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Abstract 22 

Thermal structure shapes ecological dynamics in lakes and reservoirs. Yet full-profile 23 

temperature records over multi-decades remain scarce, constraining mechanistic understanding 24 

of depth-resolved thermal changes and subseasonal extremes (e.g., surface heat waves and late-25 

season hypolimnetic warming). In this study, we focused on Rappbode Reservoir—Germany’s 26 

largest drinking-water reservoir—and compiled four decades of high-resolution, full-depth 27 

temperature profiles with concurrent hydro-meteorological records that are rarely available for 28 

stratified systems. Building on these data, we developed a novel two-step analytical framework 29 

that integrates long-term monitoring and process-based modelling to yield a high-resolution, 30 

internally consistent dataset of spatiotemporal temperature dynamics. We then applied 31 

interpretable machine learning to quantify dominant external controls on depth-specific 32 

stratification dynamics and determine causal mechanisms governing late-stratification 33 

hypolimnetic warming. Our results suggested that influence of external drivers on the 34 

thermodynamic structure varied markedly with depth and stratification phase: stratification-35 

strength metrics governed by atmospheric heat fluxes (i.e., surface temperature, vertical 36 

temperature difference, Schmidt stability) were controlled mainly by 30-day antecedent 37 

shortwave radiation and air temperature. For hypolimnetic temperatures and mixed-layer depth, 38 

outflow discharge turned out to be the primary driver during late stratification. Further analysis 39 

indicated that episodic hypolimnetic warming up to 10 °C in four specific years was mainly 40 

triggered by intensified deep withdrawals that weakened the density gradient and shortened the 41 

compensatory-flow pathway. The dual-perspective framework developed here—integrating 42 
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process-based and machine-learning approaches—is broadly transferable for analyzing 43 

ecological processes and supporting evidence-based management in stratified waters. 44 

Keywords: Thermal stratification, Long-term temperature profiles, Hypolimnetic warming, 45 

CE-QUAL-W2, Interpretable machine learning methods   46 
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1. Introduction 47 

Driven by solar heating, wind stress, and basin-scale hydrological exchanges, inland waters 48 

deeper than 7 m commonly develop seasonal thermal stratification—namely, a distinct vertical 49 

temperature gradient within the water column (Kirillin and Shatwell 2016). Solar warming of 50 

the surface layer, combined with limited turbulent mixing, generates a warm epilimnion while 51 

deep waters remain cold and form the hypolimnion. These two strata are separated by a region 52 

of sharp temperature gradients defined as metalimnion (Boehrer and Schultze 2009). This 53 

vertical structure controls oxygen and nutrient fluxes (Noori et al. 2023), governs 54 

redox‑sensitive release of phosphorus from sediments (Deng et al. 2011), and shapes habitat 55 

availability for stenothermal organisms (Carr et al. 2019). It also modulates whole‑lake 56 

emissions of carbon dioxide and methane, thereby shaping the lake’s net role in the global 57 

carbon cycle (Mi et al. 2023a). Given the growing influence of climate warming and 58 

hydrological variability on stratification phenology (Mi et al. 2023b; Shatwell et al. 2019), a 59 

robust understanding of its long‑term dynamics is indispensable for safeguarding water quality 60 

and designing adaptive management strategies. 61 

Observations of high-resolution vertical lake water temperature dynamics over long 62 

periods are rarely available. Satellite sensors and nearshore infrared radiometers have provided 63 

continuous records of surface water temperature in lakes and reservoirs worldwide for over 40 64 

years, enabling robust attribution of surface warming to air temperature, radiation, and wind 65 

forcing (Woolway et al. 2020). However, satellites measure only the surface skin (near-surface) 66 

temperature, and resolving vertical thermal structure still requires in-situ profilers. Globally, 67 

truly multi-decadal (>20 yr), depth-resolved temperature archives that meet basic 68 
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comparability criteria (harmonized vertical spacing, sub-monthly sampling frequency and 69 

consistent instrumentation over time) remain the exception rather than the rule, with available 70 

profile records frequently sparse and summer-biased, particularly below the metalimnion 71 

(Akbari et al. 2017). For example, under the Global Lake Temperature Collaboration (GLTC) 72 

initiative, Sharma et al. (2015) analyzed summer water temperatures from 291 lakes across 73 

different climate zones, and found that only ~20% of those lakes had temperature profile 74 

records for more than one year. Although a recent synthesis study compiled vertical 75 

temperature profiles from 153 lakes (Pilla et al. 2021) and quantitatively analyzed their thermal 76 

structure during stratified seasons, for most sites the record only consists of few profiles 77 

obtained during mid-summer, leaving large seasonal and inter‑annual gaps. This global paucity 78 

of long-term, depth-resolved temperature records substantially limits the understanding of 79 

changes in internal thermal structure and their external forcings. 80 

Mechanistic hydrodynamic lake models offer a principled means to generate such long-81 

term time series of lake water temperatures at high spatial and temporal resolution (Dong et al. 82 

2019). Following site-specific validation against routine monitoring data, such models enable 83 

physically consistent gap-filling to sub-daily resolution and longer-term extensions of vertical 84 

profiles, thereby supplying the vertically resolved context that short and sparse observations 85 

lack. However, robust mechanistic attribution of subsurface temperature variability and 86 

stratification intensity still hinges on multidecadal in situ observations, even when aided by 87 

model-based reconstructions (Anderson et al. 2021). Furthermore, deep-water thermal 88 

structure shows significantly lagged responses to decadal climate variability (e.g., the Pacific 89 

Decadal Oscillation and Atlantic Multidecadal Oscillation) and small-scale shear-induced 90 
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mixing (Kirillin and Shatwell 2016; Oleksy and Richardson 2021). If the monitoring record is 91 

shorter than a full decadal cycle, the corresponding analyses cannot reliably separate the 92 

influences of climate forcing and internal lake processes on the deep-water thermal structure 93 

(Boehrer and Schultze 2008). In turn, beyond complicating mechanistic diagnosis, the absence 94 

of sustained temperature profiles also undermines causal inference for vertically structured 95 

ecological responses, governed by the thermal regime (Meinson et al. 2016).  96 

In addition, for deep temperate lakes/reservoirs, the thermocline acts as an effective 97 

thermal barrier, thus hypolimnetic temperatures remain low and stable—typically oscillating 98 

between 4 and 6 °C throughout the year, near the temperature of maximum-density of 99 

freshwater at 4°C (Boehrer and Schultze 2008). Recent studies, however, have documented 100 

late‑stratification episodes in which the hypolimnion warms unexpectedly, with peak values 101 

occasionally exceeding 10 °C (Lewis Jr et al. 2019; Schwefel et al. 2025). Such deep-water 102 

thermal anomalies are being reported with increasing frequency, highlighting an emerging 103 

climate-driven phenomenon at depth (Woolway et al. 2025). Unlike the widely studied surface 104 

warming, these rare hypolimnetic warming events pose a disproportionate threat to ecosystem 105 

stability and drinking-water security. This is because hypolimnetic waters are characterized by 106 

low dissolved oxygen, strongly reducing conditions, and minimal water exchange, so that even 107 

slight warming can swiftly upset its delicate balance (Mi et al. 2023b). In fact, temperature 108 

increases in hypolimnion significantly accelerate biological and chemical reaction rates 109 

(roughly doubling per 10 °C, see Bouffard et al. (2013)), exponentially intensifying 110 

biogeochemical activity (Nkwalale et al. 2023). Consequently, a small warming of anoxic 111 

bottom waters can rapidly trigger cascading environmental responses–oxygen is consumed 112 
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faster and the sequestered nutrients, heavy metals, and greenhouse gases are abruptly mobilized 113 

(LaBrie et al. 2023). Given these risks, systematic analysis of deep-water warming is highly 114 

relevant to management. Yet, elucidating hypolimnetic thermal processes and identifying short-115 

term anomalous events critically rely on sustained temperature measurements with sufficient 116 

vertical resolution (or highly resolved numerical simulations, see Boehrer and Schultze (2009)). 117 

As noted above, current observations of subsurface temperatures remain notably limited due to 118 

data availability and sampling frequency, hampering our understanding of the mechanisms 119 

underlying episodic hypolimnion warming events. 120 

To fill these described research gaps, we used Rappbode Reservoir—the largest drinking-121 

water reservoir in Germany—as a model system and compiled a unique 40-year, high-122 

resolution archive of full-depth (0–70 m) temperature profiles. Leveraging the complementary 123 

strengths of process-based and data-driven approaches, we firstly established a site-validated 124 

CE-QUAL-W2 model which provides a physically consistent, gap-filled record of daily full-125 

profile temperatures. We then applied an interpretable machine-learning layer—XGBoost 126 

coupled with SHAP—to obtain depth- and phase-resolved driver attributions of climate and 127 

operational forcings. Combined with the in situ monitoring, these components constitute a 128 

mechanistic–statistical framework that sharpens inference on interacting drivers, and isolates 129 

the dominant controls on deep-reservoir thermal dynamics. In this study, we seek to address 130 

the following key questions: (i) Which external forcings set full-column stratification strength, 131 

beyond surface warming?, (ii) How do the dominant drivers of water temperature dynamics 132 

vary with depth?, and (iii) Under what conditions is late-stratification hypolimnetic warming 133 

initiated and sustained? In addressing these questions, this study provides the first quantitative 134 
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explanation of the mechanisms triggering episodic hypolimnetic warming in stratified waters. 135 

Together, these advances yield a transferable mechanistic–statistical template in analyzing 136 

thermal evolution for inland waters, with conclusions that generalize well beyond this single 137 

system to stratified lakes and reservoirs. 138 

 139 

2. Methods 140 

2.1. Study site description 141 

Located in the Harz Mountains, the Rappbode Reservoir (Fig. 1) is Germany’s largest 142 

drinking‑water reservoir and supplies raw water to more than one million people in the 143 

surrounding region (Rinke et al. 2013). The reservoir attains a maximum depth of 89 m 144 

(mean = 29 m), and the dam crest lies at 423.6 m a.s.l., with the total volume of 1.13 × 108 m³). 145 

Inflows are delivered by the Hassel and Rappbode pre‑reservoirs and by a transfer tunnel from 146 

the Königshütte Reservoir (Mi et al. 2018). Six selective‑withdrawal outlets are embedded in 147 

the dam at 345, 360, 370, 380, 390, and 400 m a.s.l.; the lowest outlet discharges to the 148 

downstream Wendefurth Reservoir, whereas the 360 m and 370 m intakes are routinely used 149 

for potable supply. With an annual residence time of roughly one year and the regional 150 

temperate climate, Rappbode exhibits a classic dimictic pattern—stable thermal stratification 151 

in summer and winter, and complete holomixis during spring and autumn. The national ban on 152 

phosphate‑based detergents instituted three decades ago reduced total phosphorus from 153 

0.16 mg L⁻¹ in 1990 to the current level of approximately 0.02 mg L⁻¹, and the reservoir is now 154 

classified as meso‑ to oligotrophic status (Mi et al. 2022).  155 

2.2. Long-term water temperature measurements 156 
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Since 1981, bi‑weekly vertical temperature profiles have been taken at the deepest point 157 

immediately upstream of the Rappbode Dam (see Fig. 1), spanning the full water column from 158 

the surface to 70 m depth. Up to 2008, temperatures at discrete depths were measured with a 159 

thermometer inside an open cylinder sampler; from 2009 onward, measurements have been 160 

acquired with a Hydrolab DS5 multiparameter probe. Parallel deployments during the 161 

transition period confirmed statistical equivalence between the two methods (Wentzky et al. 162 

2018). In this study, we used data from 1981 to 2019 (39 years in total), and after quality control, 163 

the record yields a depth–time matrix with year-round, across-season coverage and full water-164 

column extent (0-70m), which serves as the basis for all subsequent analyses. 165 

2.3. CE-QUAL-W2 model configuration 166 

We developed an integrated framework linking four decades of water-temperature observations 167 

with process-based modeling and interpretable machine learning to elucidate the thermal 168 

evolution of the Rappbode Reservoir (Fig.1). Here, the process‑based simulations were 169 

performed with CE‑QUAL‑W2 (hereafter W2, version 4.2.1), a laterally averaged, 170 

two‑dimensional hydrodynamic model originally developed by the U.S. Army Corps of 171 

Engineers at 1975 (Cole and Wells 2006) and now maintained by the Department of Civil and 172 

Environmental Engineering at Portland State University. W2 is widely used as a standard tool 173 

for resolving hydrodynamic processes in lakes, reservoirs, and estuaries (e.g., Carr et al. 2019; 174 

Kobler et al. 2018), and is particularly well suited to systems dominated by longitudinal and 175 

vertical gradients such as the Rappbode Reservoir. 176 

For Rappbode, the computational mesh comprises four branches subdivided into 106 177 

longitudinal segments (Δx = 100–400m) and lateral sub‑segments of 5–700m, yielding 3876 178 
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grid cells with a uniform 1m vertical resolution (Fig. S1). This discretization fully resolves the 179 

reservoir's bathymetry, enabling precise simulation of its morphological features. The model 180 

was driven by two sets of boundary conditions: (i) Hydrological forcing—daily inflow and 181 

outflow discharges together with inflow temperatures—was provided by the Rappbode 182 

Reservoir authority (Talsperrenbetrieb Sachsen-Anhalt); (ii) Meteorological forcing—hourly 183 

air temperature, relative humidity, wind speed and direction, incoming short‑wave radiation, 184 

and cloud cover—was obtained from an monitoring buoy moored near the reservoir’s centre 185 

(Rinke et al. 2013), with gaps infilled with records from the German Weather Service station 186 

at Harzgerode, ~15 km away from the reservoir. An intercomparison of Harzgerode and 187 

Rappbode Reservoir indicates a high degree of correlation in the meteorological records (see 188 

Mi et al. 2019 for more details). Simulations started on 1st January 1981 with an isothermal 189 

initial profile of 4 °C, representing a horizontally and vertically homogeneous state. A full 190 

description of the model configuration is presented in the Supplementary Information, as well 191 

as in our previous studies (see Mi et al. 2023b; Mi et al. 2020).   192 

2.4. XGBoost description and modeling framework 193 

XGBoost model description 194 

Extreme Gradient Boosting (XGBoost) is an ensemble method that iteratively fits 195 

Classification-and-Regression Trees (CART) within a gradient-boosting framework. At 196 

each iteration t, the algorithm minimizes a regularized objective: 197 

            𝐿t = ∑ 𝑙 (𝑦𝑖, ŷ𝑖
𝑡−1 + 𝑓𝑡(𝑥𝑖))n

i=1 + ∑ 𝛺(𝑓𝑘)t
k=1           (1) 198 

         Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2             T
j=1      (2) 199 

where 𝑙(⋅) is a twice‑differentiable loss (squared error for regression), 𝑓𝑡 is the t-th tree, 200 
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T is the number of leaves and wj denotes leaf weights; 𝛾 and 𝜆 provide structural and 201 

weight regularization, respectively. Here, Ω(f) represents the regularization term that 202 

penalizes model complexity to prevent overfitting. By employing a second-order Taylor 203 

expansion of 𝐿𝑡 , XGBoost obtains closed-form gain scores that guide an exact or 204 

histogram-based greedy search for the optimal split, while column subsampling and 205 

block-wise caching accelerate computation. This design yields three decisive benefits: (i) 206 

high accuracy, since second‑order information markedly improves convergence; (ii) 207 

strong generalization, owing to L1/L2 shrinkage, learning‑rate decay and stochastic 208 

sub‑sampling; and (iii) computational efficiency, as multi‑threaded and out‑of‑core 209 

execution scale to millions of observations and features on commodity hardware. Built‑in 210 

cross‑validation, early stopping and SHAP‑based interpretability further underline 211 

XGBoost’s suitability for handling small‑ to medium‑sized and highly non‑linear 212 

environmental data sets (Li et al. 2024; Lyu et al. 2019). 213 

Description of model structure 214 

We developed XGBoost models for predicting reservoir thermal structure according to 215 

daily outputs (1981–2019) from CE‑QUAL‑W2. Target variables comprise epilimnetic 216 

(5m depth), metalimnetic (15m depth), hypolimnetic (30m depth) and bottom (50m depth) 217 

temperatures, Schmidt Stability, the bottom‑to‑surface temperature difference and mixed -218 

layer depth (see the Supplementary Materials for details on the last three indices and the 219 

post-processing methods). Since the above indices related to stratification dynamics are 220 

applicable only during thermal stratified period, therefore, the XGBoost model was 221 

constructed and analyzed exclusively for May–October. Guided by recent advances in 222 
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machine-learning modeling of lentic thermal structures (e.g., Bertone et al. 2015; Kreakie 223 

et al. 2021), the predictor set includes both the instantaneous and 30‑day moving‑average 224 

values of observed air temperature, relative humidity, wind speed and direction, incoming 225 

short‑wave radiation, cloud cover and reservoir outflow discharge. Here, we included 30-226 

day moving-average predictors to represent the cumulative component of atmospheric 227 

and hydraulic influences across depths, with the physical basis for this setting 228 

(epilimnetic thermal inertia τ) further detailed in Section 4.2. To be noted, our previous 229 

studies indicated that inflow discharge exerted only a marginal influence on the 230 

reservoir's thermal structure (Mi et al. 2020); thus, it was excluded as an input feature 231 

from the XGBoost model. All predictors included in the analysis were linearly de‑trended, 232 

Z‑score standardized and screened for collinearity (|ρ| < 0.75) to minimize feature 233 

redundancy (Deka and Weiner 2024). 234 

The whole dataset was randomly split into training and testing subsets, with 235 

proportions of 80% and 20%, respectively. A 5-fold rolling-origin cross-validation 236 

combined with Bayesian optimization was employed to optimize the hyperparameters of 237 

the XGBoost model (e.g., eta, max_depth, subsample and colsample_bytree), and early 238 

stopping was invoked to minimize the root mean square error (RMSE) on the validation 239 

set. Model skill was then assessed on the full dataset with RMSE and the coefficient of 240 

determination (R²), and SHapley Additive exPlanations (SHAP) values were calculated 241 

to quantify the relative contribution of each hydro-meteorological variable. 242 

SHAP-based feature contribution analysis 243 

In our XGBoost modeling framework, we quantified feature contributions using SHapley 244 
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Additive exPlanations (SHAP) values. SHAP is a model-agnostic interpretability 245 

framework rooted in cooperative game theory (Lundberg et al. 2020). It assigns each 246 

predictor a Shapley value calculated by evaluating the predictor's marginal contribution 247 

to model output across all possible subsets of input features (>0 pushes the prediction 248 

upward, <0 pulls it downward). We report the mean absolute SHAP for each feature as a 249 

measure of global importance. Here, SHAP distributions and effect sizes were visualized with 250 

beeswarm plots: the horizontal axis shows the SHAP value, and point color redundantly 251 

encodes the same measure on a single, shared scale (e.g., warm colors on the right indicate 252 

positive contributions, cool colors on the left indicate negative contributions, see Fig.9). 253 

Feature attributions computed via SHAP satisfy exact additivity, local accuracy, and 254 

consistency (null-feature property), providing a rigorous quantitative basis for 255 

disentangling the relative influence of hydrometeorological drivers on reservoir thermal 256 

dynamics. For more background on SHAP values, please refer to the Supplementary Material 257 

(Text S2). 258 

 259 

3. Results 260 

3.1. Model performance in simulating long-term reservoir hydrodynamics  261 

The calibrated W2 accurately reproduced the interannual and seasonal water-level dynamics of 262 

Rappbode Reservoir over the 39-year period (R² = 0.99, see Fig.S2). The water level typically 263 

attains its annual maximum in spring (April–May, ~420 m a.s.l.) in response to increased 264 

rainfall, then declines sharply through summer driven by intensified evaporation and elevated 265 

drinking-water withdrawals. During winter, marked reductions in precipitation and inflows 266 
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caused the water-level to continually decline, reaching annual minima at the end of the season 267 

(e.g., 395 m a.s.l. in 2002). All of these characteristic fluctuations were satisfactorily captured 268 

by the model.  269 

The model successfully captured spatiotemporal dynamics of the reservoir’s thermal 270 

structure (such as thermocline depth and stratification onset (offset), see Fig.2). Simulated 271 

temperatures closely matched observations, with most points clustering along the 1:1 line 272 

(R² = 0.95; RMSE = 0.97 °C, see Fig. 2b). The simulated mean temperature (6.61°C) closely 273 

matched the observations (6.76°C) over the study period. More specifically, the simulation 274 

accuracy improved progressively with increasing depth, yielding RMSE of 1.27°C, 1.31°C, 275 

0.75°C, and 0.59°C at depths of 5 m, 15 m, 30 m, and 50 m, respectively (Fig. 3). Both 276 

simulated and observed profiles demonstrate that intra‑annual temperature amplitude 277 

diminishes sharply with depth, exceeding 15 °C at 5 m depth but falling below 10 °C (30m 278 

depth) and 8 °C (50m depth, see Fig. 3).  279 

Additionally, simulated and observed temperatures exhibited highly consistent long-term 280 

trajectories (Fig. S3). At 5m depth, both series warmed significantly—0.05 K yr⁻¹ for the 281 

observations and 0.06 K yr⁻¹ for the simulations (Mann–Kendall test, p < 0.05)—with the mean 282 

epilimnetic temperature rising from ~15 °C in 1981–1985 to ~18 °C at the end of the record. 283 

By comparison, temperature at depths between 15m and 50m exhibited pronounced 284 

inter‑annual variability but no statistically significant monotonic trend (Mann–Kendall 285 

test, p > 0.05, see Fig. S3). 286 

3.2. Performance of XGBoost in simulating reservoir stratification dynamics 287 

The calibrated XGBoost model successfully simulated the temperature dynamics in Rappbode 288 
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during the stratified period (Fig. 4). Trained on the daily CE‑QUAL‑W2 outputs as target values, 289 

the machine‑learning model captured depth‑specific temperature variations with high precision. 290 

Consistent with previous findings, the performance gradually improved with increasing 291 

depth—RMSE declined from 0.44 °C at 5 m to 0.16 °C at 50 m. The seasonal temperature 292 

pattern was also accurately represented by XGBoost: surface temperatures (5 m depth) 293 

followed a pronounced unimodal, bell‑shaped curve that peaked in mid‑July to early August, 294 

when the median daily temperature in both W2 and XGBoost simulations was ~19 °C, and 295 

cooled markedly at the onset (May) and offset (October) of the stratified period (Fig. 4). With 296 

increasing depth, the timing of peak temperature lagged progressively. At depths of 30 m and 297 

50 m, temperatures rose continuously throughout the stratified period, reaching their maxima 298 

in October.  299 

The stratification indices predicted by XGBoost are virtually congruent with the 300 

CE‑QUAL‑W2 outputs, as indicated by the tight clustering of points along the 1:1 line (Fig. 5). 301 

Specifically, Schmidt Stability was generally < 1 × 10³ J m⁻² at the onset of stratification in May, 302 

increased steadily to a peak of ~ 3 × 10³ J m⁻² in August, and declined thereafter, returning to 303 

the initial levels by October; this seasonal pattern closely paralleled that of the 304 

bottom‑to‑surface temperature difference (Fig. 5a). In contrast, the mixed‑layer depth deepened 305 

throughout the stratified period: it remained < 10 m from May to August but reached 306 

approximately 20 m by October (Fig. 5b). 307 

SHAP analysis of the XGBoost model indicates that epilimnetic temperature (5 m) is 308 

governed chiefly by the antecedent 30‑day means of air temperature, dew‑point temperature, 309 

and incident short‑wave radiation (Fig. 6). With depth, the influence of air temperature 310 
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attenuates, ranking third, fourth, and fifth for the temperature at 15, 30, and 50 m depth, 311 

respectively, while short‑wave radiation becomes the primary external driver below the surface 312 

layer. The importance of outflow discharge strengthens progressively down‑profile, ranking 313 

eighth for epilimnetic temperature, fourth for temperature at 15 m depth, and second for 314 

temperature at 50 m depth. The relative importance of cloud cover as a driver of water 315 

temperature increased incrementally with depth, ranking sixth at depths of 5–30 m and fourth 316 

at 50 m. Wind speed and direction remain comparatively minor controls across all depths, 317 

ranking between sixth and eighth (Fig. 6). In sum, SHAP resolves a depth-structured forcing 318 

pattern: atmospheric control shifts from non-radiative terms in the epilimnion to short-wave 319 

radiation below the surface layer, while hydraulic withdrawal gains influence toward the 320 

hypolimnion. 321 

Our results also indicated that both the bottom‑to‑surface temperature difference and 322 

Schmidt Stability are governed principally by the antecedent 30‑day means of air temperature, 323 

incident short‑wave radiation, and dew‑point temperature (Fig. 7). By comparison, the 324 

mixed‑layer depth was primarily driven by short-wave radiation over the preceding 30-day 325 

period, with outflow discharge and dew‑point temperature ranking second and third, 326 

respectively. Cloud cover also significantly affected stratification dynamics, ranking fourth in 327 

importance for mixed-layer depth and fifth for Schmidt stability. In addition to antecedent 328 

forcings, instantaneous (same-day) conditions also exerted substantial control: specifically, 329 

same-day air temperature ranks fourth for its effect on both the bottom‑to‑surface temperature 330 

difference and Schmidt Stability (Fig. 7), whereas the same‑day outflow discharge ranks fifth 331 

in modulating mixed‑layer depth. 332 
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3.3. Mechanisms underlying the occurrence of elevated bottom-water temperatures in 333 

specific years 334 

During the stratified season, hypolimnetic (50 m depth) temperatures in Rappbode Reservoir 335 

generally remains within the range of 4–6 °C. However, both in‑situ profiles and W2 336 

simulations reveal episodic warming to ~10 °C at the end of stratification (September–October) 337 

in 1981, 2001, 2002, and 2007 (Fig. 8b). To elucidate the mechanisms underlying these 338 

anomalies, daily hypolimnetic temperatures simulated by W2 were adopted as targets to 339 

develop specific XGBoost models for early (May–June), mid (July–August), and late 340 

(September–October) stratified periods. SHAP analysis was then applied to quantify the 341 

dominant predictors in each interval.  342 

The period‑specific XGBoost models satisfactorily reproduced CE‑QUAL‑W2 343 

hypolimnetic temperatures with RMSE of 0.08, 0.09 and 0.13 °C for early, mid and late 344 

stratification, respectively (R² = 0.96–0.98). The results further demonstrate pronounced 345 

stage‑dependent shifts in the controls on hypolimnetic temperature (Fig. 9). Specifically, during 346 

the early‐stratified period (May–June) the 30‑day antecedent mean air temperature, outflow 347 

discharge and wind direction emerge as the three leading drivers. By mid‑stratification (July–348 

August) the principal controls change over to the 30‑day mean short‑wave irradiance followed 349 

by outflow discharge, whereas in the late‑stratified phase (September–October) the positive 350 

influence of outflow discharge becomes overwhelmingly dominant (Fig. 9): its SHAP 351 

contribution attains 0.513—over four times greater than that of air temperature (0.131, ranked 352 

second) and shortwave radiation (0.115, ranked third). To corroborate this finding, we 353 

examined years in which late‑season hypolimnetic temperatures were anomalously elevated. 354 
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In 1981, 2001, 2002, and 2007, the median discharge during late stratification was 5.24 m³ s⁻¹, 355 

approximately 125% higher than the 40-year median (2.32 m³ s⁻¹) for this interval, a difference 356 

that was statistically significant (Dunn’s test, p < 0.05, see Fig.8a). Furthermore, during this 357 

period, the SHAP contribution of outflow discharge was also markedly greater than those of 358 

the other predictors (Fig. 9d). Collectively, the hydrological signature provides independent 359 

evidence that enhanced release discharge is the key driver of late-stratification hypolimnetic 360 

warming. 361 

4. Discussion 362 

4.1. Reconstruction of thermal structure from multi-decadal full-profile observations 363 

In this study we assembled a uniquely long and vertically resolved data set comprising almost 364 

four decades (1981–2019) of temperature profiles (0–70 m) and concomitant meteorological 365 

forcing for Rappbode Reservoir, the largest drinking water reservoir in Germany. On this basis, 366 

we established an analytical framework, combinng process-based (CE‑QUAL‑W2) and data-367 

driven (XGBoost) models, to systematically assess their capabilities in reproducing the 368 

reservoir's thermal structure. Whereas most publicly available lake‑ and reservoir‑temperature 369 

records span ≤ 10 years and rarely include deep‑water observations for long-term periods 370 

(Ladwig et al. 2021; Woolway et al. 2020), the present data set bridges an inter‑decadal gap 371 

and thus provides an exceptional resource for full‑profile hydrodynamic modelling.  372 

Here, the 39-year observations and simulations consistently indicate a pronounced 373 

epilimnetic warming of the reservoir, with observed and simulated warming rates of 0.06 and 374 

0.05 °C a⁻¹, respectively, which closely matches-and even marginally exceeds-the concurrent 375 
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increase in regional air temperature (0.04 °C yr⁻¹; Mann–Kendall test, p = 0.001) and the 376 

pan‑European synthesis of temperate lakes (O'Reilly et al. 2015; Shatwell et al. 2019). In 377 

contrast, deep-water temperatures at 30m and 50m depth exhibited no significant trends, 378 

thereby reflecting a characteristic pattern of intensified surface warming concurrent with 379 

relatively stable deep‑water temperatures. This vertical asymmetry in warming preserves the 380 

cold‑water refuge but implies a strengthening of thermal stratification. Numerous studies have 381 

shown that such shifts in lake and reservoir thermodynamics would exacerbate hypolimnetic 382 

anoxia and enhances internal nitrogen and phosphorus loading (Sun et al. 2022; Weinke and 383 

Biddanda 2019), subsequently impairing source‑water quality and downstream aquatic 384 

ecosystems (Jane et al. 2023). Accordingly, coupling the validated thermal models with 385 

biogeochemical modules to quantify present‑day and future trajectories of dissolved oxygen, 386 

and to develop targeted water‑quality management strategies, constitutes a logical and 387 

necessary extension of the current work. 388 

4.2. Atmospheric and hydraulic drivers governing thermal dynamics in stratified 389 

reservoirs 390 

The SHAP values indicated that the antecedent 30‑day mean air temperature is the most 391 

influential predictor of epilimnetic temperature, as well as of Schmidt stability and the bottom-392 

to-surface temperature difference, followed by dew-point temperature and shortwave radiation. 393 

This hierarchy corroborates earlier findings derived from short-term datasets for dimictic lakes 394 

by Livingstone and Lotter (1998) and Darko et al. (2019), and is now quantitatively confirmed 395 

by our 39-year observational record. All such results highlight the lagged response of the three 396 

surface-heat-forced stratification metrics to cumulative antecedent heat fluxes (i.e., the thermal 397 
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inertia effect). Here, the epilimnetic thermal inertia τ is defined as (Imberger and Patterson 398 

1989): 399 

    τ =  
𝜌 𝑐𝑝 ℎ
𝐻𝑛𝑒𝑡

       (3) 400 

where 𝜌 is water density, cp the specific heat capacity (4.18×103J kg-1 K-1), h the mixed-layer 401 

depth and Hnet the daily-mean net heat flux. For Rappbode Reservoir, according to the thermal 402 

conditions during the stratified period (Mi et al. 2019), 𝜌 is defined as 998 kg m⁻³, h is from 403 

9 m to 11 m, and Hnet is from 18 W m⁻² to 24  W m⁻² which yields τ ranging from 25d to 29d, 404 

in close agreement with the 30‑day averaging window that dominates the SHAP ranking. 405 

Because this response time exceeds the characteristic 1‑day scale of surface heat‑flux 406 

variability by an order of magnitude, daily atmospheric perturbations are strongly filtered by 407 

thermal inertia and thus contribute little to the statistical ranking.  408 

By comparison, in the hypolimnion (30–50 m), short‑wave radiation exceeds air 409 

temperature as the dominant predictor, and the SHAP importance of outflow discharge 410 

concurrently increases, because sustained deep withdrawals remove the coldest layers, erode 411 

thermocline stability and induce compensation flows that advect warmer water downward 412 

(Olsson 2021; Weber et al. 2017), thereby regulating hypolimnetic temperature. Our analysis 413 

further reveals that, for mixed‑layer depth, outflow discharge emerges as the second‑most 414 

influential predictor. As shown above, this can be attributed to sustained hypolimnetic 415 

withdrawals, which induce downward flows and consequently deepen the mixed layer (Deng 416 

et al. 2011; Mi et al. 2023a). Additionally, the role of cloud cover should not be overlooked 417 

(ranking fourth in SHAP values), since cloudiness can effectively modulate incoming 418 

shortwave and longwave radiation, thus altering surface buoyancy fluxes (Boehrer and 419 
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Schultze 2008).  420 

4.3. Late‑season hypolimnetic warming— mechanistic insights from period‑specific 421 

SHAP analysis 422 

During late stratification, increased deep-layer withdrawals are more effective at warming the 423 

hypolimnion for two complementary reasons. First, over this period, nocturnal cooling and 424 

declining net radiation substantially reduce Schmidt stability to < 1 × 10³ J m⁻² (Fig. 5), 425 

compared with > 2 × 10³ J m⁻² in midsummer (July–August), weakening the density interface 426 

so that mixing event can more easily penetrate the metalimnion and transport heat downward. 427 

Second, the mixed layer deepens from about 6 m in early summer to 18 m by September-428 

October (Fig. S4), thereby reducing the vertical distance between the mixed-layer base and the 429 

water-withdrawal intake (at the depths of 60–70 m) by ≈20%. The compensatory inflow 430 

therefore traverses a shorter pathway with lower viscous and buoyancy dissipation, allowing a 431 

larger fraction of warm water to reach hypolimnion (Feldbauer et al. 2020). The concurrence 432 

of a weakened density interface and a contracted transport pathway explains why 433 

high‑discharge deep withdrawals can rapidly elevate bottom temperatures during late 434 

stratification. 435 

Despite pronounced hypolimnetic warming induced by deep-water withdrawals in the late 436 

stratification periods of 1981, 2001, 2002, and 2007, the surface-to-bottom temperature 437 

difference remained above 1 °C for most of October (Fig. S5), indicating persistent and stable 438 

stratification conditions (Fang and Stefan 2009). Hypolimnetic warming under such weakened 439 

stratification poses a severe ecological threat since oxygen demand in the hypolimnion 440 

increases sharply with temperature while atmospheric re‑oxygenation remains inhibited. For 441 

https://doi.org/10.5194/egusphere-2025-6442
Preprint. Discussion started: 20 February 2026
c© Author(s) 2026. CC BY 4.0 License.



22 

Rappbode Reservoir, our previous work suggested that raising bottom‑water temperature from 442 

a typical 6 °C to 10 °C (October 2001) augments the sediment oxygen demand (SOD) from 443 

0.46 to 1.04 g O₂ m⁻² d⁻¹ (Mi et al. 2020). Under a persistent density barrier, this additional 444 

demand cannot be offset by oxygen replenishment from surface waters, greatly amplifying the 445 

risk of hypolimnetic anoxia. Such adverse effects associated with a "warm yet stratified" state 446 

have also been systemically documented at the CW Bill Young Regional Reservoir (Bryant et 447 

al. 2024), and Cedar Lake (James et al. 2015), USA. Taken together, these observations 448 

underscore the management relevance of hypolimnetic warming during late-season 449 

stratification decay; accordingly, future work should quantify threshold conditions that link this 450 

warming to hypolimnetic oxygen debt—e.g., stability and withdrawal-rate percentiles—and 451 

test operational adaptation strategies that minimize exposure to this state. 452 

4.4. An integrated analytical framework for long-term thermal reconstruction and driver 453 

attribution 454 

Our study not only clarifies the thermal dynamics of reservoirs and their external drivers, but 455 

also introduces a new methodology that is of broader interest. By assimilating routine 456 

observations into a site-calibrated CE-QUAL-W2 model, we reconstruct a four-decade, depth-457 

resolved (0–70 m) temperature archive with high vertical and temporal resolution, transforming 458 

sparse monitoring into continuous vertical profiles for subsequent analyses. Second, an 459 

interpretable machine-learning workflow (XGBoost with rolling-origin cross-validation and 460 

early stopping) provides fast, accurate prediction across depths, which is directly relevant for 461 

forecasting use-cases increasingly requested by reservoir managers (Carey et al. 2022). Third, 462 

the SHAP analysis provides additive, model-consistent attributions that decompose any 463 
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thermal anomaly into depth- and sample-specific contributions of individual drivers. In practice, 464 

this yields a quantitative explanation of reservoir thermal anomalies without running time-465 

consuming large scenario ensembles with the process model.  466 

Collectively, these advantages constitute an integrated mechanistic–statistical framework that 467 

is readily transferable to other stratified lakes and reservoirs for long-term thermal 468 

reconstruction, driver attribution and operational evaluation. 469 

5. Conclusion 470 

⚫ We developed an integrated CE-QUAL-W2 and machine-learning framework that reliably 471 

reconstructs, over nearly four decades, the full-depth thermal structure of Rappbode 472 

Reservoir, capturing the spatiotemporal variability of layer-specific temperatures and 473 

stratification-strength metrics. 474 

⚫ SHAP attribution based on the integrated framework revealed strong vertical heterogeneity 475 

in the controls on reservoir thermodynamics: surface temperature was governed primarily 476 

by the antecedent 30-day means of air temperature, dew-point temperature, and incident 477 

shortwave radiation, whereas the influence of shortwave radiation and outflow discharge 478 

increased progressively with depth and the relative effect of air temperature strongly 479 

declined. 480 

⚫ The dominant controls on bottom-water temperature shifted systematically across 481 

stratification phases: during early stratification (May–June), the leading drivers were the 482 

antecedent 30-day mean air temperature, outflow discharge, and wind direction; during 483 

mid stratification (July–August), shortwave radiation and outflow discharge jointly 484 

dominated; during late stratification (September–October), outflow discharge became the 485 
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overwhelming control, with a SHAP contribution more than four times that of air 486 

temperature and shortwave radiation. 487 

⚫ Observations and simulations consistently showed that bottom-water temperature rose 488 

anomalously to ~10 °C during late stratification in 1981, 2001, 2002, and 2007, whereas 489 

it typically remained at 4–6 °C in other years. Further analyses indicated that these events 490 

were primarily triggered by intensified deep withdrawals in late stratification, with outflow 491 

discharge ~2.25 times higher than in typical years. The enhanced discharge weakened the 492 

density gradient and strengthened downward compensatory transport, driving the bottom-493 

water thermal anomaly. 494 
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Figures 

 

 

Fig. 1. (a) Location of the Rappbode Reservoir in Germany. (b) Reservoir bathymetry and the 

long-term water-temperature monitoring site (YT1). (c–e) Data flow and model coupling within 

the integrated analytical framework: (c) four decades of hydrometeorological forcings and in-lake 

temperature profiles; (d) process-based modeling with CE-QUAL-W2; (e) interpretable machine 

learning with XGBoost/SHAP; and (f) key question addressed in this study.  
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Fig. 2. (a) Thermal dynamics of Rappbode Reservoir, from W2 simulation results, during the study 

period; (b) Comparison between simulated and observed water temperature with the colour scale 

denoting the number of samples per hexagon. The dashed line represents the 1:1 line. 
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Fig. 3. Observed (grey circles) versus simulated (black line) water temperatures in the Rappbode 

Reservoir at 5 m (a), 15 m (b), 30 m (c), and 50 m (d). The RMSE for each panel is shown in the 

upper-right corner.  
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Fig. 4. Water temperature simulated by W2 and XGBoost in Rappbode Reservoir at the depth of 

5m (a), 15m (b), 30m (c) and 50m (d), with the right column indicating the comparison for all 

specific depths.  
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Fig. 5. Stratification dynamics simulated by W2 and XGBoost in Rappbode Reservoir for 

bottom‑to‑surface temperature difference (a), mixed-layer depth (b) and Schmidt Stability (c), with 

the right column indicating the comparison for the three indexes.  
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Fig. 6. Driving factors analysis for water temperature at the depth of 5m (a), 15m (b), 30m (c) and 

50m (d) based on the SHAP values. MA indicates moving-average features. 
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Fig. 7. Driving factors analysis for bottom‑to‑surface temperature difference (a), mixed-layer 

depth (b) and Schmidt Stability (c), based on the SHAP values. MA indicates moving-average 

features. 
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Fig. 8. (a) Moving-average of discharge during September–October for each year (with 1981, 2001, 

2002, and 2007 highlighted in green); (b) water temperature, at the depth of 50m, from W2 (red 

lines) and XGBoost (black point) for each year.  
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Fig. 9. Comparison of SHAP-derived driver importance for bottom-layer water temperature at 50 

m depth. (a–c) SHAP value rankings showing how dominant drivers vary across the initial (May–

June), middle (July–August), and final (September–October) stages of stratification. (d) 

Comparison of SHAP values during September–October for outflow (green), solar radiation (red), 

and air temperature (blue) in 1981, 2001, 2002, and 2007; points denote daily values plotted against 

day of year (DOY), with colored lines indicating linear regression fits, and adjacent boxplots 

summarizing the corresponding distributions. MA indicates moving-average features. 
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