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16  Abstract

17 Understanding the carbon cycle and its interactions with climate systems requires precise
18 simulation of Gross Primary Productivity (GPP). However, achieving this remains challenging
19  due to the inherent complexity of the models. Current research lacks quantification of how
20  uncertainties in physical process parameterization affect GPP simulation across various
21 ecosystems, and the dominant physical processes goberning GPP variability are pooly identified.
22 To address these issues, this study generated a 48-member Noah Land Surface Model with multi-
23 parameterization options (Noah-MP) ensemble by manipulating key physical parameterization
24 schemes. The model was validated using ChinaFlux tower measurements and Penman-Monteith—
25  Leuning Version 2 data. We employed the Sobol’ total sensitivity index to assess the influence of
26  four key physical processes on GPP: radiation transfer, the soil moisture limitation factor for
27  transpiration (B-factor), turbulence, and runoff generation. Results demonstrate that Noah-MP
28  effectively captured GPP's spatiotemporal patterns in Chinese ecosystems but overestimated
29  GPP in forest and cropland during spring and summer. Sensitivity analysis indicates that the f3-

30 factor dominates GPP simulations across most of China, while radiation transfer is the primary
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31  driver on the Tibetan Plateau. The main difference between the two radiation transfer schemes
32 lies in whether vegetation gaps fraction are considered. On the Tibetan Plateau, where grasslands
33 and shrublands exhibit large canopy gaps, consider it or not could lead to in substantial
34 differences in simulated radiation and consequently in GPP, making GPP highly sensitive to the
35 choice of radiation scheme. Across ecosystems, water-related factors (B-factor and runoff)
36  mainly affect croplands and savannas, radiation transfer dominates grasslands and shrublands,
37  and turbulence is most influential in forests. There are also distinct seasonal patterns: radiation
38 and turbulence dominate in spring and summer, while radiation and B-factor prevail in autumn
39 and winter, especially in arid regions. Based on systematic performance evaluations and
40  sensitivity analyses, this study proposes optimized Noah-MP model configurations for China's
41  terrestrial ecosystems. The radiation transfer scheme considering the three-dimensional canopy
42 structure (option 1) is recommended for grasslands and shrublands. Our findings offer insights
43 for enhancing GPP simulation accuracy in Noah-MP, thereby improving the model’s ability to

44 represent carbon—water dynamics from regional to continental scales.
45

46  Keywords: Gross Primary Productivity; Noah-MP; Uncertainty; Parameterization sensitivity;
47  China
48



https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

49 1 Introduction

50 Gross primary productivity (GPP) is an important indicator representing the total carbon
51 assimilated by plants through photosynthesis (Qian et al., 2024; Wang et al., 2023). Precise
52 estimation of GPP is crucial for examining ecosystem carbon cycles and evaluating ecosystem
53 responses to global environmental changes (Chang et al., 2023; H. Wang et al., 2023; Zhang and
54 Ye, 2022). The eddy covariance technique, often regarded as the most reliable approach for
55  quantifying CO: fluxes between ecosystems and the atmosphere, is nonetheless limited in spatial
56  coverage, being applicable primarily at local scales (Chen et al., 2020; Yu et al., 2016). Land
57  surface models (LSMs) provide a powerful framework for enabling continuous simulation of
58  GPP at regional scales, thereby advancing understanding of carbon cycle processes and their

59  feedbacks with the climate system (Wei et al., 2017; Sims et al., 2008; Running et al., 2004).

60 During the last few decades, LSMs have undergone significant advancements through
61  three major stages, each aimed at improving the realism of physical parameterization and
62  achieving higher accuracy in simulating carbon, water, and energy cycles (Pitman, 2003; Sellers
63 et al., 1997). First-generation LSMs conceptualize the land surface as a simple bucket with a
64  constant water-holding capacity, significantly oversimplifying soil moisture dynamics and
65  vegetation effects (Manabe, 1969). This simplification leads to unrealistic simulations of energy
66  partitioning and water transferring. Second-generation LSMs are built on the Soil-Vegetation-
67  Atmosphere-Transfer Model, explicitly incorporating interactions and feedback mechanisms
68  among vegetation, atmosphere, and soil (Deardorff, 1977). These models provide a more realistic
69  depiction of land surface processes by integrating stomatal conductance, which regulates
70  transpiration, along with soil layer water exchange. Third-generation LSMs evolve from the
71 second-generation LSMs by incorporating biochemical processes. They recognize vegetation's
72 critical role in terrestrial carbon-water cycles, including its contribution to land
73 evapotranspiration (Jasechko et al., 2013), its modulation of heat and water vapor exchanges to
74 influence precipitation (Green et al., 2017), and its absorption of carbon dioxide via
75  photosynthesis (Vicca, 2018). Currently, the typical third-generation LSMs, such as the Simple
76  Biosphere Model (Denning et al., 1996), the Community Land Model (CLM, Oleson et al., 2010),
77  and the Noah Model with Multiple Parameterizations (Noah-MP, Niu et al., 2011; Yang et al.,
78  2011), have become mainstream tools for land surface research. Take Noah-MP as an example, it

79  introduces a dynamic vegetation module to simulate canopy density and plant coverage across

3
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80  different vegetation types while accounting for carbon allocation within plants (Yang and Niu,
81  2003; Dickinson et al., 1998). The model incorporates stomatal-photosynthesis coupling for
82  sunlit and shaded leaves, with distinct parameterizations for photosynthesis and respiration in C3
83 versus C4 plants (Ball et al., 1987; Bonan, 1996). The canopy gaps are considered to compute
84  the absorption of solar radiation by sunlit and shaded leaves (Niu and Yang, 2004; Yang and
85  Friedl, 2003). Third-generation LSMs improve simulation accuracy and allow for the coupling of
86  terrestrial-atmospheric carbon and nitrogen cycles with energy and water fluxes by
87  comprehensively modeling processes such as canopy radiation transfer, soil heat and water
88  transport, and biochemical activity (Pitman, 2003; Dickinson et al., 1998). These advancements
89  have significantly propelled multi-scale studies of climate, ecosystems, and land-atmosphere
90 interactions, thereby improving comprehension of land surface dynamics and their impacts on
91  regional climate variability (He et al., 2024; Yang et al., 2021; Zhang et al., 2016; W. Cai et al.,
92 2014; Baker et al., 2003).

93 Notwithstanding their broad application, these models continue to suffer from persistent
94  issues that affect the reliability of GPP estimates over China (Wang et al., 2024; Li et al., 2022).
95  For example, Zheng et al. (2023) found that CLM4.5 underestimated GPP in some temperate
96  forests and C3 grasslands, while overestimating GPP in temperate broadleaf evergreen forests.
97  This bias is linked to the model’s tendency to overestimate specific leaf area, particularly at the
98  canopy top and on sloped terrain. Similarly, Zhang et al. (2016) reported that while CLM4.5
99  improved GPP simulation compared to CLM4.0, particularly in subtropical forests, it still
100 exhibited a positive bias in annual GPP. These findings highlight the necessity for improving
101 parameterizations of structural, physiological, and growth-status parameters under different
102 vegetation types. Additionally, Li et al. (2022) noted that Noah-MP shows uncertainty in
103 simulating GPP over China, with relative biases exceeding 40% in grasslands and reaching 100%
104  in drylands, while it performs better in humid areas. The above results indicate that further
105  uncertainty assessments are essential across China's diverse ecosystems. This will facilitate the

106  identification of uncertainty sources and the optimization of parameterization schemes.

107 Among the above-mentioned LSMs, Noah-MP is particularly suited for uncertainty
108 attribution because it offers multiple parameterization schemes for key physical processes (Clark
109 et al., 2011). Parameterizations for a single physical process often rely on conflicting

110  assumptions. This divergence, rooted in incomplete process knowledge, is a major source of
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111  uncertainty in multi-physics ensemble modeling (Clark et al., 2015). By systematically
112 comparing these schemes, researchers can identify optimal configurations tailored to specific
113 climatic and surface conditions, thereby enhancing model adaptability and reliability across
114  diverse environmental scenarios (Chang et al., 2020; Clark et al., 2016). Moreover, Noah-MP
115  can generate ensembles by perturbing specific physical process parameterizations, and enable the
116  quantification of the relative contributions of different parameterizations to total uncertainties
117 through sensitivity analyses. For instance, Zheng et al. (2019) utilized a 48-member Noah-MP
118  multi-physics ensemble with the Sobol’ variance decomposition method (Saltelli et al., 2010;
119 Sobol’, 2001; Saltelli and Sobol, 1995) to assess the sensitivity of precipitation partitioning to the
120  parameterizations of relevant physical processes. Yang et al. (2011) and You et al. (2024)
121  employed the Noah-MP multi-physics ensemble to investigate various physical processes’
122 contributions to soil moisture, ET, runoff, and snow depth. For carbon cycle simulations, Yang et
123 al. (2021) employed Noah-MP to analyze the sensitivity of net ecosystem exchange (NEE) at the
124  site scale, highlighting the soil moisture factor for stomatal resistance and surface layer
125  turbulence as the most sensitive processes. Some studies (You et al., 2020; Li et al., 2019) also
126 demonstrated that the primary source of uncertainty in multi-parameter ensemble simulations is
127  attributed to sensitive parameterization schemes. Thus, sensitivity analyses on the Noah-MP
128  multi-physics ensemble can facilitate the selection of effective parameterization scheme
129  combinations, which is vital for enhancing GPP estimation accuracy in diverse ecosystems.
130 Furthermore, quantitative analysis of the impacts of different physical processes on GPP can
131 identify the key factors and driving mechanisms affecting carbon absorption across various

132 ecosystems.

133 However, existing uncertainty attribution studies based on the Noah-MP multi-physics
134 ensemble have largely focused on hydrological processes at global and regional scales (Zheng et
135 al., 2023; Li et al., 2022), while analyses specific to terrestrial carbon cycle processes remain
136 limited, especially in China. Yang et al. (2021)investigated the key physical processes affecting
137 GPP at the site scale, but their study was constrained to a relatively short period (less than 10
138 years) and limited sites (eight sites). To date, there is a lack of comprehensive uncertainty
139 attribution studies on GPP simulations over China that account for different vegetation types and
140  both multi-year and seasonal scales. The contributions of different physical processes to GPP

141 simulation uncertainty across China have not been quantitatively determined. The dominant
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142 processes affecting GPP across different vegetation types remain unknown. This limitation
143 restricts the improvement of Noah-MP, hindering its practical application in carbon sink

144 assessments and policy-making in China.

145 To better understand model uncertainties, this study applied the Sobol’ sensitivity
146  analysis on a 48-member Noah-MP ensemble across different vegetation types in China over a
147 20-year period (2001-2020). First, we evaluated the ensemble's uncertainty in simulating GPP
148 over China at seasonal and multi-year mean scales against China Flux sites data and the Penman-
149 Monteith-Leuning Version 2 (PML-V2) GPP dataset, to assess the accuracy and applicability of
150  Noah-MP over China. Subsequently, we quantified and compared the sensitivity of four key
151  physical processes—radiation transfer, soil moisture limitation factor to transpiration (p-factor),
152 surface turbulent exchange (turbulence), and runoff in simulating GPP across China's diverse
153 ecosystems. This study focuses on two main scientific questions: (1) the performance of the
154  Noah-MP ensemble in simulating GPP for different vegetation types in China over seasonal and
155  multi-year periods, and (2) the identification of key physical processes and mechanisms that
156  govern GPP in diverse ecosystems. The study clarifies the influence of physical process
157  parameterizations on GPP simulation within Noah-MP and provides ecosystem-specific
158  recommendations for model configuration, offering valuable insights to enhance the accuracy of

159  terrestrial carbon flux modeling in China. The flowchart of this study is shown in Figure 1.

160 The paper is structured as follows. Section 2 provides a description of the model and
161  datasets, while Section 3 outlines the methods for model evaluation and sensitivity analysis. The

162 results are presented in Section 4, followed by conclusions and discussion in Section 5.
163

164
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Figure 1. Flowchart of this study.
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167 2 Model and datasets

168 2.1 Study domain

169 This study selected China (18.5°N—53.75°N, 73.25°E—135.25°E) as the study domain, as
170 shown in Figure 1. China covers a land area of about 9.6 million square kilometers, extending
171 across much of East Asia along the western Pacific margin.. The domain features a west-high-
172 east-low topography, diverse land-cover types, and significant ecosystem variations influenced
173 by climate and elevation. This study considered the following land-cover types in the domain:
174 forests ( evergreen needleleaf (ENF), evergreen broadleaf (EBF), deciduous needleleaf (DNF),
175 deciduous broadleaf (DBF), and mixed forests (MF)), grasslands, croplands, savannas, and
176  shrublands, as shown in Figure 2(b). China's vast territory features diverse climatic types.
177 Eastern China experiences a monsoon climate, characterized by cold, dry continental monsoons
178  in winter and warm, humid oceanic monsoons in summer, driving seasonal rainfall patterns. The
179  region is dominated by forests, savannas, grasslands, and croplands. The Tibetan Plateau, with its
180  high altitude and vast area, creates a unique alpine climate. The region is dominated by
181  grasslands and bare soil areas. Northwest China, situated far inland, experiences minimal
182 influence from oceanic monsoons, resulting in an arid climate primarily driven by westerlies.
183 The region is dominated by grasslands and croplands.
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185  Figure 2. Spatial patterns of (a) elevation and (b) vegetation type in China. The vegetation map only includes
186  the land-cover types analyzed in this study, while blank areas represent land-cover types excluded from the
187  analysis. Vegetation classification follows the MODIS Land-cover type (MCD12Q1) dataset, including forests
188 (ENF, EBF, DNF, DBF, MF), shrublands, savannas, grasslands, and croplands. Elevation data are from the
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189  SRTM Digital Elevation Model (Version 4). The basemap is provided by the US National Park Service
190  (https://services.arcgisonline.com/arcgis/services).

191 2.2 The Noah-MP ensemble

192 We applied the Noah-MP LSM (Niu et al., 2011; Yang et al., 2011), which represents an
193 improved version of the original Noah LSM. The model features structural enhancements by
194  separating vegetation canopy, snow, and soil into independent layers and incorporating key
195  parameters (He et al., 2023). It adopts a multi-hypothesis framework (Clark et al., 2011), offering
196  multiple parameterization options for key physical processes. The design enhances flexibility and
197  improves performance across diverse environments. Moreover, the multi-parameterization
198  structure enables generating large ensembles by altering certain physical parameterizations. This

199  capability is particularly useful for analyzing the sources of uncertainty.

200 A 48-member ensemble of Noah-MP (version 5.0) was produced in this study by altering
201  two radiative transfer schemes (MOD, GAPO), three -factor schemes (NOAHB, CLM, SSiB),
202  two turbulence schemes (M—-O, Chen97), and four runoff generation schemes (SIMGM,
203  SIMTOP, NOAHR, BATS). The parameterization schemes are provided in Table 1.

204 The processes considered here were chosen due to their crucial roles in photosynthesis
205  and carbon sequestration in vegetation, as highlighted in previous research. Radiative transfer
206  regulates the energy input for photosynthesis, with optimal light intensity and duration enhancing
207  carbon assimilation (Chen et al., 2012). However, too much radiation exposure can damage the
208  photosynthetic apparatus and a decline in GPP (Misson et al., 2007). B-factor directly controls
209 plant water availability, thus affecting stomatal conductance and photosynthetic efficiency
210  (Wang et al., 2008; Yuan et al., 2007; Schlesinger et al., 1990). Insufficient soil moisture leads to
211  stomatal closure, restricting carbon dioxide uptake and suppressing GPP (Niu et al., 2011).
212 Turbulent processes influence the movement of CO2 and water vapor between vegetation and the
213 atmosphere, affecting the rate of photosynthetic carbon uptake (Bonan et al., 2018, 2014). Strong
214  turbulence enhances carbon dioxide supply and removes excess water vapor, optimizing
215 photosynthesis and promoting GPP (Zheng et al., 2019). Runoff generation affects soil moisture
216  availability, which in turn influences plant water status (Niu and Yang, 2007). Excessive runoff
217 depletes soil moisture, intensifies water stress, and reduces GPP. In contrast, moderate runoff
218  maintains favorable soil water conditions, sustaining photosynthesis and carbon accumulation

219  (Zheng et al., 2019; Gan et al., 2019; Niu et al., 2011). These processes interact, regulating

9
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220  carbon assimilation and plant productivity, and ultimately determining the carbon sequestration
221  capacity of ecosystems. Besides, this study excluded the radiative transfer scheme 3 (two-stream
222 applied to vegetated fraction, SELLERS, 1985; Dickinson, 1983) of Noah-MP, as it shares the
223 same origin as scheme 1, and may overexpose understory vegetation or snow to solar radiation,
224  potentially causing biased energy partitioning (Niu et al., 2011). Canopy stomatal resistance
225  schemes can also influence GPP simulation, but due to model framework limitations, only the
226  Ball-Berry scheme (Ball et al., 1987) is available. The dynamic vegetation scheme (Yang and
227  Niu, 2003; Dickinson et al., 1998) was activated, and other schemes used default settings.

228 Table 1

229  Selected Noah-MP parameterization schemes for the four key physical processes in this study.

Symbol Physical Process Options Notes

MOD: Standing for the modified two-stream approach (Niu
1 and Yang, 2004). This improves upon the classical Two-
Stream Model.

GAPO: Two-stream with gap=0 (Niu and Yang, 2004). This
2 version assumes no gaps or uneven distribution in the canopy,
making it suitable for uniform canopy structures.

RAD Radiation transfer

Noah: The Noah scheme, which focuses on soil moisture
1 (Chen and Dudhia, 2001). The control factor  for
transpiration is a function of soil volumetric water content.

CLM: The scheme used in the CLM (Oleson et al., 2010)
2 assumes that the control factor B for transpiration, related to
BTR B-factor soil moisture, is a function of soil water potential.

SSiB: The scheme used in the SSiB (Xue et al., 1991) also
considers the control factor § for transpiration as a function of
3 soil water potential. Compared to the CLM scheme, this
model shows a more pronounced response to changes in soil
moisture.

M-O: Monin-Obukhov Similarity Theory (Dyer, 1974). This
scheme considers zero plane displacement.

SEC Turbulence Chen97: The scheme used in the Noah LSM (Chen et al.,
1997). It does not consider zero-plane displacements but does
take into account the difference between thermodynamic
roughness and kinetic roughness.

SIMGM: The scheme used in CLM 4.5 (Niu and Yang,
2007), takes into account the dynamics of groundwater.
Runoff is a function of groundwater level, the same as in the
TOPMODEL model.

SIMTOP: TOPMODEL with an equilibrium water table (Niu
et al., 2005). TOPMODEL Modeling the interaction between
groundwater and surface water flow based on soil moisture
distribution and hydrologic response.

RUN Runoff generation

10
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Schaake96: The scheme used in the Noah LSM(Schaake et
al., 1996), does not consider groundwater. Runoff is obtained
by subtracting soil infiltration from precipitation, which is
determined by soil moisture and soil texture.

BATS: The scheme used in the BATS LSM (Yang and
Dickinson, 1996), does not consider groundwater. Runoff
4 depends on soil moisture and takes into account a sub-grid
distribution of soil moisture saturation zones. Infiltration is
the difference between precipitation and runoff.

230
231 2.3 CMFD v2.0 forcings
232 The China Meteorological Forcing Dataset Version 2 (He et al., 2025)

233 (https://doi.org/10.11888/Atmos.tpde.302088.), including near-surface air temperature, surface
234  pressure, relative humidity, precipitation, downward longwave radiation, and shortwave
235  radiation, was used to force Noah-MP in this study. CMFD v2.0 is a gridded meteorological
236  dataset at high resolution, which combines data from multiple sources: remote sensing,
237  reanalysis, and in-situ observations.. It is specifically developed for land surface process studies
238 in China (Wang et al., 2025; Zhang and Chen, 2025; Bu et al., 2024). Spanning January 1951 to

239 December 2020, the dataset has a three-hourly temporal resolution and a 0.1° spatial resolution.

240 2.4 Eddy covariance data

241 Eddy covariance (EC) data were obtained from the Science Data Bank for sites within the

242 ChinaFlux network (https://www.scidb.cn/en), comprising 6 forest sites, 6 grassland sites, and 6

243 cropland sites (Table 2) . High-temporal-resolution flux and meteorological data were logged
244  every half hour across all sites. These datasets underwent rigorous standardization protocols,
245  including quality control checks and post-processing corrections, ensuring high reliability for

246  validating diverse GPP products (Yang et al., 2017).

247  Table 2

248 Basic information on the 18 flux sites.
Site Station name Longitude (°E)  Latitude (°N)  Vegetation type Time Range
ALF Ailaoshan 101.028 24.541 EBF 2009-2013
BNF Xishuangbanna 101.577 21.614 EBF 2003-2015
CBF Changbaishan  128.096 42.403 MMF 2003-2010
DHF Dinghushan 112.534 23.173 EBF 2003-2010

11



https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

MEF Maoershan 127.668 45.417 DBF 2016-2018
QYF Qianyanzhou 115.058 26.741 ENF 2003-2010
DLG Duolun 116.284 42.047 Grassland 2006-2015
DXG Dangxiong 91.066 30.497 Alpine meadow 2003-2010
HBG GOl Haibei 101.313 37.613 Alpine meadow 2015-2020
HBG S01  Haibei 101.331 37.665 Alpine meadow 2003-2013
NMG Neimenggu 116.404 43.326 Grassland 2003-2010
XLG Xilin 116.671 43.554 Grassland 2006-2014
GCA Gucheng 115.735 39.149 Cropland 2020-2022
JRA Jurong 119.21 31.807 Cropland 2015-2020
JZA Jinzhou 121.202 41.148 Cropland 2005-2014
LCA Luancheng 114.413 37.531 Cropland 2013-2017
SYA Shouyang 113.200 37.750 Cropland 2012-2014
YCA Yucheng 116.570 36.829 Cropland 2003-2010

249

250 2.5 PML-V2 (China) dataset

251 The Penman-Monteith—-Leuning Version 2 (PML-V2) (China) terrestrial ET and GPP

252 dataset (He et al., 2022), obtained from the National Tibetan Plateau Data Center
253 (https://data.tpdc.ac.cn/en/data/40f57¢67-33a6-402d-bd37-6ede91919f23/), was used as
254  validation data. This dataset offers daily GPP estimates from February 26, 2000, to December 31,

255 2020, at a 500 m spatial resolution. Generated via the PML-V2 water-carbon coupled model, the
256  dataset estimates ET and GPP by integrating atmospheric and vegetation data. Specifically, it
257  uses the Penman-Monteith equation for ET and a modified Leuning equation for GPP. Calibrated
258  against 26 eddy covariance flux towers in China, it demonstrates high accuracy, particularly for
259  GPP, outperforming the global PML version (Qian et al., 2024; He et al., 2022). Consequently, it
260  is widely used in ecological research, carbon/water cycle modeling, and evaluation studies (Shi

261 etal., 2024; Huang et al., 2023).

262 2.6 MODIS LULC dataset
263 The Moderate Resolution Imaging Spectroradiometer (MODIS) Land Use/Land-cover
264  (LULC) product (MCD12Q1) (https://developers.google.com/earth-

265  engine/datasets/catalog/MODIS 061 MCDI12Q1), derived from the MODIS sensors onboard

266 NASA's Terra and Aqua satellites, was used to set the land-cover types in Noah-MP. The dataset

12
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267  offers global land-cover classification on an annual basis at 500 m resolution, covering the
268  period from 2001 to the present. In this study, we employed the LC Typel classification scheme
269  from the MCD12Q1 product, which follows the International Geosphere-Biosphere Programme
270  system (Sulla-Menashe and Friedl, 2022). To ensure consistency across all datasets, the land-
271 cover dataset was converted to a 0.1° spatial resolution using interpolation and resampling,
272 aligning with the CMFD dataset grid points. This study used land-cover types from 2001 and did

273 not account for land-cover changes.

274 2.7 ERAS5-Land dataset

275 The ERAS5-Land dataset (https://developers.google.com/earth-
276  engine/datasets/catalog/ECMWE_ERAS LAND HOURLY), developed by the European Centre

277  for Medium-Range Weather Forecasts, was used to initialize the land surface states of Noah-MP.
278  This dataset provides a global land surface reanalysis at 0.1° spatial resolution with hourly
279 outputs, spanning from January 1981 to the present.It is generated by integrating a state-of-the-
280  art land surface model with data assimilation, offering a wide range of land surface variables..
281  ERAS-LAND land surface variables were bilinearly interpolated to the CMFD grid for model

282  initialization.

283 2.8 SoilGrids 2.0 dataset

284 In this study, the SoilGrids 2.0 dataset (Poggio et al, 2021)
285  (https://developers.google.com/earth-
286  engine/datasets/catalog/OpenLandMap_SOL_SOL_TEXTURE-CLASS USDA-TT_M_v02)

287  was used to set soil types in Noah-MP. This dataset provides global soil property predictions at a
288  250m spatial resolution, which is derived from machine learning-based integration of soil profile
289  observations, remote sensing, and environmental covariates. In this study, we used the United
290  States Department of Agriculture soil texture classification (Soil Survey Staff. 2022). It divides
291  soils into 12 primary classes (e.g., sandy loam, silty clay) depending on the relative amounts of
292 sand, silt, and clay. The soil type was also resampled to a 0.1° resolution, based on the dominant

293 type.
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294 3 Methods

295 3.1 Simulation experiment design

296 A two-stage spin-up process (Yang et al., 2021; Zheng et al., 2019) was conducted before
297  each of the 48 Noah-MP simulations to establish initial conditions for January 1, 2000 (see Table
298  S1). In the first stage, the atmospheric forcing from 1999 was cycled 30 times. In the second
299  stage, a 1-year forcing period from January 1, 2000, to January 1, 2001, was applied. With a total
300 spin-up period of 31 years, Noah-MP reached equilibrium under all climatic conditions and

301  parameter configurations (Cai et al., 2014).

302 The subsequent 48 simulations covered the period from 2001 to 2020, using a 15-minute
303  time step. The output frequency is every 8 days. Subsequently, we aggregated the outputs into

304  monthly, seasonal, and annual scales.

305 3.2 Evaluation metrics

306 In this study, the Taylor Skill Score (TSS) was employed to provide a concise assessment
307  of the Noah-MP ensemble (Taylor, 2001).

TSS = 4(1+R)

(&f+%)2(1+R0), (1)

308  where R is a metric for the agreement between observed and simulated time series, and R, is the
309  highest correlation among the ensemble simulations. 6¢is the normalized standard deviation
310  (NSD), which is calculated as the ratio between the standard deviation of observations and that
311 of simulations (see Equation (4)). TSS is a metric bounded between 0 and 1, where the upper

312 limit of 1 represents a perfect match between simulation and observation.

313 To calculate the TSS, R, and NSD were computed. For a model simulation (f) and its

314  corresponding observation (0), the formulas are as follows:

0o = \/%ZZ:l((Ot - 5))2’ ”
@:Z—izi\/%zzﬂ ((ft—f))z’ ¥
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315 where o, represents the observation value at time step t, 0 is the temporal mean of the
316  observation values, and T is the total time step number. Similarly, f; denotes the model output at
317  time step t, f and 6 are the mean values of the model output (f;) and observation (o),

318 respectively. of and g, are their respective standard deviations.

319 To ensure the diversity and comprehensiveness of evaluation metrics, bias, root-mean-
320 square error (RMSE), and the square of the correlation coefficient (R?) was also employed, as

321 follows:

T
1
Bias = TZ(ft = 0¢). )
t=1
RMSE = 251 (( - 1) - Coc - 9] ©

322 A positive bias indicates an overestimation by Noah-MP compared to PML GPP, while a
323 negative bias indicates an underestimation. Since RMSE quantifies the average error magnitude,
324  values nearer to 0 therefore serve as a direct indicator of superior simulation accuracy.. R?
325  corresponds to the square of the R and indicates how well the Noah-MP model fits the

326  observations.

327 3.3 Sobol’ total sensitivity index

328 To determine which physical processes exert the greatest control on GPP, we utilized the
329  Sobol’ total sensitivity index (Saltelli et al., 2010; Sobol’, 2001; Saltelli and Sobol, 1995). The

330 Sobol’ total sensitivity index (Sp) is defined as:

_ EA(W(Y~A)
S/\ - V(Y) ] (7)

331  where S, denotes the Sobol’ total sensitivity associated with the schemes of a specific process A;
332~ Arepresents all processes except A; Y refers to the 48 Noah-MP model outputs, which include
333 both multi-year means and seasonal averages; V(Y) represents the variance among the 48
334 outputs; V,(Y|~ A) measures the variance induced by the A schemes, and E_, is the average

335  across all other parameterization combinations.

336 The Sobol’ total sensitivity index measures the proportion of variance in model outputs

337  attributable to the parameterization of process A, relative to the total ensemble variance. This
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338 index is scaled between 0 and 1, where 0 indicates that A’s parameterization has no impact on
339  the simulations, while 1 denotes complete control of the simulations by A. A higher value

340  denotes a greater degree of dependence of the simulations on A.
341 4 Results

342 4.1 Evaluation of the Noah-MP ensemble

343 To comprehensively assess Noah-MP’s performance in simulating GPP across 48 physics
344  configurations, we adopted a two-tier validation approach. First, site-level evaluations leveraged
345  eddy covariance flux tower observations at selected sites. This approach supports process-
346  oriented assessment of model accuracy under diverse environmental and vegetation conditions.
347  Second, regional-scale evaluations utilized the remote-sensing-based PML-GPP dataset. This
348  provides spatially continuous estimates, enabling assessment of the model's performance to
349  capture broad-scale spatial patterns and interannual variability, serving as a complementary and

350  independent benchmark to site-level observations.

351 4.1.1 Site-Based Validation Using Eddy Covariance Flux Towers

352 The site-level performance of Noah-MP was examined by comparing model outputs with
353  observations from individual flux tower sites. Figure 3 shows a boxplot representing the

354  distribution of TSS (max, min, median) from 48 site-level simulations.

355 Median TSS values consistently exceeded 0.50 at all cropland sites. For forest sites, TSS
356  and R? exceeded 0.50 at all sites except DHF. In contrast, both TSS and R? values were generally
357  below 0.60 at grassland and cropland sites. Specifically, the median TSS values at LCA, SYA,
358 and YCA sites were greater than 0.80, while those at ALF, MEF, and JRA ranged between 0.60
359 and 0.80. The DHF site and all grassland sites had median TSS values below 0.50, indicating

360  limited GPP simulation capabilities at these locations as demonstrated by the notably low TSS.

361 The TSS range reflects the performance variability among different ensemble members.
362 As shown in Figure 3, forest sites exhibited relatively small ensemble spreads, suggesting
363  consistent performance across ensemble members. In contrast, all grassland sites showed large
364 ensemble spreads. Among cropland sites, both GCA and JZA exhibited substantial TSS

365  variability. These findings reveal considerable model performance divergence in grassland and
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366  cropland ecosystems, under different parameterization schemes. In forest ecosystems, however,
367  the model exhibited excellent performance with low sensitive to parameterizations choices,

368  suggesting greater robustness across ensemble members.

L (a) Forest (b) Grassland (¢) Cropland
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369
370  Figure 3. Taylor skill score (TSS) and squared correlation coefficient (R?) evaluating Noah-MP simulated

371  GPP against site-level observations across 48 ensemble experiments. Box plots represent the distribution of
372 results from 48 ensemble experiments, showing the minimum, first quartile, median, third quartile, and
373  maximum values.

374 4.1.2 Spatial Validation Using the PML GPP Dataset

375 To further evaluate the spatial representativeness of Noah-MP simulated GPP, we
376  conducted a spatial comparison with the PML-GPP product. Figure 3 presents the spatial
377  distribution and seasonal variations of GPP across China from two sources: the PML dataset
378  (Figures 3a, c, e, g, i, k), serving as reference data, and the Noah-MP multi-physics ensemble
379  mean (Figures 3b, d, f, h, j, 1). Both datasets revealed clear seasonal GPP patterns, characterized
380 by summer peaks and winter valleys, highlighting climate phenology carbon uptake. In spring,
381  GPP in China showed a northwest-to-southeast increasing gradient, reaching highest values

382  appearing in the central and lower Yangtze River Basin. During summer, GPP reached its peak

17



https://doi.org/10.5194/egusphere-2026-103
Preprint. Discussion started: 29 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

383  in the high-productivity zones, including eastern, southern, and northeastern China, probably
384  attributed to favorable radiation, temperature, and precipitation conditions. In autumn, GPP
385  declined along a southeast-to-northwest gradient. During winter, photosynthetic activity was
386  minimal, with near-zero GPP in northern and high-altitude regions, while southern China
387  maintained modest productivity. The multi-year mean GPP follows hydroclimatic patters:
388  highest in warm-humid southeast, lowest in cold-arid northwest. Vegetation growth is promoted
389 by sufficient water and heat in water-rich regions, whereas in water-limited regions, extreme
390  temperatures and scarcity of moisture often constrain vegetation productivity (Piao et al., 2013).
391  Figures 3k and 31 show GPP variations across different vegetation types. Forests, croplands, and
392 savannas exhibited relatively higher GPP, while grasslands and shrublands showed lower GPP.
393 Vegetation exhibiting lower productivity is generally located in the northern drylands, where
394  both moisture and temperature act as constraints (Li et al., 2023; Qiu et al., 2020). Additionally,
395  GPP across different vegetation types is determined not only by climatic hydrological drivers but

396  also by the physiological characteristics of the species (Waring et al., 1998; Reich et al., 1997).
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398  Figure 4. Spatial distribution of GPP for different seasons and the multi-year mean. The left column presents
399 the GPP distribution derived from the PML dataset, while the right column shows the ensemble mean GPP
400 distribution from the Noah-MP model.

401 Monthly biases of the Noah-MP ensemble mean, compared to the PML dataset across
402 vegetation types, are depicted in Figure 5. The results revealed substantial variability in monthly
403  GPP bias. Grasslands and shrublands exhibited minimal biases, whereas EBF and croplands
404  displayed notably larger positive biases, particularly during the growing season. The
405  overestimation was more pronounced in high-productivity ecosystems in eastern China, which
406  have substantial carbon sequestration capacity. The underlying causes of these discrepancies,

407  especially in high-productivity seasons and regions, need further exploration.
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409  Figure 5. Monthly bias of Noah-MP ensemble mean GPP across vegetation types. The box show pixel-level
410  variability and red lines indicate the mean.
411 4.2 Physical process sensitivity
412 Figure 6 presents the spatial pattern of the Sobol’ sensitivityof the four physical
413 processes at multi-year and seasonal scales. Focusing on the multi-year scale, radiation transfer
414  exhibited the highest sensitivity on the Tibetan Plateau. Across most Chinese regions excluding
415 the Tibetan Plateau and the western part of the Yunnan-Guizhou Plateau, GPP showed the
416  highest sensitivity to the B-factor, indicating that water availability is the main factor limiting
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417  carbon assimilation. The turbulence process showed low sensitivity to GPP simulation. The
418  runoff generation schemes showed slight sensitivity across China, particularly in the Hai River

419  Basin, Huai River Basin, and the Yunnan-Guizhou Plateau.

420 The Tibetan Plateau and northeastern Inner Mongolia exhibited the strongest GPP
421  response to changes in radiation transfer (Figure 6a). Theoretically, in such radiation-rich
422 environments, radiation transfer should not be the dominant limiting factor for GPP. However,
423 Figure S2 reveals substantial differences in APAR (and thus GPP) between the RADO1 and
424  RADO2 parameterization schemes across these areas. This discrepancy primarily arises from
425 RADO1 incorporating vegetation gap effects in radiation transfer calculation, while RADO02 does
426  not (Niu and Yang, 2004). For densely forested canopies with closed structures (Fig. S3-S7),
427  differences between the two schemes are relatively small. In contrast, grasslands and sparse
428  shrubs are the predominant vegetation types across the Tibetan Plateau and northeastern Inner
429  Mongolia, where vegetation aggregation and gap distribution are more pronounced, thereby

430  amplifying differences in canopy radiation transfer.

431 GPP simulations were more strongly influenced by the B-factor across most Chinese
432 regions, particularly the northern arid and semi-arid areas (Figure 6b). These regions are
433 characterized by abundant available energy, but are primarily constrained by water availability.
434  During spring and summer, increased ET intensified soil moisture stress, with the p-factor
435  critically regulating GPP. This water-driven effect was predominantly observed in Northwest
436 China and the Songliao Plain. In Northwest China, low precipitation made water the primary
437  constraint on carbon assimilation. Similarly, in the Songliao River Basin, a key Chinese
438  agricultural zone, high crop water demand, meant droughts substantially affected GPP dynamics.
439 Although winter vegetation dormancy reduced GPP, the p-factor remained sensitive due to its
440  "lag effect" on soil moisture, which influenced vegetation recovery in the subsequent spring
441 (Knapp et al., 2008; Schwinning and Sala, 2004). As other processes showed low sensitivities in

442 winter, the sensitivity of the B-factor became particularly pronounced.

443 At the multi-year scale, turbulence exhibited low sensitivity to GPP across most of China,
444  with detectable effects confined to the forested area in eastern Northeast China. This is primarily
445  because turbulence operates as a short-term micrometeorological process that typically fluctuates

446 at sub-hourly to hourly timescales (Baldocchi, 2003). In addition, ecosystems such as grasslands,
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447  croplands, and savannas usually exhibit weak vertical gradients of CO: and water vapor, making
448  them less dependent on turbulent mixing. In contrast, forest ecosystems in eastern Northeast
449  China are characterized by tall and dense canopies, where pronounced vertical stratification
450  requires effective turbulent transport to facilitate the transfer of gases from the canopy to the

451  atmosphere (Stoy et al., 2006).

452 Runoff generation exhibited high sensitivity in China's eastern regions, particularly in the
453 Hai River Basin, the Huai River Basin, and Yunnan Province, with consistent spatial patterns
454  inall seasons except winter. In Yunnan Province, runoff generation is most sensitive in spring.
455  Yunnan's complex terrain and uneven water distribution make runoff vital for water
456  redistribution during dry seasons (Winkler et al., 2018; Immerzeel et al., 2010). The region's
457  warm climate and high elevation cause early spring snowmelt, which boosts soil moisture and
458  supports timely vegetation growth (Barnett et al., 2005). Runoff generation is most sensitive in
459  summer in the Hai River Basin and Huai River Basin. In these basins, concentrated summer
460  precipitation and irrigation are crucial for maintaining cropland GPP during drier periods. During
461  winter, the sensitivity weakened and was largely restricted to southern regions. Winter
462  precipitation reduction and vegetation dormancy decreased runoff sensitivity to GPP simulations,
463  yet some regions in southern China remained sensitive as winter soil moisture and water

464  availability affected spring vegetation recovery.

465 Soil moisture stress (B-factor) and radiation transfer were the main limiting factors for
466  GPP in dry regions, including Northwest China. By contrast, in wet regions such as southern
467  China,, runoff generation and turbulence seasonally regulated carbon assimilation. During peak
468  growth periods (spring and summer), radiation transfer and soil moisture stress more strongly
469  impacted GPP, increasing sensitivity. Although GPP was low in winter, soil moisture stress still
470  impacted model outputs in eastern Inner Mongolia and Northwest China by influencing

471  vegetation recovery, showing notable seasonal lag effects.
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473 Figure 6. The Sobol’ index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the
474  four physical processes (i.e., radiation transfer, B-factor, turbulence, and runoff generation). Notably, blank
475 areas represent regions with zero GPP under all 48 simulation schemes due to a lack of vegetation cover,
476  making it impossible to assess sensitivity.

477 Figure 7 shows the seasonal patterns of the processes exerting the strongest control on
478  GPP. As in Figure 6, radiation transfer was dominant process over the Tibetan Plateau at the
479  multi-year scale as well as in summer and autumn while winter GPP in this region dropped to
480  nearly zero. The B-factor dominated in the water-limited regions (i.e., northwest China, the
481  Northeast Plain, and parts of southern China), reflecting its broad significance. Runoff mostly
482  affected Yunnan and the North China Plain. Turbulence was the key influence in high-elevation

483  forest areas (i.e., Changbai Mountains forest region) in spring and winter.

484 Spatially, the dominant factors controlling GPP exhibit significant spatial variability

485  across China. At multi-year scales, radiation transfer was the primary controlling factor of GPP
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486  in the northeastern Inner Mongolia and Tibetan Plateau. This mainly results from the divergent
487  performance of radiation schemes in grasslands and sparse shrubs (Figs. S2). The pB-factor was
488  particularly influential in most regions of China. In the arid northwest and northeast, as well as
489  southern regions with seasonal water shortages, low soil moisture limited GPP, making the -
490  factor a key control, as water scarcity reduced photosynthetic efficiency. In high-elevation forest
491  regions such as the Lesser Khingan and Changbai Mountains, turbulent heat flux plays a key role
492 in regulating GPP, especially during cold seasons. Turbulent heat exchange helps maintain
493  canopy temperatures above freezing, thereby extending the photosynthetic period (Bonan et al.,
494 2018; Ensminger et al., 2006). In areas with enclosed terrain, including valleys and basins,
495  turbulence mitigates the buildup of cold air, making this effect more noticeable (Wang et al.,
496  2016).. Runoff played a dominant role in southwestern and eastern China, where complex terrain

497  and uneven precipitation led to increased sensitivity to GPP in areas like river basins.

498 The dominant processes controlling GPP varied significantly across the four seasons.
499  Turbulence became more influential in spring, dominating GPP dynamics in the Tibetan Plateau,
500  Changbai Mountains, and parts of central and eastern China. Rising temperatures and winds
501 increased surface heating and atmospheric instability, enhancing turbulence. As plants enter their
502  growing season with higher CO; demand, turbulence enhances gas exchange, boosting
503  photosynthesis and thus increasing its impact on GPP (Baldocchi, 2014; Finnigan, 2000). In
504  summer, the distribution of dominant physical processes closely resembled the multi-year
505  average, likely because the Noah-MP ensemble showed the largest spread during summer. In
506  autumn, the main processes in the Yunnan-Guizhou Plateau shifted from runoff generation to
507  radiation transfer. Runoff generation was less impactful due to reduced rainfall and smaller
508  runoff differences. Solar radiation became the main limiting factor (Wang et al., 2023). When
509  radiation levels were sufficiently high, photosynthetic activity stayed high. In winter, the -factor
510 was the main driver of GPP, while radiation had minimal effect. This is because low
511  temperatures suppress vegetation activity, making radiation less sensitive to GPP changes (Fu et
512 al, 2017). Conversely, in regions with winter-spring dry seasons like Southwest China, soil

513  moisture becomes the dominant control on GPP (Zhou et al., 2019).

514 Overall, the dominant physical processes controlling GPP exhibit both seasonal and
515  spatial variability. Spatially, radiation transfer was the primary driver of GPP on the Tibetan

516  Plateau, while the B-factor, which represents vegetation stomatal response to soil moisture,
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517 played a dominant role across most other regions of China, including the northwest, the
518  Northeast Plains, and parts of southern China. Notably, the B-factor is the principal control on
519  GPP throughout most of the year, particularly in winter, when its influence extends nearly the
520  whole of China. During spring and winter, turbulence primarily affects GPP, whereas in summer,

521  runoff generation plays a larger role; overall, the B-factor remains the key driver..
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523  Figure 7. Spatial distributions of the dominant physical process for the Noah-MP ensemble-simulated multi-
524  year-averaged and seasonalGPP.

525 4.3 Parameterization scheme optimization across different vegetation types

526 To determine the best parameterization scheme for dominant physical processes in GPP
527  simulations across different vegetation types, we analyzed the process with the highest Sobol'

528  sensitivity index for each vegetation type. Figure 8 presents the total Sobol’ sensitivity indices of

26
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529  Noah-MP-simulated GPP (multi-year average and seasonal) for four physical processes across
530  vegetation types. These variations suggest that the dominant processes governing GPP differ

531  depending on the balance between water and energy limitations.

532 The sensitivity of GPP simulations to key physical processes varied significantly across
533 vegetation types, with shrubland ecosystems being most sensitive to the radiation transfer
534  process (Figure 8). Shrublands, widely distributed in arid regions and the eastern Tibetan
535  Plateau, exhibited high sensitivity to radiation transfer (index = 0.92), but showed minimal
536  sensitivity to the [-factor, turbulence, and runoff generation. The RAD process directly
537  influences the amount of shortwave radiation absorbed by vegetation (SAV) and the absorbed
538  photosynthetically active radiation (APAR). As shown in Figure S8,simulations using the
539  RADOI scheme produced greater SAV and APAR values. In the Noah-MP model, the radiation
540  process indirectly regulates vegetation growth and leaf area index (LAI) by modulating
541  photosynthesis, which mainly depend on solar radiation and canopy PAR absorption.
542 Consequently, the simulated LAI and fraction of vegetated area (FVEG) varied significantly
543 across different radiation transfer schemes. The results suggest that the RADO1 scheme yields

544  more realistic simulations and better aligning with actual conditions.

545 The B-factor process exhibited the highest sensitivity in GPP simulations over ENF,
546  savannas, croplands, and grasslands (Figure 8). Although all B-factor parameterization schemes
547  regulate photosynthetic and transpiration through modulating stomatal resistance, their
548  performance varied substantially among ecosystem. Specifically, in ENF ecosystems, all three
549  schemes showed a sharp increase in transpiration rate starting around DOY 60, quickly reaching
550  a peak (Figure S9). Meanwhile, APAR exhibited a bimodal pattern, resulting in simulated GPP
551  to peak earlier than observations. For savannas and croplands, the differences among the three
552 schemes were minor but schemes systematically overestimated GPP. In grassland ecosystems,
553 although the BTR03 scheme significantly enhanced the simulated APAR and transpiration rate,
554  GPP was still substantially underestimated. These findings demonstrate systemic limitations in
555  current B-factor parameterizations across different ecosystems, as even the most favorable

556  scheme fails to accurately capture ecosystem-specific GPP dynamics.

557 The turbulence process exhibited, the highest Sobol’ sensitivity index of GPP in DBF

558  ecosystems. Noah-MP simulations revealed that the surface exchange coefficient directly
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559  influences the vegetation-atmosphere exchanges of sensible and latent heat flux. The SFCO1
560  scheme generated higher sensible heat flux and turbulent exchange coefficients than to the
561  SFCO02 scheme, whereas SFCO02 resulted in relatively higher latent heat values (Figure S10).
562 Despite the substantial differences in energy flux simulations between the two schemes, their
563  simulated GPP values differed only slightly. Compared with observations, both schemes showed
564  systematic GPP overestimation, suggesting that vegetation energy-use efficiency may be

565  overrepresented in the model.

566 The runoff generation process exhibited the highest sensitivity in GPP simulations for
567  EBF, DNF, and MF (Figure 8). Different runoff parameterization schemes alter the partitioning
568  of surface and subsurface runoff, which in turn modifies soil moisture conditions and drives
569  differences in simulated vegetation dynamics, including LAI, fraction of vegetated area (FVEG),
570  and ultimately GPP (Figure S11). The impact of runoff generation parameterizations on GPP is
571  primarily mediated through changes in soil moisture. However, the four runoff generation
572 schemes produced similar GPP simulations, with only minor differences relative to observed
573 GPP. Moreover, all Noah-MP scheme combinations systematically overestimated GPP. These
574  results suggest that further refinement of model parameterizations is necessary to improve the

575  accuracy of GPP simulations.

576 This systematic analysis reveals distinct ecosystem-dependent controls on GPP
577  simulations in Noah-MP. Among the key physical processes, the radiation transfer scheme
578  dominates in shrublands, with RADO1 performing best due to its better capturing radiation
579  absorption (SAV/APAR) and subsequent vegetation dynamics (LAI/FVEG) (Table S2, S3). For
580  P-factor, while exhibiting high sensitivity across ENF, savannas and croplands, all current
581  schemes show critical limitations - even the optimal BTR03 scheme substantially underestimates
582 GPP. The turbulence process proves most influential in DBF ecosystems, though both SFCO1
583 and SFCO02 similarly overestimate GPP, suggesting fundamental issues in energy-carbon
584  coupling. Similarly, for runoff generation processes in tropical/temperate forests, all four
585  parameterizations produce comparable but consistently overestimated GPP results. Importantly,
586  these systematic biases across multiple ecosystems indicate the model's inherent tendency to
587  overestimate vegetation resource use efficiency. These findings collectively underscore the need

588  for: (1) adopting RADO1 for shrubland simulations, (2) comprehensive recalibration of energy-
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Figure 8. The Sobol’ index of the Noah-MP ensemble-simulated multi-year-averaged and seasonal GPP to the
four physical processes across different vegetation types. Here, RAD denotes radiation transfer, BTR denotes
the B-factor, SFC denotes turbulence, and RUN denotes runoff generation.

5 Conclusions and discussion

We

examined

the

performance

of the

Noah-MP

ensemble with multiple

parameterizations in reproducing GPP, based on flux tower measurements and PML GPP

datasets. The Noah-MP ensemble was generated by perturbing parameterization schemes of four
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599  key physical processes: radiation transfer, turbulence, the B-factor, and runoff generation. In
600  China, GPP showed significant spatial-temporal variation, with spring/summer as peak seasons
601 and southeastern/northeastern regions acting as major carbon sinks. Vegetation type greatly
602  shaped GPP, with forests being the largest carbon contributors, while grasslands and shrublands
603  exhibited lower productivity. The Noah-MP effectively captured the spatiotemporal patterns of
604  GPP, but overestimated forest and cropland GPP in peak seasons, potentially due to
605  underestimating the photosynthesis inhibition under soil moisture deficits. The model exhibited
606  strong performance across most Chinese ecosystems, with moderate accuracy in shrublands, and
607  notably inferior results in evergreen forest, demonstrating its applicability in GPP simulation for

608  Chinese terrestrial ecosystem.

609 Our results align with Arsenault et al.( 2018), indicating that Noah-MP overestimates
610  GPP throughout the growing season, notably in forests and croplands. This overestimation likely
611  arises from the model's insufficient response to water stress and stomatal regulation under
612  drought conditions, which leads to the overestimation of carbon assimilation rates. Additionally,
613  limitations in phenology-related parameterizations and the dynamic vegetation module might
614  lead to excessive carbon allocation to photosynthetic organs, such as buds in spring (Ma et al.,
615  2017; Niu et al., 2011). Addressing current model limitations requires advancing carbon
616  allocation schemes, refining photosynthetic temperature regulation, and integrating nutrient
617  constraints, with an emphasis on nitrogen, within vegetation processes (Gim et al., 2017; Cai et

618  al., 2016; Schaefer et al., 2012; Stockli et al., 2008).

619 With the Noah-MP ensemble, the Sobol’ total sensitivity index was applied to determine
620  the impact of major physical processes on GPP in China’s terrestrial ecosystems. China’s
621  ecosystem GPP was influenced by multiple processes, showing spatial heterogeneity. In arid
622  regions like Northwest China, the p-factor (soil moisture stress) and radiation transfer limited
623 GPP, while in humid southern China, runoff generation and turbulence regulated carbon
624  assimilation. During peak growth periods, radiation transfer and the p-factor strongly impacted
625  GPP. For different ecosystems, water-related factors, including the P-factor and runoff
626  generation, mainly influenced cropland and savanna GPP, while radiation transfer and turbulence
627  affected shrublands and forests respectively. GPP's dominant processes varied seasonally and
628  spatially, with the the B-factor dominated in most Chinese regions and radiation transfer showed

629  stronger control on the Tibetan Plateau. Except in summer, the B-factor was the main GPP driver,
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630  especially in winter. In spring, there are no obvious limiting factors, except for a slight sensitivity
631  exhibited by turbulence; in summer, both radiation transfer and runoff generation show moderate

632 influence on GPP; in autumn, the dominant process was radiation transfer.

633 The sensitivity of physical process parameterizations is critical for identifying the
634  primary drivers and mechanisms underlying the spatiotemporal variations of GPP. In spring,
635  turbulence significantly influences GPP by modulating surface energy fluxes, which in turn
636  regulate vegetation—atmosphere gas exchange and surface temperature (Misson et al., 2007).
637  Specifically, turbulent transport of heat and moisture helps maintain canopy temperatures above
638  freezing and enhances carbon dioxide exchange efficiency, thereby extending the active
639  photosynthetic period (Misson et al., 2007). Additionally, turbulence mitigates cold air
640  accumulation in topographically enclosed areas such as valleys and basins, further supporting
641  microclimatic conditions favorable for vegetation growth (Ensminger et al., 2006). In China’s
642  arid and semi-arid regions, including the Northwest and Northeast Plain, the B-factor exerted a
643  pronounced influence on autumn and winter GPP (Kannenberg et al., 2024), emphasizing the
644  critical influence of soil moisture availability on transpiration and carbon uptake in these water-
645  limited ecosystems, aligning with previous findings (Wang et al., 2023; Zheng et al., 2019;
646  Nelson et al., 2018; Wolf et al., 2016). Runoff played a significant role in controlling GPP in
647  humid regions, including the Yunnan-Guizhou Plateau and eastern China. It impacts
648  photosynthetic efficiency by altering surface and subsurface water availability (Lei et al., 2014).
649  Incorporating detailed runoff-soil moisture interactions and vegetation-specific hydrological
650  processes may enhance simulation accuracy in these regions. Overall, GPP variability in China
651  arose from complex interactions of climatic drivers, vegetation types, and ecosystem-specific
652  physiology. This highlights the need for model improvements in simulating radiation transfer,
653  soil moisture transport, and vegetation dynamics to reduce uncertainties. Notably, sensitivity
654  patterns varied regionally even within the same vegetation type, reflecting local climate and
655  hydrological influences. Such spatial heterogeneity indicates the importance of conducting
656  region-specific modeling and implementing targeted management, such as optimizing water

657  resources in arid areas and boosting light-use efficiency in humid regions.

658 Based on systematic model performance evaluations and parameterization scheme
659  sensitivity analyses, this study proposes optimized Noah-MP model configurations for terrestrial

660  ecosystems in China. The findings indicate that the modified two-stream approximation scheme
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661  (RADO1) exhibits superior performance in simulating radiation transfer processes, particularly
662  showing significant advantages in grasslands and shrubland ecosystems. For B-factor, while the
663  three P-factor schemes show minimal differences across most vegetation types, BTRO3
664  demonstrates relatively better performance in cropland ecosystems. Importantly, both surface
665  exchange (SFCO1/SFCO02) and runoff parameterizations consistently overestimate GPP without
666 ~ showing substantial inter-scheme performance variations. Consequently, we recommend: (1)
667 adopting RADO1 for radiation transfer simulations, (2) prioritizing BTRO3 for cropland
668  applications, and (3) focusing on fundamental improvements in energy-carbon coupling and
669  hydro-vegetation interaction mechanisms to address the identified systematic biases and enhance

670  overall model accuracy.

671 This study assessed the ability of Noah-MP to simulate GPP across Chinese ecosystems,
672  explored key physical processes shaping GPP variations, and offered optimal parameterization
673  scheme recommendations for GPP modeling. The findings contribute to improving ecosystem
674  carbon uptake modeling and support the improvement of carbon management strategies.

675  However, several limitations warrant attention in future work:

676 (1) Parameterization schemes limitations: only a subset of parameterization schemes was
677  included due to computational constraints, with other parameters and parameterization schemes
678  remaining not considerated. Future research should expand the ensemble by incorporating more
679  parameters and schemes related to vegetation carbon sequestration, such as canopy height and
680  rain-snow partitioning schemes. Furthermore, plant physiology-related processes, like plant
681  hydraulics, were not incorporated in the Noah-MP 5.0 version used (Li et al., 2021). Subsequent
682  research is needed to include these processes and evaluate their influence on GPP. (2) Validation
683  data uncertaintie: though the PML GPP (China) dataset used here was deemed superior by prior
684  studies, it still deviates from site observations. The PML GPP shows strong agreement with flux
685  tower observations, with an NSE of 0.82 and an RMSE of 1.71 g C m2 d™! (He et al., 2022). (3)
686  Model structural constraints: current physical process models like Noah-MP simplify the
687  parameterization of vegetation carbon fluxes, introducing uncertainties in GPP simulation.
688  Integrate data assimilation and machine-learning-based modeling can effectively reduce such

689  uncertainties and enhance simulation accuracy.
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