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Abstract. Accurate estimates of debris-flow volume can be used to help predict the magnitude of runoff-generated
postfire debris-flow hazards in the western United States. In this study, we compiled and used a database of 227
postfire debris-flow volumes that were collected across the western United States to develop a multiple linear
30 regression model for predicting postfire debris-flow volume. We explored 36 predictor variables related to rainfall,
terrain, and fire characteristics, and selected the model with the combination of variables that yielded the most accurate
predictions of debris-flow volume. We evaluated model performance against the entire volume database, as well as
against four subsets of volume data from southern California, the Intermountain West, the Southwest, and regions with
limited volume data, such as northern California and Washington. We also compared model performance against three
35 existing postfire debris-flow volume models that were developed for use in southern California, the Intermountain
West, and the Southwest. We demonstrate that the new volume model performs as well as the regional models in the
regions for which they were developed and outperforms existing models when applied to volumes from data-limited
regions in the western United States. These results indicate that the debris-flow volume model introduced in this study
can be used to improve postfire hazard assessments across the western United States, especially outside of southern

40 California.
1 Introduction

Debris flows are a common hazard in mountainous areas around the world (e.g., Rickenmann and Zimmermann, 1993;
Wang et al., 2003; Cannon and Gartner, 2005; Sepulveda et al., 2006; Guthrie et al., 2012; Gartner et al., 2024) but
are particularly prevalent in steep landscapes that have been recently burned by wildfire. Wildfire reduces vegetation
45 cover (McGuire et al., 2024a) and alters soil hydraulic properties (e.g., Hoch et al., 2021), which promotes the
initiation of runoff-generated debris flows in burned watersheds (e.g., Cannon et al., 2001; Parise and Cannon, 2012;
Wall et al., 2020). As a result, burned watersheds are more likely to produce debris flows than comparable unburned
watersheds given similar rainfall conditions (McGuire et al., 2021). Burned watersheds also tend to produce larger
debris flows than unburned watersheds (Santi and Morandi, 2013), resulting in elevated downstream effects, including
50 the loss of human life (Dowling and Santi, 2014; Kean et al., 2019; Daurio, 2025), damage to infrastructure (e.g.,
Lancaster et al., 2021), and degradation of water quality (e.g., Smith et al., 2011; Langhans et al., 2016), for

communities in fire-prone regions of the western United States (U.S.).

Recent increases in postfire debris-flow activity in the western United States, driven by changes in wildfire activity
(Westerling, 2016) and growth in the wildland-urban interface (Radeloff et al., 2018), have motivated the development
55 of a postfire hazard assessment framework that is used by the U.S. Geological Survey (USGS) to mitigate the impact
of potential postfire debris flows. The USGS framework uses postfire debris-flow likelihood (Staley et al., 2017) and
volume (Gartner et al., 2014) models to generate a combined hazard map for all watersheds within a fire perimeter
and identifies the most hazardous watersheds as those that have a high likelihood of debris-flow occurrence and are
likely to produce a debris flow that mobilizes a large volume of sediment (Cannon et al., 2010; Landslide Hazards
60  Program, 2018). Methods for predicting debris-flow likelihood can be used to identify which upstream watersheds are
likely to produce postfire debris flows. Methods for predicting debris-flow volume, on the other hand, provide insight

into the potential magnitude of downstream effects of postfire debris flows, as multiple studies have found that the



https://doi.org/10.5194/egusphere-2025-6572
Preprint. Discussion started: 13 January 2026 EG U
Public domain. CCO 1.0. Sp here
DOMAIN

area inundated by a debris flow scales with volume (Iverson et al., 1998; Berti and Simoni, 2007; Griswold and
Iverson, 2008). Accurate predictions of volume are also used to inform runout models that can evaluate the potential

65 downstream effects of postfire debris flows (Barnhart et al., 2021; Gorr et al., 2022).

Although numerous methods for predicting postfire debris-flow volume have been developed in recent years (e.g.,
Gartner et al., 2008; Pak and Lee, 2008; Cannon et al., 2010; Santi and Morandi, 2013; Gartner et al., 2014; Pelletier
and Orem, 2014; Donovan and Santi, 2017; Wall et al., 2023; Gorr et al., 2024a), none are ideally suited for use in
postfire hazard assessment frameworks that are applied across the entire western United States. Multiple volume
70 models have been developed for broad use across the western United States (e.g., Gartner et al., 2008; Cannon et al.,
2010; Santi and Morandi, 2013; Pelletier and Orem, 2014) but have deficiencies that limit their use in hazard
assessment scenarios. Specifically, existing broadly applicable volume models do not include rainfall variables,
despite the fact the volume of postfire debris flows in the western United States is known to scale with short-duration
(£ 1 h) rainfall intensity (Gartner et al., 2008; Pak and Lee, 2008; Cannon et al., 2010; Gartner et al., 2014; Gorr et
75 al., 2024a). The lack of rainfall variables limits the accuracy of these models, particularly when compared to volume
models that do include rainfall variables (Gorr et al., 2024a). Volume models that do not consider rainfall are also
unable to predict postfire debris-flow volume based on rainfall forecasts, which is a practical benefit offered by volume

models that do (Prescott et al., 2024).

There are several postfire debris-flow volume models that include rainfall variables (e.g., Pak and Lee, 2008; Gartner
80 et al., 2008, 2014; Gorr et al., 2024a), but they also have shortcomings that limit their applicability in widespread
postfire hazard assessments across the western United States. First, most existing volume models that include rainfall
variables are regionally focused to predict volume within a specific area, such as southern California (e.g., Gartner et
al., 2014), the Intermountain West (e.g., Wall et al., 2023), or the Southwest (Arizona and New Mexico) (Gorr et al.,
2024a). Previous studies have found that these regional models perform well in the areas for which they were
85 developed (e.g., Kean et al., 2019; Wall et al., 2023; Gorr et al., 2024a) but are considerably less accurate when applied
to areas outside of their training datasets (e.g., Gorr et al., 2023, 2024a; Rengers et al., 2023, 2024). For example,
previous studies have found that a volume model developed for use in southern California (Gartner et al., 2014)
overpredicted volumes in other regions of the western United States by up to several orders of magnitude (Gorr et al.,
2024a). The decreased performance of regional models in these scenarios may be partially attributed to the fact they
90  use rainfall intensity, even though the intensity of debris-flow-producing rainfall varies widely across the western
United States (Staley et al., 2017). As a result, models developed for use in areas where the rainfall intensity required
to generate postfire debris flows is low (e.g., Gartner et al., 2014), such as the Transverse Ranges of southern
California, where the 15-minute rainfall intensity-duration threshold for debris-flow occurrence is less than 20 mm/h
(Staley et al., 2013), tend to overpredict volumes when applied in areas where the intensity required to generate postfire
95 debris flows is much higher, such as northern Arizona, where the 15-minute rainfall intensity-duration threshold for
debris-flow occurrence is more than 60 mm/h (Youberg, 2014). Conversely, models developed for use in areas with
intense debris-flow-generating rainfall (Gorr et al., 2024a) tend to underpredict volumes in areas with less intense

debris-flow-generating rainfall. Furthermore, parts of the western United States lack the volume data needed to
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develop regional models. For instance, although the Pacific Northwest (Oregon and Washington) and the northern
100  Rockies (Idaho, Montana, and Wyoming) are susceptible to postfire debris flows (e.g., Meyer and Wells, 1997; Gabet
and Bookter, 2008; Wall et al., 2020; Selander et al., 2025), insufficient data has prohibited the development of volume
models in these regions. The shortcomings of existing postfire debris-flow volume models indicate that a model that
includes a rainfall variable and can be applied broadly across the western United States would be beneficial for

improving postfire hazard assessments, particularly in regions with limited volume data.

105 In this study, we developed a new method for predicting postfire debris-flow volume in the western United States for
the purpose of improving postfire hazard assessments. Specifically, we compiled and used the largest known postfire
debris-flow volume database with associated rainfall data (Gorr et al., 2025) to develop a multiple linear regression
model that predicts postfire debris-flow sediment volume. We explored 36 potential predictor variables related to
rainfall, terrain, and fire characteristics, and selected the combination of three variables that yielded the most accurate

110 predictions of debris-flow volume. We assessed model performance against the entire volume database, which includes
227 postfire debris-flow volumes across six states, as well as against three subsets of data from regions in the western
United States that have published regional volume models: southern California (Gartner et al., 2014), the
Intermountain West (Wall et al., 2023), and the Southwest (Gorr et al., 2024a). We then compared the performance of
the new model with three existing regional models. Finally, we evaluated the performance of all four models when

115 applied to volumes from data-limited regions, which we define as areas that do not have enough volume data to
develop regional volume models. Results from this study can improve our ability to accurately predict postfire debris-

flow volume across the western United States, particularly in data-limited regions.
2 Data
2.1 Debris-flow volumes

120  We compiled a database of 227 postfire debris-flow volumes from across the western United States (Figure 1) to
develop the new volume model introduced in this study. Roughly 85% of the database (192 of 227 volumes) consists
of previously published postfire debris-flow volumes from Arizona (Gorr et al., 2024a); California (Gartner et al.,
2008; Gartner et al., 2014; Kean et al., 2019; Smith et al.,2021; Swanson et al., 2024), Colorado (Gartner et al., 2008;
Rengers et al., 2023), New Mexico (Gorr et al., 2024a), and Utah (Gartner et al., 2008). We collected the remaining

125 15% of volumes (35) from sites in Arizona, northern California, Colorado, New Mexico, and Washington as part of
this study (Table 1). All volumes represent the volume of sediment deposited downstream from the watershed outlet.
We did not consider the volume of water mobilized by a flow, nor any sediment that may have been mobilized and
deposited upstream from the watershed outlet. This is consistent with the data used to develop previous postfire debris-

flow volume models (e.g., Gartner et al., 2014; Gorr et al., 2024a).

130
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Table 1: Fire information

Fire Name Year  State No. Volume Measurements Source

Apple 2020 CA 1 Swanson et al. (2024)
Bush 2020 AZ 3 Gorr et al. (2024a)
Buzzard 2018 NM 5 Gorr et al. (2024a)
Cameron Peak 2020 CO 14 Gorr et al. (2025)
Carmel 2020 CA 11 Smith et al. (2021)
Cedar 2003 CA 2 Gartner et al. (2008)
Coal Seam 2002 CO 6 Gartner et al. (2008)
Cub Creek 2 2021 WA 2 Gorr et al. (2025)
Dixie 2021 CA 2 Thomas et al. (2023)
El Dorado 2020 CA 2 Swanson et al. (2024)
Farmington 2003 uT 3 Gartner et al. (2008)
Flag 2021 AZ 1 Gorr et al. (2023)
Frye 2017 AZ 1 Gorr et al. (2024a)
Grand Prix 2003 CA 7 Gartner et al. (2008)
Grizzly Creek 2020 CcO 19 Rengers et al. (2024)
Harvard 2005 CA 4 Gartner et al. (2014)
Hermits Peak 2022 NM 1 Gorr et al. (2025)
Horseshoe 2 2011 AZ 4 Gorr et al. (2024a)
Horton 2021 AZ 1 Gorr et al. (2024a)
Missionary Ridge 2002 CO 8 Gartner et al. (2008)
Monument 2011 AZ 1 Gorr et al. (2024a)
Mosquito 2022 CA 1 Gorr et al. (2025)
Museum 2019 AZ 4 Gorr et al. (2024a)
Old 2003 CA 17 Gartner et al. (2008)
Pipeline 2022 AZ 14 Gorr et al. (2025)
Sayre 2008 CA 10 Gartner et al. (2014)
Schultz 2010 AZ 11 Gorr et al. (2024a)
Station 2009 CA 45 Gartner et al. (2014)
Tadpole 2020 NM 4 Gorr et al. (2024a)
Telegraph 2021 AZ 4 Gorr et al. (2024a)
Thomas 2017 CA 5 Kean et al. (2019)
Three Rivers 2021 NM 2 Gorr et al. (2024a)
Wallow 2011 AZ 1 Gorr et al. (2024a)
Woodbury 2019 AZ 11 Gorr et al. (2024a)
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Figure 1: Map of the locations of the 34 burn areas included in this study. The burn areas span six states across
the western United States (US), including Arizona (AZ), California (CA), Colorado (CO), New Mexico (NM),
Utah (UT), and Washington (WA), and 11 Environmental Protection Agency (EPA) Level I1I Ecoregions. The

names of the ecoregions shown in this figure are derived directly from the EPA (U.S. Environmental Protection

Agency, 2013). Basemap credits: United States Geological Survey The National Map: 3D Elevation Program,

United States Geological Survey Earth Resources Observation & Science Center: GMTED2010.

The volumes that we compiled were collected using a range of field and remote-sensing techniques. Most volumes

were measured using some variation of the field survey methods outlined in Gorr et al. (2024a). In short, measurements

of deposit area and average thickness were made in the field and then multiplied to determine debris-flow volume
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(e.g., Gorr et al., 2024a; Swanson et al., 2024). Other methods used to measure postfire debris-flow volume in the
145  field included surveys of closely spaced channel cross-sections (e.g., Gartner et al., 2008) and counting the number of
trucks filled with sediment when emptying a debris-retention basin (truck counts) (Gartner et al., 2014). The remaining
volumes were measured primarily using remote-sensing techniques. Most commonly, these volumes were calculated
using digital elevation models (DEM) of difference (DoD) that were generated by differencing pre-event and post-
event light detection and ranging (lidar) (Smith et al., 2021; Rengers et al., 2024; Swanson et al., 2024). In other cases,
150  high-resolution aerial imagery was used to help constrain the area of larger debris flows, and volume was calculated

by multiplying the area by depth measurements made in the field (e.g., Gorr et al., 2024a).

Variations in the size of the debris-flow volumes included in this database, and the techniques used to measure them,
mean that the uncertainty associated with each volume varies widely. Santi (2014) determined that the uncertainty
associated with deposit boundary and thickness measurements, the most used method to measure volumes in this
155 database, was -25% to +35% for small debris flows (~1,500 m?), -28% to +30% for medium debris flows (~15,000
m?), and -9% to +17% for large debris flows (~150,000 m?). Other field measurement techniques, such as truck counts
and channel cross-section surveys, have a lower degree of uncertainty, but still vary between -25% and +20%,
depending on debris-flow size (Santi, 2014). The uncertainty associated with volumes measured by remote sensing
techniques are less constrained, but we estimate that the volumes calculated by lidar differencing have an uncertainty
160 of -14% to +14%, based on a =10 cm level of detection (LoD) (Rengers et al., 2024). Overall, given the wide range
of debris-flow sizes and measurement techniques included in the volume database, we conservatively estimate the

uncertainty associated with these volume measurements to be £25%.

The volume database includes data from 195 watersheds from 34 burn areas across six states in the western United
States, a region we define as the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico,
165 Oregon, Utah, Washington, and Wyoming (Figure 1; Table S1). Specifically, the volume database includes volumes
from Arizona, California, Colorado, New Mexico, Utah, and Washington (Figure 1). The burn areas included in this
study range in size from 4.2 km? to 3,965 km? and span a wide range of climatological settings. The mean annual
precipitation at the burn areas ranges from 396 mm to 1,343 mm, and the mean annual temperature ranges from 3.7

°C to 17.8 °C (PRISM Climate Group, 2025) (Table S1).

170 The burn areas are also geographically and ecologically diverse, as they span 11 Level III ecoregions, or areas where
ecosystems and ecosystem components, including geology, vegetation, climate, and hydrology, are generally similar
(U.S. Environmental Protection Agency, 2013) (Figure 1). The names of the ecoregions presented here are derived
directly from U.S. Environmental Protection Agency (2013). The Arizona/New Mexico Mountains ecoregion, which
is characterized by steep foothills, mountains, and dissected plateaus (Wilken et al., 2011), contains 12 burn areas.
175 Grassland, chaparral, and pinyon-juniper and oak woodlands grow at lower elevations in this ecoregion, whereas
ponderosa pine and mixed-conifer forests are common at higher elevations (Wilken et al., 2011). The Southern
California Mountains ecoregion contains seven burn areas (Figure 1). This ecoregion contains the high-elevation
Transverse Ranges, which serve as a buffer between a coastal Mediterranean climate to the west and a dry, desert

climate to the east. Chapparal and oak woodlands are the predominant vegetation communities in this region, although
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180 coniferous forests are found at higher elevations (Griffith et al., 2016). The Southern Rockies ecoregion, which
includes most of western Colorado, as well as parts of southern Wyoming and northern New Mexico, contains an
additional five burn areas (Figure 1). It consists primarily of steep, high-elevation mountain ranges, with some
intermontane valleys, and the dominant vegetation communities vary based on a steep elevation gradient. Grasslands
and shrublands are common at lower elevations, ponderosa pine, aspen, juniper, and oak forests at middle elevations,

185 mixed-conifer forests at higher elevations, and alpine vegetation at the highest elevations (Wilken et al., 2011;
Drummond, 2012). The remaining 12 burn areas are spread across an additional eight ecoregions that contain between
one to three burn areas each (Figure 1). These ecoregions range from the high, rugged mountains and dense coniferous
forests of the North Cascades ecoregion to the low, broad basins and microphyllous scrubland of the Sonoran Basin

and Range ecoregion (Wilken et al., 2011).
190 2.2 Rainfall, topography, and fire severity data

In addition to debris-flow volume data, we also collected data related to rainfall, terrain, and fire characteristics to
calculate 36 potential predictor variables for use in the development of the new volume model, as described in more
detail in Section 3.1. We collected rainfall data for every debris-flow-producing storm using a series of rain gages
located near watersheds with volume measurements. The rain gages we used were installed and maintained by local,
195 state, and federal government agencies including, but not limited to, the Los Angeles County Department of Public
Works (Gartner et al., 2014), Arizona Department of Water Resources (Gorr et al., 2024a), U.S. Forest Service (Gorr
et al., 2024a), and the USGS (Gartner et al., 2014), as well as universities (Smith et al., 2021), and private consulting
firms (Gorr et al., 2024a). To ensure that the recorded rainfall was representative of the debris-flow-producing storms,
we used rain gages located within 4 km of watersheds with debris-flow volume measurements as suggested by Staley
200 et al. (2017). Most rain gages, however, were located within 2 km of the debris-flow-producing watersheds. We could
attribute most debris-flow volumes to a single storm, but when there were multiple storms prior to a volume
measurement, we followed the methods of Gartner et al. (2014) and attributed the volume to the most intense storm
that occurred between the assumed debris-flow initiation date and the volume measurement. We defined individual

storms as events that were separated by at least eight hours without rainfall (Staley et al., 2020).

205  We used national datasets to calculate metrics related to terrain and fire characteristics for each debris-flow-producing
watershed included in our database. Specifically, we resampled the 1/3 arc-second seamless DEM dataset from the
USGS 3D Elevation Program (3DEP) to create a series of 10-m resolution DEMs that we used to delineate watershed
boundaries and calculate terrain metrics for each watershed. We manually defined the outlet of each watershed as the
point immediately upstream from the debris-flow deposit used to calculate volume, ensuring that all terrain metrics
210 only considered the watershed area that contributed to debris-flow volume. This also ensured consistency among
metrics related to fire characteristics, which we calculated using data from the Monitoring Trends in Burn Severity
(MTBS) program (Monitoring Trends in Burn Severity, 2025). MTBS provides information for all fires 1,000 acres
and larger in the western United States that burned from 1984 to present, including ignition date, fire severity, and

differenced Normalized Burn Ratio (AINBR) data (Monitoring Trends in Burn Severity, 2025). The differenced
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215 Normalized Burn Ratio is a remote sensing index that measures fire-induced changes in vegetation by comparing pre-

and post-fire satellite imagery and is commonly used to classify burn severity (Parsons et al., 2010).
3 Methods
3.1 Calculation of predictor variables

We calculated 36 potential predictor variables for use in model development: six rainfall variables, 13 terrain variables,
220 and 17 variables related to fire characteristics. We analyzed six variables related to peak rainfall intensity and rainfall
ratios (Table 2) because previous work indicates that hourly or sub-hourly rainfall intensity data can be used to more
accurately constrain postfire debris-flow volume (e.g., Pak and Lee, 2008; Gartner et al., 2014; Gorr et al., 2024a).
We define a rainfall ratio as a recorded rainfall metric normalized by that same metric associated with a 1-year
recurrence interval storm at a given location (Cavagnaro et al., 2025a). For example, we define the rainfall ratio of the
225 peak rainfall intensity measured over a 15-minute duration (i15) as the recorded i15 normalized by the /15 associated
with a 1-year recurrence interval storm at a given watershed. Similarly, we define the rainfall ratios of the peak rainfall
intensity measured over 30-minute (730) and 60-minute (i60) durations as the recorded i30 or i60 normalized by the

i30 or i60 associated with a 1-year recurrence interval storm at a given watershed.

Table 2: Summary statistics for rainfall predictor variables, as well as the transformation of each variable (e.g., no
transformation (None) or natural log (Ln)) that yielded the most linear relationship with debris-flow volume, which

we determined using the Pearson product-moment correlation coefficient (p).

Predictor Variable Min. Max. Mean Median Transform p

Peak 15-minute rainfall intensity (i15) (mm/h) 5 124 49 37 None -0.11
Peak 30-minute rainfall intensity (i30) (mm/h) 4 82 34 26 None -0.13
Peak 60-minute rainfall intensity (i60) (mm/h) 2 51 22 21 None -0.13
i15 Rainfall ratio 0.16 2.96 1.36 1.21 Ln 0.04
130 Rainfall ratio 0.14 3.19 1.39 1.32 None -0.03
60 Rainfall ratio 0.13 3.00 1.37 1.27 None -0.09

230  We selected a 1-year recurrence interval to calculate rainfall ratio, as postfire debris-flows in the western United States
are generated by storms with a 1-year recurrence interval, on average (Staley et al., 2020). When available, we used
National Oceanic and Atmospheric Administration (NOAA) Atlas 14 precipitation frequency data (Bonnin et al., 2006;
Perica et al., 2013, 2014) to determine the 15, 130, and i60 of 1-year recurrence interval storms at each debris-flow-
producing watershed. For one burn area where Atlas 14 data were not available (Cub Creek 2), we used NOAA Atlas

235 2 data (Miller et al., 1973) to estimate the i15, i30, and i60 of a 1-year recurrence interval storm. When known, we
determined the 1-year recurrence interval values at the location of the rain gage where rainfall was recorded. If we did
not know the location of the rain gage (i.e., the coordinates of the gage were not provided by a previous study), we
used the 1-year recurrence interval rainfall associated with the centroid of the associated watershed. We considered

rainfall ratio metrics because previous studies have identified a relationship between postfire debris-flow likelihood

9
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240 and rainfall ratio (referred to as “rainfall anomaly” in Cavagnaro et al., 2025a), suggesting that there may also be a

relationship with postfire debris-flow volume.

Table 3: Summary statistics for watershed terrain predictor variables, as well as the transformation of each
variable (e.g., natural log (Ln) or square root (V) that yielded the most linear relationship with debris-flow

volume, which we determined using the Pearson product-moment correlation coefficient (p).

Predictor Variable Min. Max. Mean Median Transform p

Watershed area (km?) 0.01 28.0 1.55 0.41 Ln 0.79
Relief (m) 88 2,031 538 481 \/ 0.72
Mean elevation (m)* 253 3,000 1,626 1,377 Ln 0.05
Mean slope (°)* 11.1 50.6 30.1 29.7 Ln 0.05
Area with slopes > 23° (km?) 0.00 24.7 1.02 0.29 \/ 0.74
Mean slope (%) 19.7 155.5 60.5 60.4 Ln 0.03
Area with slopes > 30% (km?) 0.00 26.1 1.21 0.34 \ 0.74
Area with slopes > 50% (km?) 0.00 234 0.89 0.26 \/ 0.74
Maximum flow path (m) 217 10,669 1,945 1,456 Ln 0.74
Total channel length (m) 22 189,451 10,160 2,400 S 0.69
Drainage density (km™)? 1.37 12.6 6.32 6.20 \ 0.10
Relief ratio 0.11 1.76 0.36 0.32 Ln -0.50
Ruggedness 0.20 2.86 0.80 0.66 Ln -0.58

2Variable removed because it was not linearly related to volume

We also calculated 13 terrain variables that previous studies found were correlated with postfire debris-flow volume
(Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a) for all 195 debris-flow-producing watersheds using ArcGIS
245 Pro 3.3.0 (Table 3). Here we define relief (Table 3) as the difference between the maximum elevation and minimum
elevation within a watershed, maximum flow path as the longest flow path within a watershed, as measured from the
watershed outlet to the top of the drainage divide, and total channel length as the combined length of all channels
within a watershed. Drainage density is defined as the total channel length divided by the watershed area, relief ratio
as the length of the maximum flow path divided by watershed relief, and ruggedness, also known as the Melton ratio,
250 as watershed relief divided by the square root of watershed area. We used 10-m DEMs to calculate these variables
because this was the highest resolution data available for every watershed. Ensuring consistency across sites was
necessary, as several of the terrain variables that we calculated (e.g., slope) were dependent on DEM resolution (Smith

etal., 2019).

10
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Table 4: Summary statistics for fire predictor variables, as well as the transformation of each variable (e.g., natural
log (Ln) or square root (\)) that yielded the most linear relationship with debris-flow volume, which we determined

using the Pearson product-moment correlation coefficient (p).

Predictor Variable Min. Max. Mean  Median Transform p
Time since fire (yrs)* 0.04 3.17 0.48 0.25 Ln -0.18
Area burned (km?) 0.00 23.3 1.36 0.38 Y 0.72
Area burned at low severity (km?) 0.00 4.82 0.33 0.08 v 0.61
Area burned at moderate severity (km?) 0.00 17.7 0.82 0.19 v 0.72
Area burned at high severity (km?) 0.00 2.48 0.21 0.02 Y 0.46
Area burned at mod/high severity (km?) 0.00 18.5 1.03 0.26 Y 0.72
Area burned with slopes > 23° (km?) 0.00 20.3 0.92 0.28 v 0.73
Area burned mod/high with slopes > 23° (km?) 0.00 15.8 0.71 0.17 y 0.74
Area burned with slopes > 30% (km?) 0.00 21.6 1.09 0.31 J 0.74
Area burned mod/high with slopes > 30% (km?) 0.00 17.0 0.84 0.21 Y 0.73
Area burned with slopes > 50% (km?) 0.00 19.1 0.79 0.24 v 0.73
Area burned mod/high with slopes > 50% (km?) 0.00 14.8 0.61 0.14 y 0.74
2 x area burned mod/high + 1 x area low (km?) 0.00 41.8 2.39 0.68 \ 0.72
4 x area burned mod/high + 1 x area low (km?) 0.00 78.9 4.44 1.18 v 0.72
Fraction of watershed burned* 0.03 1.00 0.90 0.98 Ln 0.11
Fraction of watershed burned mod/high* 0.00 1.00 0.68 0.74 \/ 0.21
Mean differenced Normalized Burn Ratio® 6 842 353 340 Ln 0.17

*Variable removed because it was not linearly related to volume

255

We calculated another 17 variables related to fire characteristics (Table 4) that previous studies have found to be
correlated with postfire debris-flow volume using data from MTBS (Gartner et al., 2014; Wall et al., 2023; Gorr et al.,
2024a). We define time since fire (Table 4) as the time between the date of fire ignition and the date of debris-flow
initiation. Mean dNBR is the only fire variable that we considered that has not been explored by previous volume
260 studies (e.g., Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a).We included it in this analysis because it has
been identified as an important control on postfire debris-flow likelihood (Staley et al., 2017), and because it provides

an objective measure of how severely a watershed has been affected by fire.
3.2 Model development
3.2.1 Initial screening of predictor variables

265 After identifying 36 potential predictor variables related to rainfall (Table 2), watershed terrain (Table 3), and fire

characteristics (Table 4), we used a multiple linear regression analysis to develop a model for predicting postfire
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debris-flow volume in the western United States. Multiple linear regression is a statistical technique that uses multiple

predictor variables to estimate the value of a response variable (debris-flow volume) following the general form:

y = Bo+ Bixy + Poxot+... +Bkxi +€ (1)

270  where y is the response variable, S, is the intercept, x; is the ith predictor variable, f3; is the slope coefficient for the
ith predictor variable, x; and [, and are the kth predictor variable and the slope coefficient for the kth predictor

variable, respectively, and ¢ is the error term.

We started the model development process by ensuring that each potential predictor variable was linearly related to
debris-flow volume, as a linear relationship between predictor variable and response variable is a requirement of
275 multiple linear regression (Helsel et al., 2020). First, we used the Pearson product-moment correlation coefficient (p)
to quantify the relationship between the response variable and each predictor variable. We then took the square root
and natural log of the response and predictor variables to assess whether transforming one, or both, variables resulted
in a more linear relationship between the two. This process resulted in nine correlation coefficients, representing the
relations between the response variable and the predictor variable after applying each of three transformations (no
280 transform, square root, and natural log) to both variables. Using this information, we selected the transformations that
yielded the highest value of p, and thus the most linear relationship between the variables (Tables 2-4). Additionally,
because p can be heavily influenced by outliers or a curved relationship between response and predictor variables
(Helsel et al., 2020), we used scatter plots to visually confirm that debris-flow volume and each predictor variable
exhibited a linear relationship. Using these plots, we determined that predictor variables that had a p value between -
285 0.3 and 0.3 did not exhibit a convincing linear relationship with debris-flow volume. As a result, we removed these

variables from our analysis (Tables 3 and 4).

We made an exception to the requirement that each predictor variable be linearly related to debris-flow volume for
variables related to rainfall. Although none of the rainfall variables explored here had a correlation coefficient stronger
than + 0.3 (Table 2), we did not remove them from our analysis, as previous studies have found that including a rainfall
290 variable can result in more accurate estimates of postfire debris-flow volume (e.g., Pak and Lee, 2008; Gartner et al.,
2014; Gorr et al., 2024a). For instance, Gorr et al. (2024a) found that volume models that contained a rainfall variable
considerably outperformed those that did not, despite a weak relationship between the rainfall variables they
considered and debris-flow volume. We attribute the weak relationship between rainfall variables and debris-flow
volume in this study to uncertainty in the rainfall data. Though we only used data from rain gages within 4 km of
295 debris-flow-producing watersheds, spatial variations in rainfall may have still resulted in substantial differences
between what was measured by a rain gage and actual rainfall conditions in the watershed (Figure S1). This situation
was likely more common in states like Arizona, Colorado, and New Mexico, where most debris flows initiate as the
result of highly localized convective storms (e.g., Cannon et al., 2008; Gorr et al., 2023; McGuire et al., 2024b).
However, this uncertainty and lack of linearity is in line with that of rainfall data used in previous volume studies (e.g.,
300 Gartner et al., 2014; Gorr et al., 2024a), so we did not remove any rainfall variables from our analysis based on the

linear relationship requirement. As a result, we were left with 28 potential predictor variables for model development.
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3.2.2 Predictor variable selection and model calibration

We selected the predictor variables for the new volume model using a multi-step procedure designed to maximize
model performance, minimize the number of predictor variables used, and ensure that the final model met all
305 requirements for multiple linear regression. Because we considered 28 predictor variables, there were 228 potential
variable combinations that we could have evaluated. Instead of considering all 28 potential variable combinations, we
grouped the variables into three bins (rainfall, terrain, and fire) and only considered models that contained one variable
from each bin (n=702). Following the methods outlined below, we fit each of the 702 models, selected those that met
the requirements of multiple linear regression (i.e., had residuals that were normally distributed and had a constant
310 variance) (Helsel et al., 2020), identified a subset of similarly performing top models (n=29), and made final variable
selection based on additional multiple linear regression requirements and the relative frequency of occurrence of

predictor variables within the top model subset.

We started the variable selection process by separating each of the remaining 28 predictor variables into three bins
(six rainfall variables, nine terrain variables, and 13 fire variables) and only considered models that selected one
315 variable from each bin to prevent multicollinearity. Multicollinearity occurs when one predictor variable is closely
related to another, and it can result in unrealistically large slope coefficients and illogical relationships between
predictor and response variables (Eq. 1), negatively impacting model performance (Alin, 2010; Helsel et al., 2020).
Separating the predictor variables into bins reduced the likelihood of selecting two variables that exhibited
multicollinearity (e.g., watershed area with slopes > 23° and watershed area with slopes > 30%). This process yielded
320 702 unique combinations of rainfall, terrain, and fire predictor variables. We then fit a multiple linear regression model

to each combination, resulting in 702 unique, three-variable models.

After independently fitting all 702 models, we evaluated each to ensure they met the following requirements of
multiple linear regression: that the residuals were normally distributed and that the residuals had a constant variance
(Helsel et al., 2020). These requirements ensure valid hypothesis tests and reliable confidence and prediction intervals
325 for the model (Helsel et al., 2020). We used the Anderson-Darling (AD) test (Anderson and Darling, 1954) to assess
the normality of model residuals, and the Brown-Forsythe (BF) test (Brown and Forsythe, 1974) to assess the variance
of the residuals. The null hypothesis for the AD test is that the residuals follow a normal distribution. Therefore, an
AD p-value >0.05 indicates that the null hypothesis cannot be rejected and that the residuals are normally distributed.
The null hypothesis for the BF test is that the residuals have a constant variance, so a BF p-value >0.05 means that the
330  null hypothesis cannot be rejected and that there is a constant variance in the residuals. To ensure our final model met
these requirements of multiple linear regression, we removed 570 models that did not pass the AD and/or BF tests

from consideration, leaving 132 models for further analysis.

After removing the models that did not fit our statistical requirements, we evaluated the performance of the remaining
132 models against the entire volume database using metrics including R? and root mean square error (RMSE). Higher
335 R? values and lower RMSE values reflected better model performance. We also calculated the percentage of volumes
predicted within an order of magnitude by each model, as having a first order estimate of debris-flow magnitude is

useful for rapid hazard assessment scenarios. We used these metrics to further reduce the number of models we
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considered during our final model selection process by removing all models where the R? and RMSE values were not

within 10% of those of the best-performing model. This resulted in 29 models to consider for final evaluation.

340 From the remaining 29 models, we selected one final model using several factors in addition to the metrics outlined
above. First, we determined how often each rainfall, terrain, and fire variable appeared in the 29 best-performing
models, and prioritized models that used more commonly selected variables. Given the similar quantitative
performance of the remaining 29 models, we interpreted variables that appeared more frequently as those that were
more important for constraining postfire debris-flow volume using our dataset. We also ensured that there was no

345 multicollinearity between the selected predictor variables for each model using the variance inflation factor (VIF)
(Marquardt, 1970). We interpreted VIF values over 10 as indicative of a strong relationship between predictor variables
(Helsel et al., 2020). We used a p-value of 0.1 to assess whether the predictor variables included in each model were
statistically significant and removed any models that contained one or more predictor variables with a p-value > 0.1
from consideration. Finally, we assessed whether the predictor variables included in each model fit our conceptual

350  understanding of postfire debris-flow growth. For example, it is well-established that more intense rainfall tends to
produce larger debris-flow volumes (e.g., Gartner et al., 2014; Gorr et al., 2024a), so we did not consider models that
exhibited a negative relationship between rainfall intensity and volume. Using these considerations, in addition to the
quantitative performance metrics, we selected a final model for predicting postfire debris-flow volume in the western

United States, which we refer to hereafter as the western United States (WEST) model.
355 3.3 Model validation

We ensured the WEST model was not overfit using iterated fivefold cross validation (Kohavi, 1995), a method that
has been used to validate previous postfire debris-flow volume models (e.g., Gorr et al., 2024a). We started this process
by randomly separating the volume database into five similarly sized groups, four of which we classified as the training
dataset and one as the testing dataset. We then fit the model on the training dataset and evaluated its performance
360 against the testing dataset using R? and RMSE. We repeated this process four more times so that each group of volumes
was used as part of the training dataset four times and as the testing dataset once, resulting in five R?> and RMSE values
that we averaged to determine a mean R? and RMSE for that iteration of the fivefold cross validation. Then, we started
the entire process over again by randomly splitting the volume database into five new groups. In total, we completed
20 iterations of fivefold cross validation to more robustly evaluate the model’s performance when applied to different
365 subsets of data. This process yielded 100 distinct groups of volume data that were used for both training and testing,
as well as 20 averaged R? and RMSE values. We once again averaged the mean R? and RMSE values to determine a
single cross-validated (CV) R? and RMSE, which we used to evaluate how well the model performed against unseen
data. We also assessed the distribution of the R? and RMSE values associated with all 100 folds to determine how
generalizable the model was to different subsets of volume data. We interpreted CV R? and RMSE values similar to
370 the R? and RMSE of the WEST model trained on the entire dataset as an indication that the model was not overfit, and
a narrow range of R? and RMSE values as an indication that the model was not overly sensitive to volumes from

specific geographic regions.
3.4 Comparison with existing models

14
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We compared the performance of the WEST model against the performance of three existing postfire debris-flow
375 volume models: the Emergency Assessment volume (EAV) model (Gartner et al., 2014), the Intermountain West
(IMW) volume model (Wall et al., 2023), and the V1 volume model (Gorr et al., 2024a). Although other methods for
predicting postfire debris-flow volume exist (Santi and Morandi, 2013; Pelletier and Orem, 2014; Donovan and Santi,
2017), we selected the EAV, IMW, and V1 models, in particular, for comparison because they were developed for the
purpose of postfire hazard assessment using at least in part, subsets of volume data from the larger volume database
380 used in this study (Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a). However, unlike the WEST model, which
was developed using data from across the western United States (Figure 1), these models were developed using data
from more specific geographic regions, including southern California (Gartner et al., 2014), the Intermountain West,
defined as the states of Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming (Wall et al.,
2023), and the Southwest, defined as the states of Arizona and New Mexico (Gorr et al., 2024a). Note that the
385 Southwest is a smaller region within the larger Intermountain West, and both regions include the states of Arizona and
New Mexico. The IMW model was developed for a broad region that includes Arizona and New Mexico (Wall et al.,
2023), whereas the V1 model was developed for use in Arizona and New Mexico, specifically (Gorr et al., 2024a).
We compared the WEST model to these three regional models to further evaluate model performance against existing

methods for constraining postfire debris-flow volume.

390 We evaluated and compared the performance of each of the models when applied to the entire western United States
database. Additionally, to more fairly compare the existing models to the WEST model, we also evaluated the
performance of each model when applied to subsets of data from the regions for which the existing models were
developed: southern California (Gartner et al., 2014), the Intermountain West (Wall et al., 2023), and the Southwest
(Gorr et al., 2024a). The southern California dataset consisted of 93 debris-flow volumes from the Transverse Ranges

395 (Table 1), the Intermountain West dataset of 118 volumes from the states of Arizona, Colorado, New Mexico, and
Utah, and the Southwest dataset of 68 volumes from Arizona and New Mexico (Table 1). By assessing the performance
of each model against these subsets of volume data, we were able to evaluate how the WEST model performed against
regional models when applied to the regions in which those models were developed. We also evaluated how each of
the models performed against volumes from data-limited regions, which we define as regions where there is currently

400  not enough volume data to develop a regional volume model. The data-limited dataset included 19 total volumes: 14

from northern California, 3 from Utah, and 2 from Washington (Table S2).

We used multiple metrics to evaluate the performance of each model across the five subsets of volume data. We
visually assessed the goodness of fit of each model by plotting the probability density function of model residuals and
quantified it by calculating the mean (p) and standard deviation (o) of the residuals. Residual mean values closer to
405 zero and smaller ¢ values indicate better model performance. We also calculated the median absolute error (MAE)
and the percentage of volumes predicted within an order of magnitude to further assess model performance. Because
all four volume models were developed in natural logarithmic space (Gartner et al., 2014; Wall et al., 2023; Gorr et
al., 2024a), we present p and o values in their natural log transformed form. However, we present the MAE and

percentage of volumes predicted within an order of magnitude in dimensional space for better interpretability.
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410 4 Results
4.1 WEST model

Using the methods outlined in Section 3.2, we selected one model for predicting postfire debris-flow volume in the
western United States. The WEST model predicts the volume of sediment deposited by postfire debris flows using the

equation:
415 InV = 7.56 4+ 0.20i30,r + 0.75Ina + 1.11\/mhs,  (2)

where V is debris-flow volume (m?), i3, is the i30 rainfall ratio, a is watershed area (km?), and mhs, is watershed
area burned at moderate or high severity with slopes > 50% (~27°) (km?). The WEST model had an R?> = 0.66 and a
RMSE = 1.31, both of which were the best among the 29 final models discussed in Section 3.2.2 (Tables S3 and S4).
The VIF for each predictor variable in the WEST model was less than three, indicating that there was no
420 multicollinearity, and the p-value for all three predictor variables was < 0.1, indicating that each was statistically

significant.

The WEST model overpredicted 48% of volumes in the database and underpredicted the remaining 52% (Figure 2).
It predicted 41% of volumes within 1,000 m3, 75% within 10,000 m3, and 98% within 100,000 m* of what was
observed. It also predicted 93% of volumes within an order of magnitude (Figure 2). Additionally, the relations among
425 debris-flow volume and each of the predictor variables selected for inclusion in the WEST model agreed with our
conceptual understanding of postfire debris-flow growth, as more intense rainfall, larger watersheds, steeper slopes,

and higher burn severity yielded greater sediment volumes (Eq. 2).

Results of the cross-validation (CV) evaluation indicated that the WEST model was not overfit and was not overly
sensitive to volumes from any particular geographic region (Figure S2). The CV R? and RMSE values were 0.63 and
430 1.32, respectively, closely matching the R? (0.66) and RMSE (1.31) values of the WEST model trained on the entire
volume database. This demonstrated that the model generalized well to unseen data. Additionally, the distributions of
the 100 fold-level R? and RMSE were relatively narrow (Figure S2), with standard deviations of 0.08 and 0.13,
respectively, indicating that, although there was some fold-to-fold variability, most splits produced broadly similar
performance, regardless of the geographic distributions of the volumes. Furthermore, the 20 mean R? and RMSE
435 values (one associated with each iteration of fivefold cross validation) varied only slightly (Figure S2), providing

additional evidence that model performance was stable across random splits of the volume database.
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Figure 2: A comparison between the observed volume of all 227 postfire debris flows and the corresponding

volume predicted by the Western United States (WEST) model. Vertical lines represent the 95% prediction

440 interval associated with each point. The thick, black line is a 1:1 line, and the thin, dashed lines represent an

order of magnitude envelope.

4.2 Comparison with existing models

The WEST model outperformed the EAV (Gartner et al., 2014), IMW (Wall et al., 2023), and V1 (Gorr et al., 2024a)

models when applied to the entire western United States volume database. Probability density functions of model

445  residuals revealed that the WEST model provided the best fit between observed and modeled postfire debris-flow

volumes in the western United States (Figure 3). The WEST model had a residual mean (p) nearly equal to zero (Table
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5), indicating that it did not systemically overpredict or underpredict debris-flow volumes in the western United States
(Figure 3a). In contrast, the EAV model (Figure 3b) had a residual mean greater than zero, and the IMW (Figure 3c)
and V1 (Figure 3d) models had residual means less than zero (Table 5), revealing that they tended to overestimate and
450  underestimate postfire debris-flow volumes in this dataset, respectively. The WEST model also had the lowest standard
deviation (o) of all four models (Table 6), indicating the variability of the residuals was lower compared to the other
three models. Finally, the WEST model had the lowest MAE (Table 7) and predicted the greatest percentage of
volumes within an order of magnitude (Table 8), further indicating that it provided the best fit between modeled and

observed volumes in the western United States.

Table 5: Residual means for the western US (WEST), Emergency Assessment volume (EAV),
Intermountain West (IMW), and V1 models (subset by region)

Residual Mean ()
Model Western Southern Intermountain Southwest Data-Limited
United States  California West Regions
WEST -0.003 -0.70 0.42 0.41 0.75
EAV 1.32 -0.01 2.31 2.52 2.14
MW -2.91 -3.83 -2.61 -2.96 -0.07
V1 -2.02 -3.26 -1.12 -0.50 -1.51

455

The WEST model also performed well relative to existing models, when evaluated against subsets of data from regions
where the other volume models were developed, including southern California (Figure S2), the Intermountain West
(Figure S4), and the Southwest (Figure S5). In southern California, the WEST model was the second best-performing
model, just behind the EAV model, which was developed for use in this region. Although the EAV model had a lower
460 MAE (Table 7) and a predicted a higher percentage of volumes within an order of magnitude (Table 8), the difference
in performance between the EAV and WEST models was marginal, especially when compared to the IMW and V1
models (Figure S2). The IMW and V1 models both had MAE values nearly double that of the EAV and WEST models
(Table 7) and predicted less than 20% of southern California volumes within an order of magnitude (Table 8). Both
models also tended to substantially underpredict debris-flow volumes in southern California, whereas the WEST
465 model only slightly underpredicted volumes in this region, on average (Table 5). The EAV model neither systemically
overpredicted nor underpredicted volumes in southern California, as evidenced by a residual mean value of -0.01

(Table 5).
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Table 6: Standard deviation of the residuals for the western US (WEST), Emergency Assessment
volume (EAV), Intermountain West (IMW), and V1 models (subset by region)
Standard Deviation (o)
Model Western Southern Intermountain Southwest Data-Limited
United States  California West Regions
WEST 1.30 1.07 1.20 1.22 1.37
EAV 1.63 0.95 1.31 1.24 1.29
IMW 1.92 1.52 1.62 1.63 1.99
V1 1.69 0.96 1.54 1.25 1.47
475

Table 7: Median absolute errors for the western US (WEST), Emergency Assessment volume

(EAV), Intermountain West (IMW), and V1 models (subset by region)

Median Absolute Error (m%)
Model Western Southern Intermountain Southwest Data-Limited
United States  California West Regions
WEST 1,581 5,037 794 753 269
EAV 7,088 4,407 10,070 10,717 2,495
IMW 2,256 9,627 1,165 1,097 411
Vi1 1,738 9,160 664 594 245

Table 8: Percentage of volumes predicted within an order of magnitude by the western US

(WEST), Emergency Assessment volume (EAV), Intermountain West IMW), and V1 models

(subset by region)
Percentage of Volumes Predicted within an Order of Magnitude
Model Western Southern Intermountain Southwest Data-Limited
United States  California West Regions

WEST 93% 96% 93% 93% 84%
EAV 67% 98% 44% 34% 63%
IMW 35% 18% 45% 38% 58%

V1 52% 17% 76% 90% 74%

In some scenarios, the WEST model even outperformed existing models in the regions for which they were developed,

including the Intermountain West (Figure S4) and the Southwest (Figure S5). In the Intermountain West, the WEST
480  model outperformed the IMW model (Figure S4). It had a lower MAE (Table 7) than the IMW model and predicted a
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greater percentage of volumes within an order of magnitude (Table 8) in this region. Furthermore, the residual mean
of the WEST model was closer to zero (Table 5) and its standard deviation was smaller than that of the IMW model
(Table 6), which systemically underpredicted volumes in the Intermountain West (Figure S4). The WEST model also
outperformed both the EAV and V1 models in the Intermountain West, as the EAV model greatly overpredicted debris-
485  flow volume, on average, and the V1 model underpredicted debris-flow volume, on average (Figure S4). In the
Southwest, the WEST model outperformed the V1 model, according to most metrics (Figure S5). Although the V1
model had a slightly lower MAE (Table 7), the WEST model predicted a greater percentage of volumes in the
Southwest within an order of magnitude (Table 8), had a smaller standard deviation (Table 6), and had a residual mean
closer to zero (Table 5). The WEST model tended to slightly overpredict debris-flow volumes in the Southwest (Figure
490 S5), whereas the V1 model tended to slightly underpredict volumes in this region (Figure S5d). The EAV and IMW
models, on the other hand, more severely overpredicted and underpredicted volumes in the Southwest, respectively
(Figure S5). Differences between the volumes predicted by these models and observed volumes in the Southwest

routinely exceeded an order of magnitude (Table 8).

When applied to 19 postfire debris-flow volumes from data-limited regions, including northern California, Utah, and
495 Washington, (Table S2), the WEST model again outperformed the EAV, IMW, and V1 models. The WEST model
predicted the greatest percentage of volumes within an order of magnitude (Figure 4; Table 8) and had one of the
lowest MAE values (Table 7). Although the IMW model had the residual mean closest to zero (Table 5), it also had
the largest standard deviation (Table 6), indicating high variability in the residuals compared to other models (Figure
5). The WEST model slightly overpredicted volumes from data-limited regions but had the lowest standard deviation
500 of the four models (Table 6). The EAV model overpredicted volumes from data-limited regions more substantially

(Figure 5b), whereas the V1 model underpredicted volumes from data-limited regions, on average (Figure 5d).
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represent an order of magnitude envelope.
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5 Discussion
In this study, we introduced a new empirical model for predicting postfire debris-flow volume in the western United
515 States. This model, referred to as the WEST model, predicts the volume of sediment deposited by postfire debris flows

as a function of 730 rainfall ratio, watershed area, and watershed area burned at moderate or high severity with slopes
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greater than or equal to 50% (Eq. 2). It offers an improvement over existing volume models because it accounts for
regional differences in rainfall characteristics with a rainfall ratio metric and because it was trained on a larger dataset
of debris-flow volumes from across the western United States. Specifically, the WEST model outperforms three
520 existing debris-flow volume models (Gartner et al., 2014; Wall et al., 2023; Gorr et al., 2024a) when applied to the
entire western United States database (Figure 3), as well as to subsets of data from the Intermountain West (Figure
S4), the Southwest (Figure S5), and data-limited regions (Figures 4 and 5). It also maintains a similar level of
performance to that of a model developed for use in southern California when applied in that region (Figure S2). These
results indicate that the WEST model is more broadly applicable than existing volume models, particularly in data-

525 limited regions, and that it may be a promising tool for postfire hazard assessment in the western United States.
5.1 Improvements over existing models
5.1.1 Rainfall ratio

The WEST model offers an improvement over existing volume models because it accounts for regional differences in
rainfall intensity and because it was trained on the largest dataset of debris-flow volumes. The WEST model uses a
530 rainfall ratio metric that normalizes for regional variations in rainfall and is consequently able to achieve equivalent
performance to several models developed for different regions of the western United States using a single regression
equation. Prior regional volume models, on the other hand, use rainfall intensity (e.g., Gartner et al., 2008, 2014; Gorr
et al., 2024a), and are thus limited when applied to areas outside of their training datasets due to regional differences
in the intensity of debris-flow-generating rainfall (e.g., Gorr et al., 2023, 2024a; Rengers et al., 2023, 2024). Previous
535 studies have found that, although hourly (Pak and Lee, 2008) or sub-hourly (e.g., Gartner et al., 2014; Gorr et al.,
2024a) rainfall intensity is an important control on postfire debris-flow volume across the western United States, the
rainfall intensity needed to generate postfire debris flows varies between regions (Cavagnaro et al., 2025b). For
example, the 15-minute rainfall intensity (i15) needed to generate a postfire debris flow is less than 20 mm/h in the
Transverse Ranges of southern California (Staley et al., 2013), roughly 30 mm/h in the Front Range of Colorado
540 (Staley et al., 2015), and more than 60 mm/h in northern Arizona (Youberg, 2014).

Regional volume models tend to be biased when applied outside of their training regions such that they overpredict
volumes in areas with higher average rainfall intensities than their training region, and underpredict volumes in areas
with lower average rainfall intensities. For instance, southern California requires some of the least intense rainfall to
generate postfire debris flows (Staley et al., 2017), so the EAV model (Gartner et al., 2014), which was developed
545 using data from southern California (Gartner et al., 2014), tends to overpredict debris-flow volume in other regions of
the western United States and Canada. Gorr et al. (2024a) found that the EAV model overpredicted postfire debris-
flow volumes in the Southwest by roughly 3,500%, on average, and Rengers et al. (2024) found that the model
overpredicted observed volumes in Colorado by more than a factor of four. Additionally, Gartner et al., (2024) found
that the EAV model overpredicted postfire debris-flow volumes in British Columbia, Canada by a factor of 2 to 4. We
550 observed similar model behavior in this study, as the EAV model consistently overpredicted postfire debris-flow
volume in all regions other than southern California (Figures 3, S4, and S5). Conversely, the Southwest requires some

of the most intense rainfall to generate postfire debris flows (Staley et al., 2017), so the V1 model consistently
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underpredicts postfire debris-flow volumes in other parts of the western United States (Figures 3, S3, and S4). In this
study, the V1 model underestimated debris-flow volumes on all four subsets of data, as well as when applied to the
555 entire western United States database (Figure 3). It performed particularly poorly when applied to southern California
(Figure S3), the region with the least similar rainfall characteristics to the Southwest. The IMW model also consistently
underpredicted postfire debris-flow volume in this study, including in the Intermountain West, the region for which it
was developed (Figure S4). However, this model does not include a rainfall variable (Wall et al., 2023), indicating that

other regional differences or model limitations are responsible for reduced performance against this volume dataset.

560 The WEST model, however, does not exhibit large variations in model performance between geographic regions
(Figures S3-S5) because it uses /30 rainfall ratio instead of rainfall intensity (Eq. 2). This allows the WEST model to
incorporate regional differences in rainfall intensity without the limitations associated with regional volume models.
Because the /30 rainfall ratio normalizes the peak 30-minute rainfall intensity of a debris-flow-producing storm by the
peak 30-minute rainfall intensity associated with a 1-year recurrence interval storm at the location of a debris-flow-

565 producing watershed, it is consistent across regions that have different rainfall characteristics. As a result, the WEST
model performs similarly when applied to different geographic regions, including southern California (Figure S3), the

Intermountain West (Figure S4), and the Southwest (Figure S5).
5.1.2 Training dataset

The WEST model also offers an improvement over existing postfire debris-flow volume models, as it was developed
570  using a more robust training dataset. The WEST model was developed using a dataset of 227 postfire debris-flow
volumes from 34 burn areas across six states (Figure 1). The three regional models evaluated in this study, on the other
hand, were developed using smaller, more geographically limited datasets. Specifically, the EAV model was developed
using 92 volumes from southern California (Gartner et al., 2014), the IMW model using 47 volumes from four states
in the Intermountain West (Arizona, Colorado, Utah, and Wyoming), although 39 volumes were from Utah alone (Wall
575  etal., 2023), and the V1 model using 54 volumes from Arizona and New Mexico (Gorr et al., 2024a). The geographic
diversity of its training dataset contributes to the broader applicability of the WEST model relative to existing regional

volume models.

The broad applicability of the WEST model indicates that it can be a substantial improvement over volume models
that are currently used for postfire hazard assessments, including the EAV model. The EAV model is currently the
580 most-commonly used method for predicting postfire debris-flow volume in the western United States, as it is used as
part of the USGS operational postfire hazard assessment framework (Landslide Hazards Program, 2018). Although
the accuracy of the EAV model is limited outside of southern California, as discussed above, a lack of postfire debris-
flow volume data, and associated rainfall data, in many parts of the western United States has historically prevented
the development of a viable alternative. When the EAV model was published in 2014, nearly all measured postfire
585 debris-flow volumes with associated rainfall data were from southern California (Gartner et al., 2014), with minor
exceptions from Arizona (Youberg, 2014), Colorado (Gartner et al., 2008), and Utah (Gartner et al., 2008). Taking the

database used in this study (Gorr et al., 2025) as an example, more than 70% of postfire debris-flow volumes measured
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prior to 2014 came from southern California (Figure 6a). The limited geographic scope of volume data available at

the time therefore prevented the development of a more broadly applicable postfire debris-flow volume model.
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Figure 6: Geographic distributions of the volume data used to develop the western United States (WEST)
model, separated by date of occurrence. (a) The proportion of volume data by state collected prior to 2014. (b)
The proportion of volume data by state collected in 2014 or later. (c) The proportion of data by state used in
the development of the WEST model.

595 However, efforts to measure postfire debris-flow volumes across the western United States have expanded since the
EAV model was published. Of the 227 postfire debris-flow volumes used to develop the WEST model, 108 (48%)
have been measured since 2014. Many of the volumes collected during this time are from regions where volume data
have been historically sparse, and only 7% of post-2014 volumes used in this study are from southern California
(Figure 6b). All volumes from New Mexico, northern California, and Washington have been collected since 2014, and

600 data from Arizona and Colorado have expanded by 229% and 236% relative to the pre-2014 dataset, respectively
(Figure 6¢). The improved performance of the WEST model across the western United States compared to existing
models can therefore be partially attributed to the fact that it was trained on the largest and most geographically diverse

postfire debris-flow volume dataset with associated rainfall data.
5.2 Implications for hazard assessment

605  Because it accounts for regional differences in rainfall characteristics and was trained on a geographically diverse
volume dataset, the WEST model can be used for widespread postfire hazard assessments in the western United States.
One of the most encouraging signs for improved postfire hazard assessments is the model’s performance in data-
limited regions. Results show that the WEST model performed similarly in data-limited regions as it did elsewhere in
the western United States (Tables 5-8), and that it outperformed the EAV, IMW, and V1 models in these areas (Figures
610 4 and 5). The WEST model performed particularly well, relative to existing models, against two debris-flow volumes
from the Dixie Fire, which burned in the Sierra Nevada of northern California, and two volumes from the Cub Creek

2 Fire, which burned in the Pacific Northwest (Washington) (Figure 1; Table 1).

The WEST model overpredicted the four volumes in the Sierra Nevada and Pacific Northwest by an average of 25,007
m?, which represents a substantial improvement over the EAV model, which overpredicted the same four volumes by
615 an average of 59,284 m3. The IMW and V1 models, on the other hand, underpredicted these volumes by an average
of 6,981 m® and 5,792 m?, respectively. Though the IMW and V1 models provided a smaller absolute difference
between observed and modeled volumes in these regions, they severely underpredicted observed volumes in the Sierra
Nevada and Pacific Northwest. Specifically, the IMW model underpredicted these four volumes by between 70.5%
and 95.5%. The V1 model slightly overpredicted one of the four volumes by 41%, but underpredicted the remaining
620  three by between 63.5% and 92.4%. Because previous studies have found that debris-flow volume scales with runout
distance and area inundated (Iverson et al., 1998; Rickenmann, 1999; Griswold and Iverson, 2008), underpredicting
debris-flow volume limits the effectiveness of postfire hazard assessments by underestimating the downstream effects
of postfire debris flows. Based on the results of this study, the WEST model is less likely to underestimate the extent
of potential downstream effects from postfire debris flows in data-limited regions, as it offers more conservative

625 predictions of postfire debris-flow volume relative to the IMW and V1 models. At the same time, it provides more
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accurate volume estimates than the EAV model in these areas, making it less likely to predict unrealistically severe

downstream effects.

Having a method that outperforms existing models in data-limited regions, such as the Sierra Nevada and Pacific
Northwest, can improve postfire hazard assessments in these areas, particularly as fire activity increases. Wildfire
630 activity across the western United States has increased considerably in recent decades, but this change has been
particularly pronounced in the Pacific Northwest (Westerling, 2016). According to Westerling (2016), the area burned
by wildfire in the Pacific Northwest between 2003 and 2012 increased by nearly 5,000% relative to the area burned
in this region between 1973 and 1982. Furthermore, since this study was published in 2016, the Pacific Northwest has
experienced multiple historic fire seasons, including the 2020 season, which burned nearly as much forest in the
635 western Cascade Range in two weeks as the previous five decades combined (Reilly et al., 2022). Fire activity is also
increasing in California’s Sierra Nevada (Westerling, 2016). Not only are fires in the Sierra Nevada increasing in size
and frequency (Westerling, 2016), but the severity of fires is also changing. Miller and Safford (2012) found that
proportion of annual wildfire burned at high severity increased considerably in parts of the Sierra Nevada between
1984 and 2010. This has important implications for postfire debris-flow hazards, as the effects of fire on infiltration
640 and erosion, which affects debris-flow initiation and growth, are most pronounced in areas burned at high severity
(e.g., Vieira et al., 2015; McGuire and Youberg, 2019). As fire activity in these regions increases, so does the potential
for postfire debris-flow hazards (e.g., DeGraff et al., 2011; Neptune et al., 2021; Wall et al., 2020; Selander et al.,
2025), underscoring the use of a volume model, like the WEST model, that can provide accurate estimates of debris-

flow volume in these areas.

645  Additional volume data from the Sierra Nevada and Pacific Northwest can be used to continue improving volume
predictions in these regions, but this study represents a first step, as it is the first study to include data from the Sierra
Nevada and Pacific Northwest in the development and evaluation of volume models. Additionally, volume data from
the northern Rockies (Idaho, Montana, and Wyoming) are needed to help to evaluate the WEST model in this region.
Although the northern Rockies are susceptible to postfire debris flows (e.g., Meyer and Wells, 1997; Gabet and
650  Bookter, 2008), we are unaware of any postfire debris-flow volumes with associated rainfall data from this region that

can be used to improve model performance.
5.3 Model limitations and future work

Although the WEST model improves our ability to predict postfire debris-flow volume in many regions of the western
United States, there are some scenarios where the model’s effectiveness may be limited. For example, because the
655 WEST model predicts postfire debris-flow volume as a function of both watershed area and watershed area burned at
moderate or high severity with slopes greater than or equal to 50%, it tends to substantially overpredict volumes from
large watersheds (>20 km?) (Figure 6). We observed this model behavior when applied to the largest watershed in the
dataset used in this study: Cucamonga Dam (Gorr et al., 2025). The Cucamonga Dam watershed, which burned in the
2003 Grand Prix Fire in southern California (Figure 1), had an area of 28.0 km? and an area burned at moderate or
660  high severity with slopes greater than or equal to 50% of 14.8 km?, both the largest in the volume dataset (Tables 3
and 4). It also produced the largest postfire debris flow in the dataset, with a volume of 801,770 m* (Gorr et al., 2025).
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When applied to this watershed, the WEST model predicted a volume of 1,993,100 m?, an overprediction of more
than 1,000,000 m? (Figure 7). However, we only expect this behavior in the watersheds larger than 20 km?, like the
Cucamonga Dam watershed, as the model slightly underpredicted the volumes for the next two largest watersheds in
665  the dataset (Figure 7), which had areas of 17.3 km? and 14.4 km?. This limitation is unlikely to affect postfire hazard
assessments in the western US, as the USGS operational postfire hazard assessment framework is typically applied to

watersheds with areas less than 8.0 km? (Landslide Hazards Program, 2018).
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Figure 7: Comparison between observed debris-flow volumes and debris-flow volumes predicted by the
670 Western United States (WEST) model when applied to the entire western United States dataset. Points are
colored by the natural log of the area of the debris-flow-producing watershed. The thick, black line is a 1:1 line,

and the thin, dashed lines represent an order of magnitude envelope.
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Another potential limitation of the WEST model is that, aside from differences in rainfall characteristics, it does not
account for other regional factors that may influence postfire debris-flow volume, including sediment availability. In
675 southern California, dry ravel (i.e., the transport of sediment by gravity without rainfall) is a common process in
burned landscapes (e.g., Lamb et al., 2011). Following fire, but before rainfall, dry ravel can load channels with up to
three meters of unconsolidated sediment that serves as an important sediment source for postfire debris flows (e.g.,
Wells, 1987; DiBiase and Lamb, 2020; Palucis et al., 2021). Although prevalent in southern California, dry ravel is
less common in other regions of the western United States (Perkins et al., 2022). Previous studies have found that
680  rilling on hillslopes and/or channel incision, not dry ravel, are the primary sources of sediment for postfire debris flows
in many areas, including elsewhere in California (e.g., DeGraff et al., 2011), Colorado (Rengers et al., 2024), the
Pacific Northwest (Wall et al., 2020), and the Southwest (e.g., Tillery and Rengers, 2020; Gorr et al., 2024b), among
others. The absence of dry ravel in these regions may limit sediment availability and result in smaller postfire debris-
flow volumes relative to southern California. Regional differences in sediment availability may account for differences
685 in model behavior that we observed in this study. In areas with dry ravel (i.e., southern California), the WEST model
is biased low (Figure S3), and in areas where dry ravel is less prevalent (i.e., the Intermountain West and Southwest),
the WEST model is biased high (Figures S4 and S5). This indicates that future postfire debris-flow volume models

may benefit from the inclusion of a sediment availability variable.
6 Conclusions

690  Debris-flow volume is a critical component of postfire hazard assessments in the western United States. However,
existing methods for predicting postfire debris-flow volume have various shortcomings that limit their applicability
for the purpose of postfire hazard assessment. In this study, we introduced a new model for predicting postfire debris-
flow volume in the western United States. Using a database of 227 postfire debris-flow volumes collected across six
states and 34 burn areas, we developed a multiple linear regression model that predicts postfire debris-flow volume as

695 a function of rainfall, watershed terrain, and fire characteristics. This model offers an improvement over existing
volume models, as it accounts for regional differences in debris-flow-generating rainfall and was trained on a larger,
more geographically diverse volume dataset. Results from this study demonstrate that the new model outperforms
three existing regional volume models when applied to the entire western United States database, and either
outperforms or performs similarly to existing regional volume models when applied to subsets of volume data from

700  the regions for which they were developed. The new model also outperforms existing models when applied to volumes
from data-limited regions where there is not enough data to develop region-specific models. The broad applicability
of the model introduced in this study indicates that it can be used to improve widespread postfire hazard assessments

across the western United States.
Data availability
705 The data used to develop the WEST model are publicly available in Gorr et al. (2025).
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