

1 **Seasonal variation in aerosol chemistry drives new
2 particle formation and CCN activity in a coastal city,
3 China: insights from year-long online measurements in
4 Fuzhou**

5 Zihan Wang¹, Yishu Bian², Fuwang Zhang³, Honglei Wang^{1,2*}, Wen Lin², Jun Hu⁴,
6 Tianliang Zhao¹, Lijian Shen^{2,5}, Zuxin Xie²

7 ¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD),
8 China Meteorological Administration Aerosol–Cloud and Precipitation Key Laboratory, Nanjing
9 University of Information Science and Technology, Nanjing 210044, China

10 ² Fujian Key Laboratory of Severe Weather and Key Laboratory of Straits Severe Weather, China
11 Meteorological Administration, Fuzhou 350001, China

12 ³ Fujian Provincial Environmental Monitoring Central Station, Fuzhou 350003, China

13 ⁴ Fujian Provincial Academy of Environmental Science, Fuzhou 350001, China

14 ⁵ Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-
15 CMA), Wuxi University, Wuxi 214105, China

16 *Correspondence to:* Honglei Wang (hongleiwang@nuist.edu.cn)

17 **Abstract:** New particle formation (NPF) is an important source of cloud condensation nuclei (CCN),
18 which affects the global climate. Continuous observations in the coastal city of Fuzhou, conducted from
19 June 2021 to May 2022, aimed to study NPF events and their impact on CCN. A total of 46 NPF events
20 were identified, with a frequency of 12.7 %. The average formation rate (FR) and growth rate (GR) of
21 particles were $3.94 \pm 8.26 \text{ cm}^{-3} \cdot \text{s}^{-1}$ and $5.20 \pm 1.78 \text{ nm} \cdot \text{h}^{-1}$. The NPF events showed evident seasonal
22 variation: spring (27.17 %), fall (9.89 %), winter (8.89 %), and summer (4.35 %). Spring NPF events
23 were characterized by high FR ($5.56 \text{ cm}^{-3} \cdot \text{s}^{-1}$) and suppressed growth processes, while summer exhibited
24 the highest GR among all seasons (peak at $11.68 \text{ nm} \cdot \text{h}^{-1}$). The influence of NPF on the chemical
25 composition of PM_{2.5} and CCN also showed seasonal differences. In spring and summer, NPF generated
26 substantial amounts of sulfate and nitrate, resulting in stronger particle hygroscopicity (> 0.1). In fall and
27 winter, higher concentrations of black carbon (BC) and primary organic carbon (POC) led to weaker κ
28 (0.09). The enhancement effect of NPF on CCN was most significant in summer ($E_{\text{NCCN}} = 1.64$),
29 accompanied by CCN growth. In spring, the high condensation sink (CS) suppressed growth, leading to
30 an insignificant CCN enhancement effect. In fall and winter, NPF-induced CCN enhancement mainly

31 occurred 3–5 hours after the event, with increases ranging from 13 % to 65 %, particularly notable at
32 high supersaturation levels (0.8–1.0 % SS).

33 **1 Introduction**

34 New particle formation (NPF) is a complex process in which gaseous precursors in the atmosphere
35 nucleate and condense to form new particles, which subsequently grow through condensation,
36 coagulation, and other processes. NPF contributes over 50 % of the global cloud condensation nuclei
37 (CCN), significantly influencing cloud albedo, structure, lifetime, and solar radiation reaching the Earth's
38 surface (Tröstl et al., 2016; Yao et al., 2018). Additionally, efficient nucleation and explosive growth of
39 particles are important sources of haze formation in urban atmospheres, impacting air quality and public
40 health (Kulmala et al., 2021).

41 Although its frequency may vary with season and location, NPF events fundamentally represent
42 competition between aerosol particle sources and sinks. Current research indicates that secondary particle
43 formation is driven by the photochemical oxidation of atmospheric gases. Sulfuric acid and highly
44 oxidized molecules can act as nucleation precursors (Fan et al., 2018; Zaveri et al., 2022). Furthermore,
45 ions may also play a role in particle nucleation, though their significance remains debated (Hirsikko et
46 al., 2011; Kirkby et al., 2016). Pre-existing aerosol particles act as a sink for these precursors, small
47 clusters, and newly formed particles, thereby suppressing NPF occurrence (McMurry and Friedlander,
48 1979). However, frequent NPF events also occur in heavily polluted cities (Sun et al., 2015; Yao et al.,
49 2018). Therefore, the mechanisms governing NPF generation and growth under different atmospheric
50 conditions are still under investigation.

51 NPF events can be described by the formation rate (FR) of nucleation-mode particles and the growth rate
52 (GR) of newly formed particles (Kulmala et al., 2012). The formation rate of 3 nm particles in the
53 boundary layer typically ranges from 0.01 to 10 $\text{cm}^{-3}\text{s}^{-1}$, while the typical growth rate in mid-latitudes
54 ranges from 1 to 20 nm h^{-1} (Kulmala et al., 2004). Yli-Juuti et al. (2011) reported typical growth rates of
55 1.8–10.7 nm h^{-1} for 1.5–20 nm particles. Additionally, NPF occurrence is constrained by atmospheric
56 temperature and humidity (Yu et al., 2017; Yue and Hamill, 1979), as well as the atmospheric
57 environment and chemical composition (Chen et al., 2012; Kawana et al., 2022). Previous studies have

58 shown that NPF is enhanced in the presence of sulfuric acid, alkaline substances, organic acids, and ions
59 (Wang et al., 2011), but suppressed in the presence of nitrogen oxides (NO_x) (Wildt et al., 2014),
60 indicating significant synergistic effects in chemically complex mixtures (Guo et al., 2014)

61 Aerosol chemical composition also influences aerosol hygroscopicity, altering its critical diameter and
62 thereby affecting CCN activation and cloud formation (Petters and Kreidenweis, 2007; Williamson et al.,
63 2019; Xu et al., 2020). Under various atmospheric conditions, aerosols have positive feedback on CCN
64 number concentration (N_{CCN}) (Fan et al., 2018). N_{CCN} typically shows a significant increase following
65 NPF events (Kuwata et al., 2008; Yue et al., 2011). Kuwata et al. (2008) observed a clear increase in
66 N_{CCN} at different supersaturation levels after NPF events on Jeju Island, South Korea. Research in Beijing
67 indicated that NPF events could increase local N_{CCN} by 0.4–6 times (Yue et al., 2011). However, some
68 studies suggest that an increase in hydrophobic organic components during subsequent particle growth
69 may inhibit CCN generation. Therefore, understanding the role of different components during particle
70 growth is crucial for assessing their subsequent climate effects.

71 Although NPF research in China is widespread, most studies focus on reporting occurrence frequencies,
72 formation, and growth rates, or are limited to discussing nucleation mechanisms. For instance, NPF event
73 frequencies at sites like Shangdianzi, Mount Tai, and Lin'an in eastern China range from 15 % to 29 %
74 (Shen et al., 2018). Frequencies in Beijing, Jinan, and Shanghai are approximately 30 %, 40 %, and 21 %,
75 respectively (Jayaratne et al., 2017; Lv et al., 2018; Xiao et al., 2015). However, a deeper understanding
76 of its mechanisms, especially the quantification of its ultimate climate effects, remains a challenge and
77 frontier in current research (Cai et al., 2018; Kulmala et al., 2021; Rose et al., 2017; Xiao et al., 2015;
78 Yao et al., 2018). Given that Fuzhou is a rapidly developing southeastern coastal city with unique sea-
79 land breeze conditions, a high-temperature and high-humidity environment, and complex pollution
80 emission characteristics, it may have unique NPF mechanisms. Therefore, this study conducted a one-
81 year comprehensive observation in Fuzhou from June 2021 to May 2022, providing new insights and
82 data support for understanding the climate effects of NPF under China's complex atmospheric
83 environment.

84 **2 Data and Methods**

85 **2.1 Observation site**

86 Observation data for this study were collected from June 1, 2021, to May 30, 2022, at the Fujian
87 Provincial Environmental Monitoring Center Station and the Fuzhou Meteorological Bureau Station.
88 Comprehensive atmospheric environmental observations were conducted at the Fujian Provincial
89 Environmental Monitoring Center Station (26.11 °N, 119.30 °E, altitude around 65 m) and the Fuzhou
90 Meteorological Bureau Station (26.05 °N, 119.26 °E, altitude around 18 m). Both stations are located
91 within Fuzhou's urban area, approximately 8 km apart horizontally. The Fujian Provincial Environmental
92 Monitoring Center Station is situated in Gulou District, the central urban area of Fuzhou, surrounded
93 primarily by commercial, residential, and transportation land, representing areas heavily influenced by
94 intense human activities. The Fuzhou Meteorological Bureau Station is located in Cangshan District,
95 southern Fuzhou, approximately 1.5 km east of the Min River. Fuzhou is situated at the Min River estuary
96 and along the East China Sea coast, characterized mainly by plains (average altitude 10-30 m) and a
97 typical East Asian monsoon climate, significantly influenced by sea-land breeze circulation and marine
98 air masses (Hu et al., 2024).

99 **2.2 Measurement and instrumentation**

100 A CCN counter (CCN-100; DMT, USA) equipped with a continuous flow of 500 cm³/min and a thermal
101 gradient was used to measure CCN concentrations at five supersaturation (SS) levels. To maintain
102 counting accuracy, the instrument was regularly calibrated for T gradient, flow rate, pressure, SS, and
103 OPC using standard ammonium sulfate according to the method by Rose et al. (2008). Additionally,
104 zero-point determination was performed before and after each observation to minimize instrumental error.
105 During observations, the measurement interval for each SS level was 10 minutes, and a few minutes were
106 required to stabilize after switching SS levels. Therefore, CCN data collected before reaching stable SS
107 were excluded from subsequent analysis.

108 An online organic carbon/elemental carbon analyzer (Sunset Laboratory semicontinuous OC/EC
109 analyzer, Model-4, Sunset Laboratory Inc., USA) was used to determine organic carbon (OC) and

110 elemental carbon (EC) content in atmospheric particulate matter samples. Details of instrument operation
111 can be found in (Chang et al., 2017).
112 A Wide-Range Particle Spectrometer (WPS-1000, MSP) measured aerosol number concentrations (10-
113 350 nm) with a time resolution of 5 minutes across 96 channels. Instrument details and principles are
114 described in (Wang et al., 2014).
115 Black carbon (BC) mass concentration was measured using an Aethalometer (AE-33, Magee) with a time
116 resolution of 1 second, as detailed in (Kirchstetter et al., 2004). BC mass concentration data from the 880
117 nm wavelength (channel 6) were used.
118 An online particle chromatograph (A model online analyzer for Aerosols and Gases) continuously
119 monitored mass concentrations of soluble aerosol ionic components (SO_4^{2-} , NO_3^- , NH_4^+ , Na^+ , K^+ , Ca^{2+} ,
120 Cl^-) and trace gases (NH_3 , HNO_2 , HNO_3 , HCl , SO_2). Sampling, operation, and internal calibration
121 methods for the MARGA followed Du et al. (2011).
122 Meteorological data (including wind speed (WS), wind direction (WD), temperature (T), relative
123 humidity (RH), and precipitation) with a time resolution of 1 hour were obtained from the Fuzhou
124 Olympic Sports Center Meteorological Station. Data on conventional air pollutants (O_3 , CO , NO_2 , $\text{PM}_{2.5}$,
125 and PM_{10}) were sourced from the China National Environmental Monitoring Centre's real-time urban air
126 quality release platform (<https://quotsoft.net/air/>).

127 **2.3 Analysis methods**

128 The growth rate (GR) of new particles was calculated following (Kulmala et al., 2012):

$$129 \quad GR = \frac{\Delta D_m}{\Delta t} \quad (1)$$

130 where D_m is the median diameter of the nucleation mode particles, obtained by fitting a log-normal
131 distribution to the particle number size distribution.

132 The formation rate (FR) of new particles was calculated following Kulmala et al. (2012):

$$133 \quad FR = \frac{dN_{nuc}}{dt} + CoagS_{nuc} \cdot N_{nuc dp} + \frac{GR}{\Delta dp} + S_{losses} - losses \quad (2)$$

134 where N_{nuc} is the number concentration of nucleation-mode particles. Following the definition by
135 Kulmala et al. (2012), the nucleation-mode size range in this study was also limited to below 25 nm.

136 CoagS_{nuc} is the coagulation sink for nucleation-mode particles, and GR is the growth rate. The last two
137 terms are generally negligible (Maso et al., 2005).

138 The condensation sink (CS) reflects the rate at which condensable vapor molecules condense onto the
139 surface of pre-existing atmospheric particles and was calculated as follows (Kulmala et al., 2012):

$$140 FR = \frac{dN_{nuc}}{dt} + CoagS_{nuc} \cdot N_{nuc,dp} + \frac{GR}{\Delta dp} + S_{losses} - losses \quad (2)$$

141 where D is the diffusion coefficient of the vapor (typically assumed to be sulfuric acid), N_i is the number
142 concentration of particles in a given size bin, and β_M is a correction factor.

143 The coagulation sink (CoagS) reflects the ability and rate of pre-existing atmospheric particles to remove
144 newly formed nucleation particles via coagulation. For particles of size i, the coagulation sink can be
145 expressed as:

$$146 CoagS_i = \sum_j K_{ij} N_j \quad (4)$$

147 where N_j is the number concentration of particles in size bin j, and K_{ij} is the Brownian coagulation
148 coefficient between particles of size j and i.

149 The concentration of condensable vapor (C) was calculated using:

$$150 C = A \times \frac{dDp}{dt} \quad (5)$$

151 where Dp is the particle diameter, and A is a constant ($1.37 \times 10^{-7} \text{ h} \cdot \text{cm}^{-3} \cdot \text{nm}^{-1}$).

152 The hygroscopicity parameter (κ) was calculated based on the volume fraction of chemical components
153 using a simple mixing rule (assuming internal mixture):

$$154 \kappa = \sum_i \varepsilon_i \kappa_i \quad (6)$$

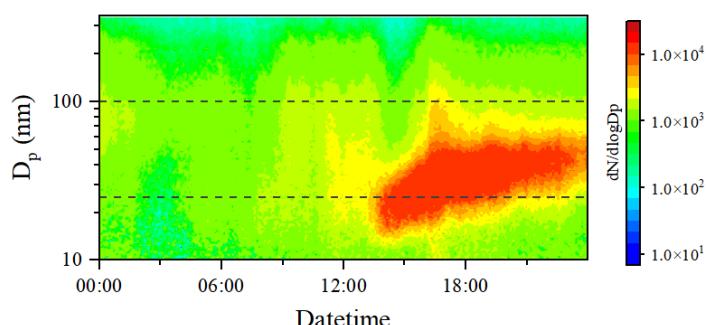
155 where κ_i and ε_i represent the hygroscopicity parameter and volume fraction of component i in the mixture,
156 respectively, and i denotes the number of components. This study calculated κ using the overall chemical
157 composition of particles (mainly including organics, (NH₄)₂SO₄, and NH₄NO₃). Based on laboratory
158 measurements (Petters and Kreidenweis, 2007), the κ values for pure (NH₄)₂SO₄ and NH₄NO₃ are 0.61
159 and 0.67, respectively.

160 The concentrations of secondary organic carbon (SOC) and primary organic carbon (POC) were
161 estimated following (Wu and Yu, 2016):

$$162 POC = (OC/EC)_{min} \times EC \quad (7)$$

163 $SOC = OC_{total} - (OC/EC)_{min} \times EC$ (8)

164 where OC_{total} is the measured OC, $(OC/EC)_{min}$ is the minimum (OC/EC) ratio during the observation
165 period, POC is primary organic carbon, and SOC is secondary organic carbon.

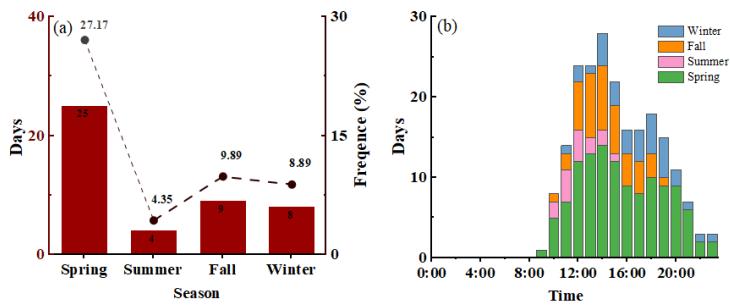

166 The enhancement effect on cloud condensation nuclei number concentration ($E_{-}N_{CCN}$) was defined as
167 the ratio of CCN number concentration after the NPF event to that before the event (Ren et al., 2021):

168 $E_{-}N_{CCN} = N_{CCN, \text{after}} / N_{CCN, \text{prior}}$ (9)

169 where $N_{CCN, \text{after}}$ is the average N_{CCN} during the period from the start to the end of the NPF event, and
170 $N_{CCN, \text{prior}}$ is the average N_{CCN} during the 2 hours before the NPF event.

171 **2.4 Identification of NPF events**

172 NPF events were identified based on criteria from Kulmala et al. (2012): (1) significant increase in
173 nucleation-mode number concentration (N_{nuc}) (diameter 10–25 nm); (2) formation of a new mode lasting
174 several hours; (3) growth of the newly formed mode over several hours. Additional criteria for NPF
175 identification included: low pre-existing particle number concentration, a clear "banana-shaped"
176 evolution in particle number concentration over time and size, and exclusion of interference from pre-
177 existing particles (especially in urban environments) (Heintzenberg et al., 2007). In this study, a day was
178 defined as an effective NPF day if the nucleation-mode (10–25 nm) particle number concentration
179 increased continuously for at least 2 h from its initial value to its maximum and showed clear growth to
180 larger sizes (e.g., 12–50 nm) over several hours (Fig. 1). Other days were defined as non-NPF days (Leng
181 et al., 2014).


182
183 **Fig. 1** An example NPF event observed on 21 April 2022.

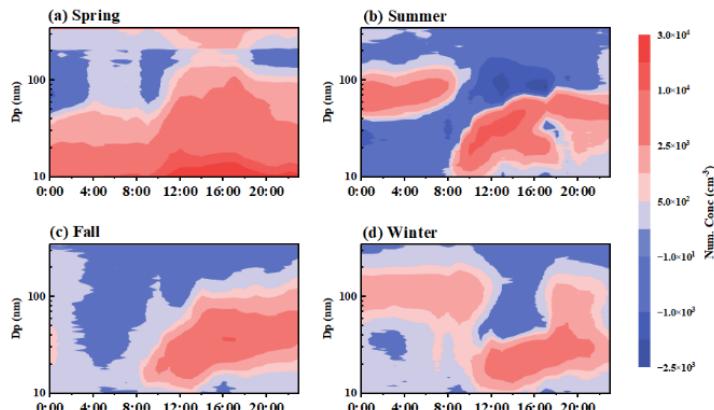
184 **3 Results and Discussion**

185 **3.1 Overall characteristics of NPF occurrence**

186 NPF events in Fuzhou exhibited a distinct seasonal preference. As shown in Fig. 2a, spring was the
187 season with the highest NPF frequency (27.17 %), while summer had the lowest (4.35 %). Fall (9.89 %)
188 and winter (8.89 %) showed intermediate to low frequencies. NPF events mainly occurred between 9:00
189 and 12:00.

190

191 **Fig. 2 The occurrence frequency and diurnal distribution of NPF events.**


192 NPF events led to significant increases in nucleation-mode (N_{nuc}) and Aitken-mode (N_{ait}) particle number
193 concentrations (Fig. S1). Spring showed the highest increase in N_{nuc} (196.7 %), while fall showed the
194 highest increase in N_{ait} (70.5 %), indicating differences in new particle formation and subsequent growth
195 across seasons.

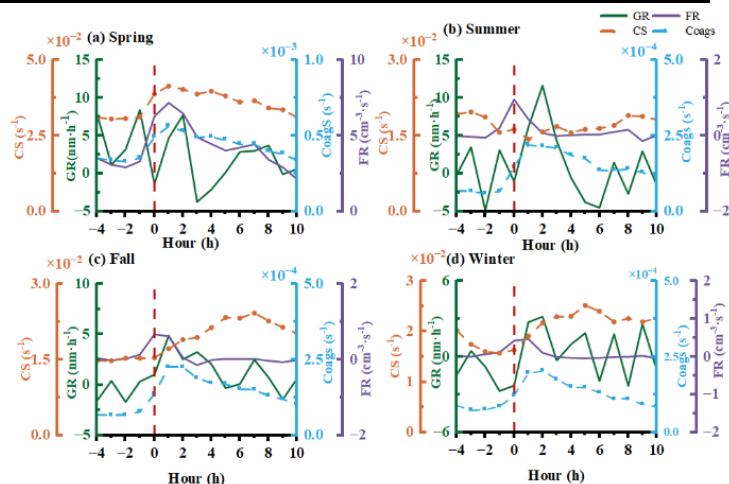
196 NPF days typically corresponded to a lower background of $PM_{2.5}$ and PM_{10} (Fig. S2), indicating that
197 NPF occurred in relatively clean atmospheres with a weak condensation sink. In spring, summer, and
198 winter, POC on NPF days were lower than on non-NPF days, corroborating this point. Meanwhile, in
199 spring, summer, and fall, SOC was higher on NPF days, suggesting that secondary organic vapors may
200 actively participate in particle formation and growth.

201 Pollution levels were relatively higher in spring and winter, with SO_2 on NPF days exceeding those on
202 non-NPF days (spring: 0.64 vs. 0.53 $\mu\text{g}\cdot\text{m}^{-3}$; winter: 0.88 vs. 0.76 $\mu\text{g}\cdot\text{m}^{-3}$; Fig. S3). NPF days in summer
203 and fall presented a cleaner background environment, with NH_3 and NO_2 significantly lower than on
204 non-NPF days. Regarding secondary inorganic ions, sulfate, nitrate, and ammonium on NPF days were
205 lower than on non-NPF days in summer, fall, and winter (Fig. S4). In spring, secondary inorganic ions

206 on NPF days were comparable to non-NPF days, suggesting that abundant precursors in spring might
207 overcome the inhibitory effect of a high condensation sink, thereby promoting NPF events.
208 The average particle hygroscopicity parameter (κ) on NPF days was significantly lower than on non-NPF
209 days across all seasons (Fig. S5). Despite reduced hygroscopicity, NPF events effectively increased
210 atmospheric CCN number concentrations. At supersaturations above 0.4 %, NCCN on NPF days was
211 higher than on non-NPF days in all seasons except spring, with the most significant increases observed
212 in winter and fall (Fig. S6).

214 **Fig. 3 The differences in particle number size distributions between NPF days and non-NPF days for each**
215 **season.**

216 Figure. 3a shows that in spring, particle number concentrations in the 10–20 nm range are generally
217 elevated. NPF typically occurs from 9:00 to 20:00, with the peak concentration of 10–15 nm particles
218 reaching $29,498 \text{ cm}^{-3}$. Concurrently, the concentration of particles $>20 \text{ nm}$ also increases significantly,
219 some of which can grow beyond 100 nm. The aerosol size distributions on NPF days in summer, fall,
220 and winter all exhibit an NPF process pattern similar to that shown in Fig. 1(Figure 3b-d), typically
221 occurring in 09:00–20:00. During summer NPF events, the maximum particle number concentration
222 reaches approximately $11,410 \text{ cm}^{-3}$, with particles growing up to around 50 nm. In fall and winter, the
223 peak particle number concentrations are lower than in summer (fall and winter, 10110 and 5276 cm^{-3}),
224 indicating weaker NPF intensity, and the maximum particle growth can extend up to 100 nm in these
225 seasons.



226 3.2 Evolution characteristics and key parameters of NPF events

227 Spring NPF events had the highest formation rate (FR=7.13 cm⁻³.s⁻¹) and the highest condensation sink
 228 (CS=4.1×10⁻² s⁻¹) among all seasons (Table 1). Before NPF events (-4 to 0 h), N_{nuc} increased from 5425
 229 to 7701 cm⁻³, peaking at 1 h (8840 cm⁻³), then gradually declining. This trend was consistent with changes
 230 in the FR (Fig. 4a). FR rose sharply to 6.31 cm⁻³.s⁻¹ at the onset of NPF (0 h) and peaked at 7.21 cm⁻³.s⁻¹
 231 at 1 h, demonstrating strong new particle formation capability. However, intense competition under a
 232 high CS background significantly suppressed subsequent growth. The growth rate (GR) exhibited large
 233 fluctuations, reverting to a negative value at 3 h after an initial peak. N_{air} increased by only 32 % from 0
 234 h to its peak at 2 h, much lower than in other seasons. Spring NPF events were characterized by strong
 235 formation but suppressed growth under high CS.

236 **Table 1. Seasonal variations in key parameters of NPF events: particle growth rate (GR), formation rate (FR),**
 237 **coagulation sink (CoagS), condensable vapor concentration (C) and its production rate (Q), condensation sink**
 238 **(CS), and hygroscopicity parameter (κ).**

Average	FR (m ⁻³ .s ⁻¹)	GR (nm·h ⁻¹)	CS (×10 ⁻² . s ⁻¹)	CoagS (×10 ⁻⁴ s ⁻¹)	C (×10 ⁷ cm ⁻³)	κ
Total	3.94	5.20	3.1	3.9	16.7	0.12
Spring	7.13	3.69	4.1	5.2	20.1	0.19
Summer	0.40	4.20	1.8	2.0	10.9	0.1
Fall	0.28	2.35	2.0	1.8	9.5	0.09
Winter	0.23	1.87	2.1	1.9	4.7	0.08

239
 240 **Fig. 4 Key NPF parameters: growth rate (GR), formation rate (FR), condensation sink (CS), and coagulation**
 241 **sink (CoagS) for seasons.**

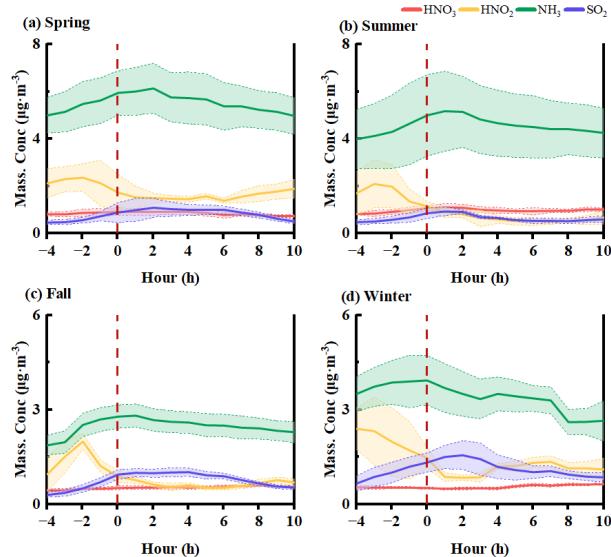
242 Despite the low average FR ($0.40 \text{ cm}^{-3} \cdot \text{s}^{-1}$, Table 1), summer exhibited the highest average GR ($4.20 \text{ nm} \cdot \text{h}^{-1}$), and the lowest average CS ($1.8 \times 10^{-2} \text{ s}^{-1}$). In summer NPF events (Fig. 4b), N_{nuc} peaked at 1 h (3459 cm^{-3}). FR relatively high from 0–2 h ($0.97\text{--}0.44 \text{ cm}^{-3} \cdot \text{s}^{-1}$). The most prominent feature of summer was the high growth efficiency (GR) under the lowest CS, with a maximum peak of $11.68 \text{ nm} \cdot \text{h}^{-1}$ at 2 h. After NPF onset in summer, N_{ait} peaked at 3 h (6461.6 cm^{-3}), with the highest increase of 202.91 %. This indicates that the growth process of new particles in summer NPF events was far stronger than particle formation.

249 Winter had the lowest average FR ($0.23 \text{ cm}^{-3} \cdot \text{s}^{-1}$) and GR ($1.87 \text{ nm} \cdot \text{h}^{-1}$, Table 1). Winter NPF events 250 were characterized by a low FR and delayed growth under a low condensation sink (CS), as shown in 251 Table 1. In Fig. 4d, the FR peak observed at 0 h ($0.43 \text{ cm}^{-3} \cdot \text{s}^{-1}$) was the lowest among all seasons, 252 indicating weak nucleation. In contrast, the growth rate (GR) displayed a distinct multi-peak pattern, with 253 an initial peak at 2 h ($3.20 \text{ nm} \cdot \text{h}^{-1}$) and subsequent peaks occurring between 5 and 9 h, suggesting that 254 different mechanisms may have driven particle growth at different stages. Correspondingly, N_{ait} reached 255 a maximum at 3 h (4794.2 cm^{-3}), which was the lowest seasonal peak (Fig. S7). Nevertheless, N_{ait} 256 remained at relatively high levels ($4500\text{--}4800 \text{ cm}^{-3}$) over an extended period from 2 to 6 h, reflecting 257 sustained particle growth throughout the event.

258 Fall presented transitional characteristics, with average FR ($0.28 \text{ cm}^{-3} \cdot \text{s}^{-1}$) and GR ($2.35 \text{ nm} \cdot \text{h}^{-1}$) higher 259 than winter but lower than spring and summer (Table 1). Fall NPF process parameters showed transitional 260 characteristics between summer and winter, generally similar to winter (Fig. 4c). Its FR peak ($0.68 \text{ cm}^{-3} \cdot \text{s}^{-1}$) and GR peak ($4.90 \text{ nm} \cdot \text{h}^{-1}$) were higher than winter but much lower than spring and summer. The 261 increase in N_{ait} after NPF onset was 165 %, significantly stronger than in winter (Fig. S7). The N_{ait} peak 262 (6240.9 cm^{-3}) occurred latest (4 h) and remained above 5600 cm^{-3} from 5–7 h, higher than winter.

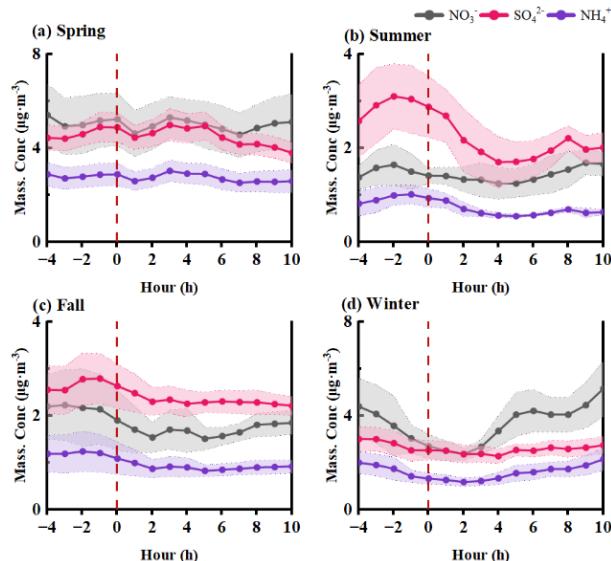
263 Aerosol hygroscopicity (κ) during NPF events also exhibited notable seasonal contrasts (Fig. S8). In 264 winter, κ decreased sharply after event onset (from 0.12 to 0.02), rebounded after 6 h (0.06), and 265 continued rising until 10 h (0.10), a pattern distinct from the other three seasons, where κ generally 266 increased following NPF events.

267 In spring, κ varied modestly (0.14–0.19), rising from 0.15 to 0.19 within the first hour and stabilizing 268 near 0.16 thereafter. Summer showed the most pronounced increase, from 0.12 before the event to 0.31



270 at 4 h post-onset, with a secondary peak (0.28) observed 8 h after the event ended. In fall, κ began
271 increasing from -2 h, peaked at 0 h (0.094–0.10), then gradually declined, with a slight rebound between
272 4–6 h (0.08–0.11).

273 Overall, κ displayed both increases (in spring and summer) and decreases (in fall and winter) during NPF
274 events, reflecting seasonal differences in aerosol chemical composition.


275 **3.3 Influence of chemical composition on NPF events**

276 Spring NPF days were characterized by the highest CS ($4.1 \times 10^{-2} \text{ s}^{-1}$) and were predominantly influenced
277 by secondary pollution. Before NPF events, gaseous SO_2 and NH_3 increased from 0.47 and $5.01 \mu\text{g} \cdot \text{m}^{-3}$
278 to 0.89 and $5.95 \mu\text{g} \cdot \text{m}^{-3}$, respectively (Fig. 5a). Two hours after NPF onset, their concentrations began to
279 decline continuously, indicating substantial consumption. Mass concentrations of secondary inorganic
280 salts (SO_4^{2-} and NO_3^-) fluctuated between $4.5\text{--}4.8 \mu\text{g} \cdot \text{m}^{-3}$ and $4\text{--}6 \mu\text{g} \cdot \text{m}^{-3}$, respectively. Although NO_3^-
281 showed minor fluctuations, it remained at relatively high levels (Fig. 6a). NPF events occurred under
282 stable high-pressure systems (average pressure 1015 hPa), accompanied by systematic warming (from
283 18.9 to 23.2°C) and drying (RH, 76 to 60 %) (Fig. S9a), favoring accelerated photochemical reactions
284 and gas-particle conversion of semi-volatile gases (Chen et al., 2023). Wind speeds were generally low
285 ($<1.9 \text{ m} \cdot \text{s}^{-1}$), and the atmospheric stratification was stable. After NPF onset, O_3 increased significantly
286 (from 81.1 to $98.8 \mu\text{g} \cdot \text{m}^{-3}$; Fig. S11a), indicating enhanced atmospheric oxidizability. Precursor gases
287 (SO_2 and NO_2) were oxidized via photochemistry to form NO_3^- and SO_4^{2-} , promoting the generation of
288 secondary inorganic salts and secondary aerosols, including secondary organic aerosol (Fig. S10a).
289 Abundant secondary inorganic salts generated in the early stages could act as condensation nuclei.
290 Despite the high CS background, spring had high-frequency and high-FR NPF events, primarily
291 attributed to higher precursor gas and strong photochemistry. However, high CS competed for
292 condensable vapors and scavenged newly formed particles, suppressing the growth stage of new particles.
293 Additionally, during the NPF stage, high concentrations of sulfate ($4.4\text{--}5.0 \mu\text{g} \cdot \text{m}^{-3}$), nitrate ($4.6\text{--}5.3$
294 $\mu\text{g} \cdot \text{m}^{-3}$), and ammonium ($2.6\text{--}3.0 \mu\text{g} \cdot \text{m}^{-3}$) were observed. The coexistence of these highly hygroscopic
295 ionic components resulted in the highest κ (0.19) (Jokinen et al., 2018).

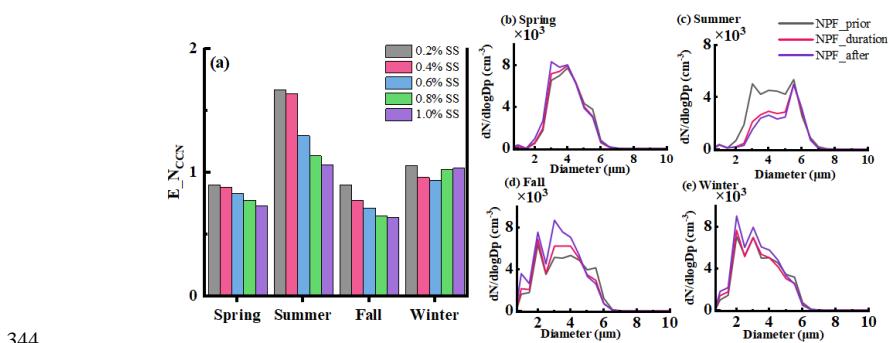
296

297 **Fig. 5** The evolution of relevant trace gases for different seasons.

298

299 **Fig. 6** The evolution of ion composition for seasons.

300 CS in summer, fall, and winter were relatively low (around $2.0 \times 10^{-2} \text{ s}^{-1}$), indicating fewer surfaces
301 available for condensation in the atmosphere.


302 Summer NPF days had the lowest CS ($1.8 \times 10^{-2} \text{ s}^{-1}$) and a clean atmospheric environment. NPF events
303 occurred under a high-temperature environment ($>32^\circ\text{C}$) (Fig. S9b), which inhibits nucleation (Yu et al.,
304 2017). At NPF onset, wind speed surged ($2.37 \text{ m} \cdot \text{s}^{-1}$) and shifted from southerly to westerly. This might
305 be related to sea breeze development, diluting the gaseous precursors (Fig. 5b) and pollutants (Fig. S1b),
306 especially SO_2 , which decreased overall from 0.51 to $0.94 \text{ } \mu\text{g} \cdot \text{m}^{-3}$. Therefore, despite favorable
307 conditions of low CS and ample sunlight, summer NPF frequency and formation rate were low, and
308 atmospheric oxidizability was weak (O_3 : $48.5\text{--}52.7 \text{ } \mu\text{g} \cdot \text{m}^{-3}$; Fig. S11b). After NPF onset, average wind
309 speeds remained relatively high ($>1.7 \text{ m} \cdot \text{s}^{-1}$). As ozone continued to rise (0–6 h), secondary ions (NO_3^- ,
310 SO_4^{2-}) and SOC increased (Fig. 6b and Fig. Sb). These efficiently condensed onto particle surfaces under
311 a low CS background, achieving extremely high growth efficiency (GR peak of $11.59 \text{ nm} \cdot \text{h}^{-1}$). However,
312 the κ in summer was intermediate between spring and winter.
313 Before Fall NPF events, SO_2 and NH_3 increased from 0.36 and $1.99 \text{ } \mu\text{g} \cdot \text{m}^{-3}$ to 2.83 and $2.83 \text{ } \mu\text{g} \cdot \text{m}^{-3}$,
314 respectively (Fig. 5c). The lower temperature (around 22°C) and high humidity (RH $>71\%$) environment
315 (Fig. S9c) favored the combination of sulfuric acid molecules, promoting nucleation (Lehtipalo et al.,
316 2018; Tröstl et al., 2016; Yue and Hamill, 1979). After NPF onset, although atmospheric oxidizability
317 increased continuously (O_3 from 36 to $94 \text{ } \mu\text{g} \cdot \text{m}^{-3}$), it was short-lived. After 4 h, as O_3 gradually decreased
318 and primary emissions increased, pollutant accumulation occurred, and BC and POC rebounded (Fig.
319 S10c). The contribution of primary emissions (e.g., BC, POC) to aerosols was significantly enhanced,
320 and overall hygroscopicity ($\kappa=0.09$) was low.
321 Winter NPF events were also preceded by an accumulation of gaseous precursors (Fig. 5d). However,
322 elevated emissions from sources such as heating led to high BC and POC during the initial NPF stage
323 (1.86 and $1.02 \text{ } \mu\text{g} \cdot \text{m}^{-3}$ at -4 h, Fig. S10d). These abundant primary particles strongly suppressed new
324 particle formation via intense coagulation scavenging, resulting in persistently low formation rates (FR
325 $\leq 0.47 \text{ cm}^{-3} \cdot \text{s}^{-1}$). Photochemical activity was limited under low winter temperatures (Fig. S9d). As
326 temperatures continued to drop later in the event (after 6 h), condensation-driven conversion of gaseous
327 precursors to particles increased (Jokinen et al., 2018). This was particularly evident in the rapid
328 formation of particulate ammonium nitrate from HNO_3 and NH_3 between 6–10 h (Fig. 5d), accompanied
329 by a marked rise in nitrate concentration (from 4.21 to $5.14 \text{ } \mu\text{g} \cdot \text{m}^{-3}$; Fig. 6d). Correspondingly, N_{air}

330 showed a recovery trend from 7–9 h. Overall, winter NPF was characterized by low FR and GR,
331 dominated by primary emissions. The high abundance of primary pollutants diluted overall aerosol
332 hygroscopicity, yielding the lowest seasonal κ (0.08) and consequently reducing the CCN activation
333 efficiency of newly formed particles.

334 3.4 Particle growth controls CCN formation from NPF events

335 In summer, although NPF frequency was the lowest, it had a significant enhancing effect on N_{CCN} .
336 E_{NCCN} at 0.4 % SS was as high as 1.64 (Fig. 7a). In the initial stage of NPF events (0–2 hours), N_{CCN}
337 showed a sharp decline. At 0.4 % SS, it decreased from about 2078 cm^{-3} to 1187 cm^{-3} (Fig. S12b).
338 However, after 2 h, N_{CCN} recovered noticeably and later returned to or even exceeded initial levels. The
339 CCN size distribution (Fig. 7c) showed that during the event, smaller CCN (1–3 μm) decreased, while
340 CCN of 5.5–6.5 μm increased. For instance, CCN at 6 μm increased from 2607.7 to 3147.8 cm^{-3} . Summer
341 NPF promoted CCN growth to larger sizes. However, the daily average N_{CCN} on summer NPF days was
342 lower than on non-NPF days, possibly due to the extremely low NPF frequency (4.35 %) and the sharp
343 decline in CCN at the beginning of events, affecting the daily average.

344
345 **Fig. 7 The contribution of NPF events to cloud condensation nuclei (CCN) across seasons:** (a) CCN
346 enhancement (E_{NCCN}), and (b-e) particle number size distributions at 2 hours before, during, and 5 hours
347 after the NPF event for seasons.

348 Spring NPF events' impact on N_{CCN} showed significant suppression. Throughout the event, N_{CCN} at
349 various supersaturation levels showed only weak and slow increases. N_{CCN} (0.4 % SS, the same as below)
350 increased from a pre-event average (-4 to -1 h) of about 2636 cm^{-3} to 3192 cm^{-3} at 4 h, then rapidly
351 declined (Fig. S12c). E_{NCCN} at 0.4 % SS was only 0.88. This phenomenon corresponds to the "high

352 formation, suppressed growth" characteristic of spring NPF. Despite the explosive generation of
353 nucleation-mode particles, severe competition under high CS severely hindered subsequent growth of
354 new particles, preventing them from effectively growing to CCN activation sizes, resulting in a weak or
355 even negative contribution to CCN.

356 In fall events, from 2 h onward, N_{CCN} began to increase, rising from 3471 cm^{-3} to a maximum of 4752
357 cm^{-3} , forming a high-value plateau lasting from 3 h to 8 h (Fig. S12d). After the NPF event, N_{CCN}
358 increased significantly across the $1\text{--}5 \mu\text{m}$ size range (Fig. 7d). Fall NPF events most effectively and
359 broadly increased the number of particles available for cloud droplet activation in the atmosphere.
360 Although $E_{N_{CCN}}$ was lower due to the modest initial stage, the post-event enhancement effect was
361 significant. This evolution process is consistent with the sustained particle growth process in fall NPF,
362 allowing new particles to grow steadily to CCN activation sizes.

363 In winter NPF events, N_{CCN} was low in the early stage (0–4 h), with insignificant growth. However, from
364 5 h onward, N_{CCN} growth became significant, increasing from 4483 cm^{-3} to 6173 cm^{-3} and remaining
365 stable at high levels (Fig. S12d). During the event, changes in the CCN size distribution were not obvious.
366 However, after the NPF event, CCN in the $2\text{--}5 \mu\text{m}$ size range showed the most significant growth (e.g.,
367 at $2 \mu\text{m}$, from 7073.0 to 9045.1 cm^{-3} ; Fig. 7e).

368 **4 Conclusions**

369 This year-long observational study in coastal Fuzhou revealed distinct seasonal patterns in new particle
370 formation (NPF) and its impact on cloud condensation nuclei (CCN). We identified 46 NPF events,
371 which predominantly occurred between 09:00 and 12:00. Key quantitative results include: the highest
372 seasonal formation rate (FR) in spring ($5.56 \text{ cm}^{-3} \text{ s}^{-1}$), the highest growth rate (GR) in summer (peak at
373 11.68 nm h^{-1}), and the strongest CCN enhancement in summer ($E_{N_{CCN}} = 1.64$ at $0.4\% \text{ SS}$). In fall and
374 winter, CCN increases (13–65 %) lag NPF events by 3–5 h.
375 A total of 46 NPF events occurred during the observation period, with a frequency of 12.7 %. NPF event
376 start times were mainly concentrated between 08:00 and 13:00 (accounting for 85 % of all events), with
377 an average duration of 4 h. The annual averages for formation rate (FR), growth rate (GR), condensation

378 sink (CS), coagulation sink (CoagS), and condensable vapor concentration (C) were $3.94 \pm 8.26 \text{ cm}^{-3} \cdot \text{s}^{-1}$
379 1 , $5.20 \pm 1.78 \text{ nm} \cdot \text{h}^{-1}$, $4.2 \times 10^{-2} \text{ s}^{-1}$, $5.6 \times 10^{-4} \text{ s}^{-1}$, and $16.7 \times 10^7 \text{ cm}^{-3}$, respectively.

380 The seasonal contrast is mechanistically driven by the interplay between precursor availability,
381 condensation sink (CS), and aerosol chemistry. Spring conditions favor high FR due to strong
382 photochemistry and abundant precursors, but high CS suppresses subsequent growth. In summer, a low
383 CS environment allows newly formed particles to grow efficiently, maximizing their contribution to
384 CCN. The chemical composition shifts from sulfate- and nitrate-dominated in spring and summer ($\kappa >$
385 0.1) to carbonaceous-aerosol-dominated in fall and winter ($\kappa \approx 0.09$), directly modulating particle
386 hygroscopicity and CCN activation potential.

387 This study is based on a single year of data at an urban coastal site. The conclusions, particularly
388 regarding inter-annual variability and the representativeness of the identified seasonal patterns, would
389 benefit from longer-term observations. Furthermore, while online composition measurements provided
390 valuable insights, more detailed speciated volatile organic compound (VOC) data would help constrain
391 the precise roles of organic precursors in nucleation and growth across seasons.

392 This work demonstrates that the climatic impact of NPF in coastal urban areas is not simply a function
393 of its occurrence frequency or formation strength. Instead, it is seasonally modulated by a competition
394 between formation and growth-sink processes, and by the resulting aerosol chemical composition. The
395 decoupling of high FR from effective CCN production (as in spring) implies that climate models using
396 NPF frequency as a proxy for aerosol indirect effects may overestimate the impact in high-CS coastal
397 regions. Conversely, the efficient growth and CCN enhancement in summer suggest that even infrequent
398 NPF events can substantially influence cloud properties in such environments. These insights are crucial
399 for developing more accurate parameterizations of aerosol-cloud-climate interactions in rapidly
400 developing coastal zones.

401 **Data availability**

402 Data will be made available on request.

403 **Author contributions**

404 Conceptualization was completed by ZW and HW. Formal analysis and software modification were
405 carried out by ZW and HW. The initial draft was written by ZW, incorporating tables provided by HW.
406 The first draft was revised by ZW, HW, and YB, with input from HW, YB, FZ, WL, JH, LS, and ZX;
407 subsequent versions of the manuscript were reviewed and edited by all authors. Data curation and
408 collection were conducted by all authors. Funding acquisition was secured by HW.

409 **Competing interests**

410 The authors declare that they have no conflict of interest.

411 **Disclaimer**

412 Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published
413 maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus
414 Publications makes every effort to include appropriate place names, the final responsibility lies with the
415 authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of
416 the publisher.

417 **Acknowledgements**

418 The authors are grateful for the assistance with sample collection. We would like to thank the China
419 National Environmental Monitoring Centre's real-time urban air quality release platform
420 (<http://106.37.208.233:20035/>)

421 **Financial support**

422 This study was supported by the National Key Research and Development Program of China (Grant No.,
423 2022YFC3701204), the National Natural Science Foundation of China (42505181 and U22A20578),
424 Natural Science Foundation of Fujian Province, China (2024J01168 and 2023R1014003), the Natural
425 Science Foundation of Jiangsu Province (BK20231300), and the Open Fund of Fujian Key Laboratory
426 of Severe Weather and Key Laboratory of Straits Severe Weather (2024KFKT05).

427 **References**

428 Cai, M., Tan, H., Chan, C. K., Qin, Y., Xu, H., Li, F., Schurman, M. I., Liu, L., and Zhao, J.: The size-
429 resolved cloud condensation nuclei (CCN) activity and its prediction based on aerosol hygroscopicity
430 and composition in the pearl delta river (PRD) region during wintertime 2014, *Atmos. Chem. Phys.*, 18,
431 16419–16437, <https://doi.org/10.5194/acp-18-16419-2018>, 2018.

432 Chang, Y., Deng, C., Cao, F., Cao, C., Zou, Z., Liu, S., Lee, X., Li, J., Zhang, G., and Zhang, Y.:
433 Assessment of carbonaceous aerosols in Shanghai, China—Part 1: long-term evolution, seasonal
434 variations, and meteorological effects, *Atmos. Chem. Phys.*, 17, 9945–9964, <https://doi.org/10.5194/acp-17-9945-2017>, 2017.

435 Chen, M., Titcombe, M., Jiang, J., Jen, C., Kuang, C., Fischer, M. L., Eisele, F. L., Siepmann, J. I.,
436 Hanson, D. R., Zhao, J., and McMurry, P. H.: Acid–base chemical reaction model for nucleation rates in
437 the polluted atmospheric boundary layer, *Proc. Natl. Acad. Sci.*, 109, 18713–18718,
438 <https://doi.org/10.1073/pnas.1210285109>, 2012.

439 Chen, Y., Wang, X., Dai, W., Wang, Q., Guo, X., Liu, Y., Qi, W., Shen, M., Zhang, Y., Li, L., Cao, Y.,
440 Wang, Y., and Li, J.: Particle Number Size Distribution of Wintertime Alpine Aerosols and Their
441 Activation as Cloud Condensation Nuclei in the Guanzhong Plain, Northwest China, *J. Geophys. Res.: Atmos.*, 128, e2022JD037877, <https://doi.org/10.1029/2022JD037877>, 2023.

442 Dusek, U., Frank, G. P., Curtius, J., Drewnick, F., Schneider, J., Kürten, A., Rose, D., Andreae, M. O.,
443 Borrmann, S., and Pöhlker, U.: Enhanced organic mass fraction and decreased hygroscopicity of cloud
444 condensation nuclei (CCN) during new particle formation events,
445 <https://doi.org/10.1029/2009GL040930>, n.d.

446 Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang, Y.,
447 Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H.
448 B., Mei, F., Pöhlker, C., Pöhlker, M. L., Pöhlker, U., and de Souza, R. A. F.: Substantial convection and
449 precipitation enhancements by ultrafine aerosol particles, *Science*, 359, 411–418,
450 <https://doi.org/10.1126/science.aan8461>, 2018.

453 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
454 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci.,
455 111, 17373–17378, <https://doi.org/10.1073/pnas.1419604111>, 2014.

456 Heintzenberg, J., Wehner, B., and Birmili, W.: ‘How to find bananas in the atmospheric aerosol’: new
457 approach for analyzing atmospheric nucleation and growth events, Tellus B, 59, 273–282,
458 <https://doi.org/10.1111/j.1600-0889.2007.00249.x>, 2007.

459 Hirsikko, A., Nieminen, T., Gagné, S., Lehtipalo, K., Manninen, H. E., Ehn, M., Hōrrak, U., Kerminen,
460 V.-M., Laakso, L., McMurry, P. H., Mirme, A., Mirme, S., Petäjä, T., Tamm, H., Vakkari, V., Vana,
461 M., and Kulmala, M.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys.,
462 11, 767–798, <https://doi.org/10.5194/acp-11-767-2011>, 2011.

463 Hu, J., Shi, C., Ni, E., Liu, J., Zhai, S., Zhao, T., Jiang, B., Jiang, D., Wang, H., and Huang, Q.:
464 Recirculated transport mechanism aggravates ozone pollution over the mountainous coastal region:
465 Increased contribution from vertical mixing, Atmos. Environ., 332, 120617,
466 <https://doi.org/10.1016/j.atmosenv.2024.120617>, 2024.

467 Jayaratne, R., Pushpawela, B., He, C., Li, H., Gao, J., Chai, F., and Morawska, L.: Observations of
468 particles at their formation sizes in beijing, china, Atmos. Chem. Phys., 17, 8825–8835,
469 <https://doi.org/10.5194/acp-17-8825-2017>, 2017.

470 Jokinen, T., Sipilä, M., Kontkanen, J., Vakkari, V., Tisler, P., Duplissy, E.-M., Junninen, H.,
471 Kangasluoma, J., Manninen, H. E., Petäjä, T., Kulmala, M., Worsnop, D. R., Kirkby, J., Virkkula, A.,
472 and Kerminen, V.-M.: Ion-induced sulfuric acid–ammonia nucleation drives particle formation in coastal
473 antarctica, Sci. Adv., <https://doi.org/10.1126/sciadv.aat9744>, 2018.

474 Kawana, K., Miyazaki, Y., Omori, Y., Tanimoto, H., Kagami, S., Suzuki, K., Yamashita, Y., Nishioka,
475 J., Deng, Y., Yai, H., and Mochida, M.: Number-Size Distribution and CCN Activity of Atmospheric
476 Aerosols in the Western North Pacific During Spring Pre-Bloom Period: Influences of Terrestrial and
477 Marine Sources, J. Geophys. Res.: Atmos., 127, e2022JD036690, <https://doi.org/10.1029/2022JD036690>,
478 2022.

479 Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the spectral dependence of light
480 absorption by aerosols is affected by organic carbon, *J. Geophys. Res.: Atmos.*, 109, 2004JD004999,
481 <https://doi.org/10.1029/2004JD004999>, 2004.

482 Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M.,
483 Yan, C., Almeida, J., Tröstl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A.,
484 Bernhammer, A.-K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart,
485 S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H.,
486 Kangasluoma, J., Kim, J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot,
487 S., Molteni, U., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K., Rap, A., Richards,
488 N. A. D., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld,
489 J. H., Sipilä, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner,
490 A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A.,
491 Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and
492 Curtius, J.: Ion-induced nucleation of pure biogenic particles, *Nature*, 533, 521–526,
493 <https://doi.org/10.1038/nature17953>, 2016.

494 Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., and
495 McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations,
496 *J. Aerosol Sci.*, 35, 143–176, <https://doi.org/10.1016/j.jaerosci.2003.10.003>, 2004.

497 Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M., Aalto,
498 P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.:
499 Measurement of the nucleation of atmospheric aerosol particles, *Nat. Protoc.*, 7, 1651–1667,
500 <https://doi.org/10.1038/nprot.2012.091>, 2012.

501 Kulmala, M., Dada, L., Daellenbach, K. R., Yan, C., Stolzenburg, D., Kontkanen, J., Ezhova, E., Hakala,
502 S., Tuovinen, S., Kokkonen, T. V., Kurppa, M., Cai, R., Zhou, Y., Yin, R., Baalbaki, R., Chan, T., Chu,
503 B., Deng, C., Fu, Y., Ge, M., He, H., Heikkinen, L., Junninen, H., Liu, Y., Lu, Y., Nie, W., Rusanen, A.,
504 Vakkari, V., Wang, Y., Yang, G., Yao, L., Zheng, J., Kujansuu, J., Kangasluoma, J., Petäjä, T., Paasonen,
505 P., Järvi, L., Worsnop, D., Ding, A., Liu, Y., Wang, L., Jiang, J., Bianchi, F., and Kerminen, V.-M.: Is

506 reducing new particle formation a plausible solution to mitigate particulate air pollution in beijing and
507 other chinese megacities?, *Faraday Discuss.*, 226, 334–347, <https://doi.org/10.1039/D0FD00078G>, 2021.

508 Kuwata, M., Kondo, Y., Miyazaki, Y., Komazaki, Y., Kim, J. H., Yum, S. S., Tanimoto, H., and
509 Matsueda, H.: Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005, *Atmos. Chem.
510 Phys.*, 8, 2933–2948, <https://doi.org/10.5194/acp-8-2933-2008>, 2008.

511 Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., Stolzenburg, D., Ahonen, L. R.,
512 Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A., Bernhammer, A.-K.,
513 Breitenlechner, M., Brilke, S., Buchholz, A., Mazon, S. B., Chen, D., Chen, X., Dias, A., Dommen, J.,
514 Draper, D. C., Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L., Frege, C., Fuchs, C., Garmash, O.,
515 Gordon, H., Hakala, J., He, X., Heikkinen, L., Heinritzi, M., Helm, J. C., Hofbauer, V., Hoyle, C. R.,
516 Jokinen, T., Kangasluoma, J., Kerminen, V.-M., Kim, C., Kirkby, J., Kontkanen, J., Kürten, A., Lawler,
517 M. J., Mai, H., Mathot, S., MauldinIII, R. L., Molteni, U., Nichman, L., Nie, W., Nieminen, T., Ojdanic,
518 A., Onnela, A., Passananti, M., Petäjä, T., Piel, F., Pospisilova, V., Quéléver, L. L. J., Rissanen, M. P.,
519 Rose, C., Sarnela, N., Schallhart, S., Schuchmann, S., Sengupta, K., Simon, M., Sipilä, M., Tauber, C.,
520 Tomé, A., Tröstl, J., Väisänen, O., Vogel, A. L., Volkamer, R., Wagner, A. C., Wang, M., Weitz, L.,
521 Wimmer, D., Ye, P., Ylisirniö, A., Zha, Q., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan, R. C.,
522 Hansel, A., Riipinen, I., Virtanen, A., Winkler, P. M., Baltensperger, U., Kulmala, M., and Worsnop, D.
523 R.: Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors, *Sci. Adv.*,
524 <https://doi.org/10.1126/sciadv.aau5363>, 2018.

525 Leng, C., Zhang, Q., Tao, J., Zhang, H., Zhang, D., Xu, C., Li, X., Kong, L., Cheng, T., Zhang, R., Yang,
526 X., Chen, J., Qiao, L., Lou, S., Wang, H., and Chen, C.: Impacts of new particle formation on aerosol
527 cloud condensation nuclei (CCN) activity in shanghai: case study, *Atmos. Chem. Phys.*, 14, 11353–
528 11365, <https://doi.org/10.5194/acp-14-11353-2014>, 2014.

529 Lv, G., Sui, X., Chen, J., Jayaratne, R., and Mellouki, A.: Investigation of new particle formation at the
530 summit of Mt. Tai, China, *Atmos. Chem. Phys.*, 18, 2243–2258, <https://doi.org/10.5194/acp-18-2243>
531 2018, 2018.

532 Maso, M. D., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P., and Lehtinen, K.: Formation
533 and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II,
534 hyttiälä, Finland, *Boreal Environ. Res.*, 2005.

535 McMurry, P. H. and Friedlander, S. K.: New particle formation in the presence of an aerosol, *Atmos.*
536 *Environ.* (1967), 13, 1635–1651, [https://doi.org/10.1016/0004-6981\(79\)90322-6](https://doi.org/10.1016/0004-6981(79)90322-6), 1979.

537 Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and
538 cloud condensation nucleus activity, *Atmos. Chem. Phys.*, 7, 1961–1971, <https://doi.org/10.5194/acp-7-1961-2007>, 2007.

540 Ren, J., Chen, L., Fan, T., Liu, J., Jiang, S., and Zhang, F.: The NPF Effect on CCN Number
541 Concentrations: A Review and Re-Evaluation of Observations From 35 Sites Worldwide, *Geophys. Res.*
542 Lett.

543 Rose, C., Sellegrí, K., Moreno, I., Velarde, F., Ramonet, M., Weinhold, K., Krejci, R., Andrade, M.,
544 Wiedensohler, A., Ginot, P., and Laj, P.: CCN production by new particle formation in the free
545 troposphere, *Atmos. Chem. Phys.*, 17, 1529–1541, <https://doi.org/10.5194/acp-17-1529-2017>, 2017.

546 Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
547 Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter
548 (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory
549 and experiment, *Atmos. Chem. Phys.*, 8, 1153–1179, <https://doi.org/10.5194/acp-8-1153-2008>, 2008.

550 Shen, X., Sun, J., Kivekäs, N., Kristensson, A., Zhang, X., Zhang, Y., Zhang, L., Fan, R., Qi, X., Ma, Q.,
551 and Zhou, H.: Spatial distribution and occurrence probability of regional new particle formation events
552 in eastern China, *Atmos. Chem. Phys.*, 18, 587 – 599, <https://doi.org/10.5194/acp-18-587-2018>, 2018.

553 Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and
554 Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in beijing, china:
555 seasonal variations, meteorological effects, and source analysis, *Atmos. Chem. Phys.*, 15, 10149–10165,
556 <https://doi.org/10.5194/acp-15-10149-2015>, 2015.

557 Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi,
558 F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A.,
559 Almeida, J., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C.,

560 Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H.,
561 Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kürten, A., Laaksonen, A., Lawler, M., Leiminger,
562 M., Mathot, S., Möhler, O., Nieminen, T., Onnela, A., Petäjä, T., Piel, F. M., Miettinen, P., Rissanen, M.
563 P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipilä, M., Smith, J. N., Steiner, G., Tomè,
564 A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S.,
565 Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and
566 Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the
567 atmosphere, *Nature*, 533, 527–531, <https://doi.org/10.1038/nature18271>, 2016.

568 Wang, H., Zhu, B., Shen, L., An, J., Yin, Y., and Kang, H.: Number size distribution of aerosols at Mt.
569 Huang and nanjing in the Yangtze River delta, china: effects of air masses and characteristics of new
570 particle formation, *Atmos. Res.*, 150, 42–56, <https://doi.org/10.1016/j.atmosres.2014.07.020>, 2014.

571 Wang, Z. B., Hu, M., Yue, D. L., Zheng, J., Zhang, R. Y., Wiedensohler, A., Wu, Z. J., Nieminen, T.,
572 and Boy, M.: Evaluation on the role of sulfuric acid in the mechanisms of new particle formation for
573 beijing case, *Atmos. Chem. Phys.*, 11, 12663–12671, <https://doi.org/10.5194/acp-11-12663-2011>, 2011.

574 Wildt, J., Mentel, T. F., Kiendler-Scharr, A., Hoffmann, T., Andres, S., Ehn, M., Kleist, E., Müsgen, P.,
575 Rohrer, F., Rudich, Y., Springer, M., Tillmann, R., and Wahner, A.: Suppression of new particle
576 formation from monoterpene oxidation by NO_x, *Atmos. Chem. Phys.*, 14, 2789–2804,
577 <https://doi.org/10.5194/acp-14-2789-2014>, 2014.

578 Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd,
579 K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A.,
580 Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C. A.: A large source of cloud
581 condensation nuclei from new particle formation in the tropics, *Nature*, 574, 399–403,
582 <https://doi.org/10.1038/s41586-019-1638-9>, 2019.

583 Wu, C. and Yu, J. Z.: Determination of primary combustion source organic carbon-to-elemental carbon
584 (OC / EC) ratio using ambient OC and EC measurements: secondary OC-EC correlation minimization
585 method, *Atmos. Chem. Phys.*, 16, 5453–5465, <https://doi.org/10.5194/acp-16-5453-2016>, 2016.

586 Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y.,
587 Worsnop, D. R., and Wang, L.: Strong atmospheric new particle formation in winter in urban shanghai,
588 china, *Atmos. Chem. Phys.*, 15, 1769–1781, <https://doi.org/10.5194/acp-15-1769-2015>, 2015.

589 Xu, W., Ovadnevaite, J., Fossum, K. N., Lin, C., Huang, R.-J., O'Dowd, C., and Ceburnis, D.: Aerosol
590 hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and
591 continental air masses, *Atmos. Chem. Phys.*, 20, 3777–3791, <https://doi.org/10.5194/acp-20-3777-2020>,
592 2020.

593 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., Ehn,
594 M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu,
595 Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V.-M., Petäjä, T., Worsnop, D.
596 R., Kulmala, M., and Wang, L.: Atmospheric new particle formation from sulfuric acid and amines in a
597 chinese megacity, *Science*, <https://doi.org/10.1126/science.aoa4839>, 2018.

598 Yli-Juuti, T., Nieminen, T., Hirsikko, A., Aalto, P. P., Asmi, E., Hörrak, U., Manninen, H. E., Patokoski,
599 J., Dal Maso, M., Petäjä, T., Rinne, J., Kulmala, M., and Riipinen, I.: Growth rates of nucleation mode
600 particles in hytytälä during 2003–2009: variation with particle size, season, data analysis method
601 and ambient conditions, *Atmos. Chem. Phys.*, 11, 12865–12886, <https://doi.org/10.5194/acp-11-12865-2011>, 2011.

603 Yue, D. L., Hu, M., Zhang, R. Y., Wu, Z. J., Su, H., Wang, Z. B., Peng, J. F., He, L. Y., Huang, X. F.,
604 Gong, Y. G., and Wiedensohler, A.: Potential contribution of new particle formation to cloud
605 condensation nuclei in Beijing, *Atmos. Environ.*, 45, 6070–6077,
606 <https://doi.org/10.1016/j.atmosenv.2011.07.037>, 2011.

607 Zaveri, R. A., Wang, J., Fan, J., Zhang, Y., Shilling, J. E., Zelenyuk, A., Mei, F., Newsom, R., Pekour,
608 M., Tomlinson, J., Comstock, J. M., Shrivastava, M., Fortner, E., Machado, L. A. T., Artaxo, P., and
609 Martin, S. T.: Rapid growth of anthropogenic organic nanoparticles greatly alters cloud life cycle in the
610 Amazon rainforest, *Science Advances*, 8, eabj0329, <https://doi.org/10.1126/sciadv.abj0329>, 2022.

611