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Abstract

Understanding the spatial distribution and magnitude of methane emissions is critical for developing effective mitigation
strategies, particularly in rapidly growing economies like India, the world’s most populous country and a top global methane
emitter with diverse emission sources. We quantify India’s 2021 methane emissions at up to 0.25°x0.3125° resolution using
TROPOspheric Monitoring Instrument (TROPOMI) observations in a Bayesian inversion with the Integrated Methane
Inversion framework (IMI). Prior emissions come from state-of-the-art global gridded bottom-up inventories and incorporate
GHGSat-based estimates for eighteen landfills. The high-resolution inversion and incorporation of GHGSat data enable us to
evaluate and interpret results at multiple policy-relevant scales. The national posterior emission estimate is 34.4 (32.0 — 40.4)
Tg/yr, of which 31.5 (29.6 — 36.7) Tg yr'! is anthropogenic, consistent with bottom-up prior emissions but 68% higher than
India’s UNFCCC inventory. National landfill and oil & gas emissions are 30% higher, while coal emissions are 57% lower
than prior estimates. State-level analysis highlights seven states with higher emissions, with notably higher oil and gas
emissions in Assam and Gujarat, and lower coal mining emissions in Rajasthan and Odisha. Urban-scale posterior estimates
for fourteen cities reveal significant differences from the prior in ten cities. Posterior wastewater emissions are higher in nine
cities, with the largest increases in Kolkata and Delhi, consistent 60—90% of their populations lacking access to wastewater
treatment facilities. GHGSat observations reveal landfills contribute 10-38% of emissions in eleven cities, emphasizing the

critical role of solid waste management. These results illustrate how satellite-based analyses can inform methane mitigation.
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1. Introduction

Methane is the second most important anthropogenic greenhouse gas in terms of radiative forcing, with a global warming
potential 27-30 times greater than that of CO, over a 100-year time scale (Forster et al., 2021). Globally, its atmospheric
concentration had increased by more than 160 % in 2021 compared to preindustrial levels, primarily driven by anthropogenic
emissions (Skeie et al., 2023). After a period of stability in the early 2000s, methane concentrations have been increasing at
an average rate of 7.1 ppb a”! since 2007, with peak growth rates exceeding 10 ppb a™' from 2014 to 2015 and 2020 to 2022
(Lan et al., 2025). Reducing methane emissions has become a key focus of climate agreements like the Paris Agreement and
the rapid atmospheric growth highlights the urgency of emission mitigation. The Global Methane Pledge, launched at the 2021
United Nations Climate Change Conference (COP26), has by January 2025 been signed by 159 countries committing to reduce
methane emissions by 30 % between 2020 and 2030 (Climate and Clean air Coalition, 2025). South Asia is one of the largest
methane emission hotspots globally (Stavert et al., 2022), estimated to emit 52 (43-60) Tg yr! in total in 2010-2019
and contributing approximately 12 % of global anthropogenic methane emissions (Saunois et al., 2025). The region comprises
diverse methane emission sources, including agriculture, waste, wetlands, and energy production, making it a complex area to
study (Belikov et al., 2024). Here, we use satellite observations to estimate the methane emissions from India, the third-largest

methane emitter globally with reported methane emissions of 18.8 Tg yr'! for 2020 (MoEFCC, 2024).

Recent advancements in satellite remote sensing technology have helped to accurately estimate global methane concentrations
with higher spatial and temporal resolution. Earlier satellites such as the Scanning Imaging Absorption SpectroMeter for
Atmospheric ChartographY (SCIAMACHY; 2003 -2012) and Greenhouse Gases Observing Satellite (GOSAT) are limited by
coarse spatial resolution or sparse coverage (Bovensmann et al., 1999; Butz et al., 2011). The TROPOspheric Monitoring
Instrument (TROPOMI), launched in October 2017, provides daily global methane total column observations with a spatial
resolution of 5.5 km x 7 km at the nadir (7 km x 7 km before August 2019), greatly enhancing coverage (Hu et al., 2018;
Lorente et al., 2021). Inverse modeling methods combine (satellite) observations with atmospheric transport models to link the
observations with emissions (Jacob and Brasseur, 2017). These analyses use ‘bottom-up’ activity-based emission estimates as
starting point, enabling the evaluation of those estimates and emission mitigation policies. Furthermore, high-resolution
(~25m) satellite data, such as from GHGSat and hyperspectral imagers such as Environmental Mapping and Analysis Program
(EnMAP) and Earth Surface Mineral Dust Source Investigation (EMIT), have enabled the estimation of emissions from
individual facilities such as landfills (Maasakkers et al., 2022; Thorpe et al., 2023; Zhang et al., 2025; Dogniaux et al., 2025).
These independent ‘top-down’ analyses can be particularly valuable for highlighting regions, sectors, and facilities where
further investigation and stakeholder engagement are warranted.

India is the world’s most populous country, with approximately 1.47 billion residents in 2025 (United Nations Population
Fund, 2026). The Indian government’s 2024 Biennial Update Report to the United Nations Framework Convention on Climate

Change (UNFCCC) estimates anthropogenic methane emissions for 2020 at 18.8 Tg/yr. An alternate anthropogenic emission
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estimate of 22.0 Tg yr! for 2018 that includes state-level estimates is available from GHG platform India (Solanki et al., 2022;
retrieved from https://www.ghgplatform-india.org/afolu-sector-analytics/ on February 10, 2025). The GHG "Platform India
highlights livestock, waste, rice cultivation, coal, and oil and gas as the major anthropogenic methane sources in India,
underscoring the diversity of sources. These inventories use bottom-up methods that rely on activity data and laboratory-based
emission factors that can come with significant uncertainties, which can be exacerbated due to lack of (homogenous) reporting
capacity, inconsistent methodologies, and high levels of informality in the economy (Gao et al., 2021; MoEFCC 2024).
Furthermore, India lacks a comprehensive ground-based measurement network to provide a detailed validation of national
estimates (Belikov et al., 2024; Chandra et al., 2017; Guha et al., 2018). India has not signed the Global Methane Pledge, citing
concerns that its highest-emitting sectors, agriculture and livestock are ‘survival emissions’ from small and marginal farmers
whose incomes cannot be jeopardized (MoEFCC, 2021). While India's Updated Nationally Determined Contribution (2022)
has an economy-wide emissions intensity reduction target to 45% by 2030, this commitment is 'gas-agnostic' and does not

specify sectoral methane mitigation strategies (Government of India, 2022).

Several studies have used satellite and surface observations to estimate Indian methane emissions. Ganesan et al. (2017)
estimated India’s anthropogenic methane emissions at 22.0 (19.6 - 24.3) Tg yr'! for 2010-2015 using GOSAT, surface, and
aircraft data in an inverse analysis. Similarly, Janardanan et al. (2020) reported anthropogenic methane emissions of 24.2 Tg
yr! for 2010 to 2017 using an inversion method with GOSAT and aircraft data. Zhang et al. (2021) estimated much higher
anthropogenic emissions of 33 Tg yr! for 2010 to 2018 based on an inversion of GOSAT data. Raju et al. (2022) focused on
peninsular India (latitudes below 21.5 °N), estimating methane emissions at 10.6 Tg yr'! for 2017 to 2018 using ground-based
data and inverse modelling. Belikov et al. (2024) estimated India’s total methane emissions at 45.3 Tg yr'! for 2002 to 2020
using background methane measurements from the ObsPack GLOBALVIEW (Schultd et al., 2021), along with surface flask
measurements in Nainital (India) and Comilla (Bangladesh). This estimate is notably higher than previous studies, though it
may be influenced by the limited ground-based data. Recently, Subramanian et al. (2025) estimated methane emissions over
South Asia for 2020 at 0.5° x 0.5° spatial resolution using a Bayesian inversion framework that combines TROPOMI
observations from the Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) product
(Schneising et al., 2023) with the Lagrangian transport model FLEXPART, yielding an estimate of India’s methane emissions
0f35.6+0.5 Tg yr''. Finally, Mathew et al. (2025) quantified India’s anthropogenic methane emissions for 2018-2019 at 24.3
(23.3-25.2) Tg yr! using WFM-DOAS TROPOMI data and the Weather Research and Forecasting model coupled with
Chemistry and Greenhouse Gas module (WRF-GHG) to optimize emissions per state. Hence, multiple studies have mainly
focused on evaluating emissions at the national (to state) scale and found higher anthropogenic emissions than included in
bottom-up emission inventories. For example, India’s UNFCCC-reported emissions for 2020 are 19-75% lower than the
estimates by Janardanan et al. (2020), Zhang et al. (2021), and Mathew et al. (2025). Similarly, the GHG platform India

estimate is 10 - 50% lower than the same studies.
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Urban methane emissions in India in particular come with large uncertainty and are linked with significant environmental
concerns and public health risks, primarily due to poor waste management practices and the high organic content of municipal
solid waste (Siddiqui et al., 2024). India's waste sector constituted approximately 14% of total methane emissions as of 2020,
establishing it as a critical non-agriculture pathway for methane reduction (MoEFCC, 2024). Maasakkers et al. (2022) used
TROPOMI observations with the Weather Research and Forecasting (WRF) model to estimate urban methane emissions in
four cities, including two in India. They found that urban emissions were underestimated in the EDGAR bottom-up inventory
and used GHGSat observations to estimate that landfills in Mumbai and Delhi contributed 26% and 6% to their respective
urban methane emissions. Foy et al. (2023) estimated methane emissions of seven Indian cities using TROPOMI data
combined with a two-dimensional Gaussian model, positing that untreated wastewater could be the largest contributor to urban
methane emission. Using 2021-2022 GHGSat observations, Dogniaux et al. (2025) reported emissions from 151 landfills
across 130 urban areas, including 18 Indian landfills. They compared the GHGSat estimated emissions with the Climate
Tracking Real-time Atmospheric Carbon Emissions (Climate TRACE) dataset (Climate TRACE, 2024) that provides facility-
level methane emissions, finding poor correlation. Similarly, Zhang et al. (2025) also found poor agreement between landfill

emissions estimated using hyperspectral satellite observations and Climate TRACE.

In this study, we utilize 2021 data from the blended TROPOMI+GOSAT data product (Balasus et al., 2023) in a Bayesian
inversion to infer annual methane emissions over India up to resolution of 0.25° x 0.3125°, complemented by GHGSat landfill
data available for the same year. We compare national total and sectoral emissions with UNFCCC and bottom-up estimates.
Furthermore, we also compare our results with state-level emissions provided by the GHG platform India and analyze methane

emissions over 14 urban areas with a focus on waste emissions by incorporating site-level estimates from GHGSat for landfills.

2. Data and Method

We perform an inversion of 2021 data from the TROPOMI+GOSAT blended product (Balasus et al., 2023) using the Integrated
Methane Inversion (IMI) framework (Varon et al., 2022; Estrada et al., 2025). The satellite observations are used in an
analytical Bayesian inversion with log-normal error characterization to optimize 2021 methane emissions at a spatial resolution
of up to 0.25° x 0.3125°. We use the GEOS-Chem chemical transport model as the forward model for the inversion and
evaluate the results with additional satellite and surface observations. Results from the inversion are aggregated at multiple
spatial scales to compare to reported emissions. An ensemble of 30 inversions is used to quantify the uncertainty in the emission

estimates.

2.1 Blended TROPOMI+ GOSAT methane product

The TROPOMI push-broom grating spectrometer onboard the Sentinel-5 Precursor satellite provides methane dry air column

mixing ratios (XCH4) retrieved from the 2305- to 2385-nm shortwave infrared (SWIR) band and the 757- to 774-nm near-

4
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infrared band. The TROPOMI XCH4 product has some residual artifacts related to surface albedo and aerosol scattering
(Lorente et al., 2023). We therefore use the dataset provided by Balasus et al. (2023) who used a machine learning approach
to correct the TROPOMI v02.04.00 operational product (filtered using quality assurance value = 1.0) based on the more
accurate yet sparse GOSAT observations. From this point onward, the blended TROPOMI+GOSAT product will be referred
to as TROPOMI and we use the original operational product in our uncertainty estimation (Section 2.9). We do not use
observations along coastlines and inland waters as these data tend to have lower quality. TROPOMI observations are averaged
over the GEOS-Chem resolution of 0.25° x 0.3125° as described by Estrada et al. (2025), resulting in 888987 super-
observations across our domain in 2021 (Figure 1). The southern part of India has a lower observation density compared to
other parts of the country due to increased cloud cover during the southwest monsoon (June to September) and the northeast
monsoon (October to November) (Figure S1). The average XCH4 concentration over the Indian subcontinent for 2021 is
provided in Figure la. The Indo-Gangetic Plain in the north shows higher methane concentrations compared to the south of
India. This is primarily associated with higher methane emissions driven by anthropogenic activities, which are linked with

higher population density in this region (Dangeti et al., 2024).
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Posterior Simulation - TROPOMI
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Figure 1. TROPOMI methane dry column mixing ratios (XCH4) over India for 2021 (a). The pink star shows the location of the
ground-based measurement site at Nainital. Panels (b) and (c) display the mean difference between TROPOMI observations and
GEOS-chem simulations using prior and posterior emissions. Both TROPOMI data and GEOS-Chem simulations are shown at
0.25° x 0.3125". Grid cells with fewer than 10 individual TROPOMI observations in 2021 are excluded. The mean bias (MB) and
RMSE between TROPOMI and prior (b) and posterior (c) simulations are also shown. Borders are taken from Natural Earth
(https://www.naturalearthdata.com/about/map-update-committee/), which provides de facto administrative boundaries.

2.2 Other supporting methane observations

In addition to TROPOMI, we use facility-level emission estimates for landfills based on high spatial resolution (25x25 m?)
GHGSat methane data (Dogniaux et al., 2025; Maasakkers et al., 2022). The detection limit of GHGSat is ~100 kg hr'! for

point sources; for more spread-out sources like landfills the detection limit is likely higher. Dogniaux et al. (2025) reported
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GHGSat-based emissions from 18 different Indian landfills that have been included in this study to estimate the contribution

of landfill emissions to urban emissions.

Furthermore, we use satellite and surface observations to evaluate our inversion. In January 2009, GOSAT was launched by
the Japanese Space Agency (JAXA) to measure greenhouse gases (Kuze et al., 2009). GOSAT has a 13:00 local overpass time
and its pixels have a diameter of 10 km, separated by about 250 km along-track and across-track (Kuze et al., 2009). Methane
is retrieved using the shortwave infrared bands at 1.6 pm with the CO; proxy method, which is less sensitive to surface and
aerosol related artifacts. Good methane data is obtained for about a quarter of the observations, mostly limited by cloud cover
(Parker et al., 2020). We use high-quality data (quality flag = 0) from the University of Leicester Proxy GOSAT v9.0 proxy
product, the same dataset used in the TROPOMI+GOSAT blended product. To eliminate the GOSAT global mean bias versus
TCCON stations, 9.2 ppb is subtracted from the XCH4 data product, as suggested by Balasus et al. (2023). We also use 2021
ground-based in-situ methane measurements at Nainital (NTL) (29.36° N, 79.46° E), located at the Aryabhatta Research
Institute of Observational Sciences (ARIES) (Nomura et al., 2021). Surface methane concentrations are measured weekly
using the flask sampling method. Nainital, a mountain site located ~300 km away from New Delhi, can be considered a

background station, although it is occasionally affected by regional-scale air pollution events.

2.3 Integrated Methane Inversion (IMI)

To model the relationship between emissions and TROPOMI-observed concentrations, we use the GEOS-Chem transport
model as incorporated in the Integrated Methane Inversion (IMI) v1.1 framework (Varon et al., 2022) with some modifications.
GEOS-Chem is a global-atmospheric chemistry transport model, with the ability to operate in nested mode at regional scale
with a spatial resolution of 0.25° x 0.3125°. GEOS-Chem uses Goddard Earth Observing System Forward Processing (GEOS-
FP) meteorological fields at 0.25° x 0.3125° spatial resolution and a temporal resolution of 3 hr, as provided by the NASA
Global Modeling and Assimilation Office. In the methane simulation, methane removal is represented through its two major
sinks: atmospheric oxidation and soil uptake. The nested version of GEOS-Chem has been applied for regional methane
inversions using TROPOMI observations in various studies (e.g. Chen et al., 2022; Zhang et al., 2021). For this study, we
define a nested GEOS-Chem domain encompassing India and (parts of) neighboring countries and the Indian Ocean (latitude:
1.75° N to 40.5° N, longitude: 63.125° E to 102.5° E; Figure 1). We perform simulations for 2021, using December 2020 as
spin-up. Smoothed TROPOMI fields, at a spatial resolution of 2°%2.5°, are used as initial conditions and applied as boundary
conditions (v2024-06) to maintain consistency with observations within the study domain (Estrada et al., 2025). Biases in the
boundary conditions can result in discrepancies in the inversion process. Therefore, we optimize the boundary conditions on a
yearly scale at the four domain edges and on a monthly scale for the entire domain (Section 2.5). The GEOS-Chem simulated

XCH4 vertical profile is remapped to TROPOMI observations as described by Varon et al. (2022).
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2.4 Prior emissions

Table 1 summarizes the prior emissions for different sectors in India. Emissions from coal, oil, and gas are taken from the
Global Fuel Exploitation Inventory (GFEI v2, Scarpelli et al., 2020). Livestock, wastewater, and rice emissions are taken from
EDGAR v7. Landfill emissions are also based on EDGAR v7, but for eleven Indian cities are supplemented with emission
estimates for 18 landfills based on 2021-2022 GHGSat observations provided by Dogniaux et al. (2025). For these cities, the
cumulative EDGAR-based landfill emissions in the 25 grid cells around the landfill are compared with GHGSat estimates. In
all cases, EDGAR-summed landfill emissions are lower and are set to zero for these grids, with GHGSat emissions assigned
to the grid cell containing the landfill. The “Other Anthropogenic” sector combines all remaining minor anthropogenic sources,
such as road, aviation, industry, and residential emissions, based on EDGAR v7. Seasonality for each anthropogenic emission
sector is applied using a scale factor derived from the monthly EDGAR v6 emission dataset. Monthly wetland emissions for
2021 are from JPL WetCHARTSs (Bloom et al., 2017) at a spatial resolution of 0.5° x 0.5°. Mean emissions are calculated
using the nine high-performance members of the WetCHARTS v1.3.1 ensemble, which are those members that best fit GOSAT
observations (Ma et al., 2021). We also include reservoir emissions from Delwiche et al. (2022), termite emissions from Fung
etal. (1991), geological seepage emissions from Etiope et al. (2019) globally scaled to 2 Tg yr' (Hmiel et al., 2020), and daily
open fire emissions from the Global Fire Emissions Database v4 from van der Werf et al. (2017).

Table 1. Prior and Posterior methane emissions over India in 2021, along with the sensitivity of posterior emissions to TROPOMI
data based on the inversion’s averaging kernel. The sensitivity values range from 0 (no sensitivity) to 1 (full sensitivity). The values
in parenthesis represent the range of inversion results derived using 30 ensemble members.

Sources Prior (Tg/yr) Posterior (Tg/yr) Sensitivity
Total 33.6 34.4 (32.0-40.4) 0.6 (0.5-0.7)
Natural sources 3.0 2924-3.7) 0.3(0.2-0.5)
Reservoirs 1.3 0.9(0.7-1.0) 0.3(0.2-0.4)
Termites 0.3 03(0.3-04) 0.3(0.2-04)
Seeps 0.005 0.008 (0.006 — 0.008) 0.1 (0.3-0.6)
Wetlands 1.3 1.6 (1.4-2.3) 0.4 (0.3-0.6)
Open fires 0.06 0.08 (0.04 — 0.08) 0.4 (0.1-0.5)
Anthropogenic sources 30.7 31.5(29.6 —36.7) 0.6 (0.5-0.7)
Other Anthropogenic 1.9 2.0(1.9-23) 0.5(0.4-0.6)
Rice 4.2 4.3 (3.8—4.8) 0.6 (0.4-0.7)
Wastewater 6.6 7.1(6.4—-8.3) 0.5(0.4-0.6)
Landfills 1.0 1.3(1.1-1.6) 0.6 (0.4-0.8)
Livestock 15.5 15.5(14.0-18.4) 0.5(0.4-0.7)
Coal 0.9 0.5(0.4—-0.64) 0.4 (0.3-0.6)
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0il & Gas 0.6 0.8 (0.7-0.9) 0.3(0.2-0.5)

2.5 State vector

GEOS-Chem has a resolution of 0.25° x 0.3125°, resulting in 19,812 grid cells in our domain (Figure 1). Optimizing each grid
cell as a state vector element is computationally expensive and might not be justified by the information provided by the
observations. Therefore, grid cells are clustered based on proximity, number of satellite observations, and bottom-up emission
estimates, following the K-means clustering method suggested by Nesser et al. (2021). This method preserves high spatial
resolution for the areas with larger emission sources and higher observational density. Areas with lower emissions and
insufficient satellite observations are grouped, creating larger clusters. To determine the suitable number of state vector
elements, the clustering process is iterated 25 times with an increasing number of state vector elements, resulting in logarithmic
growth in Degrees Of Freedom for Signal (DOFS; Section 2.6) that slows down noticeably beyond 1700 elements (Figure S2).
This indicates that increasing the number of state vector elements beyond 1700 will not provide significant additional
information from the inversion. To avoid the aliasing of bias into neighboring grid cells due to large clusters, clusters in the
domain of interest with > 5 grids cell, an averaging kernel sensitivity >0.95, and >10 observations were split into multiple
clusters. We use 1785 state vector elements, of which 1569 are located within India and 199 serve as buffer elements over
neighboring countries. Additionally, 16 state vector elements are included to capture sensitivity to the background by scaling
the boundary conditions (4 for the domain edges (Chen et al., 2022) and 12 for the individual months (Nathan et al., 2024)).

One additional element is used to scale OH concentrations across the domain.

2.6 Analytical inversion

The inversion is performed with lognormal error probability density functions (pdfs) for prior emissions (Maasakkers et al.,
2019). This method omits negative solutions and better captures high-tailed emissions compared to using normal errors (Duren
et al., 2019; Maasakkers et al., 2022; Yuan et al., 2015). We optimize the natural logarithm of state vector x, In(x), with prior
errors on In(x) (hereafter x"). For the buffer elements, boundary conditions, and OH we use normal error distributions. The
Bayesian inversion method provides the optimal solution X’ to x" assuming the normal error distribution (lognormal errors for

prior emission inside India) by minimizing the cost function J(x") (Brasseur and Jacob, 2017).
Jx) = (¥ — xa)"Si7H(x' — xg) + y(y — K'x)'Sg7H(y — K'x) (1

Where x'= In(x) and x;, = In(x,), x,(n X 1) is the prior state vector estimate (n = 1785) and y (m X 1) contains the

TROPOMI super-observations (m = 888987). S, (n X n) is the prior error covariance matrix and S,(m X m) is the

. . . a . . . . . e
observational error covariance matrix. K' = a—i’, (m X n) is the Jacobian matrix and describes the non-linear sensitivity of y
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a . . . Co . . o
tox'. K'x’ = Kx, where K = % (m x n) is the Jacobian matrix that is built by perturbing the prior emission of each state

ay . . ' ay; ay; . .
Y = 22X A L — P A e
vector element by 50 %. As, a result K o (m X n) can be derived using Kj; ain(x)) Xj ox, xjk; j where i and j

are the indices of the observation and state vector element. y is a dimensionless regularization factor and is used to avoid
overfitting to the observations as S,and S, are assumed diagonal. We estimated y using the L-curve analysis as described by
Hansen et al. (2001), which shows that y = 0.1 is the optimal regularization parameter (Figure S3). We also perform sensitivity

tests using y = 0.05 and 0.25 (described in Section 2.9).

The Levenberg-Marquardt method is applied to solve the non-linear problem iteratively (Rodgers, 2000).
-1771 ’ - ’r= ’ ’
Xy = %+ (PKYTSTRE + (L4HKS,TY) (VKLTS (v — Kay) ) — 857 — %), @
Where N is the number of iterations with x, = x, and K}, is evaluated for x' = x},. Equation 2 is iterated until the differences
for all the state vector elements between two consecutive iterations ( xy and x4 ) are smaller than 0.5 % and the X' = xj,¢

is reported as the posterior estimate. We verify that using a value of 10 for & as in Chen et al. (2022) allows the optimization

to smoothly converge to the posterior state and produces similar results as obtained when slowly decreasing & from 100 to 0.

The posterior error covariance matrix S’ is derived as:
§'= (/K'TS;IK' + s ®3)
Where K’ = K’y is evaluated for the posterior estimate. The averaging kernel A is defined as the sensitivity of the posterior
solution to the true value and calculated as:
ox'
- ox

Where I, is the identity matrix. A diagonal value in A of 0 shows that the estimation is dominated by prior information,

A =1,- §'s,™" 4

whereas | indicates that observations fully inform the emission estimate. The trace of A, defined as the DOFS, is the number
of independent pieces of information on x’ derived from TROPOMI observations. Applying the lognormal error distribution

§I

to the prior emissions optimizes the median instead of the mean, which are linked following X,eqn = Xmedian€? - Here, S’ is
the posterior error covariance matrix derived using Equation 3. We report the mean emission results to facilitate comparison

with inventories and include an optimization with normal error characterization in our ensemble.

2.7 Prior and observational error

For the emission state vector elements inside India, the prior error covariance S,~! in x, is derived from the prior emission
estimates (x,), assuming a 50 % uncertainty such that diagonal elements s, are (0.5x,)?. We map these uncertainties to log-

normal space as described by Maasakkers et al. (2019):
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This results in a lognormal prior error of 1.75. For the buffer area, we use normal prior errors of 50%. The prior error on the
boundary conditions (a4 ) is set to 10 ppb as in Chen et al. (2022). The prior standard deviation for OH (gpp) is 10 %. To
assign equal weight to OH as the other state vector elements, the weight for the OH term is increased by taking the ratio with
the total number of other state vector elements (Maasakkers et al., 2019). Super-observations are built by averaging P
individual TROPOMI observations at the GEOS-Chem resolution, resulting in error reduction. We use the residual error
method (Heald et al., 2004) as employed by Chen et al, (2023) to determine the observation error variances for super-

observation (03, per) as:

2 _ 2 1 — Tretrieval
asuper = Oretrieval P

Where, G,otrievar 1 the single retrieval error covariance, 1y.esrieva 1S the error correlation coefficient for all the TROPOMI

2
+ rretrieval) + Otransport (6)

observations averaged at the resolution of the GEOS-Chem model grid, and 04 gnspore is the error covariance related to GEOS-
Chem transport. Here, Tyetriepqr = 0.55 and O¢rgnsport = 4.5 ppb as recommended by Chen et al. (2023) for an inversion at a
resolution of 0.25° x 0.3125°, Gretrievar = 15 ppb is the standard deviation between the GEOS-Chem prior simulation and
super-observations for our prior simulation, which is similar to previous studies (Nathan et al., 2024; Shen et al., 2021). Our

average super-observation error variance is (11.23 ppb)? for the inversion domain, which is similar to Chen et al. (2023).

2.8 Emission attribution to sectors, states, and urban areas

The posterior emissions derived from the inversion method, gridded at a resolution of 0.25° x 0.3125°, can be aggregated over
regions for individual source sectors using the summation matrix W (p X n) (Maasakkers et al., 2019). For sectoral attribution,
W is derived by calculating the area-normalized contribution of each state vector element (n) to the corresponding source
sector (p). For regional attribution, W represents the (area) fraction of each state vector element (n) within an assigned state or
urban area (p). The reduced posterior estimates (f(mred) , averaging kernel of the reduced system (Apeq), and posterior

covariance (§red) are estimated as follows:

ﬁFR,red = WXgg ®
Aieq = WAW? 9
Srea = WSWT (10)

Where, W* = WT(WWT)~1 is the Moore-Penrose pseudo-inverse of W (Calisesi et al., 2005) and the diagonal terms of Aeq
measure the ability of the inversion to estimate emissions independent of prior emissions. This attribution method assumes
that grid-cell-level relative sectoral contributions to the prior are accurate and that sources are evenly distributed within the

grid cells.

10
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2.9 Error estimation and inversion ensemble

Our base inversion uses the blended GOSAT+TROPOMI product and is dependent on parameters such as the lognormal prior
error o, =1.75, the prior error on the boundary condition o;, = 10 ppb, and regularisation parameter y = 0.1. The posterior
covariance matrix, derived using Equation 3, can represent uncertainty in the posterior estimates but does not capture the
uncertainty in these parameters. To address this, we create an ensemble by varying the parameters: 1) o, = 2.0, 1.75, and 1.5;
2) g, =5 ppb, 10 ppb, and 20 ppb; and 3) y =0.25, 0.1, and 0.05. Additionally, sensitivity tests are conducted by using normal
errors, assuming a prior error of 50%, and performing the inversion using the TROPOMI operational product. Furthermore,
satellite-derived methane retrievals can be biased in case of high aerosol load (Huang et al., 2020; Somkuti et al., 2025). To
mitigate these biases, a sensitivity test was conducted by excluding 63 hazy days, identified by higher acrosol optical depth
(AOD) values calculated according to Bhattarai et al. (2022) and Sahu et al. (2022). These days include February 1-7, March
3-9, 14, 16, 17,24, 29, April 3,4, 5, 7, 30, October 21-31, and November 1 to 30. In total, we have 30 ensemble members, of

which we report the range as the uncertainty on our results.

3 Results

We first evaluate the performance of our 2021 TROPOMI inversion over India using additional satellite and ground-based
observations. Subsequently, we evaluate our results at the national, state, and urban scale and compare our estimated emissions

to bottom-up inventories and estimates from the literature.

3.1 Evaluation of the inversion using satellite and ground-based observations

The GEOS-Chem posterior simulation demonstrates an improved fit to the TROPOMI super-observations compared to the
prior simulation (Figure 1). The mean bias over India using TROPOMI super-observations decreases from 2.1 ppb to 0.3 ppb
and the RMSE is reduce from 14.3 to 11.7 ppb while the correlation coefficient (r) improves from 0.89 to 0.93 (Figure S4).
This indicates that the prior simulation already captures the distribution of methane over India rather well but that the inversion
effectively corrects the mean bias in the emissions, while RMSE reduction is limited by the retrieval error of the individual
observations. Part of the improvement is also due to the corrections to the boundary conditions. The inversion reduces the
boundary condition on the southern side of the domain by 10 ppb while increasing it by 7.5 ppb on the western side (Figure
S5). The monthly-scale boundary condition optimizations show a peak increase in August and a peak decrease in December
(Figure S5). As shown in Figure 1, the inversion reduces overestimated methane concentrations in the prior simulation in the
eastern (Odisha state), the north-western (Himachal Pradesh, Jammu and Kashmir, and Uttarakhand), and the western
(Rajasthan) regions of India (A map showing all Indian states is given in Figure S6). Similar corrections are also seen over the

central eastern region (Mumbai and Goa) and the southern tip (Kerala) of India. The corrections shown by the inversion are

11
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more pronounced in the northern regions compared to southern regions as expected based on the higher data density and larger

emissions.

GOSAT Xcua Posterior Simulation - GOSAT
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Figure 2. 2021 GOSAT methane dry column mixing ratios (XCH4) over India (a). Panels (b) and (c) display the mean difference
between GOSAT observations and GEOS-chem simulations using prior and posterior emissions, respectively. Both GOSAT data
and GEOS-Chem simulations are mapped at 1.0° x 1.0° to improve visibility. Grid cells with fewer than 10
individual GOSAT observations in 2021 are excluded. Borders are taken from Natural Earth
(https://www.naturalearthdata.com/about/map-update-committee/), which provides de facto administrative boundaries.

Next, we compare the prior and posterior simulations with GOSAT observations over India (Figure 2). Despite the global
correction to the GOSAT data based on TCCON, we still see somewhat larger differences between GEOS-Chem and GOSAT
than compared to TROPOMI, especially over northern India. The posterior simulation shows an improved fit to GOSAT over
these regions, reducing the mean bias inside India from -8.1 to -7.0 ppb, the RMSE from 20.1 to 17 ppb (which are larger than
TROPOMI partly because we do not employ super-observations for GOSAT), and increasing the correlation coefficient from
0.78 to 0.87. Additionally, we find an improvement to the seasonality of the TROPOMI — GOSAT difference (Figure S7)

although the differences remain larger in summer (June to August) due to limited TROPOMI coverage.

Finally, we compare our simulations to surface methane measurements at NTL (Figure S8a). The comparison shows a
reduction in mean absolute error (MAE) from 73.3 ppb to 70.5 ppb. Similarly, RMSE is reduced from 88.4 ppb to 86.3 ppb.
Data gaps in TROPOMI observations from March to September result in a lack of ability to correct discrepancies between
NTL measurements and the posterior surface concentrations (Figure S8). Most of the realized correction is driven by

observations from September to December, during which the MB improves from —7.8 ppb to 3.0 ppb (Figure S8b).

12
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3.2 Prior and posterior emissions distributions

Prior emissions Posterior emissions
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Posterior/prior emission ratio Sensitivity
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Figure 3. Prior (a) and posterior (b) emissions from the base inversion, the ratio of posterior and prior emissions (c) and, the
averaging Kernel sensitivity over India for 2021 (d). Figure S9 also shows the results outside of India. Borders are taken from Natural
Earth (https://www.naturalearthdata.com/about/map-update-committee/), which provides de facto administrative boundaries.

Figure 3 shows the results from our base inversion. Although the difference between total national prior and posterior emissions
is small, significant spatial variations are observed, particularly in northern (Uttar Pradesh), northwestern (Rajasthan), eastern
(Odisha), and southern India (below 15N°). These regional variations are discussed in detail in Section 3.4. We find that using
normal errors instead of the log-normal errors as in the base inversion produces similar correction patterns (Figure S10).

However, the inversion using normal errors shows small negative emissions (- 0.4 Tg yr'') over several regions, which is
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effectively mitigated using log-normal errors. The lognormal inversion tends to produce smaller downward corrections while

positive corrections are larger and more concentrated in a few grid cells, consistent with the different error distributions.

The inversion provides 296 (DOFS) independent pieces of information across 1768 state vector elements. In general, averaging
kernel sensitivity is higher in areas with larger methane emissions. As areas with large information density tend to be split in
more state vector elements, the information content per element can be smaller there than for some larger background clusters

as shown in Figure 3d.

3.3 National total and sectoral methane emission

Total

uNFece /2;/2;/ W 23 Anthropogenic

up |

be| o 577
W 727777777/ i

(1] 10 20 30 40
Emission [Tg/yr]

Figure 4. Total prior and posterior methane emission over India for 2021 from our study (between dashed red lines), compared with
previous bottom-up and top-down estimates representative for the years indicated in the bars. The shading shows the contribution
of anthropogenic emissions to the total emission estimates; not all entries provide both total and anthropogenic emission estimates.
Uncertainty ranges are reported when available, for our study they are given by the range of the inversion ensemble.

Figure 4 presents total Indian prior and posterior methane emissions, including contributions from natural and anthropogenic
sources, along with a comparison of our estimates to previous estimates. Our base inversion gives total methane emissions

from India of 34.4 (32.0 — 40.4) Tg/yr, with anthropogenic sources contributing 31.5 (29.6 — 36.7) Tg yr'' and natural sources

14



375

380

385

390

395

400

https://doi.org/10.5194/egusphere-2025-6528
Preprint. Discussion started: 16 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

2.9 (2.4 - 3.7) Tg yr'!. The higher ensemble values arise from the lognormal inversion of the TROPOMI operational product,
whereas lower values result from the normal inversion using the blended product. Excluding hazy days only increases the
emission estimate by approximately 0.7 Tg yr! compared to the base inversion, which falls within the uncertainty range. The
posterior total emissions show a slight increase compared to the prior estimate of 33.7 Tg yr'!, driven by a 3% increase in

anthropogenic emissions and a 4% decrease in natural emissions, but uncertainties overlap with the prior estimates (Table 1).

Our 2021 total emission estimate aligns closely with the 2011-2017 and 2020 average total emissions of 36.6 Tg yr'! and 35.6
+ 0.5 Tg yr', as reported by Janardanan et al. (2020) and Subramanian et al. (2025), respectively. However, a recent study by
Belikov et al. (2024), which used the ground-based measurement at NTL to constrain emission over India for 2013-2020,
estimated total methane emissions at 45.3 Tg yr'!, significantly higher than our estimate. The higher estimate by Belikov et al.
(2024) could be due to the local underestimation of concentrations in Nainital as also shown in our simulations (Figure S8a).
Across India, however, our estimates exceed the average anthropogenic emissions reported for 2010-2015 and 2011-2017
from Ganesan et al. (2017) (22 Tg yr'") and Janardanan et al. (2020) (24.2 Tg yr'!), by 43% and 30%, respectively. These
differences likely arise from variation in study timeframes and higher prior emissions based on EDGAR. We also find 30%
higher emissions than found for 2018-2019 by Mathew et al. (2025) (24.3 Tg yr'!). This difference might be caused by the use
of different TROPOMI retrieval products and the fact that Mathew et al. (2025) use 36 state vectors corresponding to India’s
political states, which are spatially extensive and exhibit complex emission source distributions. In contrast, our analysis
employs 1,569 state vectors across India, enabling a more detailed representation of the spatial distribution of methane sources.
In addition, Saunois et al. (2025) found that anthropogenic methane emissions over South Asia increased by approximately 9
% in 2020 compared to 2010-2019, indicating that differences in temporal coverage may partly explain the observed

discrepancies.

For southern India (below 21.5 °N), our total emission estimate of 12.7 (11.4 - 15.8) Tg yr'! is also slightly higher than the
2017-2018 estimate from Raju et al. (2022) (10.6 Tg yr'') which might be due to the difference in covered time period.
Compared to bottom-up anthropogenic estimates, our estimate is also substantially higher than 2020 and 2018 values reported
to the UNFCCC (18.7 Tg yr'!") and by GHG Platform India (22.0 Tg yr!), exceeding them by 68% and 43%, respectively.
According to the GHG Platform India inventory, emissions from the energy (2.9 Tg yr '), industrial (0.5 Tg yr'), and biomass
burning in forests and croplands (0.31 Tg yr') together account for approximately 17% of total anthropogenic methane

emissions, while livestock, rice and waste contribute the remaining 83 %.
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Figure 5. Prior and posterior emissions derived from the inversion shown for different sectors over India in 2021 and comparison
to bottom-up inventories. The error bars represent the ensemble range. The sensitivity for each sector is derived using the averaging
kernel, shown as hashed bars that cover a fraction of the emission bars. These sensitivities are a measure for the extent to which the
posterior emission estimates are constrained by the satellite observations. For the GHG Platform comparison, only sectors whose

definitions are consistent with our source categories are included in the figure.
To understand these differences, we allocate national total emissions to emission sectors following the attribution procedure

described in Section 2.8. The sectoral prior and posterior emissions, along with sensitivity, are presented in Figure 5. Livestock,

wastewater, rice, and landfill emissions contribute 82 % of posterior emissions and TROPOMI strongly constrains these four
sectors with averaging kernel sensitivities between 0.5 and 0.62. For other sectors, the averaging kernel sensitivity ranges
between 0.3 and 0.5. The posterior correlations between individual sectors are derived using the off-diagonal elements of
Sk_red (Equation 10). Among the major emission sources, we do observe higher correlations (r>0.5) between livestock,

wastewater, rice, and other anthropogenic sources because of their similar spatial distributions (Figure S11). In contrast,

correlations among the other sources are generally below 0.5 (Figure S11).

The livestock posterior emission shows a small change compared to the prior and is estimated at 15.5 (14 — 18.4) Tg yr'!. This
value is slightly higher than the 12.8 Tg yr'! reported for 2018 by Samal et al. (2024), who used livestock activity data from
1992-2019 provided by the Indian government, along with modified emission factors derived by averaging the IPCC-2006
emission factors and the 2004 National Communication (NATCOM) emission coefficients (MOEFCC, 2004) assigned to
different livestock age groups. Meanwhile, the UNFCCC inventory and GHG platform India report livestock methane

emissions of 10.8 Tg yr'! and 10.6 Tg yr'!, both lower than our posterior and prior emissions as well as Samal et al. (2024).
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The UNFCCC and GHG platform India calculations use NATCOM and IPCC Tier I and II based emission factors rather than
the modified emission factor used by Samal et al. (2024) and rely on 2019-2020 livestock activity data indicating ~539 million
heads of cattle in India. In contrast, EDGAR emissions are derived using IPCC default emission factors, leading to
discrepancies when compared to the UNFCCC, GHG platform India, and Samal et al. (2024) estimates (Regional differences
are further analyzed in Section 3.4). Overall, these differences are likely due to temporal variations, discrepancies in activity
data, and differences in emission factors, as due to small herd sizes and lack of industrialization, local emission factors are
relatively low (Shahid et al., 2024). We estimate rice emission of 4.3 (3.8 —4.8) Tg yr'! within the uncertainty range of Ganesan
et al., (2017) (~3.9 (3.3-4.5) Tg yr'!) , which are 34% larger than the UNFCCC and GHG platform India estimate. Rice
emissions may be higher because of low rates of mechanized agriculture and heavy dependence on flood-based cultivation

with two growing seasons (Dong et al., 2006).

Landfill and wastewater emissions increased by 31% and 8% compared to the prior estimates. These increases are particularly
concentrated in cities, which are further examined in Section 3.5. UNFCCC-reported landfill emissions are 0.9 Tg yr'!, slightly
lower than our estimate, while GHG platform solid waste emissions are lower by a factor 2. Wastewater emissions (7 Tg yr'")
are higher than estimated by the UNFCCC inventory and GHG platform India by factors 3.9 and 1.8, respectively. The higher
posterior wastewater emissions may be attributed to the higher prior EDGAR emissions, which could be aliasing emissions
from other urban sources including landfills into the wastewater category. This could especially happen for cities where we
did not have GHGSat data to improve the spatial allocation of landfill emissions, which would leave the spatial pattern very

similar to wastewater treatment and make it impossible for the inversion to distinguish emissions from the two sources.

The posterior emissions for the oil & gas sector are 0.8 Tg/yr, higher by 30% compared to the prior (0.6 Tg yr'!), mainly due
to increased emissions in northeastern India and West Bengal. The UNFCCC-reported oil & gas methane emissions are 0.4
Tg yr! and the report mentions that leakage from vents and undocumented flaring contributes to higher uncertainty on the
emission estimates (MoEFCC, 2024) . High-resolution GHGSat observations have previously shown the presence of large
site-level methane super-emitters in the northeast of India (Schuit et al., 2023), supporting the hypothesis that these could cause
a difference between reported and observed methane emissions. We observed significantly lower (57%) coal emissions than
included in the prior estimate, consistent with the UNFCCC estimate within our uncertainty range. Similar reductions in coal
emissions of ~50 % are observed over the eastern part of India and West Bengal (Regional patterns are further examined in
Section 3.4). Reservoir posterior emissions decreased by 31% compared to the prior. Additionally, wetland emissions increased

by 18 %, particularly in southern India, Bihar, and Gujarat.
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3.4 State emissions
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Figure 6. Prior emissions with sectoral contributions and posterior emissions derived across the 17 states in India with prior
emissions above 0.6 Tg/yr. A map with state names is given in Figure S6. Error bars show the range of the 30-member ensemble.
The sensitivity for each state is derived from the averaging kernel, represented by bars with hashed patterns shown as a fraction of
the emissions. These sensitivities are a measure for the extent to which the posterior emission estimates are constrained by the

satellite observations.
To understand regional-level methane emissions, we analyze the 17 Indian states with prior emissions above 0.6 Tg yr! as

shown in Figure 6. Total prior and posterior emissions are calculated by summing grid cells within the state boundaries and
the averaging kernel sensitivities are derived as described in Section 2.8. Among all the states, Uttar Pradesh has the highest
posterior methane emissions followed by Maharashtra and Madhya Pradesh. The uncertainties on the posterior emissions are
based on the ensemble, with higher values typically driven by the members using the TROPOMI operational product. Tamil
Nadu has the lowest sensitivity (0.3) due to lower observation density and a lack of significant TROPOMI-observed
enhancement, which also results in a wide uncertainty range. The posterior emissions for the other 16 states are well constrained
by TROPOMI with sensitivity values =0.4. Among the 17 states, nine show significant differences between prior and posterior

emissions. Among them, seven show increases in posterior emissions ranging from 14% to 54%, with Karnataka, Gujarat, and

Andhra Pradesh showing increases by more than 40%. These larger increases are mainly due to waste and livestock in Andhra

470 Pradesh and Karnataka, and the oil & gas sector in Gujarat. Two states exhibit significant reductions; posterior emissions are
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44% lower for Rajasthan and 50% lower for Odisha (Table S1). In general, this suggests relatively large uncertainties in

bottom-up inventories at the state level.

We also compare our posterior livestock, landfill, and wastewater emissions with the independent bottom-up estimates
provided by GHG platform India. In all states except Odisha, livestock contributes over a third of prior emissions, with the
highest emissions in Uttar Pradesh and highest contribution in Rajasthan (67 %, Figure S12a). Across all states, more than
90% of livestock methane emissions reported by the GHG Platform are attributed to enteric fermentation, for which cattle and
buffalo are the primary contributors (MoEFCC, 2024). The cattle and buffalo population data used by the GHG Platform and
EDGAR are similar; however, their emission factors differ: the GHG Platform uses emission factors from India’s NATCOM
(MOEFCC, 2004), while EDGAR relies on IPCC default values. The IPCC emission factor for dairy indigenous cattle (46 kg
head™' year™) is approximately twice as high as the value used in NATCOM (28 + 5 kg head™! year™), resulting in discrepancies
between EDGAR and GHG Platform livestock emission estimates. The posterior emissions reveal regional variations,
including increases in methane emissions over Uttar Pradesh, Gujarat, and southern India. Unlike coal and natural gas, the
more spread-out livestock emissions do not feature clear regional hotspots that we can use to draw definitive conclusions about

sector-specific trends from the inversion results.

The GHG Platform India estimates waste sector emissions using secondary data sourced from several national sources and
employing Tier 1 and Tier 2 methodologies, incorporating country-specific and state-level emission factors. EDGAR, on the

other hand, uses the IPCC Waste Model and distributes emissions spatially based on population. Differences in both activity
data and emission factors can therefore lead to variations between the two estimates. Both our posterior and GHG platform

India emissions show that Uttar Pradesh and Maharashtra have the highest total waste-related methane emissions (Figure S12b
and c). Landfill emissions are consistent between prior and posterior in two states (Andhra Pradesh and Karnataka) but vary
elsewhere. Except for Punjab, GHG platform India’s wastewater emissions are lower by 34% to 265% compared to our
posterior estimates. This difference is most likely due to the higher prior values from EDGAR, which could have masked
emissions from other urban sources, resulting in sectoral misattribution. Urban waste emissions are discussed in detail in

Section 3.5.

Coal mining methane emissions are highest in Odisha and Jharkhand, the largest coal producers in the country. Both states
show reduced posterior emissions. At the Talcher coal field in Odisha (20.977° N, 85.137° E), which holds India’s largest
geological coal reserves (Panda et al., 2022), posterior emissions are lower by a factor 6.5, reducing them from 26.3 tons/hr to
4.1 (3.0-6.2) tons/hr. Coal production has been expanding largely through surface mining, which is generally not as methane
intensive as underground mining. If this shift is not reflected in activity data, this could lead to overestimated bottom-up

emission estimates (Wright et al., 2024). Oil & gas activities are strongly concentrated in Assam. The Assam oil and gas field
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(27.39° N, 95.43° E), one of the oldest fields in India, previously identified as a super-emitter based on TROPOMI by Schuit
et al. (2023), shows a factor 2.4 increase in posterior emissions, from 3.3 tons/hr to 8.0 (7.0 - 8.3) tons/hr. This estimate is
based on the sum of emissions from 25 surrounding grid cell and falls within the uncertainty range of the sum of site-level
emissions reported by Schuit et al. (2023) at 12.9 + 4.3 tons/hr based on a GHGSat observation from December 24, 2024,
suggesting that a large fraction of emissions could come from a limited number of strongly emitting sites. Increasingly complex
extraction due to declining production levels, difficult terrain, and aging infrastructure as well as several large-scale blowouts,

could explain increased methane emissions (Goswami and Ghosh, 2021; Guha, 2025; Mohanty and Dutta, 2023).

3.5 Urban emissions
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Figure 7. Comparison of prior emissions with sectoral contributions and posterior emissions derived across 14 Indian cities. Total
prior and posterior emissions are calculated as the cumulative sum of emissions across nine grid cells surrounding each city center.
Error bars represent the uncertainty derived from the 30-member ensemble. The sensitivity for each city is derived from the
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averaging kernel, represented by bars with hashed patterns shown as a fraction of the emissions. These sensitivities are a measure
for the extent to which the posterior emission estimates are constrained by the satellite observations.

We further analyze our results over 14 cities (Figure 7). To do so, we compare the cumulative prior and posterior emissions in
the 9 model grid cells around the center of each city. Among these cities, Kolkata has the highest prior methane emission
estimate followed by Delhi and Mumbai. The breakdown of prior emissions shows a large variety of sources contributing. The
emission breakdowns discussed here are based on mapped bottom-up inventories (mainly EDGAR v7), supplemented with
GHGSat data for landfills. These come with significant uncertainty, and the resulting urban estimates are not always in
agreement with local greenhouse gas inventories, as for example compiled by cities. Some of the cities also include some
emissions from activities around the city center, such as rice cultivation near the Hooghly River for Kolkata and livestock in
Delhi. Methane emissions from waste (landfill + wastewater) contribute 30% to 70% of total urban methane emissions. The
analyzed cities represent different tiers of India's urban hierarchy, waste management maturity, and waste monitoring (Kumar
et al., 2017). Metropolitan cities are governed by municipal corporations with dedicated waste departments, while some others
have seen a rapid expansion of solid waste management capacity under Swachh Bharat Mission-Urban initiatives (Zhu et al.,
2012). EDGAR landfill and wastewater emissions generally show a strong spatial correlation (r > 0.9—1.0) across cities. After
incorporating GHGSat emission estimates into our prior emissions for 11 cities, the correlation between landfill and wastewater
emissions decreases to a range from 0.1 to 0.8. Higher correlations (r = 0.7—0.8) are observed in cities such as Mumbai and
Delhi, where multiple landfills are present and GHGSat-based emissions therefore more closely align with the population-
based spatial allocation of EDGAR wastewater emissions. Overall, the incorporation of GHGSat-based landfill emissions
improves the ability of our inversion to distinguish solid waste and wastewater emissions (Figure S11). Landfills are the largest
source in Mumbai, Hyderabad, and Chennai, while wastewater is the largest source in Surat, Pune, and Bangalore. The landfill
dominance in major cities reflects both current waste generation volumes and the historical legacy of dumping (Ravish, 2025),
with cities like Mumbai (Deonar, Mulund) and Delhi (Okhla, Ghazipur, Bhalswa) having landfills that have received decades
of waste (Express, 2025). Under the Solid Waste Management Rules 2016, all states were mandated to investigate and
remediate legacy dumpsites through bio-mining and bioremediation, yet many cities continue to have active dumpsites
alongside newer engineered facilities (CPCB, 2019). The 2024 Draft Solid Waste Management Rules, which mandate

treatment of at least 90% of waste by 2027, reflect the evolving policy landscape.

For cities with relatively large emissions, the sensitivity values of the inversion are around or above 0.5, indicating emissions
are well informed by the TROPOMI observations (Table S2). Jaipur has the lowest information content due to its smaller size
and lack of prominent enhancement in TROPOMI data. In Surat, Pune, and Ludhiana, prior and posterior estimates are closest
while posterior emissions in Chennai show the largest increment (factor 3) compared to prior estimates. As Chennai is a coastal
city, it is more difficult to observe with TROPOMI, resulting in a larger uncertainty range compared to other cities. For nine
other cities, posterior emissions are 10 to 50% higher than prior estimates (Table S2), indicating a general tendency for the

used bottom-up inventories to underestimate urban emissions. Comparing our estimates to previous studies, we find that our
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estimates for Mumbai and Delhi are consistent with the TROPOMI inversions using the WRF model by Maasakkers et al.
(2022). Foy et al. (2023) estimated emissions for seven of the studied cities, finding estimates that are larger by factors of 1.4
to 3.6 compared to our posterior estimates. They noted that such discrepancies were also observed when comparing their
estimates with those of Maasakkers et al. (2022) and attributed them to differences in how wind speed and boundary layer
conditions were applied in the respective studies and the fact that their approach required Gaussian-shaped urban

enhancements.

The discrepancies between observations and bottom-up estimates could be significantly affected by unreliable activity and
emission factor data, both in terms of what is available and what is incorporated in EDGAR. Cities do generally not have
historical or updated waste composition data and rely on extrapolations and interpolations for the contents of the landfill. Both
activity data and emission factors are expected to vary by city, site, and season, and site-level practices are difficult to capture
in bottom-up inventories (Singhal et al., 2022). Substantial portions of waste in Indian cities pass through informal waste
pickers and recyclers, meaning reported waste quantities often underestimate the total material streams entering disposal sites
(Simpson et al., 2025). Furthermore, hazardous and sanitary waste can overlap, combined with scavenging and bioremediation
activity where older buried waste is excavated, leading to heterogeneous and complex methane generation patterns (Priya and
Gupta, 2019). Under Swachh Bharat Mission-Urban and subsequent initiatives (MoHUA, 2021), many cities have expanded
biomethanation and waste-to-energy capacity, yet these facilities often show slower operational ramp-up than planned and
operational challenges can prevent effective emission reduction (Ahluwalia and Patel, 2018). While cities like Bangalore,
Pune, and Hyderabad have relatively advanced waste management infrastructure (Hamdan et al., 2025), they show larger

emissions than included in the (generic) EDGAR inventory.

Foy et al. (2023) posed that untreated wastewater is a major contributor to methane emissions in seven studied Indian cities
and that these emissions could be reduced by 50% with wastewater treatment plants. Our prior emissions indicate that
wastewater contributes 20% to 35% of total methane emissions across the 14 cities. In Mumbai, Surat, Pune, and Ludhiana,
posterior and prior wastewater emissions are similar. Chennai shows the largest increase by a factor 2.9, while for the other
eight cities posterior emissions are higher by 33% to 58%, suggesting underestimation in the bottom-up emission estimates.
Bottom-up calculations, which typically rely on treatment-facility data, can substantially underestimate emissions by missing
emissions from distributed open defecation alternatives and informal waste treatment (Singh, 2023). The absolute increase in
posterior wastewater emissions correlates with the proportion of the associated urban populations lacking wastewater facilities
(r=0.4). Furthermore, cities where posterior emissions are more than 35% higher than the prior, align with cities for which
Climate TRACE data shows that >40 % of the population lacks access to wastewater treatment (Figure S14). Many cities lack
primary or secondary treatment facilities, with wastewater either flowing directly into water bodies or being treated through
rudimentary methods that do not capture methane emissions (NITI Aayog, 2022). Among all cities, Kolkata and Delhi have

the highest posterior wastewater emissions, consistent with Climate TRACE data showing that 90 % and 60 % of their
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populations lack access (Figure S14). Kolkata's Hooghly River receives substantial untreated sewage from sprawling informal
settlements, while Delhi's wastewater infrastructure, despite recent investments, remains inadequate for the city's growing
population (Guptha et al., 2021; Rajan et al., 2023). In contrast, for Mumbai and Surat, where prior and posterior wastewater

emissions are similar, Climate TRACE reports that more than 95% of the population has access to wastewater treatment plants.
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Figure 8. Landfill emissions across 14 cities derived from EDGAR and GHGSat, and the posterior emission estimates. The prior
landfill emissions used in the inversion are based on EDGAR for the first three cities, while for the remaining 11 cities, they are
based on GHGSat (as described in Section 2.4). The total prior, total posterior, and total EDGAR landfill emissions (indicated with
a star) are calculated by summing emissions across nine grid cells (0.25° x0.3125°) surrounding each landfill. The error bars
represent the uncertainty estimates derived from the 30-member ensemble.

Figure 8 shows landfill emissions obtained from EDGAR, GHGSat, and the TROPOMI inversions (Table S3). Among the
cities for which we have GHGSat data, Delhi has four observed landfills, while Chennai, Mumbai, Kolkata and Lucknow have
two. These cities often have multiple landfills within one model grid cell, limiting our ability to compare posterior emissions

to GHGSat estimates directly. We therefore compare total prior, posterior, and EDGAR-based landfill emissions derived by
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summing emissions across nine model grid cells (0.25° x0.3125°) surrounding each landfill. Among the three cities with
EDGAR-based prior emissions, posterior landfill emissions in Bangalore and Prayagraj are higher by a factor of 1.6, while the
estimate for Jaipur remains close to EDGAR as the city is poorly informed by observations (Figure 7). As the prior landfill
emissions in the other 11 cities incorporate GHGSat-derived emissions, total prior and GHGSat landfill emission estimates
generally match. In these 11 cities, both GHGSat-based and posterior emission estimates are all higher than the EDGAR-based
landfill emissions, with significant differences for seven of the cities. This suggests that EDGAR-based landfill emissions are
underestimated, possibly because the inventory lacks site-level landfill data. Our posterior emission estimates generally match
well with the GHGSat emissions, though they are not fully independent because of the incorporation of GHGSat estimates in
the prior. Many of the cities studied here have more waste sites than were observed by GHGSat. The Climate TRACE data
show that Chennai has 23 dumping sites (including the two GHGSat-observed locations), the most among all the cities (Figure
S13). Similarly, Hyderabad, Mumbai, Ahmedabad, and Lucknow have 12, 10, 8, and 2 additional dumping sites, respectively.
This reflects India's fragmented waste management landscape, where most metropolitan areas do not have single, centralized
disposal facilities but rather operate multiple active dumpsites managed by different parties alongside legacy closed dumpsites
undergoing remediation. Smaller and informal dumpsites often go unmonitored in official inventory systems. However, the
landfills that GHGSat observed are the largest in terms of area, contributing > 80 % of the total landfill area in each city
(Figure S13). Still, the numerous additional smaller dumping sites can contribute to total emissions, potentially leading to
differences between GHGSat and posterior estimates for those cities. The coastal city of Chennai has the highest posterior
methane emission estimate, as it shows a high methane enhancement in TROPOMI that leads the inversion to scale up all

sources, including landfills.

4. Conclusion

India is one of the top global emitters, with a large population, rapidly growing economy, and complex policy environment.
This makes the quantification of methane emissions across spatial and policy scales key to enable efficient mitigation of
emissions. In this study, we estimated India’s methane emissions for 2021 using the blended TROPOMI+GOSAT methane
data in an inversion with the GEOS-Chem model at a resolution of up to 0.25° x0.3125°. We used prior emissions based on
GFEI v2 and EDGAR v7, supplemented with site-level GHGSat estimates for 18 landfills. Posterior emissions were derived
using an analytical Bayesian inversion method with log-normal errors on emissions and ensemble-based uncertainty estimates.
The inversion shows improved agreement with TROPOMI observations as well as with GOSAT and surface-based
observations. The high resolution of the inversion and incorporation of facility-level GHGSat data enable us to use the

inversion to estimate emissions across spatial scales and compare with a range of policy-relevant existing emission estimates.

The total posterior methane emissions for India are 34.4 (32—40.4) Tg yr!, a value comparable to recent studies by Janardanan

et al. (2020) and Subramanian et al. (2025). Anthropogenic posterior emissions are 31.5 (29.6 — 36.7) Tg/yr, close to our
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EDGAR/GFEI-based prior but 68% higher than UNFCCC-reported values. Zhang et al. (2021) found a similar difference of
75%, while smaller discrepancies of 17-30 % have been observed by Ganesan et al. (2017), Janardanan et al. (2020), and
Mathew et al. (2025), potentially due to differences in covered time period, prior emissions, and inversion methodology. Our
sectoral breakdown of posterior emissions shows that most anthropogenic sources can be independently estimated with large

adjustments to landfill emissions (+30%) and oil & gas (+33%) emissions, while coal emissions are found to be lower (-56%).

Analyzing methane emissions from the 17 states with the largest emissions, we find strong regional discrepancies with
inventories that are strongly informed by TROPOMI data except for one state with limited observational coverage. Inversion
results show significantly higher emissions in seven states with corrections up to 52% compared to the prior estimates. Notable
increases can be related to oil & gas in Assam and Gujarat. Two states show significantly lower emissions than included in the
prior, with Odisha (-52%) showing the largest decrease, primarily due to lower coal mining emissions. We also compared
state-wise posterior estimates for livestock, wastewater, and landfill emissions with state-level emissions reported by the GHG

platform India, generally finding higher estimates for all sources.

Finally, we analyzed urban methane emissions in 14 cities, where waste-related sources (landfills and wastewater) dominate.
In nine cities, posterior emissions are 10% — 50 % higher than the prior estimates, while in Chennai they increase by a factor
of three, indicating that the used bottom-up inventories tend to underestimate urban emissions. Incorporating GHGSat landfill
emissions in our prior emission estimates improved the ability of our inversion to separate landfill and wastewater emissions.
While EDGAR landfill and wastewater emissions were initially highly correlated (r > 0.9), the correlation decreased after
including GHGSat data, reflecting better source separation. We find significantly higher posterior wastewater emissions for
nine cities and find that the absolute increase in posterior wastewater emissions correlates (r=0.4) with the fraction of urban
population lacking access to wastewater treatment facilities. Kolkata and Delhi have the highest wastewater emissions,
consistent with Climate TRACE data showing that 90% and 60% of their populations lack access. Among the 14 cities, 11
have GHGSat observations, which indicate that landfills contribute 10-38% of posterior urban methane emissions,
underscoring the importance of solid waste management in reducing methane emissions. It also illustrates that urban waste
emissions are poorly captured by currently available gridded inventories, calling for bottom-up emission estimates capturing

the complex and heterogeneous emissions from individual solid waste disposal sites.

Despite providing valuable insights into methane emissions across multiple spatial scales, this study has some limitations.
Sectoral attribution remains strongly dependent on the prior emission source distribution, creating uncertainty in sector-specific
estimates. Incorporating facility-scale landfill observations improves prior estimates, further integration of country-specific
information in gridded inventories, along with additional facility-scale (observational) data for sectors such as oil & gas and
coal, could substantially enhance the quality of prior estimates and the associated inversion results. Validation of the inversion

results is limited to GOSAT observations and a single in situ measurements site, which constrains the assessment of model
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performance. The information content and evaluation of future inversion results could be substantially improved through
comprehensive and systematic in situ methane monitoring across the country. In addition, this analysis is limited to a single
year, as extending the inversion to multiple years is computationally intensive. Consequently, the assessment of seasonal
variability and interannual trends in methane emissions and their sectoral drivers remains limited. More extensive TROPOMI
observations and analysis in the future can enable a more comprehensive evaluation of temporal changes and a deeper

understanding of emission drivers and their seasonal dynamics.

Overall, this study emphasizes the critical role of top-down approaches that combine multiple satellites in evaluating bottom-
up emission estimates. This spatially explicit analysis can inform subnational prioritization and guide follow-up investigation
and capacity building (e.g., observation campaigns, activity data gathering, and inventory refinement) and support the
development of effective methane mitigation strategies. The incorporation of facility-scale data and our approach for

evaluation across spatial scales can readily be extended to other countries.
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