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Abstract. Accurate estimates of debris-flow volume can be used to help predict the magnitude of runoff-generated 

postfire debris-flow hazards in the western United States. In this study, we compiled and used a database of 227 

postfire debris-flow volumes that were collected across the western United States to develop a multiple linear 

regression model for predicting postfire debris-flow volume. We explored 36 predictor variables related to rainfall, 30 
terrain, and fire characteristics, and selected the model with the combination of variables that yielded the most accurate 

predictions of debris-flow volume. We evaluated model performance against the entire volume database, as well as 

against four subsets of volume data from southern California, the Intermountain West, the Southwest, and regions with 

limited volume data, such as northern California and Washington. We also compared model performance against three 

existing postfire debris-flow volume models that were developed for use in southern California, the Intermountain 35 
West, and the Southwest. We demonstrate that the new volume model performs as well as the regional models in the 

regions for which they were developed and outperforms existing models when applied to volumes from data-limited 

regions in the western United States. These results indicate that the debris-flow volume model introduced in this study 

can be used to improve postfire hazard assessments across the western United States, especially outside of southern 

California.  40 

1 Introduction 

Debris flows are a common hazard in mountainous areas around the world (e.g., Rickenmann and Zimmermann, 1993; 

Wang et al., 2003; Cannon and Gartner, 2005; Sepúlveda et al., 2006; Guthrie et al., 2012; Gartner et al., 2024) but 

are particularly prevalent in steep landscapes that have been recently burned by wildfire. Wildfire reduces vegetation 

cover (McGuire et al., 2024a) and alters soil hydraulic properties (e.g., Hoch et al., 2021), which promotes the 45 
initiation of runoff-generated debris flows in burned watersheds (e.g., Cannon et al., 2001; Parise and Cannon, 2012; 

Wall et al., 2020). As a result, burned watersheds are more likely to produce debris flows than comparable unburned 

watersheds given similar rainfall conditions (McGuire et al., 2021). Burned watersheds also tend to produce larger 

debris flows than unburned watersheds (Santi and Morandi, 2013), resulting in elevated downstream effects, including 

the loss of human life (Dowling and Santi, 2014; Kean et al., 2019; Daurio, 2025), damage to infrastructure (e.g., 50 
Lancaster et al., 2021), and degradation of water quality (e.g., Smith et al., 2011; Langhans et al., 2016), for 

communities in fire-prone regions of the western United States (U.S.).  

Recent increases in postfire debris-flow activity in the western United States, driven by changes in wildfire activity 

(Westerling, 2016) and growth in the wildland-urban interface (Radeloff et al., 2018), have motivated the development 

of a postfire hazard assessment framework that is used by the U.S. Geological Survey (USGS) to mitigate the impact 55 
of potential postfire debris flows. The USGS framework uses postfire debris-flow likelihood (Staley et al., 2017) and 

volume (Gartner et al., 2014) models to generate a combined hazard map for all watersheds within a fire perimeter 

and identifies the most hazardous watersheds as those that have a high likelihood of debris-flow occurrence and are 

likely to produce a debris flow that mobilizes a large volume of sediment (Cannon et al., 2010; Landslide Hazards 

Program, 2018). Methods for predicting debris-flow likelihood can be used to identify which upstream watersheds are 60 
likely to produce postfire debris flows. Methods for predicting debris-flow volume, on the other hand, provide insight 

into the potential magnitude of downstream effects of postfire debris flows, as multiple studies have found that the 
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area inundated by a debris flow scales with volume (Iverson et al., 1998; Berti and Simoni, 2007; Griswold and 

Iverson, 2008). Accurate predictions of volume are also used to inform runout models that can evaluate the potential 

downstream effects of postfire debris flows (Barnhart et al., 2021; Gorr et al., 2022).  65 

Although numerous methods for predicting postfire debris-flow volume have been developed in recent years (e.g., 

Gartner et al., 2008; Pak and Lee, 2008; Cannon et al., 2010; Santi and Morandi, 2013; Gartner et al., 2014; Pelletier 

and Orem, 2014; Donovan and Santi, 2017; Wall et al., 2023; Gorr et al., 2024a), none are ideally suited for use in 

postfire hazard assessment frameworks that are applied across the entire western United States. Multiple volume 

models have been developed for broad use across the western United States (e.g., Gartner et al., 2008; Cannon et al., 70 
2010; Santi and Morandi, 2013; Pelletier and Orem, 2014) but have deficiencies that limit their use in hazard 

assessment scenarios. Specifically, existing broadly applicable volume models do not include rainfall variables, 

despite the fact the volume of postfire debris flows in the western United States is known to scale with short-duration 

(≤ 1 h) rainfall intensity (Gartner et al., 2008; Pak and Lee, 2008; Cannon et al., 2010; Gartner et al., 2014; Gorr et 

al., 2024a). The lack of rainfall variables limits the accuracy of these models, particularly when compared to volume 75 
models that do include rainfall variables (Gorr et al., 2024a). Volume models that do not consider rainfall are also 

unable to predict postfire debris-flow volume based on rainfall forecasts, which is a practical benefit offered by volume 

models that do (Prescott et al., 2024).  

There are several postfire debris-flow volume models that include rainfall variables (e.g., Pak and Lee, 2008; Gartner 

et al., 2008, 2014; Gorr et al., 2024a), but they also have shortcomings that limit their applicability in widespread 80 
postfire hazard assessments across the western United States. First, most existing volume models that include rainfall 

variables are regionally focused to predict volume within a specific area, such as southern California (e.g., Gartner et 

al., 2014), the Intermountain West (e.g., Wall et al., 2023), or the Southwest (Arizona and New Mexico) (Gorr et al., 

2024a). Previous studies have found that these regional models perform well in the areas for which they were 

developed (e.g., Kean et al., 2019; Wall et al., 2023; Gorr et al., 2024a) but are considerably less accurate when applied 85 
to areas outside of their training datasets (e.g., Gorr et al., 2023, 2024a; Rengers et al., 2023, 2024). For example, 

previous studies have found that a volume model developed for use in southern California (Gartner et al., 2014) 

overpredicted volumes in other regions of the western United States by up to several orders of magnitude (Gorr et al., 

2024a). The decreased performance of regional models in these scenarios may be partially attributed to the fact they 

use rainfall intensity, even though the intensity of debris-flow-producing rainfall varies widely across the western 90 
United States (Staley et al., 2017). As a result, models developed for use in areas where the rainfall intensity required 

to generate postfire debris flows is  low (e.g., Gartner et al., 2014), such as the Transverse Ranges of southern 

California, where the 15-minute rainfall intensity-duration threshold for debris-flow occurrence is less than 20 mm/h 

(Staley et al., 2013), tend to overpredict volumes when applied in areas where the intensity required to generate postfire 

debris flows is much higher, such as northern Arizona, where the 15-minute rainfall intensity-duration threshold for 95 
debris-flow occurrence is more than 60 mm/h (Youberg, 2014). Conversely, models developed for use in areas with 

intense debris-flow-generating rainfall (Gorr et al., 2024a) tend to underpredict volumes in areas with less intense 

debris-flow-generating rainfall. Furthermore, parts of the western United States lack the volume data needed to 
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develop regional models. For instance, although the Pacific Northwest (Oregon and Washington) and the northern 

Rockies (Idaho, Montana, and Wyoming) are susceptible to postfire debris flows (e.g., Meyer and Wells, 1997; Gabet 100 
and Bookter, 2008; Wall et al., 2020; Selander et al., 2025), insufficient data has prohibited the development of volume 

models in these regions. The shortcomings of existing postfire debris-flow volume models indicate that a model that 

includes a rainfall variable and can be applied broadly across the western United States would be beneficial for 

improving postfire hazard assessments, particularly in regions with limited volume data. 

In this study, we developed a new method for predicting postfire debris-flow volume in the western United States for 105 
the purpose of improving postfire hazard assessments. Specifically, we compiled and used the largest known postfire 

debris-flow volume database with associated rainfall data (Gorr et al., 2025) to develop a multiple linear regression 

model that predicts postfire debris-flow sediment volume. We explored 36 potential predictor variables related to 

rainfall, terrain, and fire characteristics, and selected the combination of three variables that yielded the most accurate 

predictions of debris-flow volume. We assessed model performance against the entire volume database, which includes 110 
227 postfire debris-flow volumes across six states, as well as against three subsets of data from regions in the western 

United States that have published regional volume models: southern California (Gartner et al., 2014), the 

Intermountain West (Wall et al., 2023), and the Southwest (Gorr et al., 2024a). We then compared the performance of 

the new model with three existing regional models. Finally, we evaluated the performance of all four models when 

applied to volumes from data-limited regions, which we define as areas that do not have enough volume data to 115 
develop regional volume models. Results from this study can improve our ability to accurately predict postfire debris-

flow volume across the western United States, particularly in data-limited regions.  

2 Data  

2.1 Debris-flow volumes 

We compiled a database of 227 postfire debris-flow volumes from across the western United States (Figure 1) to 120 
develop the new volume model introduced in this study. Roughly 85% of the database (192 of 227 volumes) consists 

of previously published postfire debris-flow volumes from Arizona (Gorr et al., 2024a); California (Gartner et al., 

2008; Gartner et al., 2014; Kean et al., 2019; Smith et al.,2021; Swanson et al., 2024), Colorado (Gartner et al., 2008; 

Rengers et al., 2023), New Mexico (Gorr et al., 2024a), and Utah (Gartner et al., 2008). We collected the remaining 

15% of volumes (35) from sites in Arizona, northern California, Colorado, New Mexico, and Washington as part of 125 
this study (Table 1). All volumes represent the volume of sediment deposited downstream from the watershed outlet. 

We did not consider the volume of water mobilized by a flow, nor any sediment that may have been mobilized and 

deposited upstream from the watershed outlet. This is consistent with the data used to develop previous postfire debris-

flow volume models (e.g., Gartner et al., 2014; Gorr et al., 2024a). 

 130 
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Table 1: Fire information 

Fire Name Year State No. Volume Measurements Source 

Apple 2020 CA 1 Swanson et al. (2024) 

Bush 2020 AZ 3 Gorr et al. (2024a) 

Buzzard 2018 NM 5 Gorr et al. (2024a) 

Cameron Peak 2020 CO 14 Gorr et al. (2025) 

Carmel 2020 CA 11 Smith et al. (2021) 

Cedar 2003 CA 2 Gartner et al. (2008) 

Coal Seam 2002 CO 6 Gartner et al. (2008) 

Cub Creek 2 2021 WA 2 Gorr et al. (2025) 

Dixie 2021 CA 2 Thomas et al. (2023) 

El Dorado 2020 CA 2 Swanson et al. (2024) 

Farmington 2003 UT 3 Gartner et al. (2008) 

Flag 2021 AZ 1 Gorr et al. (2023) 

Frye 2017 AZ 1 Gorr et al. (2024a) 

Grand Prix 2003 CA 7 Gartner et al. (2008) 

Grizzly Creek 2020 CO 19 Rengers et al. (2024) 

Harvard 2005 CA 4 Gartner et al. (2014) 

Hermits Peak 2022 NM 1 Gorr et al. (2025) 

Horseshoe 2 2011 AZ 4 Gorr et al. (2024a) 

Horton 2021 AZ 1 Gorr et al. (2024a) 

Missionary Ridge 2002 CO 8 Gartner et al. (2008) 

Monument 2011 AZ 1 Gorr et al. (2024a) 

Mosquito 2022 CA 1 Gorr et al. (2025) 

Museum 2019 AZ 4 Gorr et al. (2024a) 

Old 2003 CA 17 Gartner et al. (2008) 

Pipeline 2022 AZ 14 Gorr et al. (2025) 

Sayre 2008 CA 10 Gartner et al. (2014) 

Schultz 2010 AZ 11 Gorr et al. (2024a) 

Station 2009 CA 45 Gartner et al. (2014) 

Tadpole 2020 NM 4 Gorr et al. (2024a) 

Telegraph 2021 AZ 4 Gorr et al. (2024a) 

Thomas 2017 CA 5 Kean et al. (2019) 

Three Rivers 2021 NM 2 Gorr et al. (2024a) 

Wallow 2011 AZ 1 Gorr et al. (2024a) 

Woodbury 2019 AZ 11 Gorr et al. (2024a) 
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Figure 1: Map of the locations of the 34 burn areas included in this study. The burn areas span six states across 135 
the western United States (US), including Arizona (AZ), California (CA), Colorado (CO), New Mexico (NM), 

Utah (UT), and Washington (WA), and 11 Environmental Protection Agency (EPA) Level III Ecoregions. The 

names of the ecoregions shown in this figure are derived directly from the EPA (U.S. Environmental Protection 

Agency, 2013).  Basemap credits: United States Geological Survey The National Map: 3D Elevation Program, 

United States Geological Survey Earth Resources Observation & Science Center: GMTED2010. 140 

The volumes that we compiled were collected using a range of field and remote-sensing techniques. Most volumes 

were measured using some variation of the field survey methods outlined in Gorr et al. (2024a). In short, measurements 

of deposit area and average thickness were made in the field and then multiplied to determine debris-flow volume 
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(e.g., Gorr et al., 2024a; Swanson et al., 2024). Other methods used to measure postfire debris-flow volume in the 

field included surveys of closely spaced channel cross-sections (e.g., Gartner et al., 2008) and counting the number of 145 
trucks filled with sediment when emptying a debris-retention basin (truck counts) (Gartner et al., 2014). The remaining 

volumes were measured primarily using remote-sensing techniques. Most commonly, these volumes were calculated 

using digital elevation models (DEM) of difference (DoD) that were generated by differencing pre-event and post-

event light detection and ranging (lidar) (Smith et al., 2021; Rengers et al., 2024; Swanson et al., 2024). In other cases, 

high-resolution aerial imagery was used to help constrain the area of larger debris flows, and volume was calculated 150 
by multiplying the area by depth measurements made in the field (e.g., Gorr et al., 2024a).  

Variations in the size of the debris-flow volumes included in this database, and the techniques used to measure them, 

mean that the uncertainty associated with each volume varies widely. Santi (2014) determined that the uncertainty 

associated with deposit boundary and thickness measurements, the most used method to measure volumes in this 

database, was -25% to +35% for small debris flows (~1,500 m3), -28% to +30% for medium debris flows (~15,000 155 
m3), and -9% to +17% for large debris flows (~150,000 m3). Other field measurement techniques, such as truck counts 

and channel cross-section surveys, have a lower degree of uncertainty, but still vary between -25% and +20%, 

depending on debris-flow size (Santi, 2014). The uncertainty associated with volumes measured by remote sensing 

techniques are less constrained, but we estimate that the volumes calculated by lidar differencing have an uncertainty 

of -14% to +14%, based on a ±10 cm level of detection (LoD) (Rengers et al., 2024). Overall, given the wide range 160 
of debris-flow sizes and measurement techniques included in the volume database, we conservatively estimate the 

uncertainty associated with these volume measurements to be ±25%. 

The volume database includes data from 195 watersheds from 34 burn areas across six states in the western United 

States, a region we define as the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, 

Oregon, Utah, Washington, and Wyoming (Figure 1; Table S1). Specifically, the volume database includes volumes 165 
from Arizona, California, Colorado, New Mexico, Utah, and Washington (Figure 1). The burn areas included in this 

study range in size from 4.2 km2 to 3,965 km2 and span a wide range of climatological settings. The mean annual 

precipitation at the burn areas ranges from 396 mm to 1,343 mm, and the mean annual temperature ranges from 3.7 

°C to 17.8 °C (PRISM Climate Group, 2025) (Table S1). 

The burn areas are also geographically and ecologically diverse, as they span 11 Level III ecoregions, or areas where 170 
ecosystems and ecosystem components, including geology, vegetation, climate, and hydrology, are generally similar 

(U.S. Environmental Protection Agency, 2013) (Figure 1). The names of the ecoregions presented here are derived 

directly from U.S. Environmental Protection Agency (2013). The Arizona/New Mexico Mountains ecoregion, which 

is characterized by steep foothills, mountains, and dissected plateaus (Wilken et al., 2011), contains 12 burn areas. 

Grassland, chaparral, and pinyon-juniper and oak woodlands grow at lower elevations in this ecoregion, whereas 175 
ponderosa pine and mixed-conifer forests are common at higher elevations (Wilken et al., 2011). The Southern 

California Mountains ecoregion contains seven burn areas (Figure 1). This ecoregion contains the high-elevation 

Transverse Ranges, which serve as a buffer between a coastal Mediterranean climate to the west and a dry, desert 

climate to the east. Chapparal and oak woodlands are the predominant vegetation communities in this region, although 
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coniferous forests are found at higher elevations (Griffith et al., 2016). The Southern Rockies ecoregion, which 180 
includes most of western Colorado, as well as parts of southern Wyoming and northern New Mexico, contains an 

additional five burn areas (Figure 1). It consists primarily of steep, high-elevation mountain ranges, with some 

intermontane valleys, and the dominant vegetation communities vary based on a steep elevation gradient. Grasslands 

and shrublands are common at lower elevations, ponderosa pine, aspen, juniper, and oak forests at middle elevations, 

mixed-conifer forests at higher elevations, and alpine vegetation at the highest elevations (Wilken et al., 2011; 185 
Drummond, 2012). The remaining 12 burn areas are spread across an additional eight ecoregions that contain between 

one to three burn areas each (Figure 1). These ecoregions range from the high, rugged mountains and dense coniferous 

forests of the North Cascades ecoregion to the low, broad basins and microphyllous scrubland of the Sonoran Basin 

and Range ecoregion (Wilken et al., 2011). 

2.2 Rainfall, topography, and fire severity data 190 

In addition to debris-flow volume data, we also collected data related to rainfall, terrain, and fire characteristics to 

calculate 36 potential predictor variables for use in the development of the new volume model, as described in more 

detail in Section 3.1. We collected rainfall data for every debris-flow-producing storm using a series of rain gages 

located near watersheds with volume measurements. The rain gages we used were installed and maintained by local, 

state, and federal government agencies including, but not limited to, the Los Angeles County Department of Public 195 
Works (Gartner et al., 2014), Arizona Department of Water Resources (Gorr et al., 2024a), U.S. Forest Service (Gorr 

et al., 2024a), and the USGS (Gartner et al., 2014), as well as universities (Smith et al., 2021), and private consulting 

firms (Gorr et al., 2024a). To ensure that the recorded rainfall was representative of the debris-flow-producing storms, 

we used rain gages located within 4 km of watersheds with debris-flow volume measurements as suggested by Staley 

et al. (2017). Most rain gages, however, were located within 2 km of the debris-flow-producing watersheds. We could 200 
attribute most debris-flow volumes to a single storm, but when there were multiple storms prior to a volume 

measurement, we followed the methods of Gartner et al. (2014) and attributed the volume to the most intense storm 

that occurred between the assumed debris-flow initiation date and the volume measurement. We defined individual 

storms as events that were separated by at least eight hours without rainfall (Staley et al., 2020). 

We used national datasets to calculate metrics related to terrain and fire characteristics for each debris-flow-producing 205 
watershed included in our database. Specifically, we resampled the 1/3 arc-second seamless DEM dataset from the 

USGS 3D Elevation Program (3DEP) to create a series of 10-m resolution DEMs that we used to delineate watershed 

boundaries and calculate terrain metrics for each watershed. We manually defined the outlet of each watershed as the 

point immediately upstream from the debris-flow deposit used to calculate volume, ensuring that all terrain metrics 

only considered the watershed area that contributed to debris-flow volume. This also ensured consistency among 210 
metrics related to fire characteristics, which we calculated using data from the Monitoring Trends in Burn Severity 

(MTBS) program (Monitoring Trends in Burn Severity, 2025). MTBS provides information for all fires 1,000 acres 

and larger in the western United States that burned from 1984 to present, including ignition date, fire severity, and 

differenced Normalized Burn Ratio (dNBR) data (Monitoring Trends in Burn Severity, 2025). The differenced 
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Normalized Burn Ratio is a remote sensing index that measures fire-induced changes in vegetation by comparing pre- 215 
and post-fire satellite imagery and is commonly used to classify burn severity (Parsons et al., 2010). 

3 Methods 

3.1 Calculation of predictor variables 

We calculated 36 potential predictor variables for use in model development: six rainfall variables, 13 terrain variables, 

and 17 variables related to fire characteristics. We analyzed six variables related to peak rainfall intensity and rainfall 220 
ratios (Table 2) because previous work indicates that hourly or sub-hourly rainfall intensity data can be used to more 

accurately constrain postfire debris-flow volume (e.g., Pak and Lee, 2008; Gartner et al., 2014; Gorr et al., 2024a). 

We define a rainfall ratio as a recorded rainfall metric normalized by that same metric associated with a 1-year 

recurrence interval storm at a given location (Cavagnaro et al., 2025a). For example, we define the rainfall ratio of the 

peak rainfall intensity measured over a 15-minute duration (i15) as the recorded i15 normalized by the i15 associated 225 
with a 1-year recurrence interval storm at a given watershed. Similarly, we define the rainfall ratios of the peak rainfall 

intensity measured over 30-minute (i30) and 60-minute (i60) durations as the recorded i30 or i60 normalized by the 

i30 or i60 associated with a 1-year recurrence interval storm at a given watershed.  

Table 2: Summary statistics for rainfall predictor variables, as well as the transformation of each variable (e.g., no 

transformation (None) or natural log (Ln)) that yielded the most linear relationship with debris-flow volume, which 

we determined using the Pearson product-moment correlation coefficient (ρ). 

Predictor Variable Min. Max. Mean Median Transform ρ 

Peak 15-minute rainfall intensity (i15) (mm/h) 5 124 49 37 None -0.11 

Peak 30-minute rainfall intensity (i30) (mm/h) 4 82 34 26 None -0.13 

Peak 60-minute rainfall intensity (i60) (mm/h) 2 51 22 21 None -0.13 

i15 Rainfall ratio 0.16 2.96 1.36 1.21 Ln 0.04 

i30 Rainfall ratio 0.14 3.19 1.39 1.32 None -0.03 

i60 Rainfall ratio 0.13 3.00 1.37 1.27 None -0.09 

 

We selected a 1-year recurrence interval to calculate rainfall ratio, as postfire debris-flows in the western United States 230 
are generated by storms with a 1-year recurrence interval, on average (Staley et al., 2020). When available, we used 

National Oceanic and Atmospheric Administration (NOAA) Atlas 14 precipitation frequency data (Bonnin et al., 2006; 

Perica et al., 2013, 2014) to determine the i15, i30, and i60 of 1-year recurrence interval storms at each debris-flow-

producing watershed. For one burn area where Atlas 14 data were not available (Cub Creek 2), we used NOAA Atlas 

2 data (Miller et al., 1973) to estimate the i15, i30, and i60 of a 1-year recurrence interval storm. When known, we 235 
determined the 1-year recurrence interval values at the location of the rain gage where rainfall was recorded. If we did 

not know the location of the rain gage (i.e., the coordinates of the gage were not provided by a previous study), we 

used the 1-year recurrence interval rainfall associated with the centroid of the associated watershed. We considered 

rainfall ratio metrics because previous studies have identified a relationship between postfire debris-flow likelihood 
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and rainfall ratio (referred to as “rainfall anomaly” in Cavagnaro et al., 2025a), suggesting that there may also be a 240 
relationship with postfire debris-flow volume. 

Table 3: Summary statistics for watershed terrain predictor variables, as well as the transformation of each 

variable (e.g., natural log (Ln) or square root (√)) that yielded the most linear relationship with debris-flow 

volume, which we determined using the Pearson product-moment correlation coefficient (ρ). 

Predictor Variable Min. Max. Mean Median Transform ρ 

Watershed area (km2) 0.01 28.0 1.55 0.41 Ln 0.79 

Relief (m) 88 2,031 538 481 √ 0.72 

Mean elevation (m)a 253 3,000 1,626 1,377 Ln 0.05 

Mean slope (°)a  11.1 50.6 30.1 29.7 Ln 0.05 

Area with slopes ≥ 23° (km2) 0.00 24.7 1.02 0.29 √ 0.74 

Mean slope (%)a 19.7 155.5 60.5 60.4 Ln 0.03 

Area with slopes ≥ 30% (km2) 0.00 26.1 1.21 0.34 √ 0.74 

Area with slopes ≥ 50% (km2) 0.00 23.4 0.89 0.26 √ 0.74 

Maximum flow path (m) 217 10,669 1,945 1,456 Ln 0.74 

Total channel length (m) 22 189,451 10,160 2,400 √ 0.69 

Drainage density (km-1)a 1.37 12.6 6.32 6.20 √ 0.10 

Relief ratio 0.11 1.76 0.36 0.32 Ln -0.50 

Ruggedness 0.20 2.86 0.80 0.66 Ln -0.58 
aVariable removed because it was not linearly related to volume  

 

We also calculated 13 terrain variables that previous studies found were correlated with postfire debris-flow volume 

(Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a) for all 195 debris-flow-producing watersheds using ArcGIS 

Pro 3.3.0 (Table 3).  Here we define relief (Table 3) as the difference between the maximum elevation and minimum 245 
elevation within a watershed, maximum flow path as the longest flow path within a watershed, as measured from the 

watershed outlet to the top of the drainage divide, and total channel length as the combined length of all channels 

within a watershed. Drainage density is defined as the total channel length divided by the watershed area, relief ratio 

as the length of the maximum flow path divided by watershed relief, and ruggedness, also known as the Melton ratio, 

as watershed relief divided by the square root of watershed area. We used 10-m DEMs to calculate these variables 250 
because this was the highest resolution data available for every watershed. Ensuring consistency across sites was 

necessary, as several of the terrain variables that we calculated (e.g., slope) were dependent on DEM resolution (Smith 

et al., 2019). 
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Table 4: Summary statistics for fire predictor variables, as well as the transformation of each variable (e.g., natural 

log (Ln) or square root (√)) that yielded the most linear relationship with debris-flow volume, which we determined 

using the Pearson product-moment correlation coefficient (ρ). 

Predictor Variable Min. Max. Mean Median Transform ρ 

Time since fire (yrs)a 0.04 3.17 0.48 0.25 Ln -0.18 

Area burned (km2) 0.00 23.3 1.36 0.38 √ 0.72 

Area burned at low severity (km2) 0.00 4.82 0.33 0.08 √ 0.61 

Area burned at moderate severity (km2) 0.00 17.7 0.82 0.19 √ 0.72 

Area burned at high severity (km2) 0.00 2.48 0.21 0.02 √ 0.46 

Area burned at mod/high severity (km2) 0.00 18.5 1.03 0.26 √ 0.72 

Area burned with slopes ≥ 23° (km2) 0.00 20.3 0.92 0.28 √ 0.73 

Area burned mod/high with slopes ≥ 23° (km2) 0.00 15.8 0.71 0.17 √ 0.74 

Area burned with slopes ≥ 30% (km2) 0.00 21.6 1.09 0.31 √ 0.74 

Area burned mod/high with slopes ≥ 30% (km2) 0.00 17.0 0.84 0.21 √ 0.73 

Area burned with slopes ≥ 50% (km2) 0.00 19.1 0.79 0.24 √ 0.73 

Area burned mod/high with slopes ≥ 50% (km2) 0.00 14.8 0.61 0.14 √ 0.74 

2 x area burned mod/high + 1 x area low (km2) 0.00 41.8 2.39 0.68 √ 0.72 

4 x area burned mod/high + 1 x area low (km2) 0.00 78.9 4.44 1.18 √ 0.72 

Fraction of watershed burneda 0.03 1.00 0.90 0.98 Ln 0.11 

Fraction of watershed burned mod/higha 0.00 1.00 0.68 0.74 √ 0.21 

Mean differenced Normalized Burn Ratioa 6 842 353 340 Ln 0.17 
aVariable removed because it was not linearly related to volume 

 255 

We calculated another 17 variables related to fire characteristics (Table 4) that previous studies have found to be 

correlated with postfire debris-flow volume using data from MTBS (Gartner et al., 2014; Wall et al., 2023; Gorr et al., 

2024a). We define time since fire (Table 4) as the time between the date of fire ignition and the date of debris-flow 

initiation. Mean dNBR is the only fire variable that we considered that has not been explored by previous volume 

studies (e.g., Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a).We included it in this analysis because it has 260 
been identified as an important control on postfire debris-flow likelihood (Staley et al., 2017), and because it provides 

an objective measure of how severely a watershed has been affected by fire. 

3.2 Model development 

3.2.1 Initial screening of predictor variables 

After identifying 36 potential predictor variables related to rainfall (Table 2), watershed terrain (Table 3), and fire 265 
characteristics (Table 4), we used a multiple linear regression analysis to develop a model for predicting postfire 
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debris-flow volume in the western United States. Multiple linear regression is a statistical technique that uses multiple 

predictor variables to estimate the value of a response variable (debris-flow volume) following the general form:  

𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜀𝜀     (1) 

where 𝑦𝑦 is the response variable, 𝛽𝛽0 is the intercept, 𝑥𝑥𝑖𝑖 is the 𝑖𝑖th predictor variable, 𝛽𝛽𝑖𝑖 is the slope coefficient for the 270 

𝑖𝑖th predictor variable, 𝑥𝑥𝑘𝑘 and 𝛽𝛽𝑘𝑘 and are the 𝑘𝑘th predictor variable and the slope coefficient for the 𝑘𝑘th predictor 

variable, respectively, and 𝜀𝜀 is the error term. 

We started the model development process by ensuring that each potential predictor variable was linearly related to 

debris-flow volume, as a linear relationship between predictor variable and response variable is a requirement of 

multiple linear regression (Helsel et al., 2020). First, we used the Pearson product-moment correlation coefficient (ρ) 275 
to quantify the relationship between the response variable and each predictor variable. We then took the square root 

and natural log of the response and predictor variables to assess whether transforming one, or both, variables resulted 

in a more linear relationship between the two. This process resulted in nine correlation coefficients, representing the 

relations between the response variable and the predictor variable after applying each of three transformations (no 

transform, square root, and natural log) to both variables. Using this information, we selected the transformations that 280 
yielded the highest value of ρ, and thus the most linear relationship between the variables (Tables 2-4). Additionally, 

because ρ can be heavily influenced by outliers or a curved relationship between response and predictor variables 

(Helsel et al., 2020), we used scatter plots to visually confirm that debris-flow volume and each predictor variable 

exhibited a linear relationship. Using these plots, we determined that predictor variables that had a ρ value between -

0.3 and 0.3 did not exhibit a convincing linear relationship with debris-flow volume. As a result, we removed these 285 
variables from our analysis (Tables 3 and 4). 

We made an exception to the requirement that each predictor variable be linearly related to debris-flow volume for 

variables related to rainfall. Although none of the rainfall variables explored here had a correlation coefficient stronger 

than ± 0.3 (Table 2), we did not remove them from our analysis, as previous studies have found that including a rainfall 

variable can result in more accurate estimates of postfire debris-flow volume (e.g., Pak and Lee, 2008; Gartner et al., 290 
2014; Gorr et al., 2024a). For instance, Gorr et al. (2024a) found that volume models that contained a rainfall variable 

considerably outperformed those that did not, despite a weak relationship between the rainfall variables they 

considered and debris-flow volume. We attribute the weak relationship between rainfall variables and debris-flow 

volume in this study to uncertainty in the rainfall data. Though we only used data from rain gages within 4 km of 

debris-flow-producing watersheds, spatial variations in rainfall may have still resulted in substantial differences 295 
between what was measured by a rain gage and actual rainfall conditions in the watershed (Figure S1). This situation 

was likely more common in states like Arizona, Colorado, and New Mexico, where most debris flows initiate as the 

result of highly localized convective storms (e.g., Cannon et al., 2008; Gorr et al., 2023; McGuire et al., 2024b). 

However, this uncertainty and lack of linearity is in line with that of rainfall data used in previous volume studies (e.g., 

Gartner et al., 2014; Gorr et al., 2024a), so we did not remove any rainfall variables from our analysis based on the 300 
linear relationship requirement. As a result, we were left with 28 potential predictor variables for model development. 
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3.2.2 Predictor variable selection and model calibration 

We selected the predictor variables for the new volume model using a multi-step procedure designed to maximize 

model performance, minimize the number of predictor variables used, and ensure that the final model met all 

requirements for multiple linear regression. Because we considered 28 predictor variables, there were 228 potential 305 
variable combinations that we could have evaluated. Instead of considering all 228 potential variable combinations, we 

grouped the variables into three bins (rainfall, terrain, and fire) and only considered models that contained one variable 

from each bin (n=702). Following the methods outlined below, we fit each of the 702 models, selected those that met 

the requirements of multiple linear regression (i.e., had residuals that were normally distributed and had a constant 

variance) (Helsel et al., 2020), identified a subset of similarly performing top models (n=29), and made final variable 310 
selection based on additional multiple linear regression requirements and the relative frequency of occurrence of 

predictor variables within the top model subset. 

We started the variable selection process by separating each of the remaining 28 predictor variables into three bins 

(six rainfall variables, nine terrain variables, and 13 fire variables) and only considered models that selected one 

variable from each bin to prevent multicollinearity. Multicollinearity occurs when one predictor variable is closely 315 
related to another, and it can result in unrealistically large slope coefficients and illogical relationships between 

predictor and response variables (Eq. 1), negatively impacting model performance (Alin, 2010; Helsel et al., 2020). 

Separating the predictor variables into bins reduced the likelihood of selecting two variables that exhibited 

multicollinearity (e.g., watershed area with slopes ≥ 23° and watershed area with slopes ≥ 30%). This process yielded 

702 unique combinations of rainfall, terrain, and fire predictor variables. We then fit a multiple linear regression model 320 
to each combination, resulting in 702 unique, three-variable models. 

After independently fitting all 702 models, we evaluated each to ensure they met the following requirements of 

multiple linear regression: that the residuals were normally distributed and that the residuals had a constant variance 

(Helsel et al., 2020). These requirements ensure valid hypothesis tests and reliable confidence and prediction intervals 

for the model (Helsel et al., 2020). We used the Anderson-Darling (AD) test (Anderson and Darling, 1954) to assess 325 
the normality of model residuals, and the Brown-Forsythe (BF) test (Brown and Forsythe, 1974) to assess the variance 

of the residuals. The null hypothesis for the AD test is that the residuals follow a normal distribution. Therefore, an 

AD p-value >0.05 indicates that the null hypothesis cannot be rejected and that the residuals are normally distributed. 

The null hypothesis for the BF test is that the residuals have a constant variance, so a BF p-value >0.05 means that the 

null hypothesis cannot be rejected and that there is a constant variance in the residuals. To ensure our final model met 330 
these requirements of multiple linear regression, we removed 570 models that did not pass the AD and/or BF tests 

from consideration, leaving 132 models for further analysis. 

After removing the models that did not fit our statistical requirements, we evaluated the performance of the remaining 

132 models against the entire volume database using metrics including R2 and root mean square error (RMSE). Higher 

R2 values and lower RMSE values reflected better model performance. We also calculated the percentage of volumes 335 
predicted within an order of magnitude by each model, as having a first order estimate of debris-flow magnitude is 

useful for rapid hazard assessment scenarios. We used these metrics to further reduce the number of models we 
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considered during our final model selection process by removing all models where the R2 and RMSE values were not 

within 10% of those of the best-performing model. This resulted in 29 models to consider for final evaluation.  

From the remaining 29 models, we selected one final model using several factors in addition to the metrics outlined 340 
above. First, we determined how often each rainfall, terrain, and fire variable appeared in the 29 best-performing 

models, and prioritized models that used more commonly selected variables. Given the similar quantitative 

performance of the remaining 29 models, we interpreted variables that appeared more frequently as those that were 

more important for constraining postfire debris-flow volume using our dataset. We also ensured that there was no 

multicollinearity between the selected predictor variables for each model using the variance inflation factor (VIF) 345 
(Marquardt, 1970). We interpreted VIF values over 10 as indicative of a strong relationship between predictor variables 

(Helsel et al., 2020). We used a p-value of 0.1 to assess whether the predictor variables included in each model were 

statistically significant and removed any models that contained one or more predictor variables with a p-value > 0.1 

from consideration. Finally, we assessed whether the predictor variables included in each model fit our conceptual 

understanding of postfire debris-flow growth. For example, it is well-established that more intense rainfall tends to 350 
produce larger debris-flow volumes (e.g., Gartner et al., 2014; Gorr et al., 2024a), so we did not consider models that 

exhibited a negative relationship between rainfall intensity and volume. Using these considerations, in addition to the 

quantitative performance metrics, we selected a final model for predicting postfire debris-flow volume in the western 

United States, which we refer to hereafter as the western United States (WEST) model. 

3.3 Model validation 355 

We ensured the WEST model was not overfit using iterated fivefold cross validation (Kohavi, 1995), a method that 

has been used to validate previous postfire debris-flow volume models (e.g., Gorr et al., 2024a). We started this process 

by randomly separating the volume database into five similarly sized groups, four of which we classified as the training 

dataset and one as the testing dataset. We then fit the model on the training dataset and evaluated its performance 

against the testing dataset using R2 and RMSE. We repeated this process four more times so that each group of volumes 360 
was used as part of the training dataset four times and as the testing dataset once, resulting in five R2 and RMSE values 

that we averaged to determine a mean R2 and RMSE for that iteration of the fivefold cross validation. Then, we started 

the entire process over again by randomly splitting the volume database into five new groups. In total, we completed 

20 iterations of fivefold cross validation to more robustly evaluate the model’s performance when applied to different 

subsets of data. This process yielded 100 distinct groups of volume data that were used for both training and testing, 365 
as well as 20 averaged R2 and RMSE values. We once again averaged the mean R2 and RMSE values to determine a 

single cross-validated (CV) R2 and RMSE, which we used to evaluate how well the model performed against unseen 

data. We also assessed the distribution of the R2 and RMSE values associated with all 100 folds to determine how 

generalizable the model was to different subsets of volume data. We interpreted CV R2 and RMSE values similar to 

the R2 and RMSE of the WEST model trained on the entire dataset as an indication that the model was not overfit, and 370 
a narrow range of R2 and RMSE values as an indication that the model was not overly sensitive to volumes from 

specific geographic regions.  

3.4 Comparison with existing models 
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We compared the performance of the WEST model against the performance of three existing postfire debris-flow 

volume models: the Emergency Assessment volume (EAV) model (Gartner et al., 2014), the Intermountain West 375 
(IMW) volume model (Wall et al., 2023), and the V1 volume model (Gorr et al., 2024a). Although other methods for 

predicting postfire debris-flow volume exist (Santi and Morandi, 2013; Pelletier and Orem, 2014; Donovan and Santi, 

2017), we selected the EAV, IMW, and V1 models, in particular, for comparison because they were developed for the 

purpose of postfire hazard assessment using  at least in part, subsets of volume data from the larger volume database 

used in this study (Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a). However, unlike the WEST model, which 380 
was developed using data from across the western United States (Figure 1), these models were developed using data 

from more specific geographic regions, including southern California (Gartner et al., 2014), the Intermountain West, 

defined as the states of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming (Wall et al., 

2023), and the Southwest, defined as the states of Arizona and New Mexico (Gorr et al., 2024a). Note that the 

Southwest is a smaller region within the larger Intermountain West, and both regions include the states of Arizona and 385 
New Mexico. The IMW model was developed for a broad region that includes Arizona and New Mexico (Wall et al., 

2023), whereas the V1 model was developed for use in Arizona and New Mexico, specifically (Gorr et al., 2024a). 

We compared the WEST model to these three regional models to further evaluate model performance against existing 

methods for constraining postfire debris-flow volume.  

We evaluated and compared the performance of each of the models when applied to the entire western United States 390 
database. Additionally, to more fairly compare the existing models to the WEST model, we also evaluated the 

performance of each model when applied to subsets of data from the regions for which the existing models were 

developed: southern California (Gartner et al., 2014), the Intermountain West (Wall et al., 2023), and the Southwest 

(Gorr et al., 2024a). The southern California dataset consisted of 93 debris-flow volumes from the Transverse Ranges 

(Table 1), the Intermountain West dataset of 118 volumes from the states of Arizona, Colorado, New Mexico, and 395 
Utah, and the Southwest dataset of 68 volumes from Arizona and New Mexico (Table 1). By assessing the performance 

of each model against these subsets of volume data, we were able to evaluate how the WEST model performed against 

regional models when applied to the regions in which those models were developed. We also evaluated how each of 

the models performed against volumes from data-limited regions, which we define as regions where there is currently 

not enough volume data to develop a regional volume model. The data-limited dataset included 19 total volumes: 14 400 
from northern California, 3 from Utah, and 2 from Washington (Table S2).  

We used multiple metrics to evaluate the performance of each model across the five subsets of volume data. We 

visually assessed the goodness of fit of each model by plotting the probability density function of model residuals and 

quantified it by calculating the mean (µ) and standard deviation (σ) of the residuals. Residual mean values closer to 

zero and smaller σ values indicate better model performance. We also calculated the median absolute error (MAE) 405 
and the percentage of volumes predicted within an order of magnitude to further assess model performance. Because 

all four volume models were developed in natural logarithmic space (Gartner et al., 2014; Wall et al., 2023; Gorr et 

al., 2024a), we present µ and σ values in their natural log transformed form. However, we present the MAE and 

percentage of volumes predicted within an order of magnitude in dimensional space for better interpretability. 
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4 Results 410 

4.1 WEST model 

Using the methods outlined in Section 3.2, we selected one model for predicting postfire debris-flow volume in the 

western United States. The WEST model predicts the volume of sediment deposited by postfire debris flows using the 

equation: 

ln𝑉𝑉 = 7.56 + 0.20𝑖𝑖30𝑟𝑟𝑟𝑟 + 0.75 ln𝑎𝑎 + 1.11�𝑚𝑚ℎ50      (2) 415 

where 𝑉𝑉 is debris-flow volume (m3), 𝑖𝑖30𝑟𝑟𝑟𝑟 is the i30 rainfall ratio, 𝑎𝑎 is watershed area (km2), and 𝑚𝑚ℎ50 is watershed 

area burned at moderate or high severity with slopes ≥ 50% (~27°) (km2). The WEST model had an R2 = 0.66 and a 

RMSE = 1.31, both of which were the best among the 29 final models discussed in Section 3.2.2 (Tables S3 and S4). 

The VIF for each predictor variable in the WEST model was less than three, indicating that there was no 

multicollinearity, and the p-value for all three predictor variables was < 0.1, indicating that each was statistically 420 
significant.   

The WEST model overpredicted 48% of volumes in the database and underpredicted the remaining 52% (Figure 2). 

It predicted 41% of volumes within 1,000 m3, 75% within 10,000 m3, and 98% within 100,000 m3 of what was 

observed. It also predicted 93% of volumes within an order of magnitude (Figure 2). Additionally, the relations among 

debris-flow volume and each of the predictor variables selected for inclusion in the WEST model agreed with our 425 
conceptual understanding of postfire debris-flow growth, as more intense rainfall, larger watersheds, steeper slopes, 

and higher burn severity yielded greater sediment volumes (Eq. 2). 

Results of the cross-validation (CV) evaluation indicated that the WEST model was not overfit and was not overly 

sensitive to volumes from any particular geographic region (Figure S2). The CV R2 and RMSE values were 0.63 and 

1.32, respectively, closely matching the R2 (0.66) and RMSE (1.31) values of the WEST model trained on the entire 430 
volume database. This demonstrated that the model generalized well to unseen data. Additionally, the distributions of 

the 100 fold-level R2 and RMSE were relatively narrow (Figure S2), with standard deviations of 0.08 and 0.13, 

respectively, indicating that, although there was some fold-to-fold variability, most splits produced broadly similar 

performance, regardless of the geographic distributions of the volumes. Furthermore, the 20 mean R2 and RMSE 

values (one associated with each iteration of fivefold cross validation) varied only slightly (Figure S2), providing 435 
additional evidence that model performance was stable across random splits of the volume database.   
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Figure 2: A comparison between the observed volume of all 227 postfire debris flows and the corresponding 

volume predicted by the Western United States (WEST) model. Vertical lines represent the 95% prediction 

interval associated with each point. The thick, black line is a 1:1 line, and the thin, dashed lines represent an 440 
order of magnitude envelope. 

4.2 Comparison with existing models 

The WEST model outperformed the EAV (Gartner et al., 2014), IMW (Wall et al., 2023), and V1 (Gorr et al., 2024a) 

models when applied to the entire western United States volume database. Probability density functions of model 

residuals revealed that the WEST model provided the best fit between observed and modeled postfire debris-flow 445 
volumes in the western United States (Figure 3). The WEST model had a residual mean (µ) nearly equal to zero (Table 
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5), indicating that it did not systemically overpredict or underpredict debris-flow volumes in the western United States 

(Figure 3a). In contrast, the EAV model (Figure 3b) had a residual mean greater than zero, and the IMW (Figure 3c) 

and V1 (Figure 3d) models had residual means less than zero (Table 5), revealing that they tended to overestimate and 

underestimate postfire debris-flow volumes in this dataset, respectively. The WEST model also had the lowest standard 450 
deviation (σ) of all four models (Table 6), indicating the variability of the residuals was lower compared to the other 

three models. Finally, the WEST model had the lowest MAE (Table 7) and predicted the greatest percentage of 

volumes within an order of magnitude (Table 8), further indicating that it provided the best fit between modeled and 

observed volumes in the western United States.  

Table 5: Residual means for the western US (WEST), Emergency Assessment volume (EAV), 

Intermountain West (IMW), and V1 models (subset by region) 

 Residual Mean (µ) 

Model Western 

United States 

Southern 

California 

Intermountain 

West 

Southwest Data-Limited 

Regions 

WEST -0.003 -0.70 0.42 0.41 0.75 

EAV 1.32 -0.01 2.31 2.52 2.14 

IMW -2.91 -3.83 -2.61 -2.96 -0.07 

V1 -2.02 -3.26 -1.12 -0.50 -1.51 

 455 

The WEST model also performed well relative to existing models, when evaluated against subsets of data from regions 

where the other volume models were developed, including southern California (Figure S2), the Intermountain West 

(Figure S4), and the Southwest (Figure S5). In southern California, the WEST model was the second best-performing 

model, just behind the EAV model, which was developed for use in this region. Although the EAV model had a lower 

MAE (Table 7) and a predicted a higher percentage of volumes within an order of magnitude (Table 8), the difference 460 
in performance between the EAV and WEST models was marginal, especially when compared to the IMW and V1 

models (Figure S2). The IMW and V1 models both had MAE values nearly double that of the EAV and WEST models 

(Table 7) and predicted less than 20% of southern California volumes within an order of magnitude (Table 8). Both 

models also tended to substantially underpredict debris-flow volumes in southern California, whereas the WEST 

model only slightly underpredicted volumes in this region, on average (Table 5). The EAV model neither systemically 465 
overpredicted nor underpredicted volumes in southern California, as evidenced by a residual mean value of -0.01 

(Table 5). 
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Figure 3: Probability density functions for the residuals of the (a) western United States (WEST), (b) 

Emergency Assessment volume (EAV), (c) Intermountain West (IMW), and (d) V1 models when applied to the 470 
entire western United States dataset.  
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Table 6: Standard deviation of the residuals for the western US (WEST), Emergency Assessment 

volume (EAV), Intermountain West (IMW), and V1 models (subset by region) 

 Standard Deviation (σ) 

Model Western 

United States 

Southern 

California 

Intermountain 

West 

Southwest Data-Limited 

Regions 

WEST 1.30 1.07 1.20 1.22 1.37 

EAV 1.63 0.95 1.31 1.24 1.29 

IMW 1.92 1.52 1.62 1.63 1.99 

V1 1.69 0.96 1.54 1.25 1.47 

 475 

Table 7: Median absolute errors for the western US (WEST), Emergency Assessment volume 

(EAV), Intermountain West (IMW), and V1 models (subset by region) 

 Median Absolute Error (m3) 

Model Western 

United States 

Southern 

California 

Intermountain 

West 

Southwest Data-Limited 

Regions 

WEST 1,581 5,037 794 753 269 

EAV 7,088 4,407 10,070 10,717 2,495 

IMW 2,256 9,627 1,165 1,097 411 

V1 1,738 9,160 664 594 245 

 

Table 8: Percentage of volumes predicted within an order of magnitude by the western US 

(WEST), Emergency Assessment volume (EAV), Intermountain West (IMW), and V1 models 

(subset by region) 

 Percentage of Volumes Predicted within an Order of Magnitude 

Model Western 

United States 

Southern 

California 

Intermountain 

West 

Southwest Data-Limited 

Regions 

WEST 93% 96% 93% 93% 84% 

EAV 67% 98% 44% 34% 63% 

IMW 35% 18% 45% 38% 58% 

V1 52% 17% 76% 90% 74% 

 

In some scenarios, the WEST model even outperformed existing models in the regions for which they were developed, 

including the Intermountain West (Figure S4) and the Southwest (Figure S5). In the Intermountain West, the WEST 

model outperformed the IMW model (Figure S4). It had a lower MAE (Table 7) than the IMW model and predicted a 480 
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greater percentage of volumes within an order of magnitude (Table 8) in this region. Furthermore, the residual mean 

of the WEST model was closer to zero (Table 5) and its standard deviation was smaller than that of the IMW model 

(Table 6), which systemically underpredicted volumes in the Intermountain West (Figure S4). The WEST model also 

outperformed both the EAV and V1 models in the Intermountain West, as the EAV model greatly overpredicted debris-

flow volume, on average, and the V1 model underpredicted debris-flow volume, on average (Figure S4). In the 485 
Southwest, the WEST model outperformed the V1 model, according to most metrics (Figure S5). Although the V1 

model had a slightly lower MAE (Table 7), the WEST model predicted a greater percentage of volumes in the 

Southwest within an order of magnitude (Table 8), had a smaller standard deviation (Table 6), and had a residual mean 

closer to zero (Table 5). The WEST model tended to slightly overpredict debris-flow volumes in the Southwest (Figure 

S5), whereas the V1 model tended to slightly underpredict volumes in this region (Figure S5d). The EAV and IMW 490 
models, on the other hand, more severely overpredicted and underpredicted volumes in the Southwest, respectively 

(Figure S5). Differences between the volumes predicted by these models and observed volumes in the Southwest 

routinely exceeded an order of magnitude (Table 8). 

When applied to 19 postfire debris-flow volumes from data-limited regions, including northern California, Utah, and 

Washington, (Table S2), the WEST model again outperformed the EAV, IMW, and V1 models. The WEST model 495 
predicted the greatest percentage of volumes within an order of magnitude (Figure 4; Table 8) and had one of the 

lowest MAE values (Table 7). Although the IMW model had the residual mean closest to zero (Table 5), it also had 

the largest standard deviation (Table 6), indicating high variability in the residuals compared to other models (Figure 

5). The WEST model slightly overpredicted volumes from data-limited regions but had the lowest standard deviation 

of the four models (Table 6). The EAV model overpredicted volumes from data-limited regions more substantially 500 
(Figure 5b), whereas the V1 model underpredicted volumes from data-limited regions, on average (Figure 5d). 
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Figure 4: A comparison between the observed volume of 19 postfire debris flows from data-limited regions and 

the corresponding volume predicted by the western United States (WEST), Emergency Assessment volume 505 
(EAV), Intermountain West (IMW), and V1 models. The thick, black line is a 1:1 line, and the thin, dashed lines 

represent an order of magnitude envelope. 
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Figure 5: Probability density functions for the residuals of the (a) western United States (WEST), (b) 510 
Emergency Assessment volume (EAV), (c) Intermountain West (IMW), and (d) V1 models when applied to 

volumes from data-limited regions.  

5 Discussion 

In this study, we introduced a new empirical model for predicting postfire debris-flow volume in the western United 

States. This model, referred to as the WEST model, predicts the volume of sediment deposited by postfire debris flows 515 
as a function of i30 rainfall ratio, watershed area, and watershed area burned at moderate or high severity with slopes 
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greater than or equal to 50% (Eq. 2). It offers an improvement over existing volume models because it accounts for 

regional differences in rainfall characteristics with a rainfall ratio metric and because it was trained on a larger dataset 

of debris-flow volumes from across the western United States. Specifically, the WEST model outperforms three 

existing debris-flow volume models (Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a) when applied to the 520 
entire western United States database (Figure 3), as well as to subsets of data from the Intermountain West (Figure 

S4), the Southwest (Figure S5), and data-limited regions (Figures 4 and 5). It also maintains a similar level of 

performance to that of a model developed for use in southern California when applied in that region (Figure S2). These 

results indicate that the WEST model is more broadly applicable than existing volume models, particularly in data-

limited regions, and that it may be a promising tool for postfire hazard assessment in the western United States.   525 

5.1 Improvements over existing models 

5.1.1 Rainfall ratio 

The WEST model offers an improvement over existing volume models because it accounts for regional differences in 

rainfall intensity and because it was trained on the largest dataset of debris-flow volumes. The WEST model uses a 

rainfall ratio metric that normalizes for regional variations in rainfall and is consequently able to achieve equivalent 530 
performance to several models developed for different regions of the western United States using a single regression 

equation. Prior regional volume models, on the other hand, use rainfall intensity (e.g., Gartner et al., 2008, 2014; Gorr 

et al., 2024a), and are thus limited when applied to areas outside of their training datasets due to regional differences 

in the intensity of debris-flow-generating rainfall (e.g., Gorr et al., 2023, 2024a; Rengers et al., 2023, 2024). Previous 

studies have found that, although hourly (Pak and Lee, 2008) or sub-hourly (e.g., Gartner et al., 2014; Gorr et al., 535 
2024a) rainfall intensity is an important control on postfire debris-flow volume across the western United States, the 

rainfall intensity needed to generate postfire debris flows varies between regions (Cavagnaro et al., 2025b). For 

example, the 15-minute rainfall intensity (i15) needed to generate a postfire debris flow is less than 20 mm/h in the 

Transverse Ranges of southern California (Staley et al., 2013), roughly 30 mm/h in the Front Range of Colorado 

(Staley et al., 2015), and more than 60 mm/h in northern Arizona (Youberg, 2014).  540 

Regional volume models tend to be biased when applied outside of their training regions such that they overpredict 

volumes in areas with higher average rainfall intensities than their training region, and underpredict volumes in areas 

with lower average rainfall intensities. For instance, southern California requires some of the least intense rainfall to 

generate postfire debris flows (Staley et al., 2017), so the EAV model (Gartner et al., 2014), which was developed 

using data from southern California (Gartner et al., 2014), tends to overpredict debris-flow volume in other regions of 545 
the western United States and Canada. Gorr et al. (2024a) found that the EAV model overpredicted postfire debris-

flow volumes in the Southwest by roughly 3,500%, on average, and Rengers et al. (2024) found that the model 

overpredicted observed volumes in Colorado by more than a factor of four. Additionally, Gartner et al., (2024) found 

that the EAV model overpredicted postfire debris-flow volumes in British Columbia, Canada by a factor of 2 to 4. We 

observed similar model behavior in this study, as the EAV model consistently overpredicted postfire debris-flow 550 
volume in all regions other than southern California (Figures 3, S4, and S5). Conversely, the Southwest requires some 

of the most intense rainfall to generate postfire debris flows (Staley et al., 2017), so the V1 model consistently 
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underpredicts postfire debris-flow volumes in other parts of the western United States (Figures 3, S3, and S4). In this 

study, the V1 model underestimated debris-flow volumes on all four subsets of data, as well as when applied to the 

entire western United States database (Figure 3). It performed particularly poorly when applied to southern California 555 
(Figure S3), the region with the least similar rainfall characteristics to the Southwest. The IMW model also consistently 

underpredicted postfire debris-flow volume in this study, including in the Intermountain West, the region for which it 

was developed (Figure S4). However, this model does not include a rainfall variable (Wall et al., 2023), indicating that 

other regional differences or model limitations are responsible for reduced performance against this volume dataset.  

The WEST model, however, does not exhibit large variations in model performance between geographic regions 560 
(Figures S3-S5) because it uses i30 rainfall ratio instead of rainfall intensity (Eq. 2). This allows the WEST model to 

incorporate regional differences in rainfall intensity without the limitations associated with regional volume models. 

Because the i30 rainfall ratio normalizes the peak 30-minute rainfall intensity of a debris-flow-producing storm by the 

peak 30-minute rainfall intensity associated with a 1-year recurrence interval storm at the location of a debris-flow-

producing watershed, it is consistent across regions that have different rainfall characteristics. As a result, the WEST 565 
model performs similarly when applied to different geographic regions, including southern California (Figure S3), the 

Intermountain West (Figure S4), and the Southwest (Figure S5). 

5.1.2 Training dataset 

The WEST model also offers an improvement over existing postfire debris-flow volume models, as it was developed 

using a more robust training dataset. The WEST model was developed using a dataset of 227 postfire debris-flow 570 
volumes from 34 burn areas across six states (Figure 1). The three regional models evaluated in this study, on the other 

hand, were developed using smaller, more geographically limited datasets. Specifically, the EAV model was developed 

using 92 volumes from southern California (Gartner et al., 2014), the IMW model using 47 volumes from four states 

in the Intermountain West (Arizona, Colorado, Utah, and Wyoming), although 39 volumes were from Utah alone (Wall 

et al., 2023), and the V1 model using 54 volumes from Arizona and New Mexico (Gorr et al., 2024a). The geographic 575 
diversity of its training dataset contributes to the broader applicability of the WEST model relative to existing regional 

volume models. 

The broad applicability of the WEST model indicates that it can be a substantial improvement over volume models 

that are currently used for postfire hazard assessments, including the EAV model. The EAV model is currently the 

most-commonly used method for predicting postfire debris-flow volume in the western United States, as it is used as 580 
part of the USGS operational postfire hazard assessment framework (Landslide Hazards Program, 2018). Although 

the accuracy of the EAV model is limited outside of southern California, as discussed above, a lack of postfire debris-

flow volume data, and associated rainfall data, in many parts of the western United States has historically prevented 

the development of a viable alternative. When the EAV model was published in 2014, nearly all measured postfire 

debris-flow volumes with associated rainfall data were from southern California (Gartner et al., 2014), with minor 585 
exceptions from Arizona (Youberg, 2014), Colorado (Gartner et al., 2008), and Utah (Gartner et al., 2008). Taking the 

database used in this study (Gorr et al., 2025) as an example, more than 70% of postfire debris-flow volumes measured 
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prior to 2014 came from southern California (Figure 6a). The limited geographic scope of volume data available at 

the time therefore prevented the development of a more broadly applicable postfire debris-flow volume model. 

 590 
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Figure 6: Geographic distributions of the volume data used to develop the western United States (WEST) 

model, separated by date of occurrence. (a) The proportion of volume data by state collected prior to 2014. (b) 

The proportion of volume data by state collected in 2014 or later. (c) The proportion of data by state used in 

the development of the WEST model. 

However, efforts to measure postfire debris-flow volumes across the western United States have expanded since the 595 
EAV model was published. Of the 227 postfire debris-flow volumes used to develop the WEST model, 108 (48%) 

have been measured since 2014. Many of the volumes collected during this time are from regions where volume data 

have been historically sparse, and only 7% of post-2014 volumes used in this study are from southern California 

(Figure 6b). All volumes from New Mexico, northern California, and Washington have been collected since 2014, and 

data from Arizona and Colorado have expanded by 229% and 236% relative to the pre-2014 dataset, respectively 600 
(Figure 6c). The improved performance of the WEST model across the western United States compared to existing 

models can therefore be partially attributed to the fact that it was trained on the largest and most geographically diverse 

postfire debris-flow volume dataset with associated rainfall data.  

5.2 Implications for hazard assessment 

Because it accounts for regional differences in rainfall characteristics and was trained on a geographically diverse 605 
volume dataset, the WEST model can be used for widespread postfire hazard assessments in the western United States. 

One of the most encouraging signs for improved postfire hazard assessments is the model’s performance in data-

limited regions. Results show that the WEST model performed similarly in data-limited regions as it did elsewhere in 

the western United States (Tables 5-8), and that it outperformed the EAV, IMW, and V1 models in these areas (Figures 

4 and 5). The WEST model performed particularly well, relative to existing models, against two debris-flow volumes 610 
from the Dixie Fire, which burned in the Sierra Nevada of northern California, and two volumes from the Cub Creek 

2 Fire, which burned in the Pacific Northwest (Washington) (Figure 1; Table 1).  

The WEST model overpredicted the four volumes in the Sierra Nevada and Pacific Northwest by an average of 25,007 

m3, which represents a substantial improvement over the EAV model, which overpredicted the same four volumes by 

an average of 59,284 m3. The IMW and V1 models, on the other hand, underpredicted these volumes by an average 615 
of 6,981 m3 and 5,792 m3, respectively. Though the IMW and V1 models provided a smaller absolute difference 

between observed and modeled volumes in these regions, they severely underpredicted observed volumes in the Sierra 

Nevada and Pacific Northwest. Specifically, the IMW model underpredicted these four volumes by between 70.5% 

and 95.5%. The V1 model slightly overpredicted one of the four volumes by 41%, but underpredicted the remaining 

three by between 63.5% and 92.4%. Because previous studies have found that debris-flow volume scales with runout 620 
distance and area inundated (Iverson et al., 1998; Rickenmann, 1999; Griswold and Iverson, 2008), underpredicting 

debris-flow volume limits the effectiveness of postfire hazard assessments by underestimating the downstream effects 

of postfire debris flows. Based on the results of this study, the WEST model is less likely to underestimate the extent 

of potential downstream effects from postfire debris flows in data-limited regions, as it offers more conservative 

predictions of postfire debris-flow volume relative to the IMW and V1 models. At the same time, it provides more 625 
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accurate volume estimates than the EAV model in these areas, making it less likely to predict unrealistically severe 

downstream effects.  

Having a method that outperforms existing models in data-limited regions, such as the Sierra Nevada and Pacific 

Northwest, can improve postfire hazard assessments in these areas, particularly as fire activity increases. Wildfire 

activity across the western United States has increased considerably in recent decades, but this change has been 630 
particularly pronounced in the Pacific Northwest (Westerling, 2016). According to Westerling (2016), the area burned 

by wildfire in the Pacific Northwest between 2003 and 2012 increased by nearly 5,000% relative to the area burned 

in this region between 1973 and 1982. Furthermore, since this study was published in 2016, the Pacific Northwest has 

experienced multiple historic fire seasons, including the 2020 season, which burned nearly as much forest in the 

western Cascade Range in two weeks as the previous five decades combined (Reilly et al., 2022). Fire activity is also 635 
increasing in California’s Sierra Nevada (Westerling, 2016). Not only are fires in the Sierra Nevada increasing in size 

and frequency (Westerling, 2016), but the severity of fires is also changing. Miller and Safford (2012) found that 

proportion of annual wildfire burned at high severity increased considerably in parts of the Sierra Nevada between 

1984 and 2010. This has important implications for postfire debris-flow hazards, as the effects of fire on infiltration 

and erosion, which affects debris-flow initiation and growth, are most pronounced in areas burned at high severity 640 
(e.g., Vieira et al., 2015; McGuire and Youberg, 2019). As fire activity in these regions increases, so does the potential 

for postfire debris-flow hazards (e.g., DeGraff et al., 2011; Neptune et al., 2021; Wall et al., 2020; Selander et al., 

2025), underscoring the use of a volume model, like the WEST model, that can provide accurate estimates of debris-

flow volume in these areas. 

Additional volume data from the Sierra Nevada and Pacific Northwest can be used to continue improving volume 645 
predictions in these regions, but this study represents a first step, as it is the first study to include data from the Sierra 

Nevada and Pacific Northwest in the development and evaluation of volume models. Additionally, volume data from 

the northern Rockies (Idaho, Montana, and Wyoming) are needed to help to evaluate the WEST model in this region. 

Although the northern Rockies are susceptible to postfire debris flows (e.g., Meyer and Wells, 1997; Gabet and 

Bookter, 2008), we are unaware of any postfire debris-flow volumes with associated rainfall data from this region that 650 
can be used to improve model performance.  

5.3 Model limitations and future work 

Although the WEST model improves our ability to predict postfire debris-flow volume in many regions of the western 

United States, there are some scenarios where the model’s effectiveness may be limited. For example, because the 

WEST model predicts postfire debris-flow volume as a function of both watershed area and watershed area burned at 655 
moderate or high severity with slopes greater than or equal to 50%, it tends to substantially overpredict volumes from 

large watersheds (>20 km2) (Figure 6). We observed this model behavior when applied to the largest watershed in the 

dataset used in this study: Cucamonga Dam (Gorr et al., 2025). The Cucamonga Dam watershed, which burned in the 

2003 Grand Prix Fire in southern California (Figure 1), had an area of 28.0 km2 and an area burned at moderate or 

high severity with slopes greater than or equal to 50% of 14.8 km2, both the largest in the volume dataset (Tables 3 660 
and 4). It also produced the largest postfire debris flow in the dataset, with a volume of 801,770 m3 (Gorr et al., 2025). 
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When applied to this watershed, the WEST model predicted a volume of 1,993,100 m3, an overprediction of more 

than 1,000,000 m3 (Figure 7). However, we only expect this behavior in the watersheds larger than 20 km2, like the 

Cucamonga Dam watershed, as the model slightly underpredicted the volumes for the next two largest watersheds in 

the dataset (Figure 7), which had areas of 17.3 km2 and 14.4 km2. This limitation is unlikely to affect postfire hazard 665 
assessments in the western US, as the USGS operational postfire hazard assessment framework is typically applied to 

watersheds with areas less than 8.0 km2 (Landslide Hazards Program, 2018). 

 

Figure 7: Comparison between observed debris-flow volumes and debris-flow volumes predicted by the 

Western United States (WEST) model when applied to the entire western United States dataset. Points are 670 
colored by the natural log of the area of the debris-flow-producing watershed. The thick, black line is a 1:1 line, 

and the thin, dashed lines represent an order of magnitude envelope. 
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Another potential limitation of the WEST model is that, aside from differences in rainfall characteristics, it does not 

account for other regional factors that may influence postfire debris-flow volume, including sediment availability. In 

southern California, dry ravel (i.e., the transport of sediment by gravity without rainfall) is a common process in 675 
burned landscapes (e.g., Lamb et al., 2011). Following fire, but before rainfall, dry ravel can load channels with up to 

three meters of unconsolidated sediment that serves as an important sediment source for postfire debris flows (e.g., 

Wells, 1987; DiBiase and Lamb, 2020; Palucis et al., 2021). Although prevalent in southern California, dry ravel is 

less common in other regions of the western United States (Perkins et al., 2022). Previous studies have found that 

rilling on hillslopes and/or channel incision, not dry ravel, are the primary sources of sediment for postfire debris flows 680 
in many areas, including elsewhere in California (e.g., DeGraff et al., 2011), Colorado (Rengers et al., 2024), the 

Pacific Northwest (Wall et al., 2020), and the Southwest (e.g., Tillery and Rengers, 2020; Gorr et al., 2024b), among 

others. The absence of dry ravel in these regions may limit sediment availability and result in smaller postfire debris-

flow volumes relative to southern California. Regional differences in sediment availability may account for differences 

in model behavior that we observed in this study. In areas with dry ravel (i.e., southern California), the WEST model 685 
is biased low (Figure S3), and in areas where dry ravel is less prevalent (i.e., the Intermountain West and Southwest), 

the WEST model is biased high (Figures S4 and S5). This indicates that future postfire debris-flow volume models 

may benefit from the inclusion of a sediment availability variable. 

6 Conclusions 

Debris-flow volume is a critical component of postfire hazard assessments in the western United States. However, 690 
existing methods for predicting postfire debris-flow volume have various shortcomings that limit their applicability 

for the purpose of postfire hazard assessment. In this study, we introduced a new model for predicting postfire debris-

flow volume in the western United States. Using a database of 227 postfire debris-flow volumes collected across six 

states and 34 burn areas, we developed a multiple linear regression model that predicts postfire debris-flow volume as 

a function of rainfall, watershed terrain, and fire characteristics. This model offers an improvement over existing 695 
volume models, as it accounts for regional differences in debris-flow-generating rainfall and was trained on a larger, 

more geographically diverse volume dataset. Results from this study demonstrate that the new model outperforms 

three existing regional volume models when applied to the entire western United States database, and either 

outperforms or performs similarly to existing regional volume models when applied to subsets of volume data from 

the regions for which they were developed. The new model also outperforms existing models when applied to volumes 700 
from data-limited regions where there is not enough data to develop region-specific models. The broad applicability 

of the model introduced in this study indicates that it can be used to improve widespread postfire hazard assessments 

across the western United States. 
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