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Abstract 16 

Understanding the carbon cycle and its interactions with climate systems requires precise 17 

simulation of Gross Primary Productivity (GPP). However, achieving this remains challenging 18 

due to the inherent complexity of the models. Current research lacks quantification of how 19 

uncertainties in physical process parameterization affect GPP simulation across various 20 

ecosystems, and the dominant physical processes goberning GPP variability are pooly identified. 21 

To address these issues, this study generated a 48-member Noah Land Surface Model with multi-22 

parameterization options (Noah-MP) ensemble by manipulating key physical parameterization 23 

schemes. The model was validated using ChinaFlux tower measurements and Penman-Monteith–24 

Leuning Version 2 data. We employed the Sobol’ total sensitivity index to assess the influence of 25 

four key physical processes on GPP: radiation transfer, the soil moisture limitation factor for 26 

transpiration (β-factor), turbulence, and runoff generation. Results demonstrate that Noah-MP 27 

effectively captured GPP's spatiotemporal patterns in Chinese ecosystems but overestimated 28 

GPP in forest and cropland during spring and summer. Sensitivity analysis indicates that the β-29 

factor dominates GPP simulations across most of China, while radiation transfer is the primary 30 
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driver on the Tibetan Plateau. The main difference between the two radiation transfer schemes 31 

lies in whether vegetation gaps fraction are considered. On the Tibetan Plateau, where grasslands 32 

and shrublands exhibit large canopy gaps, consider it or not could lead to in substantial 33 

differences in simulated radiation and consequently in GPP, making GPP highly sensitive to the 34 

choice of radiation scheme. Across ecosystems, water-related factors (β-factor and runoff) 35 

mainly affect croplands and savannas, radiation transfer dominates grasslands and shrublands, 36 

and turbulence is most influential in forests. There are also distinct seasonal patterns: radiation 37 

and turbulence dominate in spring and summer, while radiation and β-factor prevail in autumn 38 

and winter, especially in arid regions. Based on systematic performance evaluations and 39 

sensitivity analyses, this study proposes optimized Noah-MP model configurations for China's 40 

terrestrial ecosystems. The radiation transfer scheme considering the three-dimensional canopy 41 

structure (option 1) is recommended for grasslands and shrublands. Our findings offer insights 42 

for enhancing GPP simulation accuracy in Noah-MP, thereby improving the model’s ability to 43 

represent carbon–water dynamics from regional to continental scales. 44 

 45 
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1 Introduction 49 

Gross primary productivity (GPP) is an important indicator representing the total carbon 50 

assimilated by plants through photosynthesis (Qian et al., 2024; Wang et al., 2023). Precise 51 

estimation of GPP is crucial for examining ecosystem carbon cycles and evaluating ecosystem 52 

responses to global environmental changes (Chang et al., 2023; H. Wang et al., 2023; Zhang and 53 

Ye, 2022). The eddy covariance technique, often regarded as the most reliable approach for 54 

quantifying CO₂ fluxes between ecosystems and the atmosphere, is nonetheless limited in spatial 55 

coverage, being applicable primarily at local scales (Chen et al., 2020; Yu et al., 2016). Land 56 

surface models (LSMs) provide a powerful framework for enabling continuous simulation of 57 

GPP at regional scales, thereby advancing understanding of carbon cycle processes and their 58 

feedbacks with the climate system (Wei et al., 2017; Sims et al., 2008; Running et al., 2004).  59 

During the last few decades, LSMs have undergone significant advancements through 60 

three major stages, each aimed at improving the realism of physical parameterization and 61 

achieving higher accuracy in simulating carbon, water, and energy cycles (Pitman, 2003; Sellers 62 

et al., 1997). First-generation LSMs conceptualize the land surface as a simple bucket with a 63 

constant water-holding capacity, significantly oversimplifying soil moisture dynamics and 64 

vegetation effects (Manabe, 1969). This simplification leads to unrealistic simulations of energy 65 

partitioning and water transferring. Second-generation LSMs are built on the Soil-Vegetation-66 

Atmosphere-Transfer Model, explicitly incorporating interactions and feedback mechanisms 67 

among vegetation, atmosphere, and soil (Deardorff, 1977). These models provide a more realistic 68 

depiction of land surface processes by integrating stomatal conductance, which regulates 69 

transpiration, along with soil layer water exchange. Third-generation LSMs evolve from the 70 

second-generation LSMs by incorporating biochemical processes. They recognize vegetation's 71 

critical role in terrestrial carbon-water cycles, including its contribution to land 72 

evapotranspiration (Jasechko et al., 2013), its modulation of heat and water vapor exchanges to 73 

influence precipitation (Green et al., 2017), and its absorption of carbon dioxide via 74 

photosynthesis (Vicca, 2018). Currently, the typical third-generation LSMs, such as the Simple 75 

Biosphere Model (Denning et al., 1996), the Community Land Model (CLM, Oleson et al., 2010), 76 

and the Noah Model with Multiple Parameterizations (Noah-MP, Niu et al., 2011; Yang et al., 77 

2011), have become mainstream tools for land surface research. Take Noah-MP as an example, it 78 

introduces a dynamic vegetation module to simulate canopy density and plant coverage across 79 
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different vegetation types while accounting for carbon allocation within plants (Yang and Niu, 80 

2003; Dickinson et al., 1998). The model incorporates stomatal-photosynthesis coupling for 81 

sunlit and shaded leaves, with distinct parameterizations for photosynthesis and respiration in C3 82 

versus C4 plants (Ball et al., 1987; Bonan, 1996). The canopy gaps are considered to compute 83 

the absorption of solar radiation by sunlit and shaded leaves (Niu and Yang, 2004; Yang and 84 

Friedl, 2003). Third-generation LSMs improve simulation accuracy and allow for the coupling of 85 

terrestrial-atmospheric carbon and nitrogen cycles with energy and water fluxes by 86 

comprehensively modeling processes such as canopy radiation transfer, soil heat and water 87 

transport, and biochemical activity (Pitman, 2003; Dickinson et al., 1998). These advancements 88 

have significantly propelled multi-scale studies of climate, ecosystems, and land-atmosphere 89 

interactions, thereby improving comprehension of land surface dynamics and their impacts on 90 

regional climate variability (He et al., 2024; Yang et al., 2021; Zhang et al., 2016; W. Cai et al., 91 

2014; Baker et al., 2003). 92 

Notwithstanding their broad application, these models continue to suffer from persistent 93 

issues that affect the reliability of GPP estimates over China (Wang et al., 2024; Li et al., 2022). 94 

For example, Zheng et al. (2023) found that CLM4.5 underestimated GPP in some temperate 95 

forests and C3 grasslands, while overestimating GPP in temperate broadleaf evergreen forests. 96 

This bias is linked to the model’s tendency to overestimate specific leaf area, particularly at the 97 

canopy top and on sloped terrain. Similarly, Zhang et al. (2016) reported that while CLM4.5 98 

improved GPP simulation compared to CLM4.0, particularly in subtropical forests, it still 99 

exhibited a positive bias in annual GPP. These findings highlight the necessity for improving 100 

parameterizations of structural, physiological, and growth-status parameters under different 101 

vegetation types. Additionally, Li et al. (2022) noted that Noah-MP shows uncertainty in 102 

simulating GPP over China, with relative biases exceeding 40% in grasslands and reaching 100% 103 

in drylands, while it performs better in humid areas. The above results indicate that further 104 

uncertainty assessments are essential across China's diverse ecosystems. This will facilitate the 105 

identification of uncertainty sources and the optimization of parameterization schemes. 106 

Among the above-mentioned LSMs, Noah-MP is particularly suited for uncertainty 107 

attribution because it offers multiple parameterization schemes for key physical processes (Clark 108 

et al., 2011). Parameterizations for a single physical process often rely on conflicting 109 

assumptions. This divergence, rooted in incomplete process knowledge, is a major source of 110 

https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

5 

 

uncertainty in multi-physics ensemble modeling (Clark et al., 2015). By systematically 111 

comparing these schemes, researchers can identify optimal configurations tailored to specific 112 

climatic and surface conditions, thereby enhancing model adaptability and reliability across 113 

diverse environmental scenarios (Chang et al., 2020; Clark et al., 2016). Moreover, Noah-MP 114 

can generate ensembles by perturbing specific physical process parameterizations, and enable the 115 

quantification of the relative contributions of different parameterizations to total uncertainties 116 

through sensitivity analyses. For instance, Zheng et al. (2019) utilized a 48-member Noah-MP 117 

multi-physics ensemble with the Sobol’ variance decomposition method (Saltelli et al., 2010; 118 

Sobol′, 2001; Saltelli and Sobol, 1995) to assess the sensitivity of precipitation partitioning to the 119 

parameterizations of relevant physical processes.  Yang et al. (2011) and You et al. (2024) 120 

employed the Noah-MP multi-physics ensemble to investigate various physical processes’ 121 

contributions to soil moisture, ET, runoff, and snow depth. For carbon cycle simulations, Yang et 122 

al. (2021) employed Noah-MP to analyze the sensitivity of net ecosystem exchange (NEE) at the 123 

site scale, highlighting the soil moisture factor for stomatal resistance and surface layer 124 

turbulence as the most sensitive processes. Some studies (You et al., 2020; Li et al., 2019) also 125 

demonstrated that the primary source of uncertainty in multi-parameter ensemble simulations is 126 

attributed to sensitive parameterization schemes. Thus, sensitivity analyses on the Noah-MP 127 

multi-physics ensemble can facilitate the selection of effective parameterization scheme 128 

combinations, which is vital for enhancing GPP estimation accuracy in diverse ecosystems. 129 

Furthermore, quantitative analysis of the impacts of different physical processes on GPP can 130 

identify the key factors and driving mechanisms affecting carbon absorption across various 131 

ecosystems. 132 

However, existing uncertainty attribution studies based on the Noah-MP multi-physics 133 

ensemble have largely focused on hydrological processes at global and regional scales (Zheng et 134 

al., 2023; Li et al., 2022), while analyses specific to terrestrial carbon cycle processes remain 135 

limited, especially in China. Yang et al. (2021)investigated the key physical processes affecting 136 

GPP at the site scale, but their study was constrained to a relatively short period (less than 10 137 

years) and limited sites (eight sites). To date, there is a lack of comprehensive uncertainty 138 

attribution studies on GPP simulations over China that account for different vegetation types and 139 

both multi-year and seasonal scales. The contributions of different physical processes to GPP 140 

simulation uncertainty across China have not been quantitatively determined. The dominant 141 
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processes affecting GPP across different vegetation types remain unknown. This limitation 142 

restricts the improvement of Noah-MP, hindering its practical application in carbon sink 143 

assessments and policy-making in China. 144 

To better understand model uncertainties, this study applied the Sobol’ sensitivity 145 

analysis on a 48-member Noah-MP ensemble across different vegetation types in China over a 146 

20-year period (2001–2020). First, we evaluated the ensemble's uncertainty in simulating GPP 147 

over China at seasonal and multi-year mean scales against China Flux sites data and the Penman-148 

Monteith-Leuning Version 2 (PML-V2) GPP dataset, to assess the accuracy and applicability of 149 

Noah-MP over China. Subsequently, we quantified and compared the sensitivity of four key 150 

physical processes—radiation transfer, soil moisture limitation factor to transpiration (β-factor), 151 

surface turbulent exchange (turbulence), and runoff in simulating GPP across China's diverse 152 

ecosystems. This study focuses on two main scientific questions: (1) the performance of the 153 

Noah-MP ensemble in simulating GPP for different vegetation types in China over seasonal and 154 

multi-year periods,  and (2) the identification of key physical processes and mechanisms that 155 

govern GPP in diverse ecosystems. The study clarifies the influence of physical process 156 

parameterizations on GPP simulation within Noah-MP and provides ecosystem-specific 157 

recommendations for model configuration, offering valuable insights to enhance the accuracy of 158 

terrestrial carbon flux modeling in China. The flowchart of this study is shown in Figure 1. 159 

The paper is structured as follows. Section 2 provides a description of the model and 160 

datasets, while Section 3 outlines the methods for model evaluation and sensitivity analysis. The 161 

results are presented in Section 4, followed by conclusions and discussion in Section 5. 162 

 163 

 164 
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 165 

Figure 1. Flowchart of this study. 166 
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2 Model and datasets 167 

2.1 Study domain 168 

This study selected China (18.5°N–53.75°N, 73.25°E–135.25°E) as the study domain, as 169 

shown in Figure 1. China covers a land area of about 9.6 million square kilometers, extending 170 

across much of East Asia along the western Pacific margin.. The domain features a west-high-171 

east-low topography, diverse land-cover types, and significant ecosystem variations influenced 172 

by climate and elevation. This study considered the following land-cover types in the domain: 173 

forests ( evergreen needleleaf (ENF), evergreen broadleaf (EBF), deciduous needleleaf (DNF), 174 

deciduous broadleaf (DBF), and mixed forests (MF)), grasslands, croplands, savannas, and 175 

shrublands, as shown in Figure 2(b). China's vast territory features diverse climatic types. 176 

Eastern China experiences a monsoon climate, characterized by cold, dry continental monsoons 177 

in winter and warm, humid oceanic monsoons in summer, driving seasonal rainfall patterns. The 178 

region is dominated by forests, savannas, grasslands, and croplands. The Tibetan Plateau, with its 179 

high altitude and vast area, creates a unique alpine climate. The region is dominated by 180 

grasslands and bare soil areas. Northwest China, situated far inland, experiences minimal 181 

influence from oceanic monsoons, resulting in an arid climate primarily driven by westerlies. 182 

The region is dominated by grasslands and croplands. 183 

  184 

Figure 2. Spatial patterns of (a) elevation and (b) vegetation type in China. The vegetation map only includes 185 

the land-cover types analyzed in this study, while blank areas represent land-cover types excluded from the 186 

analysis. Vegetation classification follows the MODIS Land-cover type (MCD12Q1) dataset, including forests 187 

(ENF, EBF, DNF, DBF, MF), shrublands, savannas, grasslands, and croplands. Elevation data are from the 188 
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SRTM Digital Elevation Model (Version 4). The basemap is provided by the US National Park Service 189 

(https://services.arcgisonline.com/arcgis/services).  190 

2.2 The Noah-MP ensemble 191 

We applied the Noah-MP LSM (Niu et al., 2011; Yang et al., 2011), which represents an 192 

improved version of the original Noah LSM. The model features structural enhancements by 193 

separating vegetation canopy, snow, and soil into independent layers and incorporating key 194 

parameters (He et al., 2023). It adopts a multi-hypothesis framework (Clark et al., 2011), offering 195 

multiple parameterization options for key physical processes. The design enhances flexibility and 196 

improves performance across diverse environments. Moreover, the multi-parameterization 197 

structure enables generating large ensembles by altering certain physical parameterizations. This 198 

capability is particularly useful for analyzing the sources of uncertainty. 199 

A 48-member ensemble of Noah-MP (version 5.0) was produced in this study by altering 200 

two radiative transfer schemes (MOD, GAP0), three β-factor schemes (NOAHB, CLM, SSiB), 201 

two turbulence schemes (M–O, Chen97), and four runoff generation schemes (SIMGM, 202 

SIMTOP, NOAHR, BATS). The parameterization schemes are provided in Table 1. 203 

The processes considered here were chosen due to their crucial roles in photosynthesis 204 

and carbon sequestration in vegetation, as highlighted in previous research. Radiative transfer 205 

regulates the energy input for photosynthesis, with optimal light intensity and duration enhancing 206 

carbon assimilation (Chen et al., 2012). However, too much radiation exposure can damage the 207 

photosynthetic apparatus and a decline in GPP (Misson et al., 2007). β-factor directly controls 208 

plant water availability, thus affecting stomatal conductance and photosynthetic efficiency 209 

(Wang et al., 2008; Yuan et al., 2007; Schlesinger et al., 1990). Insufficient soil moisture leads to 210 

stomatal closure, restricting carbon dioxide uptake and suppressing GPP (Niu et al., 2011). 211 

Turbulent processes influence the movement of CO₂ and water vapor between vegetation and the 212 

atmosphere, affecting the rate of photosynthetic carbon uptake (Bonan et al., 2018, 2014). Strong 213 

turbulence enhances carbon dioxide supply and removes excess water vapor, optimizing 214 

photosynthesis and promoting GPP (Zheng et al., 2019). Runoff generation affects soil moisture 215 

availability, which in turn influences plant water status (Niu and Yang, 2007). Excessive runoff 216 

depletes soil moisture, intensifies water stress, and reduces GPP. In contrast, moderate runoff 217 

maintains favorable soil water conditions, sustaining photosynthesis and carbon accumulation 218 

(Zheng et al., 2019; Gan et al., 2019; Niu et al., 2011). These processes interact, regulating 219 
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carbon assimilation and plant productivity, and ultimately determining the carbon sequestration 220 

capacity of ecosystems. Besides, this study excluded the radiative transfer scheme 3 (two-stream 221 

applied to vegetated fraction, SELLERS, 1985; Dickinson, 1983) of Noah-MP, as it shares the 222 

same origin as scheme 1, and may overexpose understory vegetation or snow to solar radiation, 223 

potentially causing biased energy partitioning (Niu et al., 2011). Canopy stomatal resistance 224 

schemes can also influence GPP simulation, but due to model framework limitations, only the 225 

Ball-Berry scheme (Ball et al., 1987) is available. The dynamic vegetation scheme (Yang and 226 

Niu, 2003; Dickinson et al., 1998) was activated, and other schemes used default settings. 227 

Table 1  228 

Selected Noah-MP parameterization schemes for the four key physical processes in this study. 229 

Symbol Physical Process Options Notes 

RAD Radiation transfer 

1 

MOD: Standing for the modified two-stream approach (Niu 

and Yang, 2004). This improves upon the classical Two-

Stream Model. 

2 

GAP0: Two-stream with gap=0 (Niu and Yang, 2004). This 

version assumes no gaps or uneven distribution in the canopy, 

making it suitable for uniform canopy structures. 

BTR β-factor 

1 

Noah: The Noah scheme, which focuses on soil moisture 

(Chen and Dudhia, 2001). The control factor β for 

transpiration is a function of soil volumetric water content. 

2 

CLM: The scheme used in the CLM (Oleson et al., 2010) 

assumes that the control factor β for transpiration, related to 

soil moisture, is a function of soil water potential. 

3 

SSiB: The scheme used in the SSiB (Xue et al., 1991) also 

considers the control factor β for transpiration as a function of 

soil water potential. Compared to the CLM scheme, this 

model shows a more pronounced response to changes in soil 

moisture. 

SFC Turbulence 

1 
M-O: Monin-Obukhov Similarity Theory (Dyer, 1974). This 

scheme considers zero plane displacement. 

2 

Chen97: The scheme used in the Noah LSM (Chen et al., 

1997). It does not consider zero-plane displacements but does 

take into account the difference between thermodynamic 

roughness and kinetic roughness. 

RUN Runoff generation 

1 

SIMGM: The scheme used in CLM 4.5 (Niu and Yang, 

2007), takes into account the dynamics of groundwater. 

Runoff is a function of groundwater level, the same as in the 

TOPMODEL model. 

2 

SIMTOP: TOPMODEL with an equilibrium water table (Niu 

et al., 2005). TOPMODEL Modeling the interaction between 

groundwater and surface water flow based on soil moisture 

distribution and hydrologic response. 

https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

11 

 

3 

Schaake96: The scheme used in the Noah LSM(Schaake et 

al., 1996), does not consider groundwater. Runoff is obtained 

by subtracting soil infiltration from precipitation, which is 

determined by soil moisture and soil texture. 

4 

BATS: The scheme used in the BATS LSM (Yang and 

Dickinson, 1996), does not consider groundwater. Runoff 

depends on soil moisture and takes into account a sub-grid 

distribution of soil moisture saturation zones. Infiltration is 

the difference between precipitation and runoff. 

 230 

2.3 CMFD v2.0 forcings 231 

The China Meteorological Forcing Dataset Version 2 (He et al., 2025) 232 

(https://doi.org/10.11888/Atmos.tpdc.302088.), including near-surface air temperature, surface 233 

pressure, relative humidity, precipitation, downward longwave radiation, and shortwave 234 

radiation, was used to force Noah-MP in this study. CMFD v2.0 is a gridded meteorological 235 

dataset at high resolution, which combines data from multiple sources: remote sensing, 236 

reanalysis, and in-situ observations.. It is specifically developed for land surface process studies 237 

in China (Wang et al., 2025; Zhang and Chen, 2025; Bu et al., 2024). Spanning January 1951 to 238 

December 2020, the dataset has a three-hourly temporal resolution and a 0.1° spatial resolution. 239 

2.4 Eddy covariance data 240 

Eddy covariance (EC) data were obtained from the Science Data Bank for sites within the 241 

ChinaFlux network (https://www.scidb.cn/en), comprising 6 forest sites, 6 grassland sites, and 6 242 

cropland sites (Table 2) .  High-temporal-resolution flux and meteorological data were logged 243 

every half hour across all sites. These datasets underwent rigorous standardization protocols, 244 

including quality control checks and post-processing corrections, ensuring high reliability for 245 

validating diverse GPP products (Yang et al., 2017). 246 

Table 2 247 

Basic information on the 18 flux sites. 248 

Site Station name Longitude (°E) Latitude (°N) Vegetation type Time Range 

ALF Ailaoshan 101.028  24.541  EBF 2009-2013 

BNF Xishuangbanna 101.577  21.614  EBF 2003-2015 

CBF Changbaishan 128.096 42.403 MMF 2003-2010 

DHF Dinghushan 112.534  23.173  EBF 2003-2010 
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MEF Maoershan 127.668 45.417 DBF 2016-2018 

QYF Qianyanzhou 115.058  26.741  ENF 2003-2010 

DLG Duolun 116.284  42.047  Grassland 2006-2015 

DXG Dangxiong 91.066  30.497  Alpine meadow 2003-2010 

HBG_G01 Haibei 101.313  37.613  Alpine meadow 2015-2020 

HBG_S01 Haibei 101.331  37.665  Alpine meadow 2003-2013 

NMG Neimenggu 116.404  43.326  Grassland 2003-2010 

XLG Xilin 116.671  43.554  Grassland 2006-2014 

GCA Gucheng 115.735  39.149  Cropland 2020-2022 

JRA Jurong 119.21 31.807 Cropland 2015-2020 

JZA Jinzhou 121.202  41.148  Cropland 2005-2014 

LCA Luancheng 114.413  37.531  Cropland 2013-2017 

SYA Shouyang 113.200  37.750  Cropland 2012-2014 

YCA Yucheng 116.570  36.829  Cropland 2003-2010 

 249 

2.5 PML-V2 (China) dataset 250 

The Penman-Monteith–Leuning Version 2 (PML-V2) (China) terrestrial ET and GPP 251 

dataset (He et al., 2022),  obtained from the National Tibetan Plateau Data Center 252 

(https://data.tpdc.ac.cn/en/data/40f57c67-33a6-402d-bd37-6ede91919f23/), was used as 253 

validation data. This dataset offers daily GPP estimates from February 26, 2000, to December 31, 254 

2020, at a 500 m spatial resolution. Generated via the PML-V2 water-carbon coupled model, the 255 

dataset estimates ET and GPP by integrating atmospheric and vegetation data. Specifically, it 256 

uses the Penman-Monteith equation for ET and a modified Leuning equation for GPP. Calibrated 257 

against 26 eddy covariance flux towers in China, it demonstrates high accuracy, particularly for 258 

GPP, outperforming the global PML version (Qian et al., 2024; He et al., 2022). Consequently, it 259 

is widely used in ecological research, carbon/water cycle modeling, and evaluation studies (Shi 260 

et al., 2024; Huang et al., 2023). 261 

2.6 MODIS LULC dataset 262 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Use/Land-cover 263 

(LULC) product (MCD12Q1) (https://developers.google.com/earth-264 

engine/datasets/catalog/MODIS_061_MCD12Q1), derived from the MODIS sensors onboard 265 

NASA's Terra and Aqua satellites, was used to set the land-cover types in Noah-MP. The dataset 266 
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offers global land-cover classification on an annual basis at 500 m resolution, covering the 267 

period from 2001 to the present. In this study, we employed the LC_Type1 classification scheme 268 

from the MCD12Q1 product, which follows the International Geosphere-Biosphere Programme 269 

system (Sulla-Menashe and Friedl, 2022). To ensure consistency across all datasets, the land-270 

cover dataset was converted to a 0.1° spatial resolution using interpolation and resampling, 271 

aligning with the CMFD dataset grid points. This study used land-cover types from 2001 and did 272 

not account for land-cover changes.  273 

2.7 ERA5-Land dataset 274 

The ERA5-Land dataset (https://developers.google.com/earth-275 

engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY), developed by the European Centre 276 

for Medium-Range Weather Forecasts, was used to initialize the land surface states of Noah-MP. 277 

This dataset provides a global land surface reanalysis at 0.1° spatial resolution with hourly 278 

outputs, spanning from January 1981 to the present.It is generated by integrating a state-of-the-279 

art land surface model with data assimilation, offering a wide range of land surface variables.. 280 

ERA5-LAND land surface variables were bilinearly interpolated to the CMFD grid for model 281 

initialization. 282 

2.8 SoilGrids 2.0 dataset 283 

In this study, the SoilGrids 2.0 dataset (Poggio et al., 2021) 284 

(https://developers.google.com/earth-285 

engine/datasets/catalog/OpenLandMap_SOL_SOL_TEXTURE-CLASS_USDA-TT_M_v02) 286 

was used to set soil types in Noah-MP. This dataset provides global soil property predictions at a 287 

250m spatial resolution, which is derived from machine learning-based integration of soil profile 288 

observations, remote sensing, and environmental covariates. In this study, we used the United 289 

States Department of Agriculture soil texture classification (Soil Survey Staff. 2022). It divides 290 

soils into 12 primary classes (e.g., sandy loam, silty clay) depending on the relative amounts of 291 

sand, silt, and clay. The soil type was also resampled to a 0.1° resolution, based on the dominant 292 

type. 293 
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3 Methods 294 

3.1 Simulation experiment design 295 

A two-stage spin-up process (Yang et al., 2021; Zheng et al., 2019) was conducted before 296 

each of the 48 Noah-MP simulations to establish initial conditions for January 1, 2000 (see Table 297 

S1). In the first stage, the atmospheric forcing from 1999 was cycled 30 times. In the second 298 

stage, a 1-year forcing period from January 1, 2000, to January 1, 2001, was applied. With a total 299 

spin-up period of 31 years, Noah-MP reached equilibrium under all climatic conditions and 300 

parameter configurations (Cai et al., 2014).  301 

The subsequent 48 simulations covered the period from 2001 to 2020, using a 15-minute 302 

time step. The output frequency is every 8 days. Subsequently, we aggregated the outputs into 303 

monthly, seasonal, and annual scales. 304 

3.2 Evaluation metrics 305 

In this study, the Taylor Skill Score (TSS) was employed to provide a concise assessment 306 

of the Noah-MP ensemble (Taylor, 2001). 307 

TSS =  
4(1+R)

(𝜎̂𝑓+
1

𝜎̂𝑓
)

2

(1+R0)

, 
(1) 

where R is a metric for the agreement between observed and simulated time series, and R0 is the 308 

highest correlation among the ensemble simulations. 𝜎̂𝑓 is the normalized standard deviation 309 

(NSD), which is calculated as the ratio between the standard deviation of observations and that 310 

of simulations (see Equation (4)). TSS is a metric bounded between 0 and 1, where the upper 311 

limit of 1 represents a perfect match between simulation and observation. 312 

To calculate the TSS, R, and NSD were computed. For a model simulation (𝑓) and its 313 

corresponding observation (𝑜), the formulas are as follows: 314 

𝜎𝑜 = √
1

𝑇
∑ ((𝑜𝑡 − 𝑜̅))

2𝑇
𝑡=1 , (2) 

R =
1

𝑇
∑ (𝑓𝑡−𝑓̅)(𝑜𝑡−𝑜̅)𝑇

𝑡=1

𝜎𝑓𝜎𝑜
, (3) 

𝜎𝑓̂ =
𝜎𝑓

𝜎𝑜
=

1

𝜎𝑜

√1

𝑇
∑ ((𝑓𝑡 − 𝑓)̅)

2
𝑇
𝑡=1 , (4) 
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where 𝑜𝑡 represents the observation value at time step 𝑡, 𝑜̅ is the temporal mean of the 315 

observation values, and 𝑇 is the total time step number. Similarly,  𝑓𝑡 denotes the model output at 316 

time step 𝑡, 𝑓̅  and 𝑜̅  are the mean values of the model  output (𝑓𝑡 ) and observation (𝑜𝑡 ), 317 

respectively. 𝜎𝑓 and 𝜎𝑜 are their respective standard deviations.  318 

To ensure the diversity and comprehensiveness of evaluation metrics, bias, root-mean-319 

square error (RMSE), and the square of the correlation coefficient (R2) was also employed, as 320 

follows: 321 

Bias =
1

𝑇
∑(𝑓𝑡 − 𝑜𝑡)

𝑇

𝑡=1

. (5) 

RMSE = √
1

𝑇
∑ [(𝑓𝑡 − 𝑓)̅ − (𝑜𝑡 − 𝑜̅)]

2𝑇
𝑡=1 , (6) 

A positive bias indicates an overestimation by Noah-MP compared to PML GPP, while a 322 

negative bias indicates an underestimation. Since RMSE quantifies the average error magnitude, 323 

values nearer to 0 therefore serve as a direct indicator of superior simulation accuracy.. R² 324 

corresponds to the square of the R and indicates how well the Noah-MP model fits the 325 

observations. 326 

3.3 Sobol’ total sensitivity index 327 

To determine which physical processes exert the greatest control on GPP, we utilized the 328 

Sobol’ total sensitivity index (Saltelli et al., 2010; Sobol’, 2001; Saltelli and Sobol, 1995). The 329 

Sobol’ total sensitivity index (𝑆𝑃) is defined as: 330 

𝑆∧ =  
𝐸~∧(𝑉∧(𝑌|~∧))

𝑉(𝑌)
, (7) 

where 𝑆∧ denotes the Sobol’ total sensitivity associated with the schemes of a specific process ∧;  331 

~ ∧ represents all processes except ∧; 𝑌 refers to the 48 Noah-MP model outputs, which include 332 

both multi-year means and seasonal averages; 𝑉(𝑌)  represents the variance among the 48 333 

outputs; 𝑉∧(𝑌|~ ∧) measures the variance induced by the ∧ schemes, and 𝐸~∧  is the average 334 

across all other parameterization combinations. 335 

The Sobol’ total sensitivity index measures the proportion of variance in model outputs 336 

attributable to the parameterization of process ∧, relative to the total ensemble variance. This 337 
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index is scaled between 0 and 1, where 0 indicates that ∧’s  parameterization has no impact on 338 

the simulations, while 1 denotes complete control of the simulations by ∧ . A higher value 339 

denotes a greater degree of dependence of the simulations on ∧. 340 

4 Results 341 

4.1 Evaluation of the Noah-MP ensemble 342 

To comprehensively assess Noah-MP’s performance in simulating GPP across 48 physics 343 

configurations, we adopted a two-tier validation approach. First, site-level evaluations leveraged 344 

eddy covariance flux tower observations at selected sites. This approach supports process-345 

oriented assessment of model accuracy under diverse environmental and vegetation conditions. 346 

Second, regional-scale evaluations utilized the remote-sensing-based PML-GPP dataset. This 347 

provides spatially continuous estimates, enabling assessment of the model's performance to 348 

capture broad-scale spatial patterns and interannual variability, serving as a complementary and 349 

independent benchmark to site-level observations. 350 

4.1.1 Site-Based Validation Using Eddy Covariance Flux Towers 351 

The site-level performance of Noah-MP was examined by comparing model outputs with 352 

observations from individual flux tower sites. Figure 3 shows a boxplot representing the 353 

distribution of TSS (max, min, median) from 48 site-level simulations. 354 

Median TSS values consistently exceeded 0.50 at all cropland sites. For forest sites, TSS 355 

and R² exceeded 0.50 at all sites except DHF. In contrast, both TSS and R² values were generally 356 

below 0.60 at grassland and cropland sites. Specifically, the median TSS values at LCA, SYA, 357 

and YCA sites were greater than 0.80, while those at ALF, MEF, and JRA ranged between 0.60 358 

and 0.80. The DHF site and all grassland sites had median TSS values below 0.50, indicating 359 

limited GPP simulation capabilities  at these locations as demonstrated by the notably low TSS. 360 

The TSS range reflects the performance variability among different ensemble members. 361 

As shown in Figure 3, forest sites exhibited relatively small ensemble spreads, suggesting 362 

consistent performance across ensemble members. In contrast, all grassland sites showed large 363 

ensemble spreads. Among cropland sites, both GCA and JZA exhibited substantial TSS 364 

variability. These findings reveal considerable model performance divergence in grassland and 365 
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cropland ecosystems, under different parameterization schemes. In forest ecosystems, however, 366 

the model exhibited excellent performance with low sensitive to parameterizations choices, 367 

suggesting greater robustness across ensemble members. 368 

369 
Figure 3．Taylor skill score (TSS) and squared correlation coefficient (R²) evaluating Noah-MP simulated 370 

GPP against site-level observations across 48 ensemble experiments. Box plots represent the distribution of 371 

results from 48 ensemble experiments, showing the minimum, first quartile, median, third quartile, and 372 

maximum values.  373 

4.1.2 Spatial Validation Using the PML GPP Dataset 374 

To further evaluate the spatial representativeness of Noah-MP simulated GPP, we 375 

conducted a spatial comparison with the PML-GPP product. Figure 3 presents the spatial 376 

distribution and seasonal variations of GPP across China from two sources: the PML dataset 377 

(Figures 3a, c, e, g, i, k), serving as reference data, and the Noah-MP multi-physics ensemble 378 

mean (Figures 3b, d, f, h, j, l). Both datasets revealed clear seasonal GPP patterns, characterized 379 

by summer peaks and winter valleys, highlighting climate phenology carbon uptake. In spring, 380 

GPP in China showed a northwest-to-southeast increasing gradient, reaching highest values 381 

appearing in the central and lower Yangtze River Basin. During summer, GPP reached its peak 382 
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in the high-productivity zones, including eastern, southern, and northeastern China, probably 383 

attributed to favorable radiation, temperature, and precipitation conditions. In autumn, GPP 384 

declined along a southeast-to-northwest gradient. During winter, photosynthetic activity was 385 

minimal, with near-zero GPP in northern and high-altitude regions, while southern China 386 

maintained modest productivity. The multi-year mean GPP follows hydroclimatic patters: 387 

highest in warm-humid southeast, lowest in cold-arid northwest. Vegetation growth is promoted 388 

by sufficient water and heat in water-rich regions, whereas in water-limited regions, extreme 389 

temperatures and scarcity of moisture often constrain vegetation productivity (Piao et al., 2013). 390 

Figures 3k and 3l show GPP variations across different vegetation types. Forests, croplands, and 391 

savannas exhibited relatively higher GPP, while grasslands and shrublands showed lower GPP. 392 

Vegetation exhibiting lower productivity is generally located in the northern drylands, where 393 

both moisture and temperature act as constraints (Li et al., 2023; Qiu et al., 2020). Additionally, 394 

GPP across different vegetation types is determined not only by climatic hydrological drivers but 395 

also by the physiological characteristics of the species (Waring et al., 1998; Reich et al., 1997). 396 
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 397 
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Figure 4. Spatial distribution of GPP for different seasons and the multi-year mean. The left column presents 398 

the GPP distribution derived from the PML dataset, while the right column shows the ensemble mean GPP 399 

distribution from the Noah-MP model.  400 

Monthly biases of the Noah-MP ensemble mean, compared to the PML dataset across 401 

vegetation types, are depicted in Figure 5. The results revealed substantial variability in monthly 402 

GPP bias. Grasslands and shrublands exhibited minimal biases, whereas EBF and croplands 403 

displayed notably larger positive biases, particularly during the growing season. The 404 

overestimation was more pronounced in high-productivity ecosystems in eastern China, which 405 

have substantial carbon sequestration capacity. The underlying causes of these discrepancies, 406 

especially in high-productivity seasons and regions, need further exploration. 407 
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 408 

Figure 5. Monthly bias of Noah-MP ensemble mean GPP across vegetation types. The box show pixel-level 409 

variability and red lines indicate the mean. 410 

4.2 Physical process sensitivity 411 

Figure 6 presents the spatial pattern of the Sobol’ sensitivityof the four physical 412 

processes at multi-year and seasonal scales. Focusing on the multi-year scale, radiation transfer 413 

exhibited the highest sensitivity on the Tibetan Plateau. Across most Chinese regions excluding 414 

the Tibetan Plateau and the western part of the Yunnan-Guizhou Plateau, GPP showed the 415 

highest sensitivity to the β-factor, indicating that water availability is the main factor limiting 416 
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carbon assimilation. The turbulence process showed low sensitivity to GPP simulation. The 417 

runoff generation schemes showed slight sensitivity across China, particularly in the Hai River 418 

Basin, Huai River Basin, and the Yunnan-Guizhou Plateau. 419 

The Tibetan Plateau and northeastern Inner Mongolia exhibited the strongest GPP 420 

response to changes in radiation transfer (Figure 6a). Theoretically, in such radiation-rich 421 

environments, radiation transfer should not be the dominant limiting factor for GPP. However, 422 

Figure S2 reveals substantial differences in APAR (and thus GPP) between the RAD01 and 423 

RAD02 parameterization schemes across these areas. This discrepancy primarily arises from 424 

RAD01 incorporating vegetation gap effects in radiation transfer calculation, while RAD02 does 425 

not (Niu and Yang, 2004). For densely forested canopies with closed structures (Fig. S3-S7), 426 

differences between the two schemes are relatively small. In contrast, grasslands and sparse 427 

shrubs are the predominant vegetation types across the Tibetan Plateau and northeastern Inner 428 

Mongolia, where vegetation aggregation and gap distribution are more pronounced, thereby 429 

amplifying differences in canopy radiation transfer. 430 

GPP simulations were more strongly influenced by the β-factor across most Chinese 431 

regions, particularly the northern arid and semi-arid areas (Figure 6b). These regions are 432 

characterized by abundant available energy, but are primarily constrained by water availability. 433 

During spring and summer, increased ET intensified soil moisture stress, with the β-factor 434 

critically regulating GPP. This water-driven effect was predominantly observed in Northwest 435 

China and the Songliao Plain. In Northwest China, low precipitation made water the primary 436 

constraint on carbon assimilation. Similarly, in the Songliao River Basin, a key Chinese 437 

agricultural zone, high crop water demand, meant droughts substantially affected GPP dynamics. 438 

Although winter vegetation dormancy reduced GPP, the β-factor remained sensitive due to its 439 

"lag effect" on soil moisture, which influenced vegetation recovery in the subsequent spring 440 

(Knapp et al., 2008; Schwinning and Sala, 2004). As other processes showed low sensitivities in 441 

winter, the sensitivity of the β-factor became particularly pronounced. 442 

At the multi-year scale, turbulence exhibited low sensitivity to GPP across most of China, 443 

with detectable effects confined to the forested area in eastern Northeast China. This is primarily 444 

because turbulence operates as a short-term micrometeorological process that typically fluctuates 445 

at sub-hourly to hourly timescales (Baldocchi, 2003). In addition, ecosystems such as grasslands, 446 
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croplands, and savannas usually exhibit weak vertical gradients of CO₂ and water vapor, making 447 

them less dependent on turbulent mixing. In contrast, forest ecosystems in eastern Northeast 448 

China are characterized by tall and dense canopies, where pronounced vertical stratification 449 

requires effective turbulent transport to facilitate the transfer of gases from the canopy to the 450 

atmosphere (Stoy et al., 2006). 451 

Runoff generation exhibited high sensitivity in China's eastern regions, particularly in the 452 

Hai River Basin, the Huai River Basin, and Yunnan Province, with consistent spatial patterns 453 

inall seasons except winter. In Yunnan Province, runoff generation is most sensitive in spring. 454 

Yunnan's complex terrain and uneven water distribution make runoff vital for water 455 

redistribution during dry seasons (Winkler et al., 2018; Immerzeel et al., 2010). The region's 456 

warm climate and high elevation cause early spring snowmelt, which boosts soil moisture and 457 

supports timely vegetation growth (Barnett et al., 2005). Runoff generation is most sensitive in 458 

summer in the Hai River Basin and Huai River Basin. In these basins, concentrated summer 459 

precipitation and irrigation are crucial for maintaining cropland GPP during drier periods. During 460 

winter, the sensitivity weakened and was largely restricted to southern regions. Winter 461 

precipitation reduction and vegetation dormancy decreased runoff sensitivity to GPP simulations, 462 

yet some regions in southern China remained sensitive as winter soil moisture and water 463 

availability affected spring vegetation recovery. 464 

Soil moisture stress (β-factor) and radiation transfer were the main limiting factors for 465 

GPP in dry regions, including Northwest China. By contrast, in wet regions such as southern 466 

China,, runoff generation and turbulence seasonally regulated carbon assimilation. During peak 467 

growth periods (spring and summer), radiation transfer and soil moisture stress more strongly 468 

impacted GPP, increasing sensitivity. Although GPP was low in winter, soil moisture stress still 469 

impacted model outputs in eastern Inner Mongolia and Northwest China by influencing 470 

vegetation recovery, showing notable seasonal lag effects. 471 
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 472 
Figure 6. The Sobol’ index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the 473 

four physical processes (i.e., radiation transfer, β-factor, turbulence, and runoff generation). Notably, blank 474 

areas represent regions with zero GPP under all 48 simulation schemes due to a lack of vegetation cover, 475 

making it impossible to assess sensitivity. 476 

Figure 7 shows the seasonal patterns of the processes exerting the strongest control on 477 

GPP. As in Figure 6, radiation transfer was dominant process over the Tibetan Plateau at the 478 

multi-year scale as well as in summer and autumn while winter GPP in this region dropped to 479 

nearly zero. The β-factor dominated in the water-limited regions (i.e., northwest China, the 480 

Northeast Plain, and parts of southern China), reflecting its broad significance. Runoff mostly 481 

affected Yunnan and the North China Plain. Turbulence was the key influence in high-elevation 482 

forest areas (i.e., Changbai Mountains forest region) in spring and winter. 483 

Spatially, the dominant factors controlling GPP exhibit significant spatial variability 484 

across China.  At multi-year scales, radiation transfer was the primary controlling factor of GPP 485 
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in the northeastern Inner Mongolia and Tibetan Plateau. This mainly results from the divergent 486 

performance of radiation schemes in grasslands and sparse shrubs (Figs. S2). The β-factor was 487 

particularly influential in most regions of China. In the arid northwest and northeast, as well as 488 

southern regions with seasonal water shortages, low soil moisture limited GPP, making the β-489 

factor a key control, as water scarcity reduced photosynthetic efficiency. In high-elevation forest 490 

regions such as the Lesser Khingan and Changbai Mountains, turbulent heat flux plays a key role 491 

in regulating GPP, especially during cold seasons. Turbulent heat exchange helps maintain 492 

canopy temperatures above freezing, thereby extending the photosynthetic period (Bonan et al., 493 

2018; Ensminger et al., 2006). In areas with enclosed terrain, including valleys and basins, 494 

turbulence mitigates the buildup of cold air, making this effect more noticeable (Wang et al., 495 

2016).. Runoff played a dominant role in southwestern and eastern China, where complex terrain 496 

and uneven precipitation led to increased sensitivity to GPP in areas like river basins. 497 

The dominant processes controlling GPP varied significantly across the four seasons. 498 

Turbulence became more influential in spring, dominating GPP dynamics in the Tibetan Plateau, 499 

Changbai Mountains, and parts of central and eastern China. Rising temperatures and winds 500 

increased surface heating and atmospheric instability, enhancing turbulence. As plants enter their 501 

growing season with higher CO2 demand, turbulence enhances gas exchange, boosting 502 

photosynthesis and thus increasing its impact on GPP (Baldocchi, 2014; Finnigan, 2000). In 503 

summer, the distribution of dominant physical processes closely resembled the multi-year 504 

average, likely because the Noah-MP ensemble showed the largest spread during summer. In 505 

autumn, the main processes in the Yunnan-Guizhou Plateau shifted from runoff generation to 506 

radiation transfer. Runoff generation was less impactful due to reduced rainfall and smaller 507 

runoff differences. Solar radiation became the main limiting factor (Wang et al., 2023). When 508 

radiation levels were sufficiently high, photosynthetic activity stayed high. In winter, the β-factor 509 

was the main driver of GPP, while radiation had minimal effect. This is because low 510 

temperatures suppress vegetation activity, making radiation less sensitive to GPP changes (Fu et 511 

al., 2017). Conversely, in regions with winter-spring dry seasons like Southwest China, soil 512 

moisture becomes the dominant control on GPP (Zhou et al., 2019). 513 

Overall, the dominant physical processes controlling GPP exhibit both seasonal and 514 

spatial variability. Spatially, radiation transfer was the primary driver of GPP on the Tibetan 515 

Plateau, while the β-factor, which represents vegetation stomatal response to soil moisture, 516 
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played a dominant role across most other regions of China, including the northwest, the 517 

Northeast Plains, and parts of southern China. Notably, the β-factor is the principal control on 518 

GPP throughout most of the year, particularly in winter, when its influence extends nearly the 519 

whole of China. During spring and winter, turbulence primarily affects GPP, whereas in summer, 520 

runoff generation plays a larger role; overall, the β-factor remains the key driver.. 521 

 522 

Figure 7. Spatial distributions of the dominant physical process for the Noah-MP ensemble-simulated multi-523 

year-averaged and seasonalGPP.  524 

4.3 Parameterization scheme optimization across different vegetation types 525 

To determine the best parameterization scheme for dominant physical processes in GPP 526 

simulations across different vegetation types, we analyzed the process with the highest Sobol' 527 

sensitivity index for each vegetation type. Figure 8 presents the total Sobol’ sensitivity indices of 528 

https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

27 

 

Noah-MP-simulated GPP (multi-year average and seasonal) for four physical processes across 529 

vegetation types. These variations suggest that the dominant processes governing GPP differ 530 

depending on the balance between water and energy limitations. 531 

The sensitivity of GPP simulations to key physical processes varied significantly across 532 

vegetation types, with shrubland ecosystems being most sensitive to the radiation transfer 533 

process (Figure 8). Shrublands, widely distributed in arid regions and the eastern Tibetan 534 

Plateau, exhibited high sensitivity to radiation transfer (index = 0.92), but showed minimal 535 

sensitivity to the β-factor, turbulence, and runoff generation. The RAD process directly 536 

influences the amount of shortwave radiation absorbed by vegetation (SAV) and the absorbed 537 

photosynthetically active radiation (APAR). As shown in Figure S8,simulations using the 538 

RAD01 scheme produced greater SAV and APAR values. In the Noah-MP model, the radiation 539 

process indirectly regulates vegetation growth and leaf area index (LAI) by modulating 540 

photosynthesis, which mainly depend on solar radiation and canopy PAR absorption. 541 

Consequently, the simulated LAI and fraction of vegetated area (FVEG) varied significantly 542 

across different radiation transfer schemes. The results suggest that the RAD01 scheme yields 543 

more realistic simulations and better aligning with actual conditions.  544 

The β-factor process exhibited the highest sensitivity in GPP simulations over ENF, 545 

savannas, croplands, and grasslands (Figure 8). Although all β-factor parameterization schemes 546 

regulate photosynthetic and transpiration through modulating stomatal resistance, their 547 

performance varied substantially among ecosystem. Specifically, in ENF ecosystems, all three 548 

schemes showed a sharp increase in transpiration rate starting around DOY 60, quickly reaching 549 

a peak (Figure S9). Meanwhile, APAR exhibited a bimodal pattern, resulting in simulated GPP 550 

to peak earlier than observations. For savannas and croplands, the differences among the three 551 

schemes were minor but schemes systematically overestimated GPP. In grassland ecosystems, 552 

although the BTR03 scheme significantly enhanced the simulated APAR and transpiration rate, 553 

GPP was still substantially underestimated. These findings demonstrate systemic limitations in 554 

current β-factor parameterizations across different ecosystems, as even the most favorable 555 

scheme fails to accurately capture ecosystem-specific GPP dynamics.  556 

The turbulence process exhibited, the highest Sobol’ sensitivity index of GPP in DBF 557 

ecosystems. Noah-MP simulations revealed that the surface exchange coefficient directly 558 
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influences the vegetation-atmosphere exchanges of sensible and latent heat flux. The SFC01 559 

scheme generated higher sensible heat flux and turbulent exchange coefficients than to the 560 

SFC02 scheme, whereas SFC02 resulted in relatively higher latent heat values (Figure S10). 561 

Despite the substantial differences in energy flux simulations between the two schemes, their 562 

simulated GPP values differed only slightly. Compared with observations, both schemes showed 563 

systematic GPP overestimation, suggesting that vegetation energy-use efficiency may be 564 

overrepresented in the model. 565 

The runoff generation process exhibited the highest sensitivity in GPP simulations for 566 

EBF, DNF, and MF (Figure 8). Different runoff parameterization schemes alter the partitioning 567 

of surface and subsurface runoff, which in turn modifies soil moisture conditions and drives 568 

differences in simulated vegetation dynamics, including LAI, fraction of vegetated area (FVEG), 569 

and ultimately GPP (Figure S11). The impact of runoff generation parameterizations on GPP is 570 

primarily mediated through changes in soil moisture. However, the four runoff generation 571 

schemes produced similar GPP simulations, with only minor differences relative to observed 572 

GPP. Moreover, all Noah-MP scheme combinations systematically overestimated GPP. These 573 

results suggest that further refinement of model parameterizations is necessary to improve the 574 

accuracy of GPP simulations.  575 

This systematic analysis reveals distinct ecosystem-dependent controls on GPP 576 

simulations in Noah-MP. Among the key physical processes, the radiation transfer scheme 577 

dominates in shrublands, with RAD01 performing best due to its better capturing radiation 578 

absorption (SAV/APAR) and subsequent vegetation dynamics (LAI/FVEG) (Table S2, S3). For 579 

β-factor, while exhibiting high sensitivity across ENF, savannas and croplands, all current 580 

schemes show critical limitations - even the optimal BTR03 scheme substantially underestimates 581 

GPP. The turbulence process proves most influential in DBF ecosystems, though both SFC01 582 

and SFC02 similarly overestimate GPP, suggesting fundamental issues in energy-carbon 583 

coupling. Similarly, for runoff generation processes in tropical/temperate forests, all four 584 

parameterizations produce comparable but consistently overestimated GPP results. Importantly, 585 

these systematic biases across multiple ecosystems indicate the model's inherent tendency to 586 

overestimate vegetation resource use efficiency. These findings collectively underscore the need 587 

for: (1) adopting RAD01 for shrubland simulations, (2) comprehensive recalibration of energy-588 
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water-carbon coupling mechanisms across all ecosystems to reduce persistent overestimation 589 

biases. 590 

591 
Figure 8. The Sobol’ index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the 592 

four physical processes across different vegetation types. Here, RAD denotes radiation transfer, BTR denotes 593 

the β-factor, SFC denotes turbulence, and RUN denotes runoff generation.  594 

5 Conclusions and discussion 595 

We examined the performance of the Noah-MP ensemble with multiple 596 

parameterizations in reproducing GPP, based on flux tower measurements and PML GPP 597 

datasets. The Noah-MP ensemble was generated by perturbing parameterization schemes of four 598 

https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

30 

 

key physical processes: radiation transfer, turbulence, the β-factor, and runoff generation. In 599 

China, GPP showed significant spatial-temporal variation, with spring/summer as peak seasons 600 

and southeastern/northeastern regions acting as major carbon sinks. Vegetation type greatly 601 

shaped GPP, with forests being the largest carbon contributors, while grasslands and shrublands 602 

exhibited lower productivity. The Noah-MP effectively captured the spatiotemporal patterns of 603 

GPP, but overestimated forest and cropland GPP in peak seasons, potentially due to 604 

underestimating the photosynthesis inhibition under soil moisture deficits. The model exhibited 605 

strong performance across most Chinese ecosystems, with moderate accuracy in shrublands, and 606 

notably inferior results in evergreen forest, demonstrating its applicability in GPP simulation for 607 

Chinese terrestrial ecosystem. 608 

Our results align with Arsenault et al.( 2018), indicating that Noah-MP overestimates 609 

GPP throughout the growing season, notably in forests and croplands. This overestimation likely 610 

arises from the model's insufficient response to water stress and stomatal regulation under 611 

drought conditions, which leads to the overestimation of carbon assimilation rates. Additionally, 612 

limitations in phenology-related parameterizations and the dynamic vegetation module might 613 

lead to excessive carbon allocation to photosynthetic organs, such as buds in spring (Ma et al., 614 

2017; Niu et al., 2011). Addressing current model limitations requires advancing carbon 615 

allocation schemes, refining photosynthetic temperature regulation, and integrating nutrient 616 

constraints, with an emphasis on nitrogen, within vegetation processes (Gim et al., 2017; Cai et 617 

al., 2016; Schaefer et al., 2012; Stöckli et al., 2008). 618 

With the Noah-MP ensemble, the Sobol’ total sensitivity index was applied to determine 619 

the impact of major physical processes on GPP in China’s terrestrial ecosystems. China’s 620 

ecosystem GPP was influenced by multiple processes, showing spatial heterogeneity. In arid 621 

regions like Northwest China, the β-factor (soil moisture stress) and radiation transfer limited 622 

GPP, while in humid southern China, runoff generation and turbulence regulated carbon 623 

assimilation. During peak growth periods, radiation transfer and the β-factor strongly impacted 624 

GPP. For different ecosystems, water-related factors, including the β-factor and runoff 625 

generation, mainly influenced cropland and savanna GPP, while radiation transfer and turbulence 626 

affected shrublands and forests respectively. GPP's dominant processes varied seasonally and 627 

spatially, with the the β-factor dominated in most Chinese regions and radiation transfer showed 628 

stronger control on the Tibetan Plateau. Except in summer, the β-factor was the main GPP driver, 629 
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especially in winter. In spring, there are no obvious limiting factors, except for a slight sensitivity 630 

exhibited by turbulence; in summer, both radiation transfer and runoff generation show moderate 631 

influence on GPP; in autumn, the dominant process was radiation transfer.  632 

The sensitivity of physical process parameterizations is critical for identifying the 633 

primary drivers and mechanisms underlying the spatiotemporal variations of GPP. In spring, 634 

turbulence significantly influences GPP by modulating surface energy fluxes, which in turn 635 

regulate vegetation–atmosphere gas exchange and surface temperature (Misson et al., 2007). 636 

Specifically, turbulent transport of heat and moisture helps maintain canopy temperatures above 637 

freezing and enhances carbon dioxide exchange efficiency, thereby extending the active 638 

photosynthetic period (Misson et al., 2007). Additionally, turbulence mitigates cold air 639 

accumulation in topographically enclosed areas such as valleys and basins, further supporting 640 

microclimatic conditions favorable for vegetation growth (Ensminger et al., 2006). In China’s 641 

arid and semi-arid regions, including the Northwest and Northeast Plain, the β-factor exerted a 642 

pronounced influence on autumn and winter GPP (Kannenberg et al., 2024), emphasizing  the 643 

critical influence of soil moisture availability  on transpiration and carbon uptake in these water-644 

limited ecosystems, aligning with previous findings (Wang et al., 2023; Zheng et al., 2019; 645 

Nelson et al., 2018; Wolf et al., 2016). Runoff played a significant role in controlling GPP in 646 

humid regions, including the Yunnan-Guizhou Plateau and eastern China. It impacts 647 

photosynthetic efficiency by altering surface and subsurface water availability (Lei et al., 2014). 648 

Incorporating detailed runoff-soil moisture interactions and vegetation-specific hydrological 649 

processes may enhance simulation accuracy in these regions. Overall, GPP variability in China 650 

arose from complex interactions of climatic drivers, vegetation types, and ecosystem-specific 651 

physiology. This highlights the need for model improvements in simulating radiation transfer, 652 

soil moisture transport, and vegetation dynamics to reduce uncertainties. Notably, sensitivity 653 

patterns varied regionally even within the same vegetation type, reflecting local climate and 654 

hydrological influences. Such spatial heterogeneity indicates the importance of conducting 655 

region-specific modeling and implementing targeted management, such as optimizing water 656 

resources in arid areas and boosting light-use efficiency in humid regions.  657 

Based on systematic model performance evaluations and parameterization scheme 658 

sensitivity analyses, this study proposes optimized Noah-MP model configurations for terrestrial 659 

ecosystems in China. The findings indicate that the modified two-stream approximation scheme 660 
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(RAD01) exhibits superior performance in simulating radiation transfer processes, particularly 661 

showing significant advantages in grasslands and shrubland ecosystems. For β-factor, while the 662 

three β-factor schemes show minimal differences across most vegetation types, BTR03 663 

demonstrates relatively better performance in cropland ecosystems. Importantly, both surface 664 

exchange (SFC01/SFC02) and runoff parameterizations consistently overestimate GPP without 665 

showing substantial inter-scheme performance variations. Consequently, we recommend: (1) 666 

adopting RAD01 for radiation transfer simulations, (2) prioritizing BTR03 for cropland 667 

applications, and (3) focusing on fundamental improvements in energy-carbon coupling and 668 

hydro-vegetation interaction mechanisms to address the identified systematic biases and enhance 669 

overall model accuracy. 670 

This study assessed the ability of Noah-MP to simulate GPP across Chinese ecosystems, 671 

explored key physical processes shaping GPP variations, and offered optimal parameterization 672 

scheme recommendations for GPP modeling. The findings contribute to improving ecosystem 673 

carbon uptake modeling and support the improvement of carbon management strategies. 674 

However, several limitations warrant attention in future work:  675 

(1) Parameterization schemes limitations: only a subset of parameterization schemes was 676 

included due to computational constraints, with other parameters and parameterization schemes 677 

remaining not considerated. Future research should expand the ensemble by incorporating more 678 

parameters and schemes related to vegetation carbon sequestration, such as canopy height and 679 

rain-snow partitioning schemes. Furthermore, plant physiology-related processes, like plant 680 

hydraulics, were not incorporated in the Noah-MP 5.0 version used (Li et al., 2021). Subsequent 681 

research is needed to include these processes and evaluate their influence on GPP. (2) Validation 682 

data uncertaintie: though the PML GPP (China) dataset used here was deemed superior by prior 683 

studies, it still deviates from site observations. The PML GPP shows strong agreement with flux 684 

tower observations, with an NSE of 0.82 and an RMSE of 1.71 g C m⁻² d⁻¹ (He et al., 2022). (3) 685 

Model structural constraints: current physical process models like Noah-MP simplify the 686 

parameterization of vegetation carbon fluxes, introducing uncertainties in GPP simulation. 687 

Integrate data assimilation and machine-learning-based modeling can effectively reduce such 688 

uncertainties and enhance simulation accuracy. 689 
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