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Abstract. Understanding how earthquake disaster impacts reorganize across space and time is essential for interpreting seismic

hazards within coupled human-earth systems. Using global disaster records from EM-DAT spanning 1980–2024, this study ex-

amines multi-scale spatiotemporal patterns of earthquake disaster impacts and their socio-environmental associations at global

and national scales. Temporal analyses show a pronounced decoupling between seismic occurrence and disaster consequences:

while earthquake frequency, exposed population, and cumulative economic losses increased overall, mortality rates declined5

markedly after the early 2000s. Spatial analyses reveal strong heterogeneity across continents, countries, and major tectonic

plates. Asia accounts for a substantial share of global earthquake occurrences, affected populations, fatalities, and economic

losses, yet national-level impacts vary considerably even under comparable tectonic settings. Standard deviation ellipse and

centroid analyses further indicate an eastward to southeastward migration of the global earthquake disaster centroid over time,

accompanied by relatively stable orientation and a modest contraction in spatial dispersion. To explore factors associated with10

national differences in fatalities, a Geographical Detector model is applied using cumulative fatalities as the dependent variable

and a set of natural, climatic, socioeconomic, governance, infrastructure, and health-related variables as explanatory factors.

Results show that population density and development- and governance-related indicators exhibit relatively high explanatory

power, while interactions among factors generally strengthen spatial associations through bilinear or nonlinear enhancement.

Overall, the findings suggest that global disparities in earthquake disaster impacts reflect the spatial co-configuration of haz-15

ard exposure, development conditions, and institutional capacity, contributing to a system-level understanding of how seismic

disaster impacts evolve within coupled human-Earth systems.

1 Introduction

Earthquake disasters remain among the most destructive natural hazards worldwide, causing profound human, economic, and

infrastructural losses each year (United Nations Office for Disaster Risk Reduction (UNDRR), 2023; Daniell et al., 2017).20

Despite notable advances in seismology, engineering design, and emergency response systems, global earthquake losses have

not declined uniformly. Instead, rapid urban expansion, population concentration in seismic belts, and intensified development

in tectonically active landscapes continue to elevate exposure and reinforce disaster vulnerability (Cutter, 2021; Aksha and
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Khanal, 2019; Düzgün et al., 2023). This persistent rise in disaster impacts—despite improved monitoring and hazard science—

illustrates a central paradox in contemporary earthquake risk: disasters increasingly emerge from the interaction between25

geophysical processes and evolving social–environmental conditions, with disaster risk becoming most visible through its

realized impacts on populations and economies.

A human–environment systems perspective, widely adopted in disaster risk research, is essential for understanding these

patterns because it situates earthquakes within the broader spatial processes that shape risk production (Gall et al., 2011; Lee

et al., 2022). Geophysically, seismic hazards are structured by plate interactions, strain accumulation, and lithospheric defor-30

mation, forming persistent seismic belts such as the Pacific Ring of Fire and the Alpine–Himalayan arc (Bird, 2003a; Kagan

and Jackson, 2016). Yet similar earthquakes often produce vastly different outcomes depending on demographic exposure,

infrastructure quality, governance effectiveness, and environmental fragility (Anbarci et al., 2005; Keefer et al., 2011; Wyss

et al., 2023). These disparities underscore a growing recognition that earthquake disasters arise not solely from tectonic forces,

but from the coupled operation of natural hazards and socially mediated vulnerability across space (Cohen and Werker, 2008;35

Reid, 2013; Ismail-Zadeh, 2024).

Decades of empirical research highlight the importance of governance, inequality, institutional capacity, and land-use change

in shaping disaster risk. Weak governance and corruption undermine building-code enforcement and response capacity, sig-

nificantly amplifying earthquake mortality (Escaleras et al., 2007; Anbarci et al., 2005). Health system capacity and social

capital influence post-disaster survival, particularly in high-density or resource-constrained regions (Flanagan et al., 2011).40

Environmental degradation—through deforestation, unregulated construction, and slope instability—magnifies secondary haz-

ards such as landslides and debris flows (Cannon et al., 2003; De Ruiter et al., 2021). Together, these findings reinforce that

earthquake disaster impacts reflect interacting natural, demographic, environmental, and governance processes within coupled

human–environment systems (Lapietra et al., 2024).

Despite substantial progress in regional seismic hazard studies, global-scale analyses of earthquake disasters impacts, as45

distinct from seismicity alone, remain limited. Most global assessments rely on instrumental catalogs to evaluate earthquake

occurrence, magnitude–frequency patterns, or aftershock clustering (Zaliapin and Ben-Zion, 2013; Kagan and Jackson, 2016).

While crucial for characterizing physical processes, these studies do not explain why comparable earthquakes generate dis-

proportionate losses across countries (Noy, 2016; Li et al., 2021; Guo et al., 2020). Recent global models of seismic exposure

and vulnerability (Xofi et al., 2022) represent important advances but underrepresent governance, environmental change, and50

socio-economic inequality-factors identified by the Sendai Framework as root causes of escalating disaster risk (United Nations

Office for Disaster Risk Reduction (UNDRR), 2023).

Moreover, the interaction effects among multiple drivers remain poorly understood at the global scale. Traditional regression

approaches frequently assume linearity and overlook spatial stratification, non-linear amplification, and synergistic interactions,

such as those between population density and governance quality or between basic public infrastructure, precipitation, and to-55

pography (Wang et al., 2010; Hu et al., 2011; Ansari et al., 2025). Yet multi-factor interactions increasingly determine where

disaster hotspots emerge within rapidly changing socio-ecological systems (Burton, 2015; Aksha and Khanal, 2019). Address-
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ing these analytical limitations requires tools capable of detecting spatial heterogeneity and quantifying both independent and

interactive effects within complex, coupled systems.

To address these gaps, this study integrates EM-DAT global disaster records (1980–2024), GIS-based spatial analysis, and60

the Geographical Detector model to examine the spatiotemporal dynamics and associated drivers of earthquake disaster impacts

at the global scale. Specifically, we address four interrelated scientific questions:

(1) How have global earthquake disasters evolved over time? We analyze long-term temporal trends in earthquake frequency,

mortality, population affected, and economic losses.

(2) How do seismic disaster patterns vary spatially across continents, countries, and tectonic plates?65

(3) How have global and plate-level seismic disaster hotspots reorganized over time, as reflected in centroid migration and

directional patterns?

(4) Which natural, demographic, environmental, and governance factors—independently and interactively—shape global

earthquake fatalities?

By situating seismic disasters within a multi-scale disaster risk perspective, this study provides a globally comparable as-70

sessment of earthquake disaster patterns over four decades, clarifies the spatial processes underlying disaster reorganization,

and identifies priority regions where governance, healthcare, and land-use interventions can most effectively reduce seismic

risk.

2 Data sources and processing

2.1 Data sources75

This study used earthquake disaster records from the Emergency Events Database (EM-DAT), covering reported events with

magnitudes ranging from 3.0 to 9.5 during the period 1980-2024 (CRED, 2024). EM-DAT is widely adopted in global disaster

risk research because it systematically documents disaster impacts—including fatalities, affected populations, and economic

losses—rather than focusing solely on physical seismicity, and has been extensively used in the international community

(Rosvold and Buhaug, 2021; Peduzzi and Herold, 2005). The global national administrative boundaries data were from the80

Resource and Environmental Sciences Data Platform (Resource and Environmental Science Data Platform, 2024), and the

plate boundary data were from the global plate boundary dataset (Bird, 2003b). To enhance data consistency, all EM-DAT

earthquake disaster entries from 1980 to 2024 were extracted using the disaster subtype “Earthquake” and cross-checked

to remove duplicate entries and records with incomplete impact information.. To improve temporal comparability, reported

economic losses were converted to constant 2020 USD using World Bank deflators, thereby reducing the influence of inflation85

and interannual reporting inconsistencies.
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2.2 Data processing

The EM-DAT database provides information including occurrence time, epicenter coordinates (latitude and longitude), affected

countries (with ISO codes), affected population, fatalities, and economic losses. Based on these raw records, we constructed a

harmonized national-level dataset through spatial matching and attribute aggregation. For each country, the following indica-90

tors were calculated: cumulative earthquake frequency, cumulative fatalities, cumulative affected population, and cumulative

economic losses. To better capture disaster severity and normalized impacts, four per-event indicators were further derived:

(1) Average number of affected people per event, (2) Average fatalities per event, (3) Average economic loss per event, and

(4) Mortality rate (defined as fatalities relative to affected population). Together, these indicators form eight complementary

impact-related metrics describing earthquake disaster outcomes at the national scale, capturing both aggregate burden and per-95

event intensity. Spatial linkage was performed using country ISO codes to ensure consistency across administrative, tectonic,

and socio-environmental datasets.

3 Methods

3.1 Temporal variability analysis method

To characterize the temporal evolution of major global earthquake disasters from 1980 to 2024, with an emphasis on disaster100

impacts rather than seismic activity alone„ linear regression and the Mann-Kendall (MK) trend test were employed. These

methods are widely applied in disaster risk and climate-related research to identify long-term trends in impact-related indicators

under non-normal distributions and reporting uncertainty (Wang et al., 2021). The MK test, a non-parametric approach robust to

outliers and missing values, was used to evaluate monotonic trends in eight earthquake disaster indicators, including frequency,

fatalities, affected population, and economic losses. The MK statistic S was computed following standard procedures, as105

follows:

S =
n−1∑

i=1

n∑

j=i+1

sign(xj −xi) (1)

Where xi and xj represent two observations in the time series. The sign function returns 1, 0, or -1 depending on whether

the difference is positive, zero, or negative.

The standardized Z-value was then derived to assess trend significance:110

Z =





S−1√
n(n−1)(2n+5)

18

if S > 0

0 if S = 0
S+1√

n(n−1)(2n+5)
18

if S < 0

(2)
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A positive Z-value indicates an upward trend, while a negative value indicates a downward trend. Significance thresholds

were set at |Z| = 1.28 (90%), 1.64 (95%), and 2.33 (99%) (Casella and Berger, 2002). By combining linear regression slopes

with MK significance testing, this approach captures both the magnitude and robustness of long-term changes in earthquake

disaster impacts.115

3.2 Spatial variability analysis method

3.2.1 Standard deviation ellipse (SDE)

Standard Deviation Ellipse (SDE) is widely used to quantify the directional tendency and dispersion of geographic phenomena

(Wu et al., 2021; Xiong et al., 2019). In the context of disaster risk research, SDE provides an effective means to identify

large-scale spatial reorganization and directional shifts of hazard impacts over time. In this study, the SDE method was applied120

to analyze the directional pattern and spatial concentration of global earthquake disaster events. The SDE is defined by three

parameters: (1) rotation angle (θ), (2) standard deviation along the major axis (δx), and (3) standard deviation along the minor

axis (δy). The relative coordinates of each point with respect to the regional centroid were computed as follows:

x̃ = (xi− x̄), ỹ = (yi− ȳ) (3)

Where (x̄, ȳ) represents the spatial mean center of all earthquake events. All events were assigned equal weights to ensure125

consistency with an impact-oriented spatial representation.

The rotation angle is defined as the clockwise angle between the positive north direction and the major axis of the ellipse,

capturing the dominant spatial orientation of earthquake distribution. The tangent of the rotation angle θ was computed as:

tanθ =

∑n
i=1 W 2

i x̃2
i −

∑n
i=1 W 2

i ỹ2
i +

√
(
∑n

i=1 W 2
i x̃2

i −
∑n

i=1 W 2
i ỹ2

i )2 + 4(
∑n

i=1 W 2
i x̃2

i ỹ
2
i )2

2
∑n

i=1 W 2
i x̃iỹi

(4)

δx and δy denote the semi-major axis and semi-minor axis of the SDE:130

δx =

√∑n
i=1 (Wix̄i cosθ−Wiȳi sinθ)2∑n

i=1 W 2
i

, δy =

√∑n
i=1 (Wix̄i sinθ−Wiȳi cosθ)2∑n

i=1 W 2
i

(5)

where δx major and δy minor denote the semi-major and semi-minor axes of the SDE. A larger contrast between the two

axes indicates stronger directional structure, while changes in the minor axis reflect variations in spatial dispersion of disaster

impacts.

3.2.2 Geometric centroid shift analysis135

Geometric centroid shift analysis serves as a robust method for investigating the spatiotemporal evolution of geographic phe-

nomena. In disaster studies, centroid migration offers an intuitive metric for tracking the relocation of impact concentration
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zones over time. In this study, we leverage the gravity model to quantify the dynamics of the Geometric centroid of global

seismic disasters. The three elements to be calculated are the X and Y coordinates of the Geometric centroid of the global

seismic hazard and the distance moved by the Geometric Centroid, and the longitude and latitude of the Geometric Centroid140

of the seismic hazard, respectively. The calculation formulas are as follows:

X̄ =
∑n

i=1 Wi×Xi∑n
i=1 Wi

, Ȳ =
∑n

i=1 Wi×Yi∑n
i=1 Wi

(6)

Where n is the number of disasters; i is the disaster number; Xi and Yi are the longitude and latitude of the i seismic disaster,

respectively; Wi is the weight, where all weights were set to 1 to reflect equal contribution of each event.

The Geometric Centroid shift distance D is calculated by the formula:145

D = C

√(
X̄2− X̄1

)2 +
(
Ȳ2− Ȳ1

)2
(7)

Where C is a constant used to convert geographic coordinates to plane distances, ensuring comparability across global scales.

Combined with SDE results, centroid shift analysis enables joint interpretation of spatial relocation and dispersion dynamics

of earthquake disaster impacts.

3.3 Geographical detector150

3.3.1 Single-factor detector

The Geographical Detector model (Geodetector) is a statistical method grounded in spatial stratification heterogeneity theory,

designed to quantify the influence intensity of different factors on geographical phenomena and to reveal the underlying mech-

anisms driving spatial heterogeneity (Wang et al., 2010). Because it does not assume linearity or normality, the method is well

suited for analyzing disaster impacts shaped by coupled natural and social processes. In this study, the factor detector was155

applied to assess the independent spatial explanatory power of multiple natural, socioeconomic, governance, infrastructure,

and health-related factors on cumulative earthquake fatalities at the national scale. Explanatory strength was quantified using

the q-statistic, which ranges from 0 to 1, with higher values indicating stronger spatial explanatory ability (Wang et al., 2016).

The formula is as follows:

q = 1−
∑L

h=1 Nhσ2
h

Nσ2
(8)160

Where q denotes the explanatory power quantifying the extent to which the independent variable X accounts for the spatial

heterogeneity of the dependent variable Y , with a value range of [0,1]. L represents the number of strata, defined by the

categorization of the independent variable X based on its attribute values. Nh denotes the number of samples within the h-th

stratum, and σ2
h represents the variance of the h-th stratum, reflecting the dispersion degree of the dependent variable Y within

the h-th category.165
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3.3.2 Interaction detector

To investigate the interaction effects between driving factors, the interaction detector was applied to calculate the joint explana-

tory power of two factors and determine their interaction type. The formula is as follows:

q(X1 ∩X2) = 1−
∑L12

h=1 Nh12σ
2
h12

Nσ2
(9)

Where q(X1∩X2) denotes the interaction explanatory power, measuring the joint influence of factors X1 and X2 on Y . L12170

represents the number of joint strata formed by the overlay of factors X1 and X2. h12 is the joint stratum index, indicating the

h12-th combined category. Nh12 denotes the sample size in the joint stratum, i.e., the number of observations in the h12-th com-

bination. σ2
h12 represents the variance of Y that joint stratum. Based on the comparison between q(X1∩X2) and the individual

q-values of X1 and X2, factor interactions can be identified as independent, bilinear enhancement (q(X1∩X2) > max(q1, q2)),

or nonlinear enhancement (q(X1 ∩X2) > q1 + q2). By comparing interaction q-values with individual q-values, interactions175

were classified as independent, bilinear enhancement, or nonlinear enhancement. This analysis characterizes statistical associ-

ations arising from the spatial co-occurrence of exposure, vulnerability, and institutional conditions, without implying causal

relationships.

4 Spatiotemporal characteristics analysis of global earthquake disasters

4.1 Temporal trends of global earthquake disasters180

4.1.1 Inter-annual trend analysis of global earthquake disasters

Inter-annual variability in global earthquake disaster impacts from 1980 to 2024 reveals distinct and contrasting trends across

different indicators (Figure 1). The number of earthquakes shows a clear upward trend (slope = 0.15), reflecting a gradual

increase in event frequency. Cumulative affected population exhibits only a slight upward trend with substantial year-to-year

fluctuations, while the average affected population per event shows only a marginal increase over time. The mortality rate185

displays a mild downward trend, corresponding to a decline in fatalities relative to exposed populations. Cumulative economic

losses also show a slight but statistically insignificant upward tendency, whereas average economic loss per event demonstrates

a weak declining trend. In contrast, average deaths per event reveal a strong upward trend (slope = 12.73), associated with

a limited number of high-impact catastrophic events, while cumulative fatalities fluctuate considerably without a statistically

significant long-term trend. Overall, the inter-annual analysis reveals a temporal decoupling between earthquake occurrence190

and disaster consequences, characterized by increasing event frequency, declining mortality rates, and contrasting behaviors

between cumulative and per-event impact indicators.
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Figure 1. Temporal trends of major global earthquake disaster indicators in 1980-2024. a) Number of Earthquakes; b) Cumulative Number

of Affected People ; c) Mortality Rate ; d) Average Number of Affected People per Event; e) Cumulative Economic Losses; f) Cumulative

Number of Fatalities; g) Average Economic Loss per Event; h) Average Number of Fatalities per Event.
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4.1.2 Multi-period trend analysis based on three 15-year time windows

To examine longer-term shifts in earthquake disaster impacts, a multi-period trend analysis was conducted using three consec-

utive 15-year time windows, allowing comparison of disaster severity across different development stages. Eight earthquake195

disaster indicators were examined across three consecutive 15-year periods (Figure 2). Most indicators—including mortality

rate, cumulative deaths, average deaths per event, cumulative affected population, and average affected population per event—

reached their highest levels during the second period (1995–2010). In contrast, economic indicators showed a slightly different

pattern: although cumulative and per-event economic losses remained high during the third period (2011–2024), their values

were slightly lower than those of the second period. Earthquake frequency also increased markedly in the second period and200

then declined slightly in the third, while remaining above the level observed in the first period. In the most recent period,

substantial reductions in cumulative and per-event fatalities and affected populations led to a pronounced decline in mortality

rates. These results indicate a recent reduction in the lethality of global earthquake disasters, occurring alongside persistently

high—though slightly reduced—levels of economic exposure.
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Figure 2. Analysis of changes in global earthquake disaster indicators from 1980 to 2024. NOE represents number of earthquakes, CNAI

represents cumulative number of affected people, CEL represents cumulative economic losses, CDT represents cumulative number of fatal-

ities, AAPE represents average number of affected people per event, AELPE represents average economic loss per event, ADPE represents

average number of fatalities per event, MR represents mortality rate.

By integrating inter-annual variability with multi-period trend analysis, this section captures both short-term fluctuations and205

longer-term shifts in global earthquake disaster impacts. These temporal patterns provide a descriptive baseline for interpreting

the spatial heterogeneity and associated drivers of earthquake disasters examined in subsequent sections.

4.2 Multi-scale spatial patterns of global major seismic disasters

The spatial distribution of global earthquake disasters is shaped by the combined configuration of tectonic settings, population

exposure, and socio-economic conditions, rather than by seismicity alone. To describe spatial heterogeneity in a manner that210

is comparable across both administrative and geophysical units, the analysis is conducted at three complementary scales. At

the continental scale, aggregated indicators provide a first-order overview of where earthquake disaster impacts concentrate

globally. At the national scale, spatial mapping and trend testing characterize cross-country differences in disaster impacts

and their temporal directions. At the tectonic-plate scale, centroid migration and standard deviation ellipse analyses are used
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to trace the spatial reorganization of earthquake disaster hotspots over time. Together, these analyses describe where disaster215

impacts are concentrated, how those concentrations shift through time, and how spatial patterns differ across tectonic contexts.

4.2.1 Continental differences of global major seismic disasters

Continental-scale comparison provides a first-order description of spatial heterogeneity in global earthquake disasters, re-

flecting broad contrasts in tectonic environments, population exposure, and development conditions.. Across 1980-2024, the

composition of disaster indicators differs markedly by continent (Figure 3). Asia accounts for the largest shares of most220

indicators—including earthquake frequency, cumulative affected population, cumulative economic losses, and cumulative

fatalities—consistent with the coexistence of extensive seismic belts and large exposed populations.. In contrast, the Amer-

icas contribute the largest shares of mortality rate and average deaths per event, indicating that per-event mortality metrics

are strongly influenced by a limited number of high-impact catastrophic events.Europe shows comparatively low earthquake

frequency but ranks second in average economic loss per event, corresponding to high-value built environments and concen-225

trated economic assets. Africa and Oceania represent small proportions for most indicators; however, Africa exhibits relatively

elevated mortality-related shares relative to event counts, implying heightened vulnerability in specific national contexts rather

than higher seismic activity.
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Figure 3. Continental disparities in the composition of global earthquake disaster indicators (1980–2024). NOE represents number of earth-

quakes, CNAI represents cumulative number of affected people, CEL represents cumulative economic losses, CDT represents cumulative

number of fatalities, AAPE represents average number of affected people per event, AELPE represents average economic loss per event,

ADPE represents average number of fatalities per event, MR represents mortality rate.

4.2.2 Spatiotemporal variability analysis of global seismic disasters at the national scale

Pronounced spatial differences are observed in the national-level trends of eight seismic disaster indicators during 1980–230

2024. Seismic frequency (Figure 4.a) exhibits predominantly non-significant temporal variation (−1.64≤ Z ≤ 1.64) across

most countries, while significant increases (Z > 1.64) appear mainly in parts of East and Southeast Asia, where absolute

earthquake counts are also high. Significant decreases (Z <−1.64) occur sporadically without forming coherent regional

clusters. Mortality-related indicators (Figure 4.(b , f)) display widespread significant declines across Asia, Africa, and Oceania,

whereas significant upward trends are restricted to a small number of countries in Eastern Europe, Central America, and South235

Asia. Cumulative and per-event affected populations (Figure 4.(c , d)) show high values in China, India, Indonesia, and parts of

South Asia, with significant increases along the western coast of South America, South Asia, and the Indonesian archipelago,

while many other regions exhibit non-significant temporal changes. Cumulative fatalities (Figure 4.e) are concentrated in a

limited group of countries (e.g., China, India, Iran, Turkey, and Haiti), but trend directions vary, with both increases and

decreases observed across different subregions.240
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Economic-related indicators demonstrate another layer of spatial heterogeneity. High cumulative economic losses (Figure

4.g) are concentrated in the United States, Japan, China, Italy, and Turkey, with significant upward trends present in East

Asia, the Mediterranean region, and parts of South America. By contrast, many countries in Africa, Central Asia, and Eastern

Europe show limited or statistically non-significant temporal variation. Average economic loss per event (Figure 4.h) is highest

in high-income countries, including Japan, New Zealand, Italy, and the United States, although trend directions vary across245

national contexts. Overall, national-scale results emphasize that statistically significant trends are spatially clustered for certain

indicators—particularly economic losses—whereas non-significant trends dominate large portions of the Global South.
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Figure 4. Spatial heterogeneity and temporal trends of eight earthquake disaster indicators at the national scale (1980–2024). a) Earthquake

occurrence; b) Mortality rate; c) Cumulative affected population; d) Average affected population per event; e) Cumulative fatalities; f)

Average fatalities per event; g) Cumulative economic losses; h) Average economic loss per event.
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4.2.3 Spatiotemporal evolution of global seismic disaster centroids across tectonic plates

The spatial pattern of global seismic disasters exhibits a clear and structured evolution over the period 1980–2024, as reflected

by systematic shifts in the geometric centroid and associated dispersion patterns (Figure 5). At the global scale, the centroid250

trajectory indicates an overall eastward tendency with alternating north–south adjustments, forming a coherent migration path

across successive periods.

Figure 5. Spatiotemporal evolution of global and plate-scale seismic disaster centroids and spatial dispersion patterns from 1980 to 2024.

a) Global standard deviation ellipses and centroid trajectories of seismic disasters across four periods; b) Global centroid displacement

trajectory; c) Centroid shifts on the American Plate; Centroid shifts on the d) African Plate, e) Eurasian Plate, f) Indian Ocean Plate, and g)

Pacific Plate.

Specifically, the centroid was located in northeastern Africa west of the Red Sea during 1980-1990, shifted northeastward

toward the Arabian Peninsula in 1991-2000 (˜909 km), moved southeastward to the central Arabian Peninsula in 2001–2010

(˜1,476 km), and then adjusted northeastward during 2011–2024 (˜433 km) (Table 1). This sequence describes a gradual re-255

centering of earthquake disaster impacts toward the Middle East–western Indian Ocean region, rather than a shift in seismicity

itself. Changes in the spatial dispersion of seismic disasters further support this reorganization. The semi-major axis of the

global standard deviation ellipse decreased continuously across periods, indicating a contraction in the longitudinal extent of
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earthquake disaster impact distribution, while changes in the semi-minor axis were smaller and alternated in direction (Table

1). The dominant orientation remained stable across periods, consistent with the alignment of major global seismic belts.260

Table 1. Temporal evolution of the location and displacement of the global seismic disaster centroid (1980–2024).

Analysis period Centroid location Displacement

distance (km)

Dominant shift di-

rection

Change in semi-

major axis (km)

Change in semi-

minor axis (km)

1980–1990 31.49°E, 21.28°N – – – –

1991–2000 40.48°E, 23.92°N 908 Northeastward -732 -217

2001–2010 53.94°E, 20.27°N 1,476 Southeastward -419 180

2011–2024 57.91°E, 20.68°N 433 Northeastward -203 -91

At the plate scale, centroid trajectories display pronounced regional heterogeneity (Figure 5.c–g; Table 2). On the American

Plate, centroid movements are relatively short and primarily oriented southeastward, corresponding to localized adjustments

in the spatial concentration of disaster impacts. The African Plate shows more pronounced centroid displacements, generally

trending eastward and southeastward, reflecting its broad spatial extent and dispersed seismic activity. The Eurasian Plate

exhibits comparatively limited centroid movement despite its extensive geographic coverage, indicating a spatially expansive265

but relatively stable impact distribution. In contrast, centroid trajectories on the Indian Ocean and Pacific Plates are more

dynamic, with alternating directional shifts concentrated around Southeast Asia, Indonesia, and adjacent subduction zones,

highlighting localized but active reorganization of disaster hotspots.
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Table 2. Plate-specific centroid locations, displacement distances, and dominant shift directions of global seismic disasters during 1980–

2024.

Tectonic plate Analysis pe-

riod

Centroid location Displacement dis-

tance (km)

Dominant shift direction

Pacific Plate 1980–1990 179.26°E, 5.48°N – –

1991–2000 161.43°E, 11.28°N 2039 Northwestward

2001–2010 161.03°E, 1.60°S 1433 Southwestward

2011–2024 137.57°E, 1.98°N 2576 Northwestward

Indian Ocean Plate 1980–1990 118.45°E, 3.23°S – –

1991–2000 96.75°E, 1.39°N 2433 Northwestward

2001–2010 103.00°E, 3.69°S 834 Southeastward

2011–2024 119.96°E, 1.86°S 1887 Northeastward

Eurasian Plate 1980–1990 61.27°E, 35.30°N – –

1991–2000 69.54°E, 35.69°N 716 Northeastward

2001–2010 75.86°E, 33.20°N 685 Southeastward

2011–2024 79.95°E, 31.56°N 458 Southeastward

African Plate 1980–1990 15.77°E, 14.38°N – –

1991–2000 21.33°E, 14.11°N 605 Southeastward

2001–2010 34.89°E, 6.96°N 1487 Southeastward

2011–2024 22.57°E, 3.80°N 1385 Southwestward

American Plate 1980–1990 83.67°W, 8.95°N – –

1991–2000 70.13°W, 8.65°N 1477 Southeastward

2001–2010 82.97°W, 6.12°N 1435 Southwestward

2011–2024 77.32°W, 4.22°N 658 Southeastward

Overall, the combined global and plate-scale results suggest that global centroid migration is coherent in direction, while the

magnitude and orientation of centroid shifts differ across plates, underscoring the role of tectonic context in shaping the spatial270

reorganization of earthquake disaster impacts.

4.3 Drivers of global earthquake disaster impacts

The temporal and spatial analyses above reveal a clear decoupling between the physical occurrence of earthquakes and the

severity of their impacts. While tectonic plate boundaries structure the global pattern of seismicity, earthquake consequences

vary substantially across countries even under broadly comparable hazard settings. This spatial heterogeneity indicates that275

variations in disaster impacts cannot be accounted for by seismicity alone and are closely associated with differences in ex-

posure and vulnerability conditions. Building on the multi-scale patterns identified in Sections 3.1 and 3.2, this subsection
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examines national-scale statistical associations between earthquake mortality and multiple socio-environmental factors the Ge-

ographical Detector model. Cumulative fatalities are used as the dependent variable, and explanatory factors (Table 3) are

grouped into (i) tectonic–locational context (proximity to plate boundaries), (ii) hydro-climatic and environmental conditions,280

(iii) socioeconomic development and the built environment, and (iv) governance and health-system capacity (Abatzoglou et al.,

2018; World Bank, 2025; Sims et al., 2022; World Health Organization, 2025). The analysis quantifies the degree of spatial

correspondence between fatalities and individual factors (q-statistics), as well as the extent to which paired factors jointly

enhance spatial differentiation in fatalities. In doing so, we address which factors—and which combinations of factors—are

most strongly associated with cross-national disparities in earthquake disaster impacts, rather than attempting to infer causal285

relationships.

Table 3. Explanatory variables used in the geographical detector analysis of national earthquake fatalities and data sources.

Driver category Indicator Data source Representation

Hydro-climatic and environmental
conditions

Precipitation Terraclimate Represents hydro-climatic conditions
that may influence secondary earth-
quake hazards such as landslides and de-
bris flows.

Hydro-climatic and environmental
conditions

Soil Moisture Terraclimate Indicates ground saturation conditions
that can amplify slope instability and
earthquake-triggered environmental
damage.

Tectonic–locational context Distance from Earthquake
to Nearest Plate Boundary

EM-DAT Serves as a proxy for tectonic exposure
and proximity to active seismic sources.

Hydro-climatic and environmental
conditions

Diurnal Temperature Vari-
ation

C-LSAT Reflects short-term climatic stress that
may affect environmental vulnerability
and human health conditions.

Hydro-climatic and environmental
conditions

Composite Environmental
Quality Index

Figshare Integrates multiple environmental at-
tributes to characterize overall ecologi-
cal and land-surface conditions.

Socioeconomic development and
the built environment

GDP Zenodo Represents national economic develop-
ment level and the concentration of ex-
posed economic assets.

Socioeconomic development and
the built environment

Commercial Facility Den-
sity

Figshare Captures the intensity of economic ac-
tivity and built-environment concentra-
tion.

Socioeconomic development and
the built environment

GDP Growth Rate ESG Reflects economic dynamics and de-
velopment trajectories influencing expo-
sure and recovery capacity.

Socioeconomic development and
the built environment

Population Density LandScan Represents human exposure intensity in
seismically active areas.

Socioeconomic development and
the built environment

Level of Social Infrastruc-
ture

Figshare Indicates the availability of basic public
services and urban support capacity.

Governance and health-system ca-
pacity

Government Effectiveness
Estimate

ESG Represents institutional capacity for
regulation enforcement, emergency re-
sponse, and disaster governance.

Governance and health-system ca-
pacity

Physicians per 10,000
Population

GHO Serves as a proxy for health system
capacity and post-disaster medical re-
sponse potential.
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4.3.1 Individual drivers of spatial variation in earthquake mortality

The factor detector results show pronounced spatial heterogeneity in the associations between individual factors and cumulative

earthquake fatalities (Figure 6.a). Population density (Factor 1) yields the highest explanatory power (q = 0.41), indicating that

cross-national differences in exposure are closely aligned with the spatial differentiation of cumulative fatalities at the national290

scale. Development-related indicators, including GDP (Factor 2; q = 0.39) and the level of social infrastructure (Factor 3;

q = 0.36), also exhibit relatively high explanatory power, suggesting that fatality patterns co-vary with development level and

built-environment conditions across countries.

A second group of factors shows moderate explanatory power, including physicians per 10,000 population (Factor 8; q =

0.21) and governance-related indicators (Factors 7–9; 0.22≥ q ≥ 0.12). These results indicate that health-system capacity and295

institutional conditions are statistically associated with part of the observed spatial differentiation in fatalities. By contrast, the

tectonic–locational proxy distance to the nearest plate boundary (Factor 12; q = 0.05) shows comparatively low explanatory

power when considered alone, implying that proximity to active plate margins has limited ability to differentiate national-level

fatality outcomes in isolation.

Overall, the single-factor results indicate that no individual variable fully accounts for the observed spatial heterogeneity in300

earthquake fatalities. Instead, higher q-values are concentrated among exposure- and development-related indicators, providing

a basis for examining whether combinations of factors further strengthen spatial differentiation.
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Figure 6. Spatial drivers of cumulative earthquake fatalities and their interaction effects at the global scale. a) Individual explanatory power

of drivers based on the factor detector; b) Interaction effects among drivers identified by the interaction detector. Factors include: Factor

1 (Population density); Factor 2 (Gross domestic product (GDP)); Factor 3 (Level of social infrastructure); Factor 4 (Diurnal temperature

variation); Factor 5 (Commercial facility density); Factor 6 (Composite environmental quality index); Factor 7 (GDP growth rate); Factor

8 (Physicians per 10,000 population); Factor 9 (Government effectiveness estimate); Factor 10 (Precipitation); Factor 11 (Soil moisture);

Factor 12 (Distance to the nearest tectonic plate boundary).

4.3.2 Multi-factor interactions shaping earthquake mortality patterns

Interaction detector results indicate that earthquake fatality patterns are characterized by widespread multi-factor coupling

(Figure 6.b). For nearly all factor pairs, joint explanatory power exceeds the corresponding single-factor q-values, and most305

interactions are classified as bi-variable enhancement or nonlinear enhancement, indicating that spatial differentiation in fa-

talities strengthens when factors are considered jointly. Interactions that involve high-q exposure and development indicators

(e.g., population density with GDP or infrastructure) generally yield stronger joint effects, implying that spatial differentiation

in fatalities becomes more pronounced when multiple factors are considered jointly.

Interactions involving high-q exposure and development indicators (e.g., population density combined with GDP or social310

infrastructure) generally yield stronger joint effects, suggesting that the spatial imprint of exposure is conditioned by national

development and capacity contexts. Notably, factors with relatively low independent explanatory power—such as distance to

the nearest plate boundary—often exhibit substantially higher explanatory power when combined with exposure- or capacity-

related indicators. This pattern suggests that locational hazard context becomes more informative for understanding fatality

patterns when evaluated together with where people, assets, and response capacity are distributed.315

Overall, the interaction results reinforce that cross-national disparities in earthquake fatalities are associated with overlapping

gradients of exposure, development, institutional capacity, and environmental conditions, rather than isolated single drivers.
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4.3.3 A coupled human–environment interpretation of disaster impacts

Taken together, the Geographical Detector results support an interpretation of earthquake disaster impacts as outcomes emerg-

ing from the spatial co-location of hazard context, exposure, and vulnerability. Tectonic structures define the global backdrop320

of seismic hazard, but cross-national variation in fatalities is more strongly aligned with population exposure and differences

in development conditions, governance capacity, healthcare availability, and environmental context. The widespread enhance-

ment and frequent nonlinear interactions observed in Figure 6.b further indicate that the association between any single factor

and fatalities depends on the configuration of other factors, consistent with a multi-dimensional view of disaster risk.

Importantly, these results describe statistical associations at the national scale and do not imply causal relationships between325

individual drivers and earthquake fatalities. Nevertheless, they complement the preceding spatiotemporal analyses by clarifying

why broadly similar tectonic settings can be associated with markedly different mortality outcomes across countries. In applied

terms, the findings suggest that earthquake risk reduction may benefit from integrated intervention strategies that jointly address

exposure management and capacity building (e.g., infrastructure and healthcare), rather than relying on single-sector measures.

These associations are identified at the national scale and may mask subnational heterogeneity in exposure and vulnerability.330

5 Discussion

5.1 Synthesis of key findings

This study provides a multi-scale synthesis of how global earthquake disasters have reorganized in space and time from 1980

to 2024. The temporal analyses reveal a distinct decoupling between seismic occurrence and disaster consequences: although

earthquake frequency, human exposure, and cumulative economic losses increased over the study period, mortality rates de-335

clined steadily, especially after 2009. Similar findings have been reported globally and regionally, showing that while direct

economic losses exhibit significant upward trends, mortality and human vulnerability have generally decreased due to ad-

vances in building resilience, governance, and risk management (Daniell et al., 2011; He et al., 2018; Formetta and Feyen,

2019). By integrating long-term interannual trends with period-based comparisons, our results further show that this decou-

pling varies markedly across regions and national contexts, highlighting the importance of socio-environmental conditions in340

shaping disaster outcomes. By explicitly combining long-term temporal trends with multi-scale spatial reorganization metrics

and interaction-based attribution at the global scale, this study extends existing global earthquake assessments beyond patterns

of hazard occurrence toward a comparative understanding of disaster impacts across countries.

Spatial analyses show persistent clustering of seismic disasters along major tectonic boundaries—most prominently the

Pacific Ring of Fire and the Alpine–Himalayan belt—yet with strong national-level disparities in disaster severity (Silva et al.,345

2019). The geometric centroid analysis demonstrates a sustained southeastward migration of global seismic disaster hotspots

and a gradual contraction in spatial dispersion. Rather than indicating a shift in seismicity itself, this directional evolution

reflects changes in where earthquake impacts concentrate globally. Attribution analysis using the Geographical Detector shows
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that population density, level of public infrastructure, economic level, governance quality, and healthcare capacity, together

with their interaction effects, are strongly associated with cross-national variation in earthquake mortality, (Peduzzi, 2019).350

These integrated findings illustrate that earthquake disaster outcomes are shaped not only by tectonic processes but also by

evolving exposure patterns and socio-environmental vulnerability embedded within human–environment systems (Izquierdo-

Horna and Yepez, 2022). Taken together, the spatiotemporal and interaction-based results reinforce the view that global seismic

risk manifests through coupled physical and social processes operating across multiple spatial scales.

5.2 Mechanisms behind the spatiotemporal patterns355

5.2.1 Tectonic controls on global spatial organization

The concentration of seismic disasters along subduction zones and continental collision belts reflects the fundamental role

of lithospheric deformation in structuring global hazard patterns. Subduction zones such as the western Pacific exhibit high

strain accumulation and megathrust potential, producing recurrent high-impact events (Silva et al., 2019). Collision zones like

the India–Eurasia boundary contribute large, shallow crustal earthquakes affecting densely populated regions. The observed360

southeastward migration of the global seismic disaster centroid aligns with increasingly active segments of the western Pacific

and Southeast Asian tectonic boundaries, consistent with long-term spatial concentration of seismic risk along major plate

margins (Peduzzi et al., 2009). Importantly, this migration reflects a redistribution of disaster impacts rather than a systematic

change in plate-scale tectonic processes.

5.2.2 Population exposure and socioeconomic vulnerability365

National-level disparities arise primarily from differences in exposure and vulnerability rather than differences in seismicity.

Rapidly urbanizing, high-density countries—including China, India, and Indonesia—experience large affected populations

due to concentrated settlements in seismically active regions (He et al., 2018). Nations with limited governance capacity

or weak institutional enforcement, such as Haiti and Nepal, tend to exhibit disproportionate mortality even from moderate

events (NicBhloscaidh et al., 2021). Conversely, high-income countries such as Japan, Italy, and the United States incur large370

economic losses because of high asset concentration and aging infrastructure. Recent social vulnerability assessments confirm

that governance quality, healthcare access, and demographic structure significantly shape national earthquake mortality rates

(Ma et al., 2023). These contrasts further illustrate how similar hazard contexts may correspond to markedly different disaster

outcomes under varying social and institutional conditions.

5.2.3 Divergent trends: declining mortality, rising economic losses375

The notable decline in global earthquake mortality suggests steady advances in structural safety, early warning systems, and

emergency response capacity (Formetta and Feyen, 2019). However, the simultaneous rise in economic losses reflects inten-

sifying exposure of high-value assets and stronger global economic interdependencies (Daniell et al., 2011). This divergence

highlights a core risk paradox: societies have become more capable of protecting lives but remain economically fragile due
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to accumulated development in hazardous areas. Such paradoxes illustrate shifting vulnerabilities within socio-ecological sys-380

tems and underscore the necessity of integrating social, economic, and physical dimensions of risk (Izquierdo-Horna and

Yepez, 2022). Our results indicate that this divergence is spatially uneven, with the strongest contrasts occurring in rapidly

urbanizing and economically integrated seismic regions.

5.2.4 Implications for global seismic risk governance

Beyond identifying where seismic hazards are concentrated, the results highlight how disaster impacts emerge from the spatial385

co-occurrence of tectonic exposure and socio-institutional conditions. Plate-boundary regions require strategies that consider

both seismic hazards and potential interactions with climatic extremes such as heavy rainfall–triggered landslides (Cvetković

et al., 2024). Rapidly urbanizing regions should target improvements in land-use planning, building quality, and emergency

resource allocation to reduce both human and economic impacts. In countries facing governance challenges, enhancing in-

stitutional capacity, healthcare access, and political stability is essential for reducing future mortality (Peduzzi, 2019). More390

broadly, the findings underscore the importance of multi-scale disaster risk governance frameworks that integrate tectonic ex-

posure, development trajectories, and social vulnerability. By identifying locations where high seismic exposure coincides with

elevated socio-environmental vulnerability, this study provides a spatially explicit basis for prioritizing disaster risk reduction

and resilience-building efforts across scales.

5.2.5 Limitations395

Several limitations should be acknowledged. EM-DAT underreports small and moderate events, which may affect frequency-

related indicators (Cvetković et al., 2024). National-scale spatial analysis simplifies complex local fault geometries and intra-

country heterogeneity. Geographical Detector identifies spatially stratified associations but cannot determine causal direction

(Peduzzi, 2019). Additionally, socioeconomic variables are often static or infrequently updated, limiting the ability to model

rapid socio-economic transitions.400

5.2.6 Future research directions

Future work should incorporate near–real-time seismic and socio-environmental data, develop dynamic models to track evolv-

ing risk landscapes, and examine compound hazards involving interactions between seismic activity and climatic extremes.

Integrating machine learning with physical models may further enhance predictive capability (Silva et al., 2019). Expanding

high-resolution exposure and vulnerability datasets will support more detailed subnational risk assessments (Ma et al., 2023).405

Ultimately, advancing global earthquake risk research will require closer integration of physical seismology, spatial analysis,

and socio-institutional vulnerability studies, in order to better support disaster risk reduction and resilience planning. The an-

alytical framework adopted here demonstrates how global disaster databases can be combined with spatial reorganization and

interaction analyses to inform comparative risk assessment and policy-relevant interpretation.
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6 Conclusions410

This study analyzed the spatiotemporal evolution of global earthquake disasters from 1980 to 2024 and examined national-scale

factors associated with cross-country differences in disaster impacts. By integrating long-term temporal analysis, multi-scale

spatial assessment, centroid-based spatial metrics, and factor interaction analysis, the study addresses four interrelated research

questions.

First, with respect to long-term temporal change, global earthquake disasters exhibit a persistent decoupling between occur-415

rence and consequences. While earthquake frequency, affected population, and cumulative economic losses increased overall,

mortality rates declined substantially after the early 2000s, reflecting an overall improvement in life protection relative to

growing exposure rather than a reduction in hazard occurrence.

Second, in terms of spatial heterogeneity, earthquake disaster impacts are unevenly distributed across continents and coun-

tries. Asia accounts for a large share of global earthquake disasters in terms of frequency, affected population, fatalities, and420

economic losses, yet the severity of impacts differs markedly among countries, indicating that broadly comparable tectonic

settings are associated with highly divergent disaster outcomes.

Third, regarding spatial reorganization, the centroid of earthquake disaster impacts shows a systematic eastward to southeast-

ward shift over the study period, while the standard deviation ellipse indicates a relatively stable orientation accompanied by a

modest contraction in spatial dispersion. Plate-level comparisons further reveal differentiated centroid trajectories across major425

tectonic plates, which is consistent with a long-term re-centering of global disaster impacts rather than changes in underlying

seismic processes.

Finally, with respect to spatial disparities in fatalities, the Geographical Detector results indicate that population density and

development-related factors exhibit relatively strong explanatory power. More importantly, interactions among socioeconomic,

governance, health, environmental, and hazard-related variables consistently enhance explanatory strength beyond single-factor430

effects, highlighting that observed fatality patterns are statistically associated with coupled natural–social conditions rather than

with tectonic context alone.

Overall, the findings underscore that global earthquake disaster impacts are shaped by the spatial convergence of hazard

exposure, development pathways, and institutional capacity. By identifying where disaster impacts diverge under similar hazard

conditions and how multiple factors co-vary spatially, this study provides comparative, globally consistent evidence that can435

inform risk assessment, preparedness planning, and resilience-oriented decision-making, particularly in regions experiencing

rapid exposure growth alongside persistent social and institutional vulnerability.

Data availability

The earthquake disaster data used in this study are derived from the Emergency Events Database (EM-DAT), which is publicly

available. Socio-environmental and governance datasets were obtained from openly accessible international databases, as de-440

scribed in the Methods section. The processed datasets and analysis scripts supporting the findings of this study are available

from the corresponding author upon reasonable request.
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