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14 Highlights

15 e India’s hydroclimatic extremes have reorganized fundamentally since the 1980s with
16 extreme wet spells intensifying and expanding by 33 % by 2019, and dry spells shifting
17 southward with marginal frequency changes.

18 e Rapid dry-to-wet transitions have strengthened by 14.3 %, while spatially expanding
19 by 49 % across tropical coastal and humid subtropical central belts during 1986-2019.
20 However, wet-to-dry transitions declined by 10 % during the later decades along with
21 a decreased spatial footprint, revealing a systematic shift toward convectively driven
22 dry-to-wet whiplash dominance.

23 e The new risk-based whiplash index reveals a pervasive 13 % rise in extreme risk, and
24 a 26.6% rise in grids experiencing simultaneous high frequency-duration-intensity,
25 indicating a systemic broadening of exposure.

26 e Chronic high-risk exposure persists over the Southwest coast with no recovery, while
27 emerging risks have triggered a structural ‘climate penalty’ on agriculture, neutralizing
28 post-2000 technological gains.
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30 This study presents a comprehensive assessment of the evolution of hydroclimatic extremes,
31  dry spells (DS), wet spells (WS), and their rapid transitions (whiplash) across India from 1951
32 till 2019. A marked reorganization of extremes emerged around the 1980s regime shift,
33 characterized by widespread intensification of WS and a 40 % rise in DS-affected grids
34 experiencing fewer but longer events. Using Event Coincidence Analysis, trigger relationships
35 between extreme DS and WS are quantified, revealing that trigger coincidence rates exceeded
36 0.8 after the mid-1980s and increased spatially by nearly 49 % over the west coast, Central
37 India, and the Northeast. Disaggregating transitions demonstrated an emerging dominance of
38 dry-to-wet (DTW) behavior, with an increase of ~14 %, reflecting reorganized monsoon
39 feedbacks. Quantification of whiplash severity revealed a 13 % and 8.7 % rise in extreme and
40 severe whiplash frequencies, and a 26.6 % increase in grids exhibiting simultaneous high
41  frequency, duration, and intensity. Spatially, the southwest coast and northern India exhibit
42 ‘persistently high’ risk with no recovery since 1951, while the east coast and central India show
43  ‘emerging’ volatility. Crucially, this intensification translates into a quantifiable ‘climate
44 penalty’ on agriculture: post-2000 wheat yields show persistent negative anomalies with an
45  increase in exposure to extreme whiplash risk, which in turn demands an immediate pivot in

46 adaptation and resource planning.
47 1. Introduction

48 The rising frequency and intensity of extreme hydro-meteorological events have heightened
49 global concern, particularly as climate change accelerate abrupt transitions between dry and
50 wet extremes, referred here as hydro-meteorological whiplash events, which produce impacts
51 far greater than isolated dry or wet spells (IPCC, 2021; Zscheischler et al., 2018; Vose et al.,
52 2014). Increasingly observed across diverse climatic regimes, these rapid shifts trigger
53 cascading consequences (Weesie et al., 2025; Tan et al., 2023; Zscheischler et al., 2018); for
54  instance, vegetation growth during the preceding wet extremes period can significantly amplify
55 fuel loads, thereby intensifying wildfires in the subsequent dry extreme period (Swain, 2021;
56 Scasta et al., 2016). Furthermore, the surface soil desiccated during dry extremes may develop
57  dense crusts that enhance surface runoff during following wet periods, increasing the likelihood
58 of flooding, landslides (Johnston et al., 2021) and erosion (Borrelli et al., 2020).

59 Defined not by the duration of the initial state but by the speed and abruptness of transition
60 between opposite hydroclimatic states, whiplash extremes leave minimal time for adaptation

61 and impose severe socio-economic burdens (Anderson et al., 2025; Ansari and Grossi, 2022).
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62 Real-world events, like California’s rapid shift from a multi-year drought (2011-2016) to
63 devastating atmospheric-river floods in 2017 causing Oroville Dam failure that displaced
64 188,000 people (Zhang et al., 2024; Henn et al., 2020; Koskinas et al., 2019; He et al., 2017,
65 Diffenbaugh et al., 2015), or in 2015 South Carolina’s transition from a months-long drought
66 toa“l-in-1000-year” flood due to extreme rainfall linked to Hurricane Joaquin (Alipour et al.,
67 2020; Otkin et al., 2015), underscore their compounded, high-impact nature.

68 This study focuses on the evolution of such whiplash events on India, a region with pronounced
69 monsoon variability which makes it particularly susceptible to such transitions. Over the past
70 six decades, the Indian monsoon has shown an increasing spatial footprint of dry extremes,
71 while wet extremes show no significant trend (Vinnarasi and Dhanya, 2016; Kumar et al., 2020;
72 Singh and Ranade, 2010). High-resolution data analyses reveal intensifying rainfall
73 heterogeneity, with wet regions turning drier and vice versa (Singh et al., 2021;Katzenberger
74  etal.,, 2020; Vinnarasi and Dhanya, 2016). Extreme precipitation events are strongly modulated
75 by large-scale climate modes, such as the Indian Summer Monsoon Index and Arctic
76  Oscillation (Rehana et al., 2022; Kumar et al., 2020; Singh and Ranade, 2010), which modulate
77 atmospheric circulation and monsoon strength.

78 While earlier studies have examined transitions between wet and dry regimes on seasonal or
79 annual scales (Madakumbura et al., 2021; Casson et al., 2019; Christian et al., 2015), high-
80 resolution analyses capturing daily resolved and sub-seasonal whiplash dynamics remain
81 underexplored, especially over monsoon-dominated regions. To examine the switch between
82 long-term dry and wet regimes, anomalous annual precipitation dipole events (a dry year
83 followed by a wet year (Christian et al., 2015)) and seasonal precipitation anomalies (a dry
84 winter one year followed by a wet winter the next) have been analyzed (Swain et al., 2018).
85 However, such coarse temporal aggregations cannot capture the rapid transitions that constitute
86 a whiplash, occurring within months or weeks, over India (Dash and Maity, 2021).

87 Despite substantial progress in characterising dry, wet, and compound extremes using: (i)
88 univariate standardized indices (like, Standardized Precipitation Index (SPI) (Guttman, 1998),
89 Standardized Precipitation and Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010))
90 that aggregate precipitation (and sometimes evapotranspiration) over fixed accumulation
91 windows to quantify wetness/ dryness relative to a historical climatology (Laimighofer and
92 Laaha, 2022; He and Sheffield, 2020); (ii) multivariate and joint probability approaches
93 (multivariate extreme value theory, copulas, joint return periods) that estimate co-occurrence
94 probabilities of extreme magnitudes (Zscheischler and Seneviratne, 2017; Salvadori et al.,

95 2007; Coles et al., 2001); and (iii) process-based or model-based analyses that use coupled
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96 land-atmosphere models to diagnose feedbacks and drivers (Miralles et al., 2019; Seneviratne
97 et al., 2010), a critical knowledge gap remains in detecting and quantifying short-lag,
98 directional transitions between hydroclimatic states. Existing approaches rely on fixed
99 accumulation windows, stationary assumptions (Laimighofer and Laaha, 2022; IPCC, 2021;He
100 and Sheffield, 2020), or magnitude-based dependence structures that smooth intra-seasonal
101 variability and fail to capture the sequencing, timing, or rapid onset of transitions (Miralles et
102 al, 2019; Salvadori et al., 2007; Coles et al., 2001), limitations that are particularly
103 consequential for the highly variable and rapidly shifting Indian monsoon system (Mishra et
104 al, 2024; Tan et al., 2023; Bhattacharyya et al., 2022; Krishna et al., 2020). Consequently, the
105 spatiotemporal evolution of the interaction between dry and wet spells, and the mechanisms by
106  which they produce high-impact whiplash events, remain poorly resolved. To address this gap,
107 this study employs a daily, event-based, non-parametric framework (Donges et al., 2016;
108 Siegmund et al., 2017, Walters, 2012) that uses raw precipitation, the most direct
109 hydrometeorological driver (Pendergrass et al., 2017; Trenberth et al., 2003), to identify
110 individual extremes and their rapid transitions without imposing parametric, stationary, or
111  aggregation constraints. This study enables explicit detection of short-lag directional links
112 Dbetween precursor dry or wet events and their subsequent triggers, allowing a robust,
113  observation-driven reconstruction of how whiplash dynamics have reorganized across India’s
114  climatic zones over the past seven decades (1951-2019).
115  Therefore, the overall objectives of this study are: (i) to detect and characterize short-lag
116  hydroclimatic whiplash transitions, including their directionality, strength, and lag structure,
117 using an event-based, non-parametric framework, (ii) to identify emerging regional hotspots
118 and climate-zone specific behaviors in the whiplash occur occurrences under evolving
119 monsoon variability, and (iii) to capture concurrent changes in frequency, duration, and
120 intensity of rapid spell transitions, using an integrated whiplash risk index.
121 This article is organized as follows: Section 2 details the dataset and the study area. Section 3
122  describes the methodology, which is followed by the Results and Discussions in Section 4, and

123 the conclusions in Section 5.
124 2. Study Area and Data Used

125 This study focuses on the Indian subcontinent spanning over 3.29 million km?, a densely
126 populated and agriculturally reliant country. The Indian subcontinent encompasses highly

127 diverse climate zones (figure 1) (Beck et al., 2018; Peel et al., 2007; K&ppen, 1884), including
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128 arid and semi-arid regions in the northwest, warm temperate zones in central India, subtropical
129 humid areas in the northeast and Himalayan foothills, semi-arid and tropical wet-and-dry
130 regions in the south, and warm-humid coastal belts. This climatic heterogeneity makes India
131 vulnerable to both hydro-meteorological extreme wet and dry spells. This study utilizes a high-
132 resolution daily gridded precipitation dataset (0.25 °x 0.25 °) (Pai et al., 2014), obtained from
133 the India Meteorological Department (IMD) for the period of 1951-2019. The dataset spans the
134  spatial domain from 6 ° to 38 °N latitude and 68 ° to 100 °E longitude.
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136 Figure 1: Details of climatic zones and their spatial extent over India (Tropical
137 Monsoon/Tropical Wet [Am], Humid Subtropical/Temporal [Cwa], Hot Desert/Arid
138 [BWh], Hot Semiarid/Arid Steppe and Hot [BSh|, Tropical Wet and Dry/Tropical
139 Savannah [Aw], and Warm Temperate [Cwb]).

140 3. Methodology
141  3.1. Identification of individual dry and wet spells

142 In this study, extreme events are defined and extracted from daily precipitation at each grid
143 point of India over 1951-2019. An extreme dry spell (DS) is defined as a period where the daily
144  precipitation remains below the 5™ percentile continuously for at least a month, indicating a
145 prolonged deficit in rainfall. This threshold is consistent with widely accepted definitions of
146 short-term meteorological dry extremes (Vicente-Serrano et al., 2010; Wilhite and Glantz,

147 1985) and has been employed in previous studies over India to capture prolonged hydro-
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148 meteorological stress with significant impacts on agriculture, water resources, and ecosystems
149 (Tandel et al., 2023; Dash and Maity, 2021; Vinnarasi and Dhanya, 2016).

150 In contrast, an extreme wet spell (WS) is identified as a day or sequence of days exceeding the
151  95™ percentile of daily precipitation, signifying a sudden and intense rainfall event (Dash and
152  Maity, 2021; Swain et al., 2018; Vinnarasi and Dhanya, 2016). The choice of the 5™ and 95®
153 percentiles ensures a focus on the most extreme tails of the precipitation distribution, capturing
154  events with the greatest potential hydrological and socio-economic impacts (Swain et al., 2018;
155 Pendergrass et al., 2017).

156 Extended dry phases lasting several weeks can substantially deplete soil moisture, reduce
157 groundwater recharge, and suppress vegetation growth, while isolated but intense wet events
158 can trigger flash floods, landslides, and rapid erosion (Johnston, 2024; Pal and Ojha, 2021;
159 Borelli et al., 2020). While intermittent dry days are a natural part of the monsoon cycle, a DS
160 of > 30 consecutive days below the 5™ percentile within the monsoon season represents an
161 anomalous break phase rather than a typical intra-seasonal fluctuation, severely impacting
162 rainfed agriculture and water resources even during the monsoon months (Straus, 2022; Kumar
163 etal., 2013). Similarly, extreme WS exceeding the 95™ percentile often corresponds to high-

164 impact flood-producing events associated with active monsoon phases (Goswami et al., 2006).
165 3.2. Detection of localized spatial clusters of extreme frequency shifts

166 To further investigate spatial coherence in the frequency shifts of extreme DS and WS, the
167  Getis Ord G; statistic (Getis and Ord, 1992) is employed. This spatial statistic quantifies the
168 degree to which high or low values of a variable cluster in geographic space, distinguishing
169 statistically significant local “hot” and “cold” regions. The G statistic for each grid cell i is
170 computed as:

Xjwix; = X3 wij

5\/["21' wi; = (Z; Wij)z]

n—1

171 G =

1

172 where x;is the attribute value (here, standardized frequency change in DS or WS) at location j,
173 wy; is the spatial weight between locations i and j, n is the total number of observations, Xis

174  the mean, and S is the standard deviation of all x. The resulting z-scores quantify how strongly
175 each grid cell is associated with spatially clustered high or low values, while corresponding p-

176 values indicate statistical significance.
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177 In this study, grids with significant positive G;values (z > 1.96, p < 0.05) were identified as
178 hotspots, representing clusters of high-frequency changes in DS or WS, whereas significant
179 negative G; values (z < -1.96, p < 0.05) were defined as coldspots, indicating localized
180 decreases. The spatial weights (w;;) were defined using a fixed-distance neighborhood matrix
181 to capture immediate local interactions while minimizing edge effects. By mapping only
182 statistically significant clusters, the G; analysis provides a robust visualization of regional
183 redistribution and intensification patterns of DS and WS frequencies over time. This enables
184 the detection of spatially coherent zones of increasing or declining individual extremes,
185 offering valuable insights into evolving hydroclimatic risk landscapes across diverse climate
186 zones of India. However, understanding their temporal interplay is critical for capturing rapid
187 phase transitions between these opposing extremes, to finally identify potential whiplash

188 occurrences and elucidating the dynamics governing those transitions across India.
189 3.3.Event Coincidence Analysis (ECA)

190 We adopt an event-based, non-parametric framework, Event Coincidence Analysis, which as
191 the name implies, quantifies how often two types of events occur in close temporal succession
192 (Donges et al., 2016, 2015; Siegmund et al., 2017), to explicitly quantify the coincidence rate
193 and lag structure (both instantaneous and lagged response) between the two temporary
194 successive events. Here, ECA is used to evaluate the bidirectional temporal relationship
195 Dbetween extreme dry and wet spells, i.e., how often a DS is followed by a WS within a specified
196 short lag window and vice versa. Furthermore, ECA does not require aggregation into long
197 accumulation windows, while preserving sequencing and directionality (Walters, 2012). The
198 timing of the clearly defined events is the only factor considered by ECA. As a result, it
199 facilitates the assessment of the statistical relationship and temporal co-occurrence among the
200 phenomena and/or processes being examined (Donges et al., 2016, 2015; Siegmund et al.,
201 2017).

202 ECA also serves as a tool for testing hypotheses about the nature of the connections between
203 two event types, such as whether one acts as a precursor (causal trigger), a consequence, or a
204  co-occurring phenomenon under shared climatic drivers (Donges et al., 2016, 2015; Siegmund
205 et al., 2017). For example, in hydroclimatic contexts, a dry-to-wet transition might reflect
206 atmospheric circulation shifts or large-scale moisture advection processes, whereas a wet-to-
207 dry transition might be linked to post-storm soil moisture feedbacks or suppressed convection

208 following heavy rainfall. Thus, ECA facilitates the exploration of physical mechanisms
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209 underlying the temporal sequencing of extremes, which cannot be inferred from linear
210 correlation analyses alone.
211 To determine the degree of statistical correlation between the two-event series, ECA offers two

212  coincidence metrics, namely the precursor and trigger coincidence rates.
213 3.3.1. Precursor Coincidence Rate

214  The Precursor Coincidence Rate quantifies the likelihood that an extreme event (e.g., a DS)
215 acts as a precursor to a subsequent extreme (e.g., a WS) within a defined time window, thereby
216 serving as a diagnostic measure of dry-to-wet whiplash transitions. In the context of hydro-
217 meteorological extremes, a high precursor rate indicates a strong temporal clustering of
218 opposite-phase events, suggesting that antecedent dry conditions may enhance the
219 susceptibility of the system to rapid wet transitions due to reduced infiltration, soil crusting, or
220 hydrological memory effects. Conversely, a low rate implies that the two extremes are largely
221 independent with minimal temporal coupling.

222 Mathematically, consider the time series of WS and DS occurring, respectively, at times t}/S
223 and tjDS withi=1, ..., Nws andj =1, ..., Nps, where Nws and Nps are the number of WS and
224 DS events, respectively. The precursor coincidence rate (7p) is defined as (Donges et al., 2016,

225 2011) (also shown in figure 2):

Nws Nps

226 1, = NWSZ ZIMT] S — 1) = tps) (2)

227 Here 7 is the lag parameter between the two events types and controls the admissible recovery
228 time between a potential precursor and a subsequent opposite-phase extreme. AT is defined as
229 the temporal tolerance for preconditioning with a time window of a specific period from t.
230 Ijg 4ry(x) is an indicator function which equals 1 if the event ((t}S — 7) — ¢/°) lies within the
231 window AT, and 0 otherwise, and H (x) denotes the Heaviside function. For WS occurring at

232 time t/VS, the output of the Heaviside function is either one or zero based on the following rule:

( Nps
< 1 Z 1 ((tWS -1)— t-DS) >0
233 Z I OAT] i - T) tDS) = ’ ]‘:1 [O'AT] t J (3)
L 0,else

234 which indicates whether or not the WS- event under consideration has a preconditioning

235 impact. The remaining WS-events are then subjected to the same procedure. Lastly the
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236  Precursor Coincidence Rate 7, calculates the fraction of WS events preceded by DS
237 occurrences, with values ranging from 0 (which indicates no preconditioning) to 1 (indicating

238 all WS events are preconditioned by DS).
239 3.3.2. Trigger Coincidence Rates

240 Another measure of the statistical link between the two series under investigation which ECA
241  employs is the trigger coincidence rate. Complementary to the Precursor Coincidence Rate, the
242  Trigger Coincidence Rate quantifies how frequently an extreme event (e.g., a WS) is followed
243 by an opposite extreme (e.g., a DS) within a defined time window. In the context of
244  hydroclimatic whiplash, a high trigger rate indicates that intense wet conditions are often
245 succeeded by rapid drying, implying strong post-event land-atmosphere feedbacks such as
246 enhanced evapotranspiration, rapid soil moisture depletion, or suppressed subsequent rainfall
247 due to convective stabilization. Conversely, a low trigger rate suggests that wet extremes
248 occurred largely in isolation without immediate dry transitions.

249 Mathematically, consider the time series of WS and DS occurring, respectively, at times t}VS
250 and tjDS withi=1, ..., Nws and j = 1, ..., Nps, where Nws and Nps are the number of WS and
251 DS events, respectively. The trigger coincidence rate (rt), when focused on DS, is defined by

252 (Donges et al. 2016, 2011) as (also shown in figure 2):

1 Nps Nws
253 1, = —Z H Z o (1S = 7) = tP%) 4)
Nps =1 =

254  Here, the Heaviside function H (x) captures whether a DS event triggers a WS event within
255 the lag tolerance. Conversely, if the analysis focuses on WS triggers, it measures whether a WS
256 s followed by a DS. This procedure is repeated for all events of the designated trigger type,
257 yielding r; values in the range of 0 (no triggering) to 1(every trigger event is followed by a

258 response event).
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260 Figure 2: Schematic illustration of Precursor and Trigger Coincidence Rates; To
261 calculate PCR, the WS (red bars) at t'3’"5 is considered, precursor coincidence occurs when
262 a DS (blue bars, here t3°) falls within the prefixed temporal tolerance window AT (green
263  box), at a lag of T from t¥®, which is then repeated for all WS, and the total number of
264 coincidences is calculated. To calculate TCR, the DS (blue bar) at t‘s’s is considered,
265 trigger coincidence occurs when a WS (red bars, here ty°) falls within the prefixed
266 temporal tolerance window (purple box), at a lag T from t’s)s, Which is then repeated for

267 all DS, and the total number of trigger coincidences are calculated.

268 4. Results and discussions

269 4.1. Spatiotemporal variation of individual DS and WS around the 1980s regime shift

270 A distinct decline in WS frequency trends is evident until the 1980s, followed by a marked
271 increase thereafter (See the Supplementary Material, figure S1 that identifies the shift through
272 the decadal redistribution of extreme DS and WS). Although DS frequencies remained
273 comparatively stable across decades, their spatial footprint evolved considerably. The period
274 1981-1990 thus represents a transition phase, warranting the segregation of pre- and post-1980s
275 epochs to highlight the redistribution and intensification of extremes in changing climate.

276  Further analysis of the climatological evolution of extreme DS revealed a notable spatial spread
277 andredistribution between the two time periods: 1951-1985 and 1986-2019 as shown in Figure
278 3(a-i). Although a reduction in DS frequency was observed over northwestern (BWh) and
279 central India (CWa) during the later period, the spatial spread extended southward. When
280 statistically significant clusters were retained using the Getis-Ord G; Statistic and mapped for
281 further interpretation (figure 3(a-ii)), it revealed that western Rajasthan (BWh) exhibited
282 increased DS frequency, along with Uttarakhand (Cwb/ Aw), northern UP (Cwa), parts of

10
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283 Jharkhand (Aw) and southern West Bengal (Cwa), and parts of Maharashtra, Telangana,
284  Andhra Pradesh, and Chhattisgarh, spanning Am and Aw climate zones.

285 Conversely, extreme WS showed a broad-scale intensification and spatial expansion between
286 1986-2019 compared to 1951-1985 (figure 3(b- i)). Statistically significant WS hotspots
287 emerged in arid Rajasthan, coastal Karnataka and Kerala (Am), extending to semi-arid
288 Maharashtra and certain pockets of the northeastern states (Am) (figure 3(b- ii)). Such growing
289 exposure of both arid and humid climatic regions to high-frequency extreme WS, reflects a
290 spatial reorganization of hydroclimatic stress across diverse climate regimes. Overall, the
291 distributional shifts in affected grids (figure 3(c)) indicates an increase of up to 40 % in the
292 area experiencing 2-4 DS per year and an increase of up to 33-50 % in the areas undergoing 12
293  or more WS per year during 1986-2019.

294  The observed spatial and temporal shifts in both DS and WS indicate a growing spatial overlap
295 and temporal proximity between opposing hydroclimatic states, thereby increasing the
296 likelihood of rapid transitions between them. Regions that were once dominated by prolonged
297 dry conditions may now experience intensified wet extremes. Such oscillations, termed here as
298 hydroclimatic whiplash, cannot be fully captured by examining DS and WS independently. A
299 focused investigation of these transition dynamics using Event Coincidence Analysis (ECA)
300 therefore provides crucial insight into the evolving compound nature of India’s monsoon

301 extremes.

11
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303 Figure 3: (a) (i) Spatial distribution of average annual frequency of extreme Dry Spells
304 (DS) during 1951-1985 and 1986- 2019; (ii) Significant hotspots and coldspots identified
305 for the DS frequency change during 1986- 2019 using the Getis-Ord G; score; (b) (i)
306 Spatial distribution of average annual frequency of extreme Wet Spells (WS) during
307 1951-1985 and 1986- 2019; (ii) Significant hotspots and coldspots identified for the WS
308 frequency change during 1986- 2019 using the Getis-Ord G; score; (c) Distribution of the
309 number of grids experiencing different frequencies of extreme DS and WS during 1951-

310 1985 (blue) and 1986- 2019 (red).
311  4.2.Evolving dynamics and directional asymmetry in India’s whiplash behavior

312 The climatology of whiplash events is analyzed using ECA to assess the compound behavior
313 ofextreme WS and DS across India distinguishing between trigger and precursor relationships.
314 The resulting frequency and spatial patterns illuminate emerging shifts in the country’s
315 extreme-event dynamics.

316  Figure 4(a) illustrates high (»> 0.7) trigger coincidence rates during 1951-1985 and its spatial
317 concentration over the entire western coastal belt (Am), the Northeastern states (Am), and parts

318 of Eastern and Central India (Aw/ Cwa). During 1986-2019, not only did these regions retain

12
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319 high coincidence rates, but the magnitudes intensified (r:> 0.8) and expanded spatially. Clearly,
320 this establishes the intensification of whiplash transitions and its spread over climatically
321 sensitive zones in recent decades. The precursor coincidence rates (figure 4(b)) showed very
322  high values which were mainly prominent over Western Ghats (Am) and North Bengal (Cwa)
323 during 1951-1985, suggesting a strong preconditioning mechanism where the prior extreme
324  sets the stage for a subsequent one. While the magnitude remained similar over those regions
325 during 1986-2019, Eastern India (Cwa) marked an increase of 33.3 % in average precursor
326 rates along with an increased spread over the Northeast (Am). This enhanced precursor
327 coupling is indicative of a persistence-driven mechanism or a hydroclimatic memory effect,
328 particularly over the east and Northeast regions (Cwa/ Am), wherein antecedent soil moisture
329 deficits or excesses modulate the land atmosphere feedbacks that predispose regions to rapid
330 transitions between extremes, as reported in earlier studies (Gotte and Brunner, 2021; Koster
331 etal, 2010)

332 The spatial distribution of coincidence values is further summarized in figure 4(c). The increase
333 in the number of grids exhibiting trigger rates between 0.5 and 1 during 1986-2019 further
334 reinforces the intensifying and spreading nature of whiplash behavior. In contrast, precursor
335 coincidence rates remained constrained to less than 500 grids in both periods, despite increased
336 intensity in select regions. This implies that while triggering relationships have become more
337 widespread, precursor relationships remain more localized, likely due to region specific land
338 surface feedbacks.

339 Further, the sensitivity of the ECA metrics to key analytical parameters (lag time (1) and time
340 window (AT)) was investigated (figure 4(d)). When the lag was increased from 1 month to 3
341 months (AT =1 year), both trigger and precursor coincidence rates decreased significantly by
342  34.5 % and 21.3 %, respectively. This emphasizes that most whiplash transitions occur within
343 a short lag window, highlighting the rapid onset nature of these events, which poses severe
344  challenges for early warning systems and disaster preparedness. Conversely, increasing the
345 time window from 1 year to 5 years (t = 3 months) led to an increase of over 50 % in both
346 rates, indicating that when a broader temporal lens is used, more extreme spell transitions are
347 captured. This suggests that multi-annual persistence or recovery effects might also contribute
348 to longer- term whiplash behavior. These findings are further substantiated by Figure S2(a) for
349 trigger and Figure S2(b) for precursor rates (Supplementary material), where a clear decline in
350 both intensity and spatial spread is observed with increasing lag, while the opposite is true for

351 larger time windows.
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352 Given the dominance of trigger behavior, further disaggregation into DS Triggering WS
353 (DTW) and WS Triggering DS (WTD) was conducted (figure 4(e)). This analysis reveals an
354 interesting asymmetry. DTW rates ranging 0.3-0.6 (showing moderate temporal variability),
355 increased by ~4 % in 1986-2019 relative to the earlier period, whereas WTD rates, though
356 higher in magnitude (0.7-0.8) and much lower temporal variability, decreased by ~10 %.
357 Although the overall differences are modest, their opposing directions indicate a gradual shift
358 in dominance from wet-to-dry towards dry-to-wet transitions. Figure 4(f) and the spatial maps
359 shown in Figure S2(c) (Supplementary Material), support these trends: DTW shows a
360 prominent spatial footprint, while WTD, though more frequent, shrinks in spread. This contrast
361 likely reflects a reorganization of hydroclimatic feedback that enhances DTW occurrences,
362 resulting under evolving monsoon dynamics, where intensified convector activity following
363 prolonged dry conditions, driven by land-surface heating and boundary layer destabilization
364 (Liu et al., 2022; Zhou and Geerts, 2013). Whereas weakening post-monsoon subsidence and
365 reduced soil moisture-precipitation coupling may limit WTD events (Seneviratne et al., 2010;
366 Dirmeyer et al., 2009). Anthropogenic warming and aerosol-induced monsoon modulation
367 further alter large-scale circulation, reducing wet phase persistence and reshaping event
368 sequencing (Ayantika et al., 2021), thereby collectively driving a shift toward more
369 convectively driven DTW transitions and fewer WTD reversals.

370 To further compare the evolving nature of the individual hydroclimatic extremes, and their
371 whiplash behavior in the recent decades, we analyzed the frequency ratio of DS, WS and their
372  whiplash (trigger rates), comparing the recent period (1986-2019) to the earlier baseline (1951-
373 1985) (figure 4(g)). While DS have increased marginally across most regions (0.7 %), WS
374  show more pronounced and spatially widespread rise (4-5 %) especially over western (BWh),
375 central (Aw), and eastern India (Cwa), signaling an intensification of extreme wet periods.
376 However, it is the whiplash behavior which stands out. Though spatially limited, the frequency
377 of whiplash has increased across the west coast (Am), with a sharp increase (almost 49 %)
378 along the central belt (Aw) and Northeast (Am). This highlights the growing propensity of
379 rapid whiplash occurrences. These regions are not just facing more extremes, but more abrupt
380 switches between dry and wet conditions, which in turn indicates a shift towards volatile
381 monsoon dynamics.

382
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Figure 4: (a) Spatial distribution of trigger coincidence rates over India during the two
time periods: 1951-1985 and 1986-2019; (b) Spatial distribution of precursor coincidence
rates over India during the two time periods: 1951-1985 and 1986-2019; (¢) Grid-wise
distribution of precursor and trigger rates during 1951-1985 and 1986-2019 across India,
shows lower distribution for precursor and higher for trigger; (d) Sensitivity of trigger

and precursor coincidence rates to lag (t) and time window (UT), the two parameters
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390 used in the Event Coincidence Analysis; (¢) Comparison of DS Triggering WS (DTW)
391 and WS Triggering DS (WTD) coincidence rates across the two time periods; (f) Spatial
392 maps of DTW and WTD coincidence rates for the period 1986-2019; (g) Frequency ratio
393 of the DS, WS and their whiplash behaviour over the last 35 years (1986-2019) and the
394 Afirst 35 years (1951-1985).

395 4.3. Non-linear sensitivities and emerging whiplash risk typologies

396 To systematically understand the spectrum of hydroclimatic whiplash events across India, we
397 categorized compound extremes by combining the variations in DS and WS characteristics.
398 Specifically dry extremes were defined across three durations of 1 month, 6 months, 12 months,
399 and three intensity thresholds of 15 percentile, 10" percentile, and 5™ percentile. Similarly
400 wet extremes were characterized by durations of 1 day, 5 days, and 10 days, and intensities
401 exceeding the 85™, 90" and 95™ percentiles. This multidimensional combination led to the
402 creation of 81 distinct whiplash categories, some including 1-month DS of < 5" percentile
403 (Drylmon5p) followed by WS of 1 day of > 95" percentile (W1d95p), 6 months DS of < 10t
404  percentile (Dry6mon10p) followed by WS of 5 days > 85™ percentile (W5d85p), and so on. To
405 focus on the intrinsic variability of these compound categories, a single representative lag
406 period of one month was applied uniformly across all combinations.

407 Figure 5(a) presents the frequency of these 81 categories over the recent hydroclimatic epoch
408 1986-2019, revealing several notable trends. Peak frequency was observed for the whiplash of
409 6-months DS of < 15" percentile (Dry6émon15p) and 1-day WS of > 95% percentile (W1d95p),
410 highlighting the increasing prominence of rapid wet recoveries following prolonged moderate
411  dry periods. While increasing the DS duration from 1 month to 6 months whiplash occurrences
412  increased by ~73 %, but further extension to 12 months led to a marked decrease. This non-
413 linear sensitivity arises because intermediate-duration DS are sufficiently frequent and induce
414  strong land-atmosphere coupling, making them highly conducive to abrupt WS transitions. In
415  contrast, very short DS lack the persistence required to generate a rapid wet rebound, while
416 year-long DS are too rare and governed by slower hydroclimatic recovery processes to produce
417  frequent whiplash pairing. Consequently, whiplash likelihood peaks at moderate DS durations.
418 On the other hand, increase in WS duration from 1 day to 10 days generally decreased the
419 whiplash frequency, and decrease in WS intensity thresholds from 95% to 85" percentile,
420 increased the frequency. This indicates that short intense wet events are the key triggers.

421  Further, a comparison with the baseline epoch (1951-1985) (Figure S3 in Supplementary
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422 material) reveals a modest but consistent increase (7.2 %) in ECA frequencies across all
423  categories, implying a widespread intensification of whiplash sequences over time.

424  To further distil actionable insights from the 81-category space, three representative cases were
425  selected (figure 5(b)), grounded in extreme event theory and impact relevance: (i) Best Case
426 (BC): 1 month DS of < 15™ percentile (Drylmonl5p) followed by 10 days WS of > 85®
427 percentile (W10d85p), representing benign, hydrologically balanced recovery which is a
428  desirable resilient scenario; (i) Worst Case (WC): 365 days DS of < 5™ percentile
429 (Dry12mon5p) followed by a flash WS of 1 day and > 95" percentile (W1d95p), reflecting a
430 highly stressful scenario, posing threats to both ecosystem and infrastructure; (iii) Flash Case
431 (FC): DS of 1 month and < 5" percentile (Drylmon5p) followed by WS of 1 day of > 95t
432 percentile (W1d95p), emphasizing a sudden onset, short duration shocks with high intensity,
433  likely a growing concern under climate variability. The BC moderate frequency increased by
434  25% in 1986-2019 hinting at slight improvements in some regions’ DS-WS recoveries.
435 However, the WC remained alarmingly high, ranging from 55 % to 57 %, and so is the FC,
436 ranging from 56 % to 59 %, reinforcing the dominance of stress- inducing events in shaping
437 hydroclimatic risk landscapes. These trends point to worsening whiplash, especially dominated
438 by rapid onset extremes, even though isolated “best-case” recoveries exist in pockets.

439 Figure 5(c) further reveals distinct regional patterns of the spatial footprint of the three
440 representative cases. BS and FC were largely concentrated in the western parts of the Western
441 Ghats (Am), Northeast India (Am), and Eastern India (Cwa), regions known for strong
442 monsoonal signatures and steep terrain. WC, by contrast, was primarily focused on Western
443 and Northwestern India, coinciding with the arid and semi-arid zones vulnerable to persistent
444 DS and sudden WS. During 1986-2019, while the spatial extent of BC and FC expanded into
445 Central (Aw) and parts of Western India (BSh), WC regions showed further intensification
446 rather than spread, representing chronic compound risk in already vulnerable regions. This
447  spatial divergence, where some regions see expansion of flash or benign scenarios while others
448  exhibit intensification of chronic stress, is critical for informing region-specific adaptation

449  strategies.
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451 Figure 5: (a) Frequency distribution of 81 compound DS-WS categories during 1986-
452 2019, constructed by varying the duration and intensity of individual DS and WS; (b)
453 Comparison of three representative compound cases- Best Case (BC), Worst Case (WC),
454  and Flash Case (FC)- highlighting their frequency changes between 1951-1985 and 1986-
455  2019; (c) Spatial extent of the Best, Worst, and Flash Cases across India for the two
456 epochs.

457  4.4.Quantifying whiplash severity using a lag-weighted whiplash risk index (CEI)

458  Although till now the whiplash transitions were quantified through isolated case analysis, a
459 quantitative and temporally consistent index could more effectively capture the characteristics

460 of the whiplash events. Therefore, a Compound Event Index (CEI) is proposed while focusing
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461  on the most impactful and climatically significant type of whiplash transition identified across
462 India in section 4.2., i.e., DTW. The CEI is computed by aggregating the frequencies of DTW

463 transitions across lag windows (1) from 1 month to 9 months (Eq. 5).

9
464 CEI'= ) (DTW,|Weight()) (5)

=1
465 These lags represent the typical range over which terrestrial and atmospheric systems attempt
466 to recover from prolonged extreme conditions. Section 4.2. also revealed that the frequencies
467 decreased with increasing lag, indicating that short-lag transitions are more common and
468 potentially more abrupt. Therefore, weights (Wei ght(l)) are assigned inversely proportional
469 to the lag duration, to ensure that shorter-lag transitions are given more importance, reflecting
470 their limited recovery windows and higher likelihood of inducing stress across hydrological
471 and ecological systems. The CEI is the calculated over 81 distinct DS-WS combinations,
472  derived in section 4.3. (from individual DS and WS durations and intensities) across all spatial
473  grids over seven decadal windows spanning across 1951-2019.

474  Spatial mapping of the decadal CEI values (normalized between 0 and 1; figure S4 (a),
475 Supplementary Material) revealed a sharp decline in whiplash occurrences and spatial coverage
476  during the decade 1981-1990, in contrast to the substantial rise observed in 2011-2019.
477  Therefore, for clearer interpretation and contrast, the further analysis of CEI was stratified into
478  two epochs: 1951-1985 and 1986-2019. This division allowed for a targeted evaluation of pre-
479 and post-1980s dynamics, particularly to examine whether the apparent shift around the 1980s
480 marks a transition point in the evolution of compound extremes.

481 Building upon the CEI-based assessment, a threshold-based classification was implemented to
482 delineate three whiplash severity categories: Moderate risk (CEI > 60™ percentile and < 80™
483 percentile), Severe risk (CEI > 80™ percentile and < 95™ percentile), Extreme risk (CEI > 95™
484  percentile), for direct comparison of risk levels. While the CEI formulation already accounted
485 for the individual intensities and durations of both DS and WS, to understand the long-term
486 behavioural evolution of whiplash risks at a decadal scale and move beyond isolated events
487 and assess patterns in their temporal recurrence, persistence and cumulative impact, we have
488 further introduced: Frequency (number of decades in which a grid experienced whiplash in a
489 given risk category), Duration (maximum number of consecutive decades during which the
490 grid remained exposed to that category of the whiplash risk), and Intensity (mean normalized

491  CEl over the selected decades for that category, reflecting the mean severity).
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492  When the risk characteristics were compared across the epochs (figure 6(a)), Extreme Whiplash
493 events showed the highest increase in frequency (13 %), followed by Severe (8.7 %), while
494 Moderate Whiplash showed the highest increase in duration ( 6.3 %) during 1986-2019.
495  Although the intensities across all the risk categories may have plateaued, Extreme Whiplash
496 showed a slight decrease in duration (1.6 %) during 1986-2019. The spatial footprints provided
497 in Supplementary Figure S4(b) corroborate the intensification, revealing a clear expansion in
498 the geographical spread of these events. Figures S4(d) provides an additional resolution by
499 displaying the grid-level distribution of the characteristics of each whiplash category. Majority
500 of grids were concentrated over increased frequency and duration of the moderate-to-severe
501 risk spectrum during 1986-2019. However a comparison with Figure S4(c) (epochl: 1951-
502 1985) reveals a striking 26.6 % increase in the number of grids experiencing simultaneous high
503 frequency, duration, and intensity, across moderate and extreme whiplash risk category,
504 suggesting a broadening of systemic exposure.

505 The temporal transitions in overall whiplash risk have been analyzed using CEI (figure 6(d)).
506 While north-west (BSh), and south-east India (CWa) witnessed stable moderate risks
507 throughout 1951-2019, the East coast (Aw), parts of central India (Aw), southern Kerala (Am),
508 and the north-east India (Am) are observing an emerging risk during 1986-2019. Most notably,
509 the entire south-west coast (Am) including Kerala, coastal Karnataka and Maharashtra, and
510 warm temperate North Bengal and parts of the Northeast and northern India (CWb) has
511 sustained a persistently high-risk state since 1951-1985, with no signs of recovery, pointing to
512  chronic exposure. The presence of very few grids showing reducing or no risk in recent decades
513 is alarming and emphasizes the pervasive nature of whiplash intensification across India.

514 Decadal assessment of climate-yield interactions (figure 6(c)) reveals a distinct transition from
515 technological buffering to climate-induced suppression. While the 1990s exhibited a peak
516 positive anomaly (+173.3 kg/ ha), indicative of technological dominance, the post-2000 era is
517 characterized by persistent negative anomalies (—41.8 and —49.7 kg/ ha for 2000s and 2010s
518 respectively), despite continuous agronomic advancements. This reversal coincides with an
519 expansion in the spatial extent of climate risks; the 2010s recorded the historical maximum
520 area under Extreme risk (2.08 %). Notably, yield deviations exhibited a stronger negative
521 correlation with the area under Severe risk (r = —0.28) compared to Extreme risk (r =
522  —0.06). This suggests that widespread, moderate-to-severe whiplash stress events
523 compromise national aggregate yields more significantly than intense but spatially localized

524 extremes. The distinct shift to negative yield anomalies in the last two decades evidences a
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Figure 6: (a) Comparison of normalized characteristics (frequency, duration, and
intensity) of Moderate, Severe, and Extreme Whiplash risks between 1951-1985 and
1986-2019; (b) Transition map of overall compound whiplash risk using CEIL, comparing
the recent epoch 1986-2019 to the baseline epoch 1951-1985; (c) Divergence of wheat
yields and whiplash risk (1951-2019), showing decadal detrended yield anomalies (bars)
against the temporal evolution of the spatial extent (%) of Moderate, Severe, and Extreme

risks, to highlight the increasing impact of whiplash on yield stability.

This persistent and spatially expanding risk has also translated into significant socio-
environmental consequences, particularly in regions where high whiplash exposure intersects
with vulnerable populations and dynamic land use shifts (figure S5, Supplementary Material).
Tropical wet and dry parts of Madhya Pradesh (80.37 %), arid parts of Rajasthan (67.75 %),
semi-arid Gujarat (65 %), tropical Kerala (43.5 %), Maharashtra (51.6 %) and Goa (51.85 %)
emerged as the most critically exposed states, when compounded with significant land use
transitions between 2000 and 2019, including rapid urban expansion, increase in fallow lands,

and reduction in plantation cover.

5. Conclusions
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544 This study provides the first pan-India, event-based assessment of the climatology and
545  evolution of individual and compound dry (DS) and wet spells (WS) across India from 1951 to
546 2019, revealing the emergence of precipitation “whiplash” as a distinct hydroclimatic
547 phenomenon. Unlike previous studies that predominantly examined seasonal or annual drought
548 and flood frequencies, this analysis captures daily-scale transitions and lag-dependent coupling
549 between extremes, allowing for a more mechanistic understanding of abrupt hydroclimatic
550 reversals.

551 Extreme WS showed broad scale intensification, after a decrease till the 1990s, with a spatial
552 increase of almost 33 % over arid Rajasthan, coastal Karnataka, tropical parts of Kerala and
553 Northeast, while extreme DS exhibited a southward extension from its traditional northwestern
554  core, with an overall spatial increase of 15-40 % over western Rajasthan, central India, and
555 parts of Telangana and Chhattisgarh. This shift indicates a re-distribution of DS dominance
556 from Northwest India, as noted by earlier studies (Mujumdar et al., 2020; Mukherjee et al.,
557 2018), toward more humid and transitional zones. While past studies largely focused on mean
558 monsoon variability and trend asymmetry in rainfall extremes (Verma et al., 2022; Roxy et al.,
559 2017), this study demonstrates a systemic transition towards higher-frequency, higher-intensity
560 precipitation variability, evident through coupled wet-dry dynamics.

561 A marked post-1980s escalation in both frequency and severity of abrupt whiplash transitions
562 is evident, with spatial footprints expanding into the arid and semi-arid zones of western India,
563 the upper south-west coast and parts of Central India, showing no signs of recovery.
564 Furthermore, the identification of asymmetric whiplash dynamics, increasingly dominated by
565 dry-to-wet transitions, reveals a sharp rise in both intensity (~49 %) and coincidence rates (>
566 0.8) in several regions, suggesting that dry antecedent conditions amplify subsequent wet
567 responses through soil moisture-precipitation feedbacks. A key methodological advance of this
568 study lies in quantifying the sensitivity of whiplash detection to lag periods, demonstrating that
569 although most transitions occurred abruptly, their decrease with the increase in lag period and
570 almost 50 % increase with longer time windows suggest multi-annual memory and persistence
571 in hydroclimatic system.

572 Among 81 unique whiplash categories identified, moderately prolonged DS (6-months)
573 followed by a short intense WS, emerged as the most frequent combination, with whiplash
574 frequency peaking (73 % increase) before declining at longer DS durations. This indicates that
575 seasonal-scale dry spells are the most susceptible to abrupt wet reversals. While the “Worst

576 Case” remained concentrated in arid/semi-arid Western India, the “Best Case” and “Flash
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577 Case” expanded into Central and Western zones during the later decades, signalling an
578 emerging eastward redistribution of whiplash risk.

579 By moving beyond siloed analyses of wet and dry extremes, this study redefines hydroclimatic
580 whiplash as a distinct, emergent compound risk. This further corroborates the increase in
581 extreme whiplash risk frequency by 13 %, with an overall systemic whiplash spatial
582 intensification of 26.6 %. While arid, semi-arid, and tropical wet and dry southeast India
583 emerged as the epicentres of the persistent moderate whiplash stress, the east coast and Central
584 India face rapidly emerging risks, and tropical and temperate regions of south-west coast and
585 northern India respectively, have remained in a persistently high risk state since 1951, showing
586 no signs of recovery, consistent with persistent monsoon variability reported by Roxy et al.
587 (2017) but captured here through a compound lens for the first time. This volatility has already
588 breached agricultural tolerance which collapsed into a post-2000 ‘climate penalty’.

589 This study also opens up critical questions for the future. The challenge to provide a physical
590 explanation for many of the observed whiplash patterns remains owing to the complexity of
591 the systems driving individual extremes and the intricate interactions between them. The
592 underlying drivers and mechanisms of whiplash transitions are the focus of ongoing research,
593 which will enable us to disentangle the relative roles of large-scale circulation, local feedbacks,

594  and human-induced changes.
595 Code and data availability

596 The data and MATLAB codes used for the whiplash analysis are available at (Bhattacharjee
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