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Highlights 14 

• India’s hydroclimatic extremes have reorganized fundamentally since the 1980s with 15 

extreme wet spells intensifying and expanding by 33 % by 2019, and dry spells shifting 16 

southward with marginal frequency changes. 17 

• Rapid dry-to-wet transitions have strengthened by 14.3 %, while spatially expanding 18 

by 49 % across tropical coastal and humid subtropical central belts during 1986-2019. 19 

However, wet-to-dry transitions declined by 10 % during the later decades along with 20 

a decreased spatial footprint, revealing a systematic shift toward convectively driven 21 

dry-to-wet whiplash dominance. 22 

• The new risk-based whiplash index reveals a pervasive 13 % rise in extreme risk, and 23 

a 26.6% rise in grids experiencing simultaneous high frequency-duration-intensity, 24 

indicating a systemic broadening of exposure.  25 

• Chronic high-risk exposure persists over the Southwest coast with no recovery, while 26 

emerging risks have triggered a structural ‘climate penalty’ on agriculture, neutralizing 27 

post-2000 technological gains.  28 
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This study presents a comprehensive assessment of the evolution of hydroclimatic extremes, 30 

dry spells (DS), wet spells (WS), and their rapid transitions (whiplash) across India from 1951 31 

till 2019. A marked reorganization of extremes emerged around the 1980s regime shift, 32 

characterized by widespread intensification of WS and a 40 % rise in DS-affected grids 33 

experiencing fewer but longer events. Using Event Coincidence Analysis, trigger relationships 34 

between extreme DS and WS are quantified, revealing that trigger coincidence rates exceeded 35 

0.8 after the mid-1980s and increased spatially by nearly 49 % over the west coast, Central 36 

India, and the Northeast. Disaggregating transitions demonstrated an emerging dominance of 37 

dry-to-wet (DTW) behavior, with an increase of ~14 %, reflecting reorganized monsoon 38 

feedbacks. Quantification of whiplash severity revealed a 13 % and 8.7 % rise in extreme and 39 

severe whiplash frequencies, and a 26.6 % increase in grids exhibiting simultaneous high 40 

frequency, duration, and intensity. Spatially, the southwest coast and northern India exhibit 41 

‘persistently high’ risk with no recovery since 1951, while the east coast and central India show 42 

‘emerging’ volatility. Crucially, this intensification translates into a quantifiable ‘climate 43 

penalty’ on agriculture: post-2000 wheat yields show persistent negative anomalies with an 44 

increase in exposure to extreme whiplash risk, which in turn demands an immediate pivot in 45 

adaptation and resource planning.  46 

1. Introduction 47 

The rising frequency and intensity of extreme hydro-meteorological events have heightened 48 

global concern, particularly as climate change accelerate abrupt transitions between dry and 49 

wet extremes, referred here as hydro-meteorological whiplash events, which produce impacts 50 

far greater than isolated dry or wet spells (IPCC, 2021; Zscheischler et al., 2018; Vose et al., 51 

2014). Increasingly observed across diverse climatic regimes, these rapid shifts trigger 52 

cascading consequences (Weesie et al., 2025; Tan et al., 2023; Zscheischler et al., 2018); for 53 

instance, vegetation growth during the preceding wet extremes period can significantly amplify 54 

fuel loads, thereby intensifying wildfires in the subsequent dry extreme period (Swain, 2021; 55 

Scasta et al., 2016).  Furthermore, the surface soil desiccated during dry extremes may develop 56 

dense crusts that enhance surface runoff during following wet periods, increasing the likelihood 57 

of flooding, landslides (Johnston et al., 2021) and erosion (Borrelli et al., 2020).  58 

Defined not by the duration of the initial state but by the speed and abruptness of transition 59 

between opposite hydroclimatic states, whiplash extremes leave minimal time for adaptation 60 

and impose severe socio-economic burdens (Anderson et al., 2025; Ansari and Grossi, 2022). 61 
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Real-world events, like California’s rapid shift from a multi-year drought (2011-2016) to 62 

devastating atmospheric-river floods in 2017 causing Oroville Dam failure that displaced 63 

188,000 people (Zhang et al., 2024; Henn et al., 2020; Koskinas et al., 2019; He et al., 2017; 64 

Diffenbaugh et al., 2015), or in 2015 South Carolina’s transition from a months-long drought 65 

to a “1-in-1000-year” flood due to extreme rainfall linked to Hurricane Joaquin (Alipour et al., 66 

2020; Otkin et al., 2015), underscore their compounded, high-impact nature.   67 

This study focuses on the evolution of such whiplash events on India, a region with pronounced 68 

monsoon variability which makes it particularly susceptible to such transitions. Over the past 69 

six decades, the Indian monsoon has shown an increasing spatial footprint of dry extremes, 70 

while wet extremes show no significant trend (Vinnarasi and Dhanya, 2016; Kumar et al., 2020; 71 

Singh and Ranade, 2010). High-resolution data analyses reveal intensifying rainfall 72 

heterogeneity, with wet regions turning drier and vice versa (Singh et al., 2021;Katzenberger 73 

et al., 2020; Vinnarasi and Dhanya, 2016). Extreme precipitation events are strongly modulated 74 

by large-scale climate modes, such as the Indian Summer Monsoon Index and Arctic 75 

Oscillation (Rehana et al., 2022; Kumar et al., 2020; Singh and Ranade, 2010), which modulate 76 

atmospheric circulation and monsoon strength.  77 

While earlier studies have examined transitions between wet and dry regimes on seasonal or 78 

annual scales (Madakumbura et al., 2021; Casson et al., 2019; Christian et al., 2015), high-79 

resolution analyses capturing daily resolved and sub-seasonal whiplash dynamics remain 80 

underexplored, especially over monsoon-dominated regions. To examine the switch between 81 

long-term dry and wet regimes, anomalous annual precipitation dipole events (a dry year 82 

followed by a wet year (Christian et al., 2015)) and seasonal precipitation anomalies (a dry 83 

winter one year followed by a wet winter the next) have been analyzed (Swain et al., 2018). 84 

However, such coarse temporal aggregations cannot capture the rapid transitions that constitute 85 

a whiplash, occurring within months or weeks, over India (Dash and Maity, 2021). 86 

Despite substantial progress in characterising dry, wet, and compound extremes using: (i) 87 

univariate standardized indices (like, Standardized Precipitation Index (SPI) (Guttman, 1998), 88 

Standardized Precipitation and Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010)) 89 

that aggregate precipitation (and sometimes evapotranspiration) over fixed accumulation 90 

windows to quantify wetness/ dryness relative to a historical climatology (Laimighofer and 91 

Laaha, 2022; He and Sheffield, 2020); (ii) multivariate and joint probability approaches 92 

(multivariate extreme value theory, copulas, joint return periods) that estimate co-occurrence 93 

probabilities of extreme magnitudes (Zscheischler and Seneviratne, 2017; Salvadori et al., 94 

2007; Coles et al., 2001); and (iii) process-based or model-based analyses that use coupled 95 
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land-atmosphere models to diagnose feedbacks and drivers (Miralles et al., 2019; Seneviratne 96 

et al., 2010), a critical knowledge gap remains in detecting and quantifying short-lag, 97 

directional transitions between hydroclimatic states. Existing approaches rely on fixed 98 

accumulation windows, stationary assumptions (Laimighofer and Laaha, 2022; IPCC, 2021;He 99 

and Sheffield, 2020), or magnitude-based dependence structures that smooth intra-seasonal 100 

variability and fail to capture the sequencing, timing, or rapid onset of transitions (Miralles et 101 

al., 2019; Salvadori et al., 2007; Coles et al., 2001), limitations that are particularly 102 

consequential for the highly variable and rapidly shifting Indian monsoon system (Mishra et 103 

al., 2024; Tan et al., 2023; Bhattacharyya et al., 2022; Krishna et al., 2020). Consequently, the 104 

spatiotemporal evolution of the interaction between dry and wet spells, and the mechanisms by 105 

which they produce high-impact whiplash events, remain poorly resolved. To address this gap, 106 

this study employs a daily, event-based, non-parametric framework (Donges et al., 2016; 107 

Siegmund et al., 2017; Walters, 2012) that uses raw precipitation, the most direct 108 

hydrometeorological driver (Pendergrass et al., 2017; Trenberth et al., 2003), to identify 109 

individual extremes and their rapid transitions without imposing parametric, stationary, or 110 

aggregation constraints. This study enables explicit detection of short-lag directional links 111 

between precursor dry or wet events and their subsequent triggers, allowing a robust, 112 

observation-driven reconstruction of how whiplash dynamics have reorganized across India’s 113 

climatic zones over the past seven decades (1951-2019).  114 

Therefore, the overall objectives of this study are: (i) to detect and characterize short-lag 115 

hydroclimatic whiplash transitions, including their directionality, strength, and lag structure, 116 

using an event-based, non-parametric framework, (ii) to identify emerging regional hotspots 117 

and climate-zone specific behaviors in the whiplash occur occurrences under evolving 118 

monsoon variability, and (iii) to capture concurrent changes in frequency, duration, and 119 

intensity of rapid spell transitions, using an integrated whiplash risk index. 120 

This article is organized as follows: Section 2 details the dataset and the study area. Section 3 121 

describes the methodology, which is followed by the Results and Discussions in Section 4, and 122 

the conclusions in Section 5.  123 

2. Study Area and Data Used 124 

This study focuses on the Indian subcontinent spanning over 3.29 million km2, a densely 125 

populated and agriculturally reliant country. The Indian subcontinent encompasses highly 126 

diverse climate zones (figure 1) (Beck et al., 2018; Peel et al., 2007; Köppen, 1884), including 127 
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arid and semi-arid regions in the northwest, warm temperate zones in central India, subtropical 128 

humid areas in the northeast and Himalayan foothills, semi-arid and tropical wet-and-dry 129 

regions in the south, and warm-humid coastal belts. This climatic heterogeneity makes India 130 

vulnerable to both hydro-meteorological extreme wet and dry spells. This study utilizes a high-131 

resolution daily gridded precipitation dataset (0.25  0.25 ) (Pai et al., 2014), obtained from 132 

the India Meteorological Department (IMD) for the period of 1951-2019. The dataset spans the 133 

spatial domain from 6  to 38 N latitude and 68  to 100 E longitude.  134 

 135 

Figure 1: Details of climatic zones and their spatial extent over India (Tropical 136 

Monsoon/Tropical Wet [Am], Humid Subtropical/Temporal [Cwa], Hot Desert/Arid 137 

[BWh], Hot Semiarid/Arid Steppe and Hot [BSh], Tropical Wet and Dry/Tropical 138 

Savannah [Aw], and Warm Temperate [Cwb]).  139 

3. Methodology 140 

3.1. Identification of individual dry and wet spells 141 

In this study, extreme events are defined and extracted from daily precipitation at each grid 142 

point of India over 1951-2019. An extreme dry spell (DS) is defined as a period where the daily 143 

precipitation remains below the 5th percentile continuously for at least a month, indicating a 144 

prolonged deficit in rainfall. This threshold is consistent with widely accepted definitions of 145 

short-term meteorological dry extremes (Vicente-Serrano et al., 2010; Wilhite and Glantz, 146 

1985) and has been employed in previous studies over India to capture prolonged hydro-147 
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meteorological stress with significant impacts on agriculture, water resources, and ecosystems 148 

(Tandel et al., 2023; Dash and Maity, 2021; Vinnarasi and Dhanya, 2016).  149 

In contrast, an extreme wet spell (WS) is identified as a day or sequence of days exceeding the 150 

95th percentile of daily precipitation, signifying a sudden and intense rainfall event (Dash and 151 

Maity, 2021; Swain et al., 2018; Vinnarasi and Dhanya, 2016). The choice of the 5th and 95th 152 

percentiles ensures a focus on the most extreme tails of the precipitation distribution, capturing 153 

events with the greatest potential hydrological and socio-economic impacts (Swain et al., 2018; 154 

Pendergrass et al., 2017).  155 

Extended dry phases lasting several weeks can substantially deplete soil moisture, reduce 156 

groundwater recharge, and suppress vegetation growth, while isolated but intense wet events 157 

can trigger flash floods, landslides, and rapid erosion (Johnston, 2024; Pal and Ojha, 2021; 158 

Borelli et al., 2020). While intermittent dry days are a natural part of the monsoon cycle, a DS 159 

of  30 consecutive days below the 5th percentile within the monsoon season represents an 160 

anomalous break phase rather than a typical intra-seasonal fluctuation, severely impacting 161 

rainfed agriculture and water resources even during the monsoon months (Straus, 2022; Kumar 162 

et al., 2013). Similarly, extreme WS exceeding the 95th percentile often corresponds to high-163 

impact flood-producing events associated with active monsoon phases (Goswami et al., 2006).  164 

3.2. Detection of localized spatial clusters of extreme frequency shifts 165 

To further investigate spatial coherence in the frequency shifts of extreme DS and WS, the 166 

Getis Ord 𝐺𝑖
∗ statistic (Getis and Ord, 1992) is employed. This spatial statistic quantifies the 167 

degree to which high or low values of a variable cluster in geographic space, distinguishing 168 

statistically significant local “hot” and “cold” regions. The 𝐺𝑖
∗ statistic for each grid cell i is 169 

computed as: 170 

𝐺𝑖
∗ =

∑ 𝑤𝑖𝑗𝑥𝑗𝑗 − 𝑋̅ ∑ 𝑤𝑖𝑗𝑗

𝑆√
[𝑛∑ 𝑤𝑖𝑗

2 − (∑ 𝑤𝑖𝑗𝑗 )
2

𝑗 ]

𝑛 − 1

                                                                                                       (1) 171 

where 𝑥𝑗is the attribute value (here, standardized frequency change in DS or WS) at location j, 172 

𝑤𝑖𝑗  is the spatial weight between locations i and j, n is the total number of observations, 𝑋̅ is 173 

the mean, and S is the standard deviation of all x. The resulting z-scores quantify how strongly 174 

each grid cell is associated with spatially clustered high or low values, while corresponding p- 175 

values indicate statistical significance. 176 
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In this study, grids with significant positive 𝐺𝑖
∗values (z > 1.96, p < 0.05) were identified as 177 

hotspots, representing clusters of high-frequency changes in DS or WS, whereas significant 178 

negative 𝐺𝑖
∗ values (z < -1.96, p < 0.05) were defined as coldspots, indicating localized 179 

decreases. The spatial weights (𝑤𝑖𝑗) were defined using a fixed-distance neighborhood matrix 180 

to capture immediate local interactions while minimizing edge effects. By mapping only 181 

statistically significant clusters, the 𝐺𝑖
∗ analysis provides a robust visualization of regional 182 

redistribution and intensification patterns of DS and WS frequencies over time. This enables 183 

the detection of spatially coherent zones of increasing or declining individual extremes, 184 

offering valuable insights into evolving hydroclimatic risk landscapes across diverse climate 185 

zones of India. However, understanding their temporal interplay is critical for capturing rapid 186 

phase transitions between these opposing extremes, to finally identify potential whiplash 187 

occurrences and elucidating the dynamics governing those transitions across India.  188 

3.3.Event Coincidence Analysis (ECA) 189 

We adopt an event-based, non-parametric framework, Event Coincidence Analysis, which as 190 

the name implies, quantifies how often two types of events occur in close temporal succession 191 

(Donges et al., 2016, 2015; Siegmund et al., 2017), to explicitly quantify the coincidence rate 192 

and lag structure (both instantaneous and lagged response) between the two temporary 193 

successive events. Here, ECA is used to evaluate the bidirectional temporal relationship 194 

between extreme dry and wet spells, i.e., how often a DS is followed by a WS within a specified 195 

short lag window and vice versa. Furthermore, ECA does not require aggregation into long 196 

accumulation windows, while preserving sequencing and directionality (Walters, 2012). The 197 

timing of the clearly defined events is the only factor considered by ECA. As a result, it 198 

facilitates the assessment of the statistical relationship and temporal co-occurrence among the 199 

phenomena and/or processes being examined (Donges et al., 2016, 2015; Siegmund et al., 200 

2017).  201 

ECA also serves as a tool for testing hypotheses about the nature of the connections between 202 

two event types, such as whether one acts as a precursor (causal trigger), a consequence, or a 203 

co-occurring phenomenon under shared climatic drivers (Donges et al., 2016, 2015; Siegmund 204 

et al., 2017). For example, in hydroclimatic contexts, a dry-to-wet transition might reflect 205 

atmospheric circulation shifts or large-scale moisture advection processes, whereas a wet-to-206 

dry transition might be linked to post-storm soil moisture feedbacks or suppressed convection 207 

following heavy rainfall. Thus, ECA facilitates the exploration of physical mechanisms 208 
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underlying the temporal sequencing of extremes, which cannot be inferred from linear 209 

correlation analyses alone.  210 

To determine the degree of statistical correlation between the two-event series, ECA offers two 211 

coincidence metrics, namely the precursor and trigger coincidence rates.  212 

3.3.1. Precursor Coincidence Rate 213 

The Precursor Coincidence Rate quantifies the likelihood that an extreme event (e.g., a DS) 214 

acts as a precursor to a subsequent extreme (e.g., a WS) within a defined time window, thereby 215 

serving as a diagnostic measure of dry-to-wet whiplash transitions. In the context of hydro-216 

meteorological extremes, a high precursor rate indicates a strong temporal clustering of 217 

opposite-phase events, suggesting that antecedent dry conditions may enhance the 218 

susceptibility of the system to rapid wet transitions due to reduced infiltration, soil crusting, or 219 

hydrological memory effects. Conversely, a low rate implies that the two extremes are largely 220 

independent with minimal temporal coupling.  221 

Mathematically, consider the time series of WS and DS occurring, respectively, at times 𝑡𝑖
𝑊𝑆 222 

and 𝑡𝑗
𝐷𝑆 with i = 1, …, NWS and j = 1, …, NDS, where NWS and NDS are the number of WS and 223 

DS events, respectively. The precursor coincidence rate (rp) is defined as (Donges et al., 2016, 224 

2011) (also shown in figure 2):  225 

𝑟𝑝 =
1

𝑁𝑊𝑆
∑𝐻

𝑁𝑊𝑆

𝑖=1

(∑ 𝐼[0,𝛥𝑇]

𝑁𝐷𝑆

𝑗=1

((𝑡𝑖
𝑊𝑆 − 𝜏) − 𝑡𝑗

𝐷𝑆))                                                                         (2) 226 

Here 𝜏 is the lag parameter between the two events types and controls the admissible recovery 227 

time between a potential precursor and a subsequent opposite-phase extreme. 𝛥𝑇 is defined as 228 

the temporal tolerance for preconditioning with a time window of a specific period from 𝜏. 229 

𝐼[0,𝛥𝑇](𝑥) is an indicator function which equals 1 if the event ((𝑡𝑖
𝑊𝑆 − 𝜏) − 𝑡𝑗

𝐷𝑆) lies within the 230 

window 𝛥𝑇, and 0 otherwise, and 𝐻 (𝑥) denotes the Heaviside function. For WS occurring at 231 

time 𝑡𝑖
𝑊𝑆, the output of the Heaviside function is either one or zero based on the following rule: 232 

𝐻(∑ 𝐼[0,𝛥𝑇]

𝑁𝐷𝑆

𝑗=1

((𝑡𝑖
𝑊𝑆 − 𝜏) − 𝑡𝑗

𝐷𝑆)) =

{
 
 

 
 
1, (∑ 𝐼[0,𝛥𝑇]

𝑁𝐷𝑆

𝑗=1

((𝑡𝑖
𝑊𝑆 − 𝜏) − 𝑡𝑗

𝐷𝑆)) > 0

0, 𝑒𝑙𝑠𝑒

        (3) 233 

which indicates whether or not the WS- event under consideration has a preconditioning 234 

impact. The remaining WS-events are then subjected to the same procedure. Lastly the 235 
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Precursor Coincidence Rate 𝑟𝑝 calculates the fraction of WS events preceded by DS 236 

occurrences, with values ranging from 0 (which indicates no preconditioning) to 1 (indicating 237 

all WS events are preconditioned by DS).  238 

3.3.2. Trigger Coincidence Rates 239 

Another measure of the statistical link between the two series under investigation which ECA 240 

employs is the trigger coincidence rate. Complementary to the Precursor Coincidence Rate, the 241 

Trigger Coincidence Rate quantifies how frequently an extreme event (e.g., a WS) is followed 242 

by an opposite extreme (e.g., a DS) within a defined time window. In the context of 243 

hydroclimatic whiplash, a high trigger rate indicates that intense wet conditions are often 244 

succeeded by rapid drying, implying strong post-event land-atmosphere feedbacks such as 245 

enhanced evapotranspiration, rapid soil moisture depletion, or suppressed subsequent rainfall 246 

due to convective stabilization. Conversely, a low trigger rate suggests that wet extremes 247 

occurred largely in isolation without immediate dry transitions.  248 

Mathematically, consider the time series of WS and DS occurring, respectively, at times 𝑡𝑖
𝑊𝑆 249 

and 𝑡𝑗
𝐷𝑆 with i = 1, …, NWS and j = 1, …, NDS, where NWS and NDS are the number of WS and 250 

DS events, respectively. The trigger coincidence rate (rt), when focused on DS, is defined by 251 

(Donges et al. 2016, 2011) as (also shown in figure 2): 252 

𝑟𝑡 =
1

𝑁𝐷𝑆
∑𝐻

𝑁𝐷𝑆

𝑖=1

(∑ 𝐼[0,𝛥𝑇]

𝑁𝑊𝑆

𝑗=1

((𝑡𝑖
𝑊𝑆 − 𝜏) − 𝑡𝑗

𝐷𝑆))                                                                        (4) 253 

Here, the Heaviside function 𝐻 (𝑥) captures whether a DS event triggers a WS event within 254 

the lag tolerance. Conversely, if the analysis focuses on WS triggers, it measures whether a WS 255 

is followed by a DS. This procedure is repeated for all events of the designated trigger type, 256 

yielding 𝑟𝑡 values in the range of 0 (no triggering) to 1(every trigger event is followed by a 257 

response event).  258 
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 259 
Figure 2: Schematic illustration of Precursor and Trigger Coincidence Rates; To 260 

calculate PCR, the WS (red bars) at 𝒕𝟑
𝑾𝑺 is considered, precursor coincidence occurs when 261 

a DS (blue bars, here 𝒕𝟑
𝑫𝑺) falls within the prefixed temporal tolerance window 𝜟𝑻 (green 262 

box), at a lag of 𝝉 from 𝒕𝟑
𝑾𝑺, which is then repeated for all WS, and the total number of 263 

coincidences is calculated. To calculate TCR, the DS (blue bar) at 𝒕𝟓
𝑫𝑺 is considered, 264 

trigger coincidence occurs when a WS (red bars, here 𝒕𝟒
𝑾𝑺) falls within the prefixed 265 

temporal tolerance window (purple box), at a lag 𝝉 from 𝒕𝟓
𝑫𝑺, Which is then repeated for 266 

all DS, and the total number of trigger coincidences are calculated.  267 

4. Results and discussions 268 

4.1. Spatiotemporal variation of individual DS and WS around the 1980s regime shift 269 

A distinct decline in WS frequency trends is evident until the 1980s, followed by a marked 270 

increase thereafter (See the Supplementary Material, figure S1 that identifies the shift through 271 

the decadal redistribution of extreme DS and WS). Although DS frequencies remained 272 

comparatively stable across decades, their spatial footprint evolved considerably. The period 273 

1981-1990 thus represents a transition phase, warranting the segregation of pre- and post-1980s 274 

epochs to highlight the redistribution and intensification of extremes in changing climate.  275 

Further analysis of the climatological evolution of extreme DS revealed a notable spatial spread 276 

and redistribution between the two time periods: 1951-1985 and 1986-2019 as shown in Figure 277 

3(a-i). Although a reduction in DS frequency was observed over northwestern (BWh) and 278 

central India (CWa) during the later period, the spatial spread extended southward. When 279 

statistically significant clusters were retained using the Getis-Ord 𝐺𝑖
∗ Statistic and mapped for 280 

further interpretation (figure 3(a-ii)), it revealed that western Rajasthan (BWh) exhibited 281 

increased DS frequency, along with Uttarakhand (Cwb/ Aw), northern UP (Cwa), parts of 282 
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Jharkhand (Aw) and southern West Bengal (Cwa), and parts of Maharashtra, Telangana, 283 

Andhra Pradesh, and Chhattisgarh, spanning Am and Aw climate zones.  284 

Conversely, extreme WS showed a broad-scale intensification and spatial expansion between 285 

1986-2019 compared to 1951-1985 (figure 3(b- i)). Statistically significant WS hotspots 286 

emerged in arid Rajasthan, coastal Karnataka and Kerala (Am), extending to semi-arid 287 

Maharashtra and certain pockets of the northeastern states (Am) (figure 3(b- ii)). Such growing 288 

exposure of both arid and humid climatic regions to high-frequency extreme WS, reflects a 289 

spatial reorganization of hydroclimatic stress across diverse climate regimes. Overall, the 290 

distributional shifts in affected grids (figure 3(c)) indicates an increase of up to 40 % in the 291 

area experiencing 2-4 DS per year and an increase of up to 33-50 % in the areas undergoing 12 292 

or more WS per year during 1986-2019.   293 

The observed spatial and temporal shifts in both DS and WS indicate a growing spatial overlap 294 

and temporal proximity between opposing hydroclimatic states, thereby increasing the 295 

likelihood of rapid transitions between them. Regions that were once dominated by prolonged 296 

dry conditions may now experience intensified wet extremes. Such oscillations, termed here as 297 

hydroclimatic whiplash, cannot be fully captured by examining DS and WS independently. A 298 

focused investigation of these transition dynamics using Event Coincidence Analysis (ECA) 299 

therefore provides crucial insight into the evolving compound nature of India’s monsoon 300 

extremes.  301 
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 302 

Figure 3: (a) (i) Spatial distribution of average annual frequency of extreme Dry Spells 303 

(DS) during 1951-1985 and 1986- 2019; (ii) Significant hotspots and coldspots identified 304 

for the DS frequency change during 1986- 2019 using the Getis-Ord 𝑮𝒊
∗ score; (b) (i) 305 

Spatial distribution of average annual frequency of extreme Wet Spells (WS) during 306 

1951-1985 and 1986- 2019; (ii) Significant hotspots and coldspots identified for the WS 307 

frequency change during 1986- 2019 using the Getis-Ord 𝑮𝒊
∗ score; (c) Distribution of the 308 

number of grids experiencing different frequencies of extreme DS and WS during 1951- 309 

1985 (blue) and 1986- 2019 (red). 310 

4.2.Evolving dynamics and directional asymmetry in India’s whiplash behavior 311 

The climatology of whiplash events is analyzed using ECA to assess the compound behavior 312 

of extreme WS and DS across India distinguishing between trigger and precursor relationships. 313 

The resulting frequency and spatial patterns illuminate emerging shifts in the country’s 314 

extreme-event dynamics.  315 

Figure 4(a) illustrates high (rt > 0.7) trigger coincidence rates during 1951-1985 and its spatial 316 

concentration over the entire western coastal belt (Am), the Northeastern states (Am), and parts 317 

of Eastern and Central India (Aw/ Cwa). During 1986-2019, not only did these regions retain 318 
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high coincidence rates, but the magnitudes intensified (rt > 0.8) and expanded spatially. Clearly, 319 

this establishes the intensification of whiplash transitions and its spread over climatically 320 

sensitive zones in recent decades. The precursor coincidence rates (figure 4(b)) showed very 321 

high values which were mainly prominent over Western Ghats (Am) and North Bengal (Cwa) 322 

during 1951-1985, suggesting a strong preconditioning mechanism where the prior extreme 323 

sets the stage for a subsequent one. While the magnitude remained similar over those regions 324 

during 1986-2019, Eastern India (Cwa) marked an increase of 33.3 % in average precursor 325 

rates along with an increased spread over the Northeast (Am). This enhanced precursor 326 

coupling is indicative of a persistence-driven mechanism or a hydroclimatic memory effect, 327 

particularly over the east and Northeast regions (Cwa/ Am), wherein antecedent soil moisture 328 

deficits or excesses modulate the land atmosphere feedbacks that predispose regions to rapid 329 

transitions between extremes, as reported in earlier studies (Götte and Brunner, 2021; Koster 330 

et al., 2010) 331 

The spatial distribution of coincidence values is further summarized in figure 4(c). The increase 332 

in the number of grids exhibiting trigger rates between 0.5 and 1 during 1986-2019 further 333 

reinforces the intensifying and spreading nature of whiplash behavior. In contrast, precursor 334 

coincidence rates remained constrained to less than 500 grids in both periods, despite increased 335 

intensity in select regions. This implies that while triggering relationships have become more 336 

widespread, precursor relationships remain more localized, likely due to region specific land 337 

surface feedbacks.  338 

Further, the sensitivity of the ECA metrics to key analytical parameters (lag time () and time 339 

window (T)) was investigated (figure 4(d)). When the lag was increased from 1 month to 3 340 

months (T = 1 year), both trigger and precursor coincidence rates decreased significantly by 341 

34.5 % and 21.3 %, respectively. This emphasizes that most whiplash transitions occur within 342 

a short lag window, highlighting the rapid onset nature of these events, which poses severe 343 

challenges for early warning systems and disaster preparedness. Conversely, increasing the 344 

time window from 1 year to 5 years ( = 3 months) led to an increase of over 50 % in both 345 

rates, indicating that when a broader temporal lens is used, more extreme spell transitions are 346 

captured. This suggests that multi-annual persistence or recovery effects might also contribute 347 

to longer- term whiplash behavior. These findings are further substantiated by Figure S2(a) for 348 

trigger and Figure S2(b) for precursor rates (Supplementary material), where a clear decline in 349 

both intensity and spatial spread is observed with increasing lag, while the opposite is true for 350 

larger time windows.  351 
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Given the dominance of trigger behavior, further disaggregation into DS Triggering WS 352 

(DTW) and WS Triggering DS (WTD) was conducted (figure 4(e)). This analysis reveals an 353 

interesting asymmetry. DTW rates ranging 0.3-0.6 (showing moderate temporal variability), 354 

increased by ~4 % in 1986-2019 relative to the earlier period, whereas WTD rates, though 355 

higher in magnitude (0.7-0.8) and much lower temporal variability, decreased by ~10 %. 356 

Although the overall differences are modest, their opposing directions indicate a gradual shift 357 

in dominance from wet-to-dry towards dry-to-wet transitions. Figure 4(f) and the spatial maps 358 

shown in Figure S2(c) (Supplementary Material), support these trends: DTW shows a 359 

prominent spatial footprint, while WTD, though more frequent, shrinks in spread. This contrast 360 

likely reflects a reorganization of hydroclimatic feedback that enhances DTW occurrences, 361 

resulting under evolving monsoon dynamics, where intensified convector activity following 362 

prolonged dry conditions, driven by land-surface heating and boundary layer destabilization 363 

(Liu et al., 2022; Zhou and Geerts, 2013). Whereas weakening post-monsoon subsidence and 364 

reduced soil moisture-precipitation coupling may limit WTD events (Seneviratne et al., 2010; 365 

Dirmeyer et al., 2009). Anthropogenic warming and aerosol-induced monsoon modulation 366 

further alter large-scale circulation, reducing wet phase persistence and reshaping event 367 

sequencing (Ayantika et al., 2021), thereby collectively driving a shift toward more 368 

convectively driven DTW transitions and fewer WTD reversals.  369 

To further compare the evolving nature of the individual hydroclimatic extremes, and their 370 

whiplash behavior in the recent decades, we analyzed the frequency ratio of DS, WS and their 371 

whiplash (trigger rates), comparing the recent period (1986-2019) to the earlier baseline (1951-372 

1985) (figure 4(g)). While DS have increased marginally across most regions (0.7 %), WS 373 

show more pronounced and spatially widespread rise (4-5 %) especially over western (BWh), 374 

central (Aw), and eastern India (Cwa), signaling an intensification of extreme wet periods. 375 

However, it is the whiplash behavior which stands out. Though spatially limited, the frequency 376 

of whiplash has increased across the west coast (Am), with a sharp increase (almost 49 %) 377 

along the central belt (Aw) and Northeast (Am). This highlights the growing propensity of 378 

rapid whiplash occurrences. These regions are not just facing more extremes, but more abrupt 379 

switches between dry and wet conditions, which in turn indicates a shift towards volatile 380 

monsoon dynamics.  381 

 382 
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 383 

Figure 4: (a) Spatial distribution of trigger coincidence rates over India during the two 384 

time periods: 1951-1985 and 1986-2019; (b) Spatial distribution of precursor coincidence 385 

rates over India during the two time periods: 1951-1985 and 1986-2019; (c) Grid-wise 386 

distribution of precursor and trigger rates during 1951-1985 and 1986-2019 across India, 387 

shows lower distribution for precursor and higher for trigger; (d) Sensitivity of trigger 388 

and precursor coincidence rates to lag (τ) and time window ( T), the two parameters 389 
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used in the Event Coincidence Analysis; (e) Comparison of DS Triggering WS (DTW) 390 

and WS Triggering DS (WTD) coincidence rates across the two time periods; (f) Spatial 391 

maps of DTW and WTD coincidence rates for the period 1986-2019; (g) Frequency ratio 392 

of the DS, WS and their whiplash behaviour over the last 35 years (1986-2019) and the 393 

first 35 years (1951-1985).  394 

4.3. Non-linear sensitivities and emerging whiplash risk typologies  395 

To systematically understand the spectrum of hydroclimatic whiplash events across India, we 396 

categorized compound extremes by combining the variations in DS and WS characteristics. 397 

Specifically dry extremes were defined across three durations of 1 month, 6 months, 12 months, 398 

and three intensity thresholds of 15th percentile, 10th percentile, and 5th percentile. Similarly 399 

wet extremes were characterized by durations of 1 day, 5 days, and 10 days, and intensities 400 

exceeding the 85th, 90th and 95th percentiles. This multidimensional combination led to the 401 

creation of 81 distinct whiplash categories, some including 1-month DS of < 5th percentile 402 

(Dry1mon5p) followed by WS of 1 day of > 95th percentile (W1d95p), 6 months DS of < 10th 403 

percentile (Dry6mon10p) followed by WS of 5 days > 85th percentile (W5d85p), and so on. To 404 

focus on the intrinsic variability of these compound categories, a single representative lag 405 

period of one month was applied uniformly across all combinations.      406 

Figure 5(a) presents the frequency of these 81 categories over the recent hydroclimatic epoch 407 

1986-2019, revealing several notable trends. Peak frequency was observed for the whiplash of 408 

6-months DS of < 15th percentile (Dry6mon15p) and 1-day WS of > 95th percentile (W1d95p),  409 

highlighting the increasing prominence of rapid wet recoveries following prolonged moderate 410 

dry periods. While increasing the DS duration from 1 month to 6 months whiplash occurrences 411 

increased by ~73 %, but further extension to 12 months led to a marked decrease. This non-412 

linear sensitivity arises because intermediate-duration DS are sufficiently frequent and induce 413 

strong land-atmosphere coupling, making them highly conducive to abrupt WS transitions. In 414 

contrast, very short DS lack the persistence required to generate a rapid wet rebound, while 415 

year-long DS are too rare and governed by slower hydroclimatic recovery processes to produce 416 

frequent whiplash pairing. Consequently, whiplash likelihood peaks at moderate DS durations.  417 

On the other hand, increase in WS duration from 1 day to 10 days generally decreased the 418 

whiplash frequency, and decrease in WS intensity thresholds from 95th to 85th percentile, 419 

increased the frequency. This indicates that short intense wet events are the key triggers. 420 

Further, a comparison with the baseline epoch (1951-1985) (Figure S3 in Supplementary 421 

https://doi.org/10.5194/egusphere-2025-6498
Preprint. Discussion started: 17 February 2026
c© Author(s) 2026. CC BY 4.0 License.



17 
 

material) reveals a modest but consistent increase (7.2 %) in ECA frequencies across all 422 

categories, implying a widespread intensification of whiplash sequences over time.  423 

To further distil actionable insights from the 81-category space, three representative cases were 424 

selected (figure 5(b)), grounded in extreme event theory and impact relevance: (i) Best Case 425 

(BC): 1 month DS of < 15th percentile (Dry1mon15p) followed by 10 days WS of > 85th 426 

percentile (W10d85p), representing benign, hydrologically balanced recovery which is a 427 

desirable resilient scenario; (ii) Worst Case (WC): 365 days DS of < 5th percentile 428 

(Dry12mon5p) followed by a flash WS of 1 day and > 95th percentile (W1d95p), reflecting a 429 

highly stressful scenario, posing threats to both ecosystem and infrastructure; (iii) Flash Case 430 

(FC): DS of 1 month and < 5th percentile (Dry1mon5p) followed by WS of 1 day of > 95th 431 

percentile (W1d95p), emphasizing a sudden onset, short duration shocks with high intensity, 432 

likely a growing concern under climate variability. The BC moderate frequency increased by 433 

25% in 1986-2019 hinting at slight improvements in some regions’ DS-WS recoveries. 434 

However, the WC remained alarmingly high, ranging from 55 % to 57 %, and so is the FC, 435 

ranging from 56 % to 59 %, reinforcing the dominance of stress- inducing events in shaping 436 

hydroclimatic risk landscapes. These trends point to worsening whiplash, especially dominated 437 

by rapid onset extremes, even though isolated “best-case” recoveries exist in pockets.  438 

Figure 5(c) further reveals distinct regional patterns of the spatial footprint of the three 439 

representative cases. BS and FC were largely concentrated in the western parts of the Western 440 

Ghats (Am), Northeast India (Am), and Eastern India (Cwa), regions known for strong 441 

monsoonal signatures and steep terrain. WC, by contrast, was primarily focused on Western 442 

and Northwestern India,  coinciding with the arid and semi-arid zones vulnerable to persistent 443 

DS and sudden WS. During 1986-2019, while the spatial extent of BC and FC expanded into 444 

Central (Aw) and parts of Western India (BSh), WC regions showed further intensification 445 

rather than spread, representing chronic compound risk in already vulnerable regions. This 446 

spatial divergence,  where some regions see expansion of flash or benign scenarios while others 447 

exhibit intensification of chronic stress, is critical for informing region-specific adaptation 448 

strategies.   449 
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 450 

Figure 5: (a) Frequency distribution of 81 compound DS-WS categories during 1986-451 

2019, constructed by varying the duration and intensity of individual DS and WS; (b) 452 

Comparison of three representative compound cases- Best Case (BC), Worst Case (WC), 453 

and Flash Case (FC)- highlighting their frequency changes between 1951-1985 and 1986-454 

2019; (c) Spatial extent of the Best, Worst, and Flash Cases across India for the two 455 

epochs.  456 

4.4.Quantifying whiplash severity using a lag-weighted whiplash risk index (CEI) 457 

Although till now the whiplash transitions were quantified through isolated case analysis, a 458 

quantitative and temporally consistent index could more effectively capture the characteristics 459 

of the whiplash events. Therefore, a Compound Event Index (CEI) is proposed while focusing 460 
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on the most impactful and climatically significant type of whiplash transition identified across 461 

India in section 4.2., i.e., DTW. The CEI is computed by aggregating the frequencies of DTW 462 

transitions across lag windows (𝑙) from 1 month to 9 months (Eq. 5).  463 

𝐶𝐸𝐼 = ∑(𝐷𝑇𝑊𝑙|𝑊𝑒𝑖𝑔ℎ𝑡(𝑙))

9

𝑙=1

                                                                                                           (5) 464 

These lags represent the typical range over which terrestrial and atmospheric systems attempt 465 

to recover from prolonged extreme conditions. Section 4.2. also revealed that the frequencies 466 

decreased with increasing lag, indicating that short-lag transitions are more common and 467 

potentially more abrupt. Therefore, weights (𝑊𝑒𝑖𝑔ℎ𝑡(𝑙)) are assigned inversely proportional 468 

to the lag duration, to ensure that shorter-lag transitions are given more importance, reflecting 469 

their limited recovery windows and higher likelihood of inducing stress across hydrological 470 

and ecological systems. The CEI is the calculated over 81 distinct DS-WS combinations, 471 

derived in section 4.3. (from individual DS and WS durations and intensities) across all spatial 472 

grids over seven decadal windows spanning across 1951-2019.  473 

Spatial mapping of the decadal CEI values (normalized between 0 and 1; figure S4 (a), 474 

Supplementary Material) revealed a sharp decline in whiplash occurrences and spatial coverage 475 

during the decade 1981-1990, in contrast to the substantial rise observed in 2011-2019. 476 

Therefore, for clearer interpretation and contrast, the further analysis of CEI was stratified into 477 

two epochs: 1951-1985 and 1986-2019. This division allowed for a targeted evaluation of pre- 478 

and post-1980s dynamics, particularly to examine whether the apparent shift around the 1980s 479 

marks a transition point in the evolution of compound extremes.  480 

Building upon the CEI-based assessment, a threshold-based classification was implemented to 481 

delineate three whiplash severity categories: Moderate risk (CEI > 60th percentile and  80th 482 

percentile), Severe risk (CEI > 80th percentile and  95th percentile), Extreme risk (CEI > 95th 483 

percentile), for direct comparison of risk levels. While the CEI formulation already accounted 484 

for the individual intensities and durations of both DS and WS, to understand the long-term 485 

behavioural evolution of whiplash risks at a decadal scale and move beyond isolated events 486 

and assess patterns in their temporal recurrence, persistence and cumulative impact, we have 487 

further introduced: Frequency (number of decades in which a grid experienced whiplash in a 488 

given risk category), Duration (maximum number of consecutive decades during which the 489 

grid remained exposed to that category of the whiplash risk), and Intensity (mean normalized 490 

CEI over the selected decades for that category, reflecting the mean severity).  491 
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When the risk characteristics were compared across the epochs (figure 6(a)), Extreme Whiplash 492 

events showed the highest increase in frequency (13 %), followed by Severe (8.7 %), while 493 

Moderate Whiplash showed the highest increase in duration ( 6.3 %) during 1986-2019. 494 

Although the intensities across all the risk categories may have plateaued, Extreme Whiplash 495 

showed a slight decrease in duration (1.6 %) during 1986-2019. The spatial footprints provided 496 

in Supplementary Figure S4(b) corroborate the intensification, revealing a clear expansion in 497 

the geographical spread of these events. Figures S4(d) provides an additional resolution by 498 

displaying the grid-level distribution of the characteristics of each whiplash category. Majority 499 

of grids were concentrated over increased frequency and duration of the moderate-to-severe 500 

risk spectrum during 1986-2019. However a comparison with Figure S4(c) (epoch1: 1951-501 

1985) reveals a striking 26.6 % increase in the number of grids experiencing simultaneous high 502 

frequency, duration, and intensity, across moderate and extreme whiplash risk category, 503 

suggesting a broadening of systemic exposure.  504 

The temporal transitions in overall whiplash risk have been analyzed using CEI (figure 6(d)). 505 

While north-west (BSh), and south-east India (CWa) witnessed stable moderate risks 506 

throughout 1951-2019, the East coast (Aw), parts of central India (Aw), southern Kerala (Am), 507 

and the north-east India (Am) are observing an emerging risk during 1986-2019. Most notably, 508 

the entire south-west coast (Am) including Kerala, coastal Karnataka and Maharashtra, and 509 

warm temperate North Bengal and parts of the Northeast and northern India (CWb) has 510 

sustained a persistently high-risk state since 1951-1985, with no signs of recovery, pointing to 511 

chronic exposure. The presence of very few grids showing reducing or no risk in recent decades 512 

is alarming and emphasizes the pervasive nature of whiplash intensification across India.  513 

Decadal assessment of climate-yield interactions (figure 6(c)) reveals a distinct transition from 514 

technological buffering to climate-induced suppression. While the 1990s exhibited a peak 515 

positive anomaly (+173.3 kg/ ha), indicative of technological dominance, the post-2000 era is 516 

characterized by persistent negative anomalies (−41.8 and −49.7 kg/ ha for 2000s and 2010s 517 

respectively), despite continuous agronomic advancements. This reversal coincides with an 518 

expansion in the spatial extent of climate risks; the 2010s recorded the historical maximum 519 

area under Extreme risk (2.08 %). Notably, yield deviations exhibited a stronger negative 520 

correlation with the area under Severe risk (𝑟 =  −0.28) compared to Extreme risk (𝑟 =521 

 −0.06). This suggests that widespread, moderate-to-severe whiplash stress events 522 

compromise national aggregate yields more significantly than intense but spatially localized 523 

extremes. The distinct shift to negative yield anomalies in the last two decades evidences a 524 
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‘climate penalty’ that has effectively neutralized the marginal gains from recent technological 525 

inputs.  526 

 527 

Figure 6: (a) Comparison of normalized characteristics (frequency, duration, and 528 

intensity) of Moderate, Severe, and Extreme Whiplash risks between 1951-1985 and 529 

1986-2019; (b) Transition map of overall compound whiplash risk using CEI, comparing 530 

the recent epoch 1986-2019 to the baseline epoch 1951-1985; (c) Divergence of wheat 531 

yields and whiplash risk (1951-2019), showing decadal detrended yield anomalies (bars) 532 

against the temporal evolution of the spatial extent (%) of Moderate, Severe, and Extreme 533 

risks, to highlight the increasing impact of whiplash on yield stability.  534 

This persistent and spatially expanding risk has also translated into significant socio-535 

environmental consequences, particularly in regions where high whiplash exposure intersects 536 

with vulnerable populations and dynamic land use shifts (figure S5, Supplementary Material). 537 

Tropical wet and dry parts of Madhya Pradesh (80.37 %), arid parts of Rajasthan (67.75 %), 538 

semi-arid Gujarat (65 %), tropical Kerala (43.5 %), Maharashtra (51.6 %) and Goa (51.85 %) 539 

emerged as the most critically exposed states, when compounded with significant land use 540 

transitions between 2000 and 2019, including rapid urban expansion, increase in fallow lands, 541 

and reduction in plantation cover.  542 

5. Conclusions 543 
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This study provides the first pan-India, event-based assessment of the climatology and 544 

evolution of individual and compound dry (DS) and wet spells (WS) across India from 1951 to 545 

2019, revealing the emergence of precipitation “whiplash” as a distinct hydroclimatic 546 

phenomenon. Unlike previous studies that predominantly examined seasonal or annual drought 547 

and flood frequencies, this analysis captures daily-scale transitions and lag-dependent coupling 548 

between extremes, allowing for a more mechanistic understanding of abrupt hydroclimatic 549 

reversals. 550 

Extreme WS showed broad scale intensification, after a decrease till the 1990s, with a spatial 551 

increase of almost 33 % over arid Rajasthan, coastal Karnataka, tropical parts of Kerala and 552 

Northeast, while extreme DS exhibited a southward extension from its traditional northwestern 553 

core, with an overall spatial increase of 15-40 % over western Rajasthan, central India, and 554 

parts of Telangana and Chhattisgarh. This shift indicates a re-distribution of DS dominance 555 

from Northwest India, as noted by earlier studies (Mujumdar et al., 2020; Mukherjee et al., 556 

2018), toward more humid and transitional zones. While past studies largely focused on mean 557 

monsoon variability and trend asymmetry in rainfall extremes (Verma et al., 2022; Roxy et al., 558 

2017), this study demonstrates a systemic transition towards higher-frequency, higher-intensity 559 

precipitation variability, evident through coupled wet-dry dynamics.  560 

A marked post-1980s escalation in both frequency and severity of abrupt whiplash transitions 561 

is evident, with spatial footprints expanding into the arid and semi-arid zones of western India, 562 

the upper south-west coast and parts of Central India, showing no signs of recovery. 563 

Furthermore, the identification of asymmetric whiplash dynamics, increasingly dominated by 564 

dry-to-wet transitions, reveals a sharp rise in both intensity (~49 %) and coincidence rates (> 565 

0.8) in several regions, suggesting that dry antecedent conditions amplify subsequent wet 566 

responses through soil moisture-precipitation feedbacks. A key methodological advance of this 567 

study lies in quantifying the sensitivity of whiplash detection to lag periods, demonstrating that 568 

although most transitions occurred abruptly, their decrease with the increase in lag period and 569 

almost 50 % increase with longer time windows suggest multi-annual memory and persistence 570 

in hydroclimatic system.  571 

Among 81 unique whiplash categories identified, moderately prolonged DS (6-months) 572 

followed by a short intense WS, emerged as the most frequent combination, with whiplash 573 

frequency peaking (73 % increase) before declining at longer DS durations. This indicates that 574 

seasonal-scale dry spells are the most susceptible to abrupt wet reversals. While the “Worst 575 

Case” remained concentrated in arid/semi-arid Western India, the “Best Case” and “Flash 576 
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Case” expanded into Central and Western zones during the later decades, signalling an 577 

emerging eastward redistribution of whiplash risk.  578 

By moving beyond siloed analyses of wet and dry extremes, this study redefines hydroclimatic 579 

whiplash as a distinct, emergent compound risk. This further corroborates the increase in 580 

extreme whiplash risk frequency by 13 %, with an overall systemic whiplash spatial 581 

intensification of 26.6 %. While arid, semi-arid, and tropical wet and dry southeast India 582 

emerged as the epicentres of the persistent moderate whiplash stress, the east coast and Central 583 

India face rapidly emerging risks, and tropical and temperate regions of south-west coast and  584 

northern India respectively, have remained in a persistently high risk state since 1951, showing 585 

no signs of recovery, consistent with persistent monsoon variability reported by Roxy et al. 586 

(2017) but captured here through a compound lens for the first time. This volatility has already 587 

breached agricultural tolerance which collapsed into a post-2000 ‘climate penalty’.   588 

This study also opens up critical questions for the future. The challenge to provide a physical 589 

explanation for many of the observed whiplash patterns remains owing to the complexity of 590 

the systems driving individual extremes and the intricate interactions between them. The 591 

underlying drivers and mechanisms of whiplash transitions are the focus of ongoing research, 592 

which will enable us to disentangle the relative roles of large-scale circulation, local feedbacks, 593 

and human-induced changes.  594 
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