

1 Tropical belt expansion and its impacts on climate variability in the Mediterranean from 2 1980 to 2022

3 Mohamed Darrag¹, Shuanggen Jin^{2,3*}, Andres Calabria⁴, Aalaa Samy⁵, Ivan Radevski⁶, and Ali M. Radwan¹

⁴ 5 ¹Geodynamic Department, National Research Institute of Astronomy and Geophysics-NRIAG, 11421 Helwan, Cairo, Egypt.

²School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China.

³School of Artificial Intelligence, Anhui University, Hefei 230601, China.

⁸ ⁴Department of Physics and Mathematics, University of Alcalá, 28801, Alcalá de Henares, Spain.

⁹ Geomagnetic and Geoelectric Department, National Research Institute of Astronomy and Geophysics-NRIAG, 11421 Helwan,
¹⁰ Cairo, Egypt.

⁶Institute of Geography, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, North Macedonia

¹³
¹⁴*Corresponding author: sgiip@hpu.edu.cn

¹⁴ Corresponding author: sgjin@npu.edu.cn
¹⁵

16 Abstract

16 Abstract.

The Mediterranean region's climatic parameters are undergoing substantial changes driven by climate change and tropical belt expansion. This paper explores the long-term variability of climatic parameters over the Mediterranean region and their relationship with tropical belt expansion by employing observational and reanalysis data from January 1980 to December 2022 through multiple approaches including correlation, linear regression, singular value decomposition (SVD), wavelet coherence (WTC), and principal component analysis (PCA). The lapse rate tropopause height (LRT-H) exhibits upward trends of approximately 80.58 m/dec. Concurrently, the tropical belt shows poleward expansion of approximately 0.14 °/dec and 0.27 °/dec from both applied methods. The tropical edge latitudes (TELs) of both applied approaches are in phase and have a strong positive correlation with LRT-H, surface temperature, and tropospheric temperature while being of strong negative correlation and out of phase with precipitation. However, there is no substantial correlation for the Standardized Precipitation Evapotranspiration Index (SPEI) with TELs or other climatic parameters. The results of SVD analysis depict that the surface temperature and lower tropospheric temperature (TRP-1) have evident coupling with the TELs in the eastern Mediterranean. Furthermore, surface temperature and TRP-1 have significant increasing trends, which are abundant in the eastern and northern Mediterranean. On the other hand, both precipitation and SPEI exhibit downward trends. Over the Mediterranean, an apparent spatial and temporal variation of climatic parameters is observed. The results confirm the linkage between climatic parameters' variability, coherence, and covariability with the TELs variability patterns over the study area, especially in the eastern Mediterranean region.

37 **Keywords** Climate change · Mediterranean region · Tropical belt · Tropopause · Climatic parameters

38 1 Introduction

39 Despite the fact that greenhouse gases (GHGs) emissions in Mediterranean countries are generally
40 modest, climate change has been documented at a magnitude that exceeds global averages (Lange,
41 2020). The Mediterranean region is situated in a transition zone between the North Africa arid

42 climate and Central Europe temperate and wet climate, and it is influenced by interactions between
43 mid-latitude and tropical processes. This makes the Mediterranean region potentially sensitive to
44 climate change (Lionello et al., 2006; Ulbrich et al., 2006; Urdiales-Flores et al., 2023). In fact,
45 the Mediterranean region has experienced significant shifts of climate in the past (Luterbacher et
46 al., 2006), and it has been highlighted as one of the most important "Hot-Spots" in climate change
47 future projections (Giorgi, 2006). This region, which comprises a semi-enclosed sea and
48 neighboring lands, has seen substantial shifts in climate patterns over the last several decades.
49 These changes are corroborated by evidence from the Mediterranean region, which shows altered
50 temperature trends, altering precipitation regimes, and an increase in the extreme weather events
51 frequency and severity (Insua-Costa et al. 2022; Androulidakis et al. 2023; Yavaşlı and Erlat,
52 2024). Climate change in the Mediterranean basin has far-reaching implications that influence
53 critical socioeconomic areas in addition to meteorological difficulties. These changes have
54 significant implications for agriculture, water resource management, coastal zone planning, and
55 the protection of sensitive ecosystems (Raihan 2023; Noto et al. 2023). Understanding and
56 forecasting climatic patterns is crucial for developing effective adaptation strategies and making
57 informed policy decisions in a highly reactive region to reduce climate change effects (Mastrorillo
58 et al., 2024).

59 In astronomy and cartography, the Tropics of Cancer and Capricorn, at latitudes of $\sim 23.5^{\circ}$ north
60 and south define the tropical belt's boundaries (Gnanadesikan and Stouffer, 2006). While in
61 climatology the tropical edge latitudes (TELs) vary seasonally, and in response to climate forcing.
62 They migrate poleward in the summer and equatorially in the winter (Davis and Birner, 2013).
63 Tropical belt expansion has been robustly detected across the globe using a variety of data sets and
64 approaches (Lucas et al., 2014). The expansion of the tropical belt has been attributed to several
65 factors, including tropospheric warming caused by GHGs forcing, stratospheric cooling owing to
66 ozone depletion, sea-surface temperature (SST) variability over the tropics, in addition to the
67 absorbing aerosols hemispheric asymmetry (Seidel et al. 2008; Allen et al. 2012, 2014; Grise et al.
68 2018). The sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change
69 (IPCC) shows that Hadley circulation (tropics) is expanding poleward at a rate of approximately
70 $0.5\text{--}1^{\circ}$ per decade, with significant regional and seasonal variability (Mathew and Kumar, 2018;
71 Staten et al. 2018). The expansion of the tropics could cause substantial changes in the global
72 climate system; even slight expansion of the tropical belt could cause substantial changes in the
73 global climate system, manifesting as altered precipitation patterns, poleward-shifting storm tracks
74 and jet streams, variations in stratospheric trace gas distribution, and changes in ocean circulation
75 (Seidel et al., 2008; Lucas et al., 2014).

76 The IPCC has repeatedly identified the Mediterranean as one of the most vulnerable regions to the
77 effects of climate change (IPCC, 2021a,b). One of the primary drivers of this susceptibility is the
78 expansion of the tropical belt, which has a significant impact on subtropical and mid-latitude
79 climates (Seidel et al., 2008). The Mediterranean basin is tropicalizing, with its waters increasing
80 warmer and saltier. The enclosed sea warms four times quicker than the global norm for coastal

81 waters (Bianchi and Morri, 2003; Borghini et al., 2014), and it is anticipated that these rates will
82 rise throughout this century as climate change progresses (Somot et al., 2006; Rilov and Galil,
83 2009). The widening of the tropical belt has direct implications for precipitation patterns,
84 temperature regimes, and the frequency of extreme weather events in the Mediterranean. As the
85 subtropical dry zones move poleward, the Mediterranean region experiences longer droughts,
86 lower rainfall, and more intense heatwaves (Giorgi, 2019). These changes impair agricultural
87 production, water availability, and ecosystem stability, worsening socioeconomic vulnerability
88 (Lionello et al., 2006). Furthermore, Mediterranean Sea warming alters marine biodiversity and
89 accelerates tropical species migration, threatening native ecosystems and fisheries. Desertification
90 processes, driven by decreased soil moisture and increased evapotranspiration, strain terrestrial
91 ecosystems and impede sustainable development in the region (Cramer et al., 2018).

92 The Mediterranean region has experienced major variations in climatic parameters during recent
93 decades. Its unique geographical position, bounded by Europe, North Africa, and the Middle East,
94 makes it particularly vulnerable to global warming and climate variability impacts (Giorgi, 2006).
95 Climate models and observational data consistently indicate that the Mediterranean basin is
96 warming at a rate higher than the global average (Lionello et al., 2012). The region has warmed
97 by approximately 1.4°C since the late 19th century, exceeding the global mean temperature rise of
98 1.1°C (Cramer et al., 2018). This accelerated warming has increased the frequency and intensity
99 of heatwaves, with profound impacts on human health, agriculture, and biodiversity (Kuglitsch et
100 al., 2010). Over the Mediterranean region, precipitation is distributed unevenly throughout the year,
101 with a significant decline in the warm season. The region is also recognized for its wide spatial
102 and temporal variation in precipitation levels (Lionello et al., 2006; Vicente-Serrano et al., 2025).
103 Shifts in precipitation patterns have also been observed across the Mediterranean. Projections
104 indicate that precipitation could decline by 10-30% by the end of the 21st century, exacerbating
105 drought conditions and increasing water scarcity (Gao and Giorgi, 2008).

106 Understanding the interplay between tropical belt expansion and regional climate variability is
107 essential for developing adaptive strategies to mitigate the adverse effects of climate change in the
108 Mediterranean. This paper explores the multifaceted impacts of tropical expansion on
109 Mediterranean climate. Section 2 describes the datasets used and methods for deriving tropical
110 edge latitudes. Section 3 presents the analysis results, and Section 4 provides our conclusions.

111 **2 Data and methods**

112 **2.1 Study area**

113 The Mediterranean region encompasses areas surrounding the Mediterranean Sea, including parts
114 of Southern Europe, North Africa, and the Middle East. In this work, the study region is defined
115 as the area between 20° N and 50° N latitude and 15° W and 50° E longitude. The Mediterranean
116 basin is characterized by substantial environmental and geographical gradients, complex
117 morphology with mountain chains and significant land-sea contrasts, and location in a transition
118 zone between mid-latitude and subtropical atmospheric circulation systems, contributing to its

119 complex climate patterns (Lange, 2020). The Mediterranean region is recognized as a climate
120 change hotspot due to its unique geographic, climatic, ecological, and socio-economic
121 characteristics. Its semi-enclosed nature amplifies warming and limits the exchange of heat and
122 moisture with surrounding regions, making it particularly vulnerable to climate change. The region
123 is warming approximately 20% faster than the global average, leading to profound changes in
124 temperature and precipitation patterns (Cramer et al., 2018). Projections indicate marked increases
125 in heatwaves, droughts, and extreme rainfall events, intensifying challenges for water resources,
126 agriculture, and biodiversity (IPCC, 2021a). The Mediterranean basin hosts one of the world's
127 richest biodiversity reserves with numerous endemic species; however, rising temperatures, habitat
128 loss, and changing phenological patterns pose significant threats (Coll et al., 2010; Lionello et al.,
129 2012). The socio-economic consequences are equally profound, affecting tourism, fisheries,
130 agriculture, and urban settlements, while sea level rise threatens coastal infrastructure and
131 ecosystems (IPCC, 2021a).

132 **2.2 Data**

133 This study utilizes multiple datasets spanning January 1980 to December 2022 to investigate
134 climate variability in the Mediterranean region. Monthly averaged temperature data on pressure
135 levels from ERA5, the fifth generation ECMWF reanalysis, are used to determine lapse rate
136 tropopause (LRT) parameters (height and temperature). ERA5 provides data at $0.25^\circ \times 0.25^\circ$
137 horizontal resolution (approximately $31 \text{ km} \times 31 \text{ km}$) with 37 vertical pressure levels ranging from
138 1,000 hPa to 1 hPa (Hersbach et al., 2019a). Monthly averaged surface temperature and total
139 precipitation data are also obtained from ERA5 at $0.25^\circ \times 0.25^\circ$ resolution (Hersbach et al., 2019b)
140 to explore the impacts of tropical belt expansion on temperature and precipitation patterns over the
141 Mediterranean region. Additionally, monthly precipitation and potential evapotranspiration (PET)
142 data at $0.5^\circ \times 0.5^\circ$ resolution from the Climatic Research Unit (CRU) Time-Series (Harris et al.,
143 2020) are used to compute the Standardized Precipitation Evapotranspiration Index (SPEI) as a
144 meteorological drought indicator, following the methodology of Vicente-Serrano et al. (2010) and
145 Beguería et al. (2013).

146 **2.3 Methods**

147 We apply the LRT definition to determine tropopause parameters (height and temperature) using
148 ERA5 temperature data on pressure levels. Temperature data are first vertically interpolated to a
149 regular 100 m height resolution (Hindley et al., 2015). Following the WMO definition, the thermal
150 LRT is identified as the lowest level at which the lapse rate decreases to $2^\circ\text{C}/\text{km}$ or less, provided
151 the average lapse rate between this level and all higher levels within 2 km does not exceed $2^\circ\text{C}/\text{km}$
152 (WMO, 1957). Long-term trends of tropopause parameters over the Mediterranean region from
153 January 1980 to December 2022 are examined using linear regression analysis at all grid points.
154 The TEL, which indicates tropical belt width, is estimated using two tropopause height metrics.
155 The first method defines TEL as the latitude at which LRT height (LRT-H) drops 1.5 km below

156 the tropical average (15°S-15°N) (Birner, 2010; Davis and Rosenlof, 2012) and it can be
157 abbreviated as TPD. The second method defines TEL as the latitude of maximum LRT-H
158 meridional poleward gradient (Davis and Rosenlof, 2012; Davis and Birner, 2017) and it can be
159 abbreviated as TPG. Tropical belt expansion rates are determined using both methods.

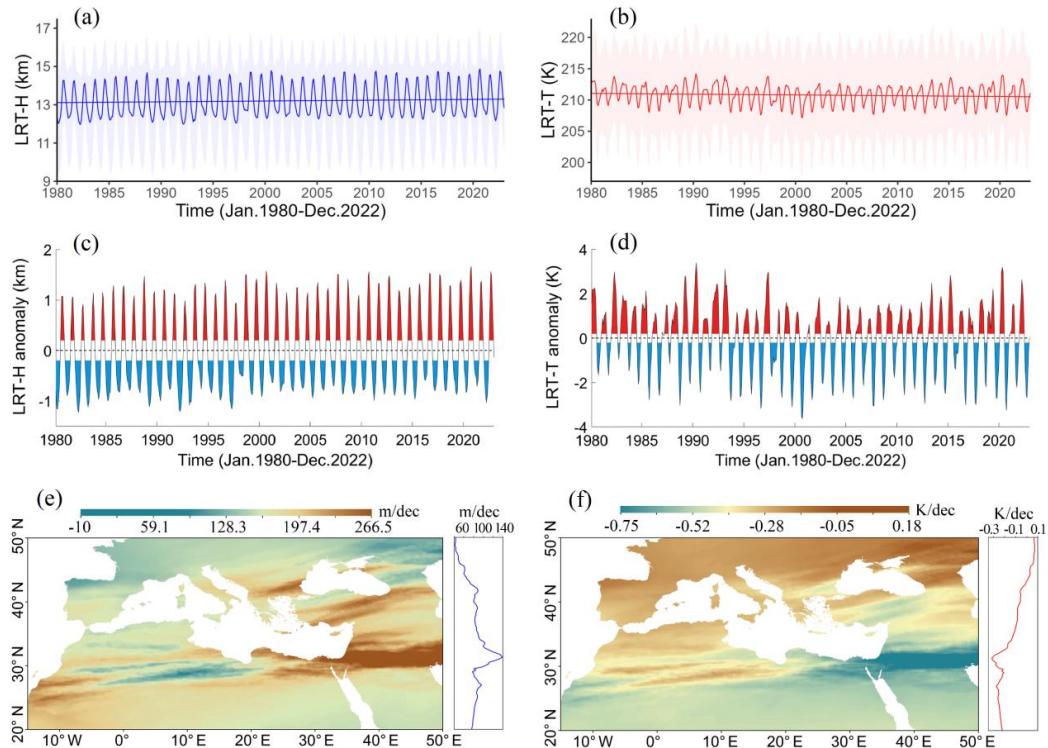
160 The relationships between TEL and climatic parameters are examined through multiple statistical
161 approaches: correlation analysis, linear regression, singular value decomposition (SVD), wavelet
162 coherence (WTC), and principal component analysis (PCA) (Minh et al., 2024). We investigate
163 the connection between tropical expansion and tropopause characteristics, surface temperature
164 (both as a driver of and response to tropical belt changes), tropospheric temperature (from Earth's
165 surface to the LRT level), precipitation, and SPEI as a meteorological drought indicator. WTC
166 analysis illustrates the time-frequency relationships between TEL positions from both methods
167 and climatic parameters. WTC estimates coherence between two time series within the time-
168 frequency space, with values ranging from 0 to 1 (Grinsted et al., 2004). SVD analysis identifies
169 coupled modes of covariability between TEL locations and climatic parameters. This technique
170 recognizes pairs of coupled spatial patterns and their temporal variations, with each pair describing
171 a fraction of the covariance between fields. The temporal cross-covariance matrix is constructed
172 between the two space- and time-dependent data fields, which need not have the same number of
173 grid points but must span the same time period (Bjornsson and Venegas, 1997; Darrag et al., 2024).
174 Before performing the SVD analysis, all employed variables were pre-processed to remove the
175 long-term trend and the seasonal cycles because we're not interested in seasonal signals. This
176 detrending and deseasonalization is necessary, as removing these components ensures that the
177 SVD analysis results primarily capture covariability between the TELs and the climatic parameters.

178 **3 Results and discussion**

179 **3.1 Tropopause and tropical belt characteristics**

180 The monthly average of LRT parameters (height and temperature) over the period from January
181 1980 to December 2022 is depicted in Figure 1 top. Our analysis reveals that LRT-H has increased
182 by approximately 80.58 ± 3.07 m/dec since January 1980 (Fig. 1a), consistent with Schmidt et al.
183 (2008), who reported a global upward trend in LRT-H of 39 to 66 m/dec. This tropopause height
184 increase is attributed to global warming driven by increasing atmospheric GHG concentrations
185 (Meng et al., 2021). Our findings align with previous studies documenting global tropopause
186 height increases from GNSS-RO data (Darrag et al., 2022), radiosonde observations (Seidel and
187 Randel, 2006), and reanalysis datasets (Santer et al., 2004). LRT-T exhibits a downward trend of
188 -0.12 ± 0.02 K/dec (Fig. 1b), with LRT-H showing a strong negative correlation of -0.86 with
189 LRT-T. These LRT parameter trends are consistent with earlier research (Schmidt et al., 2004;
190 Sausen and Santer, 2003; Seidel and Randel, 2006; Pisoft et al., 2021).

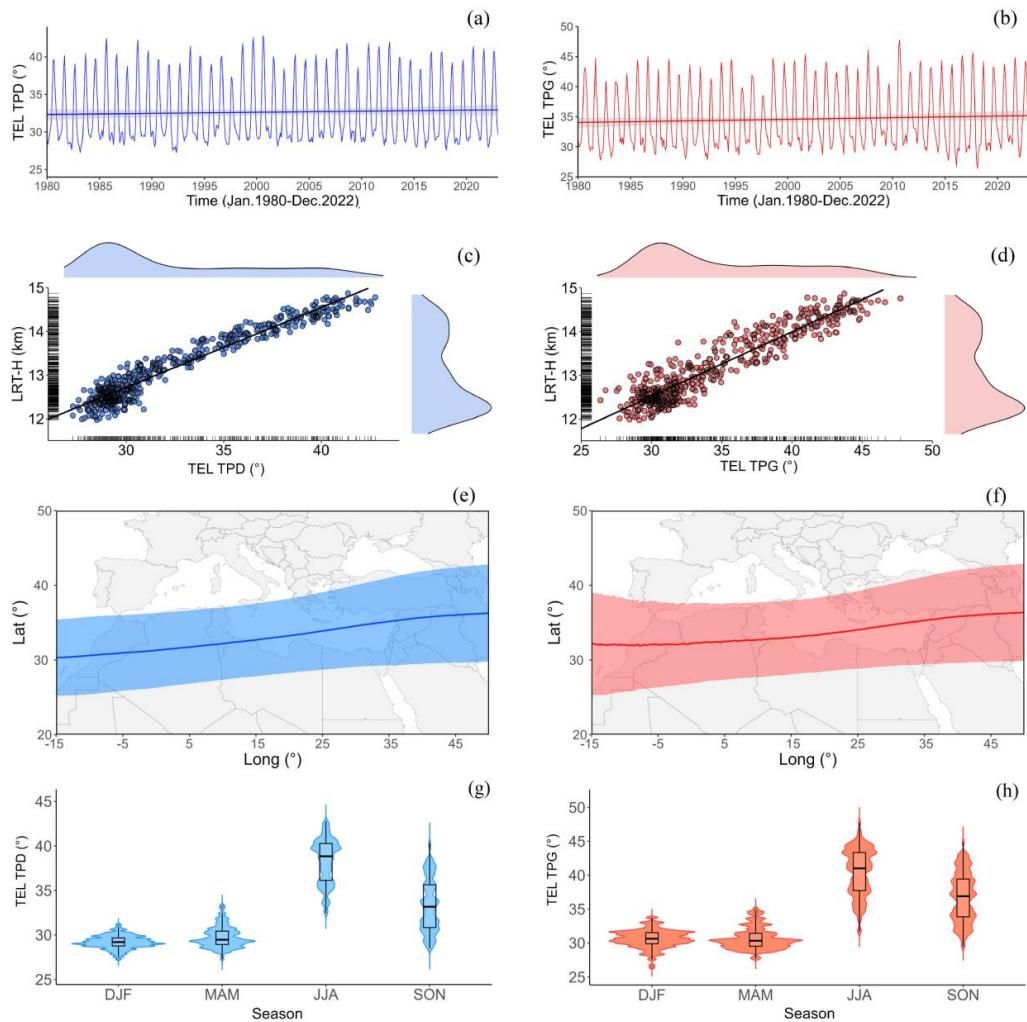
191 Tropopause parameters exhibit significant anomalies driven by atmospheric dynamics, climate
192 change, and natural variability. The anomaly of tropopause parameters over the period January


193 1980 to December 2022 is shown in Figure 1 middle. LRT-H displays stronger positive anomalies
194 than negative ones, with the maximum positive anomaly of approximately 1.67 km occurring in
195 September 2020 and the greatest negative anomaly of approximately -1.22 km in April 1982.
196 Positive anomalies dominate during summer and autumn, while negative anomalies dominate
197 during winter and spring (Fig. 1c). Conversely, LRT-T exhibits stronger negative anomalies than
198 positive ones, with a maximum positive anomaly of approximately 3.4 K in April 1990 and a
199 greatest negative anomaly of approximately -3.62 K in September 2000. In contrast to LRT-H,
200 LRT-T positive anomalies dominate during winter and spring, while negative anomalies dominate
201 during summer and autumn (Fig. 1d). The anomalies of both tropopause parameters are dominated
202 by inter-annual oscillations and vary across different months. Our results are consistent with Seidel
203 and Randel (2006), who reported tropopause monthly anomalies with standard deviations (SDs)
204 ranging between 0.2 and 0.6 km for LRT-H.

205 Linear regression analysis of LRT parameters was performed at all grid points, with decadal trends
206 plotted in Figure 1 bottom. LRT-H shows a dominant upward trend evident across almost the entire
207 study area, with statistically significant trends at $p < 0.05$ at most of the grid points (Fig. 1e). The
208 eastern Mediterranean region around 30° N exhibits the maximum LRT-H increasing trends,
209 reaching 266.5 m/dec, attributed to the stronger influence of the South Asian monsoon system in
210 this area (Tyrilis and Lelieveld, 2013). The zonal mean of the LRT-H regression map (right panel
211 of Figure 1e) indicates increasing trends at all latitudes, with the latitudinal band between 30° N
212 and 33.75° N showing maximum upward trends. For LRT-T (Fig. 1f), the majority of the study
213 area displays decreasing trends with statistically significant values at $p < 0.05$ at most of the grid
214 points. The LRT-T regression map reveals a spatial pattern opposite to that of LRT-H, consistent
215 with previous studies (Darrag et al., 2022, 2024). The greatest LRT-T downward trend occurs in
216 the eastern Mediterranean region around 30° N, with maximum decreasing trends of approximately
217 -0.75 K/dec. The zonal mean of the LRT-T regression map (right panel of Figure 1f) shows
218 decreasing trends at all latitudes except the northern zone of the Mediterranean region between
219 43.5° N and 50° N, with the latitudinal band from 20° N to 32.25° N exhibiting maximum
220 downward trends.

221 In this study, TEL representing the tropical belt boundary over the Mediterranean region is
222 estimated using two tropopause height metrics. Figure 2 depicts TEL derived from ERA5 data
223 based on both TPD and TPG methods over the period from January 1980 to December 2022. The
224 TPD method shows an observed increase in tropical belt coverage of approximately 0.14 ± 0.05
225 °/dec (Fig. 2a). The TPG method exhibits more poleward TEL occurrences than the TPD method.
226 Tropical belt coverage expanded by approximately 0.27 ± 0.06 °/dec using the TPG method (Fig.
227 2b). Meng et al. (2021) reported that the latitudinal zone from 30° N to 40° N exhibits the largest
228 LRT-H trends, likely attributable to the poleward shift of the subtropical jet and tropical belt
229 widening over the past 40 years (Staten et al., 2018). The TPD TEL demonstrates a strong positive
230 association with LRT-H, with a linear regression model yielding a coefficient of determination

231 (R²) of 0.93 (Fig. 2c). Similarly, the TPG TEL exhibits a strong positive association with LRT-H,
232 with R² = 0.87 (Fig. 2d).

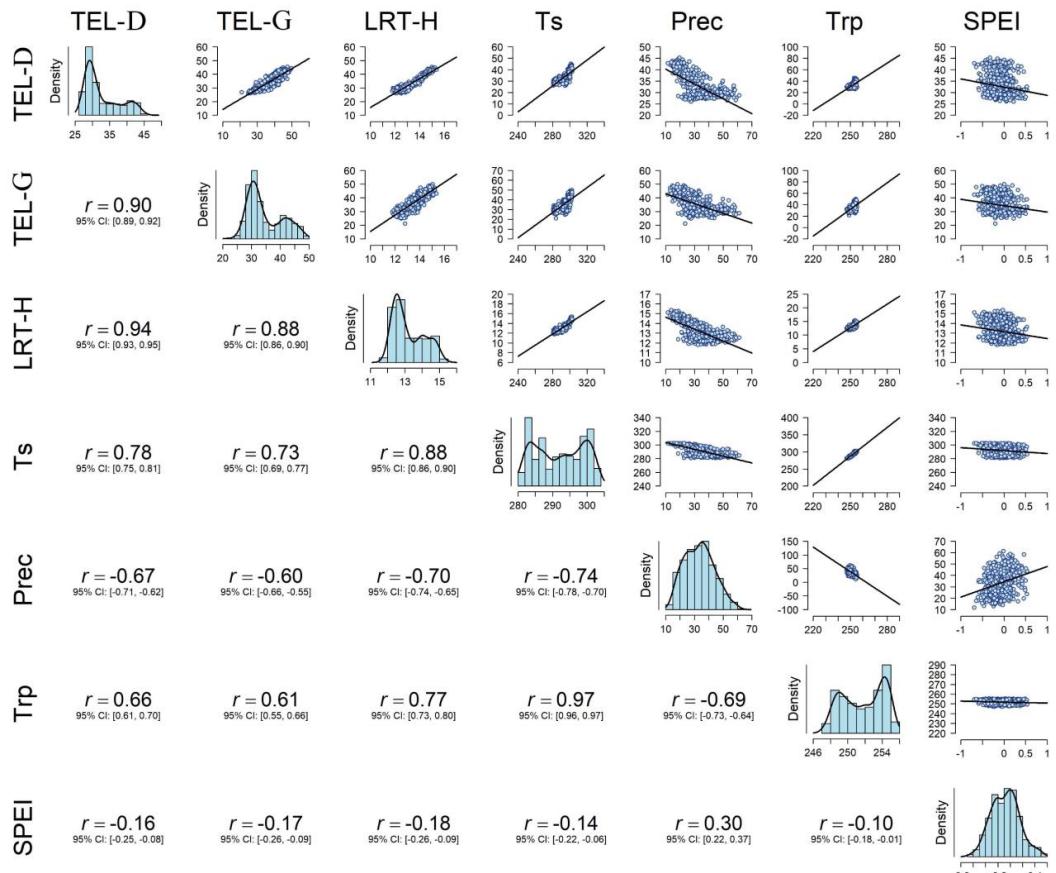


233
234 **Figure 1.** Monthly time series of LRT parameters from January 1980 to December 2022 in the top: (a) tropopause height (LRT-
235 H), (b) tropopause temperature (LRT-T). Tropopause anomaly over the period January 1980 to December 2022 in the middle: (c)
236 LRT-H anomaly time series, (d) LRT-T anomaly time series. Linear regression analysis of LRT parameters at all grid points and
237 their decadal trends over the period January 1980 to December 2022 in the bottom: (e) LRT-H, (f) LRT-T. The zonal mean is
238 displayed on the right side of each regression map.

239 The longitudinal variation of TEL for both approaches over the Mediterranean region from January
240 1980 to December 2022 is depicted in Figure 2e,f. Both the TPD TEL (Fig. 2e) and TPG TEL (Fig.
241 2f) display clear longitudinal variation across the study area. For both methods, TEL in the eastern
242 Mediterranean is positioned more poleward than in the western Mediterranean. This pattern results
243 from multiple factors, including the eastern Mediterranean region's exposure to strong natural
244 climate fluctuations connected to major tropical systems (Alpert et al., 2005). Furthermore, the
245 Mediterranean region's dual climate influence (situated between the subtropical high-pressure
246 systems of the Hadley cell and the mid-latitude westerlies) causes longitudinal differences in TEL
247 through variations in these circulation patterns (Trigo et al., 2006). The contrast between the cooler
248 waters of the western Mediterranean and the warmer landmasses of North Africa and the Middle
249 East contributes to longitudinal TEL variations, with this contrast being more pronounced in the
250 eastern Mediterranean, resulting in higher TEL values in this region (Lionello, 2012). Additionally,
251 SST variability influences longitudinal TEL variation, as SST patterns affect atmospheric

252 circulation and climate boundary positions (Meli et al., 2023). As shown in Figure 2, TEL
 253 variability in the TPG method (Fig. 2f) is higher than in the TPD method (Fig. 2e). Moreover, the
 254 TPG TEL occurrences are more poleward, with a maximum value of approximately 42.88° N,
 255 compared to the TPD TEL maximum of approximately 42.78° N.

256 **Figure 2.** Monthly time series of the TPD TEL method over the Mediterranean region for the period January 1980 to December
 257 2022 (a) and monthly time series of the TPG TEL method over the Mediterranean region for the period January 1980 to December
 258 2022 (b). The linear regression model between TPD TEL and LRT-H (c) and the linear regression model between TPG TEL and
 259 LRT-H (d) is also presented. Longitudinal variation of TEL using both methods over the Mediterranean region from January 1980
 260 to December 2022. The blue line in (e) represents the mean TPD TEL at each longitude over the study period, while the blue
 261 shading depicts its standard deviation (SD). In (f), the red line represents the mean TPG TEL at each longitude over the study
 262 period, with the red shading indicating its standard deviation (SD). Seasonal variation of TPD TEL (g) and TPG TEL (h) over the
 263 period from January 1980 to December 2022.


Figures 2g and 2h depict the seasonal variation of both TPD TEL and TPG TEL over the period from January 1980 to December 2022, respectively. In the case of TPD TEL, Summer (JJA) and Autumn (SON) show higher interannual variability than that in Winter (DJF) and Spring (MAM) (Fig. 2g). The TPD TEL median values exhibit the anticipated seasonal pattern, being maximum in Summer (JJA) at about 38.83° due to warming in the surface and troposphere. On the other hand, the TPD TEL median is minimum in Winter (DJF) at about 29.2° because of the cooling of the surface and troposphere. All seasons show a multimodal distribution of the TPD-TEL, which is clearly evident in Summer (JJA) and Autumn (SON). For TPG TEL (Fig. 2h), the seasonal variation follows the same pattern as that of TPD TEL, being of higher variability in Summer (JJA) and Autumn (SON) than in Winter (DJF) and Spring (MAM), displaying multimodal distribution of the TPG TEL values in all seasons. But TPG TEL exhibits TEL median values that are higher than those in the case of TPD TEL, being greatest in Summer (JJA) at about 41° and lowest in Spring (MAM) instead of Winter (DJF) in the case of TPD TEL, at about 30.33° . Our analysis results are consistent with those of several researches that reported a pronounced seasonal cycle of the TELs that typically moves poleward in the Summer and equatorward in the Winter. In addition, the amplitude of the seasonal cycle is approximately $5\text{--}10^{\circ}$ latitude, though it varies depending on the metric employed (Davis and Rosenlof, 2012; Davis and Birner, 2013; Lucas et al., 2014; Luan et al., 2020).

3.2 Interaction of TEL and climatic parameters

Tropical belt expansion may cause profound changes in the Mediterranean region's climate; even minor expansion would have significant consequences. As shown in Figure 3, TELs estimated using both TPD and TPG methods exhibit a high Pearson correlation of 0.9. Furthermore, TELs from both definitions show strong correlations with LRT-H, surface temperature, tropospheric temperature, and precipitation. The TPD method demonstrates higher correlations with these climatic parameters than the TPG method. Correlations between TPD TEL and LRT-H, surface temperature, tropospheric temperature, and precipitation are 0.94, 0.78, 0.66, and -0.67, respectively. Our analysis results are consistent with those of Darrag et al. (2023). Additionally, tropospheric temperature depicts a strong correlation with surface temperature of approximately 0.97. However, no significant correlation exists between SPEI and all other climatic parameters. As shown in Figure 3, TEL from both definitions, LRT-H, surface temperature, and tropospheric temperature display bimodal distributions, while precipitation and SPEI exhibit unimodal distributions. TPD and TPG TEL show strong positive linear associations with LRT-H, surface temperature, and tropospheric temperature. Furthermore, tropospheric temperature demonstrates strong associations with other parameters, with the strongest relationship observed with surface temperature. Both precipitation and SPEI display negative associations with all other parameters while exhibiting a weak positive association with each other.

300

301

302 **Figure 3.** Correlation coefficients among monthly TEL from TPD (D) and TPG (G) methods, LRT-H, surface
 303 temperature (Ts), precipitation (Prec), tropospheric temperature (Trp), and SPEI with 95% confidence intervals for the period from January 1980 to
 304 December 2022 (left side). The density distribution of all variables is displayed on the diagonal, while linear regression models
 305 between variables are shown on the right side.

306

307 The PCA biplot of monthly averaged TEL from TPD and TPG methods, LRT-H, surface
 308 temperature, precipitation, tropospheric temperature, and SPEI (Fig. 4) reveals that TELs from
 309 both methods are highly positively correlated. Furthermore, the TPD TEL contributes more to
 310 variability than the TPG TEL. LRT-H, surface temperature, and tropospheric temperature are
 311 highly correlated with each other and with both TEL definitions. Conversely, precipitation and
 312 SPEI are weakly positively related. Precipitation shows negative correlations with TELs from both
 313 methods, LRT-H, surface temperature, and tropospheric temperature. Furthermore, SPEI depicts
 314 no observable relationship with TELs or other climatic parameters, showing high agreement with
 315 results in Figure 3. WTC analysis between TPD TEL and climatic parameters (LRT-H, surface
 316 temperature, tropospheric temperature, precipitation, and SPEI) is presented in Figure 5. Over the
 317 period from January 1980 to December 2022, TEL locations are in phase and exhibit high
 318 coherence with LRT-H, surface temperature, and tropospheric temperature at time scales of 4 to

319 20 months, 8 to 20 months, and 8 to 20 months, respectively. In relation to LRT-H, surface
320 temperature, and tropospheric temperature, TEL is leading, as indicated by arrows pointing to the
321 right and upward (Fig. 5a,b,c). Conversely, TPD TEL and precipitation show coherence at a time
322 scale of 8 to 16 months, are out of phase, and TPD TEL is lagging (Fig. 5d). Furthermore, no
323 significant coherence exists between TPD TEL and the SPEI drought index (Fig. 5e). As shown in
324 Figure 6, WTC analysis results between TPG TEL and climatic parameters (LRT-H, surface
325 temperature, tropospheric temperature, precipitation, and SPEI) are nearly identical to those of
326 TPD TEL (Fig. 5) but with shorter time scales of high coherence. Our analysis outputs are
327 consistent with Darrag (2024), who applied similar analyses in both hemispheres based on TELs
328 estimated from global navigation satellite systems radio occultation (GNSS-RO) data on a global
329 scale.

330

331

332

333

334

335

336

337

338

339

340

341

342

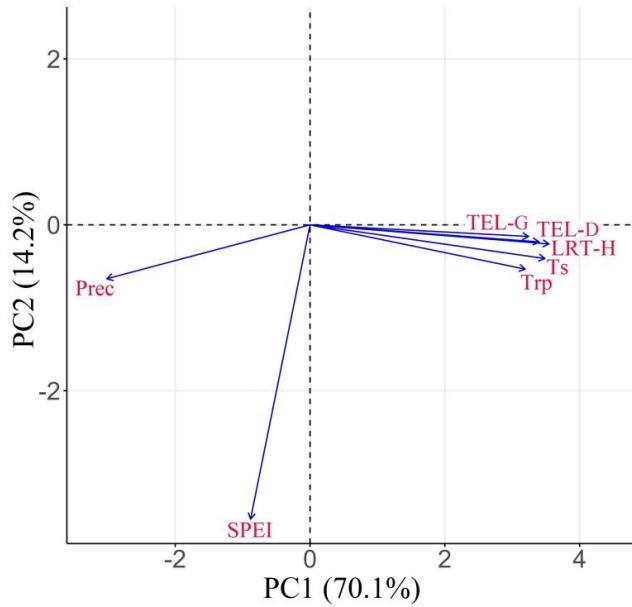
343

344

345

346

347


348

349

350

351

352

Figure 4. PCA biplot of monthly TEL from TPD (D) and TPG (G) methods, LRT-H, surface temperature (Ts), precipitation (Prec), tropospheric temperature (Trp), and SPEI for the period January 1980 to December 2022.

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

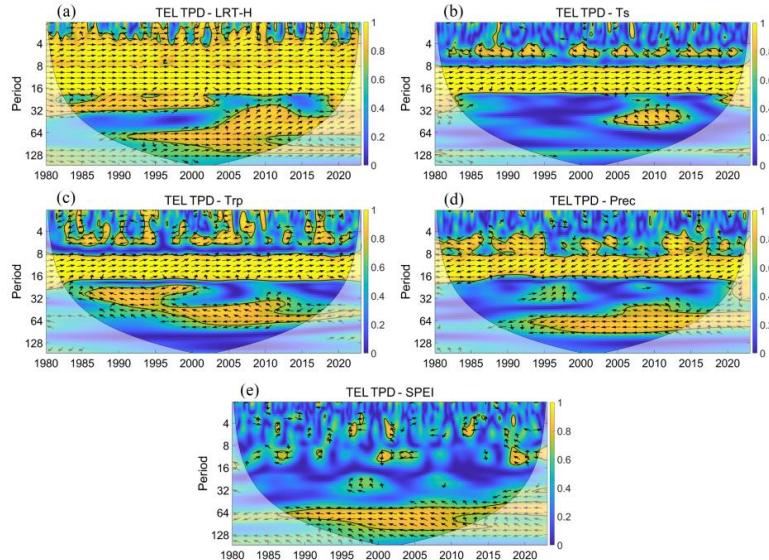
372

373

374

375

376


377

378

379

380

381

Figure 5. Wavelet coherence (WTC) analysis between TPD TEL and climatic parameters for the period from January 1980 to December 2022. Arrows indicate phase differences between the two series. Variables are in phase when arrows point to the right (moving in the same direction with cyclical effects on each other). If arrows point right and upward, the first variable is leading (causing the second variable); if pointing right and downward, the first variable is lagging. Variables are out of phase (having anticyclical effects) when arrows point to the left. If arrows point left and upward, the first variable is leading; if pointing left and downward, the first variable is lagging. TPD TEL and LRT-H (a), TPD TEL and surface temperature (Ts) (b), TPD TEL and tropospheric temperature (TRP) (c), TPD TEL and precipitation (Prec) (d), and TPD TEL and SPEI (e).

382

383

384

385

386

387

388

389

390

391

392

393

394

395

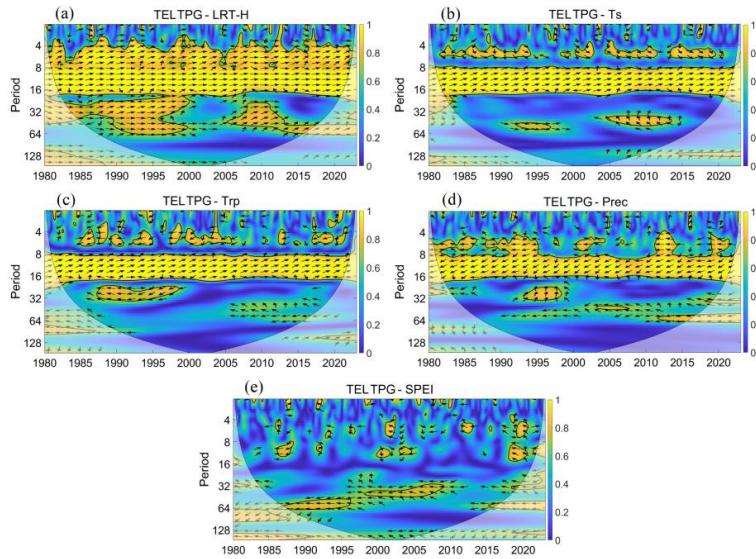
396

397

398

399

400


401

402

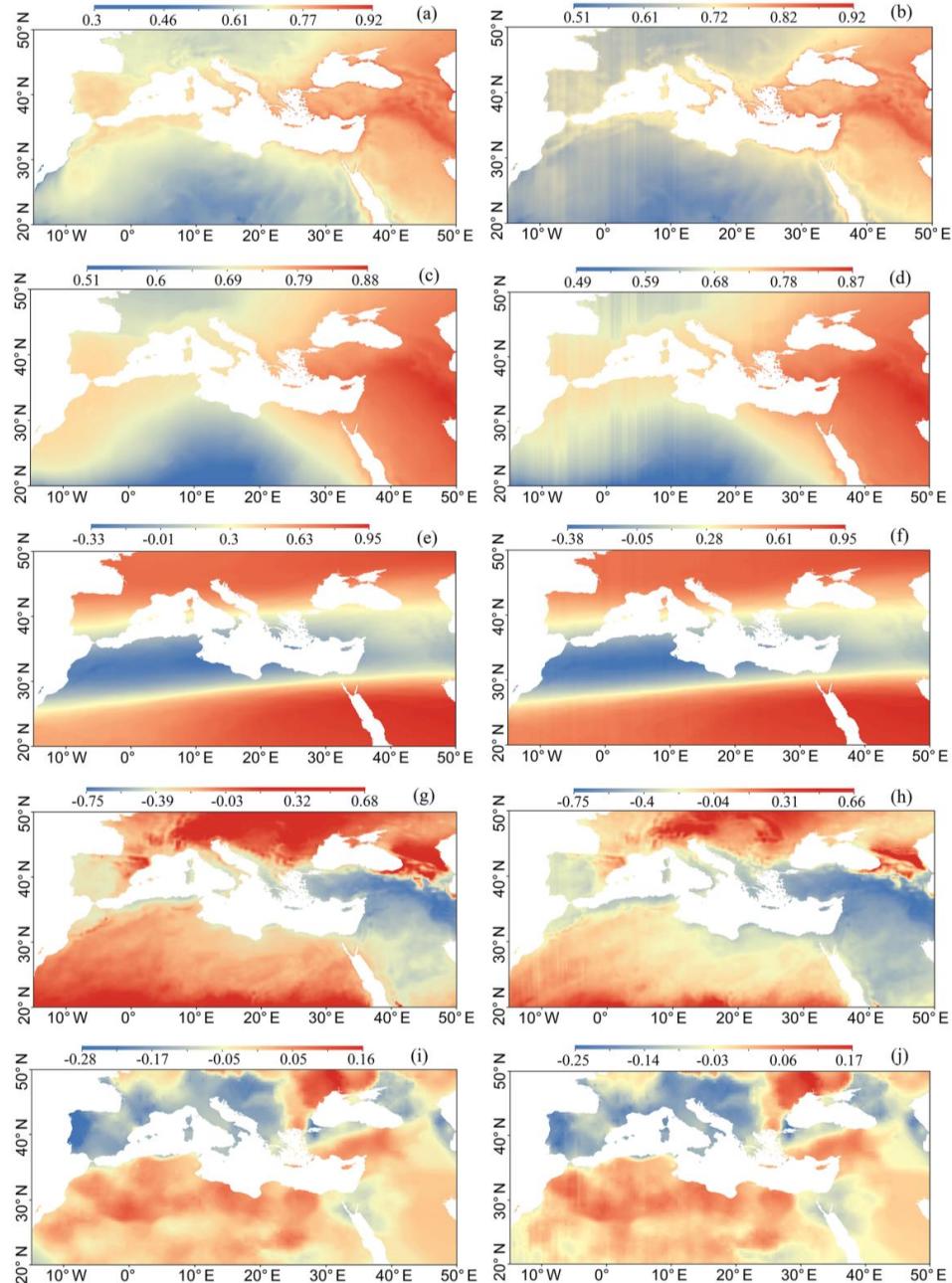
403

404

405

Figure 6. Wavelet coherence (WTC) analysis between TPG TEL and climatic parameters for the period from January 1980 to December 2022. TPG TEL and LRT-H (a), TPG TEL and surface temperature (Ts) (b), TPG TEL and tropospheric temperature (TRP) (c), TPG TEL and precipitation (Prec) (d), and TPG TEL and SPEI (e).

406 Figure 7 exhibits the spatial correlation of both TEL definitions with climatic parameters (surface
407 temperature, lower tropospheric temperature from surface to 5 km height (TRP-1), upper
408 tropospheric temperature from 5 km to LRT level (TRP-2), precipitation, and SPEI) from January
409 1980 to December 2022. As shown in Figure 7a,b, surface temperature displays positive
410 correlations with TPD and TPG TEL definitions across the entire study area. The correlation
411 reaches a maximum of approximately 0.92 over the eastern Mediterranean region. Similarly, TRP-
412 1 exhibits positive correlations with both TEL definitions over all grid cells (Fig. 7c,d). The
413 correlation is greatest over the eastern Mediterranean region, reaching approximately 0.88 for
414 TRP-1 and TPD TEL. For TRP-2, positive correlations with TELs dominate and cover nearly the
415 entire Mediterranean region (Fig. 7e,f), except the latitudinal band where TELs vary poleward and
416 equatorward (Fig. 2e,f). The positive correlation of TRP-2 with TELs from both definitions
417 reaches a maximum of approximately 0.95. Conversely, the greatest negative correlation between
418 TRP-2 and TPG TEL is approximately -0.38. For precipitation, strong negative correlations with
419 both TEL definitions dominate in the eastern Mediterranean region, reaching -0.75, while positive
420 correlations cover North Africa and southern Europe but are weaker than the negative correlations
421 in the eastern Mediterranean (Fig. 7g,h). SPEI shows weak correlations with both TPD and TPG
422 TEL (Fig. 7i,j). Figure 7 demonstrates that the spatial correlation patterns of TEL from both
423 definitions with climatic parameters are nearly identical. Our analysis results are in good
424 agreement with the findings of Darrag (2024).


425 For further investigation into the effects of poleward tropical belt expansion on climatic parameters
426 in the Mediterranean region from January 1980 to December 2022, SVD analysis is performed to
427 reveal coupled patterns of covariability between TEL positions and climatic parameters (surface
428 temperature, TRP-1, TRP-2, precipitation, and SPEI). First, we constructed 3D geospatial data
429 using monthly TEL values by repeating TEL values along all longitudes for each timestep. This
430 process was performed for both TPD and TPG TEL methods, resulting in 3D matrices for monthly
431 TEL values in the same spatial and temporal domain as the climatic parameters. For the SVD
432 analysis results, we consider only the first dominant mode of covariance. SVD1 depicts the spatial
433 patterns for the first paired mode of covariability, whereas SC1 represents the time series of
434 expansion coefficients for the same mode. For all parameters employed in the SVD examination,
435 their SC1 time series and related SVD1 maps of spatial variability are scaled to range from -1 to 1
436 to enable comparison and description of the paired modes of covariability (Darrag et al., 2024).

437 For the coupled fields of TPD TEL and surface temperature, the squared covariance fraction (SCF)
438 of the first leading mode explains 99.98% of the total covariability of both fields. As shown in
439 Figure 8c, there is a strong positive correlation between the SC1 of TPD TEL and surface
440 temperature of approximately 0.86. Furthermore, inter-annual oscillations dominate the SC1 for
441 the temporal variability-paired mode of TPD TEL and surface temperature. The first coupled mode
442 of spatial variability, SVD1, shows that surface temperature (Fig. 8b) is characterized by observed
443 fluctuations in the eastern Mediterranean region accompanied by TPD TEL fluctuations of the
444 same sign over the same region (Fig. 8a). For the coupled fields of TPD TEL and TRP-1, the SCF

445 of the first prevailing mode accounts for approximately 99.98% of the total covariability of both
446 fields. As depicted in Figure 8f, there is strong coupling between the SC1 of TPD TEL and TRP-1
447 with a correlation of 0.88. Additionally, inter-annual oscillations dominate the SC1 for the temporal
448 variability-paired mode of TPD TEL and TRP-1. The SVD1 exhibits that TRP-1 (Fig. 8e) is
449 characterized by strong observed fluctuations in the eastern Mediterranean region and weak
450 anomalies at the transition zone from low to mid-latitudes over Africa, accompanied by TPD TEL
451 fluctuations of the same sign over the same region (Fig. 8d). For the coupled fields of TPD TEL
452 and TRP-2, the SCF of the first dominant mode describes approximately 99.56% of the total
453 covariability of both fields. As shown in Figure 8i, there is a strong correlation between the SC1
454 of TPD TEL and TRP-2 of approximately 0.89. Moreover, inter-annual oscillations dominate the
455 SC1 for the temporal variability-paired mode of TPD TEL and TRP-2. The SVD1 depicts that
456 TRP-2 (Fig. 8h) has clear coupling of the opposite sign with TPD TEL (Fig. 8g) in the
457 southernmost part of Europe and the northernmost part of Africa, while in the southernmost part
458 and the northernmost part of the study area both show fluctuations of the same sign.

459 In the case of the coupled fields of TPD TEL and precipitation, the SCF of the first leading mode
460 explains approximately 99.71% of the total covariability of both fields. As exhibited in Figure 8l,
461 there is a high correlation between the SC1 of TPD TEL and precipitation of approximately 0.8.
462 Additionally, inter-annual oscillations dominate the SC1 for the temporal variability-paired mode
463 of TPD TEL and precipitation. The SVD1 depicts that precipitation (Fig. 8k) is characterized by
464 two narrow signals of strong fluctuations in the eastern Mediterranean region, one associated with
465 TPD TEL fluctuations of the same sign and the other with TPD TEL fluctuations of opposite sign,
466 and another two covariability zones in southern Europe of the same characteristics as that of the
467 eastern Mediterranean region (Fig. 8j). For the coupled fields of TPD TEL and SPEI, the SCF of
468 the first dominant mode represents approximately 97.17% of the total covariability of both fields.
469 As shown in Figure 8o, the correlation between the SC1 of TPD TEL and SPEI is weaker than
470 with other parameters, approximately 0.41. Moreover, inter-annual oscillations dominate the SC1
471 for the temporal variability-paired mode of TPD TEL and SPEI. The SVD1 depicts that SPEI (Fig.
472 8n) has clear coupling of the same sign with TPD TEL (Fig. 8m) in major areas of the eastern
473 Mediterranean region and northern Africa, while in major areas of western Europe, both show
474 fluctuations of opposite sign. The first leading mode of covariability for the coupled fields of TPG
475 TEL and climatic parameters from January 1980 to December 2022 (Fig. 9) shows coupling
476 patterns nearly identical to those for TPD TEL (Fig. 8). The SVD analysis results show that the
477 patterns of combined TELs and climatic parameters are more closely coupled for surface
478 temperature and TRP-1. Furthermore, their combined fields are significantly related in the eastern
479 Mediterranean region, attributed to the more poleward TEL position in the eastern Mediterranean
480 compared to the entire study area (Trigo et al., 2006; Lionello, 2012).

481

482

483

484

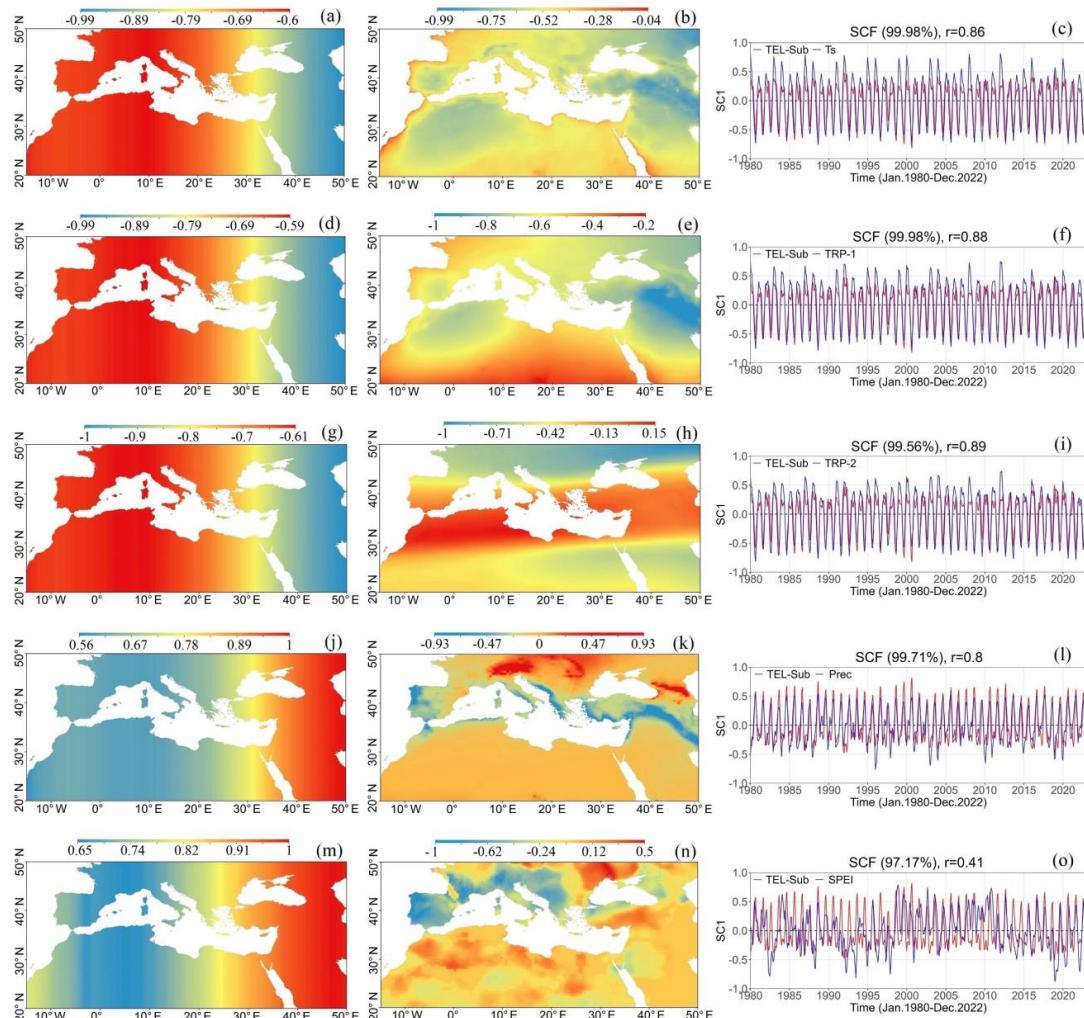
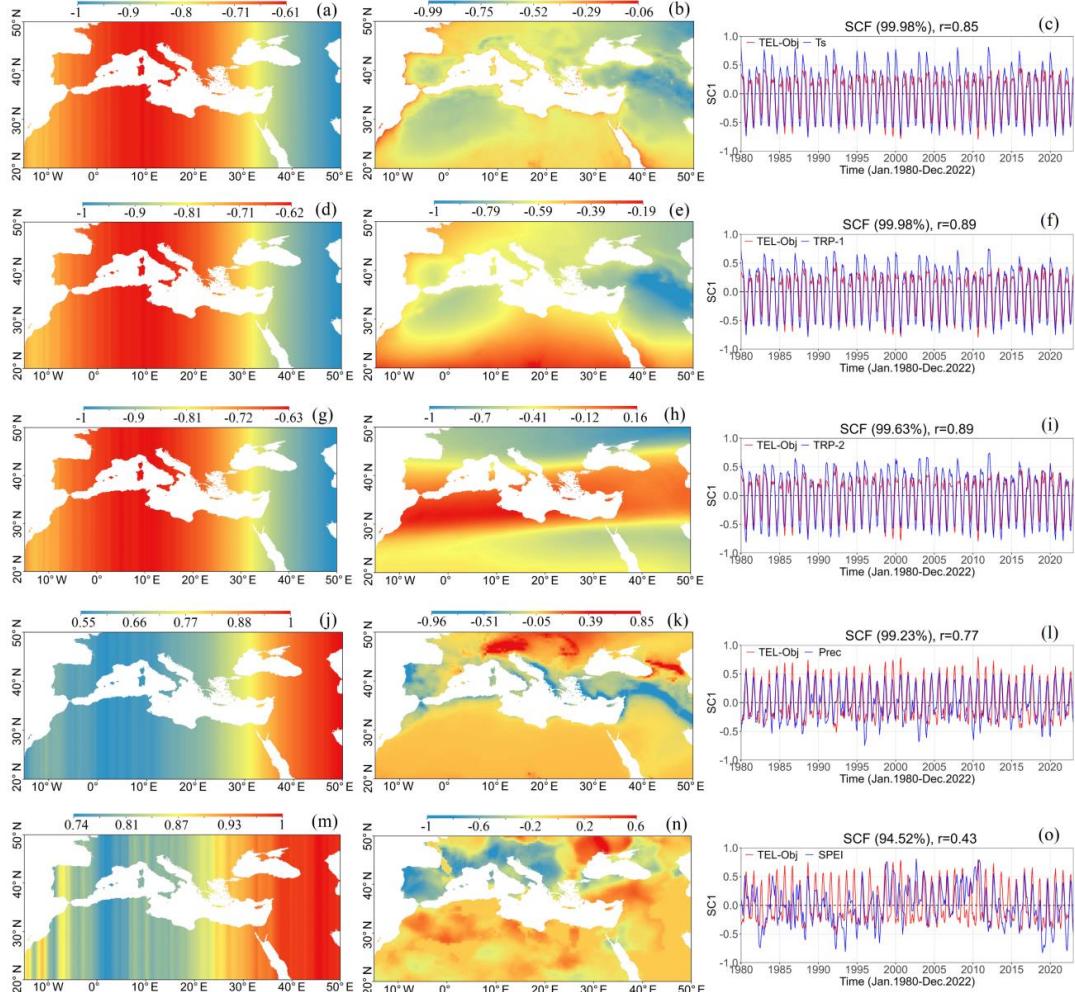

485

Figure 7. Spatial correlation of TPD TEL (left) and TPG TEL (right) with climatic parameters from January 1980 to December 2022. Surface temperature (a, b), lower tropospheric temperature from surface to 5 km height (TRP-1) (c, d), upper tropospheric temperature from 5 km to LRT level (TRP-2) (e, f), precipitation (g, h), and SPEI (i, j).

486


487

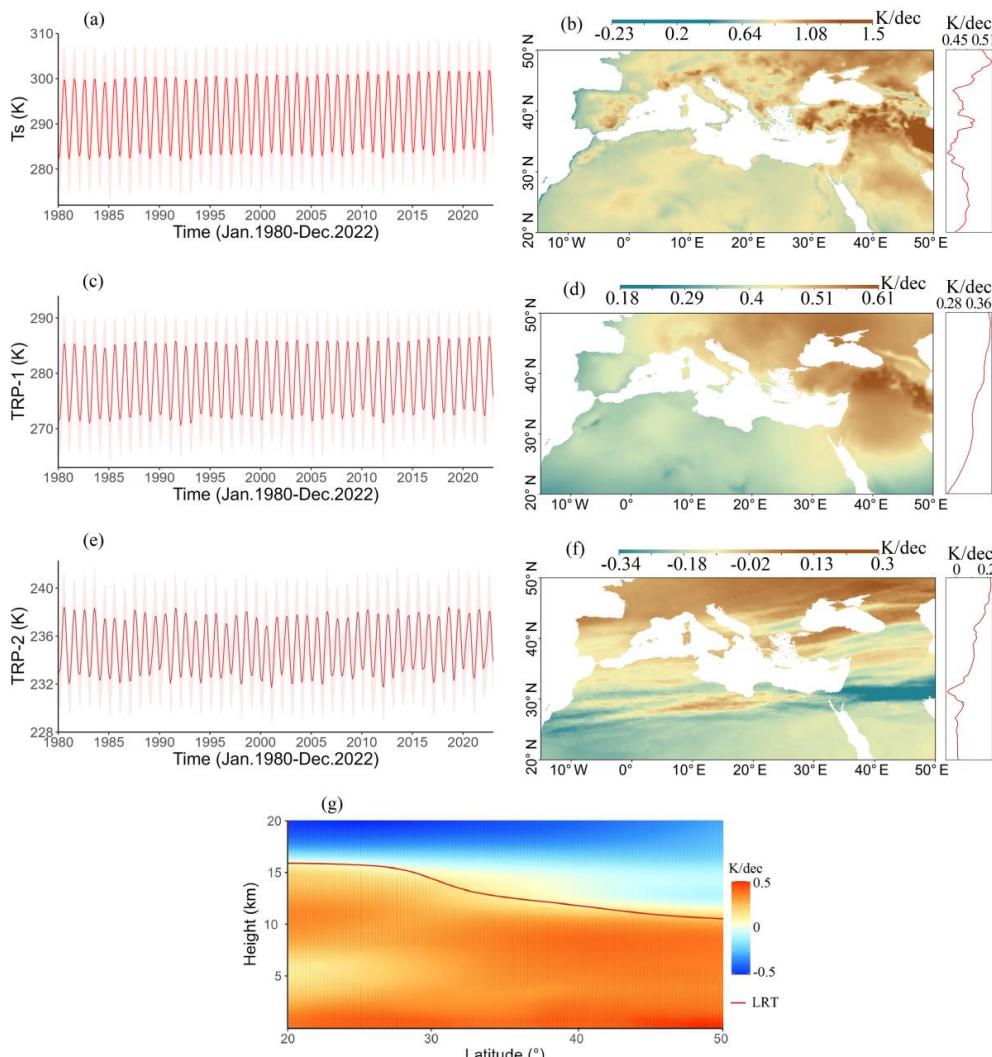
488
 489
 490
 491
 492

Figure 8. First leading mode of covariability for the coupled fields of TPD TEL and climatic parameters from January 1980 to December 2022. TPD TEL and surface temperature (a, b, c), TPD TEL and lower tropospheric temperature (TRP-1) (d, e, f), TPD TEL and upper tropospheric temperature (TRP-2) (g, h, i), TPD TEL and precipitation (j, k, l), and TPD TEL and SPEI (m, n, o). The spatial patterns for the first paired mode of covariability (SVD1) of TPD TEL (left), climatic parameter SVD1 (middle), and the time series of expansion coefficients (SC1) for the paired mode of both TPD TEL and climatic parameter (right).

493
 494
 495

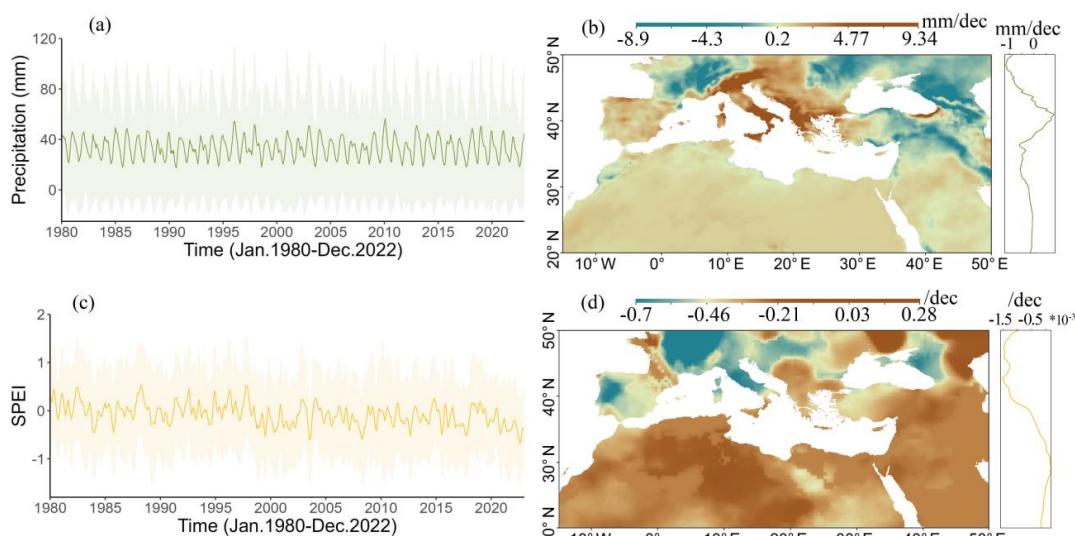
496
497
498
499
500 **Figure 9.** First leading mode of covariability for the coupled fields of TPG TEL and climatic parameters from January 1980 to December 2022. TPG TEL and surface temperature (a, b, c), TPG TEL and lower tropospheric temperature (TRP-1) (d, e, f), TPG TEL and upper tropospheric temperature (TRP-2) (g, h, i), TPG TEL and precipitation (j, k, l), and TPG TEL and SPEI (m, n, o). The spatial patterns for the first paired mode of covariability (SVD1) of TPG TEL (left), climatic parameter SVD1 (middle), and the time series of expansion coefficients (SC1) for the paired mode of both TPG TEL and climatic parameter (right).

501 The Mediterranean region's monthly average surface temperature over the period from January
502 to December 2022 has increased by approximately 0.48 ± 0.03 K/dec (Fig. 10a). This is
503 consistent with the results of Castellanos et al. (2021), who found that land surface air temperatures
504 were significantly rising, with yearly amplitudes ranging from 0.006 to 0.027 °C for maximum
505 temperatures and slightly greater rates for minimum temperatures. The primary drivers of
506 Mediterranean region warming are the rapid increase of anthropogenic greenhouse gases and the
507 decline of aerosols and soil moisture (Kim et al., 2019; Urdiales-Flores et al., 2023). Linear
508 regression analysis of surface temperature was performed at all grid points, with decadal trends


509 plotted (Fig. 10b). Surface temperature shows a dominant upward trend evident across nearly the
510 entire study area, with statistically significant trends at $p < 0.05$ at most of the grid points (Fig.
511 10b). The greatest temperature upward trends are evident in the eastern Mediterranean region,
512 while temperature trends in the western Mediterranean are less pronounced. Moreover, the zonal
513 mean of the temperature linear regression map on the right panel of Figure 10b shows positive
514 temperature trends throughout the entire study area with maximum trends in the northern zone of
515 the Mediterranean from 46° N to 50° N. Zittis et al. (2022) reported that the Eastern Mediterranean
516 and Middle East are warming approximately twice as rapidly as the global average, indicating that
517 while the Mediterranean as a whole is experiencing dramatic warming, particular locations within
518 it are experiencing far more drastic changes compared to the rest of the globe.

519 Figure 10c exhibits the monthly time series of Mediterranean TRP-1 for the period from January
520 to December 2022. TRP-1 has increasing trends of approximately 0.36 ± 0.03 K/dec. The
521 decadal trends of TRP-1 at all grid points over this period (Fig. 10d) show increasing trends, with
522 statistically significant trends at $p < 0.05$ at most of the grid points, caused mainly by global
523 warming. TRP-1 trends in the eastern and northern Mediterranean are much stronger than those in
524 the southern and western Mediterranean, and the zonal mean of TRP-1 linear regression map on
525 the right panel of Figure 10d depicts dominant positive trends throughout the entire study area with
526 the strongest trends in the zone from 45° N to 50° N. For the monthly time series of TRP-2 (Fig.
527 10e), the decadal trend over the period from January 1980 to December 2022 is 0.09 ± 0.01 K/dec,
528 which is less than that of TRP-1. Additionally, linear regression analysis of TRP-2 performed at
529 all grid points shows clear variation in temperature trends, with statistically significant trends at p
530 < 0.05 at most of the grid points. In the northern Mediterranean, positive TRP-2 trends are
531 abundant, while in the southern Mediterranean, negative trends are prevalent (Fig. 10f). The zonal
532 mean of TRP-2 linear regression map on the right panel of Figure 10f displays clear negative trends
533 around the latitude of 31.25° N. Our results are in agreement with Karl et al. (2006), who reported
534 that global-average tropospheric temperatures have increased significantly since the late 20th
535 century. From 1958 to the present, the global average temperature has risen at a rate of
536 approximately 0.12°C per decade, accelerating to about 0.16°C per decade since 1979.

537 The decadal trends of the monthly zonal mean temperature structure during 1980-2022 over height
538 ranges from the earth's surface to 20 km, including the troposphere and lower stratosphere, and the
539 LRT-H zonal mean is shown in Figure 10g. As evident, there are apparent upward temperature
540 trends in the whole troposphere, with the greatest increasing trends over the latitudinal band from
541 around 45° N-50° N, with a maximum value of 0.5 K/dec. As is clear from the zonal mean of linear
542 regression trend maps of surface temperature, TRP-1, and TRP-2 on the right panel of Figure 10b,
543 d, and f, respectively, there is an observed increase in temperature trends also over the latitudinal
544 band from around 45° N-50° N. The warming in the troposphere is associated with apparent
545 cooling trends in the stratosphere at a greatest rate of slightly over -0.5 K/dec. The latitudinal band
546 20° N-30° N is the zone of maximum stratospheric temperature declining trends. The phenomenon
547 of tropospheric warming accompanied by stratospheric cooling is a signature fingerprint of human-


548 induced climate change, principally driven by rising GHGs. Several studies reported tropospheric
 549 warming and stratospheric cooling employing radiosonde, radio occultation (RO), and satellite
 550 observations (Narayana Rao et al., 2007; Titchner et al., 2009; Haimberger et al., 2012; Steiner et
 551 al., 2020).

552 **Figure 10.** Monthly time series of surface temperature (Ts) (a) and its linear regression analysis at all grid points with decadal
 553 trends over the period January 1980 to December 2022, with the zonal mean of the regression map on the right side (b). Monthly
 554 time series of lower tropospheric temperature from surface to 5 km height (TRP-1) (c) and its linear regression analysis at all grid
 555 points with decadal trends over the period January 1980 to December 2022, with the zonal mean of the regression map on the right
 556 side (d). Monthly time series of upper tropospheric temperature from 5 km to LRT level (TRP-2) (e) and its linear regression
 557 analysis at all grid points with decadal trends over the period January 1980 to December 2022, with the zonal mean of the regression
 558 map on the right side (f). Temperature trends (K/decade) in the troposphere and lower stratosphere (0-20 km) over 1980–2022; the
 559 LRT-H is represented by the red line. Dashed lines mark areas where temperature trends are statistically significant at a p-value <
 560 0.05 (g).

561 Total precipitation over the Mediterranean from January 1980 to December 2022 exhibits
562 decreasing trends of approximately -0.25 ± 0.05 mm/dec (Fig. 11a). This is consistent with
563 previous studies reporting that the Mediterranean region is facing significant changes in
564 precipitation patterns driven by climate change. Observational data and climate model projections
565 indicate a clear trend toward declining precipitation, particularly during winter months, which
566 poses serious implications for the region's ecosystems and water resources (Cos et al., 2022;
567 Delworth et al., 2022; André et al., 2024). Linear regression analysis of total precipitation was
568 performed at all grid points, with decadal trends plotted (Fig. 11b). Precipitation exhibits a
569 dominant downward trend evident in eastern and western Europe, with statistically significant
570 trends at $p < 0.05$ at most of the grid points. Furthermore, the zonal mean of the precipitation linear
571 regression map on the right panel of Figure 11b exhibits evident positive trends around latitude 41°
572 N while depicting a strong negative trend between 47° N and 50° N. SPEI is commonly used to
573 monitor meteorological drought status. As seen in Figure 11c, SPEI has decreased by -0.07 ± 0.001
574 /dec from January 1980 to December 2022. Recent studies have highlighted significant trends in
575 drought occurrences and characteristics across the Mediterranean Basin (Essa et al., 2023).
576 Historical analyses using SPEI from 1980 to 2014 reveal a significant upward trend in drought
577 frequency (Choutri and Hussien, 2024; Kesgin et al., 2024). SPEI linear regression analysis
578 performed at all grid points exhibits evident abundance of grid cells with decreasing SPEI trends,
579 especially in the northern Mediterranean (Fig. 11d). Additionally, the zonal mean of SPEI, on the
580 right panel of Figure 11d, depicts a strong negative trend between 40° N and 50° N.

581 **Figure 11.** Monthly time series of precipitation (a) and its linear regression analysis at all grid points with decadal trends over
582 the period January 1980 to December 2022, with the zonal mean of the regression map on the right side (b). Monthly time series of
583 Standardized Precipitation Evapotranspiration Index (SPEI) (c) and its linear regression analysis at all grid points with decadal
584 trends over the period January 1980 to December 2022, with the zonal mean of the regression map on the right side.
585

587 **4 Conclusions**

588 The Mediterranean region is increasingly recognized as a climate change hotspot, where the
589 combined impacts of global warming and tropical belt expansion are contributing to significant
590 alterations in climatic patterns. This study investigates the relationship between tropical belt
591 expansion over the Mediterranean region and climatic parameters (tropopause, temperature,
592 precipitation, and SPEI) variations using observational and reanalysis data from January 1980 to
593 December 2022 through comprehensive analyses (correlation, linear regression, SVD, WTC, and
594 PCA). Our findings reveal that monthly average LRT-H increased by approximately 80.58 ± 3.07
595 m/dec over the study period, attributed to global warming from increasing GHGs emissions (Meng
596 et al., 2021). LRT-H shows stronger positive anomalies than negative ones, while LRT-T displays
597 higher negative anomalies than positive. Moreover, the LRT-H shows dominant upward trends
598 over the study area, which reach maximum values of about 266.5 m/dec in the eastern
599 Mediterranean, reflecting intensifying warming conditions. Our findings corroborate previous
600 research based on GNSS-RO, radiosonde, and reanalysis datasets that have documented rising
601 tropopause height (Schmidt et al., 2004; Sausen and Santer, 2003; Seidel and Randel, 2006; Pisot
602 et al., 2021). Based on the two used tropopause height metrics, the tropical belt expanded poleward
603 at rates of approximately 0.14 ± 0.05 °/dec and 0.27 ± 0.06 °/dec for TPD and TPG methods,
604 respectively. The tropical belt expansion has long been connected to changes in atmospheric
605 structure caused by global warming. As temperatures increase, enhanced tropospheric warming
606 causes thermal expansion of the troposphere, resulting in a rise in tropopause height. This vertical
607 expansion is accompanied by poleward growth of the area covered by the tropical belt.

608 TELs exhibit an evident longitudinal variation, as the eastern Mediterranean shows more poleward
609 TEL occurrences compared to that over the western Mediterranean. This east–west contrast is
610 consistent with the stronger influence of subtropical jet variability in the eastern Mediterranean,
611 compared to the greater impact of Atlantic storm tracks in the western Mediterranean (Lionello et
612 al., 2006; Manney et al., 2011). TELs from both methods exhibit strong positive correlations with
613 LRT-H, surface temperature, and tropospheric temperature, while showing strong negative
614 correlations with precipitation. WTC analysis confirms that both TEL definitions are in phase with
615 high coherence to LRT-H, surface temperature, and tropospheric temperature, but out of phase
616 with precipitation. However, no significant relationship exists for SPEI with TELs or other climatic
617 parameters. Spatial correlation analysis reveals that both surface temperature and TRP-1 show
618 positive correlations with TELs across the study area, with the highest values in the eastern
619 Mediterranean. TRP-2 displays predominantly positive spatial correlations with TELs throughout
620 most of the Mediterranean except within the latitudinal band where TELs undergo poleward
621 expansion and equatorward contraction. Precipitation exhibits strong negative spatial correlations
622 with TELs in the eastern Mediterranean while showing positive correlations over southern Europe.

623 SVD analysis demonstrates that the first mode of temporal variability for paired modes of TELs
624 and all climatic parameters is dominated by inter-annual oscillations. SC1 of TELs shows strong
625 positive correlations with all climatic factors but less in the case of SPEI. The first spatial mode

626 (SVD1) reveals clear coupling between surface temperature and TRP-1 with TELs in the eastern
627 Mediterranean. For TRP-2, SVD1 shows linkage with TELs in the southernmost and northernmost
628 zones of the study area, while displaying opposite-sign oscillations in southern Europe, northern
629 Africa, and the middle zone of the eastern Mediterranean. Precipitation SVD1 exhibits two strong
630 signals (one in the eastern Mediterranean and another in southern Europe) accompanied by
631 opposite-sign TEL fluctuations over the same regions and another two covariability zones
632 northward of the previous ones but accompanied by TEL fluctuations of the same sign over the
633 same regions. SPEI SVD1 displays clear coupling of the same sign with TELs in major areas of
634 the eastern Mediterranean and northern Africa regions, while in western Europe, both depict
635 opposite sign fluctuations. The stronger coupling between TELs and climatic parameters in the
636 eastern Mediterranean indicates the strong effect of the TEL pattern in this region compared to
637 the broader study area. Surface temperature over the Mediterranean region increased at 0.48 ± 0.03
638 K/dec between January 1980 and December 2022, with the most significant rises in the eastern
639 Mediterranean and less dramatic increases in the western Mediterranean. TRP-1 and TRP-2 show
640 increasing trends of approximately 0.36 ± 0.03 K/dec and 0.09 ± 0.01 K/dec, respectively, with
641 positive trends most abundant in the eastern and northern Mediterranean for TRP-1 and the
642 northern Mediterranean for TRP-2. The temperature structure across the Mediterranean has the
643 greatest magnitudes and trends near the surface, which gradually drop with altitude and exhibit a
644 strong height-dependent spatial pattern. Total precipitation and SPEI exhibit decreasing trends of
645 approximately -0.25 ± 0.05 mm/dec and -0.07 ± 0.001 /dec, respectively, consistent with previous
646 studies reporting pronounced aridification and more frequent droughts over the Mediterranean
647 region (Essa et al., 2023; André et al., 2024).

648 These results confirm that climatic parameter variability, coherence, and coupling are linked to
649 TELs variability throughout the Mediterranean region, with apparent interaction and coupling
650 between climatic parameter patterns and TELs over the eastern Mediterranean. The findings of
651 this study advance the understanding of the long-term variability of key climatic parameters over
652 the Mediterranean, as well as their relationships and interactions with large-scale tropical belt
653 dynamics.

654

655 **Author contribution.** Conceptualization: MD and SJ; Methodology: MD; Software: MD;
656 Validation: SJ and MD; Formal analysis: MD; Investigation: SJ and MD; Resources: MD; Data
657 curation: MD; Writing—original draft preparation: MD; Visualization: MD; Writing—review and
658 editing: SJ, MD, AC, AS, IR and AMR; Supervision: SJ.
659

660

Competing interests. The authors declare no competing interests.

661

662 **Acknowledgements.** The authors thanks to the Copernicus Climate Change Service Information
663 for ERA5 data. In addition, we are grateful to the Climate Research Unit (CRU), the University of
664 Delaware (UDEL) for granting access to datasets.
665

666

667 **Financial support.** This study was supported by the National Natural Science Foundation of
668 China (NSFC) Project (Grant No. 12073012).

669

670 References

671 Allen, R. J., Norris, J. R., and Kovilakam, M.: Influence of anthropogenic aerosols and the Pacific Decadal Oscillation
672 on tropical belt width, *Nat. Geosci.*, 7, 270–274, <https://doi.org/10.1038/ngeo2091>, 2014.

673 Allen, R. J., Sherwood, S. C., Norris, J. R., and Zender, C. S.: Recent Northern Hemisphere tropical expansion
674 primarily driven by black carbon and tropospheric ozone, *Nature*, 485, 350–354, <https://doi.org/10.1038/nature11097>,
675 2012.

676 Alpert, P., Price, C., Krichak, S. O., Ziv, B., Saaroni, H., Osetinsky, I., Barkan, J., and Kishcha, P.: Tropical tele-
677 connections to the Mediterranean climate and weather, *Adv. Geosci.*, 2, 157–160, <https://doi.org/10.5194/adgeo-2-157-2005>, 2005.

679 André, J., D'Andrea, F., Drobinski, P., and Muller, C.: Regimes of Precipitation Change Over Europe and the
680 Mediterranean, *J. Geophys. Res. Atmos.*, 129, <https://doi.org/10.1029/2023JD040413>, 2024.

681 Androulidakis, Y., Makris, C., Mallios, Z., Pytharoulis, I., Baltikas, V., and Krestenitis, Y.: Storm surges and coastal
682 inundation during extreme events in the Mediterranean Sea: the IANOS Medicane, Springer Netherlands, 939–978
683 pp., <https://doi.org/10.1007/s11069-023-05890-6>, 2023.

684 Beguería, S., Vicente-Serrano, S. M., Reig, F., and Latorre, B.: Standardized precipitation evapotranspiration index
685 (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring, *Int. J.*
686 *Climatol.*, 34, 3001–3023, <https://doi.org/10.1002/joc.3887>, 2014.

687 Bianchi, C. N. and Morri, C.: Global sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and
688 ecological aspects, *Biogeogr. – J. Integr. Biogeogr.*, 24, <https://doi.org/10.21426/b6110129>, 2003.

689 Birner, T.: Recent widening of the tropical belt from global tropopause statistics: Sensitivities, *J. Geophys. Res.*
690 *Atmos.*, 115, 1–13, <https://doi.org/10.1029/2010JD014664>, 2010.

691 Bjornsson, H., and Venegas, S. A.: Manual for EOF and SVD analyses of climatic data. Center for Climate and Global
692 Change Research, McGill University, CCGCR Report No. 97-1, Montréal, Québec, 52pp, 1997.

693 Borghini, M., Bryden, H., Schroeder, K., Sparnocchia, S., and Vetrano, A.: The Mediterranean is becoming saltier,
694 *Ocean Sci.*, 10, 693–700, <https://doi.org/10.5194/os-10-693-2014>, 2014.

695 Bronnimann, S., Fischer, A. M., Rozanov, E., Poli, P., Compo, G. P., and Sardeshmukh, P. D.: Southward shift of the
696 northern tropical belt from 1945 to 1980, *Nat. Geosci.*, 8, 969–974, <https://doi.org/10.1038/ngeo2568>, 2015.

697 Carlo, N. B., and Morri, C.: Global sea warming and “tropicalization” of the Mediterranean Sea: biogeographic and
698 ecological aspects, *Biogeographia – the Journal of Integrative Biogeography*, 24. <https://doi.org/10.21426/b6110129>,
699 2003.

700 Castellanos, M., García, M. Á., Pérez, I. A., Sánchez, M. L., Pardo, N., and Fernández-Duque, B.: Measuring
701 temperature trends in the Mediterranean basin, *J. Atmos. Solar-Terrestrial Phys.*, 222,
702 <https://doi.org/10.1016/j.jastp.2021.105713>, 2021.

703 Choutri, I. and Hussien, A.: Exploratory Analysis of Algeria Meteorological Drought Using SPI and SPEI, OALib,
704 11, 1–27, <https://doi.org/10.4236/oalib.1111897>, 2024.

705 Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera,
706 J., Dailianis, T., Danovaro, R., Estrada, M., Froglio, C., Galil, B. S., Gasol, J. M., Gertwage, R., Gil, J., Guilhaumon,
707 F., Kesner-Reyes, K., Kitsos, M. S., Koukouras, A., Lampadariou, N., Laxamana, E., de la Cuadra, C. M. L. F., Lotze,
708 H. K., Martin, D., Moullot, D., Oro, D., Raicevich, S., Rius-Barile, J., Saiz-Salinas, J. I., Vicente, C. S., Somot, S.,
709 Templado, J., Turon, X., Vafidis, D., Villanueva, R., and Voultsiadou, E.: The biodiversity of the Mediterranean Sea:
710 Estimates, patterns, and threats, PLoS One, 5, <https://doi.org/10.1371/journal.pone.0011842>, 2010.

711 Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P. A., and Samsó, M.: The Mediterranean climate change
712 hotspot in the CMIP5 and CMIP6 projections, Earth Syst. Dyn., 13, 321–340, <https://doi.org/10.5194/esd-13-321-2022>, 2022.

713

714 Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, M. A., Lionello, P., Llasat, M. C.,
715 Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., and Xoplaki, E.: Climate change and interconnected
716 risks to sustainable development in the Mediterranean, Nat. Clim. Chang., 8, 972–980,
717 <https://doi.org/10.1038/s41558-018-0299-2>, 2018.

718 Darrag, M.: Global Climate Change Detection Using GNSS Radio Occultation, PhD thesis. Nanjing University of
719 Information Science & Technology. China, 2024.

720 Darrag, M., Jin, S., Calabia, A., and Samy, A.: Determination of tropical belt widening using multiple GNSS radio
721 occultation measurements, Ann. Geophys., 40, 359–377, <https://doi.org/10.5194/angeo-40-359-2022>, 2022.

722 Darrag, M., Jin, S., and Samy, A.: Effect of global gravity wave activity on tropopause variation characteristics from
723 multiple GNSS-RO observations, Theor. Appl. Climatol., 155, 2669–2688, <https://doi.org/10.1007/s00704-023-04780-y>, 2024.

724

725 Davis, N. A. and Birner, T.: Seasonal to multidecadal variability of the width of the tropical belt, J. Geophys. Res.
726 Atmos., 118, 7773–7787, <https://doi.org/10.1002/jgrd.50610>, 2013.

727 Davis, N. and Birner, T.: On the discrepancies in tropical belt expansion between reanalyses and climate models and
728 among tropical belt width metrics, J. Clim., 30, 1211–1231, <https://doi.org/10.1175/JCLI-D-16-0371.1>, 2017.

729 Davis, S. M. and Rosenlof, K. H.: A multidiagnostic intercomparison of tropical-width time series using reanalyses
730 and satellite observations, J. Clim., 25, 1061–1078, <https://doi.org/10.1175/JCLI-D-11-00127.1>, 2012.

731 Delworth, T. L., Cooke, W. F., Naik, V., Paynter, D., and Zhang, L.: A weakened AMOC may prolong greenhouse
732 gas-induced Mediterranean drying even with significant and rapid climate change mitigation, Proc. Natl. Acad. Sci.
733 U. S. A., 119, 1–8, <https://doi.org/10.1073/pnas.2116655119>, 2022.

734 Essa, Y. H., Hirschi, M., Thiery, W., El-Kenawy, A. M., and Yang, C.: Drought characteristics in Mediterranean under
735 future climate change, npj Clim. Atmos. Sci., 6, 25–28, <https://doi.org/10.1038/s41612-023-00458-4>, 2023.

736 Faugeras, B., Bernard, O., Sciandra, A., and Lévy, M.: A mechanistic modelling and data assimilation approach to
737 estimate the carbon/chlorophyll and carbon/nitrogen ratios in a coupled hydrodynamical-biological model, Nonlinear
738 Process. Geophys., 11, 515–533, <https://doi.org/10.5194/npg-11-515-2004>, 2004.

739 Gao, X. and Giorgi, F.: Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from
740 high resolution simulations with a regional climate model, Glob. Planet. Change, 62, 195–209,
741 <https://doi.org/10.1016/j.gloplacha.2008.02.002>, 2008.

742 Giorgi, F.: Climate change hot-spots, *Geophys. Res. Lett.*, 33, 1–4, <https://doi.org/10.1029/2006GL025734>, 2006.

743 Giorgi, F.: Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?, *J. Geophys. Res. Atmos.*, 124, 5696–5723, <https://doi.org/10.1029/2018JD030094>, 2019.

745 746 747 Gnanadesikan, A. and Stouffer, R. J.: Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification, *Geophys. Res. Lett.*, 33, 1–5, <https://doi.org/10.1029/2006GL028098>, 2006.

748 749 750 Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, *Nonlinear Processes in Geophysics*, 11(5/6), 561–566. <https://doi.org/10.5194/npg-11-561-2004>, 2004.

751 752 Grise, K. M., Davis, S. M., Staten, P. W., and Adam, O.: Regional and seasonal characteristics of the recent expansion of the tropics, *J. Clim.*, 31, 6839–6856, <https://doi.org/10.1175/JCLI-D-18-0060.1>, 2018.

753 754 755 Haimberger, L., Tavolato, C., and Sperka, S.: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations, *J. Climate* 25:8108–8131, <https://doi.org/10.1175/JCLI-D-11-00668.1>, 2012.

756 757 Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, *Sci. Data*, 7, 1–18, <https://doi.org/10.1038/s41597-020-0453-3>, 2020.

758 759 760 761 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on pressure levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], <https://doi.org/10.24381/cds.6860a573>, 2019a.

762 763 764 765 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], <https://doi.org/10.24381/cds.f17050d7>, 2019b.

766 767 768 Hindley, N. P., Wright, C. J., Smith, N. D., and Mitchell, N. J.: The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO, *Atmos. Chem. Phys.*, 15, 7797–7818, <https://doi.org/10.5194/acp-15-7797-2015>, 2015.

769 770 771 Insua-Costa, D., Senande-Rivera, M., Llasat, M. C., and Miguez-Macho, G.: A global perspective on western Mediterranean precipitation extremes, *npj Clim. Atmos. Sci.*, 5, 1–7, <https://doi.org/10.1038/s41612-022-00234-w>, 2022.

772 773 774 IPCC.: Climate Change 2021: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, <https://www.ipcc.ch/report/ar6/wg2/>, 2021a.

775 776 777 IPCC.: Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, <https://doi.org/10.1017/9781009157896>, 2021b.

778 779 780 Karl, T. R., Hassol, S. J., Miller, C. D., and Murray, W. L.: Temperature trends in the lower Atmosphere: Steps for understanding and reconciling differences, U.S. Climate Change Science Program eBooks. Retrieved from https://digital.library.unt.edu/ark:/67531/metadc12017/m2/1/high_res_d/sap1-1-final-all.pdf, 2006.

781 Kesgin, E., Yaldiz, S. G., and Güçlü, Y. S.: Spatiotemporal variability and trends of droughts in the Mediterranean
782 coastal region of Türkiye, *International Journal of Climatology*, 44(4), 1036–1057. <https://doi.org/10.1002/joc.8370>,
783 2024.

784 Kim, G. U., Seo, K. H., and Chen, D.: Climate change over the Mediterranean and current destruction of marine
785 ecosystem, *Sci. Rep.*, 9, 1–9, <https://doi.org/10.1038/s41598-019-55303-7>, 2019.

786 Kuglitsch, F. G., Toreti, A., Xoplaki, E., Della-Marta, P. M., Zerefos, C. S., Trke, M., and Luterbacher, J.: Heat wave
787 changes in the eastern mediterranean since 1960, *Geophys. Res. Lett.*, 37, 1–5,
788 <https://doi.org/10.1029/2009GL041841>, 2010.

789 Lange, M. A.: Climate Change in the Mediterranean: Environmental Impacts and Extreme Events, *IEMed Mediterr.*
790 Yearb., 1–12, 2020.

791 Lionello, P., Abrantes, F., Gualdi, S., et al.: Introduction: The climate of the Mediterranean region, Elsevier eBooks.
792 <https://doi.org/10.1016/c2011-0-06210-5>, 2012.

793 Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., . . . Xoplaki, E.: The Mediterranean
794 climate: An overview of the main characteristics and issues, In *Developments in earth and environmental sciences*
795 (pp. 1–26). [https://doi.org/10.1016/s1571-9197\(06\)80003-0](https://doi.org/10.1016/s1571-9197(06)80003-0), 2006.

796 Luan, L., Staten, P. W., Chi, O. A. O., and Qiang, F. U.: Seasonal and annual changes of the regional tropical belt in
797 GPS-RO measurements and reanalysis datasets, *J. Clim.*, 33, 4083–4094, <https://doi.org/10.1175/JCLI-D-19-0671.1>,
798 2020.

799 Lucas, C., Timbal, B., and Nguyen, H.: The expanding tropics: A critical assessment of the observational and modeling
800 studies, *Wiley Interdiscip. Rev. Clim. Chang.*, 5, 89–112, <https://doi.org/10.1002/wcc.251>, 2014.

801 Luterbacher, J., Xoplaki, E., Casty, C., Wanner, H., Pauling, A., Küttel, M., Rutishauser, T., Brönnimann, S., Fischer,
802 E., Fleitmann, D., Gonzalez-Rouco, F. J., Garcia-Herrera, R., Barriendos, M., Rodrigo, F., Gonzalez-Hidalgo, J. C.,
803 Saz, M. A., Gimeno, L., Ribera, P., Brunet, M., Paeth, H., Rimbu, N., Felis, T., Jacobbeit, J., Dünkeloh, A., Zorita, E.,
804 Guiot, J., Türkes, M., Alcoforado, M. J., Trigo, R., Wheeler, D., Tett, S., Mann, M. E., Touchan, R., Shindell, D. T.,
805 Silenzi, S., Montagna, P., Camuffo, D., Mariotti, A., Nanni, T., Brunetti, M., Maugeri, M., Zerefos, C., Zolt, S. De,
806 Lionello, P., Nunes, M. F., Rath, V., Beltrami, H., Garnier, E., and Ladurie, E. L. R.: Chapter 1 Mediterranean climate
807 variability over the last centuries: A review, *Dev. Earth Environ. Sci.*, 4, 27–148, [https://doi.org/10.1016/S1571-9197\(06\)80004-2](https://doi.org/10.1016/S1571-9197(06)80004-2), 2006.

808

809 Manney, G. L., Hegglin, M. I., Daffer, W. H., Santee, M. L., Ray, E. A., Pawson, S., Schwartz, M. J., Boone, C. D.,
810 Froidevaux, L., Livesey, N. J., Read, W. G., and Walker, K. A.: Jet characterization in the upper troposphere/lower
811 stratosphere (UTLS): Applications to climatology and transport studies, *Atmos. Chem. Phys.*, 11, 6115–6137,
812 <https://doi.org/10.5194/acp-11-6115-2011>, 2011.

813 Mastrorillo, M., Scartozzi, C. M., Pacillo, G., Menza, G., Desai, B., Maviza, G., Jaskolski, M., Schapendonk, F.,
814 Meddings, G., and Carneiro, B.: Towards a common vision for climate change, security and migration in the
815 Mediterranean, 2024.

816 Mathew, S. S. and Kumar, K. K.: Estimation of zonally resolved edges of the tropical belt using GPS-RO
817 measurements, *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, 11, 2555–2561,
818 <https://doi.org/10.1109/JSTARS.2018.2828342>, 2018.

819 Meli, M., Camargo, C. M. L., Olivieri, M., Slangen, A. B. A., and Romagnoli, C.: Sea-level trend variability in the
820 Mediterranean during the 1993–2019 period, *Front. Mar. Sci.*, 10, 1–18, <https://doi.org/10.3389/fmars.2023.1150488>,
821 2023.

822 Meng, L., Liu, J., Tarasick, D. W., Randel, W. J., Steiner, A. K., Wilhelmsen, H., Wang, L., and Haimberger, L.:
823 Continuous rise of the tropopause in the Northern Hemisphere over 1980–2020, *Sci. Adv.*, 7, 1–9,
824 https://doi.org/10.1126/sciadv.abi8065, 2021.

825 Miller, C. D.: Temperature Trends in the Lower Atmosphere Steps for Understanding and, *Program*, 17, 180, 2006.

826 Minh, H. V. T., Lien, B. T. B., Hong Ngoc, D. T., Ty, T. Van, Ngan, N. V. C., Cong, N. P., Downes, N. K., Meraj,
827 G., and Kumar, P.: Understanding Rainfall Distribution Characteristics over the Vietnamese Mekong Delta: A
828 Comparison between Coastal and Inland Localities, *Atmosphere* (Basel)., 15, https://doi.org/10.3390/atmos15020217,
829 2024.

830 Noto, L. V., Cipolla, G., Pumo, D., and Francipane, A.: Climate Change in the Mediterranean Basin (Part II): A
831 Review of Challenges and Uncertainties in Climate Change Modeling and Impact Analyses, *Water Resour. Manag.*,
832 37, 2307–2323, https://doi.org/10.1007/s11269-023-03444-w, 2023.

833 Pisoft, P., Sacha, P., Polvani, L. M., Añel, J. A., De La Torre, L., Eichinger, R., Foelsche, U., Huszar, P., Jacobi, C.,
834 Karlicky, J., Kuchar, A., Miksovsky, J., Zak, M., and Rieder, H. E.: Stratospheric contraction caused by increasing
835 greenhouse gases, *Environ. Res. Lett.*, 16, https://doi.org/10.1088/1748-9326/abfe2b, 2021.

836 Post, D. A., Timbal, B., Chiew, F. H. S., Hendon, H. H., Nguyen, H., and Moran, R.: Decrease in southeastern
837 Australian water availability linked to ongoing Hadley cell expansion, *Earth's Futur.*, 2, 231–238,
838 https://doi.org/10.1002/2013ef000194, 2014.

839 Raihan, A.: A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-
840 economic and environmental sectors, *J. Environ. Sci. Econ.*, 2, 36–58, https://doi.org/10.56556/jescae.v2i3.587, 2023.

841 Narayana Rao, D., Venkat Ratnam, M., Krishna Murthy, B. V., Jagannadha Rao, V. V. M., Kumar Mehta, S., Nath, D.,
842 and Ghouse Basha, S.: Identification of tropopause using bending angle profile from GPS radio occultation (RO): A
843 radio tropopause, *Geophys. Res. Lett.*, 34, 1–7, https://doi.org/10.1029/2007GL029709, 2007.

844 Rilov, G. and Crooks, J. A.: Biological Invasions in Marine Ecosystems, 641 pp. pp., 2009.

845 Santer, B. D., Wigley, T. M. L., Simmons, A. J., Källberg, P. W., Kelly, G. A., Uppala, S. M., Ammann, C., Boyle, J.
846 S., Brügmann, W., Doutriaux, C., Fiorino, M., Mears, C., Meehl, G. A., Sausen, R., Taylor, K. E., Washington, W.
847 M., Wehner, M. F., and Wentz, F. J.: Identification of anthropogenic climate change using a second-generation
848 reanalysis, *J. Geophys. Res. D Atmos.*, 109, 1–19, https://doi.org/10.1029/2004JD005075, 2004.

849 Sausen, R. and Santer, B. D.: Use of changes in tropopause height to detect human influences on climate, *Meteorol.
850 Zeitschrift*, 12, 131–136, https://doi.org/10.1127/0941-2948/2003/0012-0131, 2003.

851 Schmidt, D. F. and Grise, K. M.: The Response of Local Precipitation and Sea Level Pressure to Hadley Cell
852 Expansion, *Geophys. Res. Lett.*, 44, 10,573–10,582, https://doi.org/10.1002/2017GL075380, 2017.

853 Schmidt, T., Wickert, J., Beyerle, G., and Heise, S.: Global tropopause height trends estimated from GPS radio
854 occultation data, *Geophys. Res. Lett.*, 35, 1–5, https://doi.org/10.1029/2008GL034012, 2008.

855 Schmidt, T., Wickert, J., Beyerle, G., and Reigber, C.: Tropical tropopause parameters derived from GPS radio
856 occultation measurements with CHAMP, *J. Geophys. Res. D Atmos.*, 109, 1–13,
857 https://doi.org/10.1029/2004JD004566, 2004.

858 Seidel, D. J., Fu, Q., Randel, W. J., and Reichler, T. J.: Widening of the tropical belt in a changing climate, *Nature
859 Geoscience*, 1(1), 21–24, https://doi.org/10.1038/ngeo.2007.38, 2008.

860 Seidel, D. J. and Randel, W. J.: Variability and trends in the global tropopause estimated from radiosonde data, *J.
861 Geophys. Res. Atmos.*, 111, 1–17, <https://doi.org/10.1029/2006JD007363>, 2006.

862 Seidel, D. J., Ross, R. J., Angell, J. K., and Reid, G. C.: Climatological characteristics of the tropical tropopause as
863 revealed by radiosondes, *J. Geophys. Res. Atmos.*, 106, 7857–7878, <https://doi.org/10.1029/2000JD900837>, 2001.

864 Somot, S., Sevault, F., and Déqué, M.: Transient climate change scenario simulation of the Mediterranean Sea for the
865 twenty-first century using a high-resolution ocean circulation model, *Clim. Dyn.*, 27, 851–879,
866 <https://doi.org/10.1007/s00382-006-0167-z>, 2006.

867 Staten, P. W., Lu, J., Grise, K. M., Davis, S. M., and Birner, T.: Re-examining tropical expansion, *Nat. Clim. Chang.*,
868 8, 768–775, <https://doi.org/10.1038/s41558-018-0246-2>, 2018.

869 Steiner, A. K., Ladstädter, F., Randel, W. J., Maycock, A. C., Fu, Q., Claud, C., Gleisner, H., Haimberger, L., Ho, S.
870 P., Keckhut, P., Leblanc, T., Mears, C., Polvani, L. M., Santer, B. D., Schmidt, T., Sofieva, V., Wing, R., and Zou, C.
871 Z.: Observed temperature changes in the troposphere and stratosphere from 1979 to 2018, *J. Clim.*, 33, 8165–8194,
872 <https://doi.org/10.1175/JCLI-D-19-0998.1>, 2020.

873 Trigo, R., Xoplaki, E., Zorita, E., and Luterbacher, J.: Relations between Variability in the Mediterranean Region and
874 Mid-Latitude Variability, *Mediterr. Clim. Var.*, 179–226, 2006.

875 Titchner, H. A., Thorne, P. W., McCarthy, M. P., Tett, S. F. B., Haimberger, L., and Parker, D. E.: Critically
876 reassessing tropospheric temperature trends from radiosondes using realistic validation experiments, *J. Clim.*, 22, 465–
877 485, <https://doi.org/10.1175/2008JCLI2419.1>, 2009.

878 Tyrlis, E. and Lelieveld, J.: Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean,
879 *J. Atmos. Sci.*, 70, 3374–3396, <https://doi.org/10.1175/JAS-D-13-035.1>, 2013.

880 Ulbrich, U., May, W., Li, L., Lionello, P., Pinto, J. G., and Somot, S.: Chapter 8 The Mediterranean climate change
881 under global warming, *Dev. Earth Environ. Sci.*, 4, 399–415, [https://doi.org/10.1016/S1571-9197\(06\)80011-X](https://doi.org/10.1016/S1571-9197(06)80011-X), 2006.

882 Urdiales-Flores, D., Zittis, G., Hadjinicolaou, P., Osipov, S., Klingmüller, K., Mihalopoulos, N., Kanakidou, M.,
883 Economou, T., and Lelieveld, J.: Drivers of accelerated warming in Mediterranean climate-type regions, *npj Clim.
884 Atmos. Sci.*, 6, <https://doi.org/10.1038/s41612-023-00423-1>, 2023.

885 Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A multiscalar drought index sensitive to global
886 warming: The standardized precipitation evapotranspiration index, *J. Clim.*, 23, 1696–1718,
887 <https://doi.org/10.1175/2009JCLI2909.1>, 2010.

888 Vicente-Serrano, S. M., Tramblay, Y., Reig, F., González-Hidalgo, J. C., Beguería, S., Brunetti, M., Kalin, K. C.,
889 Patalen, L., Kržič, A., Lionello, P., Lima, M. M., Trigo, R. M., El-Kenawy, A. M., Eddenjal, A., Türk, M.,
890 Koutoulis, A., Manara, V., Maugeri, M., Badi, W., Mathbou, S., Bertalančić, R., Bocheva, L., Dabanli, I., Dumitrescu,
891 A., Dubuisson, B., Sahabi-Abed, S., Abdulla, F., Fayad, A., Hodzic, S., Ivanov, M., Radevski, I., Peña-Angulo, D.,
892 Lorenzo-Lacruz, J., Domínguez-Castro, F., Gimeno-Sotelo, L., García-Herrera, R., Franquesa, M., Halifa-Marín, A.,
893 Adell-Michavila, M., Noguera, I., Barriopedro, D., Garrido-Perez, J. M., Azorin-Molina, C., Andres-Martin, M.,
894 Gimeno, L., Nieto, R., Llasat, M. C., Markonis, Y., Selmi, R., Ben Rached, S., Radovanović, S., Soubeyroux, J. M.,
895 Ribes, A., Saidi, M. E., Bataineh, S., El Khalki, E. M., Robaa, S., Boucetta, A., Alsafadi, K., Mamassis, N.,
896 Mohammed, S., Fernández-Duque, B., Cheval, S., Moutia, S., Stevkov, A., Stevkova, S., Luna, M. Y., and Potopová,
897 V.: High temporal variability not trend dominates Mediterranean precipitation, *Nature*, 639, 658–666,
898 <https://doi.org/10.1038/s41586-024-08576-6>, 2025.

899 WMO: Meteorology – A three dimensional science: Second session of the commission for aerology, *WMO Bull.* 4,
900 WMO – World Meteorological Organization, Geneva, <https://library.wmo.int/idurl/4/42003>, 1957.

901 Yavaşlı, D. D. and Erlat, E.: Tropical nights in the Mediterranean: A spatiotemporal analysis of trends from 1950 to
902 2022, *Int. J. Climatol.*, 44, 1472–1488, <https://doi.org/10.1002/joc.8394>, 2024.

903 Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., Fnais, M., Francis, D., Hadjinicolaou, P.,
904 Howari, F., Jrrar, A., Kaskaoutis, D. G., Kulmala, M., Lazoglou, G., Mihalopoulos, N., Lin, X., Rudich, Y., Sciare,
905 J., Stenchikov, G., Xoplaki, E., and Lelieveld, J.: Climate Change and Weather Extremes in the Eastern Mediterranean
906 and Middle East, *Rev. Geophys.*, 60, <https://doi.org/10.1029/2021RG000762>, 2022.