surface
1018 Parameterizations within Noah-MP in Northern Xinjiang, China. *Remote Sensing* 16, 594.
1019 <https://doi.org/10.3390/rs16030594>
1020 Yu, G., Ren, W., Chen, Z., Zhang, Leiming, Wang, Q., Wen, X., He, N., Zhang, Li, Fang, H., Zhu, X., Gao, Y., Sun,
1021 X., 2016. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes
1022 coordinated observation. *J. Geogr. Sci.* 26, 803–826. <https://doi.org/10.1007/s11442-016-1300-5>
1023 Yuan, W., Liu, S., Zhou, Guangsheng, Zhou, Guoyi, Tieszen, L.L., Baldocchi, D., Bernhofer, C., Gholz, H.,
1024 Goldstein, A.H., Goulden, M.L., Hollinger, D.Y., Hu, Y., Law, B.E., Stoy, P.C., Vesala, T., Wofsy, S.C.,
1025 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross
1026 primary production across biomes. *Agricultural and Forest Meteorology* 143, 189–207.
1027 <https://doi.org/10.1016/j.agrformet.2006.12.001>
1028 Zhang, L., Mao, J., Shi, X., Ricciuto, D., He, H., Thornton, P., Yu, G., Li, P., Liu, M., Ren, X., Han, S., Li, Y., Yan,
1029 J., Hao, Y., Wang, H., 2016. Evaluation of the Community Land Model simulated carbon and water fluxes
1030 against observations over ChinaFLUX sites. *Agricultural and Forest Meteorology* 226–227, 174–185.
1031 <https://doi.org/10.1016/j.agrformet.2016.05.018>
1032 Zhang, R., Chen, S., 2025. Spatiotemporal analysis, simulation, and early warning of landslides based on landslide
1033 sensitivity and multisource precipitation products in Southwestern China. *Landslides*.
1034 <https://doi.org/10.1007/s10346-024-02437-z>
1035 Zhang, Y., Ye, A., 2022. Uncertainty analysis of multiple terrestrial gross primary productivity products. *Global*
1036 *Ecol Biogeogr* 31, 2204–2218. <https://doi.org/10.1111/geb.13578>
1037 Zheng, H., Yang, Z.-L., Lin, P., Wei, J., Wu, W.-Y., Li, L., Zhao, L., Wang, S., 2019. On the Sensitivity of the
1038 Precipitation Partitioning Into Evapotranspiration and Runoff in Land Surface Parameterizations. *Water*
1039 *Resources Research* 55, 95–111. <https://doi.org/10.1029/2017WR022236>
1040 Zheng, Y., Zhang, L., Li, P., Ren, X., He, H., Lv, Y., Ma, Y., 2023. Evaluation of the Community Land Model-
1041 Simulated Specific Leaf Area with Observations over China: Impacts on Modeled Gross Primary
1042 Productivity. *Forests* 14, 164. <https://doi.org/10.3390/f14010164>
1043 Zhou, S., Zhang, Y., Park Williams, A., Gentine, P., 2019. Projected increases in intensity, frequency, and terrestrial
1044 carbon costs of compound drought and aridity events. *Science Advances* 5, eaau5740.
1045 <https://doi.org/10.1126/sciadv.aau5740>
1046