

1 **Suspended sediment transport modulated by microbial**
2 **activities in estuarine waters: Insights from molecular and**
3 **structural perspectives**

4 Yanjia Wang¹, Jie Ren^{1*}, Leiping Ye^{1*}, Jia-Ling Li^{2,3}, Yaokun Lin^{1,2}, Lei Zhang⁴, Ya
5 Wu¹, Wen-Jun Li³, Jiaxue Wu¹

6 ¹School of Marine Sciences, Sun Yat-sen University, Southern Marine Science and
7 Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.

8 ²Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
9 Guangzhou, Guangdong 511458, China.

10 ³School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

11 ⁴Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical
12 Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

13 *Corresponding authors: Leiping Ye (yeleiping@mail.sysu.edu.cn) and Jie Ren
14 (renjie@mail.sysu.edu.cn)

15

16 **Abstract**

17 Suspended sediment transport in coastal estuaries is profoundly shaped by
18 microbial activities, yet the underlying molecular mechanisms remain poorly
19 constrained during their flocculation. Here, we demonstrate that the estuarine bacterium
20 *Stutzerimonas decontaminans* acts as a key mediator of sediment flocculation.
21 Compared to purely physical aggregation, microbially-induced flocculation developed
22 more slowly but yielded flocs fourfold larger, with looser fractal structures and higher
23 organic carbon content, indicating strong microbial-mineral coupling. Bacteria
24 modulated flocculation both physically via flagella-driven adhesion and biochemically
25 through extracellular polymeric substances, which enhanced particulate organic carbon
26 accumulation. Transcriptomic analyses revealed an early upregulation of flagellar genes
27 initiating particle adhesion, followed by the activation of polysaccharide biosynthesis
28 pathways to stabilize aggregates. This sequential regulation highlights a genetic trade-
29 off between motility and biofilm-like stickiness in controlling floc growth. Our findings
30 provide direct molecular and structural evidence that microbial activities fundamentally
31 reshape sediment aggregation dynamics, thereby regulating suspended sediment
32 transport and carbon cycling in coastal systems.

33

34 **Key words:** Bio-flocculation, microorganisms, extracellular polymeric substances
35 (EPS), floc structure, gene regulation, estuary.

36

37

38 1. Introduction

39 Estuaries, as critical ecological transition zones between land and ocean, play a
40 central role in global biogeochemical cycles (Gattuso et al., 1998; Burchard et al., 2018).
41 As hubs for land-derived materials and carbon cycling, the formation, growth, breakup,
42 and settling of mud flocs exert fundamental controls on suspended sediment transport
43 (Zhu et al., 2021), the fate of particulate organic carbon (POC) (Bauer et al., 2013), the
44 transformation of pollutants (Li et al., 2023), and the cycling of biogeochemical
45 elements (Turner & Millward, 2002).

46 Previous studies on mud flocculation dynamics mostly focused on
47 physicochemical factors such as flow shear, salinity-induced charge neutralization, and
48 particle concentration and composition (e.g., Mietta et al., 2009; Moruzzi et al., 2017;
49 Tran et al., 2018; Guo et al., 2021; Ye et al., 2023). However, growing evidence
50 indicates that purely physicochemical models cannot fully explain the developmental
51 behaviors of natural suspended mud flocs. Particle-associated microbial processes have
52 gradually been incorporated into conceptual and numerical models (e.g., Maggi, 2009;
53 Lai et al., 2018; Nguyen et al., 2018; Shen et al., 2019), thereby extending traditional
54 flocculation theory. Moreover, bioflocculation dynamics exert strong influence on
55 estuarine-coastal material or elements cycling (e.g., Droppe, 2001; Nguyen et al., 2022)
56 and thus provide key scientific guidance for estuarine dredging, channel maintenance,
57 water quality management and estuarine restoration globally (Cox et al., 2022; Chen et
58 al., 2024).

59 Bio-flocculation, driven by active microorganisms (bacteria, algae, viruses, fungi,
60 protozoa, etc.), has been recognized as a central engine controlling the aggregation,
61 transformation, and transport of suspended sediments in estuaries (Burd & Jackson,
62 2009; Dang & Lovell, 2016; Deng et al., 2022). Compared with mineral clay particles
63 aggregation chemically, mud flocculation processes highly mediated by natural
64 estuarine microbial strains, algae, fungus, and bacterial extracellular polymeric
65 substances (EPS) profoundly alter surface physicochemical properties and structures,
66 significantly affecting floc size, density, and porosity (e.g., Tang & Maggi, 2016; Deng
67 et al., 2023; Ho et al., 2022; Nguyen et al., 2017; Labille et al., 2005; Ye et al., 2023).
68 This produces bio-mineral aggregates that are larger, more porous, and structurally
69 more complex than mineral-only flocs, thereby modifying settling velocities, transport
70 dynamics, and adsorption behaviors (Passow & De La Rocha, 2006; Chapalain et al.,

71 2019). Bio-flocculation is inherently dynamic, and we hypothesize that bio-mineral
72 mixed flocs under continuous shear forces reach a state of dynamic balance between
73 aggregation and breakup. Yet, the molecular mechanisms by which marine
74 microorganisms perceive environmental signals and regulate the formation, structural
75 evolution, and transport behavior of suspended flocs remain poorly understood (Belas,
76 2014; Dang & Lovell, 2016; Berne et al., 2018; Sun & Zhang, 2021).

77 The molecular basis of bacterial colonization and EPS secretion, and their
78 functional roles in bio-flocculation and sediment transport, remain insufficiently
79 studied, especially in complex estuarine and marine systems. In recent years, high-
80 throughput sequencing technologies such as transcriptomics have provided powerful
81 tools to resolve EPS bio-synthetic pathways (e.g., Schmid et al., 2015; Shukla et al.,
82 2019; Rana & Upadhyay, 2020; Sun & Zhang, 2021; He et al., 2024). Here, we
83 investigate how dominant EPS-producing estuarine bacteria (e.g., *Stutzerimonas*
84 *decontamans*) (Wu et al., 2017; Mulet et al., 2023) influence the flocculation of
85 inorganic clay minerals (e.g., montmorillonite) under high turbulent shear. Specifically,
86 this study addresses following key questions: Compared with inorganic mineral
87 flocculation, how do prokaryotes and their EPS regulate the kinetics and structural
88 characteristics of bio-mineral suspended flocs? How do microbial processes modulate
89 environmental factors during flocculation? What are the key gene expression patterns
90 and molecular regulatory mechanisms underlying bio-flocculation? To this end, we
91 conducted series bacterial-mineral flocculation experiments using a custom-designed
92 reaction system. By coupling AI-based image analysis with transcriptomic approaches,
93 new insights into the dynamic processes and molecular mechanisms through which
94 microbial activity modulates suspended sediment transport in estuaries have been
95 provided.

96

97 **2. Materials and Methods**

98 **2.1. Laboratory experimental setup**

99 A self-designed Experimental Facility for Sediment Bio-flocculation (EFSB; Fig.1)
100 equipped with a unified camera system has been used in this study. Each experiment
101 comprised at least three replicate apparatuses to ensure reproducibility. The mixing
102 chamber served as the core site for bacterial growth and bio-flocculation, and therefore
103 underwent strict sterilization. A stainless-steel shaft (30 cm) with a 12 cm three-bladed

104 propeller was inserted into the chamber containing 5 L salt-supplemented medium. The
105 chamber was sealed with a custom quartz plate (φ 20 cm) and a red rubber O-ring; the
106 shaft tip passed precisely through the plate's central bore (φ 15 mm). The assembly was
107 wrapped with plastic film and autoclaved at 121 °C for 15 min (GI80, Zealway). After
108 cooling to room temperature, the chamber was mounted on the bench base, the stirrer
109 was connected to a variable-speed drive, and the system was brought to a constant
110 rotational speed of 100 rpm, corresponding to a shear rate of 65 s^{-1} pre-calibrated in a
111 5 L sediment suspension using an Acoustic Doppler Velocimeter (ADV; Nortek).

112 For on-line sampling and imaging, a peristaltic pump set to 40 mL min^{-1} drove the
113 suspension through a sampling assembly comprising a 25 cm glass tube (ID 5 mm), a
114 square quartz tube (length 10 cm; ID 3 mm; wall 0.5 mm), and two rubber connectors
115 (ID 3.2 mm). As flocs traversed the square quartz tube, the “shooting point”, focal
116 distance 3.5 cm, they were recorded by a high-speed camera (AcutEye-1M-2000) with
117 a 300 W LED light source synchronized to a computer. After each sampling, an equal
118 volume of fresh sterile medium was replenished via a sterile line using an electronic
119 pipette (Model S1, Thermo Fisher Scientific) to maintain a constant shear history.

120

121 **2.2. Experimental treatments**

122 Bio-flocculation processes were investigated in systems containing
123 montmorillonite clay and *Stutzerimonas decontaminans* (hereafter *S. decontaminans*),
124 a dominant bacterium in the Pearl River Estuary known for high EPS production (Li et
125 al., 2018). Montmorillonite (High-Purity Clay Mineral Repository of China) had a
126 median particle size D_{50} of 13.30 μm (Mastersizer 3000, Malvern Panalytical, UK).
127 Three experimental series were established:

128 (1) **SD (pure biological material):** *S. decontaminans* was inoculated into 5 L basal
129 salt medium ($1.2 \text{ g}\cdot\text{L}^{-1}$ R₂A nutrients + $15 \text{ g}\cdot\text{L}^{-1}$ NaCl) and cultured at room temperature
130 for 72 h under high shear (65 s^{-1}).

131 (2) **MM (montmorillonite only):** 10 mL mineral stock ($50 \text{ g}\cdot\text{L}^{-1}$) was added to 5
132 L saline (15 PSU) and vigorously mixed at 300 rpm for 5 min to form initial flocculi,
133 followed by 160 min at constant $G = 65 \text{ s}^{-1}$.

134 (3) **MSD (bio-material and mineral mixture):** A 12-h culture of *S.*
135 *decontaminans* was combined aseptically with 10 mL sterilized mineral stock ($50 \text{ g}\cdot\text{L}^{-1}$)
136 and maintained for 48 h at $G = 65 \text{ s}^{-1}$. Continuous turbulent mixing ($G = 65 \text{ s}^{-1}$)

137 minimized aggregation-driven settling. Replicates were $n = 6$ for MSD and $n = 3$ for
138 MM and SD.

139

140 **2.3. Image processing and floc structures**

141 Sampling protocols differed between the MM and MSD. Specifically, the MM
142 treatments were sampled every 20 minutes, whereas the MSD treatments were sampled
143 initially every 3 hours (12-24 h) and then every 6 hours until 48 h (Fig.2a). At each
144 imaging time point, flocs at the shooting point were recorded at 20 Hz for 2-3 min
145 (~3000 frames per time) (Fig.2b). Images were curated and processed in Python 3.10
146 using an instance-segmentation workflow based on YOLOv8-seg (Fig.2d) (Jocher et,
147 al., 2023), including preprocessing and standardization, object detection and instance
148 segmentation with an improved YOLOv8-seg (confidence threshold 0.6 and size filters),
149 contour refinement via Gaussian smoothing and morphological opening, morphological
150 feature extraction, and secondary filtering and statistics.

151 Projected area (A), perimeter (L), ratios of major/minor axes, and related metrics
152 were derived from segmented masks. The sphere-equivalent diameter was computed as
153 $D_{eq}=2A/\pi$ after converting pixels to physical units (1 pixel = 1.8 μm). The two-
154 dimensional fractal dimension N_f was estimated from perimeter-area scaling (i.e.,
155 $L \propto A \cdot N_f/2$) (Moruzzi et, al., 2017). Particle-size distributions (PSD) were constructed
156 in 5 μm bins; D_{50} and D_{90} were reported. Flocs were also grouped into size classes of
157 0-20 μm , 20-60 μm , 60-120 μm , and >120 μm to compare MM and MSD dynamics.

158

159 **2.4. Microstructural characterization for particles (SEM and AFM)**

160 Mixed flocs (MSD) and mineral flocs (MM) were immobilized on ITO-coated
161 conductive glass slides (20×10×1.1 mm; GOLO, China). Samples of MSD were
162 equilibrated in phosphate buffer (pH 7.0), fixed with 2.5 % glutaraldehyde at 4 °C for
163 ≥ 4 h, dehydrated through graded ethanol (30-100 %, 15 min per step), and air-dried
164 (Anvari-Yazdi et, al., 2014). For **scanning electron microscopy (SEM)**, specimens
165 were sputter-coated with Au-Pd and imaged (Axia ChemisEM HiVac, Thermo
166 Scientific). Elemental mapping via SEM was used to revealed the elemental
167 composition of these flocs. For **atomic force microscopy (AFM)**, dried samples were
168 scanned (Dimension FastScan, Bruker) to obtain 3-D topography and surface potential;

169 NanoScope Analysis (v1.9) with third-order flattening provided surface roughness
170 parameters (Ra, Rq) and potential distributions.

171

172 **2.5. Laboratory sampling and physicochemical measurements**

173 In MSD, imaging and sample collection were synchronized (Fig.2b-c). For
174 transcriptomics, three biological replicates (100 mL each) were filtered onto 0.22 μ m
175 membranes (Pall Life Sciences, USA), flash-frozen in liquid N₂, and stored at -80 °C
176 until RNA extraction. An additional 100 mL aliquot was used for biochemical and
177 microbial indicators: 10 mL through a 0.22 μ m GF/F filter (Whatman International Ltd.,
178 England) for particulate organic carbon (POC), and 20 mL through a sterile 0.22 μ m
179 membrane (Pall Life Sciences, USA) for 16S rRNA quantification; membranes were
180 stored at -20 °C. Filtrates were used for (1) dissolved organic carbon (DOC; 10 mL),
181 (2) EPS extraction by adding three volumes of absolute ethanol to 10 mL filtrate, and
182 (3) dissolved inorganic nitrogen (NO_x = NO₂⁻ + NO₃⁻ + NH₄⁺; 15 mL). Filtrates were
183 stored at 4 °C until analysis.

184 POC and DOC were measured by combustion oxidation with non-dispersive IR
185 detection (TOC-VCPN, Shimadzu, Japan). Proteins were quantified by the Lowry assay
186 (BSA standard; 490 nm; Lowry et al., 1951) and polysaccharides by the phenol–
187 sulfuric acid method (glucose standard; 750 nm; DuBois et al., 1956) on a microplate
188 reader (Multiskan Sky, Thermo Fisher Scientific, USA). Total EPS was calculated as
189 protein + polysaccharide. NH₄⁺-N, NO₂⁻-N, and NO₃⁻-N were measured with a
190 continuous-flow analyzer (QuAAstro 39, Seal Analytical, UK) and summed as NO_x. pH
191 and zeta potential were determined on 15 mL subsamples using a pH meter and a
192 BeNano 90 Zeta analyzer (Dandong Better Instruments, China), respectively; turbidity
193 was measured on the remaining suspension (2100N, HACH, USA).

194

195 **2.6. Bacterial Growth Curves**

196 Both SD and MSD treatments were sampled every 3 hours from 12 to 24 h,
197 followed by 6-hour-interval sampling until 72 h (SD) and 48 h (MSD), respectively
198 (Fig.2a). All microbial samples were immediately filtered for DNA extraction. After
199 assessing the DNA concentration and integrity of all samples using a Qubit 3.0
200 fluorometer and agarose electrophoresis, a mixture of synthetic spike-in standards at
201 graded concentrations was added to each DNA pool. The V4-V5 region of the 16S

202 rRNA gene and spike-in sequences were amplified with primers 515F and 907R and
203 sequenced on an Illumina NovaSeq 6000 (Tkacz et, al., 2018). Absolute quantification
204 based on spike-in calibration was performed by Genesky Biotechnologies (Shanghai,
205 China). The data obtained from viable DNA quantification were used to generate the
206 bacterial growth curves. The following experiments were conducted during the
207 logarithmic phase of growth in MSD.

208

209 **2.7. Transcriptomic analysis**

210 To elucidate the differential expression and transcription of genes that regulate the
211 flocculation process. Total RNA was extracted using the Soil RNA Extraction Kit
212 (RNS485) (Mei5 Biotechnology Co., Ltd, China). RNA sequencing and analysis were
213 carried out by Guangdong Magigene Technology Co., Ltd (Guangzhou, China)
214 (Callahan et, al., 2016; Guo et, al., 2024).

215 Quality control was conducted on both the genome and transcriptome data,
216 followed by genome assembly and subsequent annotation using the cleaned data. To
217 analyze the gene expression abundance, sequencing reads were used to perform
218 alignment using Bowtie2. Gene expression was quantified using FPKM (Fragments Per
219 Kilobase per Million mapped reads). Differentially expressed genes (DEGs) were
220 identified with a threshold of false discovery rate (FDR) ≤ 0.05 and $|\log_2(\text{fold change})| \geq 1$. Finally, all FPKM values were \log_2 -transformed for subsequent downstream
221 analyses. Selected genes encompassed core components of global regulators (e.g.,
222 *PhoQ*, *RpoS*, *RcsC*), c-di-GMP metabolism (e.g., *PleD*), flagellar assembly (e.g., *flg*,
223 *fli*, *mota/B*), polysaccharide synthesis (e.g., *gale*, *glk*, *epsL*). Information of key
224 enzymes in the synthesis of EPS used in this study was shown in Table S1.

225

227 **2.8. Statistical analysis**

228 One-way ANOVA was used to test temporal differences in mean diameter (D_m),
229 D_{50} , D_{90} , and N_f between MSD and MM. Temporal trends in bacterial growth, genes
230 exhibiting expression, and physicochemical variables were analyzed similarly. When
231 ANOVA indicated significance ($P < 0.05$), Tukey's HSD was applied for pairwise
232 comparisons. Principal component analysis (PCA) was used to assess overall
233 transcriptional shifts across different stages. Analyses and plots were produced in
234 Origin 2024. Partial least-squares path modeling (PLS-PM) was used to evaluate direct

235 and indirect effects of *S. decontaminans* (flagellar motility/polysaccharide synthesis)
236 on inorganic flocculation; models were built with the plspm package in R4.2.2.

237

238 **3. Results**

239 **3.1. Microbial role on mud flocculation enhancement**

240 The mineral-only system (MM) reached equilibrium rapidly according to the
241 experimental results, in one hour (Fig.3a-d), with a resulting equilibrium diameter (D_m)
242 of approximately 30 μm and a steady N_f value of 1.54 (Fig. 3a-d). As shown in Fig.1e,
243 a predominance of small particles (20–60 μm , 68.92%) was observed in the MM with
244 the maximum D_{90} of 49 μm . Larger aggregates ($>60 \mu\text{m}$) were scarce and remained
245 below 5.5 % of total abundance (Fig.3e).

246 In contrast, the bio-mineral system (MSD) underwent a prolonged three-stage
247 trajectory spanning 12–48 h (Fig.3g-i), characterized by rapid growth (12–18 h) (Fig.3g),
248 decelerated aggregation (21–30 h) (Fig.3h), and dynamic equilibrium (36–48 h) (Fig.3i).
249 Even after the mean floc sizes ($D_m=113 \mu\text{m}$) stabilized, D_{90} continued to increase
250 (Fig.3d), a trend driven by the growing proportion of large flocs ($>120 \mu\text{m}$; 37.03%)
251 (Fig.3f), indicating a persistent capacity for large floc formation. At equilibrium, MSD
252 produced aggregates 3.8 times larger than MM, with fractal dimensions consistently
253 lower (1.43), reflecting looser and more open structures (Fig.3b).

254

255 **3.2. Structural re-organization and self-adaption of mud flocs**

256 Beyond enhancing floc size, microorganisms restructured aggregate architecture
257 at the microscale (Fig.4). SEM imaging clearly revealed that MSD flocs developed
258 irregular, loosely bound morphologies, in contrast to the compact aggregates in MM
259 (Fig.4a-d). Moreover, evidence of bacterial and EPS matrix binding to mineral grains
260 was observed in Fig.4b,c,e,f.

261 As a key component of flocs, EPS, was observed to form a distinct structural entity,
262 exhibiting a fibrous or ribbon-like morphology (Fig.4e, Fig.5d), which contributed to
263 enhanced toughness and structural stability for mixed flocs.

264 The elemental composition confirmed microbial contributions to the mixed flocs,
265 marked by significant carbon (C, 7.4%) and predominant oxygen (O, 70.4%) contents
266 (Fig.5a-c)—both values closely aligned with those in a EPS dominant sample (C, 8.2%;
267 O, 77.4%; Fig.5 d-f). Alongside this biological signature, the dominant mineral

268 composition was characterized by silicon (Si, 13.3%) and aluminum (Al, 3.5%) in the
269 mixed flocs. In contrast to the patterns described above, we also observed that the
270 carbon-dominated particles (53.9%) exhibited lower oxygen levels (32.3%) and,
271 correspondingly, a smaller structural size (Fig.5g-i).

272 AFM analysis provides quantitative evidence for these structural modifications
273 (Fig.6a-b). Mineral surfaces exhibited greater roughness ($R_q = 66.6$ nm) and higher
274 surface potentials (232 mV) than bacterial surfaces ($R_q = 32.9$ nm; 137 mV) (Fig.6a-b).
275 When combined, these contrasts reduced the effective electrostatic barrier. Zeta
276 potential measurements corroborated this effect: Absolute potentials were highest in
277 MM, followed by MSD and SD, with MSD displaying a marked decline as bacterial
278 growth (Fig.6c-d).

279

280 **3.3. Microbial abundance, EPS, and physicochemical parameters**

281 Under pure culture conditions, *S. decontaminans* entered the logarithmic growth
282 phase after 9 h post-inoculation and reached its peak density at 36 h, with a maximum
283 bacterial abundance of 2.05×10^7 copies/mL (Fig.7a). The population subsequently
284 entered the stationary phase between 42 and 72 hours, maintaining a stable abundance
285 level of approximately 1.36×10^7 copies/mL.

286 In the MSD, the *S. decontaminans* population exhibited sustained logarithmic
287 growth throughout the 12-48 h period, with abundance increased significantly from
288 2.99×10^5 copies/mL at 12 h to 2.43×10^7 copies/mL at 48 h. During this period, the total
289 EPS content and its primary components (polysaccharides and proteins) showed no
290 significant variations during the experimental period both in the MSD and SD (Fig.7b).
291 Nevertheless, MSD exerted a significant influence on other environmental factors.
292 Specifically, the POC content in the MSD increased significantly after 30 h,
293 accumulating to 29.18 mg/L at 48 h (Fig.7c).

294 Concurrently, both DOC and NO_x exhibited significant decreasing trends
295 throughout the experimental period (Fig.7d-e). Besides, the accumulation of organic
296 matter in the MSD led to a significant increase in turbidity along with a pronounced
297 decrease in pH (Fig.7f-h).

298

299 **3.4. Biological molecular regulation of mud flocculation dynamics**

300 Once the dynamics and structures of biophysical flocs can be affected by microbial

301 activity (Fig.3, Fig.4 and Fig.7a), we sought to delineate underlying changes in the gene
302 transcriptome that may account for mud flocculation behavior. For this purpose, we
303 investigated genes essential for EPS regulation, with a focus on the global regulatory
304 system, flagellar system, and polysaccharide biosynthesis pathways (Fig.8, Tables S1-
305 S4). Among the about 40 genes surveyed, over three-quarters showed differential
306 expression during the 12-48 h experimental period (Tables S2-S4). To gain further
307 insight into how genes regulate flocculation, we employed principal component
308 analysis (PCA) to assess overall transcriptional shifts across different flocculation
309 stages (Fig.9), and then identified the regulatory patterns of stage, specific differentially
310 expressed genes (Fig.10).

311 The results from PCA analysis confirmed stage-specific transcriptional shifts
312 throughout flocculation. The first two principal components (PC1 and PC2) captured
313 52.40% and 16.20% of the total transcriptional variance (68.6%), respectively. As
314 illustrated in Fig. 9, the distinct separation along PC1 revealed that time-dependent
315 changes dominate the transcriptional profile, driving a continuum from motility and
316 early attachment (Stage 1) through metabolic adaptation (Stage 2) to stable matrix
317 assembly (Stage 3). Notably, polysaccharide synthesis genes and flagellar genes
318 exhibited an inverse distribution along the PC2 axis, reflecting an underlying biological
319 trade-off between motility and EPS production.

320 In the early phase (12-15 h) of Stage one, flagellar structural and motor genes (e.g.,
321 *flgE/F/G/H/I/L, fliP/F/G/I/D, motA/B*) were upregulated (Table S3), corresponding to a
322 burst of motility-driven adhesion that triggered a rapid rise in floc size. Finishing initial
323 colonization, the cells gradually downregulated flagellar structural (Fig.10a) while
324 upregulating genes involved in the metabolism of specific carbon sources (such as
325 maltose, e.g., *malE/P/Q/S*), thereby storing energy and precursor substances (*glk*,
326 *rmlC/D*) for the EPS production in Stage two (Fig. 10b, Tables S4). Compared to Stage
327 one, the expression of *rpoN* was notably downregulated, while *rpoS* was significantly
328 upregulated in Stage two (Fig.9a-b), acting in concert to regulate the shift in bacterial
329 behavior from motility to adherence.

330 In Stage three, the stability of the floc structure was determined by both the low
331 expression of flagella-related genes and the stable expression of EPS synthesis pathway.
332 Specifically, the reduced expression of genes associated with flagellar structure (e.g.,
333 *flg, fli*) and motility (*mot*) facilitated floc stabilization (Fig.10a, Tables S3). Although

334 the downregulation observed in one EPS-related pathways such as *pleD*, *glmM*, *epsL*,
335 the steady state of the expression of genes, eg., two-component signaling (*rscC*), sigma
336 factor(*rpoS*) and polysaccharide synthesis (*glk*, *rmlC/D*, *gale*) (Fig.10b, Tables S2,4)
337 served as a major driver for floc stability.

338

339 **3.5. Effects of microorganisms**

340 Microbes not only restructure aggregates but also couple sediment dynamics to
341 carbon cycling. A PLS-PM analysis ($GOF = 0.70$) showed that bacteria production
342 promoted POC accumulation, while DOC declined in parallel (Fig.11). Ultimately,
343 however, this pathway exerted a net inhibitory effect on floc formation (path coefficient
344 = -1.03; Fig.11). Also, path analysis confirmed this negative effect, with flagellar
345 activity exerting a strong inhibitory influence on floc structure (path coefficient = -0.96;
346 Fig.11). In addition, microbial activity significantly affected environmental variables
347 such as pH, turbidity, and nitrogen oxides (path coefficient = 0.62), though these
348 parameters did not directly alter floc structure (Fig.11).

349

350 **4. Discussion**

351 Synthesizing these findings, we propose a three-stage conceptual framework (Fig.
352 12) to systematically elucidate the microbial-mediated dynamic restructuring and
353 adaptive processes of flocs. The first stage initiates through flagella-mediated initial
354 cellular adhesion; the second stage consolidates aggregates via EPS-mineral
355 interactions; and the third stage enhances floc structural stability through
356 polysaccharide biosynthesis. Traditional flocculation models emphasize the transient
357 equilibrium governed by physicochemical factors, such as turbulence, ionic strength,
358 and particle concentration (e.g., Winterwerp, 1998; Zhao et al., 2021; Cui et al., 2023),
359 however these physicochemical approaches fail to explain the persistence of large,
360 porous aggregates frequently observed in natural estuaries. Our controlled experiments
361 demonstrate that microbial activity is essential to bridge this gap.

362 The ecological significance of microbial enhancement on mud flocculation is
363 profound. In natural estuaries, bio-flocculation hardly proceeds to equilibrium due to
364 turbulence and shear constantly disruptions. The slower but sustained growth of MSD
365 suggests that bio-flocs can remain dynamic under fluctuating conditions, continually
366 reaggregating and persisting in suspension (Fig.3b). This microbial extension of

367 flocculation timescales explains why field measurements consistently record larger,
368 carbon-rich aggregates than predicted by mineral-only models (Fettweis et al., 2022;
369 Deng et al., 2022; Nguyen et al., 2022; Baumas & Bizic, 2024). Microorganisms,
370 therefore, provide a biological buffer that maintains suspended floc populations,
371 modulating both sediment and organic matter transport.

372 The looser fractal structures ($N_f=1.43$) observed in MSD (Fig.3b) imply aggregates
373 with lower effective density, higher porosity, and greater deformability under shear.
374 Such characteristics directly influence transport behavior: bio-flocs with EPS are
375 expected to settle more slowly, remain longer in suspension (Maggi, 2009, 2013), and
376 be advected further downstream compared to denser mineral flocs (Zhu et al., 2021).
377 These properties also enhance the capacity of flocs to trap and carry particulate organic
378 matter, nutrients, and contaminants. Previous studies have hypothesized that EPS-rich
379 flocs are critical carriers of carbon and pollutants, elements (e.g., Passow, 2002; Decho
380 & Gutierrez, 2017; Mari et al., 2017; Baumas & Bizic, 2024), but here we provide direct
381 imaging and electrochemical evidence of the mechanisms by which microbes reshape
382 floc architecture to achieve these transport functions. Results of AFM and zeta potential
383 demonstrated (Fig. 6) that the decreasing repulsion facilitated cohesion among particles
384 and allowed EPS-mediated adhesion to dominate floc formation (Labille et al., 2005;
385 Ye et al., 2023; Walshire et al., 2024). Moreover, organic matter contributed 7.4 % -
386 53.9 % of MSD composition (Fig.5), indicating that microbes not only accelerate
387 aggregation but also fundamentally alter its biochemical composition.

388 Gene expression sequential regulatory program (Fig.8,9,10, Tables S1-4) explains
389 the slower kinetics yet larger and looser outcomes of bio-flocculation compared with
390 mineral flocculation. It also highlights a central microbial strategy: balancing dispersal
391 and cohesion through stage-dependent gene expression. The molecular evidence thus
392 provides a mechanistic basis for the structural transformations observed in Figure 10
393 and validates the pathway interactions revealed by the figure 11. This physiological
394 shift represents a trade-off: initial motility enables contact (O'Toole et al., 1998; Belas,
395 2014; Berne et al., 2018; Wadhwa & Berg, 2022), but stability requires suppression of
396 movement and investment in EPS production (Gerbersdorf & Wieprecht, 2015; Dar et
397 al., 2021). As microorganisms shift from a free-living planktonic existence to a sessile,
398 EPS-associated lifestyle, they commonly suppress flagellar gene expression and
399 simultaneously activate genes governing extracellular polymeric substance (EPS)

400 biosynthesis, two-component regulatory systems (TCS), global transcriptional
401 regulators, and quorum sensing (QS) signaling pathways (Petrova & Sauer, 2012;
402 Guttenplan et al., 2013; Dang & Lovell, 2016; Shang et al., 2021). The epimerase
403 encoded by *galE* (EC 5.1.3.2) served as a critical catalyst in the biosynthesis of UDP-
404 galactose (Frey, 1996), whereas *rmlC* (EC 5.1.3.13) and *rmlD* (EC 1.1.1.133) were
405 indispensable for the production of dTDP-rhamnose (Giraud & Naismith, 2000). The
406 availability of sugar nucleotide precursors represents a key determinant of EPS
407 biosynthesis. Psl is characterized as a repeating pentasaccharide composed of D-
408 mannose, D-glucose, and L-rhamnose, playing a key role in adherence to surfaces and
409 biofilm architecture maintenance (Flemming & Wingender, 2010). Additionally,
410 bacteria can sense subtle environmental changes (e.g., pH, Ca^{2+} and Mg^{2+}) through
411 specific sensing systems, such as *PhoQ* (EC 2.7.13.3) (Groisman, 2001; Groisman et
412 al., 2021). Although the addition of cation-containing minerals (Fig.5) stimulated
413 bacterial growth and promotes early flagellar motility (Tables S2), the downregulation
414 of *PhoQ* further suppresses the expression of flagellar-related genes and the production
415 of c-di-GMP (Fig.10a) (Li et al., 2024).

416 Microbially regulated flocculation processes directly influence the transformation,
417 transport, and fate of carbon in estuarine environments (Bauer et al., 2013). Our path
418 analysis elucidated the direct links between bacterial abundance and DOC, POC, and
419 floc structure (Fig.11), confirming that this DOC-to-POC transformation is the material
420 basis for floc stabilization (Chin et al., 1998; Verdugo et al. 2004; He et al. 2016). The
421 equilibrium of the MSD flocs observed in this study was attributable to the consistent
422 total EPS content. Once carbon sources (DOC and polysaccharides) become depleted,
423 it inhibited microbial growth and induced EPS degradation or diffusion (Schleheck et
424 al., 2009; Maalej et al., 2017), thereby compromising flocculation. This situation found
425 support in illite bioflocculation experiments during the bacterial stationary phase (fig
426 S1-3). Thus, microbial control of carbon availability directly limits the long-term
427 trajectory of flocculation (Kovárová-Kovar & Egli, 1998).

428 Path analysis indicated that metabolism feed back into water chemistry (Fig.11),
429 thereby indirectly affecting sediment transport. By reshaping suspended sediment
430 transport, microorganisms influence estuarine turbidity regimes (Shi et al., 2017),
431 nutrient and pollutant fluxes and the efficiency of carbon burial (Jiao et al., 2010; Bauer
432 et al., 2013; Nguyen et al., 2022). Larger, carbon-enriched bio-flocs are more likely to

433 be exported offshore or deposited in carbon-rich estuarine sinks, strengthening the role
434 of estuaries as hotspots for carbon cycling. These processes are particularly relevant
435 under anthropogenic pressures such as eutrophication and climate-driven changes in
436 river discharge (Harrison et al., 2008; Statham, 2012; Cloern et al., 2016; Wetzel &
437 Yoskowitz, 2013; Zhao et al., 2020), which may alter microbial community
438 composition and activity (Mai et al., 2018; Wong et al., 2021). Our findings emphasize
439 that sediment transport models and estuarine management strategies must explicitly
440 account for microbial processes if they are to predict sediment and carbon fluxes under
441 future environmental change.

442

443 **5. Conclusions**

444 By investigating the flocculation of the estuarine dominant strain *S.*
445 *decontaminans* with montmorillonite under constant shear, this work establishes that
446 microorganisms and EPS critically shape floc dynamics and structure, reveals the
447 governing molecular mechanism, and directly links this process to the estuarine carbon
448 cycle. The detailed results are summarized as followed:

- 449 1) Bio-mineral flocs exhibit significantly slower flocculation kinetics than purely
450 inorganic systems in reaching equilibrium. At steady state, the aggregates in MSD
451 achieve a mean diameter approximately four times larger, coupled with a distinctly
452 lower fractal dimension of 1.43, possessing a larger, more porous, and more loosely
453 structured morphology.
- 454 2) *S. decontaminans* and its EPS play a definitive role in both restructuring floc
455 architecture and modifying the elemental composition of aggregates, elevating
456 carbon content within a range of 7.4% to 53.9%;
- 457 3) Genes associated with flagellar structure and motility promote the initial adhesion
458 of bacteria to mineral particles, whereas polysaccharide biosynthesis genes are
459 essential for stabilizing floc structure;
- 460 4) The microbe-mediated flocculation process actively drives the conversion of DOC
461 into POC and significantly alters key water chemistry parameters, including
462 turbidity, pH, and zeta potential, thereby exerting a profound influence on
463 biogeochemical processes.

464

465

466 **Acknowledgements**

467 This research was funded by the National Natural Science Foundation of China
468 (42476155, 12411530095 and 42076173), and was also greatly supported by the
469 Innovation Group Project of Southern Marine Science and Engineering Guangdong
470 Laboratory (Zhuhai) (311021004).

471

472 **References**

473 Anvari-Yazdi, F., Tahermanesh, K., Joghataei, M. T., Tavangar, S. M., Moradi, F.,
474 Kashi, A., et al. (2014). How to prepare biological samples and live tissues for
475 scanning electron microscopy (SEM). Galen Medical Journal, 3. 63-80.

476 Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier,
477 P. A. (2013). The changing carbon cycle of the coastal ocean. *Nature*, 504(7478),
478 61-70.

479 Baumas, C., & Bizic, M. (2024). A focus on different types of organic matter particles
480 and their significance in the open ocean carbon cycle. *Progress in Oceanography*,
481 224, 103233.

482 Belas, R. (2014). Biofilms, flagella, and mechanosensing of surfaces by bacteria.
483 *Trends in microbiology*, 22(9), 517-527.

484 Berne, C., Ellison, C. K., Ducret, A., & Brun, Y. V. (2018). Bacterial adhesion at the
485 single-cell level. *Nature Reviews Microbiology*, 16(10), 616-627.

486 Burchard, H., Schuttelaars, H. M., & Ralston, D. K. (2018). Sediment trapping in
487 estuaries. *Annual review of marine science*, 10(1), 371-395.

488 Burd, A. B., & Jackson, G. A. Particle aggregation. *Annual Review of Marine Science*,
489 2009, 1, 65-90.

490 Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2016). DADA2: high-resolution
491 sample inference from Illumina amplicon data. *Nature Methods*, 13(7), 581-583.

492 Chapalain, M., Verney, R., Fettweis, M., Jacquet, M., Le Berre, D., & Le Hir, P. (2019).
493 Investigating suspended particulate matter in coastal waters using the fractal
494 theory. *Ocean Dynamics*, 69(1), 59-81.

495 Chen, Q., Ran, F., Wei, Q., Zheng, X., Zhao, M., Liu, S., ... & Fan, C. (2024). A review
496 on dewatering of dredged sediment in water bodies by flocculation processes.
497 *Water, Air, & Soil Pollution*, 235(1), 67.

498 Chin, W. C., Orellana, M. V., & Verdugo, P. (1998). Spontaneous assembly of marine

499 dissolved organic matter into polymer gels. *Nature*, 391(6667), 568-572.

500 Cloern, J. E., Abreu, P. C., Carstensen, J., Chauvaud, L., Elmgren, R., Grall, J., ... &
501 Yin, K. (2016). Human activities and climate variability drive fast-paced change
502 across the world's estuarine–coastal ecosystems. *Global change biology*, 22(2),
503 513-529.

504 Cox, J. R., Lingbeek, J., Weisscher, S. A. H., & Kleinhans, M. G. (2022). Effects of
505 sea-level rise on dredging and dredged estuary morphology. *Journal of*
506 *Geophysical Research: Earth Surface*, 127(10), e2022JF006790.

507 Cui, Z., Huang, L., Fang, H., Han, D., & Bombardelli, F. (2023). Exploring cohesive
508 sediment flocculation with surface heterogeneity: a theoretical lagrangian-type
509 flocculation model. *Water Resources Research*, 59(11), e2022WR034374.

510 Dang, H., & Lovell, C. R. (2016). Microbial surface colonization and biofilm
511 development in marine environments. *Microbiology and molecular biology*
512 reviews, 80(1), 91-138.

513 Dar, D., Dar, N., Cai, L., & Newman, D. K. (2021). Spatial transcriptomics of
514 planktonic and sessile bacterial populations at single-cell resolution. *Science*,
515 373(6556), eabi4882.

516 Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances
517 (EPSs) in ocean systems. *Front Microbiol* 8: 922.

518 Deng, Z., He, Q., Manning, A. J., & Chassagne, C. (2023). A laboratory study on the
519 behavior of estuarine sediment flocculation as function of salinity, EPS and living
520 algae. *Marine Geology*, 459, 107029.

521 Deng, Z., Huang, D., He, Q., & Chassagne, C. (2022). Review of the action of organic
522 matter on mineral sediment flocculation. *Frontiers in Earth Science*, 10, 965919.

523 Droppo, I. G. (2001). Rethinking what constitutes suspended sediment. *Hydrological*
524 *Processes*, 15(9), 1551-1564.

525 DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956).
526 Colorimetric method for determination of sugars and related substances.
527 Analytical chemistry, 28(3), 350-356.

528 Fettweis, M., Schartau, M., Desmit, X., Lee, B. J., Terseleer, N., Van der Zande, D., ...
529 & Riethmüller, R. (2022). Organic matter composition of biomineral flocs and its
530 influence on suspended particulate matter dynamics along a nearshore to offshore
531 transect. *Journal of Geophysical Research: Biogeosciences*, 127(1),

532 e2021JG006332.

533 Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. *Nature reviews microbiology*, 8(9), 623-633.

535 Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to
536 change the stereochemical configuration of a single carbon in galactose. *The
537 FASEB Journal*, 10(4), 461-470.

538 Gattuso, J. P., Frankignoulle, M., & Wollast, R. (1998). Carbon and carbonate
539 metabolism in coastal aquatic ecosystems. *Annual Review of Ecology and
540 Systematics*, 29(1), 405-434.

541 Gerbersdorf, S. U., & Wieprecht, S. (2015). Biostabilization of cohesive sediments:
542 revisiting the role of abiotic conditions, physiology and diversity of microbes,
543 polymeric secretion, and biofilm architecture. *Geobiology*, 13(1), 68-97.

544 Giraud, M. F., & Naismith, J. H. (2000). The rhamnose pathway. *Current opinion in
545 structural biology*, 10(6), 687-696.

546 Groisman, E. A. (2001). The pleiotropic two-component regulatory system PhoP-PhoQ.
547 *Journal of bacteriology*, 183(6), 1835-1842.

548 Groisman, E. A., Duprey, A., & Choi, J. (2021). How the PhoP/PhoQ system controls
549 virulence and Mg²⁺ homeostasis: lessons in signal transduction, pathogenesis,
550 physiology, and evolution. *Microbiology and Molecular Biology Reviews*, 85(3),
551 10-1128.

552 Guo, C., Manning, A. J., Bass, S., Guo, L., & He, Q. (2021). A quantitative lab
553 examination of floc fractal property considering influences of turbulence, salinity
554 and sediment concentration. *Journal of Hydrology*, 601, 126574.

555 Guo, J., Qiu, X., Xie, Y. G., Hua, Z. S., & Wang, Y. (2024). Regulation of intracellular
556 process by two-component systems: Exploring the mechanism of plasmid-
557 mediated conjugative transfer. *Water Research*, 259, 121855.

558 Guttenplan, S. B., & Kearns, D. B. (2013). Regulation of flagellar motility during
559 biofilm formation. *FEMS microbiology reviews*, 37(6), 849-871.

560 Harrison, P. J., Yin, K., Lee, J. H. W., Gan, J., & Liu, H. (2008). Physical-biological
561 coupling in the Pearl River Estuary. *Continental Shelf Research*, 28(12), 1405-
562 1415.

563 He, B., Dai, M., Zhai, W., Wang, L., Wang, K., Chen, J., ... & Xu, Y. (2010).
564 Distribution, degradation and dynamics of dissolved organic carbon and its major

565 compound classes in the Pearl River estuary, China. *Marine Chemistry*, 119(1-4),
566 52-64.

567 He, K., Shi, X., Tao, Z., Hu, X., Sun, L., Wang, R., ... & Lei, P. (2024). Genomic and
568 genomic and transcriptomic analyses identify two key glycosyltransferase genes
569 alhH and alhK of exopolysaccharide biosynthesis in *Pantoea alhagi* NX-11.
570 *Microorganisms*, 12(10), 2016.

571 He, W., Chen, M., Schlautman, M. A., & Hur, J. (2016). Dynamic exchanges between
572 DOM and POM pools in coastal and inland aquatic ecosystems: A review. *Science
573 of the Total Environment*, 551, 415-428.

574 Ho, Q. N., Fettweis, M., Hur, J., Desmit, X., Kim, J. I., Jung, D. W., ... & Lee, B. J.
575 (2022). Flocculation kinetics and mechanisms of microalgae-and clay-containing
576 suspensions in different microalgal growth phases. *Water Research*, 226, 119300.

577 Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., ... &
578 Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter:
579 long-term carbon storage in the global ocean. *Nature Reviews Microbiology*, 8(8),
580 593-599.

581 Jocher, G., Chaurasia, A., & Qiu, J. (2023). YOLOv8 by Ultralytics.
582 <https://github.com/ultralytics/ultralytics>

583 Kovárová-Kovar, K., & Egli, T. (1998). Growth kinetics of suspended microbial cells:
584 from single-substrate-controlled growth to mixed-substrate kinetics. *Microbiology
585 and molecular biology reviews*, 62(3), 646-666.

586 Labille, J., Thomas, F., Milas, M., & Vanhaverbeke, C. (2005). Flocculation of
587 colloidal clay by bacterial polysaccharides: effect of macromolecule charge and
588 structure. *Journal of colloid and interface science*, 284(1), 149-156.

589 Lai, H., Fang, H., Huang, L., He, G., & Reible, D. (2018). A review on sediment
590 bioflocculation: Dynamics, influencing factors and modeling. *Science of the total
591 environment*, 642, 1184-1200.

592 Li, J., Salam, N., Wang, P., Chen, L., Jiao, J., Li, X., ... & Li, W. (2018). Discordance
593 between resident and active bacterioplankton in free-living and particle-associated
594 communities in estuary ecosystem. *Microbial ecology*, 76(3), 637-647.

595 Li, X., Zhang, X., Zhang, M., Luo, X., Zhang, T., Liu, X., ... & Zhang, Y. (2024).
596 Environmental magnesium ion affects global gene expression, motility, biofilm
597 formation and virulence of *Vibrio parahaemolyticus*. *Biofilm*, 7, 100194.

598 Li, Y., Guo, N., Yuan, K., Chen, B., Wang, J., Hua, M., ... & Yang, Y. (2023).
599 Variations in the concentration, source and flux of polycyclic aromatic
600 hydrocarbons in sediments of the Pearl River Estuary: Implications for
601 anthropogenic impacts. *Science of the Total Environment*, 862, 160870.

602 Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein
603 measurement with the Folin phenol reagent. *Journal of Biological Chemistry*,
604 193(1), 265-275.

605 Maalej, H., Boisset, C., Hmidet, N., Colin-Morel, P., Buon, L., & Nasri, M. (2017).
606 Depolymerization of *Pseudomonas stutzeri* exopolysaccharide upon fermentation
607 as a promising production process of antibacterial compounds. *Food chemistry*,
608 227, 22-32.

609 Maggi, F. (2009). Biological flocculation of suspended particles in nutrient-rich
610 aqueous ecosystems. *Journal of Hydrology*, 376(1-2), 116-125.

611 Maggi, F. (2013). The settling velocity of mineral, biomineral, and biological particles
612 and aggregates in water. *Journal of Geophysical Research: Oceans*, 118(4), 2118-
613 2132.

614 Mai, Y. Z., Lai, Z. N., Li, X. H., Peng, S. Y., & Wang, C. (2018). Structural and
615 functional shifts of bacterioplanktonic communities associated with
616 spatiotemporal gradients in river outlets of the subtropical Pearl River Estuary,
617 South China. *Marine Pollution Bulletin*, 136, 309-321.

618 Mari, X., Passow, U., Migon, C., Burd, A. B., & Legendre, L. (2017). Transparent
619 exopolymer particles: Effects on carbon cycling in the ocean. *Progress in
620 Oceanography*, 151, 13-37.

621 Mietta, F., Chassagne, C., Manning, A. J., & Winterwerp, J. C. (2009). Influence of
622 shear rate, organic matter content, pH and salinity on mud flocculation. *Ocean
623 Dynamics*, 59(5), 751-763.

624 Moruzzi, R. B., de Oliveira, A. L., da Conceição, F. T., Gregory, J., & Campos, L. C.
625 (2017). Fractal dimension of large aggregates under different flocculation
626 conditions. *Science of the Total Environment*, 609, 807-814.

627 Mulet, M., Gomila, M., Lalucat, J., Bosch, R., Rossello-Mora, R., & García-Valdés, E.
628 (2023). *Stutzerimonas decontaminans* sp. nov. isolated from marine polluted
629 sediments. *Systematic and Applied Microbiology*, 46(2), 126400.

630 Nguyen, T. H., Tang, F. H., & Maggi, F. (2017). Optical measurement of cell

631 colonization patterns on individual suspended sediment aggregates. *Journal of*
632 *Geophysical Research: Earth Surface*, 122(10), 1794-1807.

633 Nguyen, T. H., Tang, F. H., & Maggi, F. (2018). Micro food web networks on
634 suspended sediment. *Science of the Total Environment*, 643, 1387-1399.

635 Nguyen, T. T., Zakem, E. J., Ebrahimi, A., Schwartzman, J., Caglar, T., Amarnath,
636 K., ... & Levine, N. M. (2022). Microbes contribute to setting the ocean carbon
637 flux by altering the fate of sinking particulates. *Nature communications*, 13(1),
638 1657.

639 O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for
640 *Pseudomonas aeruginosa* biofilm development. *Molecular microbiology*, 30(2),
641 295-304.

642 Passow, U. (2002). Transparent exopolymer particles (TEP) in aquatic environments.
643 *Progress in oceanography*, 55(3-4), 287-333.

644 Passow, U., & De La Rocha, C. L. (2006). Accumulation of mineral ballast on organic
645 aggregates. *Global Biogeochemical Cycles*, 20(1).

646 Petrova, O. E., & Sauer, K. (2012). Sticky situations: key components that control
647 bacterial surface attachment. *Journal of Bacteriology*, 194(10), 2413–2425.

648 Rana, S., & Upadhyay, L. S. B. (2020). Microbial exopolysaccharides: Synthesis
649 pathways, types and their commercial applications. *International journal of*
650 *biological macromolecules*, 157, 577-583.

651 Schleheck, D., Barraud, N., Klebensberger, J., Webb, J. S., McDougald, D., Rice, S. A.,
652 & Kjelleberg, S. (2009). *Pseudomonas aeruginosa* PAO1 preferentially grows as
653 aggregates in liquid batch cultures and disperses upon starvation. *PloS one*, 4(5),
654 e5513.

655 Schmid, J., Sieber, V., & Rehm, B. (2015). Bacterial exopolysaccharides: biosynthesis
656 pathways and engineering strategies. *Frontiers in microbiology*, 6, 496.

657 Shang, L., Yan, Y., Zhan, Y., Ke, X., Shao, Y., Liu, Y., ... & Lin, M. (2021). A
658 regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm
659 formation by *Pseudomonas stutzeri*. *npj Biofilms and Microbiomes*, 7(1), 54.

660 Shen, X., Toorman, E. A., Lee, B. J., & Fettweis, M. (2019). An approach to modeling
661 biofilm growth during the flocculation of suspended cohesive sediments. *Journal*
662 *of Geophysical Research: Oceans*, 124(6), 4098-4116.

663 Shi, Z., Xu, J., Huang, X., Zhang, X., Jiang, Z., Ye, F., & Liang, X. (2017). Relationship

664 between nutrients and plankton biomass in the turbidity maximum zone of the
665 Pearl River Estuary. *Journal of Environmental Sciences*, 57, 72-84.

666 Shukla, A., Mehta, K., Parmar, J., Pandya, J., & Saraf, M. (2019). Depicting the
667 exemplary knowledge of microbial exopolysaccharides in a nutshell. *European
668 Polymer Journal*, 119, 298-310.

669 Statham, P. J. (2012). Nutrients in estuaries—An overview and the potential impacts of
670 climate change. *Science of the total environment*, 434, 213-227.

671 Sun, X., & Zhang, J. (2021). Bacterial exopolysaccharides: Chemical structures, gene
672 clusters and genetic engineering. *International Journal of Biological
673 Macromolecules*, 173, 481-490.

674 Tang, F. H., & Maggi, F. (2016). A mesocosm experiment of suspended particulate
675 matter dynamics in nutrient-and biomass-affected waters. *Water Research*, 89, 76-
676 86.

677 Tkacz, A., Hortala, M., & Poole, P. S. (2018). Absolute quantitation of microbiota
678 abundance in environmental samples. *Microbiome*, 6(1), 110.

679 Tran, D., Kuprenas, R., & Strom, K. (2018). How do changes in suspended sediment
680 concentration alone influence the size of mud flocs under steady turbulent
681 shearing?. *Continental Shelf Research*, 158, 1-14.

682 Turner, A., & Millward, G. E. (2002). Suspended particles: their role in estuarine
683 biogeochemical cycles. *Estuarine, Coastal and Shelf Science*, 55(6), 857-883.

684 Verdugo, P., Alldredge, A. L., Azam, F., Kirchman, D. L., Passow, U., & Santschi, P.
685 H. (2004). The oceanic gel phase: a bridge in the DOM–POM continuum. *Marine
686 chemistry*, 92(1-4), 67-85.

687 Wadhwa, N., & Berg, H. C. (2022). Bacterial motility: machinery and mechanisms.
688 *Nature reviews microbiology*, 20(3), 161-173.

689 Walshire, L. A., Zhang, H., Nick, Z. H., Breland, B. R., Runge, K. A., & Han, F. X.
690 (2024). Modification of surface properties of clay minerals with
691 exopolysaccharides from *rhizobium tropici*. *ACS Earth and Space Chemistry*, 8(1),
692 137-147.

693 Wetz, M. S., & Yoskowitz, D. W. (2013). An ‘extreme’ future for estuaries? Effects of
694 extreme climatic events on estuarine water quality and ecology. *Marine Pollution
695 Bulletin*, 69(1-2), 7-18.

696 Winterwerp, J. C. (1998). A simple model for turbulence induced flocculation of

697 cohesive sediment. *Journal of hydraulic research*, 36(3), 309-326.

698 Wong, G. C., Antani, J. D., Lele, P. P., Chen, J., Nan, B., Kühn, M. J., ... & Dunkel, J.

699 (2021). Roadmap on emerging concepts in the physical biology of bacterial

700 biofilms: from surface sensing to community formation. *Physical biology*, 18(5),

701 051501.

702 Wu, S., Zheng, R., Sha, Z., & Sun, C. (2017). Genome sequence of *Pseudomonas*

703 *stutzeri* 273 and identification of the exopolysaccharide EPS273 biosynthesis

704 locus. *Marine drugs*, 15(7), 218.

705 Ye, L., Wu, J., Huang, M., & Yan, J. (2023). The role of suspended extracellular

706 polymeric substance (EPS) on equilibrium flocculation of clay minerals in high

707 salinity water. *Water Research*, 244, 120451.

708 Zhao, K., Pomes, F., Vowinckel, B., Hsu, T. J., Bai, B., & Meiburg, E. (2021).

709 Flocculation of suspended cohesive particles in homogeneous isotropic turbulence.

710 *Journal of Fluid Mechanics*, 921, A17.

711 Zhao, Y., Liu, J., Uthaipan, K., Song, X., Xu, Y., He, B., ... & Dai, M. (2020). Dynamics

712 of inorganic carbon and pH in a large subtropical continental shelf system:

713 Interaction between eutrophication, hypoxia, and ocean acidification. *Limnology*

714 and *Oceanography*, 65(6), 1359-1379.

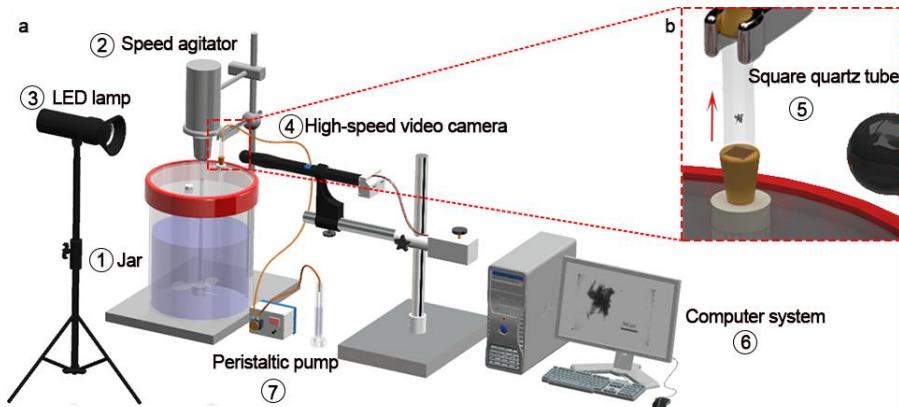
715 Zhu, L., Zhang, H., Guo, L., Huang, W., & Gong, W. (2021). Estimation of riverine

716 sediment fate and transport timescales in a wide estuary with multiple sources.

717 *Journal of Marine Systems*, 214, 103488.

718

719

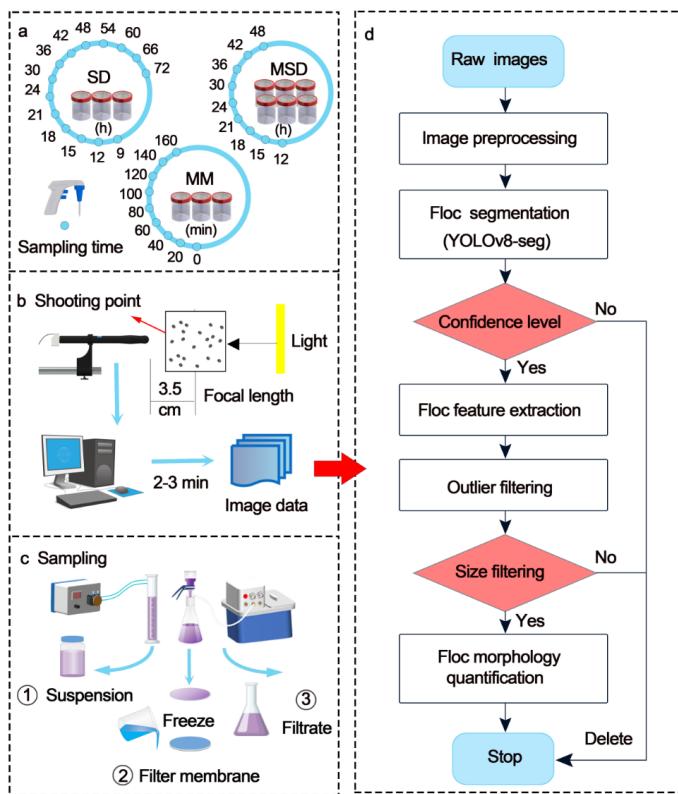


720 **Figures list and captions:**

721

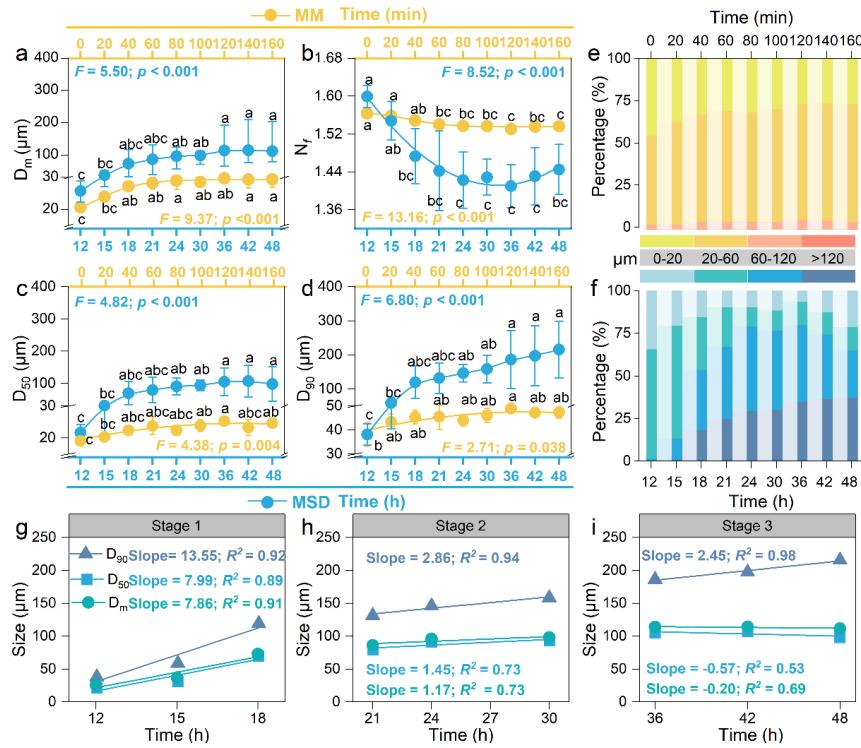
722

723


724 **Figure 1.** (a) Schematic of the laboratory experimental setup. The main components
725 are: (1) jar, (2) LED lamp, (3) variable-speed agitator, (4) high-speed digital camera,
726 (5) square quartz tube, (6) peristaltic pump, and (7) computer system. (b) Detailed
727 view of the square quartz tube, showing the “shooting point” location. The red arrow
728 indicates the flow direction of the suspension.

729

730


731

732 **Figure 2.** The main experimental workflow includes (a) sampling time, (b) image
733 acquisition, (c) sample collection and (d) image analysis. (The blue dots along the
734 circles represent the sampling timepoints for the SD (9-72 h), and MSD (12-48 h),
735 MM (0-160 min) treatments. A high-speed digital camera equipped with a fixed focal
736 length of approximately 3.5 cm was employed for a 2-3 min imaging. At each
737 sampling time, particle suspensions, filter membranes (flash-frozen in liquid N₂), and
738 filtrates were collected for SD and MSD.)
739

740

741

Figure 3. Comparative analysis of temporal variations in (a) mean diameter (D_m), (b) fractal dimension (N_f), (c) D_{50} , (d) D_{90} between MM and MSD. Temporal variations in size-class distributions in (e) MM and (f) MSD, respectively. Stage-resolved floc size dynamics and slope transitions in MSD in (g) phase one (12-18 h), (h) phase two (21-30 h), and (i) phase three (36-48 h). (MM: Montmorillonite mineral system; MSD: Montmorillonite mineral and *S. decontaminans* mixed system. Different lowercase letters represented significant differences between treatments ($P < 0.05$) by HSD test.)

742

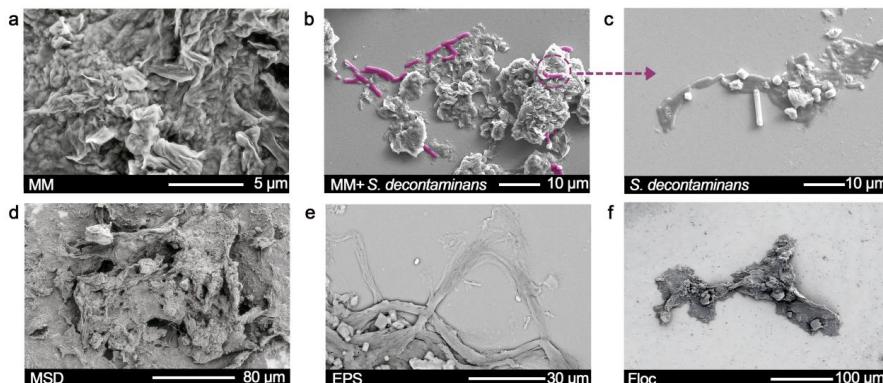
743

744

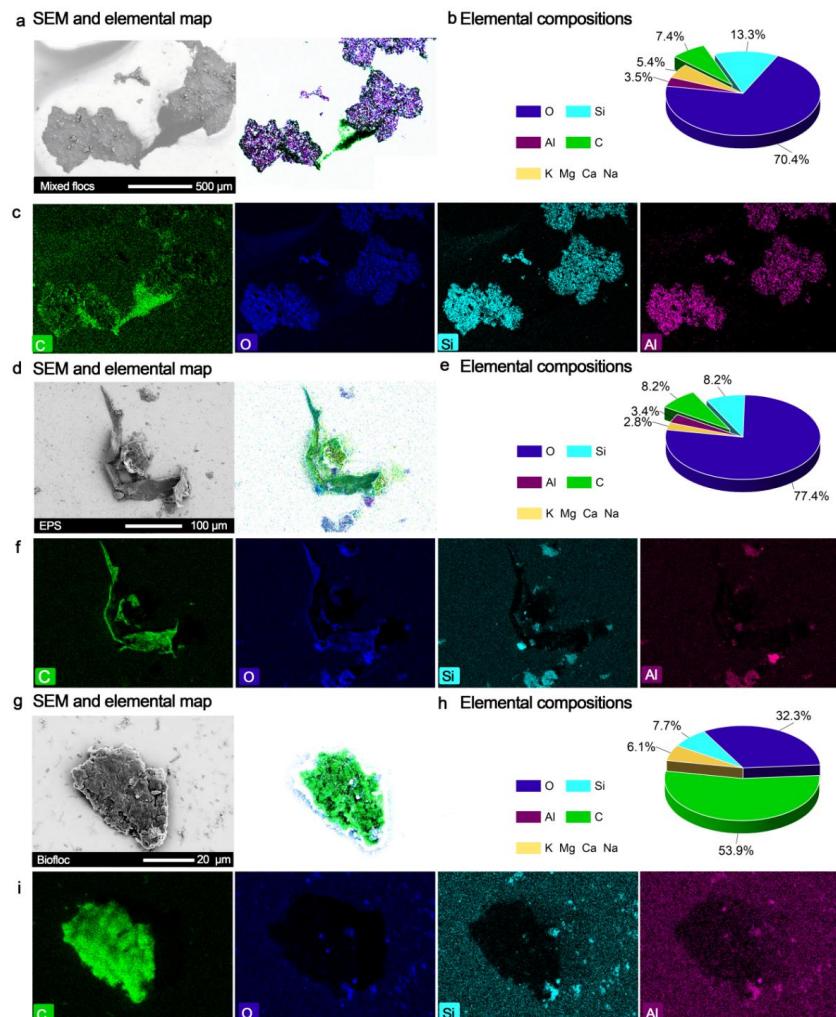
745

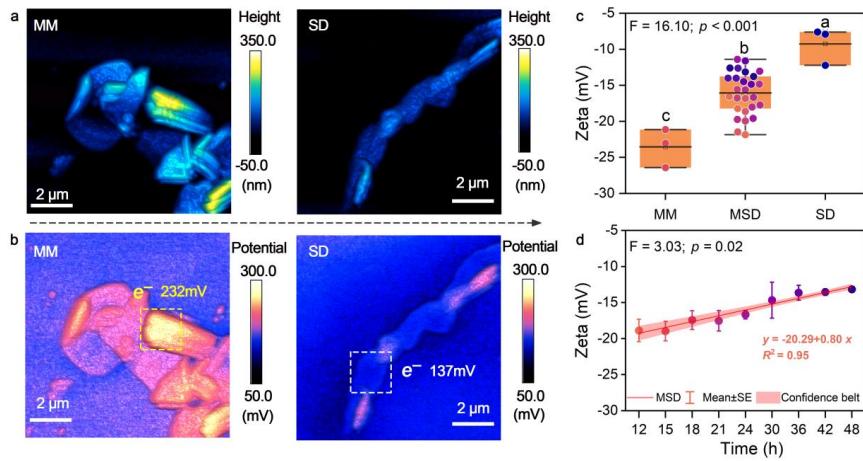
746

747

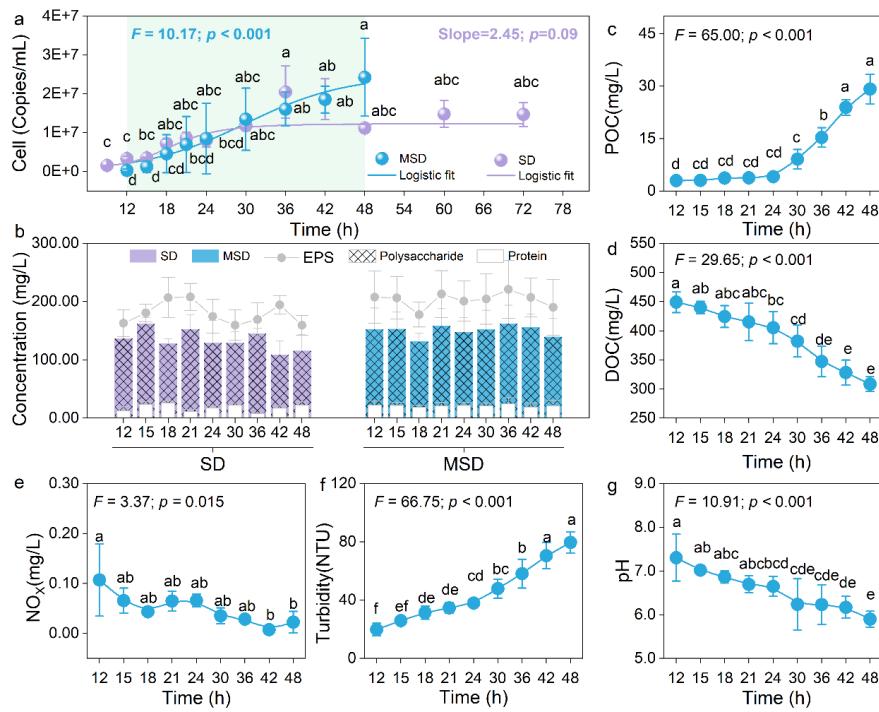

748

749


750

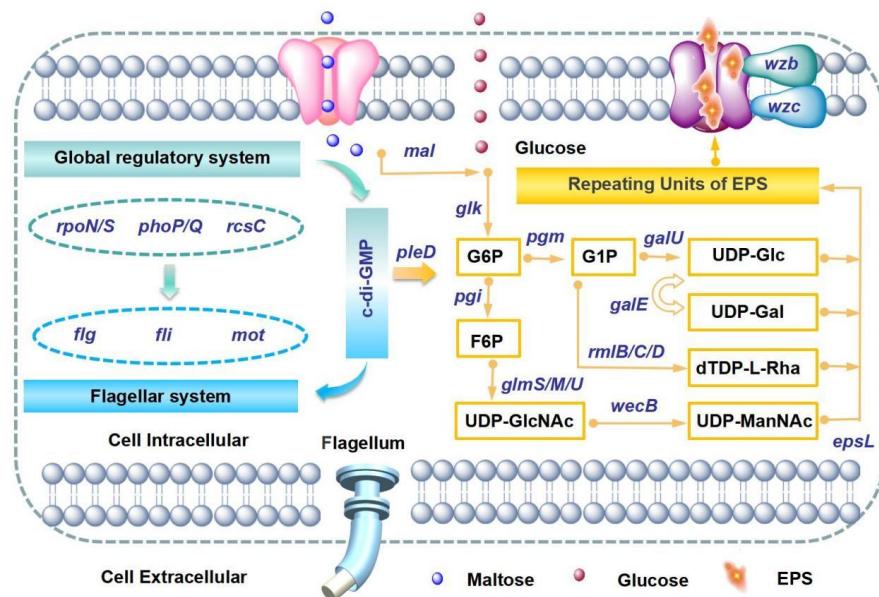

751

752 **Figure 4.** Scanning electron micrographs of samples in MM and MSD. (a) Mineral
753 surface structure in MM, (b) Mineral particles and microorganisms in MSD, (c) *S.*
754 *decontaminans*, (d) Mixing sample including mineral, microorganisms and EPS in
755 MSD, (e) EPS, (f) Floc of MSD. (MM: Montmorillonite mineral system, MSD:
756 Montmorillonite mineral and *S. decontaminans* mixed system.)
757



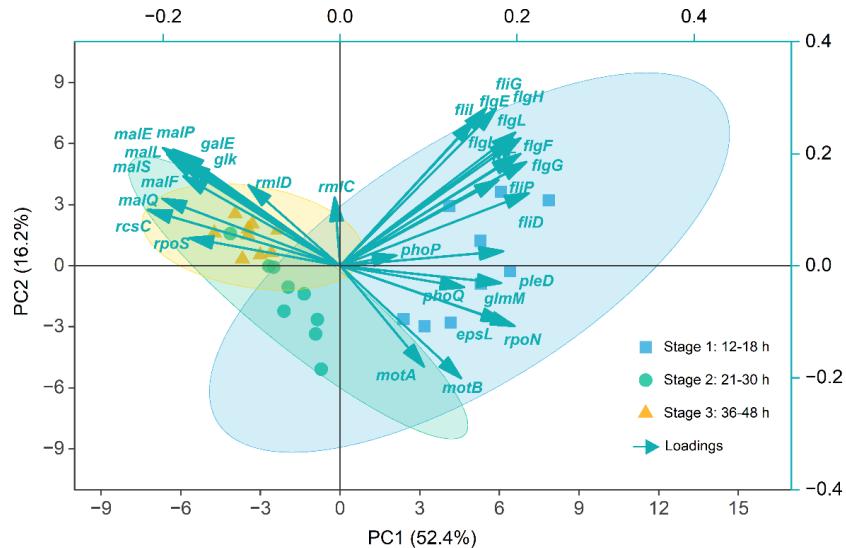
758 **Figure 5.** SEM characterization and elemental analysis of floc components in
759 MSD:SEM images, elemental compositions and maps (C, O, Si, Al) for mixed flocs
760 (a-c), EPS (d-f), and bio-floc (g-i).
761

762


763 **Figure 6.** Atomic force microscope (AFM) images of MM and SD's (a) surface
764 roughness and (b) potential mapping, (c) Comparison of Zeta-potential among MM,
765 MSD and SD, and (d) temporal characters of Zeta-potential in MSD. (MM:
766 Montmorillonite mineral system, SD: a pure culture of *S. decontaminans*, MSD:
767 Montmorillonite mineral and *S. decontaminans* mixed system. Different lowercase
768 letters represented significant differences between treatments ($P < 0.05$) by HSD test.)
769

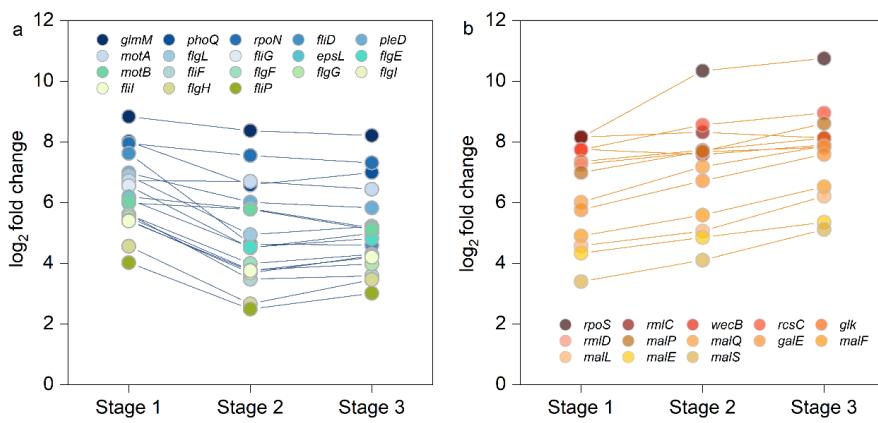
770 **Figure 7.** Temporal variations of (a) bacteria abundance, (b) EPS (gray line),
771 polysaccharide (pattened boxes), and protein (white boxes) concentrations in MSD
772 (blue) and SD (purple), and (c) particulate organic carbon (POC), (d) dissolved
773 organic carbon (DOC), (e) $\text{NO}_x = \text{NO}_2^- + \text{NO}_3^- + \text{NH}_4^+$, (f) turbidity (NTU), (g) pH
774 value in MSD. (MSD: Montmorillonite mineral and *S. decontaminans* mixed system.
775 Different lowercase letters represented significant differences between treatments ($P <$
776 0.05) by HSD test.)
777

778



779 **Figure 8.** Gene regulatory network of *S. decontaminans* implicated in EPS regulation.
780 The depicted systems include: (1) global regulatory system (*rpoN/S*, *phoP/Q*, *rscC*)
781 that activate cell motility and polysaccharide production; (2) flagellar system (*flg*, *fli*,
782 *mot*) that mediate bacterial motility; (3) polysaccharide system (e.g., *pleD*, *mal*, *glk*,
783 *pgi*, *pgm*, *galU*, *galE*, *rmlB/C/D*, *glmS/M/U*, *wecB*, *epsL*) essential for EPS assembly
784 and export. (F6P: Fructose-6-phosphate, G1P: Glucose-1-phosphate, UDP-GlcNAc:
785 Uridine diphosphate N-acetylglucosamine, UDP-Glc: Uridine diphosphate glucose,
786 UDP-Gal: Uridine diphosphate galactose, dTDP-L-Rha: Deoxythymidine
787 diphosphate L-rhamnose, UDP-ManNAc: Uridine diphosphate N-
788 acetylmannosamine).

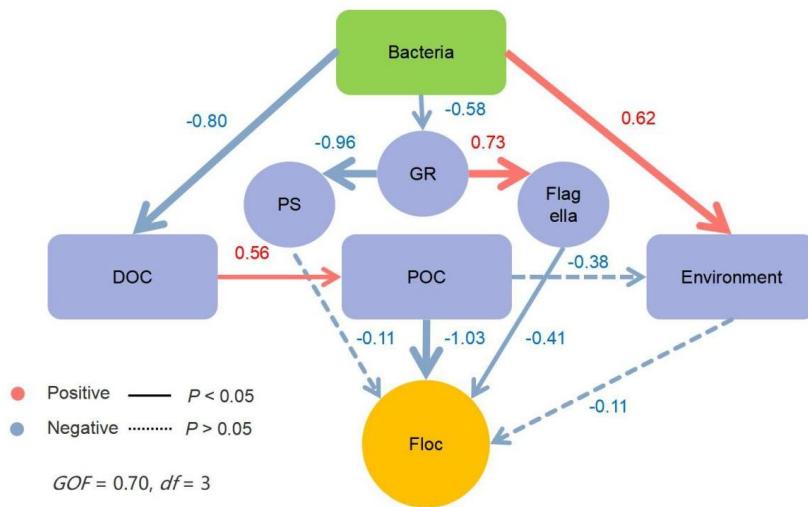
789


790

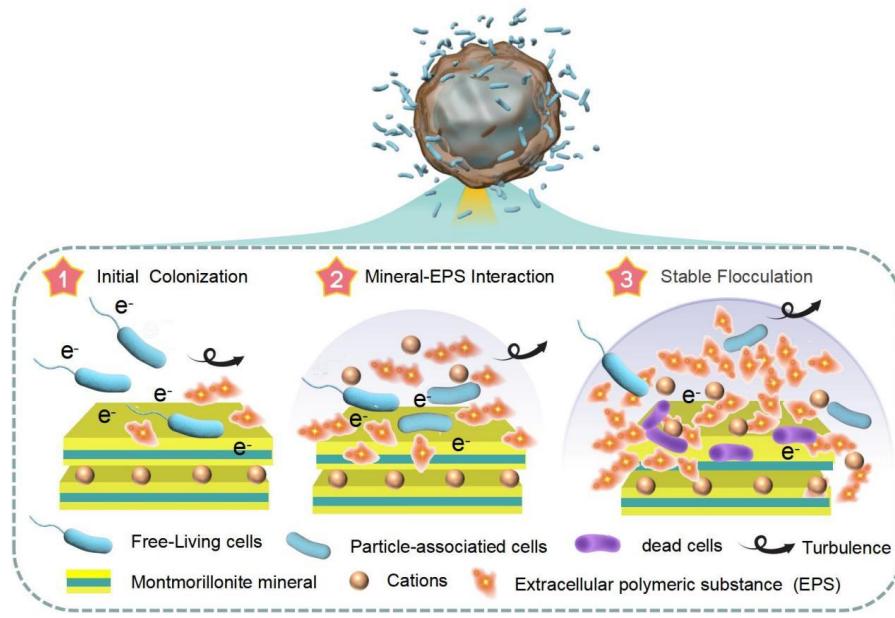
791 **Figure 9.** PCA of expressed genes and the differentially expressed genes across
792 flocculation Stages one (12-18 h), two (21-30 h), and three (36-48 h). (All gene data
793 were log2-transformed.)

794

795


796 **Figure 10.** Dynamic expression changes of (a) up- and (b) down-regulated genes
797 across flocculation Stages one (12-18 h), two (21-30 h), and three (36-48 h).

798


799

800

801 **Figure 11.** Structural equation model linking bacteria, gene, environmental response
802 and floc structures in MSD. (Numbers beside arrows indicated standardized
803 coefficients. Solid lines indicated significant relationships. The red lines and arrows
804 indicated positive effects. Bacteria, copy number of the bacterial cells; GR, Global
805 regulatory system, PS, polysaccharide system, Flagella, Flagellar system, POC,
806 particulate organic carbon, DOC, dissolved organic carbon, Environment included
807 pH, turbidity, NOX-, Zeta, Floc structure included D_m , D_{50} , D_{90} , N_f .)
808

809

810

811

812

Figure 12. A three-stage conceptual framework for microbial modulation of flocculation.