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Abstract. Heavy precipitation events (HPEs) are a precious source of water in the Sahara, but often trigger devastating flooding.
These events are strongly associated with surface cyclones, making accurate cyclone forecasting crucial for predicting hazards
related to HPEs and their impacts. In this study, we investigate the predictability of HPE-associated cyclones across the Sahara
and its drivers. We use ERAS reanalysis and ECMWF initialized reforecasts between December 2000 and November 2020.
Forecast skill on short-, medium-, and extended-range timescales is evaluated based on the overlapping areas of observed and
forecasted cyclones over the Sahara. Results show that the lead time of skillful prediction is up to about 10 days. In winter,
when cyclones are mainly located in the northern Sahara, forecast skill is higher for deeper cyclones. In summer, skill is
higher for cyclones located in the southwestern Sahara. On short-range lead times, forecast skill is higher in winter, whereas
on medium to extended lead times, skill is higher in summer and fall. Rossby wave patterns extending over the North Atlantic
are associated with both high and low skill forecasts, highlighting a flow-dependent control on predictability over the Sahara
and underscoring the need for more detailed investigation. These findings identify key controls and characteristics of skillful
forecasts of cyclones that lead to HPEs in the Sahara on timescales of a few days to two weeks in advance. Understanding

these variations across regions and seasons is key to improving the predictability of HPEs and their related impacts.
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1 Introduction

The Sahara is the largest warm desert in the world (Tucker et al., 1991). Most of the Sahara is hyper-arid (Middleton and
Thomas, 1992), and it probably contains the driest region on Earth (Kelley, 2014). Yet, heavy precipitation events (HPEs) are
actually quite common in the Sahara — occurring on average every other day (Armon et al., 2024), and often trigger flash floods
(e.g., Fink and Knippertz, 2003; Schepanski et al., 2012; Yin et al., 2023), some of them highly destructive (Moawad et al.,
2016; Armon et al., 2025). Rainfall water is also a valuable resource in the Sahara, with as little as a few mm already making
significant recharge of groundwater or even surface reservoirs (e.g., Cuthbert et al., 2019; Rieder et al., 2025). Precipitation
forecast, fundamental in reducing risks from floods and managing water resources in real time is constantly improving, but has
much worse skill over deserts (e.g., Kalma and Franks, 2003; Rinat et al., 2021; Cordeira et al., 2025), where the combination
of sparse observations, small-scale precipitation generation processes and short-duration storms (e.g., Sharon, 1972; Belachsen
et al., 2017) pose a major predictability challenge.

Despite these challenges, heavy precipitation in the Sahara, particularly, though not exclusively, in its northern half and
during winter, is often associated with surface cyclones (Fig. 1; Nicholson, 1981; Morin et al., 2020; Armon et al., 2024).
This link suggests, therefore, that forecasting cyclones may provide an indirect but powerful pathway to improving desert
rainfall predictions. Understanding cyclone predictability in and near the Sahara is therefore key in improving precipitation
forecasting, ultimately enabling better preparedness for desert flood hazards and water resource management. As numerical
weather models are inherently limited by uncertainties in initial conditions and unresolved physics (Mason, 1986; Slingo and
Palmer, 2011), forecast skill is often evaluated across an ensemble of forecasts, produced by perturbing their initial conditions
(Leutbecher and Palmer, 2008; Palmer, 2017). However, when examining cyclone predictability across the North Atlantic and
its surroundings, Afargan-Gerstman et al. (2024) showed that cyclones over the Sahara exhibit negative biases on the order of
magnitude of the cyclone climatology, suggesting that the dynamics of cyclones over this region and their impacts are not well
represented by the forecast model.

Cyclones in the Sahara originate through different dynamical processes that vary regionally and seasonally. The northwest-
ern Sahara experiences peak precipitation in the fall, when extratropical cyclones migrate southward over the eastern North
Atlantic, drawing moisture from tropical latitudes to the desert (e.g., Skinner and Poulsen, 2016; Chaqdid et al., 2023) and
advecting Atlantic moisture around the Atlas Mountains (Rieder et al., 2025). In the northeastern Sahara, HPEs are much rarer
and occur sporadically, mostly outside the summer months (Morin et al., 2020). They are mainly associated with Mediterranean
cyclones (e.g., Ammar et al., 2014; Armon et al., 2025; Flaounas et al., 2025) or indirectly with Tropical Plumes that form
when mid-latitude cyclones intrude southward, passing through the Mediterranean towards the Sahara (e.g., Rubin et al., 2007,
Armon et al., 2018). Occasionally, the active Red Sea trough, often enclosing a surface cyclone (Ziv et al., 2022), can also
produce rainfall in the region (De Vries et al., 2013). In the southern Sahara, HPEs occur mostly in summer, when the tropical
monsoon belt extends northward. Shallow monsoon lows, sometimes invigorated by African easterly waves, emerging from
the Sahel are a major source for precipitation (Nicholson, 2000; Russell and Aiyyer, 2020). In addition, more stationary, ther-

mally driven systems such as the Saharan heat low (Lavaysse et al., 2009; Engelstaedter et al., 2015) and the Sudan monsoon
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Figure 1. Mean annual precipitation (colors) and the fraction of HPEs associated to a cyclone compared to all HPEs. Precipitation is from
satellite-based data, and HPEs and their association with cyclones are based on Armon et al. (2024) (Sect. 2.1.1). The thick black solid line
represents the boundary of the Sahara (Kelso and Patterson, 2010), while the outer black dashed lines indicate the study region, which is

divided into six subregions (I-VI).

low (El-Fandy, 1948) normally dry on their poleward side cantrigger convection along their equatorward flanks, occasionally
generating rainfall that propagates northward (e.g., Peyrillé et al., 2007).

As surface cyclones are synoptic-scale systems embedded in the large-scale flow, it may be expected that cyclones exhibit
a certain level of predictability that can be inherited from the background circulation. At short lead times, numerical weather
prediction models indeed provide skillful forecasts of individual cyclones, typically up to a few days (Froude, 2009; Zheng
et al., 2019; Ngoungue Langue et al., 2021; Elless, 2018; Li et al., 2016). Beyond this range, however, forecast errors grow
rapidly and predictability decreases, partly due to the amplification and downstream propagation of errors within the large-scale
flow.

Persistent circulation regimes and teleconnection patterns can give rise to enhanced predictability on subseasonal to seasonal

(S2S) timescales (Domeisen et al., 2022). These patterns, such as the North Atlantic Oscillation (NAO), the East Atlantic
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(EA) pattern, the Madden—Julian Oscillation (MJO) (e.g., Stan et al., 2022), and variability in the stratospheric polar vortex,
modulate cyclone activity and thus provide potential sources of extended-range S2S predictability (Zheng et al., 2019; Black
et al., 2017; Afargan-Gerstman et al., 2024; Rupp et al., 2024). Additionally, synoptic weather systems are often embedded in
mid-tropospheric Rossby waves along the jet stream (Wirth et al., 2018), and induce high-impact weather through coupling
between the tropics and the extratropics (e.g., Martius et al., 2008; De Vries et al., 2013, 2024). This suggests that Rossby wave
patterns and breaking act as potential precursors of high-impact cyclones in subtropical regions.

Despite, and perhaps because of the role of large-scale circulation in modulating cyclone activity, the ability of numerical
models to exploit this predictability varies across flow regimes (e.g., Rodwell et al., 2018; Spaeth et al., 2024). Specifically, the
predictability of Saharan cyclones remains poorly understood. An important question that therefore arises is how predictable
are Saharan cyclones and which atmospheric conditions contribute to enhanced predictability of these cyclones. This study
addresses this question by systematically assessing the forecast skill of HPE-associated Saharan cyclones and identifying the
atmospheric factors linked to their predictability.

The paper is structured as follows. Sect. 2 describes the data and study region, and presents feature-oriented and magnitude-
based methods for assessing Saharan cyclone forecast skill. The temporal and spatial variations in the forecast skill, and the
association between large-scale weather patterns and the forecast skill for HPE-associated cyclones are presented in Sect. 3.
Finally, Sect. 4 discusses the mechanisms governing cyclone predictability across Saharan regions and seasons, and points out

directions for future research.

2 Data and methods
2.1 Data

To investigate the predictability of HPE-associated cyclones in the Sahara and the factors controlling it, we used three main
datasets: (a) observed HPEs derived from the Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation dataset be-
tween 2000 and 2021 (Armon et al., 2024); (b) meteorological fields from the fifth generation ECMWF atmospheric reanalysis
(ERAS) dataset, together with cyclone tracks identified by Sprenger et al. (2017) based on the same dataset; and (c) subseasonal
reforecasts from ECMWFE, covering 2000 to 2020. These datasets provide the observational, reanalysis, and forecast basis for

the analyses presented in the following sections.
2.1.1 Saharan HPEs

We used a catalog of Saharan HPEs between June 2000 and May 2021 from Armon et al. (2024) to extract the cyclones
matching the reforecast data period (Sect. 2.1.3). These events were identified and obtained using daily-aggregated precipitation
from the IMERG Version 06. Events in this catalog were detected when rainfall exceeded the local 90™ percentile of rainy days
(daily rain > 1 mm). Neighboring threshold-exceeding grid cells were merged into continuous storm areas larger than 1000 km?,

and nearby events in space or time were connected. This approach captures only large, coherent rain systems and filters out
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isolated or noisy rainfall signals. From the nearly 42,000 HPEs in the catalog, we retained only around 12,500 cases in which
cyclones were associated with HPEs, according to a Monte Carlo cyclone-association test performed in Armon et al. (2024)
that determines whether HPEs occur closer to a cyclone than would be expected by chance, based on repeated comparisons with
randomly selected cyclone dates. For each of those cyclone-associated HPEs, we extract the date of maximum precipitation

volume, the precipitation mass center location, and the minimum distance to the nearest cyclone border.
2.1.2 ERAS dataset and cyclone data

To characterize the meteorological conditions during HPE-associated cyclones, we used the ERAS reanalysis dataset. Specifi-
cally, we used mean sea level pressure (MSLP), 500 hPa geopotential, which were converted into geopotential height (GH500),
and 850 hPa temperature (T850) data, with a temporal resolution of 3 h at a 0.5° spatial resolution (Hersbach et al., 2020). To
associate cyclones with the Saharan HPEs, we used surface cyclone data produced by Sprenger et al. (2017), who applied an
objective cyclone detection and tracking algorithm (Wernli and Schwierz, 2006) based on MSLP, defining cyclones as enclosed
regions containing one or more sea level pressure minima. For every cyclone, the algorithm yields a two-dimensional binary

cyclone mask field.
2.1.3 Subseasonal reforecast data

To evaluate the predictability of HPE-associated cyclones in the Sahara, we use ECMWF ensemble reforecasts. These re-
forecasts were initialized between December 2000 and November 2020, with a 6-hour time interval and a 46-day forecast
period from several model versions: CY47R1, CY47R2, and CY47R3. The reforecasts consist of 11 ensemble members ini-
tialized from ERAS twice a week, on Monday and Thursday. These reforecasts are part of the S2S Prediction research project
database, an ongoing research effort to improve forecast skill and understanding of the climate system on subseasonal to sea-
sonal timescales (Vitart et al., 2017). The cyclone detection algorithm was applied to the 10 reforecast perturbed ensemble

members (excluding the control run), providing a cyclone forecast which is verified against reanalysis data.
2.2 Methods
2.2.1 HPE-related cyclone identification

To associate cyclones with observed HPEs, the distance between the precipitation mass center of a given HPE and the location
of the nearest cyclone center according to its minimum sea level pressure at 12 UTC on the date of maximum precipitation
volume was calculated. This procedure was applied to determine the location of each HPE-associated cyclone. Cases where
the detected cyclone is located at a distance > 2000 km and/or outside the six subregions (Fig. 1) were discarded. An example
of this approach, showing the association of the nearest cyclone with a HPE during 20-24 November 2024 is in Fig. Al. It is
important to note that in our methodology, a single cyclone may be associated with more than one HPE. Nonetheless, when

calculating average values (e.g., composites across events), every cyclone was counted only once. This approach ensures that
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Table 1. An example of a contingency table for verification of reforecasts. The value of each category for a verified case study is calculated

based on the corresponding area within the cyclone-related study area.

Forecast/Observation  Observed Not Observed
Forecast Hits False Alarms
Not Forecast Misses Correct Negatives

subsequent evaluations were not biased by multiple associations of the same cyclone. We then expanded the cyclone mask by

six degrees (Fig. 2 and Fig. A1) to obtain an ad-hoc study region in which we evaluate forecasted cyclones (as explained next).
2.2.2 Forecast verification

Cyclone frequency in the reforecasts was verified against reanalysis using an area-based four-category contingency table (Table
1 and Fig. 2), applied separately to each ad-hoc study region. For every ensemble member and forecast lead time, the table was
constructed by summing the area of the grid points that met each category in the table within the corresponding ad-hoc study

region.

Member 10

- Hits
Misses
E False Alarms
Correct Negatives
—— Ccyclone Boundary (Observed)
—— Ad-hoc Study Region
—— Reforecasted Boundary

20141121 12 UTC

Figure 2. An example of the area-based, four-category verification method (Sect. 2.2.2). The red line denotes the border of the observed
cyclone in Fig. Al. The purple line delimits the ad-hoc study region corresponding to this cyclone, which is derived by expanding the border
of the cyclone by 6 degrees. An example for cyclone prediction, from the reforecast ensemble member 10, with a lead time of 3.5 days is
marked with a blue line. The four categories in the contingency table (Table 1), namely hits (in blue), misses (yellow), false alarms (purple),

and correct negatives (orange) are shown by the filled areas.

We evaluated the reforecasts for two main variables that are directly relevant to storm impacts, namely cyclone mask and

MSLP, which measure areal storm coverage (spatial frequency) and intensity, respectively.
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For the area-based verification, we calculated the following skill scores using the contingency table: hit rate (or probability
of detection; POD), false alarm ratio (FAR), Gilbert skill score (GSS), and Hanssen-Kuipers discriminant (HK). The GSS
incorporates information from both the POD and FAR, providing a more comprehensive measure of forecast performance.
However, because the GSS is sensitive to the base rate of events (Hogan et al., 2010), we also used the HK, which is less
affected by the base rate variations (Candogan Yossef et al., 2012). The scores are defined as follows (Roebber, 2009; Hogan
et al., 2010):

hits

POD=——— 1

hits + misses M
false alarms

FAR = 2

hits + false alarms @
ht _ht random

GSS = — 08— Wrandom : 3)
hits + misses + false alarms — hitS;andom

where

, (hits + misses)(hits + false alarms)
hitsrandom = .
total
HK hits false alarms @

™ hits + misses false alarms + correct negatives

To evaluate the performance of the model in forecasting HPE-associated cyclones for different seasons, a season-based
analysis for all HPE-associated cyclones was performed. For this purpose, we calculated the average values of POD and FAR
as well as their ensemble spread for reforecasts with lead times from 0.5 days to 15.5 days. For each cyclone, the POD and
FAR are calculated by averaging the values from the 10 ensemble reforecast members at the corresponding lead time. The
number of cyclones with available reforecasts is recorded for each lead time. For verification with respect to a base state, GSS
and HK values are computed for each region of the Sahara and each season for two lead times (3.5 and 10.5 days). We defined
hit members as reforecast members where the skill (GSS or HK) exceeds an arbitrary threshold of 30% for certain lead times
and hit counts as the number of hit members for each case.

We also calculated the MSLP root mean square error (RMSE) for reforecasts with lead times ranging from 0.5 to 15.5 days
relative to their corresponding ad-hoc study regions. For each forecast lead time, the MSLP RMSE values for the ad-hoc study
region were averaged across the 10 members to obtain the representative RMSE for the verification case. Then, we averaged

the MSLP RMSE across all events with the same lead times for each season.
2.2.3 Saharan cyclone classification according to skill

To evaluate model performance and relate forecast skill variations to large-scale atmospheric conditions, we classified events

according to their reforecast GSS values. The upper 40% and lower 40% of these events were classified as high- and low-skill
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cases, respectively. To analyze their associated large-scale environments, we constructed composites of anomaly fields for
three key variables (MSLP, GH500, and T850) averaged separately over the high- and low-skill groups. These anomalies were
calculated by subtracting the corresponding monthly climatological mean from the large-scale fields corresponding to 12 UTC
on the dates of the events. Monthly climatologies were derived from ERAS reanalysis data by averaging absolute fields at 12
UTC for all dates in each month from December 2000 to November 2020. Statistical significance of the GH500 anomaly fields

was evaluated using a Student’s t-test at the 0.05 significance level (a = 0.05).

3 Results
3.1 Temporal and spatial variability of forecast skill

To evaluate the predictability of HPE-associated cyclones in the reforecasts, we compute their forecast skill metrics: POD
and FAR based on the overlapping areas of observed and forecast cyclones (see Sect. 2.2.2 for their respective definitions).
Generally, the forecast skill of HPE-associated cyclones gradually decreases with lead time (purple curves, Fig. 3). However,
the temporal variation in forecast skill varies seasonally. Specifically, on the short-range forecast timescale (up to 3.5 days), the
forecast skill for winter (Fig. 3d) is higher than in summer, with a lower FAR (Fig. 3b). Moreover, according to the distribution
of forecast skill at these lead times, the spread of POD values is much smaller in winter than in summer (purple boxplots,
Fig. 3b,d). In contrast, on the medium-range (4 to 10 days) and extended-range timescales (11 to 15 days), the forecast skill
for summer is higher than in winter; however, winter POD spread is still smaller (Fig. 3b,d), at all lead times.

Next, we evaluate the forecast skill against the climatological cyclone frequency over the Sahara (solid black line). The
average POD in summer is higher than the climatological cyclone frequency (plus one standard deviation), even at lead times
longer than 10 days (Fig. 3b). However, at the same time, the average FAR increases to around 60%, indicating a relatively
large number of false alarms. Thus, while the median and average POD values in winter decrease rapidly with lead time, the
decrease rate in summer is slower, resulting in a higher skill at longer lead times (Fig. 3b,d).

During spring and fall, the temporal variation of skill is similar to winter, with relatively rapid decreases with lead time at
short lead times, yet the POD and FAR values remain closer to those of summer for medium- and extended-ranges (Fig. 3a,c).
Thus, the forecast skill is close to that of a climatological forecast in spring and winter, and higher than the skill of a climato-
logical forecast in fall, as well as in summer.

To further examine changes in the prediction skill of HPE-associated cyclones beyond the area-based skill metrics, we
examine seasonal variations in the RMSE of MSLP in the reforecasts. RMSE is commonly used to show forecast bias. The
magnitude of RMSE is strongly season-dependent, with the largest errors in winter, smaller errors in spring and fall, and
smallest errors in summer (Fig. 4). Despite this seasonal dependency, the temporal variation of RMSE still shares some common
features between the seasons. The average RMSE for all seasons except summer exceeds their corresponding average MSLP
standard deviations beyond a lead time of 5.5 days (Fig. 4). In summer, the average RMSE generally remains below the average

MSLP standard deviation, even at a lead time of 8.5 days, providing further evidence that the predictability for summer extends
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Figure 3. Probability of detection (POD) and false alarm ratio (FAR) of HPE-associated cyclones by lead time and season. Average POD
(purple) and FAR (green) and their distribution in ECMWEF reforecasts with lead times from 0.5 days to 15.5 days, separated for 4 seasons
(a—d) for all HPE-associated cyclones in the study region. The numbers above each box plot correspond to the number of events that have
available forecasts at this lead time. The black solid line shows the average climatological frequency of cyclone coverage, computed as the

weighted cyclone frequency at each grid point of each cyclone area. The black dashed lines mark one standard deviation of the climatological

frequency.
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Figure 4. Root mean square error (RMSE) of HPE-associated cyclones by lead time and season. Similar to Fig. 3 but for RMSE. The seasonal

mean standard deviation values and their standard deviations are summarized in the upper-right corner.

longer than the other seasons. It is noteworthy that the average RMSE begins to stabilize after the lead time increases to ~13.5

days (Fig. 4), which is longer than the lead times after which the average POD and the average FAR remain stable (Fig. 3).

The variation in forecast skill exhibits strong regional dependency across the Sahara. Here, we further analyze the regional

190

variation in the forecast skill at lead times of 3.5 and 10.5 days (Fig. 5 and Fig. 6, respectively). The choice of a short-range

lead time of 3.5 days corresponds to the lead time at which the POD and FAR are close to each other, while the choice of 10.5

days corresponds to the extended-range forecast lead time at which the POD values are close to their minimum (Fig. 3).

At the lead time of 3.5 days, the forecast skill (measured by the number of members surpassing a GSS threshold; Sect. 2.2.2)

exhibits mixed results across the study region, with some distinct spatial patterns (Fig. 5). In summer, high-skill cyclones

195 (defined here as cyclones with hit counts greater than 5 members) are concentrated in the southwestern part of the Sahara,

10
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Figure 5. The distribution of hit counts (according to the number of forecast ensemble members) of all cyclones located within the study
region for four seasons at a lead time 3.5 days. Circles show the locations of cyclone centers. Colors refer to the groups where the number of

hit members are located.

where HPE-associated cyclones are also more frequent. In winter, the number of high-skill cyclone forecasts is lower in the
central part of the Sahara and mostly higher over the central Mediterranean. In fall and spring, high-skill cyclone forecasts tend
to be located in the southeastern Sahara, with mixed hit count values over the rest of the domain.

As the lead time increases to 10.5 days, the number of high-skill cyclones decreases dramatically throughout the domain
(Fig. 6). A higher concentration of high skill forecasts is observed over the southeastern Sahara during spring and fall, and
over the southwestern Sahara during summer. In winter, almost all cyclones exhibit near-zero forecast skill at these lead times.
The high number of ensemble members with high skill at the lead time of 10.5 days for summer, compared to other seasons,

can be attributed to the higher climatological frequency of cyclones in the western part of the study region (Stephenson et al.,
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Figure 6. Similar to Fig. 5, but for forecast lead time of 10.5 days.

2008), as well as to their persistence. Therefore, to verify the robustness of these results, we also compute the skill based on the

HK metric (Sect. 2.2.2). Although the HK-based skill is generally higher than the GSS-based skill, the HK-based skill shows

similar spatial patterns to those shown with GSS (Fig. A2 and Fig. A3), further indicating that the forecast skill in summer is

higher than a random forecast on the medium-range or extended-range forecast timescales.

3.2 Association of large-scale circulation patterns with predictability of northern Sahara cyclones

In this section, we focus on the cold-season northern Sahara, since most HPEs there are associated with surface cyclones (Sect.

1 and Fig. 1). These cyclones are deeper compared to southern Sahara cyclones, and tend to originate from the North Atlantic

storm track. To identify sources of forecast bias in these cyclones, we explore the large-scale factors that lead to enhanced or

reduced storm predictability. Specifically, we analyze large-scale circulation patterns associated with the high- and low-skill
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cases with respect to their GSS scores during the extended-winter season (between October and April) in three subregions
of the northern Sahara (Region I-III in Fig. 1) . This analysis is performed using forecasts with lead times of 5.5 and 10.5
days (Fig. 7 and Fig. 8, respectively). Performing the analysis over both short-medium- and medium—extended-range forecasts
helps distinguish what dominant large-scale circulation patterns are identified on different forecast ranges. For each composite,
anomaly fields averaged over the high-skill and low-skill reforecasts for GH500 (color shading), MSLP (black contours),
and T850 (blue contours) are shown (Fig. 7 and Fig. 8). Similar analysis for the meteorological winter season (December to
February) was performed (not shown), exhibiting similar results, yet with a smaller sample size.

At forecast lead time of 5.5 days, high-skill cases in the northwestern Sahara (Region I) are generally associated with deeper
cyclones (measured by MSLP anomalies) over the western side of the region and a cold anomaly to the southwest of the MSLP
anomaly, while low skill is exhibited for shallow and more easterly located cyclones (Fig. 7a,b). The high-skill cases are also
associated with a north—south MSLP dipole pattern over the eastern North-Atlantic (as in Rex-type blocking; Rex, 1950), with
the positive geopotential height anomaly located south of Iceland and west of Ireland. This high pressure system is a part of a
zonally extended high anomaly in the high-skill cases, while in the low-skill cases, the high is located more to the northwest,
over Iceland, and is not extended further to the east. In the other two northern subregions, deeper cyclones also generally
correspond to the high-skill cases (Fig. 7c—f), especially in the northeastern Sahara (Region III). Apart from the intensity of the
cyclones, the forecast skill for the northern Sahara (Region II) is relatively low when both the Icelandic low and the Azores high
are stronger than climatology (Fig. 7d). In the northeastern Sahara (Region III), the difference between the high- and low-skill
cases is accentuated — forecasts with high skill are associated on average with deeper surface cyclones, with a clear thermal
structure (cold anomaly to the southwest of the cyclone and a shallower warm anomaly to the east), and are accompanied by an
upper-level negative anomaly resembling a cutoff low, with a series of highs surrounding this low (Fig. 7e). In contrast, low-
skill forecasts are associated with shallower surface cyclones, on average, and a series of high pressure anomalies extending at
around latitude 60°N, peaking near Iceland (Fig. 7f).

Compared with the 5.5-day lead time, the patterns in the high- and low-skill cases for the northwestern Sahara (Region I)
at a 10.5-day lead time are generally similar, with a few exceptions: (a) the positive MSLP anomaly in the high-skill cases is
weaker and does not extent eastwards, (b) a warm anomaly and a more prominent upper-level high pressure anomaly appear
to the east of the region in the low-skill cases, and (c) the high over Iceland in the low-skill cases is less prominent (Fig. 8a,b).
For the same lead time, the patterns in the central northern Sahara (Region II) are quite similar to the ones for the 5.5-day
lead time, although the prominent high over Europe disappears in the high-skill cases (Fig. 8c,d). Interestingly, while the wave
pattern exists in the high-skill cases for the northeastern Sahara (Region III), albeit with a lower magnitude, for the 10.5-day
lead time, the low-skill cases are associated with an eastward shift in the position of the ridge from the North Atlantic towards

the UK and Scandinavia (Fig. 8e,f).
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Figure 7. Average GH500 (shadings), MSLP (black contours), and T850 (blue contours) anomaly fields for the high- (a,c,e) and low-skill
cases (b,d,f) defined according to their corresponding GSS values for reforecasts with a 5.5-day lead time. Each row represents a different
region in the northern Sahara, between October and April. The number of cyclones in each group is annotated on the top left of each subplot.

Hatching represents GH500 anomalies that are significant at a=0.05.
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Figure 8. Similar to Fig. 7, but for reforecast lead time of 10.5 days.
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4 Discussion and Conclusions

In this study, we investigate the predictability of cyclones associated with the occurrence of heavy precipitation in the Sahara,
focusing on their temporal, regional, and seasonal variability. While precipitation forecasts in arid regions often show limited
skill, making it difficult to anticipate both flood hazards and opportunities for water-resource replenishment, increased cyclone
predictability offers a pathway to extend the effective lead time for such high-impact events. For this purpose, we use a catalog
of HPE-associated surface cyclones, independently identified from satellite observations. The predictability of these cyclones
is then evaluated using 10 ensemble member ECMWEF reforecasts, with each member verified against ERAS reanalysis. Veri-
fication of cyclone predictions requires an integrated perspective that accounts for the intensity, structure, and location of the
cyclone at each lead time. Therefore, we applied an area-based (’feature-oriented’) framework for evaluating the forecast skill
at lead times ranging from 0.5 to 15.5 days.

The geographic location and season impact cyclone predictability across the Sahara. Generally, the highest short-range
skill of HPE-associated cyclones is in winter (Fig. 3), when HPE-associated cyclones are found mainly in the northern part
of the Sahara. At longer lead times, however, a higher skill is found in summer and fall, and the region of relatively high
skill shifts southward (Fig. 6). Interestingly, summer cyclone forecasts remain skillful compared to a random forecast even on
the medium- and extended-range timescales, emphasizing the potential for longer predictability of high-impact storms in this
season. Across seasons, the average skill for cyclones remains unchanged after a lead time of about 10.5 days, suggesting that
the skillful prediction limit for both winter and summer is around this threshold. This predictability limit coincides with that
indicated by Zhang et al. (2019), although they obtained this limit for midlatitude weather systems from the perspective of
error variance in prediction models with higher resolution.

The sensitivity of cyclone forecast skill to geographic location and season reflects the distinct characteristics of HPE-
associated cyclones in the Sahara, notably their interaction with the large-scale flow patterns. Over the northern Sahara, deeper
cyclones are better predicted; a promising result given that cyclone depth is commonly associated with stronger dynamical
forcing and a higher likelihood of producing high-impact weather. In some cases, these cyclones seem to be associated with a
mid-tropospheric Rossby wave pattern, extending either north—south or south—east from the North Atlantic towards the north-
ern Sahara (Fig. 7 and Fig.8). But Rossby waves are known to be associated with either high or low predictability (see also
Prestel-Kupferer et al., 2024): Persistent Rossby wave packets are associated with enhanced predictability and the occurrence
of extreme weather events (Wirth and Eichhorn, 2014; Grazzini and Vitart, 2015). However, these Rossby wave packets may
also act as "predictability barriers" over the North Atlantic, particularly for forecasts initialized before their onset, thus limiting
the forecast skill (Sanchez et al., 2020; Prestel-Kupferer et al., 2024). Furthermore, in the downstream region of Rossby waves,
the growth of forecast errors and ensemble spread can lead to a decrease in predictability (Baumgart et al., 2018; Rodwell et al.,
2018; Zheng et al., 2013). Furthermore, Rossby wave breaking (RWB) is known to be a key driver for precipitation in arid
regions, with contributions of up to 90% of daily precipitation extremes in arid regions located equatorward and downstream
of the midlatitude storm tracks (De Vries et al., 2024). Over the northern Sahara, the occurrence of HPE-associated cyclones is

potentially linked to RWB, coinciding with the findings of Tamarin-Brodsky and Harnik (2024, see their Fig. 4), showing that
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there are more cyclones in the northern Sahara amid anticyclonic RWB events, compared to cyclonic RWB events. Further-
more, this pattern suggests preferred cyclone activity over the northern Sahara for a positive NAO phase (Benedict et al., 2004;
Franzke et al., 2004; Messori and Caballero, 2015). Our findings suggest that Rossby waves are associated with both increased
and decreased predictability (Fig.7 and Fig.8), implying that improved understanding of Rossby waves and their interaction
with cyclones over the Sahara, can help to improve model accuracy in predicting HPE-associated cyclones.

In the southern Sahara, in contrast to the north, the generation of surface cyclones relies on latent heat release during moisture
convection processes and sensible heat at the surface (Gaetani et al., 2017; Maranan et al., 2019), rather than baroclinic instabil-
ity in the midlatitudes (Thorncroft and Flocas, 1997), whose predictability requires methods beyond this research to study. For
HPEs not associated with surface cyclones, especially in the extreme arid areas of the northeastern Sahara, other systems, such
as tropical plumes (Yokochi et al., 2019), reversed jet axis (Dayan and Abramski, 1983), and mesoscale convective systems
(Trzeciak et al., 2017), need further investigation to better understand the predictability of these non-cyclone-associated HPEs.

Traditional cyclone verification methods evaluate cyclone predictability based on tracking of cyclone centers and intensity
biases (e.g., Froude et al., 2007; Neu et al., 2013; Rudeva et al., 2014; Korfe and Colle, 2018). However, these methods do
not take into account situations in which there is a small spatial or temporal mismatch between the forecasted and observed
cyclones (the double penalty problem; Gilleland et al. (2009)). To overcome this issue, our study uses an area-based method
to assess the forecast skill of cyclones. In this way, we allow for the verification of cyclones even in situations in which other
methods would have underestimated the practical forecast skill. Better assessment of case studies that are forecasted but not
observed (i.e., false alarms) and cases that are observed but not forecasted (i.e., misses), can help to identify sources of spatial
and temporal forecast errors in the Sahara, as well as in other regions.

Additionally, a larger sample size, for example, obtained by including more hindcasts or ensemble forecasts that include up
to 100 ensemble members, can increase the statistical robustness of the analysis. Moreover, since there are more than 12000
cyclone-associated HPEs and more than 3000 HPE-associated cyclones in the whole study region between the years 2000
and 2020, extensive computational resources are required to implement more complicated methods. Here, we provide insights
into the broader predictability across the entire Sahara over timescales of days to weeks. Future studies, focusing on specific
regions and specific case-studies could shed light on the synoptic-scale processes involved and how predictability of cyclones
is modulated throughout their lifecycle. Future studies using more sophisticated methods, such as multiple linear regression
and generalized additive models, can further identify and isolate factors that may act as cyclone predictors over arid subtropical
regions.

In summary, our analysis suggests that seasonality and dominant circulation patterns exert a strong control on predictability.
Further studies of potential relationships between cyclone intensity and large-scale atmospheric circulation patterns are required
to determine the relative role of these factors, as well as cyclone characteristics, for predictability. A better understanding of
the mechanisms governing cyclone predictability in this region will help provide improved HPE forecasts in arid subtropical

flood-prone regions, thus mitigating their devastating impacts.
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Appendix A: Figures
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Figure A2. Similar to Fig. 5, but for the forecast skill measured with the HK.
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