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22 Abstract

23 Thermal structure shapes ecological dynamics in lakes and reservoirs. Yet full-profile
24 temperature records over multi-decades remain scarce, constraining mechanistic understanding
25  ofdepth-resolved thermal changes and subseasonal extremes (e.g., surface heat waves and late-
26  season hypolimnetic warming). In this study, we focused on Rappbode Reservoir—Germany’s
27  largest drinking-water reservoir—and compiled four decades of high-resolution, full-depth
28  temperature profiles with concurrent hydro-meteorological records that are rarely available for
29  stratified systems. Building on these data, we developed a novel two-step analytical framework
30 that integrates long-term monitoring and process-based modelling to yield a high-resolution,
31 internally consistent dataset of spatiotemporal temperature dynamics. We then applied
32  interpretable machine learning to quantify dominant external controls on depth-specific
33  stratification dynamics and determine causal mechanisms governing late-stratification
34  hypolimnetic warming. Our results suggested that influence of external drivers on the
35  thermodynamic structure varied markedly with depth and stratification phase: stratification-
36  strength metrics governed by atmospheric heat fluxes (i.e., surface temperature, vertical
37 temperature difference, Schmidt stability) were controlled mainly by 30-day antecedent
38  shortwave radiation and air temperature. For hypolimnetic temperatures and mixed-layer depth,
39  outflow discharge turned out to be the primary driver during late stratification. Further analysis
40 indicated that episodic hypolimnetic warming up to 10 °C in four specific years was mainly
41 triggered by intensified deep withdrawals that weakened the density gradient and shortened the

42 compensatory-flow pathway. The dual-perspective framework developed here—integrating
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process-based and machine-learning approaches—is broadly transferable for analyzing

ecological processes and supporting evidence-based management in stratified waters.

Keywords: Thermal stratification, Long-term temperature profiles, Hypolimnetic warming,

CE-QUAL-W?2, Interpretable machine learning methods
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47 1. Introduction

48  Driven by solar heating, wind stress, and basin-scale hydrological exchanges, inland waters
49  deeper than 7 m commonly develop seasonal thermal stratification—namely, a distinct vertical
50 temperature gradient within the water column (Kirillin and Shatwell 2016). Solar warming of
51 the surface layer, combined with limited turbulent mixing, generates a warm epilimnion while
52 deep waters remain cold and form the hypolimnion. These two strata are separated by a region
53  of sharp temperature gradients defined as metalimnion (Boehrer and Schultze 2009). This
54  vertical structure controls oxygen and nutrient fluxes (Noori et al. 2023), governs
55  redox-sensitive release of phosphorus from sediments (Deng et al. 2011), and shapes habitat
56  availability for stenothermal organisms (Carr et al. 2019). It also modulates whole-lake
57 emissions of carbon dioxide and methane, thereby shaping the lake’s net role in the global
58 carbon cycle (Mi et al. 2023a). Given the growing influence of climate warming and
59  hydrological variability on stratification phenology (Mi et al. 2023b; Shatwell et al. 2019), a
60  robust understanding of its long-term dynamics is indispensable for safeguarding water quality
61  and designing adaptive management strategies.

62 Observations of high-resolution vertical lake water temperature dynamics over long
63  periods are rarely available. Satellite sensors and nearshore infrared radiometers have provided
64  continuous records of surface water temperature in lakes and reservoirs worldwide for over 40
65  years, enabling robust attribution of surface warming to air temperature, radiation, and wind
66  forcing (Woolway et al. 2020). However, satellites measure only the surface skin (near-surface)
67  temperature, and resolving vertical thermal structure still requires in-situ profilers. Globally,

68 truly multi-decadal (>20 yr), depth-resolved temperature archives that meet basic
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69  comparability criteria (harmonized vertical spacing, sub-monthly sampling frequency and
70  consistent instrumentation over time) remain the exception rather than the rule, with available
71 profile records frequently sparse and summer-biased, particularly below the metalimnion
72 (Akbari et al. 2017). For example, under the Global Lake Temperature Collaboration (GLTC)
73  initiative, Sharma et al. (2015) analyzed summer water temperatures from 291 lakes across
74  different climate zones, and found that only ~20% of those lakes had temperature profile
75 records for more than one year. Although a recent synthesis study compiled vertical
76  temperature profiles from 153 lakes (Pilla et al. 2021) and quantitatively analyzed their thermal
77  structure during stratified seasons, for most sites the record only consists of few profiles
78  obtained during mid-summer, leaving large seasonal and inter-annual gaps. This global paucity
79  of long-term, depth-resolved temperature records substantially limits the understanding of
80  changes in internal thermal structure and their external forcings.

81 Mechanistic hydrodynamic lake models offer a principled means to generate such long-
82  term time series of lake water temperatures at high spatial and temporal resolution (Dong et al.
83  2019). Following site-specific validation against routine monitoring data, such models enable
84  physically consistent gap-filling to sub-daily resolution and longer-term extensions of vertical
85  profiles, thereby supplying the vertically resolved context that short and sparse observations
86 lack. However, robust mechanistic attribution of subsurface temperature variability and
87  stratification intensity still hinges on multidecadal in situ observations, even when aided by
88 model-based reconstructions (Anderson et al. 2021). Furthermore, deep-water thermal
89  structure shows significantly lagged responses to decadal climate variability (e.g., the Pacific

90 Decadal Oscillation and Atlantic Multidecadal Oscillation) and small-scale shear-induced
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91  mixing (Kirillin and Shatwell 2016; Oleksy and Richardson 2021). If the monitoring record is
92  shorter than a full decadal cycle, the corresponding analyses cannot reliably separate the
93 influences of climate forcing and internal lake processes on the deep-water thermal structure
94  (Boehrer and Schultze 2008). In turn, beyond complicating mechanistic diagnosis, the absence
95  of sustained temperature profiles also undermines causal inference for vertically structured
96 ecological responses, governed by the thermal regime (Meinson et al. 2016).
97 In addition, for deep temperate lakes/reservoirs, the thermocline acts as an effective
98 thermal barrier, thus hypolimnetic temperatures remain low and stable—typically oscillating
99  between4 and 6 °C throughout the year, near the temperature of maximum-density of
100  freshwater at 4°C (Boehrer and Schultze 2008). Recent studies, however, have documented
101 late-stratification episodes in which the hypolimnion warms unexpectedly, with peak values
102 occasionally exceeding 10 °C (Lewis Jr et al. 2019; Schwefel et al. 2025). Such deep-water
103  thermal anomalies are being reported with increasing frequency, highlighting an emerging
104  climate-driven phenomenon at depth (Woolway et al. 2025). Unlike the widely studied surface
105  warming, these rare hypolimnetic warming events pose a disproportionate threat to ecosystem
106  stability and drinking-water security. This is because hypolimnetic waters are characterized by
107  low dissolved oxygen, strongly reducing conditions, and minimal water exchange, so that even
108  slight warming can swiftly upset its delicate balance (Mi et al. 2023b). In fact, temperature
109  increases in hypolimnion significantly accelerate biological and chemical reaction rates
110  (roughly doubling per 10°C, see Bouffard et al. (2013)), exponentially intensifying
111  biogeochemical activity (Nkwalale et al. 2023). Consequently, a small warming of anoxic

112 bottom waters can rapidly trigger cascading environmental responses—oxygen is consumed
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113 faster and the sequestered nutrients, heavy metals, and greenhouse gases are abruptly mobilized
114  (LaBrie et al. 2023). Given these risks, systematic analysis of deep-water warming is highly
115  relevant to management. Yet, elucidating hypolimnetic thermal processes and identifying short-
116  term anomalous events critically rely on sustained temperature measurements with sufficient
117  vertical resolution (or highly resolved numerical simulations, see Boehrer and Schultze (2009)).
118  Asnoted above, current observations of subsurface temperatures remain notably limited due to
119  data availability and sampling frequency, hampering our understanding of the mechanisms
120  underlying episodic hypolimnion warming events.

121 To fill these described research gaps, we used Rappbode Reservoir—the largest drinking-
122 water reservoir in Germany—as a model system and compiled a unique 40-year, high-
123 resolution archive of full-depth (0—70 m) temperature profiles. Leveraging the complementary
124  strengths of process-based and data-driven approaches, we firstly established a site-validated
125  CE-QUAL-W2 model which provides a physically consistent, gap-filled record of daily full-
126  profile temperatures. We then applied an interpretable machine-learning layer—XGBoost
127 coupled with SHAP—to obtain depth- and phase-resolved driver attributions of climate and
128  operational forcings. Combined with the in situ monitoring, these components constitute a
129  mechanistic—statistical framework that sharpens inference on interacting drivers, and isolates
130  the dominant controls on deep-reservoir thermal dynamics. In this study, we seek to address
131 the following key questions: (i) Which external forcings set full-column stratification strength,
132 beyond surface warming?, (i) How do the dominant drivers of water temperature dynamics
133 vary with depth?, and (iii) Under what conditions is late-stratification hypolimnetic warming

134  initiated and sustained? In addressing these questions, this study provides the first quantitative
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135  explanation of the mechanisms triggering episodic hypolimnetic warming in stratified waters.
136  Together, these advances yield a transferable mechanistic—statistical template in analyzing
137  thermal evolution for inland waters, with conclusions that generalize well beyond this single
138  system to stratified lakes and reservoirs.

139

140 2. Methods

141 2.1. Study site description

142 Located in the Harz Mountains, the Rappbode Reservoir (Fig.1) is Germany’s largest
143 drinking-water reservoir and supplies raw water to more than one million people in the
144  surrounding region (Rinke et al. 2013). The reservoir attains a maximum depth of 8§89 m
145  (mean =29 m), and the dam crest lies at 423.6 m a.s.l., with the total volume of 1.13 x 10% m?).
146  Inflows are delivered by the Hassel and Rappbode pre-reservoirs and by a transfer tunnel from
147  the Konigshiitte Reservoir (Mi et al. 2018). Six selective-withdrawal outlets are embedded in
148  the dam at 345, 360, 370, 380, 390, and 400 m a.s.l.; the lowest outlet discharges to the
149  downstream Wendefurth Reservoir, whereas the 360 m and 370 m intakes are routinely used
150  for potable supply. With an annual residence time of roughly one year and the regional
151  temperate climate, Rappbode exhibits a classic dimictic pattern—stable thermal stratification
152 in summer and winter, and complete holomixis during spring and autumn. The national ban on
153 phosphate-based detergents instituted three decades ago reduced total phosphorus from
154  0.16 mg L' in 1990 to the current level of approximately 0.02 mg L™, and the reservoir is now

155  classified as meso- to oligotrophic status (Mi et al. 2022).

156 2.2. Long-term water temperature measurements
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157  Since 1981, bi-weekly vertical temperature profiles have been taken at the deepest point
158  immediately upstream of the Rappbode Dam (see Fig. 1), spanning the full water column from
159  the surface to 70 m depth. Up to 2008, temperatures at discrete depths were measured with a
160  thermometer inside an open cylinder sampler; from 2009 onward, measurements have been
161  acquired with a Hydrolab DS5 multiparameter probe. Parallel deployments during the
162  transition period confirmed statistical equivalence between the two methods (Wentzky et al.
163 2018). In this study, we used data from 1981 to 2019 (39 years in total), and after quality control,
164  the record yields a depth—time matrix with year-round, across-season coverage and full water-

165  column extent (0-70m), which serves as the basis for all subsequent analyses.

166  2.3. CE-QUAL-W2 model configuration

167  We developed an integrated framework linking four decades of water-temperature observations
168  with process-based modeling and interpretable machine learning to elucidate the thermal
169  evolution of the Rappbode Reservoir (Fig.1). Here, the process-based simulations were
170  performed with CE-QUAL-W2 (hereafter W2, version4.2.1), a laterally averaged,
171  two-dimensional hydrodynamic model originally developed by the U.S. Army Corps of
172 Engineers at 1975 (Cole and Wells 2006) and now maintained by the Department of Civil and
173 Environmental Engineering at Portland State University. W2 is widely used as a standard tool
174  for resolving hydrodynamic processes in lakes, reservoirs, and estuaries (e.g., Carr et al. 2019;
175  Kobler et al. 2018), and is particularly well suited to systems dominated by longitudinal and
176  vertical gradients such as the Rappbode Reservoir.

177 For Rappbode, the computational mesh comprises four branches subdivided into 106

178  longitudinal segments (Ax = 100—400m) and lateral sub-segments of 5-700m, yielding 3876
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179 grid cells with a uniform 1m vertical resolution (Fig. S1). This discretization fully resolves the
180  reservoir's bathymetry, enabling precise simulation of its morphological features. The model
181  was driven by two sets of boundary conditions: (i) Hydrological forcing—daily inflow and
182  outflow discharges together with inflow temperatures—was provided by the Rappbode
183  Reservoir authority (Talsperrenbetrieb Sachsen-Anhalt); (ii) Meteorological forcing—hourly
184  air temperature, relative humidity, wind speed and direction, incoming short-wave radiation,
185  and cloud cover—was obtained from an monitoring buoy moored near the reservoir’s centre
186  (Rinke et al. 2013), with gaps infilled with records from the German Weather Service station
187  at Harzgerode, ~15km away from the reservoir. An intercomparison of Harzgerode and
188  Rappbode Reservoir indicates a high degree of correlation in the meteorological records (see
189  Mi et al. 2019 for more details). Simulations started on 1 January 1981 with an isothermal
190 initial profile of 4 °C, representing a horizontally and vertically homogeneous state. A full
191  description of the model configuration is presented in the Supplementary Information, as well

192  as in our previous studies (see Mi et al. 2023b; Mi et al. 2020).

193  2.4. XGBoost description and modeling framework

194  XGBoost model description

195  Extreme Gradient Boosting (XGBoost) is an ensemble method that iteratively fits
196  Classification-and-Regression Trees (CART) within a gradient-boosting framework. At
197  each iteration ¢, the algorithm minimizes a regularized objective:

198 =20 L (v 967 + £:0)) + et 2() (M)

199 Q(f) = yT + A5, w} )

200 where I(-) is a twice-differentiable loss (squared error for regression), f; is the #-th tree,

10
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201 T is the number of leaves and w; denotes leaf weights; y and A provide structural and
202  weight regularization, respectively. Here, Q(f) represents the regularization term that
203  penalizes model complexity to prevent overfitting. By employing a second-order Taylor
204  expansion of LY, XGBoost obtains closed-form gain scores that guide an exact or
205  histogram-based greedy search for the optimal split, while column subsampling and
206  block-wise caching accelerate computation. This design yields three decisive benefits: (i)
207  high accuracy, since second-order information markedly improves convergence; (ii)
208  strong generalization, owing to L1/L2 shrinkage, learning-rate decay and stochastic
209  sub-sampling; and (iii) computational efficiency, as multi-threaded and out-of-core
210  execution scale to millions of observations and features on commodity hardware. Built-in
211  cross-validation, early stopping and SHAP-based interpretability further underline
212 XGBoost’s suitability for handling small- to medium-sized and highly non-linear

213 environmental data sets (Li et al. 2024; Lyu et al. 2019).

214  Description of model structure

215 We developed XGBoost models for predicting reservoir thermal structure according to
216  daily outputs (1981-2019) from CE-QUAL-W2. Target variables comprise epilimnetic
217 (5m depth), metalimnetic (15m depth), hypolimnetic (30m depth) and bottom (50m depth)
218  temperatures, Schmidt Stability, the bottom-to-surface temperature difference and mixed-
219  layer depth (see the Supplementary Materials for details on the last three indices and the
220  post-processing methods). Since the above indices related to stratification dynamics are
221  applicable only during thermal stratified period, therefore, the XGBoost model was

222 constructed and analyzed exclusively for May—October. Guided by recent advances in

11
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223  machine-learning modeling of lentic thermal structures (e.g., Bertone et al. 2015; Kreakie
224 etal. 2021), the predictor set includes both the instantaneous and 30-day moving-average
225  values of observed air temperature, relative humidity, wind speed and direction, incoming
226  short-wave radiation, cloud cover and reservoir outflow discharge. Here, we included 30-
227 day moving-average predictors to represent the cumulative component of atmospheric
228 and hydraulic influences across depths, with the physical basis for this setting
229  (epilimnetic thermal inertia 1) further detailed in Section 4.2. To be noted, our previous
230 studies indicated that inflow discharge exerted only a marginal influence on the
231  reservoir's thermal structure (Mi et al. 2020); thus, it was excluded as an input feature
232 from the XGBoost model. All predictors included in the analysis were linearly de-trended,
233 Z-score standardized and screened for collinearity (Jp|<0.75) to minimize feature
234  redundancy (Deka and Weiner 2024).

235 The whole dataset was randomly split into training and testing subsets, with
236  proportions of 80% and 20%, respectively. A 5-fold rolling-origin cross-validation
237  combined with Bayesian optimization was employed to optimize the hyperparameters of
238  the XGBoost model (e.g., eta, max_depth, subsample and colsample bytree), and early
239  stopping was invoked to minimize the root mean square error (RMSE) on the validation
240  set. Model skill was then assessed on the full dataset with RMSE and the coefficient of
241  determination (R?), and SHapley Additive exPlanations (SHAP) values were calculated

242 to quantify the relative contribution of each hydro-meteorological variable.

243  SHAP-based feature contribution analysis

244  In our XGBoost modeling framework, we quantified feature contributions using SHapley

12
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245  Additive exPlanations (SHAP) values. SHAP is a model-agnostic interpretability
246 framework rooted in cooperative game theory (Lundberg et al. 2020). It assigns each
247  predictor a Shapley value calculated by evaluating the predictor's marginal contribution
248  to model output across all possible subsets of input features (>0 pushes the prediction
249  upward, <0 pulls it downward). We report the mean absolute SHAP for each feature as a
250  measure of global importance. Here, SHAP distributions and effect sizes were visualized with
251  beeswarm plots: the horizontal axis shows the SHAP value, and point color redundantly
252 encodes the same measure on a single, shared scale (e.g., warm colors on the right indicate
253  positive contributions, cool colors on the left indicate negative contributions, see Fig.9).
254  Feature attributions computed via SHAP satisfy exact additivity, local accuracy, and
255  consistency (null-feature property), providing a rigorous quantitative basis for
256  disentangling the relative influence of hydrometeorological drivers on reservoir thermal
257  dynamics. For more background on SHAP values, please refer to the Supplementary Material

258 (Text S2).

259

260 3. Results

261  3.1. Model performance in simulating long-term reservoir hydrodynamics

262  The calibrated W2 accurately reproduced the interannual and seasonal water-level dynamics of
263  Rappbode Reservoir over the 39-year period (R? = 0.99, see Fig.S2). The water level typically
264  attains its annual maximum in spring (April-May, ~420 m a.s.l.) in response to increased
265  rainfall, then declines sharply through summer driven by intensified evaporation and elevated

266  drinking-water withdrawals. During winter, marked reductions in precipitation and inflows

13
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267  caused the water-level to continually decline, reaching annual minima at the end of the season
268  (e.g., 395 ma.s.l. in 2002). All of these characteristic fluctuations were satisfactorily captured
269 by the model.

270 The model successfully captured spatiotemporal dynamics of the reservoir’s thermal
271  structure (such as thermocline depth and stratification onset (offset), see Fig.2). Simulated
272 temperatures closely matched observations, with most points clustering along the 1:1 line
273 (R?=0.95; RMSE =0.97 °C, see Fig. 2b). The simulated mean temperature (6.61°C) closely
274  matched the observations (6.76°C) over the study period. More specifically, the simulation
275  accuracy improved progressively with increasing depth, yielding RMSE of 1.27°C, 1.31°C,
276 0.75°C, and 0.59°C at depths of 5 m, 15 m, 30 m, and 50 m, respectively (Fig. 3). Both
277  simulated and observed profiles demonstrate that intra-annual temperature amplitude
278  diminishes sharply with depth, exceeding 15 °C at 5 m depth but falling below 10 °C (30m
279  depth) and 8 °C (50m depth, see Fig. 3).

280 Additionally, simulated and observed temperatures exhibited highly consistent long-term
281  trajectories (Fig. S3). At 5Sm depth, both series warmed significantly—0.05 Kyr™ for the
282  observations and 0.06 K yr! for the simulations (Mann—Kendall test, p <0.05)—with the mean
283 epilimnetic temperature rising from ~15 °C in 1981-1985 to ~18 °C at the end of the record.
284 By comparison, temperature at depths between 15m and 50m exhibited pronounced
285  inter-annual variability but no statistically significant monotonic trend (Mann—Kendall

286  test,p>0.05, see Fig. S3).

287  3.2. Performance of XGBoost in simulating reservoir stratification dynamics

288  The calibrated XGBoost model successfully simulated the temperature dynamics in Rappbode

14
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289  during the stratified period (Fig. 4). Trained on the daily CE-QUAL-W?2 outputs as target values,
290  the machine-learning model captured depth-specific temperature variations with high precision.
291  Consistent with previous findings, the performance gradually improved with increasing
292 depth—RMSE declined from 0.44 °C at 5 m to 0.16 °C at 50 m. The seasonal temperature
293  pattern was also accurately represented by XGBoost: surface temperatures (5m depth)
294  followed a pronounced unimodal, bell-shaped curve that peaked in mid-July to early August,
295  when the median daily temperature in both W2 and XGBoost simulations was ~19 °C, and
296  cooled markedly at the onset (May) and offset (October) of the stratified period (Fig. 4). With
297  increasing depth, the timing of peak temperature lagged progressively. At depths of 30 m and
298 50 m, temperatures rose continuously throughout the stratified period, reaching their maxima
299  in October.

300 The stratification indices predicted by XGBoost are virtually congruent with the
301  CE-QUAL-W2 outputs, as indicated by the tight clustering of points along the 1:1 line (Fig. 5).
302  Specifically, Schmidt Stability was generally <1 x 10° ] m at the onset of stratification in May,
303 increased steadily to a peak of ~3 x 10* Jm™ in August, and declined thereafter, returning to
304 the initial levels by October; this seasonal pattern closely paralleled that of the
305  bottom-to-surface temperature difference (Fig. 5a). In contrast, the mixed-layer depth deepened
306 throughout the stratified period: it remained <10m from May to August but reached
307  approximately 20 m by October (Fig. 5b).

308 SHAP analysis of the XGBoost model indicates that epilimnetic temperature (5 m) is
309 governed chiefly by the antecedent 30-day means of air temperature, dew-point temperature,

310 and incident short-wave radiation (Fig.6). With depth, the influence of air temperature

15
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311  attenuates, ranking third, fourth, and fifth for the temperature at 15, 30, and 50 m depth,
312 respectively, while short-wave radiation becomes the primary external driver below the surface
313 layer. The importance of outflow discharge strengthens progressively down-profile, ranking
314  eighth for epilimnetic temperature, fourth for temperature at 15m depth, and second for
315  temperature at 50 m depth. The relative importance of cloud cover as a driver of water
316  temperature increased incrementally with depth, ranking sixth at depths of 5-30 m and fourth
317 at 50 m. Wind speed and direction remain comparatively minor controls across all depths,
318  ranking between sixth and eighth (Fig. 6). In sum, SHAP resolves a depth-structured forcing
319  pattern: atmospheric control shifts from non-radiative terms in the epilimnion to short-wave
320 radiation below the surface layer, while hydraulic withdrawal gains influence toward the
321 hypolimnion.

322 Our results also indicated that both the bottom-to-surface temperature difference and
323 Schmidt Stability are governed principally by the antecedent 30-day means of air temperature,
324  incident short-wave radiation, and dew-point temperature (Fig. 7). By comparison, the
325  mixed-layer depth was primarily driven by short-wave radiation over the preceding 30-day
326  period, with outflow discharge and dew-point temperature ranking second and third,
327  respectively. Cloud cover also significantly affected stratification dynamics, ranking fourth in
328  importance for mixed-layer depth and fifth for Schmidt stability. In addition to antecedent
329  forcings, instantaneous (same-day) conditions also exerted substantial control: specifically,
330 same-day air temperature ranks fourth for its effect on both the bottom-to-surface temperature
331  difference and Schmidt Stability (Fig. 7), whereas the same-day outflow discharge ranks fifth

332  in modulating mixed-layer depth.

16



https://doi.org/10.5194/egusphere-2025-6442
Preprint. Discussion started: 20 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

333 3.3. Mechanisms underlying the occurrence of elevated bottom-water temperatures in
334  specific years

335  During the stratified season, hypolimnetic (50 m depth) temperatures in Rappbode Reservoir
336  generally remains within the range of 4-6 °C. However, both in-situ profiles and W2
337  simulations reveal episodic warming to ~10 °C at the end of stratification (September—October)
338 in 1981, 2001, 2002, and 2007 (Fig. 8b). To elucidate the mechanisms underlying these
339  anomalies, daily hypolimnetic temperatures simulated by W2 were adopted as targets to
340 develop specific XGBoost models for early (May—June), mid (July—August), and late
341  (September—October) stratified periods. SHAP analysis was then applied to quantify the
342  dominant predictors in each interval.

343 The period-specific XGBoost models satisfactorily reproduced CE-QUAL-W2
344  hypolimnetic temperatures with RMSE of 0.08, 0.09 and 0.13 °C for early, mid and late
345  stratification, respectively (R?=0.96—0.98). The results further demonstrate pronounced
346  stage-dependent shifts in the controls on hypolimnetic temperature (Fig. 9). Specifically, during
347  the early-stratified period (May—June) the 30-day antecedent mean air temperature, outflow
348  discharge and wind direction emerge as the three leading drivers. By mid-stratification (July—
349  August) the principal controls change over to the 30-day mean short-wave irradiance followed
350 by outflow discharge, whereas in the late-stratified phase (September—October) the positive
351 influence of outflow discharge becomes overwhelmingly dominant (Fig. 9): its SHAP
352 contribution attains 0.513—over four times greater than that of air temperature (0.131, ranked
353 second) and shortwave radiation (0.115, ranked third). To corroborate this finding, we

354  examined years in which late-season hypolimnetic temperatures were anomalously elevated.
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355 In 1981, 2001, 2002, and 2007, the median discharge during late stratification was 5.24 m3s™!,
356  approximately 125% higher than the 40-year median (2.32 m?® s™*) for this interval, a difference
357 that was statistically significant (Dunn’s test, p <0.05, see Fig.8a). Furthermore, during this
358  period, the SHAP contribution of outflow discharge was also markedly greater than those of
359 the other predictors (Fig. 9d). Collectively, the hydrological signature provides independent
360 evidence that enhanced release discharge is the key driver of late-stratification hypolimnetic

361  warming.

362 4. Discussion

363  4.1. Reconstruction of thermal structure from multi-decadal full-profile observations
364 In this study we assembled a uniquely long and vertically resolved data set comprising almost
365  four decades (1981-2019) of temperature profiles (0—70 m) and concomitant meteorological
366  forcing for Rappbode Reservoir, the largest drinking water reservoir in Germany. On this basis,
367  we established an analytical framework, combinng process-based (CE-QUAL-W?2) and data-
368  driven (XGBoost) models, to systematically assess their capabilities in reproducing the
369  reservoir's thermal structure. Whereas most publicly available lake- and reservoir-temperature
370  records span <10 years and rarely include deep-water observations for long-term periods
371 (Ladwig et al. 2021; Woolway et al. 2020), the present data set bridges an inter-decadal gap
372 and thus provides an exceptional resource for full-profile hydrodynamic modelling.

373 Here, the 39-year observations and simulations consistently indicate a pronounced
374  epilimnetic warming of the reservoir, with observed and simulated warming rates of 0.06 and

375  0.05°Ca, respectively, which closely matches-and even marginally exceeds-the concurrent
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376  increase in regional air temperature (0.04 °C yr'; Mann—Kendall test,p=0.001) and the
377  pan-European synthesis of temperate lakes (O'Reilly et al. 2015; Shatwell et al. 2019). In
378  contrast, deep-water temperatures at 30m and 50m depth exhibited no significant trends,
379  thereby reflecting a characteristic pattern of intensified surface warming concurrent with
380 relatively stable deep-water temperatures. This vertical asymmetry in warming preserves the
381  cold-water refuge but implies a strengthening of thermal stratification. Numerous studies have
382 shown that such shifts in lake and reservoir thermodynamics would exacerbate hypolimnetic
383  anoxia and enhances internal nitrogen and phosphorus loading (Sun et al. 2022; Weinke and
384 Biddanda 2019), subsequently impairing source-water quality and downstream aquatic
385 ecosystems (Jane et al. 2023). Accordingly, coupling the validated thermal models with
386  biogeochemical modules to quantify present-day and future trajectories of dissolved oxygen,
387 and to develop targeted water-quality management strategies, constitutes a logical and

388  necessary extension of the current work.

389  4.2. Atmospheric and hydraulic drivers governing thermal dynamics in stratified
390  reservoirs

391  The SHAP values indicated that the antecedent 30-day mean air temperature is the most
392 influential predictor of epilimnetic temperature, as well as of Schmidt stability and the bottom-
393  to-surface temperature difference, followed by dew-point temperature and shortwave radiation.
394  This hierarchy corroborates earlier findings derived from short-term datasets for dimictic lakes
395 by Livingstone and Lotter (1998) and Darko et al. (2019), and is now quantitatively confirmed
396 by our 39-year observational record. All such results highlight the lagged response of the three

397  surface-heat-forced stratification metrics to cumulative antecedent heat fluxes (i.e., the thermal
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398 inertia effect). Here, the epilimnetic thermal inertia t is defined as (Imberger and Patterson
399 1989):

400 T = % 3)

401  where p is water density, ¢, the specific heat capacity (4.18x10°J kg™! K1), / the mixed-layer
402  depth and Huet the daily-mean net heat flux. For Rappbode Reservoir, according to the thermal
403  conditions during the stratified period (Mi et al. 2019), p is defined as 998 kg m=3, & is from
404 9 mto 11 m, and Hyet is from 18 W mto 24 W m™2 which yields t ranging from 25d to 29d,
405 in close agreement with the 30-day averaging window that dominates the SHAP ranking.
406  Because this response time exceeds the characteristic 1-day scale of surface heat-flux
407  variability by an order of magnitude, daily atmospheric perturbations are strongly filtered by
408  thermal inertia and thus contribute little to the statistical ranking.

409 By comparison, in the hypolimnion (30-50m), short-wave radiation exceeds air
410 temperature as the dominant predictor, and the SHAP importance of outflow discharge
411  concurrently increases, because sustained deep withdrawals remove the coldest layers, erode
412 thermocline stability and induce compensation flows that advect warmer water downward
413 (Olsson 2021; Weber et al. 2017), thereby regulating hypolimnetic temperature. Our analysis
414 further reveals that, for mixed-layer depth, outflow discharge emerges as the second-most
415  influential predictor. As shown above, this can be attributed to sustained hypolimnetic
416  withdrawals, which induce downward flows and consequently deepen the mixed layer (Deng
417 et al. 2011; Mi et al. 2023a). Additionally, the role of cloud cover should not be overlooked

418  (ranking fourth in SHAP values), since cloudiness can effectively modulate incoming

419  shortwave and longwave radiation, thus altering surface buoyancy fluxes (Boehrer and
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420  Schultze 2008).

421  4.3. Late-season hypolimnetic warming— mechanistic insights from period-specific
422 SHAP analysis

423 During late stratification, increased deep-layer withdrawals are more effective at warming the
424  hypolimnion for two complementary reasons. First, over this period, nocturnal cooling and
425  declining net radiation substantially reduce Schmidt stability to <1x10*Jm™ (Fig. 5),
426  compared with > 2 x 10® ] m2 in midsummer (July—August), weakening the density interface
427  so that mixing event can more easily penetrate the metalimnion and transport heat downward.
428  Second, the mixed layer deepens from about 6 m in early summer to 18 m by September-
429  October (Fig. S4), thereby reducing the vertical distance between the mixed-layer base and the
430  water-withdrawal intake (at the depths of 60-70 m) by =~20%. The compensatory inflow
431  therefore traverses a shorter pathway with lower viscous and buoyancy dissipation, allowing a
432 larger fraction of warm water to reach hypolimnion (Feldbauer et al. 2020). The concurrence
433  of a weakened density interface and a contracted transport pathway explains why
434  high-discharge deep withdrawals can rapidly elevate bottom temperatures during late
435  stratification.

436 Despite pronounced hypolimnetic warming induced by deep-water withdrawals in the late
437  stratification periods of 1981, 2001, 2002, and 2007, the surface-to-bottom temperature
438  difference remained above 1 °C for most of October (Fig. S5), indicating persistent and stable
439  stratification conditions (Fang and Stefan 2009). Hypolimnetic warming under such weakened
440  stratification poses a severe ecological threat since oxygen demand in the hypolimnion

441  increases sharply with temperature while atmospheric re-oxygenation remains inhibited. For
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442  Rappbode Reservoir, our previous work suggested that raising bottom-water temperature from
443  a typical 6 °C to 10 °C (October 2001) augments the sediment oxygen demand (SOD) from
444 0.46 to 1.04 gO.m2d ™" (Mi et al. 2020). Under a persistent density barrier, this additional
445  demand cannot be offset by oxygen replenishment from surface waters, greatly amplifying the
446  risk of hypolimnetic anoxia. Such adverse effects associated with a "warm yet stratified" state
447  have also been systemically documented at the CW Bill Young Regional Reservoir (Bryant et
448  al. 2024), and Cedar Lake (James et al. 2015), USA. Taken together, these observations
449  underscore the management relevance of hypolimnetic warming during late-season
450  stratification decay; accordingly, future work should quantify threshold conditions that link this
451  warming to hypolimnetic oxygen debt—e.g., stability and withdrawal-rate percentiles—and

452  test operational adaptation strategies that minimize exposure to this state.

453  4.4. An integrated analytical framework for long-term thermal reconstruction and driver
454  attribution

455  Our study not only clarifies the thermal dynamics of reservoirs and their external drivers, but
456  also introduces a new methodology that is of broader interest. By assimilating routine
457  observations into a site-calibrated CE-QUAL-W2 model, we reconstruct a four-decade, depth-
458  resolved (0—70 m) temperature archive with high vertical and temporal resolution, transforming
459  sparse monitoring into continuous vertical profiles for subsequent analyses. Second, an
460  interpretable machine-learning workflow (XGBoost with rolling-origin cross-validation and
461  early stopping) provides fast, accurate prediction across depths, which is directly relevant for
462  forecasting use-cases increasingly requested by reservoir managers (Carey et al. 2022). Third,

463  the SHAP analysis provides additive, model-consistent attributions that decompose any
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thermal anomaly into depth- and sample-specific contributions of individual drivers. In practice,
this yields a quantitative explanation of reservoir thermal anomalies without running time-
consuming large scenario ensembles with the process model.

Collectively, these advantages constitute an integrated mechanistic—statistical framework that
is readily transferable to other stratified lakes and reservoirs for long-term thermal

reconstruction, driver attribution and operational evaluation.

5. Conclusion

® We developed an integrated CE-QUAL-W2 and machine-learning framework that reliably
reconstructs, over nearly four decades, the full-depth thermal structure of Rappbode
Reservoir, capturing the spatiotemporal variability of layer-specific temperatures and
stratification-strength metrics.

® SHAP attribution based on the integrated framework revealed strong vertical heterogeneity
in the controls on reservoir thermodynamics: surface temperature was governed primarily
by the antecedent 30-day means of air temperature, dew-point temperature, and incident
shortwave radiation, whereas the influence of shortwave radiation and outflow discharge
increased progressively with depth and the relative effect of air temperature strongly
declined.

® The dominant controls on bottom-water temperature shifted systematically across
stratification phases: during early stratification (May—June), the leading drivers were the
antecedent 30-day mean air temperature, outflow discharge, and wind direction; during
mid stratification (July—August), shortwave radiation and outflow discharge jointly

dominated; during late stratification (September—October), outflow discharge became the
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486 overwhelming control, with a SHAP contribution more than four times that of air
487 temperature and shortwave radiation.

483 ® Observations and simulations consistently showed that bottom-water temperature rose

489 anomalously to ~10 °C during late stratification in 1981, 2001, 2002, and 2007, whereas
490 it typically remained at 4-6 °C in other years. Further analyses indicated that these events
491 were primarily triggered by intensified deep withdrawals in late stratification, with outflow
492 discharge ~2.25 times higher than in typical years. The enhanced discharge weakened the
493 density gradient and strengthened downward compensatory transport, driving the bottom-
494 water thermal anomaly.

495
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Fig. 1. (a) Location of the Rappbode Reservoir in Germany. (b) Reservoir bathymetry and the

long-term water-temperature monitoring site (YT1). (c—e) Data flow and model coupling within

the integrated analytical framework: (c) four decades of hydrometeorological forcings and in-lake

temperature profiles; (d) process-based modeling with CE-QUAL-W2; (e) interpretable machine

learning with XGBoost/SHAP; and (f) key question addressed in this study.
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Fig. 2. (a) Thermal dynamics of Rappbode Reservoir, from W2 simulation results, during the study

period; (b) Comparison between simulated and observed water temperature with the colour scale

denoting the number of samples per hexagon. The dashed line represents the 1:1 line.
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Fig. 5. Stratification dynamics simulated by W2 and XGBoost in Rappbode Reservoir for
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the right column indicating the comparison for the three indexes.
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Fig. 6. Driving factors analysis for water temperature at the depth of 5m (a), 15m (b), 30m (c) and

50m (d) based on the SHAP values. MA indicates moving-average features.
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Fig. 8. (a) Moving-average of discharge during September—October for each year (with 1981, 2001,
2002, and 2007 highlighted in green); (b) water temperature, at the depth of 50m, from W2 (red
lines) and XGBoost (black point) for each year.
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Fig. 9. Comparison of SHAP-derived driver importance for bottom-layer water temperature at 50

m depth. (a—c) SHAP value rankings showing how dominant drivers vary across the initial (May—

June), middle (July—August), and final (September—October) stages of stratification. (d)

Comparison of SHAP values during September—October for outflow (green), solar radiation (red),

and air temperature (blue) in 1981, 2001, 2002, and 2007; points denote daily values plotted against

day of year (DOY), with colored lines indicating linear regression fits, and adjacent boxplots

summarizing the corresponding distributions. MA indicates moving-average features.
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