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Abstract. Accurate characterization of slant-path atmospheric transmittance in the 280–400 nm ultraviolet (UV) window is 

essential for radiometric calibration of ground-based UV observations and link-budget assessments of UV optoelectronic 

systems. Nighttime measurements, however, typically rely on stellar radiometers that provide only sparse and irregular 

samples along stellar tracks, which complicates construction of a continuous two-dimensional (zenith–azimuth) 10 

transmittance field. Here we retrieve slant-path transmittance from multi-star, multi-channel stellar UV radiometer 

observations using a stellar Langley-type calibration, and reconstruct a 2-D transmittance field by modeling optical depth 

with Gaussian process regression (GPR) as a function of zenith angle and azimuth. Predictive uncertainty is quantified and 

rescaled using cross-validated standardized residuals, and performance is benchmarked against conventional interpolation 

approaches. The reconstructed fields robustly capture the zenith-angle-dominated gradient, achieving cross-validated R² = 15 

0.965–0.984 and RMSE = 0.004–0.007 across four UV channels. After calibration, 67%–81% of standardized residuals fall 

within ±1 and 93%–96% within ±2 standard deviations, indicating well-calibrated uncertainty; uncertainty increases in 

sparsely sampled regions and with local sampling spacing. The proposed framework enables practical construction of 

nighttime UV transmittance fields with well-characterized uncertainty for observation correction and quantitative assessment 

of site transparency. 20 

1 Introduction 

The "UV window" of the atmosphere in the 280–400 nm band is essential for ground-based UV observations, the design of 

optoelectronic systems, and radiative-transfer corrections. The total-column transmittance of this band directly governs the 

UV irradiance reaching the detector (Chubarova et al., 2020; Robert et al., 2018). Existing methods for obtaining 

atmospheric transmittance are broadly categorized into radiative-transfer model calculations and ground-based observational 25 

retrievals. Radiative-transfer models can offer a priori estimates of multi-band transmittance or irradiance based on 

atmospheric profiles and aerosol scenarios. However, their ability to represent spatiotemporal variability under specific 

observational conditions is often constrained by uncertainties in input parameters, aerosol scenarios, and profile assumptions 

(Campanelli et al., 2022; Mateos et al., 2014). Ground-based sun-photometer networks, such as AERONET, have established 
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mature observing systems and aerosol retrieval methods in the visible–near-infrared range. However, their spectral channels 30 

primarily cover 340–1640 nm, with limited coverage in the UV window, making them unsuitable for nighttime transmittance 

variability measurements (Estellés et al., 2012; Giles et al., 2019; Perrone et al., 2021). Lunar photometers can measure 

AOD and transmittance at night, extending observations into the day–night continuum. However, the changing lunar phase 

necessitates frequent calibration, and reliance on a single light source limits angular-domain coverage (Román et al., 2020; 

Uchiyama et al., 2019). In contrast, Román and colleagues utilized all-sky cameras in the visible–near-infrared range to 35 

obtain dense angular distributions of sky radiance, facilitating multi-directional retrievals (Graßl et al., 2024; Román et al., 

2022; Román et al., 2025). 

In the UV range, ozone absorbs strongly in the 250–330 nm range, Rayleigh scattering increases rapidly at shorter 

wavelengths (Codrean et al., 2025), and aerosol absorption and scattering become more pronounced. These processes, in 

conjunction with enhanced ozone absorption and molecular scattering, severely limit the available UV radiative flux at the 40 

surface. Conventional area-array imaging systems, constrained by detector quantum efficiency and system signal-to-noise 

ratio, struggle to achieve high-density quantitative sampling over the UV angular domain. As a result, practical applications 

more frequently rely on point-measurement instruments, such as stellar radiometers, to obtain transmittance samples along 

discrete lines of sight (Barreto et al., 2019). This creates a key challenge: multi-star samples are typically clustered along star 

tracks and distributed non-uniformly. As a result, supporting observation correction and engineering applications requires 45 

converting these limited discrete samples into a continuous two-dimensional transmittance field on the zenith–azimuth plane 

through fitting and field-reconstruction methods, accompanied by credible uncertainty characterization. 

In recent years, data-driven approaches for atmospheric retrieval and field modeling have advanced rapidly. Notably, 

Gaussian process regression (GPR), a nonparametric Bayesian method, offers distinct advantages for reconstructing spatial 

fields from irregular sampling, characterizing multiscale spatial dependence, and quantifying predictive uncertainty (Camps-50 

Valls et al., 2016; Susiluoto et al., 2020). In Earth observation and atmospheric science, GPR has been applied to large-scale 

spatial interpolation of remote-sensing products, multi-source data fusion, and statistical emulation of complex radiative-

transfer models, demonstrating stable mean predictions and reasonable confidence intervals even with high-dimensional 

inputs and limited samples (Gómez-Dans et al., 2016; Lamminpää et al., 2025; Lubbe et al., 2020). Within the covariance-

kernel framework, GPR naturally incorporates anisotropic correlation length scales, enabling scale-dependent dependence to 55 

be represented along the zenith- and azimuthal-angle directions; it can therefore exploit sparse line-of-sight observations to 

capture the spatial continuity of the transmittance field, predict unobserved directions, and provide posterior variance as a 

measure of uncertainty (Liang et al., 2025; Perry et al., 2025; Yu et al., 2017). However, existing studies have largely 

focused on solar irradiance forecasting, retrieval of aerosol or pollutant concentration fields, and radiative-transfer modelling 

in the visible–near-infrared, and these approaches have not yet been widely applied to the two-dimensional angular-domain 60 

reconstruction of total-column transmittance in the 280–400 nm UV window. In particular, under limited sightlines and 

multi-star joint observations, how to use GPR to effectively reconstruct a UV transmittance field with relatively complete 

directional coverage and reliable uncertainty quantification remains an open gap in current research. 
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To address the above issues, this study proposes a workflow for constructing and validating a two-dimensional field of 

nighttime total-column UV transmittance based on multi-star observations, with the main contributions summarized as 65 

follows: 

1.Using data from a multi-channel stellar UV radiometer, we retrieve total-column transmittance samples in four narrowband 

channels spanning 280–400 nm via the Langley-plot method, providing highly traceable inputs for two-dimensional angular-

domain modelling; 

2.We develop a GPR-based spatial dependence model in the optical-depth domain with zenith angle and azimuth as 70 

predictors, and we incorporate a multi-star track-envelope constraint to reconstruct a continuous field within the band-

covered region while simultaneously producing the corresponding uncertainty field; 

3.We scale-calibrate the predictive variance via cross-validation and, through comparisons with inverse-distance weighting 

and piecewise linear interpolation together with residual diagnostics, we systematically evaluate reconstruction accuracy, 

stability, and uncertainty consistency, thereby delineating the applicability and confidence of the results. 75 

2 Methods 

To construct a continuous ultraviolet transmittance field on the zenith–azimuth space from discrete line-of-sight samples, we 

introduce a Gaussian process regression model in the optical-depth  domain. For each observation, the zenith angle and 

azimuth are denoted by z  and A  , respectively; after applying the Langley-plot calibration (Michalsky and Mcconville, 

2024), the total-column slant-path transmittance ( , )T z A  and the corresponding optical depth ( , )z A are obtained. 80 

Compared with modelling directly in the transmittance T  domain, modelling in the   domain is more consistent with the 

physical processes of atmospheric radiative transfer. On the one hand,   is obtained by integrating the extinction 

coefficients along the line of sight, and the total optical depth can be expressed as a linear superposition of components such 

as Rayleigh scattering, ozone absorption, and aerosol extinction; this representation is widely used in standard radiative-

transfer models and optical-depth retrievals and is therefore more suitable as a “linear” state variable for modelling spatial 85 

correlations (Emde et al., 2016). Extensive statistical analyses based on observations such as AERONET indicate that the 

logarithm of aerosol optical depth and related optical-depth quantities is closer to a Gaussian distribution; therefore, applying 

a logarithmic transform in the transmittance domain and converting it to optical depth   helps the errors behave as 

approximately additive Gaussian noise in the   domain, which is consistent with the Gaussian prior and Gaussian-noise 

assumptions commonly adopted in Gaussian process regression (N. T. et al., 2000; Kauppi et al., 2024). Accordingly, we use 90 

optical depth as the target variable in GPR to build a spatial correlation model and then map the predictions back to the 

transmittance domain, enabling errors along different azimuth directions to be assessed on a unified optical-depth scale and 

yielding both the full-field transmittance and its uncertainty. 
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We denote the input vector of each observation as 
T

i i i( , )z A=x , with the corresponding output being the optical depth 

i iy = , 1,...,i N= . 95 

We assume that the target field ( )f x follows a zero-mean Gaussian process: 

( ) ~ 0, ( , )( )f k x x x ，                                                                             (1)  

where ( , )k x x denotes the covariance kernel defined over the angular domain; the observation noise is modelled as additive 

independent Gaussian noise: 

2,( ) ~ (0, )i i i i ny f   = +x  ，                                                                                                                                               (2) 100 

To improve numerical stability and ensure consistency across different input units, we first standardize the input variables 

( ), z A by subtracting the sample mean and dividing by the sample standard deviation. For the kernel design, to capture both 

large-scale smooth structure and local variability while allowing different correlation length scales along the zenith and 

azimuth directions, we employ a sum of a Matérn kernel and a radial basis function (RBF) kernel, with an explicit white-

noise kernel term: 105 

2 2

1 2( , ) ( , ; , ) ( , ; )Matern c R wBFk k k   
  = + +

xx
x x x x x x  ，                                                       (3) 

Here, the Matérn smoothness parameter  , the anisotropic length-scale vector 1 , 2 , as well as the amplitude coefficients 

2

c and the noise level 
2

w are treated as hyperparameters and are jointly estimated by maximizing the log marginal likelihood. 

To mitigate the influence of local optima, we apply multiple random restarts in the hyperparameter optimization. 

Let the training sample set be  1,..., N=X x x
T

with corresponding optical-depth observations  1,..., Ny y=y
T

.According to 110 

Gaussian process regression theory, the covariance matrix of the training set can be written as 

2

f n= +K K I ，                                                                                       (4) 

where ( ),f i ji j
k  = K x x . Given the hyperparameters, the log marginal likelihood is 

11 1

2 2 2
log ( | ) log | | log 2πNp −= − − −y X y y KK

T ，                                                                                                                    (5) 

Numerical optimization yields a set of hyperparameter estimates that maximize this likelihood. For an arbitrary prediction 115 

direction x , we define the covariance vector with the training samples as 

* 1[ ( , ),..., ( , )]Nk k = x x x xk
T ，                                                                                                                                                 (6) 
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and the self-covariance ( ),k k  = x x .Then the posterior distribution of   is a one-dimensional Gaussian, with predictive 

mean and variance given by 

1

* *( ) k
−=x yK

T ，                                                                                                                                                                    (7) 120 

2 1

* ** * *( ) k
−= −x k K k

T ，                                                                                                                                                           (8) 

After obtaining  and  , we map them back to the transmittance domain as 

( ) ( ) ( )( )expT x m z x   = − ，                                                                                                                                                (9) 

( ) ( ) ( ) ( )T m z T      x x x ，                                                                                                                                            (10) 

where the transmittance uncertainty is estimated using first-order error propagation. In the following sections, we take the 125 

 corresponding to ( ),T z A as the reconstructed two-dimensional UV transmittance field, and use to T describe the 

angular-domain confidence distribution of the reconstructed field. 

Moreover, to improve the statistical reliability of the predictive uncertainty, we further calibrate the GPR output variance 

using cross-validation optical-depth residuals (Acharki et al., 2023; Gneiting et al., 2007; Jimenez and Katzfuss, 2022). 

Specifically, we construct standardized residuals from the cross-validated residuals CV and the corresponding predictive 130 

standard deviations 
CV

 as 

CV CV CVr  =   ，                                                                                                                                                                (11) 

We compute its empirical standard deviation ˆ
r and rescale all predictive standard deviations by an inflation factor ˆ

r .After 

calibration, the variance of the standardized residuals becomes closer to 1 and the coverage is more consistent with the 

theoretical values of the standard normal distribution, thereby increasing confidence in the transmittance uncertainty field. 135 

3 Data Acquisition 

The UV transmittance data used in this study were obtained with an in-house stellar UV radiometer (Zhao et al., 2025), 

whose optical layout is shown in Fig. 1. The instrument adopts a coaxial reflective telescope and a dual-channel architecture, 

in which the imaging channel is used for star acquisition imaging and closed-loop guiding control, while the UV detection 

channel performs photon-counting measurements of stellar UV radiation using a narrowband filter wheel and a high-140 

sensitivity photomultiplier tube (PMT). 

The filter wheel is equipped with four narrowband channels covering the 280–400 nm UV window: U1 (370–400 nm), U2 

(340–370 nm), U3 (300–340 nm), and U4 (288–314 nm), with bandwidths of approximately 20–30 nm. From the longest to 
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the shortest wavelengths, the four channels exhibit progressively higher sensitivity to ozone absorption and Rayleigh 

scattering, enabling characterization of the wavelength dependence of total-column atmospheric transmittance. 145 

 

Figure 1: Instrument Optical Path Diagram. 

Field observations were conducted in the Changchun region in October 2025 at a site located at 43°50′56″ N, 125°24′01″ E, 

with an elevation of approximately 200 m. Four moderately bright stars distributed across different right ascensions and 

declinations were selected as target sources, and their basic parameters are listed in Table 1. Using the site coordinates and 150 

observation times, the stars’ right ascension and declination can be converted to zenith angle z  and azimuth A  , thereby 

obtaining the apparent motion tracks of each star during the observation period. 

Table 1 Summary of the target stars used for UV transmittance measurements, including their right ascension, declination, 

magnitude, and spectral type. 

Star name Right ascension Declination Magnitude Spectral type 

HD12533 2h05m31.13s 42d27m19.7s 2.15 K3Ⅱ+B9.5V+A0V 

HD13161 2h11m06.72s 37d59m00.3s 3.00 A5Ⅲ 

HD11443 1h54m35.05s 29d42m24.4s 3.40 F5Ⅲ 

HD13041 2h10m04.73s 37d59m00.3s 4.75 A5IV-V 

At each time step, once the imaging channel completes closed-loop tracking, the UV detection channel sequentially switches 155 

among the four narrowband filters (U1–U4) to sample photon counts from the target star. After removing samples affected 

by cloud occlusion, guiding failures, and obvious count outliers, a total of N=98 valid samples were retained, with identical 

sample sizes across channels U1–U4. Based on the calibration results, the total-column slant-path transmittance ( ), ; kT z A 

( )1,..., 4k = for the four channels can be retrieved along each line of sight. The resulting observations can be represented as a 
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set of discrete samples  , ;Tk

i i iz A , 1,...,i N= , ( )1,..., 4k = , where N denotes the total number of valid observations of all 160 

target stars over the entire campaign. In the subsequent two-dimensional field reconstruction, each channel is modelled and 

analysed independently. 

4 Analysis and Discussion 

In this section, using the GPR model and multi-star observations from the Changchun site, we analyze the reconstructed two-

dimensional UV transmittance fields, the associated uncertainty distributions, comparisons with simple interpolation 165 

methods, and residual behavior. 

4.1 Ultraviolet Transmittance Field Construction Results 

To obtain a continuous description of UV transmittance over the angular domain, we project all samples from the four stars 

during the observation period onto the ( ),z A  space to form a discrete sample set. Following the GPR formulation in Section 

2, we train the model using zenith angle and azimuth as inputs and optical depth as the target variable, learning the spatial 170 

dependence structure of the transmittance field under a covariance function formed by the sum of a Matérn kernel and an 

RBF kernel. To avoid nonphysical extrapolation outside the observed region, we clip the prediction grid using a bounded 

band constructed from the observation tracks and report the two-dimensional transmittance field only within the multi-star 

track envelope and its limited expansion, as shown in Fig. 2. 
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 175 

Figure 2: Construction of ultraviolet transmittance using Gaussian Process Regression (GPR). Panels (a)-(d) show the 

transmittance construction for channels U1–U4, respectively, with the corresponding zenith and azimuth angles. 

As can be seen from the spatial patterns in Fig. 2, the transmittance fields in all four channels exhibit a systematic gradient 

dominated by zenith angle: transmittance is generally higher at small zenith angles ( 15z   ), and decreases continuously as 

zenith angle increases (corresponding to longer line-of-sight paths). This trend is consistent with the physical expectation 180 

that total-column extinction accumulates along the path, indicating that the model can robustly recover the dominant 

structural features of the angular-domain field even when line-of-sight samples are sparse and unevenly distributed. 

In terms of spectral differences, the shortwave channels (U3 and U4) exhibit a faster decrease in transmittance with 

increasing zenith angle than the longwave channels (U1 and U2) and respond more sensitively at large zenith angles, leading 

to stronger gradients and more pronounced morphological contrasts in the large-zenith-angle region. This behavior is 185 

consistent with enhanced ozone absorption, stronger Rayleigh scattering, and more pronounced aerosol UV extinction at 

shorter wavelengths, and it also highlights the necessity of multi-channel observations for characterizing wavelength-

dependent extinction responses. 
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Beyond the systematic variation along zenith angle, Fig. 2 also shows localized fluctuations and heterogeneous structures in 

certain azimuth sectors. For example, at a similar small zenith angle (≈10°), an overall reduction in transmittance appears in 190 

the azimuth range of 170°–210°. This feature may be associated with localized atmospheric perturbations during the 

observations (e.g., thin high clouds aloft or locally enhanced aerosols); moreover, under the anisotropic length-scale setting 

and multi-kernel constraints of GPR, such local variations are not overly smoothed, suggesting that the atmospheric 

transmittance exhibited a degree of azimuthal heterogeneity over the observation period. 

To further quantify the credibility of the reconstruction in different regions, the next section analyzes the results in 195 

conjunction with the spatial distribution of uncertainty. 

4.2 Uncertainty Field and Reliability Analysis 

Within the GPR framework, the model outputs both the predictive mean and the posterior standard deviation in the optical-

depth domain. To facilitate engineering applications and observational correction, we propagate uncertainty from the  

domain back to the T  domain and calibrate it using a variance inflation factor ˆ
r derived from cross-validated (CV) 200 

standardized residuals, thereby obtaining calibrated transmittance uncertainties within the band-covered region. Figure 3 

presents the spatial distribution of T  for the four channels. 
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Figure 3: Prediction uncertainty and measured data distribution for the four UV channels. Panels (a)-(d) show the uncertainties 205 
for channels U1–U4, respectively, along with the distribution of measured data points. 

Summary statistics over the entire reconstructed region show that the median T ranges from 0.0033 to 0.0059, and the 

median relative uncertainty T T is 0.69%–2.95%. The relative uncertainty is higher in the shortwave channels, consistent 

with the physical characteristics that shorter-wavelength UV signals are weaker and more sensitive to path length due to the 

combined effects of ozone absorption, Rayleigh scattering, and aerosol extinction. 210 

Overall, uncertainty exhibits a structure consistent with sampling density: is small in densely sampled areas near the multi-

star tracks, but increases markedly in locally sparse regions. To quantify the phenomenon that “sparser sampling leads to 

larger uncertainty,” we introduce the “local sampling spacing” ( )3d T in the ( ),z A space. For any prediction location , 

( )3d T is defined by computing and sorting its distances to all observation points ( ) ( ) ( ) ( )1 2 3 4 .....d T d T d T d T    ( )3d T  

denotes the third-nearest-neighbour distance. We then analyze the relationship between ( )3d T  and T  , as shown in Fig. 4. 215 

The results indicate a robust positive association between ( )3d T and T : the Spearman correlation coefficient   ranges 
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from 0.66 to 0.76 across the four channels (all significant with p < 0.001). As implied by Eq. (12), this increase in 

uncertainty under sparse sampling is consistent with the underlying mechanism of the model. 

 

Figure 4. Correlation analysis between local sampling spacing and uncertainty. Panels (a)-(d) correspond to channels U1–U4, 220 
respectively, showing the relationship between the third-nearest-neighbor distance and the uncertainty in the transmittance 

predictions. 

4.3 Accuracy Assessment and Comparison with Simple Interpolation Methods 

To evaluate the accuracy of GPR for reconstructing two-dimensional UV transmittance fields and its advantages over 

commonly used interpolation methods, we adopt a cross-validation scheme and compare GPR with piecewise linear 225 

interpolation based on Delaunay triangulation (denoted as Linear ND) and inverse distance weighting (IDW, p=2). Table 2 

reports the RMSE, MAE, and 
2R metrics for the four channels under the three methods, computed in the   domain and the 

T  domain, respectively. 

Table 2 Comparison of reconstruction accuracy for GPR, piecewise linear interpolation (Linear ND), and inverse distance 

weighting (IDW) across the four UV channels. The table reports RMSE, MAE, and R2 metrics for both the optical-depth and 230 
transmittance domains. 

Channel Method RMSE_  MAE_  2R _  RMSE_ T  MAE_ T  2R _ T  

https://doi.org/10.5194/egusphere-2025-6537
Preprint. Discussion started: 26 January 2026
c© Author(s) 2026. CC BY 4.0 License.



12 

 

U1 

GPR 0.012 0.008 0.605 0.007 0.005 0.965 

Linear ND 0.012 0.008 0.587 0.007 0.005 0.962 

IDW(p=2) 0.013 0.009 0.520 0.007 0.005 0.958 

U2 

GPR 0.010 0.007 0.689 0.005 0.004 0.984 

Linear ND 0.010 0.007 0.665 0.006 0.004 0.983 

IDW(p=2) 0.014 0.009 0.411 0.007 0.005 0.970 

U3 

GPR 0.022 0.014 0.472 0.007 0.005 0.968 

Linear ND 0.023 0.014 0.427 0.008 0.005 0.966 

IDW(p=2) 0.023 0.016 0.411 0.008 0.005 0.964 

U4 

GPR 0.033 0.024 0.485 0.004 0.003 0.979 

Linear ND 0.031 0.021 0.532 0.004 0.003 0.982 

IDW(p=2) 0.033 0.025 0.466 0.004 0.003 0.976 

In terms of overall error levels, all three methods achieve RMSE values on the order of 0.004–0.008 in the transmittance 

domain, with the corresponding 
2R generally exceeding 0.96, indicating that within the observation envelope all methods 

provide relatively accurate transmittance estimates. Against this background, GPR and Linear ND exhibit similar RMSE in 

the T  domain; compared with IDW, GPR yields lower RMSE across all channels in the T  domain, with an average 235 

reduction of about 20%–30%, and generally higher 
2R , indicating that a statistical model that explicitly incorporates spatial 

correlation has a clear advantage over simple distance-weighted averaging under limited sightline sampling. 

In the optical-depth domain, the RMSE of all three methods increases as the wavelength decreases (U1-U4); GPR attains 

values of 
2R about 0.4–0.7, generally higher than or comparable to Linear ND and clearly better than IDW. This partly 

reflects the fact that atmospheric processes are more complex in the short-wavelength UV channels and the dynamic range of 240 

  is larger, which increases modelling difficulty; it also indicates that a GPR model with anisotropic length scales in the   

domain can effectively capture angular-domain correlations. Importantly, beyond achieving T  domain errors comparable to 

or slightly better than Linear ND, GPR additionally provides statistically interpretable uncertainty estimates, which 

deterministic interpolation methods cannot offer.  

4.4 Residual Analysis 245 

Building on the cross-validation in Section 4.3, we assess the reliability of the GPR model for UV transmittance construction 

by conducting a statistical analysis of standardized residuals
CV

Tr  in the transmittance domain. Figure 5 shows probability 

histograms of the standardized residuals for each channel, together with their means and standard deviations. The 

standardized residual distributions for all four channels are unimodal and approximately symmetric, with means close to 0 

and standard deviations close to 1, indicating no pronounced systematic bias in the model. Specifically, the empirical 250 

coverage for 1CV

Tr   is 67.3%–80.6% (close to the nominal 68.3% for a standard normal), for 2CV

Tr   is 92.9%–95.9% 
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(close to the nominal 95.4%), and the fraction of 3CV

Tr  is 1.0%–3.1%. These few samples mainly occur in regions with 

larger uncertainty, consistent with the uncertainty patterns. 

 

Figure 5: Probability histograms of standardized residuals, illustrating the mean and standard deviation of the distributions. 255 
Panels (a)-(d) represent the residual distributions for channels U1–U4, respectively. 

Furthermore, Fig. 6 presents how the cross-validation residuals 
CVT vary with stellar target, zenith angle, and azimuth. The 

boxplots of residuals grouped by target star show that the absolute mean residual for each stellar direction is below 0.0042, 

with similar spread across targets, and no evidence of a systematic bias associated with any single star. Scatterplots of 

residuals against zenith angle and azimuth indicate that, within the main portion of the observed band, residuals form a 260 

trend-free cloud with no clear systematic dependence on either zenith angle or azimuth; only in the large-zenith-angle region 

where samples are sparser does the residual dispersion increase slightly, consistent with the larger uncertainties previously 

noted in sparsely sampled areas. 
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 265 

Figure 6: Residual distributions for different variables. Panels (a)-(d) show the relationship between residuals and target stars for 

channels U1–U4, respectively. Panels (e)-(h) illustrate the relationship between residuals and zenith angle, while panels (i)-(l) show 

the relationship between residuals and azimuth for each channel. 

In summary, the cross-validation residual analysis indicates that the GPR model exhibits no obvious systematic bias within 

the observation band, and that the errors are dominated by local random fluctuations associated with sampling density and 270 

atmospheric complexity, corroborating the preceding error metrics and the spatial patterns of the uncertainty field. 

5 Conclusion 

This study addresses the two-dimensional construction of atmospheric UV transmittance on the zenith–azimuth plane by 

developing a Gaussian process regression model in the optical-depth domain and jointly estimating the transmittance field 

and its uncertainty through a multi-star track-envelope constraint and cross-validation–based variance inflation. The results 275 

show that, within the observed band, GPR achieves transmittance-domain reconstruction accuracy superior to or comparable 

with piecewise linear interpolation and inverse-distance weighting. Furthermore, GPR provides statistically calibrated 

confidence intervals, with spatial patterns consistent with the line-of-sight sampling density and the underlying atmospheric 

structure. Analysis of residual variations with stellar target, zenith angle, and azimuth indicates no significant systematic bias. 

Overall, the proposed framework enables the transformation from limited multi-star observations to a continuous UV 280 

transmittance field with reliable error characterization, providing a generalizable technical pathway for UV observation 

correction and quantitative assessment of site transparency. 
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Nevertheless, this study has several limitations: 

(1) The current results are based on a single site and a single observing campaign, lacking robustness tests at seasonal and 

interannual scales. Future work will conduct multi-season, multi-year, and multi-site joint observations to evaluate the 285 

generalizability of the approach under different meteorological regimes and site conditions; 

(2) Only four relatively broad narrowband channels are available, resulting in limited spectral resolution and restricting the 

separation of underlying physical contributions. We plan to increase the number of channels and narrow the bandwidths, and 

to incorporate cross-channel joint modelling to better disentangle the contributions from Rayleigh scattering, ozone 

absorption, and aerosols; 290 

(3) The observing efficiency is currently limited, leading to a relatively small angular coverage of the reconstructed two-

dimensional transmittance fields. Future improvements will optimize both hardware and sampling strategies (automation and 

parallelization, simultaneous multi-star observations, and enhanced pointing and tracking) with the goal of achieving stable 

fits with near–full-sky coverage. 

Code, data, or code and data availability 295 

The dataset analyzed is available at https://github.com/jiangtao185/jiangtao.git for the peer review process. 
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