Supplementary Information of “Insights on Ozone Formation
Sensitivity in Southeast and East Asian Megacities during ASIA-AQ”

Cho et al.

Correspondence to: Alessandro Franchin (franchin@ucar.edu)

5 Table S1. Summary of DC-8 research flights.

Location Flight number  Flight date Take-off time (LT) Landing time (LT)
RFO1 2024-02-06 09:42 18:05
RF02 2024-02-07 09:05 16:57
Philippines
RF03 2024-02-11 08:59 16:43
RF04 2024-02-15 09:08 17:22
RF12 2024-03-16 10:09 17:58
RF13 2024-03-18 08:25 16:35
Thailand
RF14 2024-03-21 08:11 16:09
RF15 2024-03-25 08:03 15:55
RF05 2024-02-15 10:462 15:14#
Taiwan RF11 2024-03-13 10:272 13:032
RF16 2024-03-27 11:11# 14:002
RF06 2024-02-17 10:55 18:17
RFO7 2024-02-26 10:57 18:25
South Korea RFO8 2024-03-08 10:19 18:47
RF09 2024-03-10 12:13 18:51
RF10 2024-03-11 10:14 18:48

8 For Taiwan flights, the listed times correspond to the DC-8 sampling time over Taiwan rather than the full flight duration.
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Table S2. Instrumentation details for data used in this study.

Species

Instrument (Method)

Reference

Photolysis frequencies

CAFS (Charged-coupled device actinic spectroradiometers) Hall et al. (2018)

Meteorological

MMS (Meteorological measurement system)

Gaines et al. (1992)

parameters

H.O DLH (Diode laser hygrometer) Diskin et al. (2002)

CO, CH4 DACOM (Diode laser spectrometer) Sachse et al. (1987)

\ NOxO3 (Chemiluminescence) Ridley and Grahek (1990)

NO. NO: CANOE (Cavity enhanced absorption spectrometry) Bailey et al. (2024)

o NOxO3 (Chemiluminescence) Ridley et al. (1992)
ROZE (Cavity-enhanced UV absorption) Hannun et al. (2020)

HCHO ISAF (Laser-induced fluorescence) Cazorla et al. (2015)

PANS GT-TD-CIMS (Thermal dissociation chemical ionization  Lee et al. (2020)
mass spectrometry using | reagent ion)

CHOCHO CAESAR (Cavity enhanced absorption spectroscopy) Min et al. (2016)

HNOs3, HCN, H,0;

CIT-CIMS (Chemical ionization mass spectrometry using

CF30" reagent ion)

Crounse et al. (2006)

VOCs®

TOGA-TOF (Online gas chromatography with time-of-

flight mass spectrometry)

Apel et al. (2015); Jeong et al. (2025)

WAS (Whole air sampler)

Simpson et al. (2020)

PTR-ToF-MS (Proton-transfer-reaction time-of-flight mass Reinecke et al. (2023)

spectrometry)

@ The primary NO2 dataset is from NOxOs. Periods with calibration or instrument downtime were gap-filled with CANOE.

b Primary dataset depends on deployment: NOxOs for Metro Manila (MM); ROZE for Bangkok Metropolitan Region (BMR), Tainan-
Kaohsiung Metropolitan Area (TKMA), and Seoul Metropolitan Area (SMA). Occasional gaps were filled using the alternate instrument.
¢ Alkanes, alkenes, and aromatics were taken primarily from WAS. TOGA-TOF provided biogenic VOCs (BVOCs) and oxidized VOCs
(OVOCs). PTR-ToF-MS (selected aromatics and BVOCSs) was used when both WAS and TOGA data were unavailable.



S1 Average VOC reactivity speciation

VOC reactivity (VOCR) is defined as the sum of the reaction rate coefficients between OH and each measured VOC

species (kon+voc;), Weighted by the concentration of that species ([VOC;]):

(S1)

20 VOCR = ZkOH+VOCi[VOCi]

In Figs. S1-S4, VOC shortform names are from Master Chemical Mechanism (MCMv3.3.1; available at:

https://www.mcm.york.ac.uk/MCM).
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Figure S1. Contribution of individual VOC species to VOC reactivity (VOCR) measured in Metro Manila (MM) below 750 m above sea

level (asl). The pie chart summarizes the average fractional contributions of VOC classes to VOCR.
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Figure S2. Contribution of individual VOC species to VOCR measured in Bangkok Metropolitan Region (BMR) below 750 m asl. The pie

chart summarizes the average fractional contributions of VOC classes to VOCR.
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Figure S3. Contribution of individual VOC species to VOCR measured in Tainan-Kaohsiung Metropolitan Area (TKMA) below 750

m asl. The pie chart summarizes the average fractional contributions of VOC classes to VOCR.
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Figure S4. Contribution of individual VOC species to VOCR measured in Seoul Metropolitan Area (SMA) below 750 m asl. The pie

chart summarizes the average fractional contributions of VOC classes to VOCR.
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S2 Flight steady-state (FSS) box model

To assess the representativeness of the isopleth-derived POy, we compared it with POy calculated from the flight
steady-state (FSS) box model described in previous airborne studies (Crawford et al., 1999; Olson et al., 2006; Schroeder et
al., 2020; Kim et al., 2022; Brune et al., 2022; Nault et al., 2024). The FSS model simulates instantaneous photochemical
conditions for each observation point with the same model setup as described in Sect. 2.2, while the isopleth framework
represents a generalized chemical environment by averaging precursor mixing ratios within each flight track and applying

systematic NOx and VOC scaling factors (Sect. 2.3).
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Figure S5. Comparisons between POx derived from the isopleth-based approach and the flight steady-state (FSS) box model for four
megacities during ASIA-AQ. Colors indicate orthogonal distance from the central transition line (negative: NOx-sensitive; positive: VOC-
sensitive). Solid and dashed lines show the linear fit and 1:1 reference, respectively.

The comparison therefore highlights how regional generalization influences the magnitude and variability of POy
relative to point-specific calculations. Overall, strong linear relationships with generally good agreement (within 20%) were
obtained in MM, BMR, and TKMA (r? = 0.45-0.94), indicating that the isopleth approach captures the principal POy features
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derived from the more discrete FSS model. In MM, data points within the VOC-sensitive regime showed a tendency toward
positive bias relative to the FSS simulations. This behavior likely reflects the assumption of fixed VOC speciation during
uniform VOC scaling, which can result in a stronger influence on POy variability in VOC-sensitive conditions. However, in
SMA, the correlation was weaker (r> = 0.36), mainly influenced by several high-bias points from one flight (RF06, Tracks 1
and 2) that showed the largest dynamic range of PO in the isopleth (Fig. S8), accompanied by elevated photolysis frequency
of NO; (jNO;) nearly twice as high as those in other research flights (RF06 average: 0.0071 + 0.0015 s™; other RFs average:
0.0040 + 0.0028 st). Under these conditions, the isopleth-based PO« showed a larger dynamic range (1-7 ppbv h'?) than the
point-specific steady-state estimates (1-3.5 ppbv h?), indicating that the generalized NOx and VOC scaling can amplify
variability rather than smoothing it.
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Figure S6. POxbudget from FSS box model for four megacities during ASIA-AQ. Colored stacked areas represent the individual terms

in Eq. 1. Black dots with error bars show the net POx (hourly means + standard deviations). Open dots in BMR indicate data points
sampled at relatively higher altitudes (same as Figs. 3 and 5(b)). All times are local time (LT).

The FSS box model is also used to diagnose the POy budget as it provides instantaneous production and destruction
rates of each term to contribute to net POy in Eq. (1). Figure S6 displays the diurnal trends of O« production and loss terms
and resulting net POy in each city. Across all cities, Ox production is approximately evenly split between RO,+NO and
HO>+NO. Loss terms are smaller than productions, dominated by OH+NO, and O3 photolysis (except for SMA due to low
solar irradiance), with minor contributions from Osz+alkenes, OH+0O3, and HO.+0O,. Net PAN production term (netPpan) can

act as either a source or a sink of POyx. In BMR, netPpan is positive, likely reflecting elevated PAN mixing ratios (2.7 £ 1.5

8
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ppbv) during the biomass-burning period and faster thermal decomposition under warmer conditions, which returns NO,. In
MM and TKMA, negative contributions of netPpan to POy suggests the PAN formation dominates. Lastly, in SMA, colder
conditions limit thermal decomposition of PAN, therefore the PAN term is in the loss. However, overall contributions of

netPpan to POy are small in all locations (< 2%).



70 S3 Individual isopleths
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Figure S7. POx isopleths for MM. Plot format follows Fig. 4a in the main manuscript. RFO3 Track1 is not available due to missing
data.

Four DC-8 research flights (RFO1-RFO04; Table S1) were performed over the Philippines. Figure S7 presents POy

isopleths for Metro Manila, categorized by research flight and local time: Track 1 (09:00-11:00), Track 2 (11:00-14:00), and
Track 3 (14:00-17:00). Data for RFO3 Track 1 are excluded due to missing NOx measurements caused by a temporary

instrument failure.
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S3.2 Bangkok Metropolitan Region (BMR), Thailand

Four DC-8 research flights (RF12—-RF15; Table S1) were performed over Thailand. Figure S8 presents POy isopleths
for BMR, categorized by research flight and local time: Track 1 (09:00-13:00) and Track 2 (13:00-18:00).
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25
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80
Figure S8. POx isopleths for BMR. Plot format follows Fig. 5a in the main manuscript.
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§3.3 Tainan-Kaohsiung Metropolitan Area (TKMA), Taiwan

Three DC-8 research flights (RF05, RF11, RF16; Table S1) were performed over Taiwan. Figure S9 presents POy
isopleths for BMR, categorized by research flight and local time: Track 1 (11:00-13:00) and Track 2 (13:00-15:00).
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20
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Figure S9. POx isopleths for TKMA. Plot format follows Fig. 6a in the main manuscript.
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S3.4 Seoul Metropolitan Area (SMA), South Korea

90 Five DC-8 research flights (RF06-RF10; Table S1) were performed over South Korea. Figure S10 presents POy
isopleths for SMA, categorized by research flight and local time: Track 1 (10:00-13:00), Track 2 (13:00-16:00), and Track 3
(16:00-19:00). Note that the x-axis (NOx mixing ratios) is shown on a logarithmic scale to better visualize isopleths.
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Figure S10. POx isopleths for SMA. Plot format follows Fig. 7a in the main manuscript. The x axis is in a logarithmic scale.
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95 Table S3. Slopes of the POx transition line (ridges of maximum POx) from isopleths by city, flight, and track.

City Flight Track Slope  City Flight Track Slope
RFO1 1 5.83 RF12 1 6.58
RFO1 2 3.25 RF12 2 3.86
RFO1 3 4.01 RF13 1 6.62
RF02 1 4.85 RF13 2 6.26

BMR,
RF02 2 2.70 RF14 1 8.81

THAI
MM, RF02 3 2.33 RF14 2 8.64
PHL RF03 2 3.83 RF15 1 6.61
RF03 3 2.81 RF15 2 7.55
RF04 1 5.97 RF12-15  all 7.01
RF04 2 3.82 RF06 1 14.97
RF04 3 2.95 RF06 2 12.26
RF01-04 all 4.71 RF06 3 12.40
RF05 1 9.10 RFO7 1 39.99
RFO05 2 8.70 RFO7 2 29.15
RF11 1 14.91 RFO7 3 40.07
TKMA, RF11 2 15.58 RF08 1 29.45
TWN RF16 1 10.05 RFO8 2 21.07

SMA,
RF1 2 11. RF 26.07
6 5 or 08 3 6.0

RF05, 11,
all 11.24 RF09 1 30.07
16

RF09 2 22.18
RF09 3 20.83
RF10 1 44.01
RF10 2 27.14
RF10 3 16.20
RF06-10 all 30.27

14
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S4 Average vertical distributions of POx sensitivity
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Figure S11. Vertical distributions of POx sensitivity, shown as orthogonal distances from the POx transition line, for each megacity.
Positive values indicate VOC-sensitive conditions, and negative values indicate NOx-sensitive conditions. The red dashed lines denote

the transition line. Grey dots indicate individual data points, and black dots and error bars represent the hourly mean values and standard
deviations, respectively.

We extended the orthogonal-distance analysis (Sect. 2.3) to altitudes up to 750 m pressure altitude (asl). Figure S11
shows the vertical distributions of the computed orthogonal distances (Sect. 2.3) in each megacity. Compared with the diurnal
distributions (Figs. 4b, 5b, 6b, and 7b), the altitude-binned orthogonal distances show no clear, monotonic tendency with
altitude, suggesting that the air masses below 750 m were relatively well mixed. A slight shift toward more positive values
near the surface is apparent with elevated NOy levels near ground (Fig. 2).
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105 S5 Sampling homogeneity
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Figure S12. Distributions of (a) sampling hours and (b) altitudes for POx sensitivity analysis in MM. The histograms show the number of 1-
minute averaged data points.

As noted in the main manuscript (Sect. 4), the temporal and vertical inhomogeneity of airborne sampling can introduce
potential biases in the interpretation of ozone production sensitivity across the four studied megacities. Differences in the
number and distribution of data points by hour of day and altitude may affect statistical calculations such as regime

110 classification in Table 2 and the modeled impacts of precursor reductions in Fig. 8. Figures S12-S15 illustrate the distributions
of 1-minute averaged data points by sampling hour and altitude for each city.

Metro Manila (Fig. S12) shows relatively uniform temporal coverage from 09:00 to 16:00 LT, with a slight drop-off
in the late afternoon. According to Fig. 4b, the late afternoon data points generally remain NOx-sensitive but lie close to
transition line. Vertically, data are skewed toward mid-boundary layer altitudes (400-600 m), with fewer measurements below

115 200 m. Figure S11a indicates that lower-altitude points also tend to cluster near the transition line. Notably, both late afternoon
and low-altitude data are associated with elevated NOy and VOC levels (Figs. 2 and 3), suggesting potentially high POy
conditions. As a result, this sampling inhomogeneity may lead to an underestimation of data near the transition line under high
POy conditions, potentially biasing the analysis toward lower sensitivity and underestimating the effects of precursor reductions
shown in Fig. 8a.
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Figure S13. Distributions of (a) sampling hours and (b) altitudes for POx sensitivity analysis in BMR. The histograms show the number of 1-
minute averaged data points.

Figure S13 shows the distributions of sampling hours and altitudes for the POy sensitivity analysis in the Bangkok
Metropolitan Region (BMR). While the overall temporal distribution appears uneven, the sampling is relatively homogeneous
when divided into broader time blocks (morning and afternoon). One notable limitation is the reduced number of data points
after 16:00 LT, which may limit the representation of late-afternoon chemistry. Therefore, the potential influence of VOC-
sensitive points in late-afternoon (Fig. 5b) might be underestimated in Table 2 and Fig. 8b. The vertical distribution of
orthogonal distances is uniform across altitudes (Fig. S11b), suggesting that vertical sampling inhomogeneity has minimal

influence on the sensitivity classification (Table 2) and POy reduction estimation (Fig. 8b).
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Figure S14. Distributions of (a) sampling hours and (b) altitudes for POx sensitivity analysis in TKMA. The histograms show the
number of 1-minute averaged data points.
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Tainan-Kaohsiung Metropolitan Area (Fig. S14) exhibits the narrowest sampling window among the studied cities,
with data collected only between 11:00 and 15:00 LT. As discussed in Sect. 4.1.1, missing early morning sampling may result
in an underestimation of the effect of the VOC-sensitive points (Fig. 6) and VOC reduction (Fig. 8c). Vertically, the data are
concentrated between 500 m and 600 m. While this altitude range shows a widespread in orthogonal distances (Fig. S11c), the

135 vertical distribution of POy sensitivity is generally uniform, except for slightly more VOC-sensitive conditions around 300-

400 m. Therefore, the effect of vertical inhomogeneity is expected to be minor.
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Figure S15. Distributions of (a) sampling hours and (b) altitudes for POx sensitivity analysis in SMA. The histograms show the number
of 1-minute averaged data points.
The Seoul Metropolitan Area (Fig. S15) shows relatively well-distributed sampling both temporally and vertically.
As shown in Fig. S11d, the calculated orthogonal distances remain consistently positive across altitudes. Similarly, Fig. 7b
confirms limited diurnal variation in PO sensitivity. These patterns suggest that sampling inhomogeneity has minimal impact

140 on the regime classification or POy reduction analysis in SMA.

18



S6 Ozone production sensitivity in SMA during KORUS-AQ
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Figure S16. Colored isopleth of ozone production rate (POx) as functions of NOx and VOC mixing ratios in the Seoul Metropolitan

Area (SMA) during KORUS-AQ (April-June 2016). The dashed lines denote the transition between NOx-sensitive (left area of the
transition) and VOC-sensitive (right area of the transition) regimes. Red dots indicate the observed data points sampled below 750 m.
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Figure S17. Sensitivity of total POx reduction (%) to NOx and VOC reductions (%) in SMA during KORUS-AQ. Red and blue
lines and markers represent the response of POx to NOx and VOC reductions, respectively.
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Table S4. Fractions of NOx-sensitive and VOC-sensitive regimes for POx in SMA during KORUS-AQ.

] . % of Points POy Contribution % of Points ¥POy Contribution
Location Regime . .
(All data) (All data) (High PO, (High PO,
SMA,
NO,-sens. 41% 37% 32% 32%
South Korea
59% 63% 68% 68%

(KORUS-AQ) VOC-sens.

@ High POx denotes upper 50% of the POx distribution (above the median).
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