10

15

20

25

https://doi.org/10.5194/egusphere-2025-6474
Preprint. Discussion started: 13 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Transport coefficients in standard Kappa distributed plasmas
Mahmood J. Jwailes , Imad A. Barghouthi , and Qusay S. Atawnah

Department of physics, Al-Quds university, Jerusalem, Palestine.

Correspondence: Mahmood J. Jwailes (mahmood.jwailes @students.alquds.edu)

Abstract. This study presents a systematic derivation of transport coefficients—including electrical conductivity, thermoelec-
tric, diffusion, and mobility coefficients—for a Lorentz plasma described by a standard Kappa distribution function. The anal-
ysis is implemented within the framework of the five-moment transport equations, in which the standard Kappa distribution is
adopted as the zeroth-order function. Momentum and energy collision terms are then evaluated using the Boltzmann collision
integral for several types of collisions, including Coulomb collisions, hard-sphere interactions, and Maxwell molecules. These
collision terms are incorporated into the momentum equation to construct expressions for the generalized Ohm’s law and ex-
tended Fick’s law, from which the transport coefficients are obtained. The influence of the kappa parameter on the collision
terms and transport coefficients is examined in detail, revealing that low kappa values reduce the effective collision frequency
and enhance transport coefficients in the standard Kappa distribution, in contrast to the behavior reported for the modified
Kappa distribution. Finally, in the asymptotic limit of large kappa values, the transport coefficients consistently recover their

Maxwellian forms.

1 Introduction

Transport processes in plasma can be analyzed using transport equations, which provide a macroscopic description of the
spatial and temporal evolution of the velocity moments of the particles velocity distribution function. These moments (e.g.
number density, drift velocity, temperature, pressure tensor, stress tensor, and heat flow vector) capture the collective behav-
ior of plasma particles and interactions that determine their dynamics (Schunk, 1977; Schunk and Nagy, 2009; Bittencourt,
2004). The transport equations are based on linear relationships between the fluxes (e.g., particle flux, heat flux, and current
density), the external forces and gradients (e.g., in density, temperature, and pressure) that drive those fluxes. The constants
of proportionality in these linear relations are called transport coefficients—namely, the diffusion coefficient, electrical con-
ductivity, mobility coefficient, thermoelectric coefficient, and thermal conductivity—which quantify how particles and energy
move through a plasma under the influence of gradients, external forces, and applied electromagnetic forces. Each coefficient
characterizes a different aspect of transport, that is, the diffusion coefficient measures the flux of particles driven by spatial vari-
ations in density, providing insight into how species spread within the plasma. The mobility coefficient describes how charged
particles drift in response to an applied electric field, and it is directly related to the electrical conductivity, which connects the
current density to the electric field. The thermoelectric coefficient links electric fields to temperature gradients and character-

izes the generation of electric voltages and currents in non-uniform thermal environments. Finally, the thermal conductivity
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determines the heat flux produced by temperature gradients and governs the rate of thermal energy transport within the plasma
(Du, 2013; Wang and Du, 2017; Ebne Abbasi et al., 2017; Ebne Abbasi and Esfandyari-Kalejahi, 2019; Guo and Du, 2019;
Husidic et al., 2021).

For plasmas near thermal equilibrium, the Maxwellian distribution is commonly used to evaluate transport coefficients. How-
ever, space and astrophysical plasmas often contain nonthermal particle populations that cause particle velocity distributions
to deviate from the Maxwellian form. In these nonthermal environments, such distributions are well fitted by the Kappa veloc-
ity distribution functions (Marsch, 2006). Kappa distributions are considered powerful class of non-Maxwellian distributions,
characterized by a power-law tail that captures the presence of suprathermal particles, features that the Maxwellian distribution
fails to describe.

Consequently, several studies have extensively investigated transport coefficients in nonequilibrium plasmas using the Kappa
velocity distribution functions. In particular, studies such as Du (2013); Wang and Du (2017); Ebne Abbasi et al. (2017);
Ebne Abbasi and Esfandyari-Kalejahi (2019); Guo and Du (2019); Jwailes et al. (2025) derived diffusion, mobility, electrical
conductivity, thermoelectric coefficients, and thermal conductivity based on modified Kappa distributions, which assume a x-
independent effective temperature and therefore produce a stronger low-energy core and enhanced suprathermal tails relative to
a Maxwellian. Here, the kappa parameter x, controls the population of high-energy suprathermal particles. However, this mod-
ified form differs fundamentally from the standard (Olbertian) Kappa distribution, introduced by Olbert (1968) and Vasyliunas
(1968), in which the effective temperature is k-dependent, leading to weaker core and more pronounced high-energy tails. This
motivated Husidic et al. (2021) to evaluate the same transport coefficients for the standard Kappa distribution, demonstrating
that distinctions between the two forms are crucial because the choice of distribution impacts the resulting transport coefficients
and their physical interpretation.

All of the reviewed studies used simplified collision models rather than the full Boltzmann collision integral. The simplest
models appear in Wang and Du (2017), Ebne Abbasi and Esfandyari-Kalejahi (2019), and Husidic et al. (2021) which used
Krook-type or BGK operators, offering computational simplicity but limited accuracy. More physically based models—such as
those proposed by Du (2013) and Guo and Du (2019)—used macroscopic transport equations derived from idealized relaxation
assumptions. The most advanced work, presented by Ebne Abbasi et al. (2017), used the Fokker-Planck equation to model
Coulomb collisions. While this captures cumulative small-angle scattering and better represents long-range Coulomb forces,
it remains an approximation of the Boltzmann collision integral. Thus, all reviewed works share the same limitation: reliance
on simplified collision models. To overcome this limitation, Jwailes et al. (2025) recently introduced a comprehensive re-
evaluation of the transport coefficients based on the modified Kappa distribution, using the five-moment approximation of the
transport equations with the Boltzmann collision integral as the collision model. In this approach, a new transport theory is
developed by deriving the five-moment approximation and the corresponding collision terms for various types of collisions for
the modified Kappa distribution. The five-moment momentum equation is then linked to the generalized Ohm’s law and the
extended Fick’s law, from which the transport coefficients are determined.

This study is inspired by the work of Husidic et al. (2021) and follows the same methodology and steps introduced by Jwailes
et al. (2025). As in Husidic et al. (2021), we focus on evaluating the transport coefficients for the standard Kappa distribution,
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but we adopt the methodology used in Jwailes et al. (2025), particularly in the formulation of the transport equations, the
evaluation of the collision integrals, and the derivation of the transport coefficients. However, in contrast to Husidic et al. (2021),
we use the Boltzmann collision integral as our collision model rather than the Krook-type collision model. This substitution
is essential for obtaining results that more accurately capture the velocity-dependent interaction dynamics inherent to Kappa-
distributed plasmas.

This paper is structured as follows: Section 2 provides a brief review of the Kappa distribution family, introducing the math-
ematical formulations and the physical interpretation of two different types of suprathermal tail distributions: the standard
Kappa and the modified Kappa distribution functions. It also explains how their behaviors differ from that of the Maxwellian
distribution. Section 3 presents the theoretical framework of this paper, in which we derive the five-moment approximation
and the corresponding collision terms for the standard Kappa velocity distribution function, considering arbitrary drift-velocity
and temperature differences between the interacting plasma species. This includes three types of collisions: Coulomb colli-
sions, hard-sphere interactions, and Maxwell-molecule collisions. The section concludes with the derivation of the transport
coefficients using the five-moment approximation and the derived collision terms. Section 4 discusses the derived results pre-
sented in Section 3 for the standard Kappa distribution and compares them with the corresponding results for both the modified
Kappa distribution and the Maxwellian distribution. Three aspects are considered in the comparison: (i) the effective collision
frequency and thermalisation rate; (ii) the behavior of the collision terms in the case of Coulomb collisions, with a focus on
how collisions affect both the momentum and the energy of the interacting particles; and (iii) the transport coefficients and their
dependence on the kappa parameter. The derived formulas are also compared with results from previous studies, highlighting

their dependence on the kappa parameter. Finally, Section 5 presents the conclusions.

2 Distributions with suprathermal tails

Kappa distributions constitute a broad class of non-Maxwellian velocity distribution functions that effectively describe suprather-
mal particle populations in space and astrophysical plasmas. Unlike the Maxwellian distribution, they introduce a power-law
tail that decays more slowly than the exponential tail of the Maxwellian. This tail is controlled by the kappa parameter «,
which determines the strength of the high-energy tail: larger ~ values approach the Maxwellian limit, while smaller values
emphasize suprathermal populations. With typical  values ranging between 2 and 6, Kappa distributions have been observed
across diverse plasma environments, including the solar wind, Earth’s magnetosheath, and Jupiter’s magnetosphere, supported
by direct measurements from satellite missions such as Ulysses, Cluster, and Voyager 2 (see (Vasyliunas, 1968; Pierrard et al.,
2001; Maksimovic et al., 1997; Qureshi et al., 2003; Formisano et al., 1973; Collier and Hamilton, 1995) for details on these
missions and their observations of the Kappa distributions). Among the various formulations proposed in the literature, two
main types are commonly used: the standard Kappa distribution and the modified Kappa distribution. While both distribu-
tions share the general objective of characterizing plasmas with high-energy tails, they differ in their mathematical structure,

parameter definitions, and physical interpretations.
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The concept of the Kappa distribution was first proposed by Olbert (1968) to explain the presence of high-energy particles
observed in the solar wind and magnetospheric plasmas, and was subsequently formalized by Vasyliunas (1968), who provided
a more rigorous mathematical formulation. This early version is commonly referred to as the Olbertian or standard Kappa
distribution (SK). In velocity space, the drifting standard Kappa distribution is given by, (Lazar and Fichtner, 2021),

2 —ks—1
F(r e t) = TeSs) <1+ = ) : (1)

73/2p3 Ksw?

where ng denotes the number density and w; is the thermal velocity of species s, defined as

we =) 28T ?)
ms

with m, and T being the particle mass and the absolute temperature, respectively, and kg the Boltzmann constant. The random

velocity c; is defined in terms of the position r, velocity v, and the drift velocity us(r,t) of the species s,
CS(I',VS,t) =Vs —Ug, (3)

The normalization function £(k5), which depends on the kappa parameter 5, is given by

a3 (ks +1)
f(ﬁs)_’iss QF(HS*1/2). (4)

The parameter s, determines the slope of the power-law tails. Within this framework, the effective temperature 7;, obtained

via the second velocity moment, depends on the kappa parameter «4 and is written as

T — Ks mswg . Ks
" ks—3/2 2kp ks —3/2

Ts. ®)

As kg increases, the effective temperature decreases until it reaches the Maxwellian temperature 7. This dependence implies
that the enhanced presence of suprathermal particles contributes additional energy to the system, effectively heating the plasma.
Moreover, the expression for the effective temperature in equation 5 imposes a condition on the kappa parameter, namely
ks > 3/2; below this value the effective temperature diverges and is therefore undefined (Pierrard and Lazar, 2010).

Decades later, inspired by the principles of non-extensive statistical mechanics introduced by Tsallis (2012), Livadiotis
(2017) developed a new theoretical perspective reformulated the Kappa distribution into what is now known as the modified

Kappa distribution (MK). In velocity space, the modified Kappa distribution is given by, (Livadiotis, 2018; Davis et al., 2023),

(et = M) (1, G YT ©)
r,Cs,l) = )
s 73/2w3 Ko, w?2
where w; is defined as in equation 2. The normalization function in this case takes the form
—372 I'(ks+1) 3
s) = T . 1 /a0 , — hRs — 3 7
,'7("{‘ ) HOS F(Iis 7 1/2) Ko, K 2 ( )

Here, k¢, represents the invariant Kappa index, while x; is the shape parameter that governs the slope of the suprathermal

tails. As before, the condition x5 > 3/2 must be satisfied to ensure that the modified Kappa distribution function in equation (7)
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remains well defined. This modified version introduces a stronger thermodynamic basis by decoupling the effective temperature

from the kappa parameter s, making it a kappa independent quantity, as given by

2

Ko mswy
T, = —% =T, 8
KRs — 3/2 2]€B ( )

which is identical to the Maxwellian temperature and remains constant regardless of the value of . This ensures that variations
in the high-energy tails do not change the overall thermal energy content of the plasma. In this sense, the modified Kappa
distribution maintains the same total thermal energy content as a Maxwellian plasma while redistributing the particles between
the core and tail regions.

On the similarity side, both the standard and modified Kappa distributions are used to describe particle populations with
suprathermal tails, since both distributions retain a power-law form and exhibit suprathermal tails that are higher than those of
the Maxwellian distribution. Moreover, both distributions reduce to the Maxwellian distribution in the limiting case where k

approaches infinity, (Pierrard and Lazar, 2010).

2
Jim = dim £ = ﬁ exp (—;2) . ©
This behaviour is illustrated in Figure 1, where increasing x, causes both the standard and modified Kappa distributions to
converge smoothly toward the Maxwellian distribution. Although the standard and modified Kappa distributions share this
common limiting behavior and exhibit similar qualitative features, they differ in their mathematical formulation and physical
interpretation. The mathematical distinction between the two forms lies primarily in their parameterization and normalization.
The standard distribution employs « in the energy-dependent term, while the modified version replaces it with ks — 3/2.
While this shift may appear minor, it significantly affects the scaling of the velocity distributions, resulting slightly flatter high-
energy tails in the modified Kappa distribution compared to the standard Kappa distribution for the same x4 value. Moreover,
in the standard Kappa distribution, the effective temperature of the particles depends on k4, making it much higher than the
temperature in the Maxwellian case. However, for the modified Kappa distribution, the effective temperature is independent of
ks, making it identical to the Maxwellian temperature.

These differences are reflected in how the particle’s velocity is distributed. To illustrate how the two Kappa distributions
differ from the Maxwellian distribution, Fig. 2 shows a comparison between the Maxwellian, the modified Kappa, and the
standard Kappa distributions. The first thing we can notice is that both the modified and the standard Kappa distributions have
higher-energy tails than the Maxwellian distribution, which is a defining characteristic of Kappa distributions. At the same
time, we can also observe differences in the shape of each distribution, which are directly related to the effective temperature.
In the standard Kappa distribution, the effective temperature 7 is higher than that of both the Maxwellian and the modified
Kappa distributions, as shown in equation 5. Consequently, the population of high-energy suprathermal particles (i.e., at large
velocity magnitudes) is significantly enhanced compared to the other distributions. At the same time, this increase in high-
energy particles is accompanied by a reduction in the particle population within the low-energy core (i.e., at small velocity
magnitudes). On the other hand, in the modified Kappa distribution, the effective temperature is the same as in the Maxwellian

distribution.
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Figure 1. A schematic comparison between (a) standard Kappa, (b) modified Kappa velocity distributions for xs values 2, 5, and 10, with

the Maxwellian velocity distribution.
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Figure 2. A schematic comparison of the standard Kappa distribution, the modified Kappa distribution for s = 2, and the Maxwellian

velocity distribution.

To maintain this equality in temperature, particles are redistributed between the low-energy core and the high-energy tail
without changing the system’s total thermal energy. As a result, the high-energy tail of the modified Kappa distribution is lower
than that of the standard Kappa distribution, while the particle population in the low-energy core becomes significantly higher.

Both the standard and modified Kappa distributions are used in different contexts. The standard Kappa distribution is the
most commonly used tool in space plasma studies, where it provides excellent fits to spacecraft observations from the solar
wind, planetary magnetospheres, and the heliosheath. It captures the empirical relationship between suprathermal particle
populations and the observed nonthermal heating of plasmas. On the other hand, the modified Kappa distribution, is mainly
used in theoretical and statistical modeling, particularly in studies of systems governed by non-extensive entropy, long-range
interactions, and quasi-stationary states. It provides a self-consistent description of plasma systems that exhibit deviations from
classical thermodynamic equilibrium without requiring an increase in thermal energy.

Finally, Table 1 summarizes the main mathematical and physical properties of the Maxwellian, standard Kappa, and modified
Kappa velocity distribution functions discussed above, providing a compact overview of their key characteristics, parameter

definitions, and limiting behavior, and allowing for an easy and direct comparison among the three distributions.



170

175

https://doi.org/10.5194/egusphere-2025-6474
Preprint. Discussion started: 13 January 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

Table 1. Mathematical and physical comparison of Maxwellian, standard Kappa, and modified Kappa velocity distribution functions

Feature

Maxwellian (M)

Standard Kappa (SK)

Modified Kappa (MK)

Statistical nature
Theoretical basis

Primary application

Thermal equilibrium
Boltzmann statistics

Classical plasma theory

Non-equilibrium
Empirical (space data)

Space plasma fitting

Non-equilibrium
Non-extensive statistics (Tsallis, 2012)
Non-equilibrium plasma modeling

with long-range interactions

2
. M c SK 2 2y) ~Fs—1 MK 2 2y) ~Rs—1
Mathematical form fs ocexp (w—‘%) foo o (1 + (cs/ﬁsws)) fe o (1 + (cs//{osws))
Normalization factor s s "1;3/2 [(ks +1) nSHO_SS/Q P(ks +1)
w3/2 w3 m3/2 w3 (ks —1/2) m3/2 w3 T(ks —1/2)
Key shape parameter — Ks Ks, Koy = ks —3/2
Parameter constraint — ks >3/2 Ks > 3/2
Limit as ks — 00 — Maxwellian distribution Maxwellian distribution
Tail behavior Exponential Power-law Power-law

Dominant region

Core-dominated

Tail-dominated

Core-dominated + tail

High-energy population =~ Lowest Highest Intermediate
Low-energy population Intermediate Lowest Highest

. KRs
Effective temperature T.=Ts Tw=——77=T;s T.=T;s

iv peratu =32

Dependence of 7. on ks

Total thermal energy

Independent of x

Baseline

Increases as ks decreases

Higher than Maxwellian

Independent of x

Same as Maxwellian

3 Theoretical Formulation

In this section, we derive the five-moment approximation of the system of transport equations, along with the corresponding
collision terms and transport coefficients, using the standard Kappa distribution as the velocity distribution function. The
derivation follows the same mathematical framework and procedural steps established in Jwailes et al. (2025). While the full

detailed calculations are not repeated here, the essential assumptions and methodological structure remain the same.
3.1 Transport equations

The transport equations describe the spatial and temporal evolution of the physically significant velocity moments, such as
number density, drift velocity, temperature, pressure tensor, stress tensor, and heat flow vector. These equations are obtained
by multiplying the Boltzmann equation by an appropriate velocity-dependent function and then integrating over the velocity
space, as presented in Schunk (1977), Schunk and Nagy (2009), and Bittencourt (2004). The general transport equations do not
constitute a closed system because the equation governing the moment of order [ contains the moment of order [ + 1. That is,

while the continuity equation describes the evolution of the density, it also contains the drift velocity, and similar dependencies
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occur in the higher-order moment equations. To close the system, the velocity distribution function fs, is approximated by
expanding it into a complete orthogonal series around an appropriate zeroth-order distribution function fs(o), which is chosen
such that the series converges rapidly (Grad, 1949; Mintzer, 1965). When only the first term of this expansion is retained, the
species distribution function f;, is represented by the zeroth-order function, fs(o). The general system of transport equations
then reduces to the so-called five-moment approximation, in which the stress, heat flux, and all higher-order moments are
neglected. At this level of approximation, the properties of each species are described by five parameters: the number density,
three components of drift velocity, and temperature. If the chosen zeroth-order distribution function fﬁo) has a stress tensor T
and a heat flux vector q5 equal to zero, as in the drifting Maxwellian, drifting modified Kappa, and drifting standard Kappa
distributions (Scherer et al., 2019), and if the main external forces acting on the charged particles are gravitational and Lorentz

forces, the five-moment approximation equations become (Schunk, 1977),

ons _ Ong

5t~ o TV (), (10)
oM, D,u,
50 = sy + Vps
B
—nmsG —ngeg (E—i—usj ), (11D

SE. 3D.p. 5
_3 5 w). 12
5 —2Dr ol (V) (12)

In these equations, the symbol V denotes the gradient in coordinate space. The operator Ds/Dt, is defined as

Ds; 0
th—a+u5~v. (13)

The partial pressure associated with this species is given by

DPs :nskBTs; (14)

with ns(r,t) being the number density and 7T (r,t) the temperature. The parameters e and m denote the charge and mass of
species s, respectively. The vectors E and B correspond to the electric and magnetic fields, while G represents the gravitational

acceleration. Finally, c is the speed of light, and kp stands for the Boltzmann constant.
3.2 Collision terms

The terms appearing on the left-hand side of the five-moment approximation, equations (10—12), are called the collision

terms, also known as the transfer collision integral. These terms represent the moments of the Boltzmann collision integral and
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describe the rate of change of density, momentum, and energy due to collisions, and they are defined as follows

dns _ dfs
5t~ ) ot des (15)
R3
M, 5/,
= —ms/csﬁdcs, (16)
]R3
6E5 L 2 6fs
5 _7/05 5t 9Cs a7)
R3

where the term (0 f/dt), represents the rate of change of the velocity distribution function fs, in a given region of phase space
as a result of collisions, and its form depends on the type of collision process considered. The appropriate expression in the
case of binary elastic collisions between particles (collisions governed by inverse power laws, and resonant charge exchange

collisions) is the Boltzmann collision integral (Schunk, 1977; Schunk and Nagy, 2009), given by

o, »
=2 [ U bl paou(aat) e, 1s)

R3xQ
where dc; is the random velocity space volume element for the target species ¢, g, is the magnitude of the relative velocity of

the colliding particles s and ¢, with g, defined as
8st = Vs — Vi, (19)

d€ is the element of solid angle in the s particle reference frame, 6 is the scattering angle, o (g,,,¢) is the differential scattering
cross-section, defined as the number of particles scattered per solid angle df2, per unit time, divided by the incident intensity,
and the primes denote quantities evaluated after the collision. By evaluating the integrals appearing in equations (15—17),
we obtain the general expressions for the collision terms under the assumption that the velocity distribution functions of both
interacting species, s and ¢, follow drifting standard Kappa distributions. The results for the three types of collisions—Coulomb

collisions, hard-sphere interactions, and Maxwell molecule collisions—are summarized below.

ong
= 20
5 0, (20)
M, )
5t :ZnsmsV:t(ﬁsaﬁt)q)(ngAust; (21)
t
0F,

3
5t :Zns [2 kpvg (ks ki) Wlest) AT
t

+ Mg V3§ (K, kie) R(est) | Auge|*] (22)
where the relative drift velocity Aug; and relative temperature difference AT are defined by
Augy = uy — ug, (23)

AT?; = H(Ht)Tt — H(FLS)TS, (24)

10
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and the drift-to-thermal speed ratio 4 is given by

Aug 2kpTy
e = 120st] wyp = | 2=t (25)
Wt Mgt

with the reduced mass mg; and the reduced temperature 7, are defined as

S ST TS
sy T., — w (26)

Mgt = st
ms+myg’ Mg + My

The kappa-dependent terms v and vg; - represent, respectively, the effective collision frequency and the thermal equilibration

rate (or simply the thermalisation rate) for systems described by the standard Kappa distribution, and they are defined as

Vilz(ﬁsﬂit) :VStD(K;SJK/t% (27)
Vi (e me) =22, 8)
t

where v, denote the effective collision frequency rate for systems governed by the Maxwellian distribution. The factors v, @,
W, D, and H forms change depending on the type of collision, such as Coulomb, hard-sphere, or Maxwell molecule collisions,

and can be summarized as follows:
Coulomb collisions:

The effective collision frequency for Coulomb collisions in the Maxwellian case is

_ Co _ 4 n¢ me 1 Mt 3/2 29
Vst—Vst—gmm YRR Qcos (29)

where Q, is defined as

2
Q4(> A, 30)

4megMmgt

with e, and e; are the charges of species s and ¢, respectively, € is the permittivity of free space, and In A is the Coulomb

logarithm. The functions ® and ¥ are given by

3ymerf(est) 3e=cu

D = Pco(est) = 1 = 222 31

U= Ueo(eq) = 550 (32)

The kappa-dependent factors D and H are defined as

D) = LU (=112 o)
H(kq) = m, a=s,t. (34)

11
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Hard-sphere interactions:

The effective collision frequency for Hard-sphere in the Maxwellian case is

8 n m T\ '/?

HS t t st

st = = — —_— 2]{ y 35
Vst =Vst = 3 372 S t( B st) Qus (35
where Qyg is defined as

Qus = To?, (36)

with o represent the sum of the radii of the colliding particles. The functions ® and ¥ are given by

3 1 _
(I):(I)HS(Est):8<1+2€2>e Eit
st

3\f 1
s f(est), 37
3 (5 t+€st 4€§t)ef (est) (37)
NS 1 e=en
U=y st) = — | est + — | erf(es 38
Hs(€st) 2 €t+2€st erf(es) + 5 (38)
The kappa-dependent factors D and H are defined the same as in equation (33) and (34).
Maxwell molecule collisions
The effective collision frequency for Maxwell molecule collisions in the Maxwellian case is
’I’Lt mye
Vs =i = o Quiey (39)
where Qyc is defined as.
Ko 1/2
=0.844 40
QMC ™ (mst ) ) ( )
with K5 denotes a proportionality constant that measures the force magnitude between particles. The functions ¢ and ¥ are
given by
P =Pyc(est) =1, ¥ =Vnc(est) =1, 41)

The factors D and H are defined as

D(K'sﬂit) = 1a (4’2)

Ko o
H(K/a) = m, Oé—S,t. (43)

A few remarks related to the collision terms summarized above are worth noting. First, the collision terms for non-drifting

standard Kappa distributions can be obtained by setting the drift velocities of both interacting particles s and ¢ to zero, us =
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u; = 0, in equations (20-22). The same result holds when the drift velocities of species s and ¢ are equal, i.e., us; = u;. Second,
the functions ®’s and ¥’s in case of Coulomb collision and hard sphere interaction, given in equations (31, 32, 37, and 38) can
be written in terms of the hypergeometric functions, as discussed in Jwailes et al. (2025). Third, in the limit as x approaches
infinity, Kk = ks = K¢, the collision terms, equation (20-22), exactly recover the same results as those for the Maxwellian
distribution (Schunk and Nagy, 2009), with the same definitions of ®, ¥, and v,,. That is, the effective collision frequency, the
thermalisation rate, and the relative temperature difference, which are the terms that the collision terms depend on the kappa

parameter through, reduce to their form in the Maxwellian case

mh~>nolo V?;(H7 H) = Vst, (44)
Nli_)rr;O Vat.r(K,K) = Vst 1, (45)
lim ATY =T, — Ty = ATg. (46)
Hence,

lim D(x,x) = lim H(k)=1. 47

With v, 7 denoting the thermalisation rate for systems governed by the Maxwellian distribution, defined as

Mt

Vst, T = 2 Vst (48)

t

Obtaining the Maxwellian result provides a consistency check that the derived collision terms are correct, since the standard
Kappa distribution reduces to a Maxwellian distribution when the kappa parameter « approaches infinity, as discussed in

Section 2.
3.3 Transport coefficients

A Lorentz plasma is a type of plasma characterized by negligible electron—electron collisions compared to electron—ion colli-
sions, allowing the electrons to be treated as moving through a background of nearly stationary ions (Du, 2013). In this setting,
and adopting the standard Kappa distribution, the transport coefficients—namely, the electrical conductivity o, thermoelectric
coefficient a., diffusion coefficient D., and mobility coefficient .—can be derived using the five-moment approximation.
The procedure starts from the momentum equation with a drifting standard Kappa distribution, equation (21), for a simple
electron—ion collision. That is, by assuming a steady and low-inertia regime, unmagnetized plasma (B = 0) with negligible
gravitational effects (G = 0), negligible ion drift (u; ~ 0), and the electron drift velocity is small compared to the thermal

velocity (e.; = 0), the electron momentum equation reduces to the following form (Jwailes et al., 2025),

E (49)

kgT, nekn Nee
—MNelWe = ——Vne+ ——VT, + — .
e e m. 5K € SK € m. 5K

By setting Vn, = 0, as in Husidic et al. (2021), equation 49 reduces to the generalized Ohm’s law :

E=2¢ {0, V1. (50)

Oc
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where E denotes the electric field and J. is the current density, with e being the electron charge and n. the electron number
density. From this, we can identify the electrical conductivity and thermoelectric coefficient as

2

Nee
O = —l (51)
k
e =—-2. (52)
e
Alternatively, by setting VT, = 0, as in Husidic et al. (2021), we obtain the extended Fick’s law :
I'.=-D.Vn,— pien.E. (53)
where I'. denotes the particle flux density, and the diffusion and mobility coefficients are identified as
kT,
D, = mBysk , (54)
e
e = . (55)
e

Equations 51, 52, 54, and 55 represent the mathematical forms of the transport coefficients governing electron dynamics in
a Lorentz plasma with a standard Kappa distribution. Together, they demonstrate that electrical conduction, thermoelectric

effects, diffusion, and mobility coefficients are controlled primarily by the electron—ion collision frequency.

4 Comparison of collision processes and transport coefficients

In this section, we present a comprehensive comparison of the results derived in Section 3 for three types of distributions: the
standard Kappa, modified Kappa, and Maxwellian distributions. The comparison focuses on three aspects. First, we examine
the effective collision frequency and the thermalisation rate. Next, we analyze the collision terms, specifically for Coulomb

collisions. Finally, we compare the resulting transport coefficients for each distribution.
4.1 Effective collision frequency and thermalisation rate

The effective collision frequency describes the average rate of how frequently collisions occur, determining the efficiency of
momentum transfer within the system, while the thermalisation rate measures how rapidly the system approaches thermal
equilibrium through collisions. Both quantities are essential for understanding the exchange of momentum and energy between
particles due to collisions. Within the five-moment approximation of the transport equations, these quantities are obtained
directly from the momentum and energy collision terms. Expressions for the standard Kappa distribution are given in equations
(27) and (28). Corresponding expressions for the modified Kappa distribution can be found in Jwailes et al. (2025), while those
for the Maxwellian distribution are provided in Schunk and Nagy (2009).

Equations (27) and (28) show that, for the standard Kappa distribution, both the effective collision frequency and the ther-

malisation rate are affected by the kappa-dependent function D(ks, ). This function depends on the kappa parameters s and
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k¢ of the interacting species s and ¢ and its form varies with the type of collision process considered. In collision processes
such as Maxwell molecule interactions, where the collision frequency is independent of particle velocity, the redistribution of
particles’ velocities introduced by the standard Kappa distribution has no effect. In this case, D = 1, and both the effective

collision frequency and the thermalisation rate remain identical to the Maxwellian case,

SK SK
Vgt =Vst, and Vg o = Vst 1. (56)

1.0 1

0.8 1

0.6 1

0.4 1

The Kappa Dependency

0.2 A1

0.0 1

0.0 05 2.0 4.0 6.0 8.0 10.0
Kappa Parameter

Figure 3. The kappa dependency for both the effective collision frequency and the thermalisation rate.

In contrast, for collision processes that strongly depend on particle velocity, the standard Kappa distribution significantly
affects both the effective collision frequency and the thermalisation rate. This effect becomes particularly evident in processes
such as Coulomb collisions and hard-sphere interactions, where the velocity distribution plays a central role. In these cases,
the function D vary according to the kappa parameters x4 and x4, as given in equation (33). To compare the effective collision
frequency and thermalisation rate with the Maxwellian case, and to better understand their behaviour, we consider the special

case Kk = K = Ky, so that the expressions, v} and v} 1, reduce to
,

2
—1/2
v = v (’”) , (57)
K
SK Mst sk
= 58
Vst,T my Vsts ( )
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Equations (57) and (58) show that both the effective collision frequency and the thermalisation rate are reduced at low values
of x and increase as k increases. As k goes to infinity, the kappa term in equation (57) approaches 1, and the results converge
to those of the Maxwellian distribution, as illustrated in Figure 3. In this figure, we plot the kappa dependency for both the
effective collision frequency and the thermalisation rate; in other words, the ratios 35 /v, and V:];,T /Vst,T as functions of the
kappa parameter. This behaviour arises from the redistribution of the particles’ velocities in the standard Kappa distribution.
As discussed in Section 2, low values of x correspond to a reduced in the population of particles near the core with a small
velocity magnitude compared to a Maxwellian distribution. Since collision frequency in Coulomb collision and hard sphere
interactions are inversely proportional to function of velocity, this reduction leads to lower effective collision frequency and

thermalisation rates at small x values.

5
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| —— Maxwellian
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Figure 4. The effective collision frequency as a function of reduced temperature 7 for the Maxwellian, modified Kappa, and standard

Kappa distributions.

For the modified Kappa distribution, Jwailes et al. (2025) derived both the effective collision frequency and the thermalisation
rate. Since both the standard and the modified Kappa distributions primarily redistribute particles’ velocities, the effective
collision frequency remains unchanged when the collision frequency is independent of velocity. This is the case for Maxwell
molecule interaction, for which the collision frequency is constant across Maxwellian, standard Kappa, and modified Kappa

distributions

SK __ MK __ SK MK __
Vgt = Vgt = Vst, and Vst 7 = Vst 7 = Vst, T (59)
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where v and v - represent the effective collision frequency and the thermalisation rate, respectively, for systems described
by the modified Kappa distribution. For collisions in which the collision frequency depends on particle velocity, such as
Coulomb collisions or hard-sphere interactions, the choice of distribution strongly affects the effective collision frequency and
the thermalisation rate. As discussed earlier, in the standard Kappa distribution, low values of « lead to a reduced effective
collision frequency compared to the Maxwellian case. However, this is not the case for the modified Kappa distribution, which
predicts the opposite behaviour, showing an increased effective collision frequency at low x values. Figure 4 illustrates this
behaviour by showing the effective collision frequency as a function of reduced temperature in the case of Coulomb collision
for Maxwellian, standard Kappa, and modified Kappa distributions. The figure shows that all three distributions exhibit the
same general behaviour. However, the standard Kappa distribution shows a lower effective collision frequency compared to
the Maxwellian distribution, while the modified Kappa distribution shows a significantly higher effective collisions frequency
relative to the Maxwellian case. This behaviour arises from the redistribution of particle velocities in the standard and modified
Kappa distributions, as discussed in Section 2. At low « values, the low number of particles near the low energy core in the
standard Kappa distribution leads to a lower effective collision frequency and thermalisation rate compared to the Maxwellian
case. For the modified Kappa distribution, the number of particles near the core with small velocity magnitudes is higher than

in the Maxwellian distribution, which increases the collision frequency for Coulomb collisions and hard sphere interactions.
4.2 Collision terms

The collision terms for the five-moment approximation, presented in equations (20—22), describe how the density, momentum,
and energy for species s change due to collisions. These terms depend on, the number density ng, drift velocity u, and
temperature T for species s, as well as on the the corresponding parameters of species ¢, number density n, drift velocity uy,
and temperature 7;. Additionally, two functions of ks and x;, namely D(ks, ;) and H(k ), @ = s,t, which contribute to the
effective collision frequency, the thermalisation rate, and the relative temperature difference. The particle masses ms and m;
are constant and remain unchanged throughout the collision process for all types of collisions; as a result, the density collision
term vanishes, as shown in equation (20).

In the Maxwellian case, both functions D(ks, ) and H(k,), o = s,t, are set equal to one; see Sub-subsection 3.2. The
behaviour of the momentum and energy collision terms in this case was studied in detail by Jwailes et al. (2025), providing an
explanation for the physical trends shown in Figures 5a and 5b. Figure 5a shows the isolines of the magnitude of the momentum
collision term, assuming that the direction of Aug, along the z-axis, while Figure 5b shows the isolines of the corresponding
energy collision term. Both figures display the dependence on Aug; and T, with all other constants set to 1.0 for simplicity.
Assuming identical parameters for all ¢ particles, the summation over ¢ in equations (20-22) reduces to multiplication by their
number, V¢, which is set to 1000 for the sake of comparison with other cases.

To understand how the standard Kappa distribution changes the collision terms, we plot the isolines of the momentum and
energy collision terms as functions of Aug; and T, as shown in Figure 6. We assume equal kappa values for both species, s
and t, i.e., ks = Ky = K, to allow a direct comparison with the Maxwellian case and under the same conditions as in Figure Sa.

The corresponding cross-sections at T, = 0 are shown in Figure 7. For the momentum collision term, the behavior closely
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follows the Maxwellian case, with D(k, x) scaling the effective collision frequency, as shown in Figures 6 and 7. At low &, the

effective collision frequency decreases, as discussed in Sub-subsection 4.1, leading to reduced momentum transfer.

10 35 10
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5
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-100 -7.5 -50 -25 00 25 50 75 100 -100 -75 -50 -25 00 25 50 75 100
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(a) 6M, /6t (b) 0Es /5t

Figure 5. The momentum (a) and energy (b) collision terms for the Maxwellian velocity distribution function in the case of Coulomb

collisions.
For the energy collision term, the function
W(k,k) =D(k,x)H(k) (60)

appears in the first term of equation 22, while D(k, k) contributes to the second term. The overall behavior is similar to the
Maxwellian case, with smaller values of x yielding a smaller energy collision term. Overall, both collision terms increase with
increasing x, converging toward the Maxwellian result.

For the modified Kappa distribution, Jwailes et al. (2025) have studied the behavior of the collision term and compared it
with that of the Maxwellian distribution under the same conditions previously applied to the standard Kappa distribution. The
results show that the collision terms behave similarly to the standard Kappa and the Maxwellian distribution; however, the
modified Kappa distribution amplifies the collision terms at low values of «. That is, collisions have a stronger influence on
momentum and energy exchange between particles due to Coulomb interactions, which is the opposite behavior of the standard
Kappa distribution discussed earlier. This significant difference is shown in Figure 8, which presents the cross sections of the
momentum and energy collision terms at Ts = 0 as functions of Au;. It is clear that, at the same value of &, the collision terms
in the modified Kappa distribution are much larger than those in both the standard Kappa and the Maxwellian distributions.
This behavior is consistent with the results of Sub-section 4.1, where we found that the effective collision frequency and the
thermalization rate are significantly higher for the modified Kappa distribution than for the standard Kappa distribution, as a

result of how the particles distribute near the core.
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Coulomb collisions at different values of «: 2, 3, and 4.
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functions in the case of Coulomb collisions at T = 0.
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4.3 Transport coefficients

From the first look at the derived expressions for the transport coefficients equation, electrical conductivity thermoelectric
coefficient the diffusion and mobility coefficients listed in equations (51), (52), (54) and (55) respectively, we can see that they

satisfy the familiar relation between the electric conductivity and the mobility coefficient
Oe = Ne€ e, (61)

and Einstein relation

kgT,
De=~"" pe. (62)

Importantly, both relations are found to hold consistently across all three considered velocity distributions: the standard Kappa,
the modified Kappa, and the Maxwellian distributions.

The resulting transport coefficients for the standard Kappa distribution exhibit distinct dependencies on the kappa parame-
ters. In particular, the thermoelectric coefficient . is independent of the kappa parameters, whereas the electrical conductivity,
diffusion, and mobility all include the same kappa dependence through the effective collision frequency v5. These transport
coefficients are inversely proportional to the effective collision frequency. As discussed earlier, when k = k4 = Ky, the effective
collision frequency affects different collision types in different ways. As a result, the influence of the standard Kappa distri-
bution on the transport coefficients depends on the collision type. For Maxwell molecules, the effective collision frequency is
identical to the Maxwellian case, and the transport coefficients remain unchanged. However, for Coulomb collisions and hard-
sphere interactions, the effective collision frequency decreases as x decreases, leading to a increase in the transport coefficients
at low values of x compared to the Maxwellian case, as shown in Figure 9, which shows the kappa dependence of the electrical
conductivity by plotting the ratio o /oM as a function of «, where x = r; = K5, and

2
0_2/[ _ nee (63)

Melei

As r approaches infinity, the effective collision frequency v reduces to the Maxwellian case v.;, making the transport co-
efficients recover their Maxwellian limits. In Figure 9, we also compare the dependence of the electrical conductivity on the
x parameter from the present study with the results reported by Husidic et al. (2021). While the figure shows a different de-
pendence on the kappa parameter between the two studies, however, the overall behaviour is the same: at low « values, the
electrical conductivity becomes much larger than in the Maxwellian case, and as x increases, we approach the Maxwellian
case. This confirms that plasmas with smaller « values conduct more efficiently. Thus, deviations from the Maxwellian limit
lead to an increase in electrical conductivity. The difference in the kappa dependence arises from the collision models used in
deriving the transport coefficients. While Husidic et al. (2021) employed a Krook-type (BGK) collision model, which provides
a simplified representation of collisions, our work uses the full Boltzmann collision integral, which offers a more realistic

description, particularly for Coulomb collisions.
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Figure 9. The kappa dependency for the electrical conductivity

For the modified Kappa distribution, the transport coefficients were derived by Jwailes et al. (2025). Similar to the standard
Kappa distribution, the modified Kappa distribution does not affect the thermoelectric coefficients, and no dependence on
the Kappa parameter appears. However, the remaining transport coefficients are influenced through the effective collision
frequency, in the same way as for the standard Kappa and Maxwellian distributions. If the collision frequency is independent
of particle velocity, the effective collision frequency remains unchanged, and the transport coefficients are identical for the
Maxwellian, standard Kappa, and modified Kappa distributions. For collisions in which the collision frequency depends on
particle velocity—such as Coulomb collisions or hard-sphere interactions—the effective collision frequency is affected by the
modified Kappa distribution. As a result, the transport coefficients acquire a kappa-parameter dependence, where the transport
coefficient at small kappa values becomes smaller than in the Maxwellian case. This behavior is opposite to that of the standard
Kappa distribution, where, as mentioned earlier, small kappa values increase the transport coefficient relative to the Maxwellian
case. Figure 10 illustrates this difference by plotting the electrical conductivity as a function of the reduced temperature for the
three distributions—Maxwellian, modified Kappa, and standard Kappa. The figure shows that all three distributions exhibit the
same general behavior; however, the standard Kappa distribution yields a higher electrical conductivity than the Maxwellian,
while the modified Kappa distribution yields a lower value. This difference arises from the redistribution of particle velocities.
At low r, the standard Kappa distribution contains fewer particles in the low-energy core than the Maxwellian, reducing the
collision frequency for interactions inversely proportional to velocity, such as Coulomb collisions and hard sphere interactions.
This lowers the effective collision frequency and thermalisation rate at low x. In contrast, the modified Kappa distribution

increases the population of core particles, leading to higher collision frequencies for these interactions.
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Figure 10. The electrical conductivity as a function of reduced temperature 7, for the Maxwellian, modified Kappa, and standard Kappa

distributions.

460 Finally, Tables 2, 3 and 4 summarize the main mathematical expressions and low-x physical trends of the collision terms
and transport coefficients for the Maxwellian, standard Kappa, and modified Kappa velocity distribution functions for the three
types of collisions: Coulomb collisions, hard-sphere interactions, and Maxwell molecule interactions. The tables provide a
compact side-by-side comparison of effective collision frequencies, thermalisation rates, momentum and energy exchange, and
transport coefficients for both Coulomb collisions and Maxwell molecule interactions, highlighting similarities and differences

465 among the three distributions.
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Table 2. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for Coulomb collisions

EGUsphere\

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)
2 2
. . —-1/2 —-1/2
Effective collision frequency Ve s K=1/ s K=1/
K Kk—3/2
Effective collision frequency behavior at low x  Baseline Lower than Maxwellian ~ Higher than Maxwellian
ei co —-1/2\? —1/2\?
Thermalisation rate v = Mei ¢ v u Mo K1/
’ i ’ K ’ Kk—3/2
Thermalisation rate behavior at low ~ Baseline Lower than Maxwellian ~ Higher than Maxwellian
Momentum exchange at low & Baseline Lower than Maxwellian =~ Higher than Maxwellian
Energy exchange at low < Baseline Lower than Maxwellian ~ Higher than Maxwellian
. . M ks M M
Thermoelectric coefficient . =— Qa, Qg
e
Thermoelectric coefficient behavior at low x Baseline Same as Maxwellian Same as Maxwellian
2 2 2
. .. —-3/2
Electrical conductivity o = neeco o ( - ) ol (K / >
Melsy k—1/2 k—1/2
Electrical conductivity behavior at low & Baseline Higher than Maxwellian ~ Lower than Maxwellian
T. 2 —-3/2\°
Diffusion coefficient DM = ke g DM ( r ) DM ("6 3/ )
MelSy k—1/2 k—1/2
Diffusion coefficient behavior at low x Baseline Higher than Maxwellian = Lower than Maxwellian
2 2
. . M_ € M K M k—3/2
Mobility coefficient e = m Lo (H — 1/2) Lo (n ~1/2
Mobility coefficient behavior at low x Baseline Higher than Maxwellian ~ Lower than Maxwellian
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Table 3. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for hard sphere interaction

EGUsphere\

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)
. . —1/2\? k—1/2\?
Effective collision f s s (B2 s
ective collision frequency Vst Vgt - L 72
Effective collision frequency behavior at low x  Baseline Lower than Maxwellian ~ Higher than Maxwellian
2 2
L ci —-1/2 —-1/2
Thermalisation rate 1/2 = m e Vivli T u 1/241- T r /
’ i ’ K ’ k—3/2
Thermalisation rate behavior at low Baseline Lower than Maxwellian ~ Higher than Maxwellian
Momentum exchange at low & Baseline Lower than Maxwellian ~ Higher than Maxwellian
Energy exchange at low x Baseline Lower than Maxwellian ~ Higher than Maxwellian
. . M ks M M
Thermoelectric coefficient ay =—— ag fo'p
e
Thermoelectric coefficient behavior at low Baseline Same as Maxwellian Same as Maxwellian
2 2 2
. .. e —-3/2
Electrical conductivity oM = 771:71“? oM ( " _/@1 7 2) oM ( Z — 1; 2)
Electrical conductivity behavior at low Baseline Higher than Maxwellian ~ Lower than Maxwellian
kpT. 2 —3/2\?
Diffusion coefficient DM = 5 s DM ( " ) DY </‘i 3/ )
melys k—1/2 k—1/2
Diffusion coefficient behavior at low Baseline Higher than Maxwellian ~ Lower than Maxwellian
2 2
- . e K k—3/2
Mobilit fficient Mo — M M
obility coefficien 5 oS I (n—1/2> I K=1)2
Mobility coefficient behavior at low s Baseline Higher than Maxwellian =~ Lower than Maxwellian

26



https://doi.org/10.5194/egusphere-2025-6474
Preprint. Discussion started: 13 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Table 4. Mathematical and physical comparison between the Maxwellian, standard Kappa, and modified Kappa velocity distribution func-

tions for Maxwell molecule interactions

Feature / Aspect Maxwellian (M) Standard Kappa (SK) Modified Kappa (MK)
Effective collision frequency vMe M MC
Effective collision frequency behavior at low x  Baseline Same as Maxwellian Same as Maxwellian
- Mej
Thermalisation rate ug”i,T =2 ug”f VZ’T 1/22,7«
msg
Thermalisation rate behavior at low x Baseline Same as Maxwellian Same as Maxwellian
Momentum exchange at low Baseline Same as Maxwellian Same as Maxwellian
Energy exchange at low k Baseline Higher than Maxwellian ~ Same as Maxwellian
. . M kp M M
Thermoelectric coefficient ay = —— o' [
e
Thermoelectric coefficient behavior at low x Baseline Same as Maxwellian Same as Maxwellian
2
. - Nee
Electrical conductivity o= — oM oM
melV et
Conductivity conductivity behavior at low & Baseline Same as Maxwellian Same as Maxwellian
e . kT,
Diffusion coefficient pM="E = DM DM
Me Vei
Diffusion coefficient behavior at low & Baseline Same as Maxwellian Same as Maxwellian
. . e
Mobility coefficient M = ——ic M M
mely;
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5 Conclusions

For a Lorentz plasma described by a standard Kappa distribution, we derive expressions for the transport coefficients: elec-
trical conductivity, thermoelectric, diffusion, and mobility. The analysis begins with a closed system of transport equations
for isotropic plasmas within the five-moment approximation. Transport properties are defined relative to the random velocity
of each species, with the velocity distribution function expanded in an orthogonal polynomial series about a drifting standard
Kappa distribution. By taking only the first term and neglecting higher order moments yields the five-moment approxima-
tion. The corresponding momentum and energy collision terms are evaluated via the Boltzmann collision integral for several
interaction types, including Coulomb collisions, hard-sphere interactions, and Maxwell molecule collisions. Under suitable as-
sumptions for an unmagnetized, steady-state plasma, explicit expressions for the transport coefficients for the standard Kappa
distribution are obtained from the momentum equation.

The methodology adopted in this study is broadly comparable to that of Jwailes et al. (2025), particularly in terms of the
formulation of the transport equations, the evaluation of the collision integrals, and the derivation of the transport coefficients.
However, a fundamental distinction between the two studies leads to markedly different physical outcomes. While Jwailes et al.
(2025) employed a modified Kappa distribution function, the present work is based on the standard Kappa distribution. These
two distributions differ substantially in their statistical representation of plasma particle populations, resulting in distinct plasma
responses and transport properties. Although the mathematical forms of the governing equations appear similar, the physical
interpretation of the quantities involved depends critically on the specific Kappa distribution adopted. This difference motivates
the detailed comparative analysis presented in Section 4. That analysis compares three velocity distributions: Maxwellian,
standard Kappa, and modified Kappa, across three stages. The first stage examined the effect of the kappa parameter on the
effective collision frequency and the thermalisation rate. The second stage focused on how the kappa parameter affects the
momentum and energy collision terms for Coulomb collisions. The third stage investigated the impact of the kappa parameter
on transport coefficients, including electrical conductivity, diffusion, mobility, and the thermoelectric coefficient. The results
of this comparison reveals that the standard Kappa distribution exhibits behavior that is qualitatively different from that of
the modified Kappa distribution. For velocity-independent interactions, such as Maxwell molecules, the choice of velocity
distribution does not affect the collision frequency or the thermalisation rate. Consequently, the transport coefficients remain
identical across all three distributions. In contrast, for velocity-dependent interactions, including Coulomb and hard-sphere
collisions, the effects of the kappa parameter become significant. In the standard Kappa distribution, low values of « lead to
a reduction in the effective collision frequency, the number of collisions, and the thermalisation rate. This reduction, in turn,
results in enhanced transport coefficients. Conversely, in the modified Kappa distribution, low « values increase the effective
collision frequency and collision rates, which leads to a corresponding reduction in transport coefficients.

While this study advances non-Maxwellian transport theory, it has several limitations. The approach relies on the five-
moment approximation, retaining only the first expansion term and neglecting higher-order moments that could affect system
behavior. It assumes isotropic plasmas, limiting applicability to real space environments, where magnetization and tempera-

ture or pressure anisotropies are common. The Coulomb collision cross-section is simplified using a constant logarithm and
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large-velocity approximation, reducing accuracy at low velocities (Fichtner et al., 1996). Additionally, the standard Kappa dis-
tribution becomes unphysical for x < 3/2, as the kappa terms D and H diverge, making collision frequency and thermalization
rate undefined, so the derived coefficients are valid only for x > 3/2. Future work should address these limitations by devel-
oping a transport theory for the standard Kappa distribution via a generalized polynomial expansion, extending the theory to
anisotropic plasmas, incorporating the exact velocity-dependent Coulomb cross-section, and adopting the Regularized Kappa

Distribution (Scherer et al., 2017, 2019) to ensure finite moments and thermodynamic consistency.
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