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Abstract. Cloud screening algorithms have always been a critical component of Aerosol Robotic Network (AERONET) 

aerosol optical depth (AOD) Level 1.5 and 2.0 product. The initial cloud screening algorithm in the Version 1 and 2 database 

was semi-automatic and required involvement of human analyst to finalize  the results. It became fully automatic in Version 3 15 

(V3) due to  employing information on the angular shape of sky radiances measured in aureole (curvature algorithm). Although 

efficient, the curvature algorithm is threshold based and fails to detect clouds when its parameters are beyond the corresponding 

pre-determined thresholds. This is especially noticeable at high latitudes where the size of ice crystals in cirrus clouds are 

sometimes relatively small and therefore comparable in size to aerosols. It is shown that additional information can be extracted 

from analysis of the smoothness of diurnal variability of sky radiances measured at the 3.3-degree scattering angle. This 20 

measurement is a part of  so-called curvature scan (CCS), which takes  measurements from 3 to 7.5 degrees scattering angle 

with 0.3-degree steps after each measurement of AOD. The analysis of the diurnal variability of CCS (3.3) for cloud-free 

conditions shows relatively smooth temporal dependencies, which can be fitted by polynomials with high correlation 

coefficients while in conditions almost completely dominated by clouds, the temporal variability is completely random. For 

partially cloudy days, the two main features are observed: relatively smooth aerosol signature and irregular spikes due to 25 

clouds. The new technique is proposed that employs the smoothness of the diurnal variability of CCS(3.3) scan as a criterion 

of the cloud free conditions. In the case when both features are present, the idea of the new algorithm is to remove irregular 

spikes due to clouds while  keeping smooth part due to aerosols intact. The new algorithm detects spikes associated with clouds 

by comparing magnitudes of CCS(3.3) at neighboring time stamps through calculating their first differences (FD).This  

algorithm was applied to the CCS(3.3) measurements taken at several AERONET sites. The results were analyzed in terms of 30 

net change in Angstrom exponent (AE) as well as number of AOD measurements. The analysis showed the algorithm performs 

satisfactorily  at AERONET sites dominated by fine mode aerosols, however at sites dominated by dust, the algorithm removes 

a big fraction of cloud-free observations. The issue was corrected by introducing an additional cloud screening parameter. It 

is based on observation of the different rate in changing  of AE with iterations for cloud-free and cloudy conditions with much 

higher rate in the former case. The new parameter was selected as a slope of the linear regression between integration number 35 
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and the value of AE after the corresponding iteration. Algorithm disregards FD algorithm results if the slope is smaller than 

certain threshold value. Finalizing  the FD algorithm threshold setting as well as evaluation of the algorithm performance is 

done by using independent cloud detection information available from Micro-Pulse Lidar Network (MPLNET) data. The 

AERONET and MPLNET data were time and space collocated with additional averaging over one hour period. The 

comparison showed that, on average, the FD algorithm outperformed V3 L1.5 by about 0.02 in Mathews Correlation 40 

Coefficient (MCC), suggesting consistent improvement in overall cloud detection accuracy. Additional analysis performed in 

terms of MCC metrics also showed  that the FD algorithm achieves a more balanced and accurate classification of clouds vs 

clear. 

1 Introduction 

The Aerosol Robotic Network (AERONET) has been routinely providing accurate measurements of spectral aerosol 45 

optical depth (AOD)  since the network started in 1993 (e.g. Holben et al., 1998). The AOD product is valuable in numerous 

applications, for example, analysis of  aerosol effects on Earth climate through aerosol radiative forcing as well as validation 

of satellite AOD retrievals. Also, spectral AOD measurements along with those of the sky radiances constitute an input to the 

AERONET aerosol retrieval code (Sinyuk et al., 2020). A major requirement of high quality AOD measurements is that they 

should be provided in cloud - free conditions therefore relatively free of cloud contamination effect. It is important because of 50 

misperception of optically thin clouds as aerosols can seriously obscure aerosol optical properties. Therefore, cloud screening 

procedures have always been a critical component of the AOD product in AERONET. 

The first AERONET cloud screening algorithm was primarily based on temporal variability of AOD measurements as 

well as on a number of additional  checks which are described in detail in Smirnov et al., (2000). The main shortcoming of 

this algorithm was in it being semi-automatic and therefore requires involvement of a human analyst to finalize the AOD cloud 55 

clearing. The algorithm became fully automatic in Version 3 (V3) of cloud screening by additionally utilizing sky radiances 

measured in solar aureole for thin cirrus detection. The new algorithm employed information on the angular shape of solar 

aureole measurements which was parameterized by the curvature of the angular dependence of measured aureole sky radiances 

(e. g. Giles et al., 2019). The algorithm utilizes two thresholds which were determined by comparison of the results of the new 

algorithm to time and space collocated lidar data (Giles et al., 2019). In conjunction a new scan scenario called curvature scan 60 

(CCS) was designed and implemented in new instruments for more efficient application of the new cloud screening algorithm. 

This CCS scan takes  measurements from 3 to 7.5 degrees scattering angle with 0.3-degree steps after each measurement of 

AOD (Giles et al., 2019). The shortcoming of the new algorithm was found in some instances when thin cirrus clouds calculated 

curvature values were beyond operational thresholds. In particular, the V3 algorithm frequently fails to detect clouds at high 

latitude AERONET sites where the sizes of ice crystals may be smaller at times and therefore comparable in magnitude to that 65 

of aerosols.  
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In this paper, we suggest an improvement in the V3 algorithm by further exploring the potential of employing sky radiance 

measurements in the aureole. Specifically, we propose employing the smoothness of diurnal variability of sky radiances 

measured by the CCS scan only at the 3.3-degree scattering angle. The new algorithm is based on assumption of  smooth 

temporal variability of 3.3-degree CCS measured sky radiance at 1020 nm in the absence of clouds. The physical rationale for 70 

this assumption is that temporal variability  is equivalent to variability due to variation in solar zenith angle (SZA) which is 

relatively smooth based on radiative transfer simulations for an aerosol loaden atmosphere. The new algorithm inputs time 

series of CCS(3.3) sky radiances for the entire day, detects spikes due to clouds and marks AOD associated with spikes as 

cloud contaminated. 

The paper is organized as follows: section two reviews the existing V3 curvature algorithm and presents analysis of its 75 

shortcomings. Section three describes the concept of employing smoothness of  the  time series of CCS measurements for 

cloud detection, section four presents detailed description of the algorithm, while section five discusses algorithm application 

to select AERONET sites and cases and introduces an additional algorithm parameter which helps to  reduce erroneous removal 

of aerosols. Section six presents algorithm validation by comparing the results to time and space collocated lidar data and also 

discusses final tuning of the algorithm thresholds. Section seven presents summary and conclusions of this study.  80 

2 Review of the curvature algorithm. 

The solar aureole curvature algorithm is an essential part of the cloud screening algorithm of AERONET Version 3 

allowing for fully automatic cloud screening procedure of the direct Sun measurements of AOD. It is particularly important in 

the case of spatially and temporally homogeneous cirrus clouds that often pass the other cloud screening checks that rely on 

temporal variance.  The technical aspects of the algorithm are  described in detail in Giles et al., 2019. Here we review the 85 

physical ideas underlying the curvature algorithm which could be helpful in understanding its shortcomings as well as 

improvements suggested in this paper. 

The concept of employing sky radiances measured in the solar aureole for cloud detection is based on the dependence of 

their angular shape on sizes of atmospheric particles (aerosols and/or ice crystals). The idea is illustrated in Figure 1,which 

depicts the angular shape of scattering phase functions for aerosols, cirrus clouds, and mixture thereof. It shows scattering 90 

phase functions in the range of the scattering angles from 3.5 to 6 degrees calculated for selected aerosol types: desert dust, 

biomass burning, urban-industrial, the mixture of fine and coarse mode aerosols. These scattering phase functions were  

calculated using size distributions and complex refractive indexes retrieved by the AERONET operational inversion code at 

locations dominated by the corresponding aerosol types: Tamanrasset (Algeria, dust aerosols), Mongu (Zambia, biomass 

burning), GSFC (USA, urban-industrial, Kanpur (India, fine-coarse mixture). Figure 1 also displays scattering phase function 95 

for cirrus cloud crystals and mixture of cirrus/urban-industrial aerosols in proportion 20 to 80. Ice crystals scattering phase 

function was taken from the “Spectrally consistent scattering, absorption and polarization properties of atmospheric ice crystals 

at wavelengths from 0.2 to 100 μm” database by Ping Yang et al. (zenobo.org). All the scattering phase functions are calculated 
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for 1.02  μm and normalized to the 3.5 degrees scattering angle value. The 1.02  μm wavelength of AERONET was selected 

due to the  smallest contribution of molecular scattering among the four standard wavelengths used for sky radiance 100 

measurements: 0.44, 0.675, 0.870, and 1.02 μm. 

All of these  phase functions are fitted by the power law (solid lines in) with equations and correlation coefficients 

displayed in Figure 1. It shows that shapes of the scattering phase functions are different for different particulates as 

characterized by the slope of power fit. In particular, the ice crystals and desert dust aerosols are clearly separated from other 

aerosol types as well as “partially cirrus contaminated ” urban industrial aerosols. These results support the idea that shape of 105 

sky radiances in the solar aureole can be used to distinguish aerosol from ice crystal clouds under appropriate shape 

parametrization. 

Figure 1 shows the power fit of scattering phase functions assuming the single scattering approximation  in aureole 

provides  a rather accurate approximation to its angular shape with correlation coefficients close to one. This is a well-known 

fact which is called the van de Hulst approximation, (see for example Sviridenkov, 1993 and references therein). The power 110 

fit approximation might still be accurate in the presence of the multiple scattering; however, we are not aware of its validation 

in realistic atmospheric conditions  under typical ranges of variability in observation geometry and aerosol optical depth. 

Therefore, we adopted a general parametrization of angular shape of the scattering phase function in aureole based on the 

curvature which is a parameter used in differential geometry to characterize a shape of a two-dimensional curve (e. g.  Casey, 

1996). The curvature describes for any part of a curve how much the curve direction changes over a small distance travelled 115 

(e.g. angle in radians/meter), so it is a measure of the instantaneous rate of change of direction of a point that moves on the 

curve: the larger the curvature, the larger this rate of change. In other words, the curvature measures how fast the unit tangent 

vector to the curve rotates (fast in terms of curve position) (Wikipedia). For a two-dimensional curve described by a function   

𝑦 = 𝑓(𝑥), the curvature is defined by the following equation: 

𝑘 =
𝑦̈

(1+𝑦̇2)3/2
  ,                                                                                                                                                                              (1) 120 

where 𝑦̈ is the second derivative of 𝑦, 𝑦̇ is the first derivative of 𝑦, and 𝑘 stands for the curvature. In the AERONET 

Version3 cloud screening algorithm  the curvature was selected to parameterize the angular shape of sky radiances in the 

aureole. 

 Figure 2 shows dependencies of the curvature on the scattering angle in the aureole calculated for the scattering phase 

functions shown  in Figure1. The general trend for all the cases considered is an increase of the curvature with the scattering 125 

angle. The magnitude of the curvature, however, is quite different for different types of particles with strongly absorbing 

biomass burning and desert dust aerosols displaying the largest and the smallest magnitudes respectively. For other types of 

aerosols, the magnitudes of the curvature are close to each other. However, it is noticeable that the rate of the increase (slope) 

of the curvature at larger scattering angles  is rather different for the ice crystals and aerosols, which can be used as an indicator 

of the presence of clouds. Figure 3 shows the dependencies displayed in Figure 2 but on the ln-ln scale, where natural 130 

logarithms were taken from scattering angles in radians. Each particle type dependence is accurately approximated by linear 
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fit with high correlation coefficients.  This representation provides clear separation between aerosol particles of different sizes 

in terms of a slope of the curvature. For example, slope of the curvature for desert dust aerosols (4.55) could be selected as a 

threshold for aerosols above which the sky radiances are considered as originated from scattering by cirrus clouds. However, 

for some cloud aerosols mixtures, magnitudes of the curvature slope could be below this threshold and will not be detected: 135 

4.03 for cirrus/urban-industrial mixture is below 4.55 for dust. Therefore, extra information is needed to detect partial cloud 

contamination for cloud/aerosol mixtures.  

Figure 4 shows dependencies of the slope of the curvature in ln-ln scale for cirrus clouds, urban industrial aerosols and 

three cloud/aerosol mixtures in proportions 10/90, 20/80, 50/50.  It can be seen that the slope of the curvature is increasing 

with increasing cloud fraction but still stands below the curvature slope threshold of 4.55 for dust. Another change is the 140 

decreasing of the magnitude of the curvature at the smallest scattering angle which is the consequence of the forward peak 

becoming flatter as a cloud fraction increases. Figure 5 shows the change in the magnitude of the curvature at the smallest 

scattering angle as function of cloud fraction. Figures 6 and 7 show the same analysis for biomass burning type of aerosol. 

Both analyses demonstrate sensitivity of the curvature magnitude at the first scattering angle to the cloud fraction 

contaminating AOD measurements. 145 

The slope of the curvature along with the curvature magnitude at the smallest scattering angle, named simply the first 

point, were selected as parameters for the part of AERONET Version 3 cloud screening algorithm employing aureole 

measurements of sky radiances at 1.02 μm. In preliminary testing of the curvature algorithm, the aureole part of the almucantar 

(ALM) and principle plain (PP) scans between 3.2 and 6 degrees were used. They normally include from four to five scattering 

angles depending on the solar zenith angle (SZA) and the derivatives in Eq.(1) were calculated numerically. For the latest T 150 

version of Cimel sun photometers the new measurements protocol named curvature scan (CCS) was implemented. It takes  

measurements from 3 to 7.5 degrees scattering angle with 0.3-degree steps after each measurement of AOD (Giles et al., 2019). 

Due to these small angular increments, the  CCS scans exhibited small angular oscillations which result in substantial noise in 

curvature calculated numerically. Therefore, it was decided to fit CCS  measurements by a power law which is a good 

approximation for scattering phase functions in the aureole region for scattering angles smaller than 6 degrees (Sviridenkov, 155 

1993). However, to ensure  the accuracy of the fit in the presence of multiple scattering and to filter out CCS measurements 

with high noise, the correlation coefficient of the power fit was required to be larger than 0.98.  In this case derivatives can be 

taken analytically and the expression for the ln of the curvature takes the following form: 

𝑙𝑛𝑘 = 𝑎 + (1 − 2𝑏)𝑙𝑛𝜑 ,                                                                                                                                                             (2) 

where 𝑘 stands for curvature, 𝜑 denotes scattering angle in radians and 𝑎 and 𝑏 are parameters of power fit 𝑦 = 𝑎𝜑𝑏. So, 160 

the curvature slope is defined as 1 − 2𝑏, and the first point is calculated using Eq. (2) for the scattering angle 3.3 degree. The 

3.0-degree scattering angle is not used to avoid stray light contamination. In AERONET Version 3, the thresholds for both 

slope of the curvature and the first point were selected using the Micro-Pulse Lidar Network (MPLNET) (e. g. Welton et al., 

2001) lidar cloud identification database which is discussed in detail in Giles et al., 2019. The lower threshold for the slope of 

curvature was selected at 4.2 and the upper threshold for the first point at 2 ∗ 10−5.  165 
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Due to this being a threshold-based method, the curvature algorithm fails cloud detection in cases with  curvature slope 

values below or the first point values above the corresponding threshold values. For example, figure 4c from Giles et al., 2019 

shows that about one third of AERONET/MPLNET coincident cloud contaminated data to the left of the dashed line will not 

be detected after applying both thresholds.  Figures 8 and 9 show an example of the curvature algorithm failing cloud detection 

at the OPAL AERONET site (Eureka, Canada, 80.05-degree N) on the second of May 2018. Figure 8 shows the time series of 170 

AOD after the V3 cloud screening algorithm was applied (Level 2), and variability of Angstrom exponent (AE; 440-870 nm) 

throughout the day is displayed in Figure 9. The main feature of Figures 8 and 9 is the strong  correlation between upward 

spikes in AOD and downward spikes in AE for the same times of observations.  The sharp decrease in AE can be explained 

by the effect of non-detected clouds due to the  size of cloud crystals being much larger than that of aerosols. Simultaneously, 

the clouds presence results in substantial spikes in AOD. Figures 10 and 11 show time series of the slope of the curvature (10) 175 

and the first point (11) corresponding to the time series of Figures 8 and 9. As can be seen, both parameters exhibit sharp 

spikes: upward for the slope of the curvature and downward for the first point which are indicative of the cloud presence. 

However, most of the spikes are below (slope of the curvature) or above (the first point) the corresponding thresholds and so 

clouds giving rise to these spikes were not detected by the curvature algorithm. A similar picture was observed at a number of 

high latitudes AERONET sites in north Canada, Greenland and the Arctic. The fact that  clouds were not detected at these 180 

locations by the AERONET V3 algorithm is most probably in part due to cirrus clouds being composed of small ice crystals 

with sizes comparable to those of aerosols. The possibility of cirrus clouds being composed of relatively small ice crystals at 

colder northern latitudes was confirmed by in situ measurements  by Kramer et al., (2009). Figure 5  of that paper shows that 

the size of ice crystals is decreasing as ambient temperature decreases reaching the values of integral ice crystals radius as low 

as ~3 μm in the Arctic.  Furthermore, Kramer et al. (2020)showed in situ aircraft  measured cirrus cloud mean mass radius 185 

varying from 1 to 200 μm. To overcome these shortcomings of the curvature algorithm, additional information is needed to 

screen cirrus clouds. 

3 Smoothness of time series of CCS measurements. 

The analysis of the OPAL AERONET site case demonstrates that although the majority of clouds were not detected by 

the way of comparison of the curvature parameters to thresholds, the cloud presence manifests itself in sharp spikes of both 190 

AOD and AE in their time series. This implies that in cloud-free conditions the  corresponding time series should be smoother. 

Thus, non-smooth temporal variability of the curvature parameters as well as AE could be considered as an indication of cloud 

contamination of AOD measurements and used for cloud detection. The curvature parameters as well as AE are derived from 

the measurements of sky radiances and AOD respectively. The curvature is very sensitive to the measurement noise while the 

accuracy of AE depends on the magnitude of AOD relative to the AOD uncertainty. Therefore, it would be preferable to use 195 

measurements themself. In particular, temporal non-smoothness of CCS measurements of sky radiances at 3.3-degree 

scattering angle could be used as a criterion for cloud detection. The physical rationale for smooth time variations of CCS (3.3) 
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measurements is that CCS temporal changes are due to the change in the solar zenith angle (SZA) in which case radiative 

transfer calculations will predict smooth temporal behavior of modelled radiances.  

Figure 12 shows examples of temporal variability of CCS (3.3) measured at two different AERONET sites under cloud 200 

free conditions; a) Ilorin, (Nigeria, February 11, 2020), b) DEWA Research Center (United Arab Emirates, July 4, 2019). The 

aerosol loading at Ilorin site is dominated by dust with very high AOD: 2.5 ± 0.18 at 0.44 μm ( AE ~ 0.21 ± 0.018). The 

temporal dependence of CCS (3.3) is accurately fitted by a second order polynomial with high correlation coefficient. The 

random variability around the polynomial fit is due to temporal variability of aerosols. The CCS (3.3) dependence  measured 

at DEWA site is also dominated by dust with AOD at 0.44 μm of 0.914±0.1 (AE~0.42 ± 0.07)  and is rather accurately 205 

approximated by polynomial of fourth order with high correlation coefficient. The common feature in both cases is the presence 

of a rather smooth temporal aerosol signature interposed by random noise due to natural variability of aerosols. Figure 13 

shows the CCS (3.3) temporal dependence measured at DEWA site on July 19, 2019,  when clouds were present part of the 

day. Two main features of  Figure 13 are the smooth part due to aerosols with little or no clouds and the irregular spikes due 

to clouds. In cases like that when both features are present a cloud screening algorithm could be based on removing spikes due 210 

to clouds while keeping the smooth parts intact. The cloud screening procedure introduced in this paper is based on this idea. 

4 Algorithm description. 

The proposed algorithm inputs a time series of CCS (3.3) for the entire day with minimum three measurements required 

to detect spikes associated with clouds and distinguish these spikes from those due to natural variability of aerosols. Simply 

put algorithm compares the magnitude of CCS (3.3) at neighboring time stamps. Technically it is done by calculating the first 215 

differences of measured sky radiances:  

𝐹𝐷(𝑖) = 𝐼(𝑖 + 1) − 𝐼(𝑖), 𝑖 = 1, . . . , 𝑀 − 1  ,                                                                                                                                                          (3) 

where  𝑀 is the number of measurements for the day and 𝐼(𝑖) is a CCS (3.3) measured at a time stamp 𝑖. If 𝐹𝐷 values are 

above some threshold, the measurements contributing to the spikes will be marked as cloud contaminated. A threshold for FD 

cloud screening can be estimated from CCS (3.3) data measured in a cloudless day. Due to being based on using first 220 

differences of aureole sky radiances at 3.3 degree, the algorithm was abbreviated  as FD. 

Figure 14 shows a flow chart of the FD algorithm. For the first step, the first differences of CCS (3.3) measurements are 

calculated for an entire day. It was found that instead of using a threshold in terms of FD values it is more efficient to use the 

standard deviation of the first differences. Therefore, the standard deviation (STD) is calculated and compared with a threshold 

standard deviation value estimated for cloudless days (TRS). If  STD is greater than TRS, the algorithm marks all the first 225 

differences that are above TRS as cloud contaminated. For those FDs which are larger than TRS, the algorithm removes 

measurements of AOD corresponding to CCS (3.3) with the largest magnitude in FD each pair thereby producing the first 

iteration “cloud screened” time series for which a new value standard deviation is calculated. Iterations continue while the 

standard deviation after each iteration is decreasing and also above TRS.  As soon as STD is below TRS, or it starts increasing  
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then the algorithm stops. Increasing of STD means that the algorithm is no longer removing irregular spikes associated with 230 

clouds and CCS (3.3) variability is mostly random which could be either due to variability of aerosols or alternatively cases 

completely dominated by clouds with no apparent temporal cloud free aerosol signature. The Ilorin case of Figure 12a is an 

example when the algorithm stops after the first iteration because STD starts increasing by removing random spikes due to 

aerosol. Figure 15 shows an example of CCS (3.3) temporal dependence measured at the Kuopio site (Finland) where it is 

completely dominated by clouds with no visible aerosol signature. In this case the algorithm also stops after the first iteration. 235 

Therefore, the most favorable condition for FD algorithm successful performance is partial cloud contamination throughout 

the day when an aerosol temporal signature is present. In cases similar to Ilorin (Fig.12a) the algorithm will keep the aerosol 

AOD data intact, but for cases like Kuopio it is out of algorithm applicability. Note that the Kuopio case is also completely 

cloud screened by the current Version 3 algorithm. 

The FD algorithm was applied to the DEWA case on July 18, 2019 (Fig. 13), and the results are shown in Figure 16. For 240 

this test the threshold for FD standard deviation was set at 3.0 and was selected from CCS (3.3) temporal dependence measured 

on a set of cloudless days. Figure 16 shows that application of the algorithm removes irregular spikes associated with clouds 

and at the same time keeps the smooth part of the temporal CCS (3.3) dependence mostly intact.  Figure 17 shows temporal 

dependencies of AOD (a) and AE (b) for the OPAL site case (Fig. 10, 11) after the FD algorithm was applied. It removes the 

majority of the upward spikes in AOD and downward spikes in AE associated with clouds. These initial tests illustrate a 245 

satisfactory performance of the FD algorithm. However, further adjustments of the threshold value might be needed and 

adjusted by applying the algorithm to more cases and also subsequent comparison to results of independent cloud detection. 

5 Algorithm applications at selected AERONET sites.  

The FD algorithm was applied to the measurements taken at all the AERONET sites in the year 2022.  It was found that 

stand alone performance of FD algorithm, applied to Level 1 (non-cloud-screened data), is less satisfactory than that of cloud 250 

screening algorithm of Version 3. However, if applied to Version 3 cloud screened Level 1.5 data, the FD algorithm can 

identify clouds that were missed by the V3 cloud screening algorithm. Below we present results of applications of  the FD 

algorithm to several AERONET sites. Algorithm performance in the terms of net change in AE and number of observations is 

analyzed. 

Figure 18 shows monthly average AE (a) and number of AOD measurements (b) as a function of month number for the 255 

Thule (Greenland) AERONET site. The two curves in each graph correspond to V3 L1.5 (red) and AE averaged values after 

applying FD algorithm (blue). It should be noted that L1.5 is different from L1.5V which combines cloud-screening and quality 

assurance (QA) screening as described in Giles et al., 2019. The main feature of Figure 18a is an increase in AE  for all of the 

months after the FD algorithm was applied which is indicative of  the removal of  large scattering particles, such as water 

droplets or ice crystals in clouds. At the same time Figure 18b shows significant reductions in the number of AOD 260 

measurements after the FD algorithm was applied, which is especially noticeable for April, May and June. Figure 19 shows 
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daily average AE (a) and the number of AOD measurements (b) for April. Comparison of Figure 19a and 19b shows strong 

correlation between increases in AE and decreases in the number of AOD measurements which is qualitatively consistent with 

what is expected after clouds removal. Similar analysis for May and June (not shown) also demonstrated strong correlation 

between increasing  AE and decreasing number of AOD observations. Figure 20 shows analysis of monthly averaged AE and 265 

the number of AOD measurements at Hokkaido University, Japan for the year 2022. As in the Thule case, application of the 

FD algorithm resulted in increasing in AE for all months and reduction in the number of AOD measurements. Additional 

analysis for April, May and June showed strong anti-correlation between variability of daily averaged AE and  the number of 

AOD measurements. 

Figure 21 shows monthly average AE (a) and number of AOD measurements (b) for the Capo Verde site with aerosol 270 

loading dominated by transported desert dust. In contrast to the Thule and Hokkaido University cases, very small changes in 

AE are accompanied by substantial reductions in the number of AOD measurements. Figure 22 shows daily average AE and 

the number of AOD measurements for the month of April for which the reduction in the number of measurements is the largest 

of all the other months. As can be seen, these is no obvious correlation between changes in AE and the reduction in the number 

of measurements meaning that the FD algorithm removes cloud free observations at this site.  For better understanding of FD 275 

algorithm performance in Capo Verde case it might be helpful to analyze the rate of change in AE as the FD algorithm iterations 

proceed. Figure 23 shows the histograms, based on the data from the entire year of 2022, of the difference between AE  of V3 

L1.5 and AE after the FD was applied after first (a), second (b) and third (c) iterations. In addition, each graph displays 

histograms of the relative difference between the number of measurements corresponding to  V3 L1.5 and after the FD 

algorithm was applied. Figure 23a shows that after the first iteration, the maximum change in AE is around -0.006 and the 280 

reduction in number of measurements at a maximum of ~ 15%. The AE difference  variability within the peak is ~ 0.01 while 

the total reduction in the number of measurements is about 60% which is obtained by summing the histogram points 

corresponding to the relative decrease in the AOD measurements number within AE difference peak.  This is a very small 

change in AE for a rather large change in the number of observations. With the increase in the number of iterations, the 

maximum peak of AE difference is shifting in the direction of negative values of -0.006, -0.0045, -0.01 with maximum negative 285 

AE difference at 10% level of y axis of -0.009, -0.012 and -0.02 after first, second and third iterations respectively. 

Figure 24 shows  a similar analysis for the Thule site data for all of 2022. After the first iteration, the maximum decrease 

in AE difference is ~ 0.035 with the reduction in the total number of observations around 10%. The variability within AE 

difference peak is ~ 0.15 while the total reduction in the number of measurements ~ 75% as compared to 0.01 (60%) for Capo 

Verde. The  dynamics of the increase in maximum of AE difference as iteration proceed is ~ 0.035, 0.04 and 0.06 after the 290 

first, second and third iterations respectively. However, due to asymmetry  of the maximum AE difference peaks after second 

and third iterations, the change in AE difference at 10% of AE difference level to the left is much larger: -0.08, -0.18, and -

0.26. The obvious differences between two cases are the different rate of change of AE as iterations proceed. Figure 25 shows 

the dependence of  AE on the number of iterations for April 2, 2022, at the Capo Verde site (a) and April 3, 2022, at Thule (b). 

In the case of Capo Verde, the linear fit is characterized by low correlation coefficient and very small regression slope. In 295 
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contrast, for the Thule case, the correlation coefficient is close to one and the regression slope is on order of several magnitudes  

higher than that for the Capo Verde case. Therefore, the linear regression slope can be used to characterize the rate of change 

of AE with iteration number. For Capo Verde, the slope is very small in comparison to Thule case where some clouds were 

removed. This slope value can be used to impose an additional control on the implementation of the FD algorithm. We propose 

to disregard the FD results if the regression slope is below some threshold.   300 

Figure 26 shows histograms of regression slope for Capo Verde (blue line) and Thule (red line) after one (a), two (b) and 

three iterations (c). The main difference between two cases is that histogram for Capo Verde does not change much with 

iteration number while histogram for Thule case is shifting in the direction of larger slopes and becomes wider. As Figure 26 

c shows, the upper  limit of the histogram for Capo Verde is close to 0.01. This value of the regression slope value could be 

used as a start value for the threshold to control FD algorithm cloud removal. Figure 27 shows histograms for Capo Verde and 305 

Mongu (Zambia) after two FD iterations for the entire year of 2022 data. As can be seen, the histograms for Capo Verde and 

Mongu are very similar, and the same threshold of regression slope can be applied in both cases. Also, the threshold should be 

positive because negative value corresponds to decrease of AE after each iteration.  

Figures 28, 29, 30, and 31 show examples of application of the FD algorithm to two days at the Capo Verde site: December 

26, 2022 (Figures 28, 29) and November 16, 2022 (Figures 30, 31). In both cases the FD algorithm was applied without 310 

imposing regression slope criterion to demonstrate the FD algorithm performance when regression slope is above and below 

the 0.01 threshold. Figure 28 depicts two MODIS images (Terra, Fig. 28a and Aqua, Fig. 28b) with the Capo Verde site located 

approximately at the center of each image and the time series of AE (Fig.29) with L1, L1.5 and L1.5 plus FD depicted by red, 

blue and green lines respectively. For this case, the regression slope was estimated to be ~ 0.018 which is above the suggested 

threshold of 0.01 suggesting some cloud presence. Both MODIS images show some cirrus clouds around the Capo Verde site 315 

in each image on December 26, 2022. Applying the FD algorithm resulted in an increase in AE by 0.015 and decrease in AOD 

at 440 nm by 0.004 (2.7% from L1.5 AOD ~  0.139) and in decrease of the number of observations by 6 from 57 to 51. Figure 

29 shows that application of the FD algorithm eliminated some downward spikes in AE time series which are likely due to 

clouds. Figure 30  shows MODIS images and Figure 31 time series of AE for November 16, 2022. In this case the regression 

slope was estimated as ~ 0.0065 therefore being below the 0.01 threshold. Both MODIS  images show no or very thin cirrus 320 

clouds around the Capo Verde site. In this case applying the FD algorithm resulted in increase in AE by 0.011 and a decrease 

in AOD at 440 nm by 0.0014 (0.7% from L1.5 AOD ~  0.195) and  a reduction in the number of measurements by 29 from 

115 to 86. Figure 31 shows that applying the FD algorithm smoothed out the diurnal variability of AE which resulted in an 

increase of the daily averaged value of AE. However, it is more likely due to elimination of random oscillations of observed 

AE values due to aerosol and less likely due to clouds. Therefore, imposing a slope of regression check in this case would save 325 

~ 25% of mostly cloud free AOD observations. 
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6 Algorithm validation.  

Independent cloud detection information from the Micro-Pulse Lidar network (MPLNET) (Campbell et al., 2008; Lewis 

et al., 2016) was used to both finalize the threshold value for the FD standard deviation and evaluation of FD algorithm 

performance. MPLNET derives a cloud mask, which provides information on the presence and vertical distribution of clouds. 330 

Using vertically resolved lidar backscatter profiles, these datasets identify cloud layers, classify clear versus cloudy conditions, 

and estimate cloud base and top heights with high temporal resolution. The cloud mask is derived through automated 

algorithms that analyze signal strength and uncertainty, and temporal continuity to detect cloud boundaries. These data are 

essential for studying cloud–aerosol interactions, validating satellite retrievals, and improving radiative transfer and climate 

models. MPLNET cloud mask is sensitive to cirrus cloud, which can be useful for this study. AERONET and MPLNET data 335 

were space and time - collocated to perform inter-comparison and assess the quality of the AERONET cloud masking 

algorithm. In addition, data were averaged over an hour period from both measurements. The MPLNET data from the following 

eight AERONET stations were used: GSFC (USA), Barcelona (Spain), El Arenosillo (Spain), EPA-NCU (Taiwan), Kanpur 

(India), Kuching (South Korea), Santa Cruz Tenerife (Spain), and UH Liberty (USA).  

The FD standard deviation was calculated for AERONET observations collocated with MPLNET lidars. For estimating 340 

the threshold for FD standard deviation, two classifications were derived using the MPLNET cloud mask: 90% clear and 

cloudy, which combined all types of clouds detected by lidar. Figure 32 shows frequency distribution of calculated FD standard 

deviation matched with these two products and combining data from the eight  collocated AERTONET sites. Figure 32 shows 

that in clear condition FD standard deviation exhibits a sharp increase in the range from 0.5 to ~ 2.0, with the whole range of 

variability from zero to up to 10.  345 

In this range, distribution of  the FD standard deviation corresponding to cloudy conditions does not exhibit any sharp 

features and stays below ~ 5%. Comparing distributions for clear and cloudy conditions allows selecting the threshold value 

above which the clear distribution is dominant. As can be seen from Figure 32, the threshold value of 3 can be considered as 

reasonable value. This value is consistent with the value estimated from individual cloud free cases analyzed independent of 

lidar data. 350 

Figure 33 shows the comparison between the AERONET Version 3 Level 1.5 (V3_L1.5) and the FD (abbreviated as New 

CS) algorithms across eight co-located AERONET–MPLNET sites as a function of Mathews Correlation Coefficient (MCC). 

MCC is a  is a tool for model evaluation. It measures the differences between actual values and predicted values and is 

equivalent to the chi square statistics for a 2 by 2 contingency tables (Kaden et al., 2014). The coefficient takes into account 

true negatives, true positives, false negatives and false positives. This reliable measure produces high scores only if the 355 

prediction returns good rates for all four of these categories (Chicco and Jurman, 2020). For each site, data were analyzed 

under three maximum solar zenith angle (SZA) thresholds—30°, 60°, and 90°—to assess how solar geometry affects the 

agreement between the two cloud screening methods. On average, the FD algorithm outperformed V3 L1.5 by about 0.02 in 

MCC, suggesting a modest but consistent improvement in overall classification accuracy. Both algorithms exhibited an average 
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decline in MCC with increasing SZA—from about 0.54 at 30° to 0.52 at 90°—indicating reduced comparability at larger zenith 360 

angles. This reduction in correlation is mostly due to the lidar pointing straight up (the equivalent to 0 degrees SZA for the sun 

photometer) while the Cimel is pointing towards the horizon at larger SZAs therefore the two sensors may be detecting different 

cloud presence due to the spatial variability of clouds in the sky. Despite this degradation, the FD algorithm maintained superior 

performance across all angles, showing enhanced ability to identify cloud-contaminated observations while retaining a strong 

balance between detection and rejection. These results suggest that the FD algorithm provides a more refined and reliable 365 

screening approach, particularly under favorable illumination conditions, and holds potential for broader application in 

improving AERONET–MPLNET data synergy and aerosol product quality. 

Figure 34 compares FD and V3 L1.5 algorithms performance in terms of MCC metrics. The metrics included true positives 

(TP), true negatives (TN), false positives (FP), false negatives (FN), and MCC, which provides a balanced measure of 

classification quality. Overall, the FD algorithm achieved higher TP and slightly higher FP counts, indicating a more assertive 370 

cloud identification approach, while maintaining better MCC values than V3_L1.5 across all SZAs. The comparison of cloud-

screening algorithms reveals that the FD cloud screening method outperforms AERONET V3 L1.5 overall. The FD identifies 

a higher percentage of true positives and fewer false negatives, indicating improved cloud detection accuracy. While it 

produces slightly more false positives, the increase is modest and outweighed by its stronger detection sensitivity. Both 

algorithms maintain high true negative rates, reflecting reliable, clear-sky identification. Overall, the FD algorithm achieves a 375 

more balanced and accurate classification, consistent with its higher MCC values across solar zenith angles. 

 

7 Summary and conclusions. 

A new cloud screening technique augmenting the V3 cloud screening algorithm is presented and discussed. It utilized the 

smoothness of diurnal variability  of sky radiances measured in aureole by CCS scan at 3.3-degree scattering angle: smooth 380 

dependence considered representative of cloud free conditions and sharp spikes are indicative of cloud presence. The technique 

works best for partially cloudy days when smooth aerosol signature is interrupted by spikes due to clouds presence. The 

addition of the new technique improves performance of the V3 curvature algorithm in cases when its parameters are below or 

above corresponding thresholds. 

The review of the V3 curvature algorithm is presented and its shortcomings are analyzed. The curvature algorithm allows 385 

fully automatic cloud screening procedure and employs two parameters to determine cloud presence: slope of the curvature 

and curvature calculated at the smallest scattering angle (named the first point) with thresholds for these parameters determined 

from space and time collocated lidar data. The analysis showed that the curvature algorithm fails cloud detection in cases with  

curvature slope values below or the first point values above the corresponding threshold values especially at northern latitudes 

where the size of ice crystals in cirrus clouds are small and comparable with size of aerosols. It is concluded that additional 390 

information is needed to improve algorithm performance. 
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The analysis of diurnal variability of the curvature slope and the first point at the OPAL station in the Canadian high arctic 

(latitude ~80 N) where majority of the clouds were not detected because both parameters were below (slope) or above (first 

point) of the  corresponding thresholds,  demonstrated non-smooth behavior due to the spikers associated with clouds. Similar 

non-smooth smooth diurnal variability is observed for AE. Therefore, the non-smoothness of temporal variability of curvature 395 

parameters as well as AE could be used for clouds detection. However, both curvature parameters are derived from 

measurements of sky radiances and subjected to constraints such as measurement noise and AOD level. Therefore, it is 

preferable to use temporal variability of measurements themselves such CCS scan at the second smallest scattering angle (3.3 

degree). The smallest scattering angle (3 degree) is excluded due to possible stray light effect. Analysis of diurnal variability 

of CCS(3.3) sky radiances at cloud free conditions demonstrated a smooth dependence that could be approximated by 400 

polynomial fit with high correlation coefficients. The common feature in these cases is the presence of a rather smooth temporal 

aerosol signature interposed by random noise due to the natural variability of aerosols. Another example at the DEWA site in 

the United Arab Emirates (latitude ~25 N) demonstrated two main features of the temporal variability: smooth part due to 

aerosols and irregular spikes due to clouds. The main idea of the algorithm is to remove spikes associated with clouds ( and 

associated AODs), while keeping the smooth part intact. 405 

The identification of spikes in time series of CCS(3.3) is done by comparing the magnitude of the sky radiances at 

neighboring time stamps. Technically it is done by calculating the first differences (FD) of measured sky radiances. Then the 

standard deviation of  FDs for the entire day is calculated and compared to the threshold determined from diurnal dependencies 

of sky radiances measured on the set of cloud free days. If the standard deviation is larger than the threshold the algorithm 

marks all the FD pairs above the threshold as cloud contaminated. For those pairs, the algorithm removes measurements of 410 

AOD corresponding to CCS (3.3) with the largest magnitude in each pair thereby producing the first iteration “cloud screened” 

time series for which a new value standard deviation is calculated. The algorithm then proceeds in iterations until the standard 

deviation is below the threshold or until standard deviation starts increasing. Increasing the standard deviation indicates that 

the algorithm starts eliminating random variability which can be due to aerosol inhomogeneity or completely cloudy conditions 

with no clear aerosol signature. The latter case is out of algorithm applicability, and it  stops after the first iteration.  415 

The FD algorithm was applied to the measurements taken at all the AERONET sites in year 2022 that had L1.5 data . It 

was found that stand alone performance of FD algorithm is less satisfactory than  that of the curvature algorithm of the V3. 

However, if applied to the V3 L 1.5 data, the FD algorithm can identify clouds that were missed by the V3 curvature algorithm. 

The application of the FD algorithm to several AERONET sites is presented and its performance was analyzed in terms of the 

net change in AE and the number of AOD measurements. It was found that at AERONET sites dominated by fine mode 420 

aerosols (Opal, Thule , Hokkaido University), application of the FD algorithm resulted in a systematic increase of the monthly 

averaged AE as well as the reduction of the number of measurements with AE increase strongly correlated with the decrease 

in the AOD measurements number. This anticorrelation can be considered as an indication of satisfactory FD algorithm 

performance at these sites.  However, at the Capo Verde site, where aerosol loading is dominated by transported dust, the FD 

algorithm resulted in a significant reduction in the number of AOD measurements that corresponded to very small changes in 425 
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AE with no obvious correlation thereby indicating removal cloud free AOD measurements. An additional analysis showed 

that in cases of removing cloud contaminated and cloud-free AOD measurements the rate of AE change with iteration number 

is very different. It is higher for cloudy conditions with linear dependence of AE on the iteration number and it is much lower 

for cloud free condition with very low correlation between changes in AE and iteration number. The slope of linear regression 

between iteration number and AE is selected as an additional constraint on the FD algorithm performance. It was decided to 430 

disregard FD algorithm results if the slope is smaller than certain threshold value. Based on comparison of FD algorithm 

dynamics for cloudy and cloud free cases, the threshold value for the slope was selected to be 0.1. The choice was additionally 

validated by analyzing  two days of measurements at the Capo Verde site using MODIS Terra and Aqua images as independent 

information of cloud presence in the vicinity of the site. 

Finalization of  the FD algorithm threshold setting as well as evaluation of the algorithm performance was done by using 435 

independent cloud detection information available from MPLNET data. AERONET and MPLNET data were space and time 

collocated, and, in addition, data were averaged over an hour period from both measurements. For finalizing the threshold for 

the FD standard deviation, two classifications were derived from the MPLNET data product: 90% clear and cloudy. The FD 

standard deviation was calculated for AERONET/MPLNET collocated data for both products, and the threshold value was 

derived from comparison of the corresponding FDs histograms. The determined value of 3.0 was consistent with the value 440 

determined earlier from a set of case studies of cloud free diurnal dependencies of CCS(3.3).   

The FD algorithm performance was analyzed by comparing both V3 L1.5 and the FD algorithms results to collocated 

MPLNET data in terms of the Matthews Correlation Coefficient (MCC). MCC measures the differences between actual values 

and predicted values and takes into account true negatives, true positives, false negatives and false positives and produces high 

scores only if the prediction returns good rates for all four of these categories. The collocated data were analyzed under three 445 

maximum solar zenith angle (SZA) thresholds—30°, 60°, and 90. The comparison showed that, on average, the FD algorithm 

outperformed V3 L1.5 by about 0.02 in MCC, suggesting consistent improvement in overall cloud detection accuracy. It is 

also found that both algorithms show a decrease in MCC with increasing SZA with the FD algorithm, however, maintaining 

superior performance across all angles. These results suggest that the FD algorithm combined with the V3 cloud screening 

provides a more refined and reliable screening approach.  450 

Additionally, the FD and V3 L1.5 algorithms performance was analyzed in terms of MCC metrics. The comparison 

demonstrated that the FD identifies a higher percentage of true positives and fewer false negatives, indicating improved cloud 

detection accuracy. While the FD generates slightly more false positives, the increase is small and outweighed by its stronger 

detection sensitivity. Both algorithms maintain high true negative rates, reflecting reliable, clear-sky identification. Overall, 

the FD algorithm combined with the V3 clous screening achieves a more balanced and accurate classification versus V3 alone, 455 

consistent with its higher MCC values across solar zenith angles. 
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 Figure 1. Scattering phase function calculated for different atmospheric particulates. Solid lines represent power law fit.             520 
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 Figure 2. Dependence of the curvature on the scattering angle in aureole calculated for three typical fine and coarse mode 535 

dominated  aerosols, fine-coarse aerosols and  aerosol-cirrus clouds mixtures. 
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Figure 3. Slope of the curvature in aureole estimated for three typical fine and coarse mode dominated  aerosols, fine-coarse 

aerosols and  aerosol-cirrus clouds mixtures. 
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Figure 4. Dependence of the curvature slope on the cloud fraction for the three mixtures of urban industrial aerosol with cirrus 

clouds,  (cirrus clouds/aerosols): 10/90, 20/80, and 50/50. 550 
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Figure 5. Dependence of the first point of the curvature on cloud fraction for the mixture of urban-industrial aerosols with 

cirrus clouds. 555 
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Figure 6. Same as in Figure 4 but for mixture of biomass burning aerosols with cirrus clouds. 560 
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Figure 7. Same as in Figure 5 bur for the mixture of biomass burning aerosols with cirrus clouds. 570 
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Figure 8. Temporal dependence of level 2 AOD measured at OPAL AERONET site on May 2, 201 
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                                            Figure 9. Same as in Figure 8 but for Angstrom exponent. 575 
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Figure 10. Temporal dependence of the slope of the curvature calculated from  CCS (3.3) measured at OPAL AERONET site 

on May 2, 2018. 
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                                  Figure 11. Same as in Figure 10 but for the first point of the curvature. 
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 Figure 12. Temporal dependence of CCS (3.3) measured at a) Ilorin AERONET site on February 11, 2020, b) DEWA 600 

AERONET site on July 4, 2019   
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Figure 13. Temporal dependence of CCS (3.3) measured at DEWA AERONET site on July 18, 2019. 
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                                   Input: time series of CCS(3.3) for entire day 
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Figure 14. Flow chart of FD algorithm. 
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Figure 15. Temporal dependence of CCS (3.3) measured at Kuopio AERONET site on May 2 
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Figure 16. Results of application of FD algorithm to Level1 data of CCS (3.3) measured at DEWA AERONET site on July 

18, 2019. 
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       Figure 17. Results of applying of FD algorithm at OPAL AERONET site on May 2, 2018: a)AOD, b) AE (440-870). 660 
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           680 

 

Figure 18. Monthly averaged AE as function of month for Thule AERONET site. Red line corresponds to V3 level 1.5 and 

blue line after FD algorithm was applied; a) monthly averaged AE, b) number of observations 
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Figure 19. Daily averaged AE as function of day number for Thule AERONET site in April 2022. Red line corresponds to V3 695 

level 1.5 and blue line after FD algorithm was applied: a) daily averaged AE, b) number of observations. 
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Figure 20. Monthly averaged AE as function of month for Hokkaido University AERONET site. Red line corresponds to V3 705 

level 1.5 and blue line after FD algorithm was applied: a) monthly averaged AE (440-870), b) number of observations. 
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Figure 21. Monthly averaged AE as function of month for Capo Verde AERONET site. Red line corresponds to V3 level 1.5 

and blue line after FD algorithm was applied: a) monthly averaged AE(440-870), b) number of observations 715 
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Figure 22. Daily averaged AE as function of day number for Capo Verde AERONET site in April 2022. Red line corresponds 

to V3 level 1.5 and blue line after FD algorithm was applied: a) daily AE(440-870), b) number of observations. 
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   + 735 

 

Figure 23. Histograms of the difference between AE corresponding to V3 L1.5 and AE after the first iteration of FD algorithm 

(red line) as well as relative difference in the number of AOD observations  (blue line). Capo Verde AERONET site for the 

entire year of 2022: a) after one iteration, b) after two iterations, c) after three iterations. 
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Figure 24. Histograms of the difference between AE corresponding to V3 L1.5 and AE after the first iteration of FD algorithm 760 

(red line) as well as relative difference in the number of AOD observations  (blue line). Thule AERONET site: a) after one 

iteration, b) after two iterations, c) after three iterations. 
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Figure 25. The dependence of net change in AE on the iteration number at a) Capo Verde AERONET site on April 2, 2022, b) 780 

Thule AERONET site on April 3, 2022. 
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 795 

 

Figure 26. The histograms of AE regression slope after one FD iteration for Thule (red line) and Capo Verde (blue line) for 

the entire year of 2022: a) after one iteration, b) after two iterations, c) after three and more iterations. 
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Figure 27. The histograms of AE regression slope after one FD iteration for Mongu Inn (red line) and Capo Verde (blue line) 815 

for the entire year of 2022: a) after one iteration, b) after two iterations, c) after three iterations. 
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Figure 28. Terra MODIS image of the area in vicinity of the Capo Verde AERONET site on December 26, 2022: a) Terra, b) 

Aqua. 
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                                      855 

              

Figure 29. Time series of AE on December 26, 2022, at the Capo Verde site. Red, blue and green lines depict L1, L1.5 and 

L1.5 after application of the FD algorithm respectively.  
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 870 

                 

 

Figure 30. MODIS images of the area in vicinity of the Capo Verde AERONET site on November 16, 2022: a) Terra, b) Aqua. 
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Figure 31. Time series of AE on November 16, 2022, at the Capo Verde site. Red and blue lines depict V3 and V3 after 

application of the FD algorithm respectively.  895 

 

 

 

        

 900 

 

 

 

 

 905 

 

0.6

0.7

0.8

0.9

1

1.1

1.2

0.3 0.4 0.5 0.6 0.7 0.8

Capo Verde, November 16, 2022

V3
V3+FD

A
E

, 
4
4

0
-8

7
0

 n
m

Day Fraction

https://doi.org/10.5194/egusphere-2025-6454
Preprint. Discussion started: 14 January 2026
c© Author(s) 2026. CC BY 4.0 License.



48 

 

 

        

Figure 32. Distribution of FD standard deviation for 90% clear (red line) and cloudy (blue line) conditions. Vertical line shows 

selected value for the threshold. 910 
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Figure 33. Dependence of Matthews correlation coefficient (MCC) on the maximum solar zenith angle for V3 Level 1.5 cloud 925 

screened data and data additionally screened FD algorithm abbreviated here as New CS. 
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Figure 34. Comparison of V3 Level 1.5 cloud screening results with those of FD (New CS) in terms of the MMC metrics. 
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