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Abstract. This study presents a systematic derivation of transport coefficients—including electrical conductivity, thermoelec-

tric, diffusion, and mobility coefficients—for a Lorentz plasma described by a standard Kappa distribution function. The anal-

ysis is implemented within the framework of the five-moment transport equations, in which the standard Kappa distribution is

adopted as the zeroth-order function. Momentum and energy collision terms are then evaluated using the Boltzmann collision

integral for several types of collisions, including Coulomb collisions, hard-sphere interactions, and Maxwell molecules. These5

collision terms are incorporated into the momentum equation to construct expressions for the generalized Ohm’s law and ex-

tended Fick’s law, from which the transport coefficients are obtained. The influence of the kappa parameter on the collision

terms and transport coefficients is examined in detail, revealing that low kappa values reduce the effective collision frequency

and enhance transport coefficients in the standard Kappa distribution, in contrast to the behavior reported for the modified

Kappa distribution. Finally, in the asymptotic limit of large kappa values, the transport coefficients consistently recover their10

Maxwellian forms.

1 Introduction

Transport processes in plasma can be analyzed using transport equations, which provide a macroscopic description of the

spatial and temporal evolution of the velocity moments of the particles velocity distribution function. These moments (e.g.

number density, drift velocity, temperature, pressure tensor, stress tensor, and heat flow vector) capture the collective behav-15

ior of plasma particles and interactions that determine their dynamics (Schunk, 1977; Schunk and Nagy, 2009; Bittencourt,

2004). The transport equations are based on linear relationships between the fluxes (e.g., particle flux, heat flux, and current

density), the external forces and gradients (e.g., in density, temperature, and pressure) that drive those fluxes. The constants

of proportionality in these linear relations are called transport coefficients—namely, the diffusion coefficient, electrical con-

ductivity, mobility coefficient, thermoelectric coefficient, and thermal conductivity—which quantify how particles and energy20

move through a plasma under the influence of gradients, external forces, and applied electromagnetic forces. Each coefficient

characterizes a different aspect of transport, that is, the diffusion coefficient measures the flux of particles driven by spatial vari-

ations in density, providing insight into how species spread within the plasma. The mobility coefficient describes how charged

particles drift in response to an applied electric field, and it is directly related to the electrical conductivity, which connects the

current density to the electric field. The thermoelectric coefficient links electric fields to temperature gradients and character-25

izes the generation of electric voltages and currents in non-uniform thermal environments. Finally, the thermal conductivity
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determines the heat flux produced by temperature gradients and governs the rate of thermal energy transport within the plasma

(Du, 2013; Wang and Du, 2017; Ebne Abbasi et al., 2017; Ebne Abbasi and Esfandyari-Kalejahi, 2019; Guo and Du, 2019;

Husidic et al., 2021).

For plasmas near thermal equilibrium, the Maxwellian distribution is commonly used to evaluate transport coefficients. How-30

ever, space and astrophysical plasmas often contain nonthermal particle populations that cause particle velocity distributions

to deviate from the Maxwellian form. In these nonthermal environments, such distributions are well fitted by the Kappa veloc-

ity distribution functions (Marsch, 2006). Kappa distributions are considered powerful class of non-Maxwellian distributions,

characterized by a power-law tail that captures the presence of suprathermal particles, features that the Maxwellian distribution

fails to describe.35

Consequently, several studies have extensively investigated transport coefficients in nonequilibrium plasmas using the Kappa

velocity distribution functions. In particular, studies such as Du (2013); Wang and Du (2017); Ebne Abbasi et al. (2017);

Ebne Abbasi and Esfandyari-Kalejahi (2019); Guo and Du (2019); Jwailes et al. (2025) derived diffusion, mobility, electrical

conductivity, thermoelectric coefficients, and thermal conductivity based on modified Kappa distributions, which assume a κ-

independent effective temperature and therefore produce a stronger low-energy core and enhanced suprathermal tails relative to40

a Maxwellian. Here, the kappa parameter κ, controls the population of high-energy suprathermal particles. However, this mod-

ified form differs fundamentally from the standard (Olbertian) Kappa distribution, introduced by Olbert (1968) and Vasyliunas

(1968), in which the effective temperature is κ-dependent, leading to weaker core and more pronounced high-energy tails. This

motivated Husidic et al. (2021) to evaluate the same transport coefficients for the standard Kappa distribution, demonstrating

that distinctions between the two forms are crucial because the choice of distribution impacts the resulting transport coefficients45

and their physical interpretation.

All of the reviewed studies used simplified collision models rather than the full Boltzmann collision integral. The simplest

models appear in Wang and Du (2017), Ebne Abbasi and Esfandyari-Kalejahi (2019), and Husidic et al. (2021) which used

Krook-type or BGK operators, offering computational simplicity but limited accuracy. More physically based models—such as

those proposed by Du (2013) and Guo and Du (2019)—used macroscopic transport equations derived from idealized relaxation50

assumptions. The most advanced work, presented by Ebne Abbasi et al. (2017), used the Fokker-Planck equation to model

Coulomb collisions. While this captures cumulative small-angle scattering and better represents long-range Coulomb forces,

it remains an approximation of the Boltzmann collision integral. Thus, all reviewed works share the same limitation: reliance

on simplified collision models. To overcome this limitation, Jwailes et al. (2025) recently introduced a comprehensive re-

evaluation of the transport coefficients based on the modified Kappa distribution, using the five-moment approximation of the55

transport equations with the Boltzmann collision integral as the collision model. In this approach, a new transport theory is

developed by deriving the five-moment approximation and the corresponding collision terms for various types of collisions for

the modified Kappa distribution. The five-moment momentum equation is then linked to the generalized Ohm’s law and the

extended Fick’s law, from which the transport coefficients are determined.

This study is inspired by the work of Husidic et al. (2021) and follows the same methodology and steps introduced by Jwailes60

et al. (2025). As in Husidic et al. (2021), we focus on evaluating the transport coefficients for the standard Kappa distribution,
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but we adopt the methodology used in Jwailes et al. (2025), particularly in the formulation of the transport equations, the

evaluation of the collision integrals, and the derivation of the transport coefficients. However, in contrast to Husidic et al. (2021),

we use the Boltzmann collision integral as our collision model rather than the Krook-type collision model. This substitution

is essential for obtaining results that more accurately capture the velocity-dependent interaction dynamics inherent to Kappa-65

distributed plasmas.

This paper is structured as follows: Section 2 provides a brief review of the Kappa distribution family, introducing the math-

ematical formulations and the physical interpretation of two different types of suprathermal tail distributions: the standard

Kappa and the modified Kappa distribution functions. It also explains how their behaviors differ from that of the Maxwellian

distribution. Section 3 presents the theoretical framework of this paper, in which we derive the five-moment approximation70

and the corresponding collision terms for the standard Kappa velocity distribution function, considering arbitrary drift-velocity

and temperature differences between the interacting plasma species. This includes three types of collisions: Coulomb colli-

sions, hard-sphere interactions, and Maxwell-molecule collisions. The section concludes with the derivation of the transport

coefficients using the five-moment approximation and the derived collision terms. Section 4 discusses the derived results pre-

sented in Section 3 for the standard Kappa distribution and compares them with the corresponding results for both the modified75

Kappa distribution and the Maxwellian distribution. Three aspects are considered in the comparison: (i) the effective collision

frequency and thermalisation rate; (ii) the behavior of the collision terms in the case of Coulomb collisions, with a focus on

how collisions affect both the momentum and the energy of the interacting particles; and (iii) the transport coefficients and their

dependence on the kappa parameter. The derived formulas are also compared with results from previous studies, highlighting

their dependence on the kappa parameter. Finally, Section 5 presents the conclusions.80

2 Distributions with suprathermal tails

Kappa distributions constitute a broad class of non-Maxwellian velocity distribution functions that effectively describe suprather-

mal particle populations in space and astrophysical plasmas. Unlike the Maxwellian distribution, they introduce a power-law

tail that decays more slowly than the exponential tail of the Maxwellian. This tail is controlled by the kappa parameter κ,

which determines the strength of the high-energy tail: larger κ values approach the Maxwellian limit, while smaller values85

emphasize suprathermal populations. With typical κ values ranging between 2 and 6, Kappa distributions have been observed

across diverse plasma environments, including the solar wind, Earth’s magnetosheath, and Jupiter’s magnetosphere, supported

by direct measurements from satellite missions such as Ulysses, Cluster, and Voyager 2 (see (Vasyliunas, 1968; Pierrard et al.,

2001; Maksimovic et al., 1997; Qureshi et al., 2003; Formisano et al., 1973; Collier and Hamilton, 1995) for details on these

missions and their observations of the Kappa distributions). Among the various formulations proposed in the literature, two90

main types are commonly used: the standard Kappa distribution and the modified Kappa distribution. While both distribu-

tions share the general objective of characterizing plasmas with high-energy tails, they differ in their mathematical structure,

parameter definitions, and physical interpretations.
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The concept of the Kappa distribution was first proposed by Olbert (1968) to explain the presence of high-energy particles

observed in the solar wind and magnetospheric plasmas, and was subsequently formalized by Vasyliunas (1968), who provided95

a more rigorous mathematical formulation. This early version is commonly referred to as the Olbertian or standard Kappa

distribution (SK). In velocity space, the drifting standard Kappa distribution is given by, (Lazar and Fichtner, 2021),

f SK
s (r,cs, t) =

nsξ(κs)
π3/2w3

s

(
1 +

c2
s

κsw2
s

)−κs−1

, (1)

where ns denotes the number density and ws is the thermal velocity of species s, defined as

ws =
√

2kBTs

ms
, (2)100

with ms and Ts being the particle mass and the absolute temperature, respectively, and kB the Boltzmann constant. The random

velocity cs is defined in terms of the position r, velocity vs, and the drift velocity us(r, t) of the species s,

cs(r,vs, t) = vs−us, (3)

The normalization function ξ(κs), which depends on the kappa parameter κs, is given by

ξ(κs) = κ−3/2
s

Γ(κs + 1)
Γ(κs− 1/2)

. (4)105

The parameter κs determines the slope of the power-law tails. Within this framework, the effective temperature Tκ, obtained

via the second velocity moment, depends on the kappa parameter κs and is written as

Tκ =
κs

κs− 3/2
msw

2
s

2kB
=

κs

κs− 3/2
Ts. (5)

As κs increases, the effective temperature decreases until it reaches the Maxwellian temperature Ts. This dependence implies

that the enhanced presence of suprathermal particles contributes additional energy to the system, effectively heating the plasma.110

Moreover, the expression for the effective temperature in equation 5 imposes a condition on the kappa parameter, namely

κs > 3/2; below this value the effective temperature diverges and is therefore undefined (Pierrard and Lazar, 2010).

Decades later, inspired by the principles of non-extensive statistical mechanics introduced by Tsallis (2012), Livadiotis

(2017) developed a new theoretical perspective reformulated the Kappa distribution into what is now known as the modified

Kappa distribution (MK). In velocity space, the modified Kappa distribution is given by, (Livadiotis, 2018; Davis et al., 2023),115

fMK
s (r,cs, t) =

nsη(κs)
π3/2w3

s

(
1 +

c2
s

κ0s
w2

s

)−κs−1

, (6)

where ws is defined as in equation 2. The normalization function in this case takes the form

η(κs) = κ
−3/2
0s

Γ(κs + 1)
Γ(κs− 1/2)

, κ0s = κs−
3
2
. (7)

Here, κ0s represents the invariant Kappa index, while κs is the shape parameter that governs the slope of the suprathermal

tails. As before, the condition κs > 3/2 must be satisfied to ensure that the modified Kappa distribution function in equation (7)120
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remains well defined. This modified version introduces a stronger thermodynamic basis by decoupling the effective temperature

from the kappa parameter κs, making it a kappa independent quantity, as given by

Tκ =
κ0s

κs− 3/2
msw

2
s

2kB
= Ts, (8)

which is identical to the Maxwellian temperature and remains constant regardless of the value of κs. This ensures that variations

in the high-energy tails do not change the overall thermal energy content of the plasma. In this sense, the modified Kappa125

distribution maintains the same total thermal energy content as a Maxwellian plasma while redistributing the particles between

the core and tail regions.

On the similarity side, both the standard and modified Kappa distributions are used to describe particle populations with

suprathermal tails, since both distributions retain a power-law form and exhibit suprathermal tails that are higher than those of

the Maxwellian distribution. Moreover, both distributions reduce to the Maxwellian distribution in the limiting case where κs130

approaches infinity, (Pierrard and Lazar, 2010).

lim
κs→∞

f SK
s = lim

κs→∞
fMK

s =
ns

π3/2 w3
s

exp
(
− c2

s

w2
s

)
. (9)

This behaviour is illustrated in Figure 1, where increasing κs causes both the standard and modified Kappa distributions to

converge smoothly toward the Maxwellian distribution. Although the standard and modified Kappa distributions share this

common limiting behavior and exhibit similar qualitative features, they differ in their mathematical formulation and physical135

interpretation. The mathematical distinction between the two forms lies primarily in their parameterization and normalization.

The standard distribution employs κs in the energy-dependent term, while the modified version replaces it with κs− 3/2.

While this shift may appear minor, it significantly affects the scaling of the velocity distributions, resulting slightly flatter high-

energy tails in the modified Kappa distribution compared to the standard Kappa distribution for the same κs value. Moreover,

in the standard Kappa distribution, the effective temperature of the particles depends on κs, making it much higher than the140

temperature in the Maxwellian case. However, for the modified Kappa distribution, the effective temperature is independent of

κs, making it identical to the Maxwellian temperature.

These differences are reflected in how the particle’s velocity is distributed. To illustrate how the two Kappa distributions

differ from the Maxwellian distribution, Fig. 2 shows a comparison between the Maxwellian, the modified Kappa, and the

standard Kappa distributions. The first thing we can notice is that both the modified and the standard Kappa distributions have145

higher-energy tails than the Maxwellian distribution, which is a defining characteristic of Kappa distributions. At the same

time, we can also observe differences in the shape of each distribution, which are directly related to the effective temperature.

In the standard Kappa distribution, the effective temperature Tκ is higher than that of both the Maxwellian and the modified

Kappa distributions, as shown in equation 5. Consequently, the population of high-energy suprathermal particles (i.e., at large

velocity magnitudes) is significantly enhanced compared to the other distributions. At the same time, this increase in high-150

energy particles is accompanied by a reduction in the particle population within the low-energy core (i.e., at small velocity

magnitudes). On the other hand, in the modified Kappa distribution, the effective temperature is the same as in the Maxwellian

distribution.
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Figure 1. A schematic comparison between (a) standard Kappa, (b) modified Kappa velocity distributions for κs values 2, 5, and 10, with

the Maxwellian velocity distribution.
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Figure 2. A schematic comparison of the standard Kappa distribution, the modified Kappa distribution for κs = 2, and the Maxwellian

velocity distribution.

To maintain this equality in temperature, particles are redistributed between the low-energy core and the high-energy tail

without changing the system’s total thermal energy. As a result, the high-energy tail of the modified Kappa distribution is lower155

than that of the standard Kappa distribution, while the particle population in the low-energy core becomes significantly higher.

Both the standard and modified Kappa distributions are used in different contexts. The standard Kappa distribution is the

most commonly used tool in space plasma studies, where it provides excellent fits to spacecraft observations from the solar

wind, planetary magnetospheres, and the heliosheath. It captures the empirical relationship between suprathermal particle

populations and the observed nonthermal heating of plasmas. On the other hand, the modified Kappa distribution, is mainly160

used in theoretical and statistical modeling, particularly in studies of systems governed by non-extensive entropy, long-range

interactions, and quasi-stationary states. It provides a self-consistent description of plasma systems that exhibit deviations from

classical thermodynamic equilibrium without requiring an increase in thermal energy.

Finally, Table 1 summarizes the main mathematical and physical properties of the Maxwellian, standard Kappa, and modified

Kappa velocity distribution functions discussed above, providing a compact overview of their key characteristics, parameter165

definitions, and limiting behavior, and allowing for an easy and direct comparison among the three distributions.
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Table 1. Mathematical and physical comparison of Maxwellian, standard Kappa, and modified Kappa velocity distribution functions

Feature Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)

Statistical nature Thermal equilibrium Non-equilibrium Non-equilibrium

Theoretical basis Boltzmann statistics Empirical (space data) Non-extensive statistics (Tsallis, 2012)

Primary application Classical plasma theory Space plasma fitting Non-equilibrium plasma modeling

with long-range interactions

Mathematical form fM
s ∝ exp

(
c2

s

w2
s

)
fSK

s ∝
(
1+ (c2

s/κsw
2
s)
)−κs−1

fMK
s ∝

(
1+ (c2

s/κ0sw2
s)
)−κs−1

Normalization factor
ns

π3/2 w3
s

nsκ
−3/2
s

π3/2 w3
s

Γ(κs +1)

Γ(κs− 1/2)

nsκ
−3/2
0s

π3/2 w3
s

Γ(κs +1)

Γ(κs− 1/2)

Key shape parameter — κs κs, κ0s = κs− 3/2

Parameter constraint — κs > 3/2 κs > 3/2

Limit as κs →∞ — Maxwellian distribution Maxwellian distribution

Tail behavior Exponential Power-law Power-law

Dominant region Core-dominated Tail-dominated Core-dominated + tail

High-energy population Lowest Highest Intermediate

Low-energy population Intermediate Lowest Highest

Effective temperature Tκ = Ts Tκ =
κs

κs− 3/2
Ts Tκ = Ts

Dependence of Tκ on κs Independent of κs Increases as κs decreases Independent of κs

Total thermal energy Baseline Higher than Maxwellian Same as Maxwellian

3 Theoretical Formulation

In this section, we derive the five-moment approximation of the system of transport equations, along with the corresponding

collision terms and transport coefficients, using the standard Kappa distribution as the velocity distribution function. The

derivation follows the same mathematical framework and procedural steps established in Jwailes et al. (2025). While the full170

detailed calculations are not repeated here, the essential assumptions and methodological structure remain the same.

3.1 Transport equations

The transport equations describe the spatial and temporal evolution of the physically significant velocity moments, such as

number density, drift velocity, temperature, pressure tensor, stress tensor, and heat flow vector. These equations are obtained

by multiplying the Boltzmann equation by an appropriate velocity-dependent function and then integrating over the velocity175

space, as presented in Schunk (1977), Schunk and Nagy (2009), and Bittencourt (2004). The general transport equations do not

constitute a closed system because the equation governing the moment of order l contains the moment of order l + 1. That is,

while the continuity equation describes the evolution of the density, it also contains the drift velocity, and similar dependencies
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occur in the higher-order moment equations. To close the system, the velocity distribution function fs, is approximated by

expanding it into a complete orthogonal series around an appropriate zeroth-order distribution function f
(0)
s , which is chosen180

such that the series converges rapidly (Grad, 1949; Mintzer, 1965). When only the first term of this expansion is retained, the

species distribution function fs, is represented by the zeroth-order function, f
(0)
s . The general system of transport equations

then reduces to the so-called five-moment approximation, in which the stress, heat flux, and all higher-order moments are

neglected. At this level of approximation, the properties of each species are described by five parameters: the number density,

three components of drift velocity, and temperature. If the chosen zeroth-order distribution function f
(0)
s has a stress tensor τ s185

and a heat flux vector qs equal to zero, as in the drifting Maxwellian, drifting modified Kappa, and drifting standard Kappa

distributions (Scherer et al., 2019), and if the main external forces acting on the charged particles are gravitational and Lorentz

forces, the five-moment approximation equations become (Schunk, 1977),

δns

δt
=

∂ns

∂t
+∇ · (nsus) , (10)

δMs

δt
= nsms

Dsus

D t
+∇ps190

−nsmsG−nses

(
E+

us×B
c

)
, (11)

δEs

δt
=

3
2

Ds ps

D t
+

5
2

ps (∇ ·us) . (12)

In these equations, the symbol ∇ denotes the gradient in coordinate space. The operator Ds/D t, is defined as

Ds

D t
=

∂

∂t
+us · ∇. (13)

The partial pressure associated with this species is given by195

ps = nskBTs, (14)

with ns(r, t) being the number density and Ts(r, t) the temperature. The parameters es and ms denote the charge and mass of

species s, respectively. The vectors E and B correspond to the electric and magnetic fields, while G represents the gravitational

acceleration. Finally, c is the speed of light, and kB stands for the Boltzmann constant.

3.2 Collision terms200

The terms appearing on the left-hand side of the five-moment approximation, equations (10−12), are called the collision

terms, also known as the transfer collision integral. These terms represent the moments of the Boltzmann collision integral and
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describe the rate of change of density, momentum, and energy due to collisions, and they are defined as follows

δns

δt
=

∫

R3

δfs

δt
dcs, (15)

δMs

δt
= ms

∫

R3

cs
δfs

δt
dcs, (16)205

δEs

δt
=

ms

2

∫

R3

c2
s

δfs

δt
dcs, (17)

where the term (δfs/δt), represents the rate of change of the velocity distribution function fs, in a given region of phase space

as a result of collisions, and its form depends on the type of collision process considered. The appropriate expression in the

case of binary elastic collisions between particles (collisions governed by inverse power laws, and resonant charge exchange

collisions) is the Boltzmann collision integral (Schunk, 1977; Schunk and Nagy, 2009), given by210

δfs

δt
=

∑

t

∫

R3×Ω

[f ′sf
′
t − fsft] gst σst(gst,θ) dΩdct, (18)

where dct is the random velocity space volume element for the target species t, gst is the magnitude of the relative velocity of

the colliding particles s and t, with gst defined as

gst = vs− vt, (19)

dΩ is the element of solid angle in the s particle reference frame, θ is the scattering angle, σst(gst,θ) is the differential scattering215

cross-section, defined as the number of particles scattered per solid angle dΩ, per unit time, divided by the incident intensity,

and the primes denote quantities evaluated after the collision. By evaluating the integrals appearing in equations (15−17),

we obtain the general expressions for the collision terms under the assumption that the velocity distribution functions of both

interacting species, s and t, follow drifting standard Kappa distributions. The results for the three types of collisions–Coulomb

collisions, hard-sphere interactions, and Maxwell molecule collisions–are summarized below.220

δns

δt
= 0, (20)

δMs

δt
=

∑

t

nsms νSK
st(κs,κt)Φ(εst)∆ust, (21)

δEs

δt
=

∑

t

ns

[
3
2

kB νSK
st,T (κs,κt)Ψ(εst)∆T SK

st

+mst ν
SK
st(κs,κt)Φ(εst) |∆ust|2

]
, (22)

where the relative drift velocity ∆ust and relative temperature difference ∆T SK
st are defined by225

∆ust = ut−us, (23)

∆TSK
st = H(κt)Tt−H(κs)Ts, (24)
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and the drift-to-thermal speed ratio εst is given by

εst =
|∆ust|
wst

, wst =
√

2kBTst

mst
, (25)

with the reduced mass mst and the reduced temperature Tst are defined as230

mst =
msmt

ms + mt
, Tst =

msTt + mtTs

ms + mt
. (26)

The kappa-dependent terms νSK
st and νSK

st,T represent, respectively, the effective collision frequency and the thermal equilibration

rate (or simply the thermalisation rate) for systems described by the standard Kappa distribution, and they are defined as

νSK
st(κs,κt) = νst D(κs,κt), (27)

νSK
st,T (κs,κt) = 2

mst

mt
νSK

st, (28)235

where νst denote the effective collision frequency rate for systems governed by the Maxwellian distribution. The factors νst,Φ,

Ψ, D, and H forms change depending on the type of collision, such as Coulomb, hard-sphere, or Maxwell molecule collisions,

and can be summarized as follows:

Coulomb collisions:

The effective collision frequency for Coulomb collisions in the Maxwellian case is240

νst = νCo
st =

4
3

nt

π1/2

mt

ms + mt

(
1

2kB

mst

Tst

)3/2

QCo, (29)

where QCo is defined as

QCo = 4π

(
eset

4πε0mst

)2

lnΛ, (30)

with es and et are the charges of species s and t, respectively, ε0 is the permittivity of free space, and lnΛ is the Coulomb

logarithm. The functions Φ and Ψ are given by245

Φ = ΦCo(εst) =
3
√

π

4
erf(εst)

ε3
st

− 3e−ε2
st

2ε2
st

, (31)

Ψ = ΨCo(εst) = e−ε2
st . (32)

The kappa-dependent factors D and H are defined as

D(κs,κt) =
(κs− 1/2)

κs

(κt− 1/2)
κt

, (33)

H(κα) =
Γ(κα)κ

1/2
α

Γ(κα + 1/2)
, α = s, t. (34)250
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Hard-sphere interactions:

The effective collision frequency for Hard-sphere in the Maxwellian case is

νst = νHS
st =

8
3

nt

π1/2

mt

ms + mt

(
2kB

Tst

mst

)1/2

QHS, (35)

where QHS is defined as255

QHS = πσ2, (36)

with σ represent the sum of the radii of the colliding particles. The functions Φ and Ψ are given by

Φ = ΦHS(εst) =
3
8

(
1 +

1
2ε2

st

)
e−ε2

st

+
3
√

π

8

(
εst +

1
εst

− 1
4ε3

st

)
erf(εst), (37)

Ψ = ΨHS(εst) =
√

π

2

(
εst +

1
2εst

)
erf(εst) +

e−ε2
st

2
. (38)260

The kappa-dependent factors D and H are defined the same as in equation (33) and (34).

Maxwell molecule collisions

The effective collision frequency for Maxwell molecule collisions in the Maxwellian case is

νst = νMC
st =

nt mt

ms + mt
QMC, (39)

where QMC is defined as.265

QMC = 0.844π

(
Kst

mst

)1/2

, (40)

with Kst denotes a proportionality constant that measures the force magnitude between particles. The functions Φ and Ψ are

given by

Φ = ΦMC(εst) = 1, Ψ = ΨMC(εst) = 1, (41)

The factors D and H are defined as270

D(κs,κt) = 1, (42)

H(κα) =
κα

(κα− 3/2)
, α = s, t. (43)

A few remarks related to the collision terms summarized above are worth noting. First, the collision terms for non-drifting

standard Kappa distributions can be obtained by setting the drift velocities of both interacting particles s and t to zero, us =
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ut = 0, in equations (20-22). The same result holds when the drift velocities of species s and t are equal, i.e., us = ut. Second,275

the functions Φ’s and Ψ’s in case of Coulomb collision and hard sphere interaction, given in equations (31, 32, 37, and 38) can

be written in terms of the hypergeometric functions, as discussed in Jwailes et al. (2025). Third, in the limit as κ approaches

infinity, κ = κs = κt, the collision terms, equation (20–22), exactly recover the same results as those for the Maxwellian

distribution (Schunk and Nagy, 2009), with the same definitions of Φ,Ψ, and νst. That is, the effective collision frequency, the

thermalisation rate, and the relative temperature difference, which are the terms that the collision terms depend on the kappa280

parameter through, reduce to their form in the Maxwellian case

lim
κ→∞

νSK
st(κ,κ) = νst, (44)

lim
κ→∞

νSK
st,T (κ,κ) = νst,T , (45)

lim
κ→∞

∆T SK
st = Tt−Ts = ∆Tst. (46)

Hence,285

lim
κ→∞

D(κ,κ) = lim
κ→∞

H(κ) = 1. (47)

With νst,T denoting the thermalisation rate for systems governed by the Maxwellian distribution, defined as

νst,T = 2
mst

mt
νst. (48)

Obtaining the Maxwellian result provides a consistency check that the derived collision terms are correct, since the standard

Kappa distribution reduces to a Maxwellian distribution when the kappa parameter κ approaches infinity, as discussed in290

Section 2.

3.3 Transport coefficients

A Lorentz plasma is a type of plasma characterized by negligible electron–electron collisions compared to electron–ion colli-

sions, allowing the electrons to be treated as moving through a background of nearly stationary ions (Du, 2013). In this setting,

and adopting the standard Kappa distribution, the transport coefficients—namely, the electrical conductivity σe, thermoelectric295

coefficient αe, diffusion coefficient De, and mobility coefficient µe—can be derived using the five-moment approximation.

The procedure starts from the momentum equation with a drifting standard Kappa distribution, equation (21), for a simple

electron–ion collision. That is, by assuming a steady and low-inertia regime, unmagnetized plasma (B = 0) with negligible

gravitational effects (G = 0), negligible ion drift (ui ≈ 0), and the electron drift velocity is small compared to the thermal

velocity (ϵei = 0), the electron momentum equation reduces to the following form (Jwailes et al., 2025),300

−ne ue =
kBTe

meνSK
ei

∇ne +
nekB

meνSK
ei

∇Te +
nee

meνSK
ei

E. (49)

By setting ∇ne = 0, as in Husidic et al. (2021), equation 49 reduces to the generalized Ohm’s law :

E =
Je

σe
+ αe∇Te. (50)

13

https://doi.org/10.5194/egusphere-2025-6474
Preprint. Discussion started: 13 January 2026
c© Author(s) 2026. CC BY 4.0 License.



where E denotes the electric field and Je is the current density, with e being the electron charge and ne the electron number

density. From this, we can identify the electrical conductivity and thermoelectric coefficient as305

σe =
nee

2

meνSK
ei

, (51)

αe =−kB

e
. (52)

Alternatively, by setting ∇Te = 0, as in Husidic et al. (2021), we obtain the extended Fick’s law :

Γe =−De∇ne−µe neE. (53)

where Γe denotes the particle flux density, and the diffusion and mobility coefficients are identified as310

De =
kBTe

meνSK
ei

, (54)

µe =
e

meνSK
ei

. (55)

Equations 51, 52, 54, and 55 represent the mathematical forms of the transport coefficients governing electron dynamics in

a Lorentz plasma with a standard Kappa distribution. Together, they demonstrate that electrical conduction, thermoelectric

effects, diffusion, and mobility coefficients are controlled primarily by the electron–ion collision frequency.315

4 Comparison of collision processes and transport coefficients

In this section, we present a comprehensive comparison of the results derived in Section 3 for three types of distributions: the

standard Kappa, modified Kappa, and Maxwellian distributions. The comparison focuses on three aspects. First, we examine

the effective collision frequency and the thermalisation rate. Next, we analyze the collision terms, specifically for Coulomb

collisions. Finally, we compare the resulting transport coefficients for each distribution.320

4.1 Effective collision frequency and thermalisation rate

The effective collision frequency describes the average rate of how frequently collisions occur, determining the efficiency of

momentum transfer within the system, while the thermalisation rate measures how rapidly the system approaches thermal

equilibrium through collisions. Both quantities are essential for understanding the exchange of momentum and energy between

particles due to collisions. Within the five-moment approximation of the transport equations, these quantities are obtained325

directly from the momentum and energy collision terms. Expressions for the standard Kappa distribution are given in equations

(27) and (28). Corresponding expressions for the modified Kappa distribution can be found in Jwailes et al. (2025), while those

for the Maxwellian distribution are provided in Schunk and Nagy (2009).

Equations (27) and (28) show that, for the standard Kappa distribution, both the effective collision frequency and the ther-

malisation rate are affected by the kappa-dependent function D(κs,κt). This function depends on the kappa parameters κs and330
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κt of the interacting species s and t and its form varies with the type of collision process considered. In collision processes

such as Maxwell molecule interactions, where the collision frequency is independent of particle velocity, the redistribution of

particles’ velocities introduced by the standard Kappa distribution has no effect. In this case, D = 1, and both the effective

collision frequency and the thermalisation rate remain identical to the Maxwellian case,

νSK
st = νst, and νSK

st,T = νst,T . (56)335
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Figure 3. The kappa dependency for both the effective collision frequency and the thermalisation rate.

In contrast, for collision processes that strongly depend on particle velocity, the standard Kappa distribution significantly

affects both the effective collision frequency and the thermalisation rate. This effect becomes particularly evident in processes

such as Coulomb collisions and hard-sphere interactions, where the velocity distribution plays a central role. In these cases,

the function D vary according to the kappa parameters κs and κt, as given in equation (33). To compare the effective collision340

frequency and thermalisation rate with the Maxwellian case, and to better understand their behaviour, we consider the special

case κ = κs = κt, so that the expressions, νSK
st and νSK

st,T , reduce to

νSK
st = νst

(
κ− 1/2

κ

)2

, (57)

νSK
st,T = 2

mst

mt
νSK

st, (58)
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Equations (57) and (58) show that both the effective collision frequency and the thermalisation rate are reduced at low values345

of κ and increase as κ increases. As κ goes to infinity, the kappa term in equation (57) approaches 1, and the results converge

to those of the Maxwellian distribution, as illustrated in Figure 3. In this figure, we plot the kappa dependency for both the

effective collision frequency and the thermalisation rate; in other words, the ratios νSK
st/νst and νSK

st,T /νst,T as functions of the

kappa parameter. This behaviour arises from the redistribution of the particles’ velocities in the standard Kappa distribution.

As discussed in Section 2, low values of κ correspond to a reduced in the population of particles near the core with a small350

velocity magnitude compared to a Maxwellian distribution. Since collision frequency in Coulomb collision and hard sphere

interactions are inversely proportional to function of velocity, this reduction leads to lower effective collision frequency and

thermalisation rates at small κ values.
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Figure 4. The effective collision frequency as a function of reduced temperature Tst for the Maxwellian, modified Kappa, and standard

Kappa distributions.

For the modified Kappa distribution, Jwailes et al. (2025) derived both the effective collision frequency and the thermalisation

rate. Since both the standard and the modified Kappa distributions primarily redistribute particles’ velocities, the effective355

collision frequency remains unchanged when the collision frequency is independent of velocity. This is the case for Maxwell

molecule interaction, for which the collision frequency is constant across Maxwellian, standard Kappa, and modified Kappa

distributions

νSK
st = νMK

st = νst, and νSK
st,T = νMK

st,T = νst,T . (59)
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where νMK
st and νMK

st,T represent the effective collision frequency and the thermalisation rate, respectively, for systems described360

by the modified Kappa distribution. For collisions in which the collision frequency depends on particle velocity, such as

Coulomb collisions or hard-sphere interactions, the choice of distribution strongly affects the effective collision frequency and

the thermalisation rate. As discussed earlier, in the standard Kappa distribution, low values of κ lead to a reduced effective

collision frequency compared to the Maxwellian case. However, this is not the case for the modified Kappa distribution, which

predicts the opposite behaviour, showing an increased effective collision frequency at low κ values. Figure 4 illustrates this365

behaviour by showing the effective collision frequency as a function of reduced temperature in the case of Coulomb collision

for Maxwellian, standard Kappa, and modified Kappa distributions. The figure shows that all three distributions exhibit the

same general behaviour. However, the standard Kappa distribution shows a lower effective collision frequency compared to

the Maxwellian distribution, while the modified Kappa distribution shows a significantly higher effective collisions frequency

relative to the Maxwellian case. This behaviour arises from the redistribution of particle velocities in the standard and modified370

Kappa distributions, as discussed in Section 2. At low κ values, the low number of particles near the low energy core in the

standard Kappa distribution leads to a lower effective collision frequency and thermalisation rate compared to the Maxwellian

case. For the modified Kappa distribution, the number of particles near the core with small velocity magnitudes is higher than

in the Maxwellian distribution, which increases the collision frequency for Coulomb collisions and hard sphere interactions.

4.2 Collision terms375

The collision terms for the five-moment approximation, presented in equations (20−22), describe how the density, momentum,

and energy for species s change due to collisions. These terms depend on, the number density ns, drift velocity us, and

temperature Ts for species s, as well as on the the corresponding parameters of species t, number density nt, drift velocity ut,

and temperature Tt. Additionally, two functions of κs and κt, namely D(κs,κt) and H(κα), α = s, t, which contribute to the

effective collision frequency, the thermalisation rate, and the relative temperature difference. The particle masses ms and mt380

are constant and remain unchanged throughout the collision process for all types of collisions; as a result, the density collision

term vanishes, as shown in equation (20).

In the Maxwellian case, both functions D(κs,κt) and H(κα), α = s, t, are set equal to one; see Sub-subsection 3.2. The

behaviour of the momentum and energy collision terms in this case was studied in detail by Jwailes et al. (2025), providing an

explanation for the physical trends shown in Figures 5a and 5b. Figure 5a shows the isolines of the magnitude of the momentum385

collision term, assuming that the direction of ∆ust along the z-axis, while Figure 5b shows the isolines of the corresponding

energy collision term. Both figures display the dependence on ∆ust and Ts, with all other constants set to 1.0 for simplicity.

Assuming identical parameters for all t particles, the summation over t in equations (20–22) reduces to multiplication by their

number, Nt, which is set to 1000 for the sake of comparison with other cases.

To understand how the standard Kappa distribution changes the collision terms, we plot the isolines of the momentum and390

energy collision terms as functions of ∆ust and Ts, as shown in Figure 6. We assume equal kappa values for both species, s

and t, i.e., κs = κt = κ, to allow a direct comparison with the Maxwellian case and under the same conditions as in Figure 5a.

The corresponding cross-sections at Ts = 0 are shown in Figure 7. For the momentum collision term, the behavior closely
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follows the Maxwellian case, with D(κ,κ) scaling the effective collision frequency, as shown in Figures 6 and 7. At low κ, the

effective collision frequency decreases, as discussed in Sub-subsection 4.1, leading to reduced momentum transfer.395
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Figure 5. The momentum (a) and energy (b) collision terms for the Maxwellian velocity distribution function in the case of Coulomb

collisions.

For the energy collision term, the function

W(κ,κ) = D(κ,κ)H(κ) (60)

appears in the first term of equation 22, while D(κ,κ) contributes to the second term. The overall behavior is similar to the

Maxwellian case, with smaller values of κ yielding a smaller energy collision term. Overall, both collision terms increase with

increasing κ, converging toward the Maxwellian result.400

For the modified Kappa distribution, Jwailes et al. (2025) have studied the behavior of the collision term and compared it

with that of the Maxwellian distribution under the same conditions previously applied to the standard Kappa distribution. The

results show that the collision terms behave similarly to the standard Kappa and the Maxwellian distribution; however, the

modified Kappa distribution amplifies the collision terms at low values of κ. That is, collisions have a stronger influence on

momentum and energy exchange between particles due to Coulomb interactions, which is the opposite behavior of the standard405

Kappa distribution discussed earlier. This significant difference is shown in Figure 8, which presents the cross sections of the

momentum and energy collision terms at Ts = 0 as functions of ∆ust. It is clear that, at the same value of κ, the collision terms

in the modified Kappa distribution are much larger than those in both the standard Kappa and the Maxwellian distributions.

This behavior is consistent with the results of Sub-section 4.1, where we found that the effective collision frequency and the

thermalization rate are significantly higher for the modified Kappa distribution than for the standard Kappa distribution, as a410

result of how the particles distribute near the core.
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Figure 6. The momentum (a, c, e) and energy (b, d, f) collision terms for the standard Kappa velocity distribution function in the case of

Coulomb collisions at different values of κ: 2, 3, and 4.
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Figure 7. The cross-section of the momentum and energy collision terms for the standard Kappa and Maxwellian velocity distribution

functions in the case of Coulomb collisions at Ts = 0.
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Figure 8. The cross-section of the momentum and energy collision terms for the standard Kappa and Maxwellian velocity distribution

functions in the case of Coulomb collisions at Ts = 0.
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4.3 Transport coefficients

From the first look at the derived expressions for the transport coefficients equation, electrical conductivity thermoelectric

coefficient the diffusion and mobility coefficients listed in equations (51), (52), (54) and (55) respectively, we can see that they

satisfy the familiar relation between the electric conductivity and the mobility coefficient415

σe = neeµe, (61)

and Einstein relation

De =
kBTe

e
µe. (62)

Importantly, both relations are found to hold consistently across all three considered velocity distributions: the standard Kappa,

the modified Kappa, and the Maxwellian distributions.420

The resulting transport coefficients for the standard Kappa distribution exhibit distinct dependencies on the kappa parame-

ters. In particular, the thermoelectric coefficient αe is independent of the kappa parameters, whereas the electrical conductivity,

diffusion, and mobility all include the same kappa dependence through the effective collision frequency vSK
ei. These transport

coefficients are inversely proportional to the effective collision frequency. As discussed earlier, when κ = κs = κt, the effective

collision frequency affects different collision types in different ways. As a result, the influence of the standard Kappa distri-425

bution on the transport coefficients depends on the collision type. For Maxwell molecules, the effective collision frequency is

identical to the Maxwellian case, and the transport coefficients remain unchanged. However, for Coulomb collisions and hard-

sphere interactions, the effective collision frequency decreases as κ decreases, leading to a increase in the transport coefficients

at low values of κ compared to the Maxwellian case, as shown in Figure 9, which shows the kappa dependence of the electrical

conductivity by plotting the ratio σe/σM
e as a function of κ, where κ = κt = κs, and430

σM
e =

nee
2

meνei
. (63)

As κ approaches infinity, the effective collision frequency vSK
ei reduces to the Maxwellian case vei, making the transport co-

efficients recover their Maxwellian limits. In Figure 9, we also compare the dependence of the electrical conductivity on the

κ parameter from the present study with the results reported by Husidic et al. (2021). While the figure shows a different de-

pendence on the kappa parameter between the two studies, however, the overall behaviour is the same: at low κ values, the435

electrical conductivity becomes much larger than in the Maxwellian case, and as κ increases, we approach the Maxwellian

case. This confirms that plasmas with smaller κ values conduct more efficiently. Thus, deviations from the Maxwellian limit

lead to an increase in electrical conductivity. The difference in the kappa dependence arises from the collision models used in

deriving the transport coefficients. While Husidic et al. (2021) employed a Krook-type (BGK) collision model, which provides

a simplified representation of collisions, our work uses the full Boltzmann collision integral, which offers a more realistic440

description, particularly for Coulomb collisions.
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Figure 9. The kappa dependency for the electrical conductivity

For the modified Kappa distribution, the transport coefficients were derived by Jwailes et al. (2025). Similar to the standard

Kappa distribution, the modified Kappa distribution does not affect the thermoelectric coefficients, and no dependence on

the Kappa parameter appears. However, the remaining transport coefficients are influenced through the effective collision

frequency, in the same way as for the standard Kappa and Maxwellian distributions. If the collision frequency is independent445

of particle velocity, the effective collision frequency remains unchanged, and the transport coefficients are identical for the

Maxwellian, standard Kappa, and modified Kappa distributions. For collisions in which the collision frequency depends on

particle velocity—such as Coulomb collisions or hard-sphere interactions—the effective collision frequency is affected by the

modified Kappa distribution. As a result, the transport coefficients acquire a kappa-parameter dependence, where the transport

coefficient at small kappa values becomes smaller than in the Maxwellian case. This behavior is opposite to that of the standard450

Kappa distribution, where, as mentioned earlier, small kappa values increase the transport coefficient relative to the Maxwellian

case. Figure 10 illustrates this difference by plotting the electrical conductivity as a function of the reduced temperature for the

three distributions—Maxwellian, modified Kappa, and standard Kappa. The figure shows that all three distributions exhibit the

same general behavior; however, the standard Kappa distribution yields a higher electrical conductivity than the Maxwellian,

while the modified Kappa distribution yields a lower value. This difference arises from the redistribution of particle velocities.455

At low κ, the standard Kappa distribution contains fewer particles in the low-energy core than the Maxwellian, reducing the

collision frequency for interactions inversely proportional to velocity, such as Coulomb collisions and hard sphere interactions.

This lowers the effective collision frequency and thermalisation rate at low κ. In contrast, the modified Kappa distribution

increases the population of core particles, leading to higher collision frequencies for these interactions.
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Figure 10. The electrical conductivity as a function of reduced temperature Tst for the Maxwellian, modified Kappa, and standard Kappa

distributions.

Finally, Tables 2, 3 and 4 summarize the main mathematical expressions and low-κ physical trends of the collision terms460

and transport coefficients for the Maxwellian, standard Kappa, and modified Kappa velocity distribution functions for the three

types of collisions: Coulomb collisions, hard-sphere interactions, and Maxwell molecule interactions. The tables provide a

compact side-by-side comparison of effective collision frequencies, thermalisation rates, momentum and energy exchange, and

transport coefficients for both Coulomb collisions and Maxwell molecule interactions, highlighting similarities and differences

among the three distributions.465
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Table 2. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for Coulomb collisions

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)

Effective collision frequency νCo
st νCo

st

(
κ− 1/2

κ

)2

νCo
st

(
κ− 1/2

κ− 3/2

)2

Effective collision frequency behavior at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Thermalisation rate νM
ei,T = 2

mei

mi
νCo

ei νM
ei,T

(
κ− 1/2

κ

)2

νM
ei,T

(
κ− 1/2

κ− 3/2

)2

Thermalisation rate behavior at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Momentum exchange at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Energy exchange at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Thermoelectric coefficient αM
e =−kB

e
αM

e αM
e

Thermoelectric coefficient behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Electrical conductivity σM
e =

nee
2

meνCo
ei

σM
e

(
κ

κ− 1/2

)2

σM
e

(
κ− 3/2

κ− 1/2

)2

Electrical conductivity behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian

Diffusion coefficient DM
e =

kBTe

meνCo
ei

DM
e

(
κ

κ− 1/2

)2

DM
e

(
κ− 3/2

κ− 1/2

)2

Diffusion coefficient behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian

Mobility coefficient µM
e =

e

meνCo
ei

µM
e

(
κ

κ− 1/2

)2

µM
e

(
κ− 3/2

κ− 1/2

)2

Mobility coefficient behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian
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Table 3. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for hard sphere interaction

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)

Effective collision frequency νHS
st νHS

st

(
κ− 1/2

κ

)2

νHS
st

(
κ− 1/2

κ− 3/2

)2

Effective collision frequency behavior at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Thermalisation rate νM
ei,T = 2

mei

mi
νHS

ei νM
ei,T

(
κ− 1/2

κ

)2

νM
ei,T

(
κ− 1/2

κ− 3/2

)2

Thermalisation rate behavior at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Momentum exchange at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Energy exchange at low κ Baseline Lower than Maxwellian Higher than Maxwellian

Thermoelectric coefficient αM
e =−kB

e
αM

e αM
e

Thermoelectric coefficient behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Electrical conductivity σM
e =

nee
2

meνHS
ei

σM
e

(
κ

κ− 1/2

)2

σM
e

(
κ− 3/2

κ− 1/2

)2

Electrical conductivity behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian

Diffusion coefficient DM
e =

kBTe

meνHS
ei

DM
e

(
κ

κ− 1/2

)2

DM
e

(
κ− 3/2

κ− 1/2

)2

Diffusion coefficient behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian

Mobility coefficient µM
e =

e

meνHS
ei

µM
e

(
κ

κ− 1/2

)2

µM
e

(
κ− 3/2

κ− 1/2

)2

Mobility coefficient behavior at low κ Baseline Higher than Maxwellian Lower than Maxwellian
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Table 4. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for Maxwell molecule interactions

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)

Effective collision frequency νMC
ei νMC

ei νMC
ei

Effective collision frequency behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Thermalisation rate νM
ei,T = 2

mei

mi
νMC

ei νM
ei,T νM

ei,T

Thermalisation rate behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Momentum exchange at low κ Baseline Same as Maxwellian Same as Maxwellian

Energy exchange at low κ Baseline Higher than Maxwellian Same as Maxwellian

Thermoelectric coefficient αM
e =−kB

e
αM

e αM
e

Thermoelectric coefficient behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Electrical conductivity σM
e =

nee
2

meνMC
ei

σM
e σM

e

Conductivity conductivity behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Diffusion coefficient DM
e =

kBTe

meνMC
ei

DM
e DM

e

Diffusion coefficient behavior at low κ Baseline Same as Maxwellian Same as Maxwellian

Mobility coefficient µM
e =

e

meνMC
ei

µM
e µM

e

Mobility coefficient behavior at low κ Baseline Same as Maxwellian Same as Maxwellian
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5 Conclusions

For a Lorentz plasma described by a standard Kappa distribution, we derive expressions for the transport coefficients: elec-

trical conductivity, thermoelectric, diffusion, and mobility. The analysis begins with a closed system of transport equations

for isotropic plasmas within the five-moment approximation. Transport properties are defined relative to the random velocity

of each species, with the velocity distribution function expanded in an orthogonal polynomial series about a drifting standard470

Kappa distribution. By taking only the first term and neglecting higher order moments yields the five-moment approxima-

tion. The corresponding momentum and energy collision terms are evaluated via the Boltzmann collision integral for several

interaction types, including Coulomb collisions, hard-sphere interactions, and Maxwell molecule collisions. Under suitable as-

sumptions for an unmagnetized, steady-state plasma, explicit expressions for the transport coefficients for the standard Kappa

distribution are obtained from the momentum equation.475

The methodology adopted in this study is broadly comparable to that of Jwailes et al. (2025), particularly in terms of the

formulation of the transport equations, the evaluation of the collision integrals, and the derivation of the transport coefficients.

However, a fundamental distinction between the two studies leads to markedly different physical outcomes. While Jwailes et al.

(2025) employed a modified Kappa distribution function, the present work is based on the standard Kappa distribution. These

two distributions differ substantially in their statistical representation of plasma particle populations, resulting in distinct plasma480

responses and transport properties. Although the mathematical forms of the governing equations appear similar, the physical

interpretation of the quantities involved depends critically on the specific Kappa distribution adopted. This difference motivates

the detailed comparative analysis presented in Section 4. That analysis compares three velocity distributions: Maxwellian,

standard Kappa, and modified Kappa, across three stages. The first stage examined the effect of the kappa parameter on the

effective collision frequency and the thermalisation rate. The second stage focused on how the kappa parameter affects the485

momentum and energy collision terms for Coulomb collisions. The third stage investigated the impact of the kappa parameter

on transport coefficients, including electrical conductivity, diffusion, mobility, and the thermoelectric coefficient. The results

of this comparison reveals that the standard Kappa distribution exhibits behavior that is qualitatively different from that of

the modified Kappa distribution. For velocity-independent interactions, such as Maxwell molecules, the choice of velocity

distribution does not affect the collision frequency or the thermalisation rate. Consequently, the transport coefficients remain490

identical across all three distributions. In contrast, for velocity-dependent interactions, including Coulomb and hard-sphere

collisions, the effects of the kappa parameter become significant. In the standard Kappa distribution, low values of κ lead to

a reduction in the effective collision frequency, the number of collisions, and the thermalisation rate. This reduction, in turn,

results in enhanced transport coefficients. Conversely, in the modified Kappa distribution, low κ values increase the effective

collision frequency and collision rates, which leads to a corresponding reduction in transport coefficients.495

While this study advances non-Maxwellian transport theory, it has several limitations. The approach relies on the five-

moment approximation, retaining only the first expansion term and neglecting higher-order moments that could affect system

behavior. It assumes isotropic plasmas, limiting applicability to real space environments, where magnetization and tempera-

ture or pressure anisotropies are common. The Coulomb collision cross-section is simplified using a constant logarithm and
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large-velocity approximation, reducing accuracy at low velocities (Fichtner et al., 1996). Additionally, the standard Kappa dis-500

tribution becomes unphysical for κ≤ 3/2, as the kappa terms D and H diverge, making collision frequency and thermalization

rate undefined, so the derived coefficients are valid only for κ > 3/2. Future work should address these limitations by devel-

oping a transport theory for the standard Kappa distribution via a generalized polynomial expansion, extending the theory to

anisotropic plasmas, incorporating the exact velocity-dependent Coulomb cross-section, and adopting the Regularized Kappa

Distribution (Scherer et al., 2017, 2019) to ensure finite moments and thermodynamic consistency.505
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