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Abstract. Accurate characterization of slant-path atmospheric transmittance in the 280—400 nm ultraviolet (UV) window is
essential for radiometric calibration of ground-based UV observations and link-budget assessments of UV optoelectronic
systems. Nighttime measurements, however, typically rely on stellar radiometers that provide only sparse and irregular
samples along stellar tracks, which complicates construction of a continuous two-dimensional (zenith—azimuth)
transmittance field. Here we retrieve slant-path transmittance from multi-star, multi-channel stellar UV radiometer
observations using a stellar Langley-type calibration, and reconstruct a 2-D transmittance field by modeling optical depth
with Gaussian process regression (GPR) as a function of zenith angle and azimuth. Predictive uncertainty is quantified and
rescaled using cross-validated standardized residuals, and performance is benchmarked against conventional interpolation
approaches. The reconstructed fields robustly capture the zenith-angle-dominated gradient, achieving cross-validated R? =
0.965-0.984 and RMSE = 0.004-0.007 across four UV channels. After calibration, 67%-81% of standardized residuals fall
within =1 and 93%-96% within +2 standard deviations, indicating well-calibrated uncertainty; uncertainty increases in
sparsely sampled regions and with local sampling spacing. The proposed framework enables practical construction of
nighttime UV transmittance fields with well-characterized uncertainty for observation correction and quantitative assessment

of site transparency.

1 Introduction

The "UV window" of the atmosphere in the 280—400 nm band is essential for ground-based UV observations, the design of
optoelectronic systems, and radiative-transfer corrections. The total-column transmittance of this band directly governs the
UV irradiance reaching the detector (Chubarova et al., 2020; Robert et al., 2018). Existing methods for obtaining
atmospheric transmittance are broadly categorized into radiative-transfer model calculations and ground-based observational
retrievals. Radiative-transfer models can offer a priori estimates of multi-band transmittance or irradiance based on
atmospheric profiles and aerosol scenarios. However, their ability to represent spatiotemporal variability under specific
observational conditions is often constrained by uncertainties in input parameters, aerosol scenarios, and profile assumptions

(Campanelli et al., 2022; Mateos et al., 2014). Ground-based sun-photometer networks, such as AERONET, have established
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mature observing systems and aerosol retrieval methods in the visible—near-infrared range. However, their spectral channels
primarily cover 340—1640 nm, with limited coverage in the UV window, making them unsuitable for nighttime transmittance
variability measurements (Estellés et al., 2012; Giles et al., 2019; Perrone et al., 2021). Lunar photometers can measure
AOD and transmittance at night, extending observations into the day—night continuum. However, the changing lunar phase
necessitates frequent calibration, and reliance on a single light source limits angular-domain coverage (Roman et al., 2020;
Uchiyama et al., 2019). In contrast, Roman and colleagues utilized all-sky cameras in the visible-near-infrared range to
obtain dense angular distributions of sky radiance, facilitating multi-directional retrievals (GraB3l et al., 2024; Roman et al.,
2022; Roman et al., 2025).

In the UV range, ozone absorbs strongly in the 250-330 nm range, Rayleigh scattering increases rapidly at shorter
wavelengths (Codrean et al., 2025), and aerosol absorption and scattering become more pronounced. These processes, in
conjunction with enhanced ozone absorption and molecular scattering, severely limit the available UV radiative flux at the
surface. Conventional area-array imaging systems, constrained by detector quantum efficiency and system signal-to-noise
ratio, struggle to achieve high-density quantitative sampling over the UV angular domain. As a result, practical applications
more frequently rely on point-measurement instruments, such as stellar radiometers, to obtain transmittance samples along
discrete lines of sight (Barreto et al., 2019). This creates a key challenge: multi-star samples are typically clustered along star
tracks and distributed non-uniformly. As a result, supporting observation correction and engineering applications requires
converting these limited discrete samples into a continuous two-dimensional transmittance field on the zenith—azimuth plane
through fitting and field-reconstruction methods, accompanied by credible uncertainty characterization.

In recent years, data-driven approaches for atmospheric retrieval and field modeling have advanced rapidly. Notably,
Gaussian process regression (GPR), a nonparametric Bayesian method, offers distinct advantages for reconstructing spatial
fields from irregular sampling, characterizing multiscale spatial dependence, and quantifying predictive uncertainty (Camps-
Valls et al., 2016; Susiluoto et al., 2020). In Earth observation and atmospheric science, GPR has been applied to large-scale
spatial interpolation of remote-sensing products, multi-source data fusion, and statistical emulation of complex radiative-
transfer models, demonstrating stable mean predictions and reasonable confidence intervals even with high-dimensional
inputs and limited samples (Gomez-Dans et al., 2016; Lamminpai et al., 2025; Lubbe et al., 2020). Within the covariance-
kernel framework, GPR naturally incorporates anisotropic correlation length scales, enabling scale-dependent dependence to
be represented along the zenith- and azimuthal-angle directions; it can therefore exploit sparse line-of-sight observations to
capture the spatial continuity of the transmittance field, predict unobserved directions, and provide posterior variance as a
measure of uncertainty (Liang et al., 2025; Perry et al., 2025; Yu et al., 2017). However, existing studies have largely
focused on solar irradiance forecasting, retrieval of aerosol or pollutant concentration fields, and radiative-transfer modelling
in the visible—near-infrared, and these approaches have not yet been widely applied to the two-dimensional angular-domain
reconstruction of total-column transmittance in the 280—400 nm UV window. In particular, under limited sightlines and
multi-star joint observations, how to use GPR to effectively reconstruct a UV transmittance field with relatively complete

directional coverage and reliable uncertainty quantification remains an open gap in current research.

2



65

70

75

80

85

90

https://doi.org/10.5194/egusphere-2025-6537
Preprint. Discussion started: 26 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

To address the above issues, this study proposes a workflow for constructing and validating a two-dimensional field of
nighttime total-column UV transmittance based on multi-star observations, with the main contributions summarized as
follows:

1.Using data from a multi-channel stellar UV radiometer, we retrieve total-column transmittance samples in four narrowband
channels spanning 280—-400 nm via the Langley-plot method, providing highly traceable inputs for two-dimensional angular-
domain modelling;

2.We develop a GPR-based spatial dependence model in the optical-depth domain with zenith angle and azimuth as
predictors, and we incorporate a multi-star track-envelope constraint to reconstruct a continuous field within the band-
covered region while simultaneously producing the corresponding uncertainty field;

3.We scale-calibrate the predictive variance via cross-validation and, through comparisons with inverse-distance weighting
and piecewise linear interpolation together with residual diagnostics, we systematically evaluate reconstruction accuracy,

stability, and uncertainty consistency, thereby delineating the applicability and confidence of the results.

2 Methods

To construct a continuous ultraviolet transmittance field on the zenith—azimuth space from discrete line-of-sight samples, we
introduce a Gaussian process regression model in the optical-depth 7z domain. For each observation, the zenith angle and
azimuth are denoted by z and A , respectively; after applying the Langley-plot calibration (Michalsky and Mcconville,
2024), the total-column slant-path transmittance 7(z,4) and the corresponding optical depth 7(z,A4) are obtained.

Compared with modelling directly in the transmittance 77 domain, modelling in the 7 domain is more consistent with the
physical processes of atmospheric radiative transfer. On the one hand, 7 is obtained by integrating the extinction
coefficients along the line of sight, and the total optical depth can be expressed as a linear superposition of components such
as Rayleigh scattering, ozone absorption, and aerosol extinction; this representation is widely used in standard radiative-
transfer models and optical-depth retrievals and is therefore more suitable as a “linear” state variable for modelling spatial
correlations (Emde et al., 2016). Extensive statistical analyses based on observations such as AERONET indicate that the
logarithm of aerosol optical depth and related optical-depth quantities is closer to a Gaussian distribution; therefore, applying
a logarithmic transform in the transmittance domain and converting it to optical depth 7 helps the errors behave as
approximately additive Gaussian noise in the 7 domain, which is consistent with the Gaussian prior and Gaussian-noise
assumptions commonly adopted in Gaussian process regression (N. T. et al., 2000; Kauppi et al., 2024). Accordingly, we use
optical depth as the target variable in GPR to build a spatial correlation model and then map the predictions back to the
transmittance domain, enabling errors along different azimuth directions to be assessed on a unified optical-depth scale and

yielding both the full-field transmittance and its uncertainty.
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We denote the input vector of each observation as x, =(z,,4,)", with the corresponding output being the optical depth
v, =7,i=1.,N.

We assume that the target field f(x) follows a zero-mean Gaussian process:

£(x)~P(0, k(x,x)) » (1)

where k(x,x") denotes the covariance kernel defined over the angular domain; the observation noise is modelled as additive

independent Gaussian noise:
v, =f(x)+e,6 ~N(0,62), (2)
To improve numerical stability and ensure consistency across different input units, we first standardize the input variables

(z, A) by subtracting the sample mean and dividing by the sample standard deviation. For the kernel design, to capture both

large-scale smooth structure and local variability while allowing different correlation length scales along the zenith and
azimuth directions, we employ a sum of a Matérn kernel and a radial basis function (RBF) kernel, with an explicit white-

noise kernel term:

k(x,x") =k,

atern

(x, X8, V) + 0 ke (%, X538+ 525 » 3)

Here, the Matérn smoothness parameter v, the anisotropic length-scale vector &, 3,, as well as the amplitude coefficients

o’ and the noise level o are treated as hyperparameters and are jointly estimated by maximizing the log marginal likelihood.

To mitigate the influence of local optima, we apply multiple random restarts in the hyperparameter optimization.

Let the training sample set be X = [xl,...,xN]T with corresponding optical-depth observations y = [ Viseess yN]T .According to

Gaussian process regression theory, the covariance matrix of the training set can be written as

K=K, +c1, @

where [Kf] = k(xl., x j) . Given the hyperparameters, the log marginal likelihood is

ij
log p(y|X)=-1y"K'y—Llog| K |-%log2m , (5)

Numerical optimization yields a set of hyperparameter estimates that maximize this likelihood. For an arbitrary prediction

direction x,, we define the covariance vector with the training samples as

k. =[k(x,,x,),....k(x,,x)]"> (6)
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and the self-covariance £,, = k(x*,x*) .Then the posterior distribution of z, is a one-dimensional Gaussian, with predictive

mean and variance given by
(x) =Ky, %)
ol(x.)=k.—k'K'k,, ®)

After obtaining x, and o,, we map them back to the transmittance domain as
7 (x) = exp(-m(z) 1 (x.)) ©

oy (x.)=m(z)T(x.)o, (x.) (10)

where the transmittance uncertainty is estimated using first-order error propagation. In the following sections, we take the

M, corresponding to 7, (z,A) as the reconstructed two-dimensional UV transmittance field, and use to o, describe the

angular-domain confidence distribution of the reconstructed field.

Moreover, to improve the statistical reliability of the predictive uncertainty, we further calibrate the GPR output variance

using cross-validation optical-depth residuals (Acharki et al., 2023; Gneiting et al., 2007; Jimenez and Katzfuss, 2022).
Specifically, we construct standardized residuals from the cross-validated residuals Az“" and the corresponding predictive

. . CV
standard deviations o, as

rCVzArCV/GfV ) (11

T

We compute its empirical standard deviation &, and rescale all predictive standard deviations by an inflation factor &, .After

calibration, the variance of the standardized residuals becomes closer to 1 and the coverage is more consistent with the

theoretical values of the standard normal distribution, thereby increasing confidence in the transmittance uncertainty field.

3 Data Acquisition

The UV transmittance data used in this study were obtained with an in-house stellar UV radiometer (Zhao et al., 2025),
whose optical layout is shown in Fig. 1. The instrument adopts a coaxial reflective telescope and a dual-channel architecture,
in which the imaging channel is used for star acquisition imaging and closed-loop guiding control, while the UV detection
channel performs photon-counting measurements of stellar UV radiation using a narrowband filter wheel and a high-
sensitivity photomultiplier tube (PMT).

The filter wheel is equipped with four narrowband channels covering the 280-400 nm UV window: Ul (370-400 nm), U2
(340-370 nm), U3 (300-340 nm), and U4 (288-314 nm), with bandwidths of approximately 20-30 nm. From the longest to

5
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the shortest wavelengths, the four channels exhibit progressively higher sensitivity to ozone absorption and Rayleigh

scattering, enabling characterization of the wavelength dependence of total-column atmospheric transmittance.

Guiding Camera

Filter wheel : m ! Relay Lens
Group

Scene lens l m

Dichroic

PMT mirror

——  Aperture

M1

Telescope
Figure 1: Instrument Optical Path Diagram.

Field observations were conducted in the Changchun region in October 2025 at a site located at 43°50'56" N, 125°24'01" E,
with an elevation of approximately 200 m. Four moderately bright stars distributed across different right ascensions and
declinations were selected as target sources, and their basic parameters are listed in Table 1. Using the site coordinates and
observation times, the stars’ right ascension and declination can be converted to zenith angle z and azimuth 4 , thereby
obtaining the apparent motion tracks of each star during the observation period.

Table 1 Summary of the target stars used for UV transmittance measurements, including their right ascension, declination,
magnitude, and spectral type.

Star name Right ascension Declination Magnitude Spectral type
HD12533 2h05m31.13s 42d27m19.7s 2.15 K3II+B9.5V+A0V
HD13161 2h11m06.72s 37d59m00.3s 3.00 ASIIIL
HD11443 1h54m35.05s 29d42m24.4s 3.40 F5III
HD13041 2h10m04.73s 37d59m00.3s 4.75 AS5IV-V

At each time step, once the imaging channel completes closed-loop tracking, the UV detection channel sequentially switches
among the four narrowband filters (U1-U4) to sample photon counts from the target star. After removing samples affected
by cloud occlusion, guiding failures, and obvious count outliers, a total of N=98 valid samples were retained, with identical

sample sizes across channels U1-U4. Based on the calibration results, the total-column slant-path transmittance 7' (z, A, ﬂk)

(k =1..., 4) for the four channels can be retrieved along each line of sight. The resulting observations can be represented as a

6
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set of discrete samples {zl., A,-;T,-k } ,i=1,..,N, (k = 1,...,4) , where N denotes the total number of valid observations of all

target stars over the entire campaign. In the subsequent two-dimensional field reconstruction, each channel is modelled and

analysed independently.

4 Analysis and Discussion

In this section, using the GPR model and multi-star observations from the Changchun site, we analyze the reconstructed two-
dimensional UV transmittance fields, the associated uncertainty distributions, comparisons with simple interpolation

methods, and residual behavior.

4.1 Ultraviolet Transmittance Field Construction Results

To obtain a continuous description of UV transmittance over the angular domain, we project all samples from the four stars

during the observation period onto the (z, A) space to form a discrete sample set. Following the GPR formulation in Section

2, we train the model using zenith angle and azimuth as inputs and optical depth as the target variable, learning the spatial
dependence structure of the transmittance field under a covariance function formed by the sum of a Matérn kernel and an
RBF kernel. To avoid nonphysical extrapolation outside the observed region, we clip the prediction grid using a bounded
band constructed from the observation tracks and report the two-dimensional transmittance field only within the multi-star

track envelope and its limited expansion, as shown in Fig. 2.



175

180

185

https://doi.org/10.5194/egusphere-2025-6537
Preprint. Discussion started: 26 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

T"o.m T"n.snz
0.567 280 0.488
0.555 260 0475
0.543 240 0.462
0.531 220 0449

0.519 0.436
E,J 200

o om

160
140
120
100
80

0.423
0.409
0.483 0.396
0.471 0.383
0.459 0.370

0.447 0.357

0.435

0.344

T, T,
- 0365 0.159
280 ” o030 280 0.149
260 0336 260 0.140
240 0322 240 0.131
220 0.308 220 0122
$ 200 0204 F 200 0113
% 180 0280 % 180 0.104
160 0265 160 0.094
o 0251 148 0.085
0237 0.076
120 0223 oL 0.067
100 o 100 s
80 \ ) S 80 . . . RS

0 10 20 30 40 50 30 40 50
z(deg) z(deg)

Figure 2: Construction of ultraviolet transmittance using Gaussian Process Regression (GPR). Panels (a)-(d) show the
transmittance construction for channels U1-U4, respectively, with the corresponding zenith and azimuth angles.

As can be seen from the spatial patterns in Fig. 2, the transmittance fields in all four channels exhibit a systematic gradient
dominated by zenith angle: transmittance is generally higher at small zenith angles (z <15°), and decreases continuously as
zenith angle increases (corresponding to longer line-of-sight paths). This trend is consistent with the physical expectation
that total-column extinction accumulates along the path, indicating that the model can robustly recover the dominant
structural features of the angular-domain field even when line-of-sight samples are sparse and unevenly distributed.

In terms of spectral differences, the shortwave channels (U3 and U4) exhibit a faster decrease in transmittance with
increasing zenith angle than the longwave channels (U1 and U2) and respond more sensitively at large zenith angles, leading
to stronger gradients and more pronounced morphological contrasts in the large-zenith-angle region. This behavior is
consistent with enhanced ozone absorption, stronger Rayleigh scattering, and more pronounced aerosol UV extinction at
shorter wavelengths, and it also highlights the necessity of multi-channel observations for characterizing wavelength-

dependent extinction responses.
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Beyond the systematic variation along zenith angle, Fig. 2 also shows localized fluctuations and heterogeneous structures in
certain azimuth sectors. For example, at a similar small zenith angle (=10°), an overall reduction in transmittance appears in
the azimuth range of 170°-210°. This feature may be associated with localized atmospheric perturbations during the
observations (e.g., thin high clouds aloft or locally enhanced aerosols); moreover, under the anisotropic length-scale setting
and multi-kernel constraints of GPR, such local variations are not overly smoothed, suggesting that the atmospheric
transmittance exhibited a degree of azimuthal heterogeneity over the observation period.

To further quantify the credibility of the reconstruction in different regions, the next section analyzes the results in

conjunction with the spatial distribution of uncertainty.

4.2 Uncertainty Field and Reliability Analysis

Within the GPR framework, the model outputs both the predictive mean and the posterior standard deviation in the optical -
depth domain. To facilitate engineering applications and observational correction, we propagate uncertainty from the ¢
domain back to the 7 domain and calibrate it using a variance inflation factor &, derived from cross-validated (CV)
standardized residuals, thereby obtaining calibrated transmittance uncertainties within the band-covered region. Figure 3

presents the spatial distribution of o, for the four channels.
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Figure 3: Prediction uncertainty and measured data distribution for the four UV channels. Panels (a)-(d) show the uncertainties
for channels U1-U4, respectively, along with the distribution of measured data points.

Summary statistics over the entire reconstructed region show that the median o, ranges from 0.0033 to 0.0059, and the
median relative uncertainty o /T, is 0.69%-2.95%. The relative uncertainty is higher in the shortwave channels, consistent

with the physical characteristics that shorter-wavelength UV signals are weaker and more sensitive to path length due to the
combined effects of ozone absorption, Rayleigh scattering, and aerosol extinction.

Overall, uncertainty exhibits a structure consistent with sampling density: is small in densely sampled areas near the multi-
star tracks, but increases markedly in locally sparse regions. To quantify the phenomenon that “sparser sampling leads to

il

larger uncertainty,” we introduce the “local sampling spacing” d,(T)in the (z,4) space. For any prediction location ,
d,(T)is defined by computing and sorting its distances to all observation points d, (7)< d, (T) < d,(T)<d,(T)..... d;(T)

denotes the third-nearest-neighbour distance. We then analyze the relationship between d, (T ) ando, , as shown in Fig. 4.

The results indicate a robust positive association between d, (T) and o, : the Spearman correlation coefficient p ranges

10
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from 0.66 to 0.76 across the four channels (all significant with p < 0.001). As implied by Eq. (12), this increase in

uncertainty under sparse sampling is consistent with the underlying mechanism of the model.
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Figure 4. Correlation analysis between local sampling spacing and uncertainty. Panels (a)-(d) correspond to channels Ul1-U4,
respectively, showing the relationship between the third-nearest-neighbor distance and the uncertainty in the transmittance
predictions.

4.3 Accuracy Assessment and Comparison with Simple Interpolation Methods

To evaluate the accuracy of GPR for reconstructing two-dimensional UV transmittance fields and its advantages over
commonly used interpolation methods, we adopt a cross-validation scheme and compare GPR with piecewise linear
interpolation based on Delaunay triangulation (denoted as Linear ND) and inverse distance weighting (IDW, p=2). Table 2
reports the RMSE, MAE, and R’ metrics for the four channels under the three methods, computed in the 7 domain and the

T domain, respectively.

Table 2 Comparison of reconstruction accuracy for GPR, piecewise linear interpolation (Linear ND), and inverse distance
weighting (IDW) across the four UV channels. The table reports RMSE, MAE, and R2 metrics for both the optical-depth and
transmittance domains.

Channel Method RMSE 7 MAE_ ¢ R® ¢ RMSE_T MAE_T R T

11
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GPR 0.012 0.008 0.605 0.007 0.005 0.965

Ul Linear ND 0.012 0.008 0.587 0.007 0.005 0.962
IDW(p=2) 0.013 0.009 0.520 0.007 0.005 0.958

GPR 0.010 0.007 0.689 0.005 0.004 0.984

U2 Linear ND 0.010 0.007 0.665 0.006 0.004 0.983
IDW(p=2) 0.014 0.009 0.411 0.007 0.005 0.970

GPR 0.022 0.014 0.472 0.007 0.005 0.968

U3 Linear ND 0.023 0.014 0.427 0.008 0.005 0.966
IDW(p=2) 0.023 0.016 0.411 0.008 0.005 0.964

GPR 0.033 0.024 0.485 0.004 0.003 0.979

U4 Linear ND 0.031 0.021 0.532 0.004 0.003 0.982
IDW(p=2) 0.033 0.025 0.466 0.004 0.003 0.976

In terms of overall error levels, all three methods achieve RMSE values on the order of 0.004—0.008 in the transmittance
domain, with the corresponding R” generally exceeding 0.96, indicating that within the observation envelope all methods
provide relatively accurate transmittance estimates. Against this background, GPR and Linear ND exhibit similar RMSE in
the 7 domain; compared with IDW, GPR yields lower RMSE across all channels in the 7 domain, with an average
reduction of about 20%—-30%, and generally higher R’, indicating that a statistical model that explicitly incorporates spatial
correlation has a clear advantage over simple distance-weighted averaging under limited sightline sampling.

In the optical-depth domain, the RMSE of all three methods increases as the wavelength decreases (U1-U4); GPR attains
values of R*about 0.4-0.7, generally higher than or comparable to Linear ND and clearly better than IDW. This partly
reflects the fact that atmospheric processes are more complex in the short-wavelength UV channels and the dynamic range of
7 is larger, which increases modelling difficulty; it also indicates that a GPR model with anisotropic length scales in the 7
domain can effectively capture angular-domain correlations. Importantly, beyond achieving 7' domain errors comparable to
or slightly better than Linear ND, GPR additionally provides statistically interpretable uncertainty estimates, which

deterministic interpolation methods cannot offer.

4.4 Residual Analysis

Building on the cross-validation in Section 4.3, we assess the reliability of the GPR model for UV transmittance construction
by conducting a statistical analysis of standardized residuals 7 in the transmittance domain. Figure 5 shows probability

histograms of the standardized residuals for each channel, together with their means and standard deviations. The
standardized residual distributions for all four channels are unimodal and approximately symmetric, with means close to 0

and standard deviations close to 1, indicating no pronounced systematic bias in the model. Specifically, the empirical

coverage for|rTC V| <1 is 67.3%-80.6% (close to the nominal 68.3% for a standard normal), for|rTCV| <2 is 92.9%-95.9%

12
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(close to the nominal 95.4%), and the fraction of |rTCV| >3is 1.0%-3.1%. These few samples mainly occur in regions with

larger uncertainty, consistent with the uncertainty patterns.
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Figure 5: Probability histograms of standardized residuals, illustrating the mean and standard deviation of the distributions.
Panels (a)-(d) represent the residual distributions for channels U1-U4, respectively.

Furthermore, Fig. 6 presents how the cross-validation residuals AT” vary with stellar target, zenith angle, and azimuth. The
boxplots of residuals grouped by target star show that the absolute mean residual for each stellar direction is below 0.0042,
with similar spread across targets, and no evidence of a systematic bias associated with any single star. Scatterplots of
residuals against zenith angle and azimuth indicate that, within the main portion of the observed band, residuals form a
trend-free cloud with no clear systematic dependence on either zenith angle or azimuth; only in the large-zenith-angle region
where samples are sparser does the residual dispersion increase slightly, consistent with the larger uncertainties previously

noted in sparsely sampled areas.
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Figure 6: Residual distributions for different variables. Panels (a)-(d) show the relationship between residuals and target stars for
channels U1-U4, respectively. Panels (e)-(h) illustrate the relationship between residuals and zenith angle, while panels (i)-(I) show
the relationship between residuals and azimuth for each channel.

In summary, the cross-validation residual analysis indicates that the GPR model exhibits no obvious systematic bias within
the observation band, and that the errors are dominated by local random fluctuations associated with sampling density and

atmospheric complexity, corroborating the preceding error metrics and the spatial patterns of the uncertainty field.

5 Conclusion

This study addresses the two-dimensional construction of atmospheric UV transmittance on the zenith—azimuth plane by
developing a Gaussian process regression model in the optical-depth domain and jointly estimating the transmittance field
and its uncertainty through a multi-star track-envelope constraint and cross-validation—based variance inflation. The results
show that, within the observed band, GPR achieves transmittance-domain reconstruction accuracy superior to or comparable
with piecewise linear interpolation and inverse-distance weighting. Furthermore, GPR provides statistically calibrated
confidence intervals, with spatial patterns consistent with the line-of-sight sampling density and the underlying atmospheric
structure. Analysis of residual variations with stellar target, zenith angle, and azimuth indicates no significant systematic bias.
Overall, the proposed framework enables the transformation from limited multi-star observations to a continuous UV
transmittance field with reliable error characterization, providing a generalizable technical pathway for UV observation

correction and quantitative assessment of site transparency.
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Nevertheless, this study has several limitations:

(1) The current results are based on a single site and a single observing campaign, lacking robustness tests at seasonal and
interannual scales. Future work will conduct multi-season, multi-year, and multi-site joint observations to evaluate the
generalizability of the approach under different meteorological regimes and site conditions;

(2) Only four relatively broad narrowband channels are available, resulting in limited spectral resolution and restricting the
separation of underlying physical contributions. We plan to increase the number of channels and narrow the bandwidths, and
to incorporate cross-channel joint modelling to better disentangle the contributions from Rayleigh scattering, ozone
absorption, and aerosols;

(3) The observing efficiency is currently limited, leading to a relatively small angular coverage of the reconstructed two-
dimensional transmittance fields. Future improvements will optimize both hardware and sampling strategies (automation and
parallelization, simultaneous multi-star observations, and enhanced pointing and tracking) with the goal of achieving stable

fits with near—full-sky coverage.
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