

1 **Intraseasonal Variability and Eddy-Induced Structural Modulation of the North
2 Pacific Intermediate Water Revealed by Multi-Mooring Observations**

3

4

5 Qiang Ren^{1,2}, Yansong Liu^{1,2}, Shumin Tu³, Wei Huang³, Feng Nan^{1,2,4}, Ran Wang^{1,2},
6 Xinyuan Diao^{1,2,4}, Jianfeng Wang^{1,2}, Xinchuang Liu^{1,2}, Zifei Chen^{1,2*}, Fei Yu^{1,2,4*}

7

8 ¹ Key Laboratory of Ocean Observation and Forecasting, Institute of Oceanology,
9 Chinese Academy of Sciences, Qingdao, China

10 ² Key Laboratory of Ocean Circulation and Waves Institute of Oceanology, Chinese
11 Academy of Sciences, Qingdao, China

12 ³ Laboratory of Low Frequency Electromagnetic Communication Technology with the
13 WMCRI, CSSC, Wuhan, China

14 ⁴ College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao
15 266071, China

16

17

18 **Corresponding authors:** Fei Yu (yuf@qdio.ac.cn) and Zifei Chen (chenzifei@qdio.ac.cn)

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43 **Abstract:**

44 The North Pacific Intermediate Water (NPIW) plays a crucial role in modulating
45 oceanic thermohaline circulation and biogeochemical processes. However, limited
46 continuous observations have hindered the understanding of its short-term variability
47 and structural response to mesoscale processes. This study investigates the
48 intraseasonal structural variability of the NPIW and its modulation by mesoscale
49 eddies, based on long-term mooring observations from three sites (M1–M3) across the
50 western Pacific. The thickness of the NPIW displays substantial intraseasonal
51 variability, dominated by an approximately 80-day period that is coherent among all
52 mooring sites. Unlike previous studies that mainly focused on temperature and
53 salinity anomalies, this work introduces NPIW thickness as a new structural
54 diagnostic parameter to capture the vertical compression and expansion of the
55 intermediate layer induced by eddy activity. The analysis identifies a strong inverse
56 correlation between layer thickness and isopycnal-averaged salinity, demonstrating
57 that anticyclonic (cyclonic) eddies correspond to thinner (thicker) and more saline
58 (fresher) intermediate layers. Spatial composites further reveal that thickness
59 variability is most pronounced near the western boundary, which may be associated
60 with locally complex water mass exchange and mixing driven by eddies. These
61 findings provide the first quantitative evidence of intraseasonal variability in NPIW
62 thickness and highlight its role as a key indicator for diagnosing mesoscale–
63 intermediate layer interactions in the North Pacific.

64
65

66 **Index Terms and Keywords**

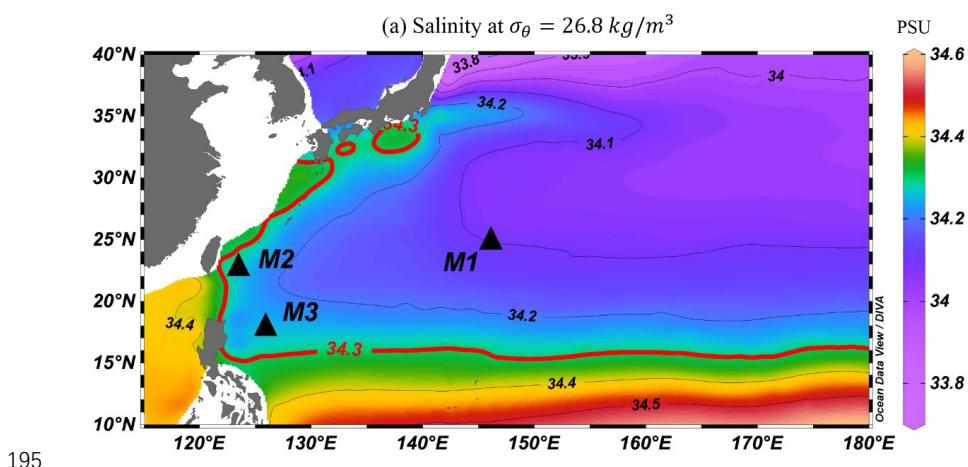
67 Mesoscale eddies drive intraseasonal variability of NPIW
68 Thickness and salinity reveals structural responses of NPIW
69 Eddy-induced mixing reshapes NPIW properties along the western boundary.

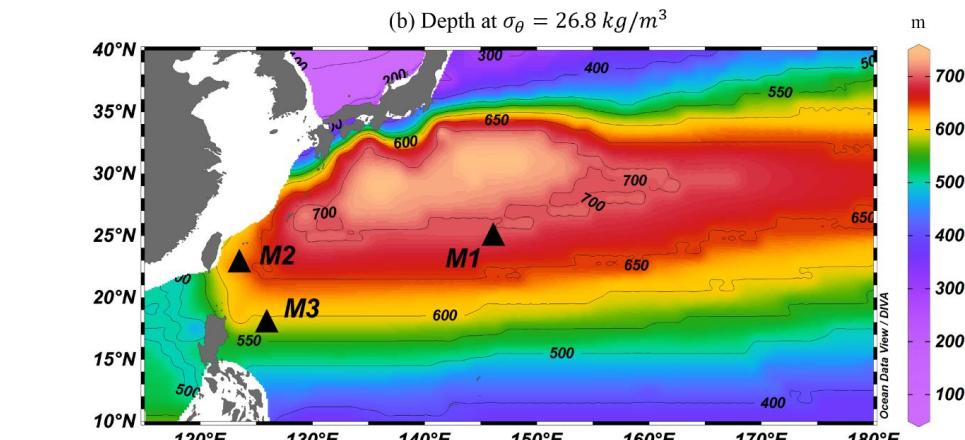
70
71
72
73
74
75

76 **1 Introduction**

77 The North Pacific Intermediate Water (NPIW) is a pivotal component of the North
78 Pacific's water mass and extensively studied due to its significant role in climate
79 dynamics and oceanic processes (Talley, 1993; Masuda et al., 2003; You et al., 2003;
80 Gong et al., 2019; Nishioka et al., 2020). This water mass originates in the northwestern
81 subtropical gyre, within the transition zone between the Kuroshio Extension and the Oyashio front,
82 is characterized by its low salinity and relatively cooler temperatures at depths of
83 approximately 400 to 1200 meters, also its density is centered around 26.8 σ_0

84 isopycnal, with a salinity minimum about 34.1 to 34.3. (Talley, 1993, 1995; Yasuda et
85 al., 1997; You et al., 2003; Masujima et al., 2009). NPIW is an important intermediate
86 water mass connecting the upper and deeper layers of the ocean, and has important
87 implications for physical, biological, chemical, and ecological processes such as
88 dissolved oxygen, nutrient distribution, and thermohaline transport (Talley et al., 1993;
89 Hansell et al., 2002; Auad et al., 2003; Tsunogai et al., 2002; Ohkushi et al., 2003; Zhou
90 et al., 2022). NPIW also plays an important role in global biogeochemical fluxes such
91 as carbon and nutrient cycling (Tsunogai et al., 2002; Ohkushi et al., 2003).
92 The distribution and transport pathways of NPIW have been a focal point of
93 oceanographic research, many studies have shown that the NPIW is widely distributed
94 in the North Pacific Ocean, and that it is transported by complex water masses and
95 circulation (Qiu, 1995; Ueno & Yasuda, 2004; Yasuda, 2004; Gordon and Fine, 1996;
96 Kashino et al., 1996; Kashino et al., 1999; Yuan et al., 2022). You (2003) found that
97 NPIW originates from the subpolar regions of the North Pacific and propagates through
98 the eastern subtropical gyre towards the Indonesian Through flow. As a result, NPIW
99 can be found in eastern Japan, eastern Taiwan, the West Philippine Basin, and the
100 intermediate region of the North Pacific Ocean (You. 2003; Fujii et al., 2013). Based
101 on previous studies, we determined the approximate distribution of the NPIW from the
102 WOA13 showed in Fig. 1, and this figure is similar to the results of You (2003), we
103 reproduce the depth distribution characteristics of NPIW in different regions. The
104 NPIW was found to have different depths in different regions, with shallower depths in
105 the western boundary region and deeper depths in the middle of the North Pacific Ocean.
106 Since NPIW is one of the most important water masses in the global ocean, most of
107 studies focus on its seasonal, interannual or interdecadal variations in different regions,
108 and these variability is largely influenced by multi-scale ocean-atmosphere interactions
109 (Masuda et al., 2003; Ohshima et al., 2010; Bingham& Lukas., 1995; Solomon et al.,
110 2003; Qiu et al., 2011; Van et al., 1993; Sugimoto et al., 2022; Li et al., 2023). However,
111 the majority of the studies mentioned above focus on time scales exceeding a few
112 hundred days, and also the NPIW are located in the deep layers below the subsurface,
113 where direct and long-term observations are difficult. More than that, there is often a
114 large bias in the salinity representation of the water masses in the intermediate layer of
115 the model data, there are very few studies of intraseasonal variations in the NPIW.
116 Mesoscale eddies are widely found in the oceans, with lifetime ranging from a few days
117 to several hundreds of days, and radii of up to several hundreds of kilometers in the mid
118 latitude (Wyrtki et al., 1976; Richardson, 1983; Robinson, 1985; Chelton et al., 2007;
119 Chelton et al., 2011; Zhang et al., 2014; Wunsch et al., 2007; Martínez-Moreno et al.,
120 2021). A large number of observational studies have shown that eddies can affect depths
121 of up to kilometers, that there are significant differences in the three-dimensional
122 structural features within anticyclonic and cyclonic eddies, and that mesoscale eddies
123 produce different temperature and salinity anomalies by causing uplift or subsidence of
124 the isopycnals. (Zhang et al., 2015; Thoppil et al., 2011; Zhang et al., 2016; Zhang et
125 al., 2015; George et al., 2021; Waite et al., 2016; Hausmann et al., 2017). Within the
126 range of NPIW generation, propagation and distribution, there is also a high incidence
127 of mesoscale eddies, it is therefore of great interest to investigate whether mesoscale


128 eddies have an impact on the NPIW in different regions and with different thermohaline
129 characteristics. In a localized area along the western boundary, Mensah et al. (2015)
130 examines the intraseasonal to seasonal variability of intermediate water east of Luzon
131 and Taiwan by hydrographic data from several cruises, it deduced a possible
132 relationship between the eddies and the intermediate water from SLA data. Also, Wang
133 et al. (2016) revealed that the semiannual variability of water masses at the northern
134 and southern hemispheric convergence near 8° N related to mesoscale eddies. Next,
135 Ren et al. (2022) found an intraseasonal variability of the IW of ~80 days from direct
136 observations of the subsurface moorings east of Taiwan, and that this variability is
137 associated with mesoscale eddies. These studies reveal the complex variability of NPIW
138 in the western boundary region, which may be extensively influenced by local water
139 masses such as the South China Sea Intermediate Water Mass and the Kuroshio
140 Intermediate water mass. Also these studies can illustrate some of the effects of eddies
141 on IW, but they are insufficient to demonstrate the widespread and persistent existence
142 of NPIW's intraseasonal variability characteristics, which is one of the most important
143 links between high-frequency variability and climate-scale cycles of change.
144 Previous studies have significantly advanced the understanding of the formation,
145 distribution, and variability of the North Pacific Intermediate Water (NPIW). However,
146 most of these studies have primarily focused on temperature and salinity anomalies,
147 offering limited insight into the structural response of NPIW to dynamic processes such
148 as mesoscale eddies. As noted by Nakanowatari et al. (2015), model-based analyses
149 often exhibit large uncertainties due to the scarcity of long-term in situ data,
150 constraining their ability to accurately represent the vertical structure and temporal
151 evolution of NPIW. These limitations highlight the necessity of direct, continuous
152 mooring observations to resolve intraseasonal processes that can strongly influence the
153 intermediate-layer structure and mixing. To address these gaps, the present study
154 introduces intermediate water thickness as a structural diagnostic parameter to
155 characterize the physical adjustment of NPIW under mesoscale eddy forcing. Thickness,
156 defined as the vertical extent of the low-salinity core, serves as an integrated indicator
157 of baroclinic adjustment, isopycnal displacement, and mixing intensity. Moreover,
158 variations in NPIW thickness can directly influence the vertical distribution of nutrients
159 and dissolved oxygen, linking physical dynamics with mid-depth biogeochemical and
160 ecological processes. Changes in the structural extent of NPIW may also modulate
161 carbon storage and ventilation pathways, highlighting the broader climatic and
162 ecological implications of mesoscale-driven structural variability in the intermediate
163 ocean.
164 By combining long-term mooring observations from three distinct sites (M1–M3)
165 across the western Pacific, this study provides the first quantitative evidence of
166 intraseasonal variability in NPIW thickness and its strong inverse relationship with
167 salinity. This structural perspective complements traditional thermohaline analyses and
168 enables a more comprehensive understanding of how mesoscale eddies reshape the
169 hydrographic properties and vertical structure of the NPIW.
170
171



172 2 Data and Methods

173 2.1 Mooring data

174 To investigate NPIW variability, three mooring systems were deployed in the
175 northwestern Pacific (Fig. 1). The locations, observation periods, and equipment setups
176 of these three moorings, M1, M2, and M3, are described as follows. The mooring M1
177 is located at 146°E and 25°N, with an observation period from April 2017 to June 2018;
178 M2 is located to the east of Taiwan on the western boundary, at 122.67°E and 22.3°N,
179 with an observation period from August 2019 to December 2020; while M3 is located
180 at 126°E and 18°N, with an observation period from January 2016 to June 2017. Each
181 mooring was instrumented with conductivity–temperature–depth sensors (Sea-Bird
182 Electronics SBE 37) installed at 100 m vertical spacing between depths of 400 and 1000
183 m, with all instruments programmed to record data at 10-minute intervals. The
184 deployment depths were carefully designed to span the upper and lower boundaries of
185 the NPIW, ensuring adequate vertical representation of its structure. While slight
186 vertical motion of the mooring line may occur under strong currents, the CTDs moved
187 synchronously with the line, and all observations were converted into fixed pressure-
188 based depths using pressure sensor data. This adjustment effectively minimizes any
189 potential depth uncertainty due to mooring motion. Local linear interpolation between
190 adjacent CTD sensors bracketing the 34.3 psu value was applied to estimate the depths
191 of the isohalines for thickness calculation. Interpolation applied for visualization
192 purposes is separate and does not affect the quantitative analyses. All figures presented
193 in this paper display the interpolated fixed-depth data, and also processed for daily
194 averages after deleted the abnormal value.

196
197 Figure 1. Distribution of salinity (a) and depth (b) along the $26.8\sigma_\theta$ isopycnals at
198 Northwestern Pacific. The color shading and black line in (a) and (b) represent the
199 salinity and depth, respectively. The red contours of 34.3 psu is represent the NPIW
200 range from Talley et al. (1993) and You et al. (2003). The black triangle is the mooring
201 location: Mooring 1 (M1), Mooring 2 (M2) and Mooring 3 (M3). Salinity and depth in
202 the Fig. 1 are taken from climatological averaged data from World Ocean Atlas 23, and
203 plot with *Ocean Data View*.
204

205 2.2 World Ocean Atlas 2023

206 The spatial distribution of NPIW in the northwestern Pacific was examined using the
207 World Ocean Atlas 2023 (WOA23). Produced by NOAA's National Oceanographic
208 Data Center–Ocean Climate Laboratory (The data available online at:
209 <https://www.ncei.noaa.gov/products/world-ocean-atlas>), this dataset consists of
210 objectively analyzed climatological fields derived from in situ observations, including
211 temperature, salinity, dissolved oxygen, and inorganic nutrients at 102 standard depth
212 levels in the global ocean (Reagan et al., 2024).
213

214 2.3 The Copernicus Marine Environment Monitoring Service (CMEMS) data.

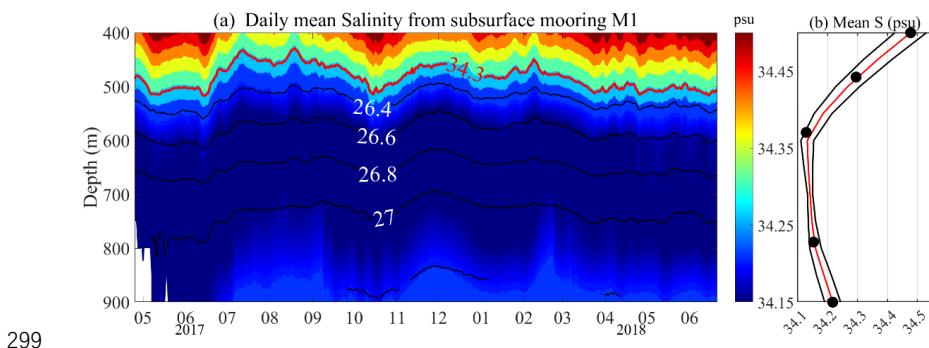
215 In this study, two Copernicus Marine Environment Monitoring Service (CMEMS)
216 products were utilized.

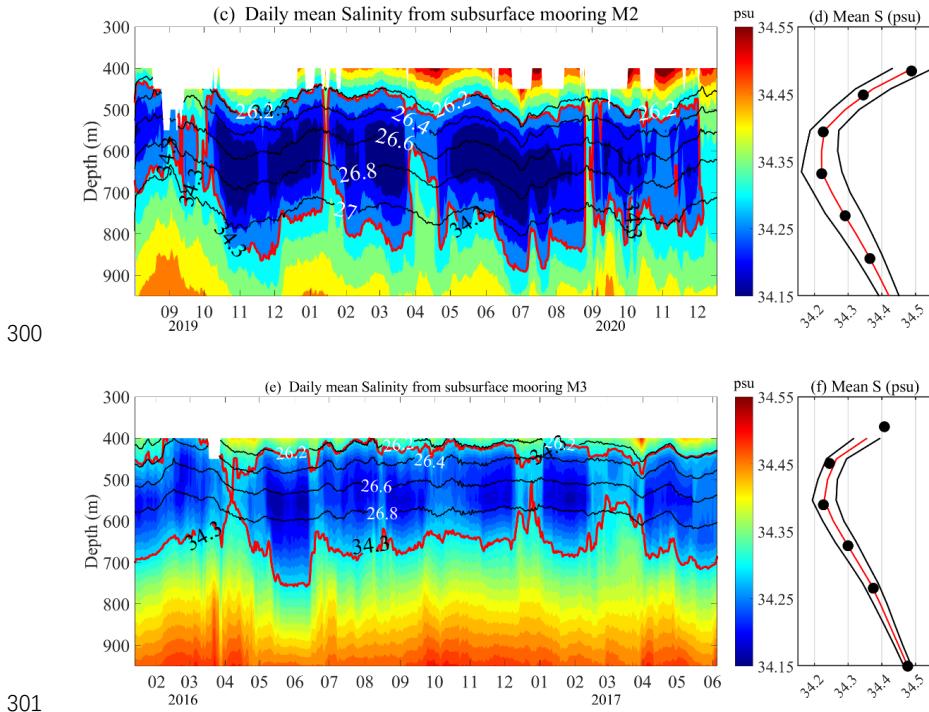
217 (1) Sea Level Anomaly (SLA) and Geostrophic Currents data

218 We used the Global Ocean Gridded L4 Sea Surface Heights and Derived Variables
219 Reprocessed Dataset (SEALEVEL_GLO_PHY_CLIMATE_L4_MY_008_057,
220 <https://doi.org/10.48670/moi-00145>), provided by CMEMS
221 (<https://marine.copernicus.eu/>). This altimetry product merges multi-mission satellite
222 observations and provides global gridded fields of sea level anomaly (SLA), absolute
223 dynamic topography, and geostrophic currents. The data have a spatial resolution of $1/4^\circ$
224 and daily temporal resolution, covering the observation periods of all three subsurface
225 moorings.

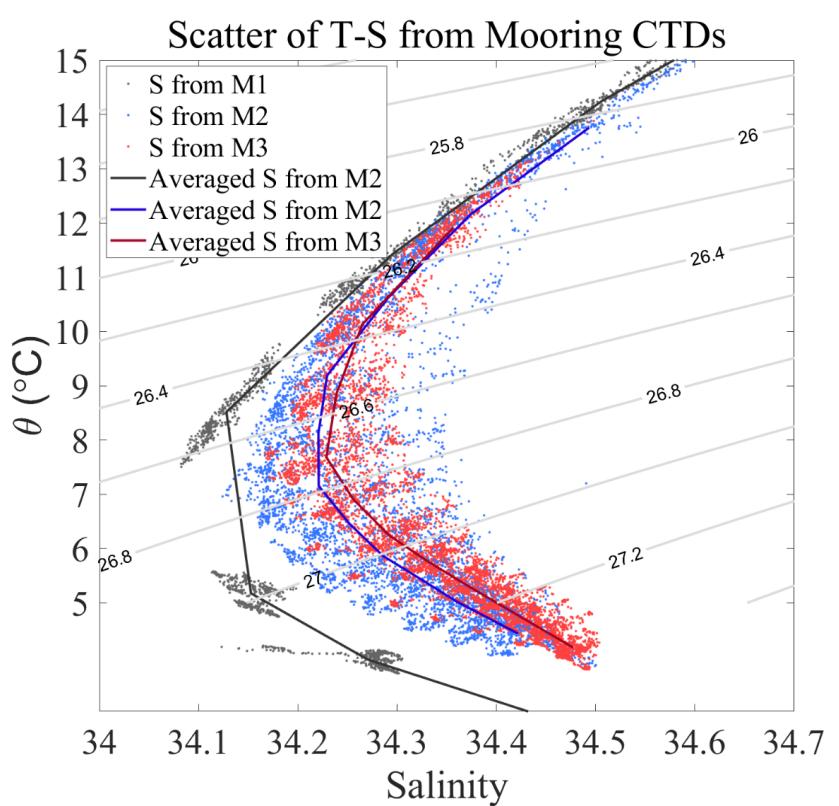
226 (2) Temperature and Salinity Reanalysis Data
227 To analyze subsurface temperature and salinity variability around the mooring sites, we
228 employed the Global Ocean Physics Reanalysis Product
229 (MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_015_012, [https://doi.org/10.48670/m
oi-00052](https://doi.org/10.48670/moi-00052)), a Level-4 global reanalysis distributed by CMEMS. This product provides
231 three-dimensional fields of temperature, salinity, potential density, and geostrophic
232 currents on a regular 1/8° grid, spanning from the surface to 5500 m with 50 vertical
233 levels. The product is generated by combining in situ and satellite observations on a
234 global scale. The available record covers the period from January 1993 to the present,
235 with temporal resolutions of weekly and monthly (Guinehut et al., 2012; Mulet et al.,
236 2012).
237

238 **3 Result**


239 **3.1 Hydrographic and temporal characteristics of NPIW**


240 To gain an initial understanding of the NPIW characteristics at the locations of our three
241 deployed moorings, we employed the WOA database to create decadal average maps
242 of salinity and depth distribution on the 26.8 σ_θ isopycnal, as illustrated in Fig. 1. The
243 NPIW shows significant local variability, with the NPIW showing lower salinity values
244 and its core depth of approximately 34.1 psu and 700 m near M1 mooring site,
245 respectively. NPIW in the western and southern parts of the distribution, the minimum
246 salinity of the NPIW increases and its depth is relatively shallow. Near the M2 mooring
247 location, the low salinity value and depth adjust to about 34.25 psu and 600 meters,
248 respectively. Based on the NPIW range determined by the 34.3 psu contour of the
249 salinity definition, M3 near 18°N, which can be seen in Fig. 1 to be located close to the
250 south edge of the NPIW distribution, has a salinity minimum value close to that at M2,
251 but the depth of the low salinity core becomes further shallower to ~550 meters. Thus,
252 the moorings utilized in this study have effectively observed NPIW, capturing its
253 significant spatial and temporal variability across different regions.

254 Observations from the M1 mooring over more than a year, as shown in Fig. 2a, reveal
255 that the low salinity core of the NPIW has an average depth of approximately 700
256 meters, fluctuating within the range of 26.4 to 27 σ_θ isopycnal, with the minimum
257 salinity value being around 34.15 psu. The observed salinity minima at M1 were also
258 found to be slightly higher compared to the climatological averaged data showed in Fig.
259 1a. Additionally, significant temporal variations in salinity were observed at depths of
260 400-900 meters by the M1 mooring. The M2 mooring located east of Taiwan near the
261 western boundary, observed salinity below 400 meters as depicted in Fig. 2c. The low
262 salinity core varied between the 26.6-26.8 σ_θ isopycnals showing more significant
263 changes than those observed at M1, with average minimum salinity values and depths
264 of approximately 34.2 psu and 600 meters, respectively, which are higher than the
265 minimum salinity values observed at the M1 location. And it is interesting to note that
266 the low salinity core of M2 is apart, such as the salinity measured in April-May 2020 in
267 Fig. 2c, which is close to 33.6 psu, splitting the low salinity core with a salinity value

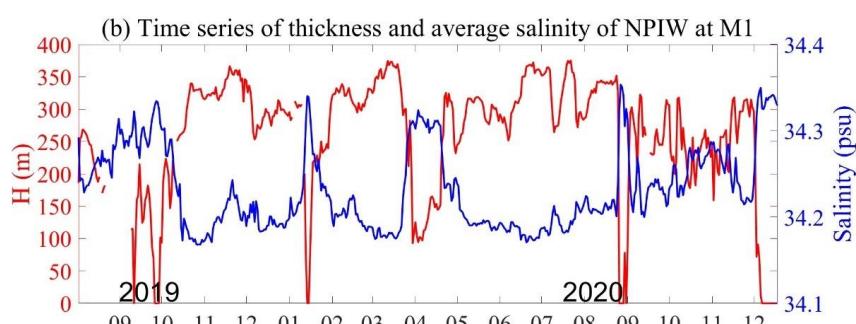
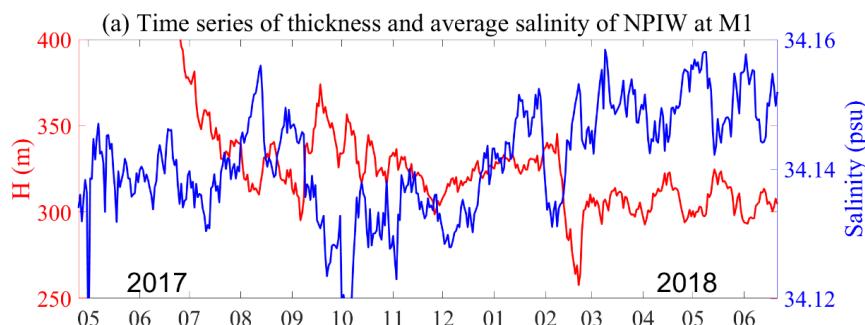


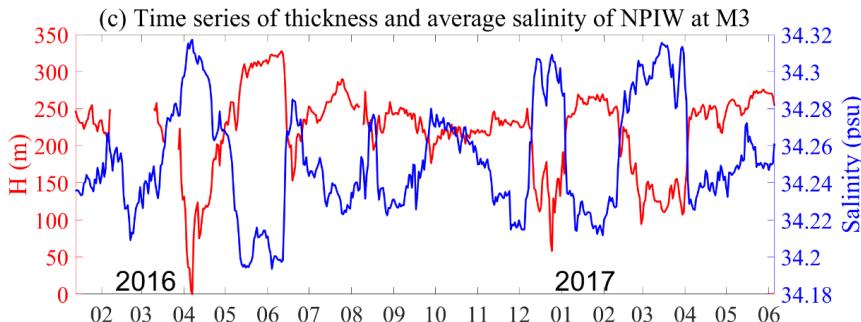
268 of around 34.2 psu. At the more southerly M3 mooring, as illustrated in Fig. 2e, the low
269 salinity core also apart with seven significant low salinity events observed over a year.
270 The average minimum salinity value between the 26.6-26.8 σ_θ isopycnals was 34.3
271 psu, with corresponding temperatures and depths of approximately 8°C and 550 meters,
272 respectively. A distinctive feature of M3 was that the depth of the NPIW's low salinity
273 core was shallower than that at M1 and M2, and the minimum salinity was significantly
274 higher than M1 and M2. The results of NPIW observed by the three differently
275 positioned subsurface mooring are basically consistent with the spatial distribution
276 characteristics of NPIW in the North Pacific Ocean in the WOA data.
277 Upon comparing Fig. 2a, 2c, and 2e, it appears that the intermediate water masses at
278 the M2 location exhibit greater variability, while those at the M1 location show
279 relatively weaker variations. From the corresponding salinity standard deviation plots
280 (Fig. 2b, 2d, and 2f), it is observed that the M1 mooring displays the smallest standard
281 deviation at the NPIW core depth of approximately 700 meters, indicating higher
282 stability in intermediate layer salinity. Conversely, the salinity at the levels of NPIW for
283 M2 and M3 shows greater variability. The largest standard deviation in salinity at the
284 mooring M2 is 0.7 psu at around 600 meters, shown in Fig. 2d, while a significant
285 standard deviation in salinity around 0.3 psu is observed between 500-600 meters from
286 mooring M3. This variability in salinity in intermediate layer is also depicted in the T-
287 S (Temperature-Salinity) plot in Fig. 3, where the range of salinity changes at the
288 mooring M2 is the largest among the three observed locations, ranging from 34.13 psu
289 to 34.35 psu, with M1 showing the smallest variation. Differences in standard
290 deviations also illustrate the variability of NPIW changes across regional locations,
291 with the least variability at 25°N, possibly related to its deeper depth. The relatively
292 strong intermediate-layer salinity variability near M2 is likely associated with complex
293 local circulation, where intermittent influences of South China Sea Intermediate Water
294 (SCSIW), a salinity-minimum water mass (~34.4 psu at ~500 m) are modulated by the
295 Kuroshio and mesoscale eddies (Menash et al., 2015; Ren et al., 2022). Overall, the
296 measurements from the subsurface moorings show a change in the minimum salinity in
297 the mid-ocean region, which also corresponds to a salinity within the range defined by
298 the NPIW, and this change also reflects the fluctuations in low salinity core of the NPIW.

301
302
303 Figure 2. The observation of salinity from subsurface moorings. (a), (c) and (e)
304 represent time series plots of salinity measured at different observation times for the
305 three moorings, respectively. M1 is observed from April 2017-June 2018, M2 is
306 observed from August 2019-December 2020 and M3 is observed from January 2016-
307 June 2017. Color shading and the black lines represent the salinity and 26.2 to 27.0
308 σ_θ isopycnal, and also red line represent the 34.3 psu in (a), (c) and (e), respectively.
309 In (b), (d) and (f), the red line and black line represent the mean salinity and standard
310 deviation of salinity over the observation period, respectively. The black circle in (b),
311 (d) and (f) are represents the average depth of deployed CTDs in subsurface
312 moorings.

313
314 Figure 3. (a) The Temperature-Salinity plot from mooring CTDs. The blue, green and
315 orange points are represent the M1, M2 and M3 measurements temperature and salinity,
316 the black, green and red curves are represent the averaged M1, M2 and M3
317 measurements T-S, respectively. The blue dashed box is represent the range of NPIW
318 defined from Talley et al. (1993) and You et al. (2003).
319

320 3.2 Intraseasonal Variations of NPIW Thickness and Salinity

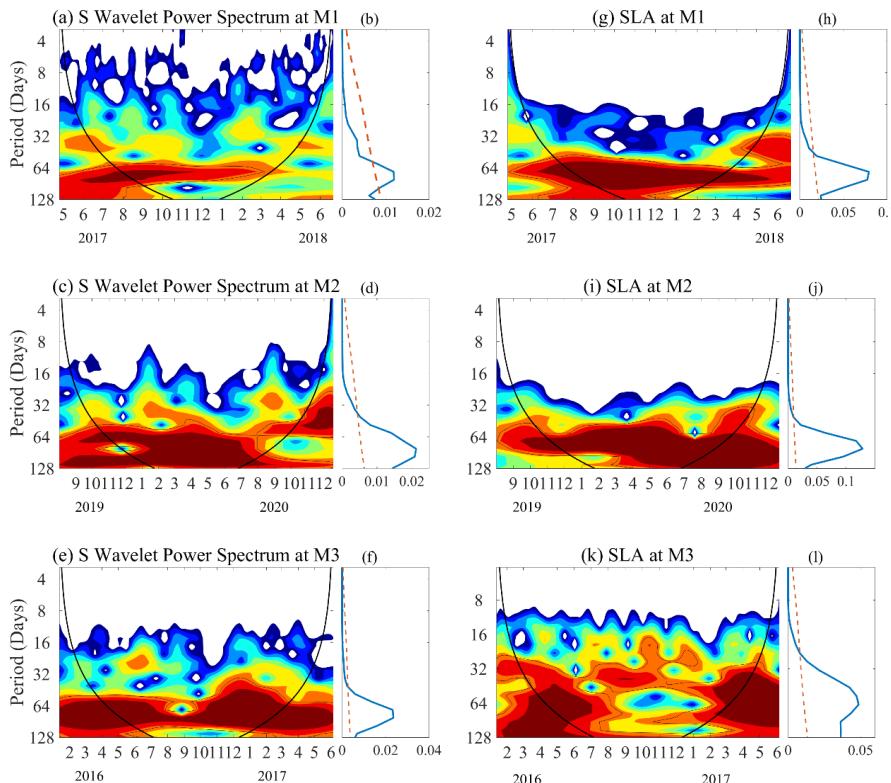


321 Given that salinity alone cannot fully capture the structural variability of the North
322 Pacific Intermediate Water (NPIW), this section examines the variations in both layer
323 thickness and isopycnal-averaged salinity to better characterize its dynamic evolution.
324 The mean salinity between the 26.4 and 26.9 $\sigma\theta$ isopycnals was used to represent the
325 NPIW core, a range widely recognized in previous studies as encompassing both the
326 central low-salinity layer and its surrounding transition zones. The NPIW thickness was
327 defined as the vertical distance between the depths where salinity equals 34.3 psu, a
328 threshold corresponding to the upper limit of the NPIW core in the western North
329 Pacific. Using the 34.3 psu isohaline as a tracer-based boundary provides a consistent,
330 physically meaningful measure of the intermediate layer's volumetric extent, enabling
331 comparative analysis of thickness variations across time and mooring sites. At mooring
332 site M1, a threshold of 34.2 psu was used due to the presence of a fresher intermediate
333 layer, consistent with regional hydrographic features.


334 Figure 4 presents the time series of NPIW thickness (red line) and average salinity
335 between isopycnal surfaces (blue line) at three mooring sites (M1, M2, and M3). At M1
336 (Fig. 4a), during 2017–2018, the NPIW thickness generally fluctuated between 250 and
337 400 m, with an average around 300 m. The corresponding average salinity remained
338 consistently below 34.2 psu, closely matching the classical NPIW characteristics. A
339 pronounced minimum in salinity was observed in October–November 2017, coinciding
340 with a local maximum in thickness exceeding 350 m. At M2 (Fig. 4b, 2019–2020), the
341 NPIW thickness exhibited more dramatic fluctuations, varying abruptly between 0 and
342 350 m. Notably, in October 2019, and February and September 2020, the thickness
343 dropped from around 300 m to nearly zero, accompanied by a sharp increase in salinity
344 exceeding 34.35 psu. This suggests a rapid erosion or replacement of intermediate water
345 properties, likely driven by more active eddy activity or local mixing processes. At M3
346 (Fig. 4c) showed generally thinner NPIW, mostly between 100 and 250 m, with an
347 average thickness of around 200 m. Similar to M2, the thickness at M3 was also marked
348 by strong short-term fluctuations. Although the absolute thickness and salinity values
349 varied across the three sites, all stations demonstrated consistent a clear and persistent
350 inverse relationship between thickness and salinity. Periods of increased NPIW
351 thickness were generally associated with decreased salinity. This structural variability
352 implies that intermediate water changes may be modulated by local mesoscale eddies
353 or mixing between water masses.

354

355

356

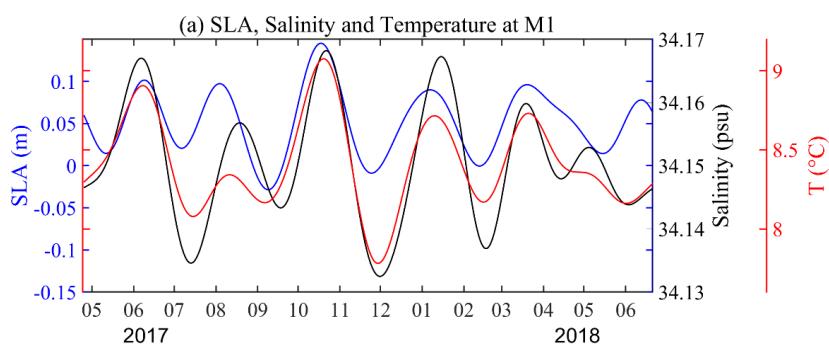

357
358 Figure 4. Time series of thickness and averaged salinity of NPIW at M1 (a), M2 (b) and
359 M3 (c). The NPIW thickness was defined as the vertical distance between the depths
360 where salinity equals 34.3 psu. The average salinity between the 26.4 and 26.9 σ_0
361 isopycnal was used to represent the salinity characteristics of the NPIW.
362
363

364 To further investigate the temporal characteristics underlying the observed thickness
365 and salinity fluctuations, particularly their dominant time scales, a wavelet analysis was
366 performed on both salinity and thickness at each mooring site. As described in the
367 previous section, the relationship between NPIW thickness and isopycnal-averaged
368 salinity effectively captured the internal structural response of the intermediate layer.
369 However, when examining temporal variability and dominant periodicities, a fixed-
370 depth averaged salinity was used instead of isopycnal averaging. This approach allows
371 the salinity signal to incorporate the vertical displacement of isopycnals induced by
372 mesoscale eddies, thereby enabling a more direct comparison with the SLA time series
373 and identification of intraseasonal oscillations.

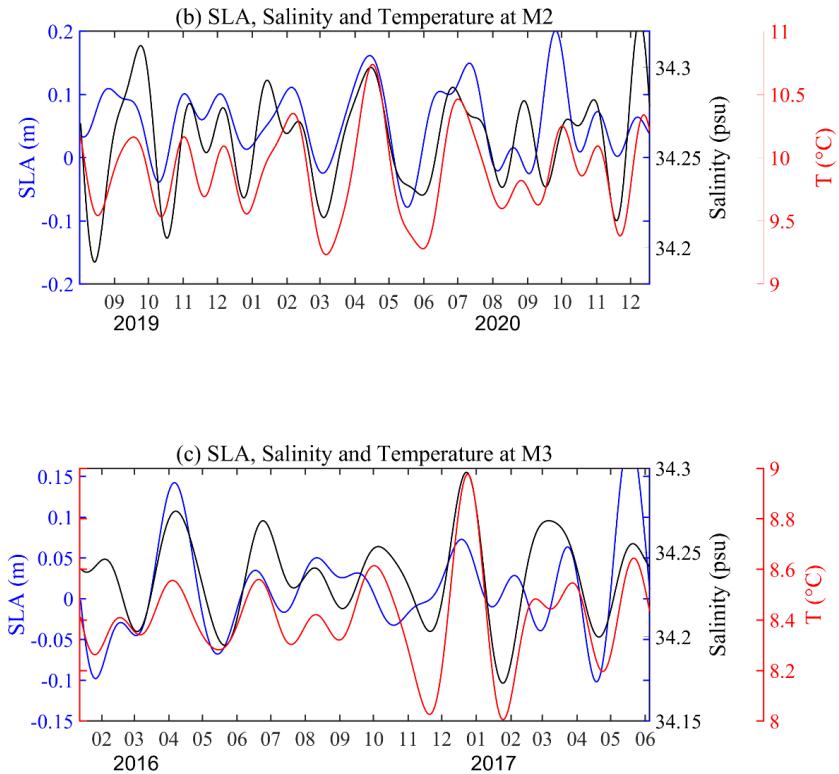
374 Although the wavelet spectra were also calculated for NPIW thickness, the results
375 exhibited nearly identical dominant periods and spectral power to those of salinity,
376 confirming the tight coupling between thickness and salinity variations. Therefore, only
377 the wavelet spectra of salinity are shown for brevity. The results at site M1 (Fig. 5a-b)
378 indicate a pronounced intraseasonal variability with a dominant period of
379 approximately 70–80 days, consistent with the eddy-related SLA fluctuations observed
380 in the same region. While this intraseasonal variation cycle exhibits temporal variability,
381 it was more significant from May 2017 to April 2018, while the signal strength of the
382 cycle significantly decreased after April 2018. Fig. 5c-d represent the results of the
383 wavelet analysis of averaged salinity at 500 m to 800 m at M2, with a similar ~80 days
384 period as on the M1, the intraseasonal signals at M2 also exhibit variability during
385 different observation periods. During the observation period from September 2019 to
386 August 2020, the variability period appears to be longer about 80 days showing in Fig.
387 5c. The observation results from mooring M3 shown in Fig. 5e-f, indicate relatively
388 stable intraseasonal variation periods of 70-80 days throughout the observation period.
389 These results collectively demonstrate that the structure and properties of the NPIW
390 exhibit robust intraseasonal variability across different locations, reflecting a common

391 intraseasonal signal that may be linked to regional mesoscale dynamics or other oceanic
392 processes.

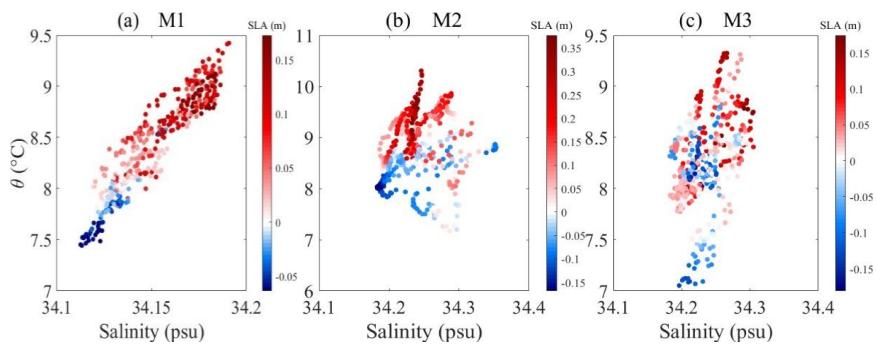
393
394
395
396 Figure 5. The wavelet power spectrum for salinity from 500 to 800 m at M1, from 500
397 to 800 m at M2 and from 500-700 m at M3 in (a), (c) and (e), respectively. (b), (d) and
398 (f) are the corresponding global spectrum of salinity in (a), (c) and (e), with the red
399 dashed line indicating the critical value at the 95% confidence level. (g), (i) and (k) are
400 the wavelet power spectrum for Sea Level Anomaly at the mooring site M1, M2 and
401 M3, also the (h), (j) and (l) are the corresponding global spectrum of SLA.
402

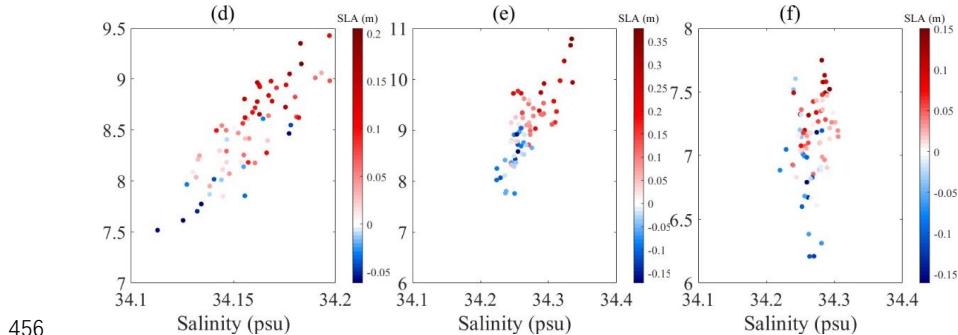

403 3.3 Influence of SLA on the Salinity Structure of NPIW

404 In the previous section, a strong inverse relationship between NPIW layer thickness and
405 isopycnal-averaged salinity was identified. This suggests that salinity can serve as an
406 effective proxy for structural changes in the intermediate water layer. Therefore, in this
407 section, we focus on the relationship between salinity and SLA, in order to indirectly
408 assess the influence of mesoscale eddies on the structural variability of the NPIW. In
409 the western North Pacific, mesoscale eddies are recognized as a major source of
410 intraseasonal signals (Zhou et al., 2021). To establish a possible link, we first examined
411 whether SLA, as a surface manifestation of mesoscale eddies, exhibits a dominant
412 intraseasonal period. As shown in Fig. 5g–l, wavelet analysis reveals a dominant 60–
413 80-day periodicity in SLA across all three mooring sites (M1–M3), which aligns closely


414 with the intraseasonal salinity variations previously identified. This temporal coherence
415 suggests a potential coupling between SLA and NPIW variability.
416 To further clarify their relationship, we applied a 20–120-day band-pass filter to the
417 salinity and temperature data in the intermediate layer and calculated correlation
418 coefficients with SLA (Fig. 6). At the M1 mooring location, SLA shows moderate
419 positive correlations of 0.55 with temperature and 0.45 with salinity, correlation
420 coefficients line within the 95% confidence bounds indicating that the estimated
421 correlations are statistically robust. The corresponding T–S diagram (Fig. 7a) supports
422 this pattern, indicating that relatively low temperature and salinity (or high temperature
423 and salinity) correspond to negative (or positive) SLA events. Given the strong salinity–
424 thickness relationship established earlier, these findings also imply that mesoscale
425 eddies may indirectly influence NPIW layer thickness through modulating
426 thermohaline properties. At M2, correlation coefficients between SLA and
427 temperature/salinity are slightly weaker (0.4 and 0.3, respectively; Fig. 6b), but the
428 positive pattern remains consistent, as confirmed by the T–S plot (Fig. 7b). At the M3
429 site, both temperature and salinity show a moderate positive correlation with the
430 corresponding SLA, where the correlations were found to be 0.47 and 0.45, respectively,
431 indicating that variations in the thermal–haline structure at this location are likewise
432 modulated by sea level anomalies. For example, periods of strongly negative SLA (e.g.,
433 April–May 2017) coincide with relatively fresh and cold intermediate waters (salinity
434 down to 34.2 psu), while periods of positive SLA (e.g., April 2016 and May–June 2017)
435 are associated with warmer and saltier conditions (salinity up to 34.3 psu).
436 Although the correlations between temperature, salinity, and SLA at these stations are
437 only moderate, the figures clearly show that when SLA reaches relatively large values,
438 the variations in temperature and salinity tend to become more coherent. These findings
439 collectively indicate that SLA most likely reflecting the presence and evolution of
440 mesoscale eddies, also is linked to intraseasonal variations in intermediate water
441 properties across all mooring sites. Coupled with the observed salinity–thickness
442 relationship, this suggests that the influence of SLA likely extends beyond simple
443 thermohaline anomalies and plays an important role in shaping the structural variability
444 of the NPIW as well.
445

446


447
448
449



450
451
452
453
454

Figure 6. (a) The bandpass-filtered time series (20–120 days) of sea level anomalies (SLAs; blue curve), vertically averaged temperature (red curve), and salinity between 500–800 m (green curve) at station M1. (b) and (c) same as (a), but for M2 and M3.

455

456

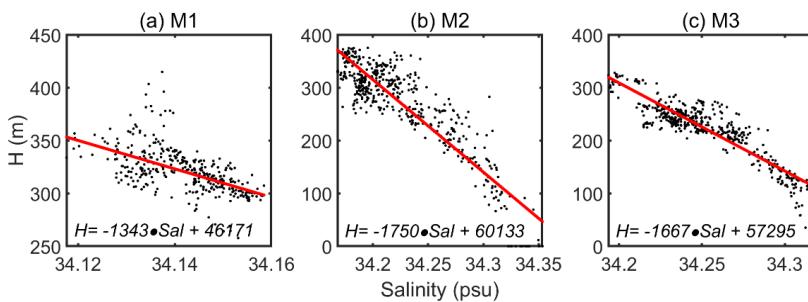
457

458 Figure 7. (a) The salinity and temperature data at M1 are displayed in a T-S scatter
459 diagram with colors denoting the associated sea level anomalies (SLAs). (b) and (c) are
460 same as (a), but for M2 and M3. (d), (e) and (f) are T-S plots of 500-800 m averaged
461 temperature and salinity data from CMEMS product in the intermediate layer
462 corresponding to the locations of M1, M2, and M3, respectively.

463

464

465 4 Discussion


466 4.1 Structural Relationship Between Thickness and Salinity of NPIW

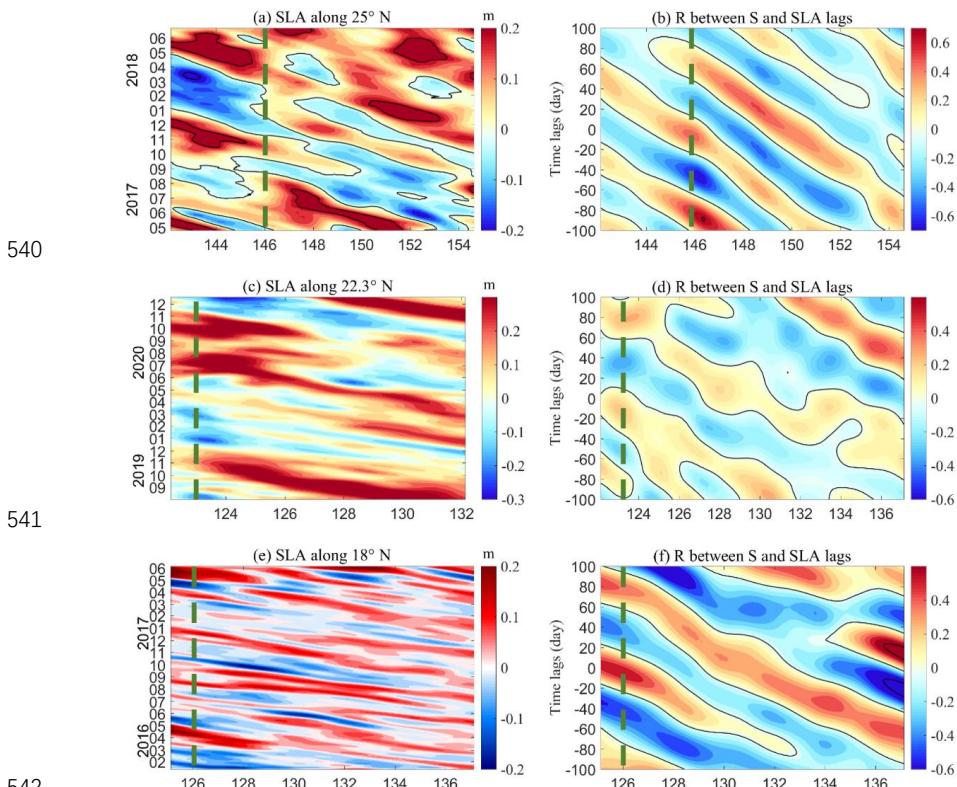
467 To further quantify the internal structure of the NPIW, linear regressions were
468 performed between the thickness of the intermediate layer and the isopycnal-averaged
469 salinity (between 26.4 and 26.9 σ_0) at the three mooring sites. The derived regression
470 equations are as shown in Fig. 8, where H represents the NPIW thickness (in meters) and
471 salinity is the isopycnal-averaged salinity (in psu). The corresponding correlation
472 coefficients between layer thickness and salinity are -0.63, -0.91, and -0.90 for M1,
473 M2, and M3, respectively, indicating a strong and statistically significant inverse
474 relationship at M2 and M3, and a weaker but still evident negative correlation at M1.
475 All confidence intervals fall within the 95% confidence level, confirming the statistical
476 robustness of these relationships. The relatively lower correlation at M1 may be
477 attributed to multiple factors. The NPIW core at M1 is located at greater depths
478 (typically deeper than 600 m), the salinity at M1 remained consistently below 34.2 psu
479 throughout most of the observation period, exhibiting limited temporal variability. This
480 reduced salinity fluctuation diminishes the sensitivity of the thickness–salinity
481 relationship, thereby weakening the linear correlation. In contrast, M2 and M3 are
482 located in regions characterized by more dynamic water mass interactions, including
483 the influence of Kuroshio, South China Sea Intermediate Water (SCSIW), and saline
484 subtropical waters from the western tropical Pacific. The resulting thermohaline
485 variability enhances the responsiveness of NPIW structure to salinity changes, thereby
486 strengthening the statistical coupling between thickness and salinity.

487 These regression relationships reinforce the potential of using isopycnal-averaged
488 salinity as a structural proxy for intermediate water thickness, especially in regions or

489 datasets where direct thickness estimates are unavailable. This proxy relationship
490 provides a valuable way for reconstructing historical thickness changes or interpreting
491 reanalysis products in structural terms. More importantly, since mesoscale eddies
492 actively modulate both salinity and vertical structure in the intermediate layer, the
493 strong salinity–thickness coupling offers an indirect yet effective framework for linking
494 eddy-induced thermohaline variability to volumetric changes in the NPIW.
495 Although the water mass structure at M2 and M3 is more complex, the enhanced
496 salinity variability in these regions yields a more stable and robust relationship with
497 NPIW thickness. This suggests that the intermediate water structure is highly sensitive
498 to salinity perturbations and may respond coherently to mesoscale dynamical processes.
499

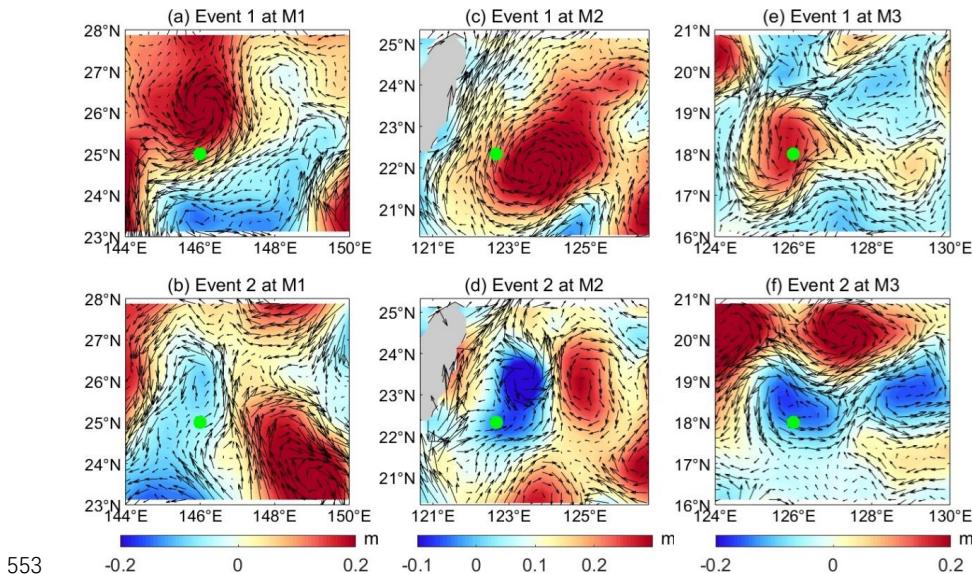
500
501 Figure 8. Scatterplots showing the relationship between NPIW layer thickness and
502 isopycnal-averaged salinity (26.4–26.9 $\sigma\theta$) at mooring sites M1, M2, and M3. Each
503 point represents a daily-averaged value. Linear regression fits are shown in red line.
504 The correlation coefficients are -0.63 , -0.91 , and -0.90 for M1, M2, and M3,
505 respectively.

506 4.2 Observed Intraseasonal Variability of NPIW Induced by Mesoscale Eddies


507 The observed presence of an~80-day intraseasonal signal in sea level anomalies (SLA),
508 consistent across moorings M1 to M3, suggests that mesoscale eddies can exert
509 substantial influence on the NPIW properties. Wavelet analysis reveals that SLA,
510 salinity, and thickness variations all share similar periodicities in the range of 60–80
511 days, which aligns with the westward-propagating signal of mesoscale eddies in this
512 region.

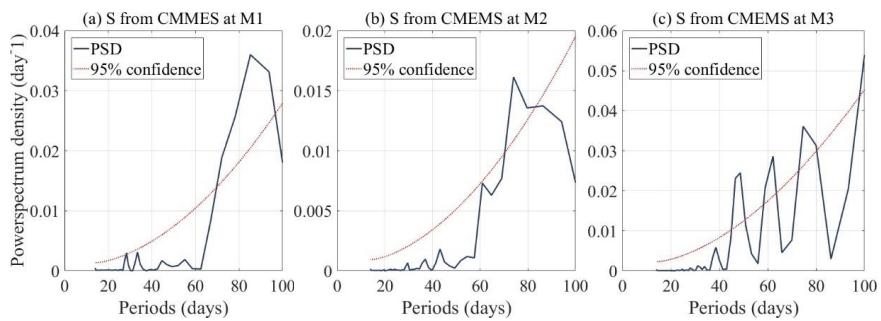
513 Time series analysis further demonstrates that the salinity within the isopycnal layer
514 (26.4–26.9 $\sigma\theta$) exhibits clear intraseasonal oscillations, which are strongly anti-
515 correlated with variations in the thickness of the NPIW layer. This inverse relationship,
516 with correlation coefficients exceeding -0.9 at M2 and M3, indicates that salinity is not
517 only a tracer but also a reliable structural proxy for thickness variability in the
518 intermediate layer. The westward propagation of SLA bands during eddy events was
519 evident in longitude-time plots across all mooring latitudes (Fig. 9a, c, e), and lagged
520 correlations between SLA and salinity (Fig. 9b, d, f) confirmed the 60–80 day
521 propagation signals, with maximum correlation coefficients of 0.61, 0.5, and 0.6 at M1,
522 M2, and M3, respectively. The observed eddy signatures were further supported by case
523 analyses, in which anticyclonic (cyclonic) eddies were associated with increased

524 (decreased) salinity and NPIW thickness.
525 To further illustrate these patterns, we selected characteristic events exhibiting
526 significant salinity and temperature changes. At mooring M1, for instance, two
527 representative events were identified: a high-salinity episode on October 15, 2017
528 (Event 1), and a low-salinity episode on November 29, 2017 (Event 2). Satellite
529 observations during these periods revealed the presence of an anticyclonic eddy during
530 Event 1 and a cyclonic eddy during Event 2 (Fig. 10a, 10b). At both M2 and M3, similar
531 associations between eddy polarity and salinity/thickness anomalies were observed (Fig.
532 10c–f), reinforcing the notion that eddy polarity (cyclonic vs. anticyclonic) plays a
533 significant role in driving both hydrographic and structural variability in the NPIW.
534 These results indicate that mesoscale eddies are a dominant source of intraseasonal
535 variability in the intermediate layer, influencing both the hydrographic properties
536 (salinity) and vertical structure (thickness) of the NPIW. The coupled response
537 highlights the necessity of considering both parameters when diagnosing water mass
538 evolution under eddy forcing.


539

544 Figure 9. (a) Temporal evolution of sea level anomalies (SLAs) across longitudes at

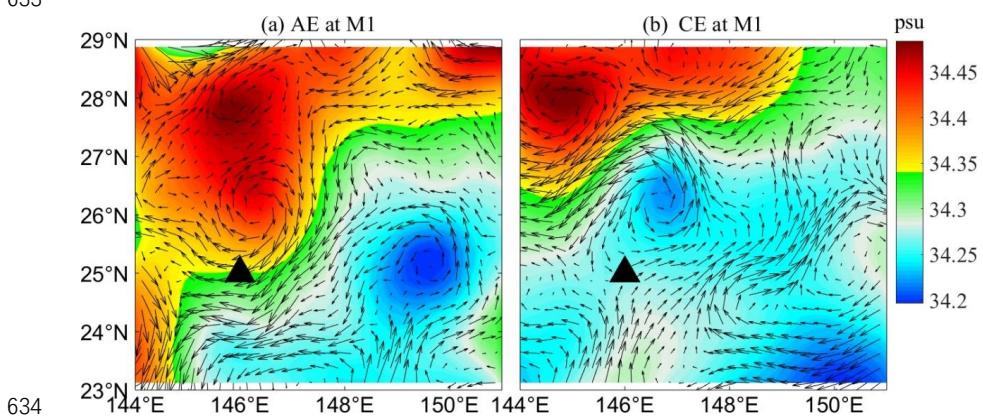
545 25°N, as illustrated by the contour plots.; (b) The correlation coefficient between
546 salinity at M1 and SLA at different time lags, the vertical coordinates -100 to 100 days
547 in (b) represent SLA lagging salinity for 100 days and SLA exceeding salinity for 100
548 days, respectively. (c) and (e) are same as (a), but its along 22.3°N and 18°N,
549 respectively. (d) and (f) are same as (b), but for salinity from M2 and M3, respectively.
550 Black contours in Fig. 9b, 9d, and 9f represent the zero isolines. The green dash line
551 represent the location of M1, M2 and M3, respectively.
552


553
554
555 Figure 10. (a) and (b) are selected SLAs and surface geostrophic current maps
556 corresponding to the moments of Event 1 and Event 2 observed from M1, respectively,
557 where time of Event 1 corresponds to October 15, 2017 in Fig. 6a, and Event 2
558 corresponds to November 29, 2017 in Fig. 6a. (c) and (d) are same as (a) and (b), but
559 for mooring site M2, where time of Event 1 and Event 2 at M2 corresponding to April
560 20, 2020 and March 5, 2020 showed in Fig. 6b. (e) and (f) are same as (a) and (b), but
561 for mooring site M3, where time of Event 1 and Event 2 at M3 corresponding to April
562 10, 2016 and April 15, 2017 showed in Fig. 6c. The green dots denotes the mooring site,
563 the colors shading represent the SLAs and the arrows indicate the surface geostrophic
564 current.
565

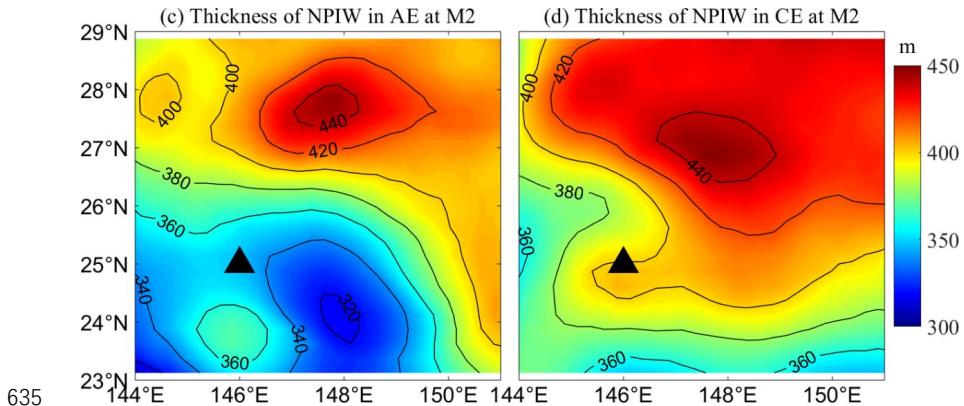
566 **4.3 Mechanisms of Structural Modulation of NPIW by Mesoscale Eddies**

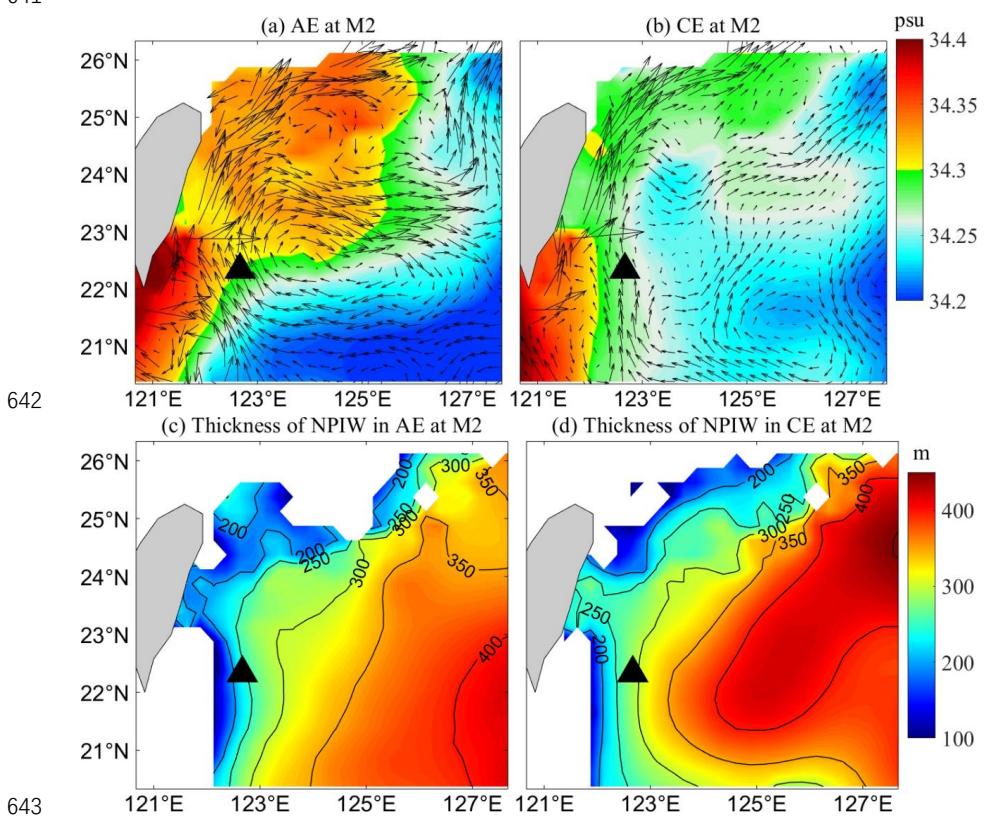
567 Although the variations in temperature and salinity at several moorings are correlated
568 with mesoscale eddies, it is challenging to understand from a broader perspective how
569 mesoscale eddies influence temperature and salinity changes in intermediate layer at
570 different regions. To further investigate the mechanisms by which mesoscale eddies
571 modulate the intraseasonal variability of NPIW, we employed CMEMS reanalysis data
572 as a complementary dataset to verify the robustness of our observational findings.

573 Power spectral analyses of 500–800 m averaged salinity at the mooring locations (Fig.
574 11a–c) revealed significant intraseasonal signals with dominant periods of 60–80 days,
575 consistent with those derived from mooring data. This confirms that the intraseasonal
576 variability of salinity in the intermediate layer is a robust signal and is well captured by
577 both in situ observations and reanalysis data. Furthermore, we compared scatter plots
578 of SLA against temperature and salinity derived from both mooring observations (Fig.
579 8a–c) and CMEMS reanalysis data (Fig. 8d–f). The CMEMS results exhibit similar
580 positive correlations between SLA and temperature/salinity, reinforcing the reliability
581 of the dataset for representing the hydrographic properties and eddy-induced variations
582 in NPIW. These consistencies justify the subsequent use of CMEMS data to support the
583 eddy mechanism analysis.
584

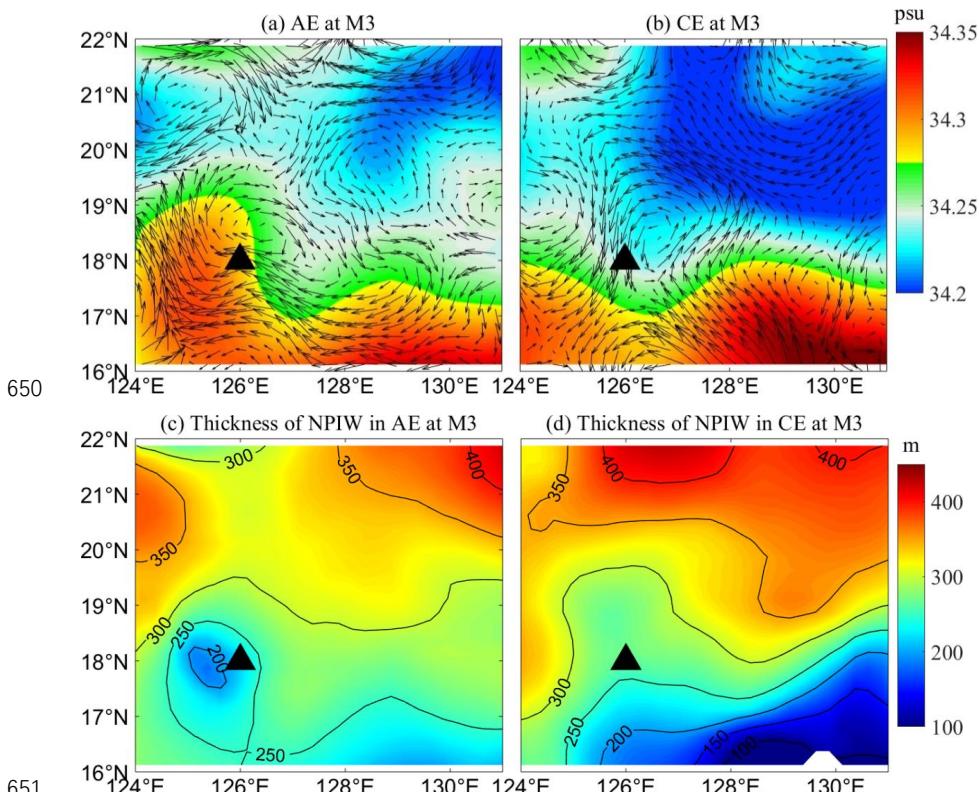


585
586 Figure 11. (a) The power spectrum density of 500–800 m averaged salinity at location
587 of M1 from CMEMS data. (b) and (c) are same as (a), but for location of M2 and M3,
588 respectively. The red dash line represent the 95% confidence level.
589


590 To further visualize the spatial structure, we calculated the horizontal distribution of
591 salinity and NPIW thickness using CMEMS data showed in Fig.12 to Fig. 14. The
592 thickness was defined as the vertical distance between the upper and lower boundaries
593 of the 34.3 psu isohaline, representing the volumetric extent of the low-salinity core.
594 Fig.12 to Fig.14 present the composite spatial distributions of intermediate-layer
595 salinity and NPIW thickness at the three mooring sites. These maps clearly demonstrate
596 that mesoscale eddies not only modify the thermohaline characteristics of the NPIW
597 but also significantly reshape its vertical structure. From a horizontal perspective,
598 anticyclonic eddies are generally associated with elevated salinity, whereas cyclonic
599 eddies correspond to lower-salinity regions. Meanwhile, the spatial distribution of layer
600 thickness differs notably among M1–M3, consistent with the mooring-derived
601 thickness variations, where M1 exhibits a generally thicker intermediate layer than the
602 other sites. Around anticyclonic eddies, the NPIW layer tends to become thinner, while
603 cyclonic eddies help preserve the low-salinity characteristics of the NPIW, resulting in
604 a thicker layer compared to anticyclonic conditions. This spatial correspondence aligns
605 with the strong inverse correlation between salinity and thickness identified in the time
606 series, further confirming that layer thickness also as an effective indicator of the eddy-
607 induced modulation of NPIW structure.


608 The modulation of NPIW by mesoscale eddies exhibits clear spatial heterogeneity
609 among the three sites. At M1, the intermediate water responds weakly to anticyclonic
610 eddies, showing smaller salinity variations. This weaker response is primarily attributed
611 to the deeper position of the NPIW core at this site, where anticyclonic eddies mainly
612 induce vertical displacement of isopycnals. Owing to the absence of surrounding high-
613 salinity water sources, the resulting property changes are limited. Nevertheless, the
614 observed downward displacement of isopycnals during anticyclonic periods still
615 indicates a vertical adjustment of the water mass, suggesting that mesoscale eddies
616 participate in the structural evolution of the NPIW in a more gradual and stable way. In
617 contrast, the M2 and M3 sites, located near the western boundary, exhibit much stronger
618 responses. These regions are influenced by complex water mass interactions involving
619 the SCSIW and Kuroshio Intermediate Water (KIW). Strong anticyclonic eddies in
620 these areas can substantially compress the intermediate layer, and through horizontal
621 advection and mixing entrain high-salinity waters from adjacent sources, leading to a
622 marked salinity increase and even temporary disappearance of the NPIW signature.
623 This indicates that mesoscale eddies in boundary regions not only alter the thermohaline
624 structure but can also reshape or redistribute the intermediate water itself.
625 These spatial features demonstrate that mesoscale eddies modulate NPIW through a
626 dual mechanism: vertical displacement governs thickness variation, while horizontal
627 advection and mixing amplify salinity anomalies—particularly in boundary mixing
628 zones. The combined effects of these processes generate the observed intraseasonal co-
629 variability of salinity and thickness. The inclusion of thickness analysis thus provides a
630 more comprehensive dynamical framework for understanding how mesoscale eddies
631 reshape NPIW properties, revealing their three-dimensional regulatory influence on
632 intermediate-water structure.
633

634


635
636 Figure 12. (a) Composite distribution of salinity (color shading) and current vectors
637 (blue arrows) averaged over the 500–800 m layer during a high-salinity event near the
638 M1 mooring site. (b) same as (a), but for low salinity event. (c) Thickness of NPIW at
639 high salinity event, which calculated between 34.3 isohaline. (d) same as (c), but for
640 low salinity event. The black triangle in figure represent the mooring location.
641

642
643 Figure 13. (a) Composite distribution of salinity (color shading) and current vectors
644 (blue arrows) averaged over the 500–800 m layer during a high-salinity event near the
645

646 M2 mooring site. (b) same as (a), but for low salinity event. (c) Thickness of NPIW at
647 high salinity event, which calculated between 34.3 isohaline. (d) same as (c), but for
648 low salinity event. The black triangle in figure represent the mooring location.
649

650
651 Figure 14. (a) Composite distribution of salinity (color shading) and current vectors
652 (blue arrows) averaged over the 500–700 m layer during a high-salinity event near the
653 M3 mooring site. (b) same as (a), but for low salinity event. (c) Thickness of NPIW at
654 high salinity event, which calculated between 34.3 isohaline. (d) same as (c), but for
655 low salinity event. The black triangle in figure represent the mooring location.
656
657

658 **5 Conclusion**

659 This study based on three long-term mooring observations (M1–M3) and reanalysis
660 data in the western Pacific, systematically investigates the intraseasonal variability of
661 the North Pacific Intermediate Water (NPIW) and its modulation by mesoscale eddies.
662 Wavelet analysis reveals a consistent ~80 days periodicity across all sites, and satellite
663 altimetry confirms that these intraseasonal signals are primarily induced by westward-
664 propagating mesoscale eddies.

665 A major innovation of this study is the introduction of NPIW layer thickness as a
666 structural diagnostic index, it quantitatively characterizes the compression and

667 expansion of the NPIW under eddy forcing. All three moorings show a strong inverse
668 correlation between layer thickness and salinity, indicating a tight coupling between
669 thermohaline anomalies and structural variations. This new metric provides a more
670 comprehensive framework for describing NPIW evolution beyond temperature–salinity
671 anomalies alone.
672 Composite maps further show that anticyclonic eddies correspond to higher salinity and
673 thinner intermediate layers, whereas cyclonic eddies produce lower salinity and thicker
674 layers. This spatial coherence highlights the role of eddy-induced vertical compression
675 and uplift in modulating NPIW structure. In the core of NPIW region, the eddy impact
676 is mainly vertical and moderate, while in the western boundary region, where multiple
677 water masses (SCSIW, KIW) interact, stronger eddies not only alter NPIW thickness
678 but also introduce high-salinity waters through horizontal advection and mixing,
679 occasionally leading to the disappearance of the NPIW signature.
680 In summary, by integrating multi-site observations with a new structural diagnostic
681 approach, this study reveals how mesoscale eddies control the structure and property
682 variability of NPIW. The inclusion of layer thickness provides a novel and physically
683 grounded perspective, extending beyond previous single-site analyses and enhancing
684 our understanding of intermediate-water dynamics in the western Pacific.
685

686 **Competing Interests Statement:** The authors have no conflicts of interest to declare.

687

688 **Acknowledgments**

689 This work is supported by the National Natural Science Foundation of China (No.
690 42206032), and the Natural Science Foundation of Shandong Province (No.
691 ZR2022QD045). We would like to thank all the personnel of the R/V Science for their
692 contribution to the data acquisition.
693

694 **Author contributions**

695 Qiang Ren conceived the study, led the research design, and drafted the initial version
696 of the manuscript. Yansong Liu, Feng Nan, Ran Wang, Xinyuan Diao, Jianfeng Wang,
697 and Xinchuang Liu contributed to the study design and were responsible for field data
698 collection and organization. Shumin Tu and Wei Huang provided technical support for
699 mooring instrumentation. Fei Yu and Zifei Chen carried out data analysis and
700 interpretation. All authors reviewed and approved the final version of the manuscript.

701 **Data Availability Statement**

702 The WOA data are provided by NOAA's National Oceanographic Data Center and
703 available from website: <https://www.ncei.noaa.gov/products/world-ocean-atlas>.

704 The merged gridded altimetry data can be downloaded from the website:
705 <https://doi.org/10.48670/moi-00145>; This study has been conducted using E.U.
706 Copernicus Marine Service Information <https://doi.org/10.48670/moi-00052>;

707 Researchers interested in accessing the mooring data may contact the corresponding
708 author, who will facilitate access through a formal data request procedure. If required
709 by the journal, the authors commit to coordinating with the data owner to deposit the
710 dataset in a publicly accessible repository and to provide a DOI upon acceptance.

711

712 **Reference**

713 Auad, G., Kennett, J., & Miller, A. (2003). North Pacific Intermediate Water response to a modern climate
714 warming shift. *Journal of Geophysical Research*, **108**(C11), 3349.

715 Bingham F, Lukas R. (1994). The southward intrusion of North Pacific Intermediate Water along the
716 Mindanao coast. *Journal of Physical Oceanography*, **24**:141–154.

717 Bingham, F. M. , & Lukas, R. . (1995). The distribution of intermediate water in the western equatorial
718 pacific during January–February 1986. *Deep Sea Research Part I Oceanographic Research
719 Papers*, **42**(9), 1545-1573.

720 Bingham, F. M., & Lukas, R. (1996). Seasonal cycles of temperature, salinity and dissolved oxygen
721 observed in the Hawaii Ocean Time-series. *Deep-Sea Research Part II: Topical Studies in
722 Oceanography*, **43**(2-3), 199-213.

723 Busecke, J.J., & Abernathey, R.P. (2019). Ocean mesoscale mixing linked to climate variability. *Science
724 Advances*, **5**.

725 Chaigneau, A., Eldin, G., & Dewitte, B. (2009). Eddy activity in the four major upwelling systems from
726 satellite altimetry (1992-2007). *Progress in Oceanography*, **83**, 117-123.

727 Chaigneau, A., Gizolme, A., & Grados, C. (2008). Mesoscale eddies off Peru in altimeter records:
728 Identification algorithms and eddy spatio-temporal patterns. *Progress in Oceanography*, **79**, 106-
729 119.

730 Chelton, D. Mesoscale eddy effects. *Nature Geoscience*, **6**, 594-595 (2013).

731 Chelton, D., Gaube, P., Schlax, M.G., Early, J.J., & Samelson, R.M. (2011). The Influence of Nonlinear
732 Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. *Science*, **334**, 328 - 332.

733 Chelton, D., Schlax, M.G., & Samelson, R.M. (2011). Global observations of nonlinear mesoscale
734 eddies. *Progress in Oceanography*, **91**, 167-216.

735 Chelton, D., Schlax, M.G., Samelson, R.M., & de Szoeke, R.A. (2007). Global observations of large
736 oceanic eddies. *Geophysical Research Letters*, **34**.

737 Dong, C., McWilliams, J. C., Liu, Y. & Chen, D. (2014). Global heat and salt transports by eddy
738 movement. *Nature Communications*, **5**, 3294 (2014).

739 Frenger, I., Gruber, N., Knutti, R., & Münnich, M. (2013). Imprint of Southern Ocean eddies on winds,
740 clouds and rainfall. *Nature Geoscience*, **6**, 608-612.

741 Fujii, Y., Nakano, T., Usui, N., Matsumoto, S., Tsujino, H., & Kamachi, M. (2013). Pathways of the North
742 Pacific Intermediate Water identified through the tangent linear and adjoint models of an ocean
743 general circulation model. *Journal of Geophysical Research*, **118**, 2035-2051.

744 George, T. M., Manucharyan, G., & Thompson, A. F. (2021). Deep learning to infer eddy heat fluxes
745 from sea surface height patterns of mesoscale turbulence. *Nature Communications*, **12**, 800. DOI:
746 10.1038/s41467-020-20779-9.

747 Gong, X., Lembke-Jene, L., Lohmann, G., Knorr, G., Tiedemann, R., Zou, J., & Shi, X. (2019). Enhanced
748 North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich

749 Stadial 1. *Nature Communications*, **10**.

750 Gordon AL, Fine RA. (1996). Pathways of the water between the Pacific and Indian Oceans in the
751 Indonesian seas. *Nature* **379**:146–149.

752 Guinehut S., A.-L. Dhoms, G. Larnicol and P.-Y. Le Traon. (2012). High resolution 3D temperature and
753 salinity fields derived from in situ and satellite observations. *Ocean Science*, **8**(5):845–857.

754 Hansell, D. A., Carlson, C., & Suzuki, Y. (2002). Dissolved organic carbon export with North Pacific
755 Intermediate Water formation. *Global Biogeochemical Cycles*, **16**(1).

756 Hausmann, U., McGillicuddy, D., & Marshall, J. (2017). Observed mesoscale eddy signatures in
757 Southern Ocean surface mixed-layer depth. *Journal of Geophysical Research*, **122**, 617-635.

758 Kashino Y, Aoyama M, Kawano T, Hendiarti N, Syaefudin Anantasena Y, Muneyama K, Watanabe H .
759 (1996). The water masses between Mindanao and New Guinea. *Journal of Geophysical Research*,
760 **101**(C5):12391–12400.

761 Kashino Y, Watanabe H, Herunadi H, Aoyama M, Hartoyo D (1999). Current variability at the Pacific
762 entrance of the Indonesian throughflow. *Journal of Geophysical Research*, **104**(C5):11021–11035.

763 Kouketsu, S., I. Kaneko, T. Kawano, H. Uchida, T. Doi, and M. Fukasawa (2007), Changes of North
764 Pacific Intermediate Water properties in the subtropical gyre, *Geophysical Research Letters*, **34**(2),
765 L02605.

766 Li,Z., England,M.H., Groeskamp,S., (2023). Recent Acceleration in Global Ocean Heat Accumulation
767 by Mode and Intermediate Waters. *Nature Communications*, **14**(1): 6888-6901.

768 Martínez-Moreno, J., Hogg, A.M., England, M.H., Constantinou, N.C., Kiss, A.E., & Morrison, A.K.
769 (2020). Global changes in oceanic mesoscale currents over the satellite altimetry record. *Nature
770 Climate Change*, **11**, 397 - 403.

771 Masuda, S. , Awaji, T. , Sugiura, N. , Ishikawa, Y. , Baba, K. , & Horiuchi, K. , et al. (2003). Improved
772 estimates of the dynamical state of the north pacific ocean from a 4 dimensional variational data
773 assimilation. *Geophysical Research Letters*, **30**(16).

774 Masujima, M., & Yasuda, I. (2009). Distribution and Modification of North Pacific Intermediate Water
775 around the Subarctic Frontal Zone East of 150°E. *Journal of Physical Oceanography*, **39**, 1462-
776 1474.

777 Mensah, V., Jan, S., Chang, M., & Yang, Y. (2015). Intraseasonal to seasonal variability of the
778 intermediate waters along the Kuroshio path east of Taiwan. *Journal of Geophysical Research*, **120**,
779 5473-5489.

780 Meredith, M.P., Garabato, A.N., Hogg, A.M., & Farneti, R. (2011). Sensitivity of the Overturning
781 Circulation in the Southern Ocean to Decadal Changes in Wind Forcing. *Journal of Climate*, **25**,
782 99-110.

783 Mulet, S., M.-H. Rio, A. Mignot, S. Guinehut and R. Morrow. (2012). A new estimate of the global 3D
784 geostrophic ocean circulation based on satellite data and in-situ measurements. *Deep Sea Research
785 Part II : Topical Studies in Oceanography*, **77–80**(0):70–81.

786 Nakano, T., Kaneko, I., Endoh, M., & Kamachi, M. (2005). Interannual and Decadal Variabilities of
787 NPIW Salinity Minimum Core Observed along JMA's Hydrographic Repeat Sections. *Journal of
788 Oceanography*, **61**, 681-697.

789 Nakanowatari, T., Mitsudera, H., Motoi, T., Ishikawa, I., Ohshima, K.I., & Wakatsuchi, M. (2015).
790 Multidecadal-Scale Freshening at the Salinity Minimum in the Western Part of North Pacific:
791 Importance of Wind-Driven Cross-Gyre Transport of Subarctic Water to the Subtropical
792 Gyre. *Journal of Physical Oceanography*, **45**, 988-1008.

793 Nishioka, J., Obata, H., Ogawa, H., Ono, K., Yamashita, Y., Lee, K., Takeda, S., & Yasuda, I. (2020).
794 Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of
795 the global ocean circulation. *Proceedings of the National Academy of Sciences of the United States
796 of America*, **117**(24), 12665-12673.

797 Ohkushi, K., Itaki, T., & Nemoto, N. (2003). Last Glacial–Holocene change in intermediate-water
798 ventilation in the Northwestern Pacific. *Quaternary Science Reviews*, **22**(14), 1477-1484.

799 Ohshima, K., Nakanowatari, T., Riser, S., & Wakatsuchi, M. (2010). Seasonal variation in the in and
800 outflow of the Okhotsk Sea with the North Pacific. *Deep-Sea Research Part II: Topical Studies in
801 Oceanography*, **57**(13-14), 1247-1256.

802 Oka, E., Katsura, S., Inoue, H., Kojima, A., Kitamoto, M., Nakano, T., & Suga, T. (2017). Long-term
803 change and variation of salinity in the western North Pacific subtropical gyre revealed by 50-year
804 long observations along 137°E. *Journal of Oceanography*, **73**, 479-490.

805 Qiu, B. (1995). Why Is the Spreading of the North Pacific Intermediate Water Confined on Density
806 Surfaces around $\sigma\theta = 26.8$? *Journal of Physical Oceanography*, **25**(1), 168-180.

807 Qiu, B., & Chen, S. (2005). Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo,
808 TMI, and Altimetry Measurements. *Journal of Physical Oceanography*, **35**(4), 458-473.

809 Qiu, B., & Chen, S. (2011). Effect of Decadal Kuroshio Extension Jet and Eddy Variability on the
810 Modification of North Pacific Intermediate Water. *Journal of Physical Oceanography*, **41**(3), 503-
811 515.

812 Reagan, James R.; Boyer, Tim P.; García, Hernán E.; Locarnini, Ricardo A.; Baranova, Olga K.;
813 Bouchard, Courtney; Cross, Scott L.; Mishonov, Alexey V.; Paver, Christopher R.; Seidov, Dan;
814 Wang, Zhankun; Dukhovskoy, Dmitry. (2024). World Ocean Atlas 2023. *NOAA National Centers
815 for Environmental Information*.

816 Ren, Q., Yu, F., Nan, F. et al. Effects of mesoscale eddies on intraseasonal variability of intermediate
817 water east of Taiwan. *Scientific Reports*, **12**, 9182 (2022).

818 Richardson, P.L. (1983). Eddy kinetic energy in the North Atlantic from surface drifters. *Journal of
819 Geophysical Research*, **88**, 4355-4367.

820 Robinson, A.R., & Leslie, W.G. (1985). Estimation and prediction of oceanic Eddy fields. *Progress in
821 Oceanography*, **14**, 485-510.

822 Solomon, A., McCreary, J., Kleeman, R., & Klinger, B. A. (2003). Interannual and Decadal Variability
823 in an Intermediate Coupled Model of the Pacific Region. *Journal of Climate*, **16**, 383-405.

824 Sugimoto, S., (2022). Decreasing Wintertime Mixed Layer Depth in the Northwestern North Pacific
825 Subtropical Gyre. *Geophysical Research Letters*, **49**(2): 2021GL095091.

826 Talley, L. D. , & Yun, J. Y. . (2001). The role of cabbeling and double diffusion in setting the density of
827 the north pacific intermediate water salinity minimum. *Journal of Physical Oceanography*. **31**(6),
828 1538-1549.

829 Talley, L.D. (1993). Distribution and formation of North Pacific Intermediate Water. *Journal of Physical
830 Oceanography*, **23**(3), 517-537.

831 Talley, L.D., Nagata, Y., Fujimura, M., Iwao, T., Kono, T., Inagake, D., Hirai, M., & Okuda, K. (1995).
832 North Pacific Intermediate Water in the Kuroshio/Oyashio Mixed Water Region. *Journal of
833 Physical Oceanography*, **25**, 475-501.

834 Thoppil, P., Richman, J., & Hogan, P. (2011). Energetics of a global ocean circulation model compared
835 to observations. *Geophysical Research Letters*, **38**(15), L15607.

836 Tsunogai, S. (2002). The Western North Pacific Playing a Key Role in Global Biogeochemical Fluxes.

837 *Journal of Oceanography*, **58**(2), 245-257.

838 Ueno, H., & Yasuda, I. (2004). Intermediate water circulation in the North Pacific subarctic and northern
839 subtropical regions. *Journal of Geophysical Research*, **108**, 3348.

840 Waite, A., Stemmann, L., Guidi, L., Calil, P., Hogg, A., Feng, M., Thompson, P., Picheral, M., & Gorsky,
841 G. (2016). The wineglass effect shapes particle export to the deep ocean in mesoscale eddies.
842 *Geophysical Research Letters*, **43**, 9791-9800.

843 Wang, F., Song, L., Li, Y., Liu, C., Wang, J., Lin, P., Yang, G., Zhao, J., Diao, X., Zhang, D., & Hu, D.
844 (2016). Semiannually alternating exchange of intermediate waters east of the Philippines.
845 *Geophysical Research Letters*, **43**, 7059-7065.

846 Wong, A., Bindoff, N. & Church, J. (1999). Large-scale freshening of intermediate waters in the Pacific
847 and Indian oceans. *Nature* **400**, 440–443.

848 Wunsch, C & Ferrari, R. (2004). Vertical mixing, energy, and the general circulation of the oceans.
849 *Annual Review of Fluid Mechanics*, **36**, 281-314.

850 Wunsch, C. (2007), The past and future ocean circulation from a contemporary perspective, in Ocean
851 Circulation: Mechanisms and Impacts-Past and Future Changes of Meridional Overturning,
852 Geophys. Monogr. Ser., vol. 173, pp. 53–74, AGU, Washington, D. C.

853 Wyrtki, K., Magaard, L., & Hager, J.G. (1976). Eddy energy in the oceans. *Journal of Geophysical
854 Research*, **81**, 2641-2646.

855 Yasuda, I. (1997). The origin of the North Pacific Intermediate Water. *Journal of Geophysical Research:
856 Oceans*, **102**(C1), 893-909.

857 Yasuda, I. . (2004). North pacific intermediate water: progress in sage (subarctic gyre experiment) and
858 related projects. *Journal of Oceanography*, **60**(2), 385-395.

859 You, Y. (2003). The pathway and circulation of North Pacific Intermediate Water. *Geophysical Research
860 Letters*, **30**, 2291.

861 Yuan, D.L., Yin, X.L., Li, X., (2022). A Maluku Sea Intermediate Western Boundary Current Connecting
862 Pacific Ocean Circulation to the Indonesian Through flow. *Nature Communications*, **13**(1): 2093-
863 2100.

864 Van Scoy, K. A., and E. R. M. Druffel (1993), Ventilation and transport of thermocline and intermediate
865 waters in the northeast Pacific during recent El Niños, *Journal of Geophysical Research:
866 Oceans*, **98**(C10), 18083–18088.

867 Zhang, W., Xue, H., Chai, F., & Ni, Q. (2015). Dynamical processes within an anticyclonic eddy revealed
868 from Argo floats. *Geophysical Research Letters*, **42**, 2342-2350. DOI: 10.1002/2015GL063120.

869 Zhang, Y., Liu, Z., Zhao, Y., Li, J., & Liang, X. (2015). Effect of surface mesoscale eddies on deep-sea
870 currents and mixing in the northeastern South China Sea. *Deep-sea Research Part II: Topical
871 Studies in Oceanography*, **122**, 6-14.

872 Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., & Wan, X. (2016). Observed 3D Structure,
873 Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea. *Scientific Reports*,
874 **6**, 24349 . DOI: 10.1038/srep24349.

875 Zhang, Z., Wang, W., & Qiu, B. (2014). Oceanic mass transport by mesoscale eddies. *Science*, **345**, 322
876 - 324.

877 Zhou, Y. T., Gong, H.J., Zhou, F., (2022) . Responses of Horizontally Expanding Oceanic Oxygen
878 Minimum Zones to Climate Change Based on Observations. *Geophysical Research Letters*, **49**(6):
879 e2022GL097724.

880