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Abstract. Large-domain hydrologic modeling studies are becoming increasingly common. The evaluation of the resulting

models is however often limited to the use of aggregated performance scores that show where model accuracy is higher and

lower. Moreover, the inherent uncertainty in such scores, stemming from the choice of time periods used for their calculation,

often remains unaccounted for. Here we use a collection of simple benchmarks whilst accounting for this sampling uncertainty

to provide context for the performance scores of a large-domain hydrologic model. The benchmarks suggest that there are5

considerable constraints on the model’s performance in approximately one-third of the basins used for model calibration and in

approximately half of the basins where model parameters are regionalized. Sampling uncertainty has limited impact: in most

basins the model is either clearly better or worse than the benchmarks, though accounting for sampling uncertainty remains

important when the performance of different models is more similar. The areas where the benchmarks outperform the model

only partially overlap with areas where the model achieves lower performance scores, and this suggests that improvements10

may be possible in more regions than a first glance at model performance values may indicate. A key advantage of using

these benchmarks is that they are easy and fast to compute, particularly compared to the cost of configuring and running the

model. This makes benchmarking a valuable tool that can complement more detailed model evaluation techniques by quickly

identifying areas that should be investigated more thoroughly.

1 Introduction15

There is a pressing societal need for predictions of water-related risks across large geographical domains. Consequently, water

resources modeling at national, continental and global scales is becoming increasingly common (e.g., Arheimer et al., 2020;

Cosgrove et al., 2024; Nearing et al., 2024; Song et al., 2025; Van Jaarsveld et al., 2025). Thorough evaluation of such large-

domain models is a necessity to improve our understanding of the water cycle, our ability to model it accurately, and to ensure

the usability and reliability of model simulations for decision making.20
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There is considerable guidance on model evaluation, focusing for example on diagnostics (e.g., Gupta et al., 2008, 2012),

multi-variate evaluation (Rakovec et al., 2016; Döll et al., 2024, e.g.,), multi-objective evaluation (e.g., Efstratiadis and Kout-

soyiannis, 2010; Kollat et al., 2012), and more. A common theme between these different approaches to model evaluation is

that model performance tends to be quantified through performance metrics such as the Root Mean Squared Error (RMSE),

the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) and the Kling-Gupta efficiency (KGE; Gupta et al., 2009). Such25

metrics summarize the (mis)match between observations and a model’s simulations as a single performance score. To effec-

tively use these model performance statistics, two questions need to be answered. First, is this score indicative of a useful

model for the purpose at hand? Second, how uncertain is this score?

The first question can be addressed by benchmarking the performance of the model against the performance of other meth-

ods that can generate the variable of interest. The goal of the benchmarks is to set realistic expectations about the possible30

performance in each basin (Seibert, 2001; Schaefli and Gupta, 2007; Legates and Mccabe, 2013; Seibert et al., 2018; Beven,

2023; Knoben, 2024). In a practical context, benchmarks are also helpful to judge the value of investing in a new approach by

answering the question - “can our model beat a cheap (i.e., quick and easy to produce) or existing option?”. If the answer is

“no”, then it may not be worth the investment to operationalize the new approach.

Benchmarks typically take the form of other models of varying complexity, and in the case of large-domain hydrologic35

models could include different versions of the same model, a different hydrologic model, regression equations, and more.

The main trade-off between different types of benchmarks is the cost of employing the benchmarks compared to what can be

learned from them. Using simple benchmark models for this purpose gives some idea of the predictability of the streamflow

observations in each basin at negligible computational cost.

Benchmarking also accounts for the fact that what constitutes a “good value” for scores such as NSE and KGE can be highly40

variable between basins (Schaefli and Gupta, 2007). For example, Knoben (2024) shows that for various locations across the

globe even very simple models might obtain KGE scores as high as ≈0.8 when being used to predict unseen data, while for

other locations the same models struggle to achieve scores much above the 1−
√

2 score that the long-term mean would achieve.

Our hypothesis is that comparing the performance of a model against the performance of an ensemble of simple bench-

marks can be an effective way to identify cases where the performance of a large-domain model is not as high as it could be,45

irrespective of the absolute values of the scores, and thus where opportunities for model improvement may exist.

The second question (how uncertain is this score?) addresses the fact that performance scores such as NSE and KGE are

inherently conditional on the time period for which they are calculated (McCuen et al., 2006; Ritter and Muñoz-Carpena, 2013;

Lamontagne et al., 2020; Clark et al., 2021; Klotz et al., 2024). Both Clark et al. (2008) and Newman et al. (2015) show that,

depending on the nature of the streamflow observations, a large fraction of the total model error may be concentrated in a50

disproportionally small number of time steps. In such cases, choosing a different period to calculate the scores on might give

a very different assessment of the performance of the model. This is commonly referred to as sampling uncertainty. Sampling

uncertainty can be considerable (Lamontagne et al., 2020; Clark et al., 2021), and in many cases the scores obtained by different

models have uncertainties greater than the differences between them (Clark et al., 2021; Knoben et al., 2025). This complicates
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the assessment of differences between models, because the models might be statistically indistinguishable. However, the extent55

to which sampling uncertainty plays a role in large-domain model benchmarking is currently unknown.

In summary, benchmarking is common in the land modeling (e.g., Best et al., 2015) and streamflow forecasting communities

(e.g., Harrigan et al., 2023), and is standard practice when multiple versions of the same model are compared (e.g., Cosgrove

et al., 2024). It is also commonly seen when models of varying levels of complexity are compared, particularly in current large-

domain modeling exercises that contrast the performance of machine learning methods to more traditional hydrologic models60

(e.g., Kratzert et al., 2019; Song et al., 2025). There is, however, limited work on using benchmarks to provide assessments

of large-domain predictability of hydrologic response (Seibert et al., 2018; Knoben, 2024), particularly while also considering

the effect of sampling uncertainty.

This paper combines the use of simple benchmarks with quantification of sampling uncertainty to evaluate the performance

of a large-domain water model, and so demonstrate the value of simple benchmarks in quickly identifying regions where the65

modeling chain may be improved. In Section 2 we introduce the model (Section 2.1), data (Section 2.2) and performance

metric (Section 2.3) used in the analysis, and provide a more in-depth discussion of benchmarks (Section 2.4) and sampling

uncertainty (Section 2.5). Results are presented in Section 3, separated into an aggregated assessment of model and benchmark

performance (Section 3.1), and a spatial analysis of the results (Section 3.2). We briefly discuss our findings in Section 4 and

present our conclusions in Section 5.70

2 Data and Methods

2.1 National Water Model v3.0 retrospective simulations

We selected simulations from the National Water Model v3.0 (NWMv3.0) as a practical test case for our work, to investigate

our hypothesis that deliberate use of benchmarks can help identify areas for model improvement. The National Water Model is

used to generate operational forecasts across the United States, and is primarily designed to produce short-range and medium-75

range (18 hours to 10 days) sub-daily streamflow forecasts. The NWM forecasts complement those made by the various River

Forecast Centres at approximately 3800 locations across the United States by providing forecasts for approximately 3.4 million

river reaches. The structure and setup of the NWMv3.0 are similar to those of NWMv2.1 (NOAA, 2025) and are described in

more detail in Cosgrove et al. (2024).

We use the NWMv3.0 simulations from the NOAA National Water Model CONUS Retrospective Dataset for the period80

1980-01-01 to 2022-12-31. Note that not all gauges have records for the entire period, and in some cases the period of analysis

was thus shorter than the full length for which simulations are available. In the retrospective simulations, parameters for the

NWM are obtained through a combination of calibration (i.e., parameter optimisation) on a subset of 1365 lightly regulated

basins across CONUS and regionalization (i.e., parameter transfer) to the wider set of basins where either no streamflow

observations are available or streamflow is more strongly impacted by water management (Cosgrove et al., 2024). The model85

was calibrated for the period 2016-10-01 to 2021-09-30 (NOAA, personal communication, 2025). In contrast to the setup used

for forecasting, retrospective runs do not include data assimilation.
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For computational efficiency, we aggregated the hourly retrospective simulations to daily average values. This is not uncom-

mon (e.g., Johnson et al., 2023; Towler et al., 2023), though we note the model runs operationally at an hourly timestep and is

most commonly used to predict flood peaks in basins with a response time well below 24 hours. The model skill in simulating90

diurnal patterns will thus not be visible nor assessed in this study. Moreover, the goal of this work is to demonstrate the use of

benchmarks in model evaluation, and the average daily NWM simulations provides a useful test case to do so.

2.2 Forcing data and streamflow observations

Though NWMv3.0 simulations are available without a need to run the model, we need certain meteorological data for the

benchmarks used in this work (benchmarks are explained in Section 2.4). The Analysis of Record for Calibration (AORC) is95

an hourly ∼800-m-resolution gridded meteorological forcing dataset used as input to NWM retrospective simulations (Fall

et al., 2023; Cosgrove et al., 2024), and thus used as input for the benchmarks in this work. We first aggregated the hourly

gridded precipitation and 2-m air temperature to hourly basin averages using the areal mean. Precipitation was then aggregated

from hourly to daily by summing the hourly amounts for each day from 1979-02-01 to 2023-02-01. For 2-m air temperature,

we computed the daily mean. Streamflow observations from 1980-01-01 to 2023-12-31 were collected for approximately 5,000100

GAGES-II gauges for which streamflow simulations are available (i.e., stream reaches are represented and gauges are active

for the full simulation period) in the NWMv3.0 retrospective dataset (U.S. Geological Survey, 2025).

2.3 Model performance quantification

The Kling-Gupta efficiency (KGE; Gupta et al., 2009) was used to calibrate the NWMv3.0 on hourly timesteps (NOAA,

personal communication, 2025):105

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (1)

α =
σs

σo
, β =

µs

µo
, (2)

where r is the Pearson correlation coefficient and subscripts o and s indicate observations and simulations, respectively. To

stay as close to the NWM setup as possible, we use the Kling-Gupta efficiency to quantify model performance in the remainder

of this paper (though again note that we perform our analysis at daily time steps whereas the NWM was calibrated at hourly110

resolution). We repeated our analysis with the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970, presented in the Supporting

Information) to investigate if our conclusions hold for a different metric.

2.4 Benchmarks

We compare the performance of the NWM to the performance of various simple benchmark models. The benchmark models

are generated using the Python package HydroBM (Knoben, 2024) and cover various levels of complexity. At the simplest115
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end, these benchmarks are simple statistics calculated from the streamflow observations, which are then used as a predictor

of streamflow on all time steps. One example is the long-term mean flow which, if used as a predictor of flow, returns a

time series of constant values. Of intermediate complexity are benchmarks that rely on first calculating an average rainfall-

runoff ratio and then applying this ratio to incoming precipitation to estimate the resulting runoff at each time step. The most

complex benchmarks are still rather simple one- and two-parameter models whose parameters are optimized using a brute-120

force approach. A more in-depth explanation of the 17 different benchmark models used in this work can be found in Table

S1.

Similar to Knoben (2024), we configure the benchmark models in the same way as a regular model application would be

structured: the benchmarks are defined using data from a dedicated calibration period (though “calculation period" might be a

more accurate description for most benchmarks, because no calibration takes place for most of them) and then used to predict125

the streamflow in an independent validation period. We used the same 5-year time period to calibrate the benchmarks as was

used to calibrate the NWMv3.0; from 2016-10-01 to 2021-09-30. In case the observation data were incomplete, we used either

4 or 3 water years within that same 5-year window instead. The validation period is all the data from 1980-01-01 to 2022-12-31

that is not used for calibration. The HydroBM package also includes a simple degree-day-based snow accumulation and melt

routine, which we used with default parameters in snow-dominated basins.130

2.5 Sampling uncertainty

Sampling uncertainty can be quantified with bootstrapping methods as implemented in the gumboot R package (Clark et al.,

2021; Clark and Shook, 2021). The gumboot package works by creating a collection of synthetic hydrographs and calculating

the score(s) of interest (such as KGE) from the observations and each synthetic hydrograph. We ran gumboot with the default

settings as given in Clark et al. (2021). Briefly, this means that gumboot creates each synthetic hydrograph by dividing the135

period of record into water years (using October as the starting month and enforcing a minimum of 100 valid values within

each water year) and sampling water years with replacement until the record length is reached. Using water years ensures that

each sampled period is hydrologically independent, and the synthetic records are thus plausible hydrographs for the basin.

With default settings gumboot returns 1000 synthetic hydrographs and associated NSE and KGE scores. We then define the

sampling uncertainty as the difference between the 5th and 95th percentile of these scores.140

We calculate the sampling uncertainty for each basin, for both the NWM simulations and each of the 17 benchmarks.

This allows us to report both KGE scores and their associated uncertainty, and from this derive whether the accuracy of NWM

simulations can be considered statistically different from the accuracy of the benchmarks. We report those results as Cumulative

Distribution Functions (CDFs) that show that scores and uncertainty across the sample. We also report these results on a per-

basin basis for the NWM and the best-performing benchmark. In this case, we use the Jaccard index (also known as the ratio of145

verification, critical success index, and Tanimoto index) to quantify the relative overlap of both uncertainty intervals. Assuming

two uncertainty intervals, I1 and I2, defined as the difference between the 5th (Ip05) to 95th (Ip95) percentile estimates of KGE

scores for the NWM (I1) and benchmark (I2):
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J(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

=
overlap

span
, (3)

150
overlap = max

{
0, min(Ip95

1 , Ip95
2 )−max(Ip05

1 , Ip05
2 )

}
,

span = max(Ip95
1 , Ip95

2 )−min(Ip05
1 , Ip05

2 ).

When overlap = span, both sampling uncertainty intervals exactly overlap, and the performance of the NWM can be

considered indistinguishable from the performance of the benchmark. When overlap = 0, the uncertainty intervals do not155

overlap, and the performance of the NWM and benchmark simulations can thus be considered to be clearly different. We then

need to further distinguish whether the NWM performance can be considered higher or lower than that of the benchmarks. Here

we make the simplifying assumption that the 50th percentile score estimate can be used to determine the relative positions of

both uncertainty intervals. If the 50th percentile estimate of NWM performance is higher than the 50th percentile estimate of

benchmark performance, we consider the NWM to perform better than the benchmark (and vice versa). How much better (or160

worse) the performance of the NWM is, can then be quantified using Eq. 1. High values of J indicate a large amount of overlap

(with complete overlap at J = 1) between the two distributions (i.e., smaller distinguishable differences), whereas low values of

J indicate a small amount of overlap and clearer differences between the two distributions (no overlap at J = 0). A schematic

overview of the methodology can be found in Fig. 1.

3 Results165

3.1 Aggregated performance

Figure 2a and 2b show the KGE scores obtained by the NWM as well as the 17 benchmark models. Performance is shown

as Cumulative Distribution Functions (CDFs) for straightforward comparison of performance aggregated across all locations.

First, for both the calibration and evaluation period, the NWM (black line) reaches higher KGE scores considerably more often

than any of the benchmarks (colored lines). However, NWM performance also shows a tendency to decline quickly at lower170

KGE values, suggesting that there are locations where NWM performance is not as high as that of some of the benchmarks.

Second, three benchmarks of note are BM01 (for performing quite poorly), and benchmarks BM07 and BM17 (for performing

rather well).

BM01 (the mean flow benchmark) can be found as a nearly vertical line at KGE = 1−
√

(2)≈−0.41 (dark blue in the

top row, see also Fig. 2c). This is the traditional choice of benchmark model, derived from the original formulation of the175

Nash-Sutcliffe efficiency, and it is the only benchmark that shows no spatial variability at all during calibration (there is some

variability during evaluation, because the mean flow calculated from the calibration data is not always close to the actual mean

flow during evaluation). Comparison of this CDF to all others highlights the point made by Schaefli and Gupta (2007): the

mean flow is not an equally hard-to-beat benchmark in all basins, and location-specific benchmarks are needed to set more

locally appropriate expectations for models (see also Knoben, 2024).180
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(a) Obtain observations, simulations and benchmarks for each basin.

(c) Summarize score samples 
as distributions.

KGE

5th 50th 95th

5th 50th 95th

National Water Model

Benchmark

(d) Determine relative position
and calculate Jaccard index (J).

Position: NWM 50th > BM 50th percentile

overlap

span
𝐽 =

𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑠𝑝𝑎𝑛

(b) Bootstrap 1000 synthetic hydrographs and calculate scores. 
Repeat for benchmarks.

Sample 1
KGE1

Sample 2
KGE2

Sample 1000
KGE1000

…

Figure 1. Schematic overview of methodology. (a) Example selection of water years, showing observations as well as NWM simulations

(top) and one of the benchmark simulations (bottom) for an arbitrary gauge (USGS ID 01037380). Water years indicated with alternating

grey/white blocks. (b) Examples of synthetic hydrographs obtained from sampling water years with replacement. Water years indicated with

alternating grey/white blocks. (c) Schematic representation of the 1000 KGE samples for the NWM and the benchmark, summarized as

boxplots. (d) Overview of the terminology and method used to quantify relative overlap of the NWM and benchmark KGE samples.
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BM07 (the daily mean flow benchmark in red; see also Fig. 2d) is computed by taking the mean flow on each Julian day in

the calibration period and appending these values to create a year-long timeseries, which is then repeated for each year of the

full simulation period. While its CDF does not cover scores as high as the NWM CDF, this benchmark equally does not lead

to KGE scores that are as low as some of those obtained by the NWM: during calibration, the NWM CDF covers a range of

(roughly) <-5, 1], whereas the CDF of BM07 covers a more restricted range of (roughly) [0,1].185

For unseen data (evaluation) the BM07 CDF does not stand out compared to the other benchmarks, possibly due to the some-

what limited amount of data (maximum 5 years) used to compute the benchmark. BM17 (the adjusted smoothed precipitation

benchmark in light blue; see also Fig. 2e) is a simple 2-parameter model that aims to capture three dominant facets of catch-

ment functioning: partitioning of incoming precipitation into streamflow and sink terms, as well as time delay and attenuation

of the resulting runoff (Schaefli and Gupta, 2007). Its CDF is quite similar to that of the NWM but more constrained; the KGE190

values for this benchmark are neither as high nor as low as those obtained by the NWM. Combined, this suggests that there are

basins where the NWM performance is constrained in some way that the benchmarks are not.

Figure 3 shows the sampling uncertainty associated with the benchmarks and NWM simulations using data from the evalu-

ation period. To save space, a number of benchmarks have been omitted: BM01 and BM02 (mean and median flow) as well as

BM10 (rainfall-runoff ratio to annual) have, in the majority of cases, limited performance and little can be learned from these;195

BM03 and BM04 (annual mean and median flow) use annual flow statistics as a predictor and can by definition not be used for

unseen data; BM09 (rainfall-runoff ratio applied to all timesteps) is conceptually very similar to BM01 and has been omitted

for the same reason.

As shown in earlier work (Clark et al., 2021), the sampling uncertainty around KGE scores can be substantial. In the

case of the NWM (black line with grey uncertainty bounds) there is a broad inverse correlation between the KGE score and200

associated uncertainty bounds, though considerable scatter is present. This emphasizes the strong need to evaluate models while

accounting for sampling uncertainty. In numerous basins, the KGE scores obtained by the NWM are strongly conditional on

the idiosyncrasies of the evaluation period, and the same model instantiation might be evaluated quite differently if a different

time period were to be used. The benchmarks show varying levels of sampling uncertainty. Some are mostly insensitive to data

selection (e.g., BM06, BM08), whereas others are either highly sensitive (e.g., BM12, BM16), mostly robust but occasionally205

sensitive (e.g., BM06, BM08), or somewhere in between (e.g., BM07, BM17). The CDFs and uncertainty bounds should not

be directly compared between the different subplots, but a general idea of the widths of these uncertainty intervals is helpful

for understanding the results in the next section.

3.2 Spatial patterns

While CDFs of performance scores can be helpful to quickly compare performance differences across the full sample of basins,210

such approaches do not facilitate a basin-by-basin comparison of differences. Figures 4a and 4d therefore show a spatial

overview of model and benchmark performance during the evaluation period, using gumboot’s estimated 50th percentile

KGE score for both. For simplicity, we only assess the evaluation performance of the best benchmark in each basin (in other

words, Figure 4b is a composite of different benchmarks selected for having the highest 50th percentile KGE score). Both maps
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(a) calibration period

2 1 0 1
KGE

(b) evaluation period NWM - National Water Model
BM01 - mean flow
BM02 - median flow
BM03 - annual mean flow
BM04 - annual median flow
BM05 - monthly mean flow
BM06 - monthly median flow
BM07 - daily mean flow
BM08 - daily median flow
BM09 - rainfall-runoff-ratio to all
BM10 - rainfall-runoff-ratio to annual
BM11 - rainfall-runoff-ratio to monthly
BM12 - rainfall-runoff-ratio to daily
BM13 - monthly rainfall-runoff-ratio to monthly
BM14 - monthly rainfall-runoff-ratio to daily
BM15 - scaled precipitation benchmark
BM16 - adjusted precipitation benchmark
BM17 - adjusted smoothed precipitation benchmark

2 1 0 1
KGE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(c) BM01
BM01 (cal)
BM01 (eval)
NWM (cal)
NWM (eval)

2 1 0 1
KGE

(d) BM07
BM07 (cal)
BM07 (eval)
NWM (cal)
NWM (eval)

2 1 0 1
KGE

(e) BM17
BM17 (cal)
BM17 (eval)
NWM (cal)
NWM (eval)

Figure 2. Cumulative Distribution Function (CDF) plot of the Kling–Gupta Efficiency (KGE) scores for the NWMv3.0 and 17 simple

benchmarks during (a) calibration and (b) evaluation. (c-e) Individual plots of the three benchmarks discussed in the text.

confirm the broad statement suggested by the various CDFs, namely that the NWM spans a wider range of performance scores215

than the benchmarks. This suggests that in a considerable number of places the NWM outperforms a fairly taxing collection

of benchmarks, even when sampling uncertainty is accounted for. However, it also suggests that in numerous places the NWM

does not replicate certain aspects of the flow regime to the extent that the benchmarks do.

Figures 4b, 4c, 4e and 4f show the relative overlap of the sampling uncertainty intervals of the NWM and best benchmark.

Overlap is quantified with the Jaccard index (Eq. 3) and separated into cases where the estimated 50th percentile KGE score220

of the NWM is higher than that of the best benchmark (4b, 4c) and vice versa (4e, 4f). These results are separated into basins

used for calibration of the NWM parameters (4b, 4e), and cases where NWM parameters were regionalized (4c, 4f). For both

sets of plots, the colored stations are complementary: a station plotted in green in Figure 4b (or Fig. 4c) will appear as a yellow
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KGE

BM15
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KGE

BM16

5 4 3 2 1 0 1
KGE

BM17

Figure 3. Cumulative Distribution Function (CDF) plot of the Kling–Gupta Efficiency (KGE) scores of the evaluation period. The NWMv3.0

KGE scores are in black, and the KGE scores for the simple benchmarks in colors. Sampling uncertainty (defined as the difference between

the 5th and 95th percentile KGE estimate) in lighter colors. See Fig. 2 for a description of the benchmarks.
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dot in Figure 4e (or Fig. 4f) and vice versa. Note that no overlap (Jaccard index = 0; dark green and bright red) indicates that

the distributions of KGE scores are clearly separate (in other words, the NWM score is either clearly higher or lower than the225

benchmark score), whereas lighter colors indicate that the performance of the NWM and benchmark are closer together.

Figure 4b shows that in approximately 70% of calibration basins the NWM outperforms the benchmarks. In most basins

this is a clear improvement (Jaccard index ≈ 0). Basins where the KGE distributions of the NWM and best benchmark partly

overlap are mostly found in the central mountainous and drier regions. Figure 4e shows the remaining 30% of calibration basins

where the benchmarks outperform the NWM. Here too the overlap between the KGE distributions is mostly low, which shows230

that in these basins the benchmarks tend to obtain clearly higher scores than the NWM. Clusters of basins where the benchmarks

outperform the NWM seems mostly concentrated in the interior west (broadly inland of the western coastal mountain ranges

until somewhat east of the 100th meridian) and the Appalachian Piedmont, with scattered occurrences elsewhere.

These patterns are reinforced in Figures 4c and 4f, showing the performance of the NWM in basins where its parameters

were regionalized (i.e., not calibrated). The NWM mainly outperforms the benchmarks along the western coast and in the235

humid eastern part of the US. In contrast, the benchmarks perform better in the interior west and the Appalachians, with

the appearance of a new cluster of strong performance in central Florida and an increase in scattered basins. Notably, the

benchmarks outperform the NWM in almost half of the regionalization basins, with clear regional patterns.

As shown in the Supportining Information, these findings generally hold when the Nash-Sutcliffe efficiency (NSE; Nash and

Sutcliffe, 1970) is used to quantify model and benchmark performance, but with a few important caveats. First, the benchmarks240

show a tendency towards lower NSE scores and their CDFs are further away from the NWM CDF (Figures S1, S2). Second,

the NWM outperforms the benchmarks in more basins when NSE is used to quantify model performance (the NWM is better

in 79.3% of calibration basins and in 63.4% of regionalization basins; Figure S3). This is somewhat surprising, given that the

benchmarks are identical in both cases and the NWM was not calibrated on NSE, and points to a need for further work on robust

model evaluation practices. Preliminary analysis suggests that these differences are driven by the different sensitivities of NSE245

and KGE to the bias, variability and correlation components (see e.g., Gupta et al., 2009; Knoben et al., 2019; Lamontagne

et al., 2020). In at least some basins, the benchmarks perform clearly better on bias and much worse on correlation than the

NWM, and because correlation errors are weighted more heavily in NSE, this results in a larger difference in NSE scores than

in KGE scores.

4 Discussion250

We demonstrated how simple benchmarks can be used to assess the performance of large-domain hydrologic models. As our

test case, we compared the NWMv3.0 daily-averaged retrospective simulation against the performance of 17 simple benchmark

models across approximately 5000 basins in the United States. In basins used for model calibration, the benchmarks outperform

the NWM in approximately 30% of basins. The benchmarks perform primarily better in the interior mountainous and drier

plains areas in the west as well as in the Appalachians. This pattern, with the addition of a cluster of basins in central Florida,255

appears even clearer in basins where the NWM parameters were regionalized, and the benchmarks outperform the NWM in
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almost 50% of the basins. These patterns are different from where KGE scores suggest that the model does poorly (Fig. 4a).

Based on KGE scores alone, one might conclude that the model does worst in the drier southwestern and central areas, but

when performance is compared against benchmarks, more regions stand out as areas where improvements may be possible.

These results are broadly consistent with various evaluations of earlier versions of the NWM. For example, Towler et al.260

(2023) find that on daily time steps the NWMv2.1 outperforms a single benchmark in 80% of cases, and that NWM performance

is better in natural basins than regulated ones (i.e., basins where parameters are regionalized, also shown by Abdelkader et al.,

2023, though at hourly time steps). In ecological terms, one of the regions where the benchmarks provide better simulations than

the NWMv3.0 broadly coincides with the Mediterranean California, North American Desserts, Temperate Sierras, and Great

Plains eco-regions (Commission for Environmental Cooperation, 1997). This aligns with results from Johnson et al. (2023),265

who found that the performance of the NWMv2.0 can be improved in drier climates with predominantly low vegetation.

While more in depth study is needed to understand the contributing factors, the nature of the benchmarks lets us speculate

about potential improvements to the modeling chain. Three main lines of investigation may be worthwhile, focusing on model

inputs, model structure, and model parametrization/regionalization. Large-domain parameter estimation has long been an open

challenge, but existing (e.g., Samaniego et al., 2010) and promising recent advances (e.g., Shen et al., 2023; Tang et al.,270

2025; Farahani et al., 2025) have not yet been implemented in most large-domain modeling chains. Regionalization of model

parameters is similarly challenging (e.g., Merz and Blöschl, 2004; Pool et al., 2021; Yang et al., 2023). The relative success

of the benchmarks during both calibration (effective in 30% of basins) and regionalization (effective in 50% of basins) may

suggest that improvements to parameter optimization and regionalization are possible.

The strong regional patterns in where the benchmarks outperform the models suggest solutions may need to be found more275

locally as well. For example, in the current NWM setup, parameters are regionalized for regulated basins. The NWM currently

accounts for the location of more than 5000 reservoirs but does not include any operating rules for these reservoirs. Instead,

data assimilation is used to correct and align model states with observations during forecasting for several hundred of these

reservoirs (Cosgrove et al., 2024). The relative success of the benchmarks in the regulated basins suggests that some aspects of

the resulting regulated streamflow are relatively predictable and that implementing a rudimentary reservoir operations module280

may be possible. Similarly, the relative success of the benchmarks in drier regions may point to a need to account for dry-region

processes such as channel infiltration and transmission losses. Improvements to the representation of shallow aquifer systems

(e.g., in the Northern Appalachian Mountains and Appalachian Piedmont; Rutledge and Mesko, 1996; Swain et al., 2004),

low-lying coastal areas and wetlands (e.g., central Florida), and snow pack dynamics (e.g., the western mountains), and surface

depression storage (e.g., the prairie pothole region in North Dakota, South Dakota, Minnesota and Iowa) might also be needed.285

However, the relative success of the benchmarks in these regions may also point to potential issues with the forcing data

(see e.g. Quansah et al., 2025, who identify issues with convective summer precipitation in the NWMv2.1 forcing data over

Alabama). The benchmarks are only minimally (or not at all) constrained by a need to respect mass and energy balances within

the system, and will typically produce relatively unbiased simulations with larger variability and correlation errors (see Figures

S8 and S9). The model instead is bound by a need to partition its precipitation input correctly between storage, streamflow and290

evaporation, and may thus be more vulnerable to biases in the forcing data (compare with Cosgrove et al., 2024, who show that

13

https://doi.org/10.5194/egusphere-2025-6460
Preprint. Discussion started: 2 February 2026
c© Author(s) 2026. CC BY 4.0 License.



the NWMv2.1 has considerable bias in its simulations). Regions where the benchmarks outperform the model may thus also

be locations where biases in the forcing data limit the model’s ability to produce accurate streamflow simulations.

The type of benchmark may give some hints about the kind of problem the model encounters in a given region. Preliminary

analysis (Figures S4-S7) suggests that there are spatial patterns in the type of benchmark that provides the highest accuracy295

in each region. Streamflow-based benchmarks (Group 1) dominate in the Rocky Mountains, suggesting that the streamflow

regimes here are relatively stable year-to-year. Runoff-ratio benchmarks (Group 2) are often the best benchmark in the drier

parts of the western CONUS, suggesting that the partitioning of precipitation into streamflow and other components is relatively

predictable in these basins, but modulated by the amount of incoming precipitation. The last group of benchmarks (very simple

models) are often the most accurate benchmark in the wetter parts of the western CONUS as well as in the east. However,300

local analysis and comparison of model simulations against the benchmarks remains needed in order to understand which

components of the simulations are better captured by the benchmarks, and what this means for potential improvements to the

modeling chain. Particularly with the recent increase in large-sample studies, where results are predominantly shown as maps

of performance scores and associated Cumulative Distribution Functions, there is a risk that the performance scores become a

goal in themselves while locally poor model performance goes undetected. Benchmarks provide a convenient way of quickly305

identifying areas where improvements may be possible and, critically, these are not always the same regions where we find

lower model performance scores.

5 Conclusions

We used an ensemble of simple benchmarks to provide context for the performance of a large-domain water model. We

also account for sampling uncertainty in this work, but results suggest that in most basins the differences in performance310

between the National Water Model v3.0 and the benchmarks are large enough that this is only a minor concern. However,

sampling uncertainty remains important in cases where models perform similarly. The benchmarks suggest that there are

considerable constraints on the model’s performance in approximately one-third of the basins used for model calibration and

in approximately half of the basins where model parameters are regionalized. The areas where the benchmarks outperform

the model only partially overlap with areas where the model achieves lower KGE scores, and this suggests that improvements315

may be possible in more regions than a first glance at model performance values may indicate. In cases where the benchmarks

outperform the model, the nature of the benchmarks may suggest which elements of the modeling chain could be improved

but it remains difficult to go beyond listing broad hypotheses. In-depth model evaluation thus remains necessary to identify

which aspects of the simulations the benchmarks simulate more accurately than the model does, and what this implies for

potential ways to improve the model. A key advantage of using these benchmarks is that they are straightforward and fast to320

compute, particularly compared to the cost of configuring and running the model. This makes benchmarking a valuable tool

that can complement more detailed model evaluation techniques by quickly identifying areas that should be investigated more

thoroughly.
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Code and data availability. Streamflow observations were obtained on Mar 31, 2025 from the United States Geological Survey U.S. Geo-

logical Survey (2025). The NOAA National Water Model CONUS Retrospective Dataset was accessed on May 28, 2024 (AORC forcing) and325

Aug 31, 2024 (NWMv3.0 simulations) from https://registry.opendata.aws/nwm-archive. The benchmarks were calculated using the Python

package HydroBM (Knoben, 2024), and the sampling uncertainty with the R package gumboot (Clark et al., 2021; Clark and Shook, 2021).

Intermediate results (CSV files containing the sampling uncertainty values for the National Water Model as well as the benchmarks) and code

to create the figures in this manuscript and the Supporting Information are available on Zenodo (Gründemann et al., 2025).
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