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Abstract. Ridges significantly increase the sea-ice thickness compared to the level ice surrounding them. In continuum sea-ice
models, this increase is either represented by an increase in mean ice thickness or by changes in the ice thickness distribution
(ITD). The implementation of ITDs requires a sub-grid parametrization of ridging by using a redistribution scheme. In contrast,
the discrete element method (DEM) enables explicit simulations of ridge formation process, including ice fragmentation into
rubble and its subsequent redistribution to ridges. Here, we use a DEM model to simulate ridging across a sea ice domain
of size 6km x 6km. The DEM simulations yield deformed ice cover with ridges of varying shapes, namely triangular and
trapezoidal ridges; the trapezoidal ridges notably affect the ITD of the deformed ice cover by creating a bump in the ITD
towards thicker ice. We find that the ITD of the deformed ice field from DEM simulations differs from those from the continuum
model, that uses only mean thickness, and from two commonly used ridging functions within redistribution schemes used as
sub-grid parametrizations. Further, we show how to formulate an analytical redistribution function that captures the effect of
various ridge shapes and discuss when it could replace existing ridging schemes. Our results demonstrate that an improved
representation of ridging is needed within continuum models to resolve ridges both with their depth and shape within the ITD,
especially in high spatial resolutions. Additionally, we formulate open questions in need of answers to allow implementation

of our new distribution of ridged ice into continuum models, which connect to the ridging process itself.

1 Introduction

Ridges present localized discontinuities in the sea-ice cover by significantly increasing the ice thickness locally. They are
formed due to convergent sea-ice motion creating deformation and failure of the ice. Consequently, ice blocks pile on top of
the ice and under the water, respectively forming the ridge sail and keel, and thus, thickening the ice. Overall, ridging has
a higher influence on the ice volume via the thickness compared to the ice area (Martensson et al., 2012). For example, up
to 36 % of the ice volume was covered by thick ridges during MOSAIC from fall 2019 to late summer 2020 (von Albedyll

et al., 2022). In turn, ridges also influence the sea-ice motion and deformation: The sail and keel influence the atmosphere and
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ocean drag, respectively, and the presence of ridges influences the large-scale ice-strength (Tuhkuri and Lensu, 2002; Martin
et al., 2016; Tsamados et al., 2014; Brenner et al., 2021). Further, Krumpen et al. (2025) observed a rise in the annual number
of ridging events due to an increase in first-year-ice fraction, indicating that ridging may become increasingly frequent and
important in the future.

Despite their importance, the amount of thick and ridged ice is generally underestimated by conventional continuum sea-ice
models (Johnson et al., 2012). Additionally, Bouchat et al. (2022) highlights that when comparing convergence from several
models to satellite observations, only models running at a much higher resolution than the observed fields (10 km) were
able to reproduce the observed convergence. As ridging requires convergent ice motion, the models may produce less ridges
than expected. Further, Lipscomb et al. (2007) raised several questions regarding the assumptions of currently used ridging
parametrizations, for example the shape of participation and redistribution function, which still remain open.

The representation of ridges in continuum models becomes even more important when they are adapted for high spatial and
temporal resolutions, for example, for regional case studies, route planning, and operational forecast simulations (Blockley
et al., 2020; Bouchat et al., 2022; Hutter et al., 2022; Williams et al., 2021). Especially for operational forecast simulations, the
need for an accurate representation of ridges is emphasized, since ridged ice is one of the most common ice conditions where
ships require ice-breaker assistance and where winter navigation accidents occur (Valdez Banda et al., 2015; Liu et al., 2024).

Continuum sea-ice models describe ridging as a sub-grid process. They describe the ice thickness either by using a two-level
approach (Hibler, 1979) that only includes an open-water fraction and a mean ice thickness (e.g., neXtSIM (Olason et al.,
2022)) or with a multi-category thickness (e.g., CICE (Lipscomb et al., 2007; Hunke et al., 2010)). In the first case, ridging
increases the mean ice thickness, whereas in the latter one, ridging is described by sea-ice redistribution functions and the
ice thickness distribution (ITD). The redistribution functions include a participation function that governs which part of the
ice deforms and a ridging function that determines to which thickness category the deformed ice belongs. The two common
ridging functions are either based on Hibler (1980), assuming triangular ridges and linear redistribution of ice, or Lipscomb
et al. (2007), assuming an exponential distribution of smaller ridges compared to deeper ridges.

In order to represent ridging more detailed than is possible in continuum models, we simulate ridging by using a discrete
element method (DEM) model in this study, since it allows for detailed simulations of ridge formation processes (Hopkins,
1994, 1998; Muchow and Polojirvi, 2024). In DEM simulations of ridge formation processes, the intact sea ice is modeled
by using particles connected by beams, which may fail and form ice blocks. Then, the ridging is simulated explicitly, includ-
ing ice rubble formation and ice rubble accumulation. The code we use is the Helsinki Discrete Element Model (HiDEM)
(Astrom, 2006), which has demonstrated its capability to simulate sea-ice dynamics and fragmentation in three dimensions
over kilometer-scale domains at meter-scale resolution (Astr('jm and Polojarvi, 2024; Astrém et al., 2024). Three dimensional
modeling is required for realistic simulations including ridging (Muchow and Polojirvi, 2024).

The results presented here give insight into the ridge shapes as well as their influence on the ITD of a deformed ice field.
Our high-resolution DEM simulations yield deformed ice covers with ridges of varying shapes, which we classify as triangular
and trapezoidal ridges. Once classified, the influence of the trapezoidal ridges on the ITD becomes evident. Notably, the effect

of varying ridge shapes on ITD has not been included into any ice redistribution scheme, even if ridges occur in nature with
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varying shapes (Timco and Burden, 1997; Strub-Klein and Sudom, 2012). Consequently, the ITD stemming from our DEM
simulations is different to ITDs created by commonly used sub-grid parametrizations in continuum models, namely both
ridging functions developed by Hibler (1980) (HI80) and Lipscomb et al. (2007) (LI07). Further, we also demonstrate that the
ITD yielding from DEM simulations also differ from those generated by continuum sea-ice models, here namely the neXt-
generation Sea Ice Model (neXtSIM), where ice thickness within each grid cell is represented by its mean value only (Olason
et al., 2022). Thus, both conventional approaches representing ridges within continuum sea-ice models fail to represent ridges
with a significant increase in ice thickness and their shape. These differences imply that only increasing the spatial resolution of
continuum sea-ice models, within the limits of their practical application, is not sufficient to improve their skill in representing
ridges as localized features within the ice cover. Further, we develop an analytical description of the distribution of ridged ice,
which successfully incorporates the effect of ridge shapes, and discuss when and how the function introduced could be used
in ridging schemes. On a more general level, our work demonstrates the potential of high-resolution sea-ice modeling using
DEM and its complementary role relative to conventional large-scale sea-ice models.

In what follows, Section 2 first describes the general setup of our numerical experiments, followed by a description of
HiDEM and neXtSIM models used and sea-ice redistribution model implemented to account for sub-grid parameterizations
of ridging. Section 3 presents our results, including a general description of the deformed ice fields yielded by different ap-
proaches. This section further shows how to derive an analytical description for the distribution of ridged ice with a notion on
ridge shapes. Section 4 first discusses the influence of ridge shapes to the ITD as well as the differences in the ITD observed
from HiDEM to field observations and second how ridging processes connect to the ITD. This section also includes open

questions regarding how to implement the derived distribution of ridged ice in redistribution schemes.

2 Methods

Figure 1 describes the simulation setup with the main parameters summarized by Table 1. The simulations mimicked displacement-

driven bi-axial compression tests, with constant velocities prescribed on the boundaries with constant y. Motion across the
boundaries at z = 0 km and = = 6 km was restricted to prevent ice from drifting out of the domain. The domain size, 6 x 6 km?2,
was chosen large enough to fit several ridges while keeping the wall clock times for the simulations moderate. In addition, the
chosen domain size was large enough to fit several grid cells of a high-resolution continuum sea-ice model.

All simulations start with a uniform ice thickness, but a non-uniform distribution of ice strength, as described below. The
ice cover is then compressed over a period of two hours leading to average nominal strain of about 25 %. Simulations are
conducted with three different initial ice thicknesses h; = 0.5m, 1.0 m and 2.0 m. This h; range spans from thin ice up to the

maximum thickness reached through thermodynamic growth (Maykut and Untersteiner, 1971).
2.1 HiDEM

The Helsinki Discrete Element Model (HIDEM) describes the intact sea ice by using spherical particles connected by Euler-

Bernoulli beams (Astrém, 2006). The motion of the particles is described by Newton’s laws, with external forces applied to
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Figure 1. Description of the HIDEM simulation setup to also illustrate the overall simulation setup. The 6 x 6km? observation area was split
into a 10m x 10m grid shown in the closeup to implement the inhomogeneity of the ice with each grid cell having a random beam probability
between 0.4 and 1.0. A constant sea-ice velocity was applied so that level ice drifted into the observation area through the boundaries at y = 0

km and y = 6 km, while ice drift across the boundaries indicated by dashed lines at x = 0 km and x = 6 km was restricted.

them being due to elastic and inelastic contacts, buoyancy, gravity, drag, and friction. As the particles move, the beams deform.
Upon reaching a predefined failure criterion, the beams fail, leading to ice failure and ice fragments of various sizes. More
information on the version of HIDEM used can be found in Astrém et al. (2024).

The simulated ice field was 6 x 8.2 km? and had the ice with 3y < 0 km and y > 6 km constrained to move in the y-direction
with velocities of 0.15 m/s and —0.15 m/s, respectively (Figure 1). Thus, undeformed ice was pushed with constant velocity
into the observation area of 6 x 6 km?. We randomly removed beams bonding the particles to mimic the inhomogeneity of
the ice cover and to create variation between the simulation runs with same h;. This was done by splitting the ice initially
within the observation area into a 10 m x 10 m grid, where each grid cell had its particle pairs linked by beams with a random
probability between 0.4 and 1.0. Outside of the observation area, the beam probability was 0.8.

We conducted three simulations for h; = 2.0 m, two for h; = 1.0 m and one for h; = 0.5 m. The number of repeated sim-
ulations varied because we set the particle diameter equal to the ice thickness, meaning that the simulations with thinner ice
required more particles than those with thick ice and, thus, came with higher computational cost. (The ice cover in the simu-
lation with h; = 0.5m had about 200 - 10° particles.) While the locations of the individual ridges showed variability between
the runs with the same h;, the resulting ITDs were practically identical. Nevertheless, the ITDs presented below are averaged
across the simulations with same h,;. The output from the simulations was postprocessed into a gridded output with a resolution

of 4h; to describe the ice thickness (see Appendix A).
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Table 1. Main parameters of the HIDEM and neXtSIM simulations.

General Setup Value  Unit
Initial ice thickness h; 05,1.0,20 m
Ice Velocity 0.15 ms™!
Simulation time ¢ 2 h
Observation area 6x6 km?
neXtSIM

Spatial resolution 100 m
Gridded spatial resolution 50 m
Temporal resolution 30 min
HiDEM

Gridded spatial resolution 4h; m
Temporal resolution 10 min

2.2 neXtSIM

The neXt-generation Sea Ice Model (neXtSIM) was chosen as the continuum model, where the sea-ice cover is described with
a brittle Bingham-Maxwell rheology on a triangular, Lagrangian grid (Olason et al., 2022). According to the comparison of
several high-resolution models, neXtSIM fulfills the requirements to reproduce realistic linear kinematic features, which are
bands of high deformation and thus, can be related to ridging (Hutter et al., 2022). The sea-ice thickness, and changes due to
deformation, are represented via a mean thickness. During the simulations, the standard stand-alone variables, as presented in
Olason et al. (2022), are used and the sea-ice thermodynamics are turned off.

To adapt neXtSIM to the idealized setup, ice gets generated at the boundaries, where the velocity is applied. Thus, throughout
the whole simulation, ice with the initial ice thickness gets added into the simulation. To introduce variability between the
simulations as well as a non-uniform ice strength, the cohesion is varied randomly in space between a maximum value and half
of that maximum value. To account for variability, neXtSIM simulations are repeated five times.

Compared to the standard setting, the time step and resolution are significantly increased. The main model time step, control-
ling the advection, is 1 s, with 240 sub-cycles used to solve the dynamics yielding in a dynamical time step of 1/240 = 0.004 s.
The spatial resolution of the simulation was 100 m for the triangular Lagrangian grid, resulting in gridded output with a spatial

resolution of 50 m.
2.3 Sea-ice redistribution model

To complement the results from neXtSIM, we also use a simple sea-ice redistribution model describing the sub-grid parametriza-

tion of ridging within continuum models utilizing an ice thickness distribution (ITD). Thus, the ITD is given by g(h) separating
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the ice within a grid cell in categories based on the ice thickness h and represents the amount of ice area and volume within
each of these categories. Between each time step, the ice gets redistributed based on different redistribution schemes, consisting
of a participation function and a ridging function.

Our sea-ice redistribution model is based on the implementation of the mechanical redistribution in ICEPACK (Hunke et al.,
2024) and adapted to simulate sea-ice redistribution as a stand-alone model with two different ridging functions commonly
implemented in large-scale sea-ice models. Thus, the ridging function is either based on Hibler (1980) (HI80), assuming a
linear redistribution of ice based on the assumption of triangular ridges, or on Lipscomb et al. (2007) (LI07), assuming an
exponential distribution of more smaller ridges compared to deeper ridges. Overall, the theory of the redistribution based on
Thorndike et al. (1975) and Lipscomb et al. (2007) and explained in more detail in the Appendix B.

At the start of the simulation, all sea ice is within one ice category describing the initial thickness h; as given in Table 1.
During each time step, we add the theoretical amount of ice area A to the ice thickness distribution g(k) into the category of
h;. After that, we call the redistribution function W. To ridge the whole amount of A, we need to apply ¥ several times until
the sum of A(h) is again 6km x 6km, as the ice area within HIDEM and neXtSIM is constant due to confinement. If ¥ is only
applied once, the resulting A(h) is bigger than 6km x 6km as the amount of ice participating in the deformation is calculated
from g(h) by the weighting function b(h) (Appendix B, Equation B4) and the resulting A(h) is also influenced by assumptions
of the ridging functions. Additionally, our implementation assumes the ice concentration to be 100 % instead of calculating
opening/closing rates as well as additional advection. We used regularly spaced ice categories with lower boundaries ranging
from 0.0 to 20 m with a spacing of 0.5 m, which covers the range of observed sea-ice thickness in our simulations. We used the
redistribution model with a time step of 5 min to calculate g(h) after 2 h.

Both ridging functions, HIS0 and LI07, contain tunable parameters. For HI80, the main tunable parameter is the empirical
thickness H,, which often ranges between 25, as used, for example, in ICEPACK, and 100, as proposed by Hibler (1980).
H, directly influences the maximum depth of ridges 2v/H,h;, which is the upper limit of the ridging function ~(h;, ). For
LIO7, e-folding scale of (h;, h) depends on the tunable parameter n influencing the depth of ridges as well as the amount of
smaller ridges present. For our initial simulations, H, and p are set according to the standard settings of ICEPACK (Hunke
etal.,2024), H, =25bmand p =3 m'/2, both representing ice of about the same strength (Lipscomb et al., 2007). Further, we
conduct simulations where we vary H, to 50m and 100 m, to include the value Hibler (1980) proposed, and y to 4 m'/? and

6m?/2, to include similar simulations with LIO7.
3 Results and analysis

3.1 Comparison of model results

Figure 2 illustrates the final deformed ice covers and differing ridge patterns in HIDEM and neXtSIM simulations. The ridges
in HiDEM are mainly perpendicular to the direction of compression, whereas neXtSIM yields a dominant X-shaped ridge
pattern accompanied by smaller ridges, consistent with the Mohr-Coulomb failure criterion implemented within its rheology.

Nevertheless, thoroughly investigating the difference in spatial distribution between both would need simulations with more
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Figure 2. Ice thickness normalized by the initial thickness h; for each A; (0.5 m, 1 m and 2 m) and each model (HiDEM and neXtSIM) at the

end of the simulations (¢ = 2h). The domain size is 6 x 6 km?. The arrows in the bottom left corner indicate the coordinate system, with the

convergent velocity applied in y-direction.

diverse forcing scenarios and, thus, is a task for further studies. Omitting the distribution of ridges, both HIDEM and neXtSIM

contain ridges as localized features embedded in an undeformed ice. The ridges in HIDEM are more strongly localized, while

ridges in neXtSIM appear more smudged over several grid cells. Furthermore, the ridges are significantly shallower in neXtSIM

than in HIDEM. Additionally, the number of ridges yielded by HIiDEM increases with decreasing h;.

To further investigate the ridges within HIDEM, we studied their cross-sectional shape. Therefore, we identified ridges with

a thickness of > 3h; along five transects at y = 1.0, 2.0, 3.0,4.0 and 5.0 km at the end of the simulation and manually classified
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Figure 3. Ridge profiles are presented at the end of HIDEM simulations (¢ = 2h) at five different cross-sections along the y-direction of
the observation area for all h;. The ridge profiles were manually classified into trapezoidal, triangular and mixed shape as indicated by the
legend colors. The shape was only defined for ridges of depth > 3h;. The histograms in the bottom row show the contribution of each ridge
type to the distribution of deformed ice per ice thickness categories h. Here, the distribution of deformed ice is given regarding the relative

area coverage of each h. Note, that the ranged of the axis for the ridge profile plots differs for each h;.

the shape of their cross section into trapezoidal, triangular and mixed as Figure 3 shows. The mixed shape includes ridges very
likely switching from triangular to trapezoidal shape as their shape is more round than triangular ridges, while not having an
established plateau. The histograms in the bottom row of Figure 3 show how the ice within the ridges of each shape contributes
to the area covered by each ice thickness, and thus to the volume. While most of the ridges stemming from ice of A; =0.5m
and 1.0 m are triangular (46 % and 39 %, respectively), the trapezoidal ridges (22 % and 33 %, respectively) are large in size and
consequently contribute more to the overall deformed ice both in area and volume. Similarly, for simulations with i; = 2.0 m,
about half of the ridges are rather large trapezoidal ridges, with the other half being small and of mixed shape; again, the
trapezoidal ridges dominate the amount of deformed ice. Overall, the frequency of trapezoidal ridges increases with h;.

Figure 4 shows the ice thickness distributions (ITD) calculated from the final deformed ice cover as presented in Figure 2.
The ITD associated with HIDEM is bell curve-shaped, with its peak at ice thickness h, indicating the regime with the most
of the deformed ice. This peak is around h ~ 6h;, indicating a linear relationship between the h with most of the deformed
ice volume and h;. The histograms of Figure 3 indicate that this bump is connected to the ice in trapezoidal ridges, while the
plateau between h; and the start of the bump is influenced by the ice in the triangular ridges.

Figure 4 also presents the final ITD for neXtSIM as well as those calculated by the sea-ice redistribution models with HI80
and LIO7 ridging functions. For both neXtSIM and LIO7, the ITD features the largest amount of deformed ice close to h;, with
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Figure 4. The ice thickness distribution (ITD) after ¢ = 2 h for HIDEM, neXtSIM and the results of the redistribution function utilizing two
different ridging functions, LI07 and HI80 (Section 2.3). The dotted vertical line represents the upper 99" percentile Pog. The ice categories
are equally spaced categories form O to 20 m with a bin width of 0.5 m. The results of neXtSIM and HiDEM show the mean ITD and mean

percentile across all simulations.

a gradual decrease towards thicker ice. This decrease is significantly faster for neXtSIM compared to LI07, with the upper 99*®
percentile for neXtSIM being less than half of the 99" percentile for LI07 (dotted lines in Figure 4). HI8O is, on the other hand,
based on the assumption that the ridges are triangular, that the ice gets uniformly redistributed between the thickness of rafting

and a set maximum ridge thickness (Appendix B). Consequently, the shape of the ITD is that of a flat line. Thus, neXtSIM and
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Figure 5. Development of the 99th percentile is Pyg of the ice thickness h within HIDEM, neXtSIM, LI07 and HI8O for each initial ice

thickness h;.

both redistribution functions, LI07 and HI8O create an ITD differing from that given by HIDEM resulting from both triangular
and trapezoidal ridges.

Both HI80 and LIO7 feature tunable parameters. As described in Section 2.3, we conducted sensitivity simulations within
commonly used ranges of these parameters. For HI80, a lower H* reduces the depth of ridges, and for, LI07 a smaller u
reduces the depth of ridges and results in more smaller ridges. Nevertheless, these tunable parameters do not influence the
general shape of the ITD.

While the shape of the ITDs showed significant differences, the development of the upper 99*" percentile Pyg of the ice
thicknesses within the ITD align reasonably well between the sub-grid parametrizations and HIDEM simulations, as Figure 5
illustrates. The magnitude and development of Pyg for HIDEM is nearly identical to that for HI80 and LIO7 for h; = 0.5 m and
1.0 m. For h; = 2.0 m, Pyg for HIDEM simulated ice field is about 2h; higher than Pyg given by HI80 and LI07. Additionally,
the development of HIDEMs Pyg shows a plateau, resulting from the increase in width of the trapezoidal ridges, which had
an approximately equal depth (Figure 3). Simultaneously, Figure 3 also shows that neXtSIM significantly underestimates the
depth of deformed ice. Thus, the comparison of Pyg demonstrated that including a sub-grid parametrization of ridging benefits
the representation of deformed ice compared to a two-level approach which only includes the mean ice thickness, as shown by
neXtSIM.

10
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Figure 6. Evolution of the distribution of maximum keep depths k.., within HIDEM given as a violin plot for each time step for all three

initial thicknesses h;. Therefore, ridges were identified along five different cross sections along the x-direction of the observation area, if

kmaz > 3hi. The mean of kynaz, kmaa, 15 given as solid line. The upper limi of the keel depths ki;,., as calculated by Hibler (1980) (HIS0),

is given as a dotted constant blue line.

3.2 Distribution of ridged ice n(h)

Here, we introduce a new function describing the distribution of ridged ice n(h), based on the influence of the ridge shape on
the ITD (Figure 3). Conceptually, this function accounts for triangular ridges, similar to Hibler (1980), but extends it to include
trapezoidal ridges. Thus, one input parameter of n(h) is based on the maximum depth of ridges k.. Figure 6 presents the
evolution of the distribution of k,,,4, in HIDEM as well as the mean of k,,,,, given as Emaz Att =2h, ko iS approximately
constant for h; = 0.5m and h; = 2.0m and the distribution of k,,,, seems to only show minor changes for h; = 1.0 m. To
simplify this derivation, we treated the entire simulation time ¢t = 2 h as a single time step, which allowed us to treat Emaz S @
constant.

First, we propose splitting the ITD g(h) = d(h) 4+ u(h) with an ITD for deformed ice d(h) and undeformed u(h), meaning
thermodynamically grown ice. Thus, during redistribution ice will be removed from u(h) and added to d(h) based on the newly
calculated n(h). This split has already proven to be useful to analyze sub-grid processes by Flato and Hibler (1995), as d(h)

offers detailed information on the properties of the ridges within one grid cell.

11
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Figure 7. Sketch illustrating the the derivation of the distribution of ridged ice n(h) including the contribution of the triangular and trape-

zoidal ridges in red and blue shading, respectively. n(h) contains of three parts: Part] is influenced by triangular ridges only and Part III by

trapezoidal ones, while PartII describes the transition between them. All input parameters of n(h) are annotated as well: a¢ri, atra, Emaz

and 0.

To describe the ridged ice n(h), the function is split into three different parts describing different ridge shapes as illustrated
in Figure 7. First, the plateau of PartI, having a value a;,;, describes the contribution of triangular ridges. Part III describes the
trapezoidal ridges using a Gaussian curve with the maximum value a;,.,. PartII describes the transition between the two and

comprises of a linear function decreasing from ay,; to zero, as well as the same Gaussian curve as Part III. Thus,

Qtri, Part I
Qtri (1 + Emf_%;%k) — 1e=h+ Partll
n(h) = ety (1)
Qtraq eXp(_ 2;’;2:1 )a
Atrq exp(— %) Part I1T

where oy, is the standard deviation of k4. Part I is calculated for h between h; < h < kpae — 20. The upper boundary of
PartI also defines the lower boundary of the Gaussian function influencing Parts IT and III. Thus, this boundary is set so that
most of the Gaussian function is included in n(h), as everything above the lower 20y, limit accounts for around 97 % of a
normal distribution. PartII is then calculated between ky,qr — 20 < h < kmax — 0.50, where the upper boundary was chosen
ad hoc so that the transition between PartI and PartIII is smooth. The factors in front of o in Equation 1 are a consequence
of integration between those boundaries. Here, we calculate n(h) first based on the sea-ice area n4(h) and then calculate the
distribution of ridged ice for the volume as ny (h) = n4(h)h as continuum models typically feature g(h) both for the sea-ice

area and volume.
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Figure 8. Results of the distribution of ridged ice n(h) (Equation 1) compared against the HIDEMs ITD after ¢ =2 h, with the deformed ice
d(h) being highlighted by the shading for 3h; < h. n(h) was calculated either with k4. and oy calculated based on HiDEM data (solid

line) or with k... based on Hibler (1979) and o}, being a mean value (dashed line).

To calculate Equation 1, we rely on the ITD describing the distribution of the deformed-ice area d4(h). From d4(h), we
calculate the sum of deformed area A, from ), d(h) as the area under n 4 (h) must be equal to A4. Additionally, we define
that « = Ay /Atra, where « is a tuning parameter, and thus Ay = Ay,.;(1+1/«). Overall, a regulates the relationship between
triangular to trapezoidal ridges, and thus, a higher « results in a more pronounced "bump", signaling more trapezoidal ridges.
Nevertheless, « > 0, as also trapezoidal ridges contribute to the plateau of n(h). Then, as; can be calculated based on Ay.;,

calculated based on the integral over the constant part of 1 4 (h) and the decreasing linear function:
- 1
Ad = Qtri (kmaaz - hznz - 1250k) (1 + ) . ()
o

To calculate a;,q, we calculate Ay, based on the integral of an arbitrary Gaussian function being | fooo exp (—1(z+b)?)dx =

/7 /a . Including v, a4, can be calculated based on ay,.;:

o (27 <I_€max - hznz - 125Jk> (3)

a -
tra . /7271'

Apart from the tuning parameter c, the input parameters of n 4 (h) depend on A4, which is known during the simulation, and

kmas and oy, which could also be derived from ridge observations.
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We used two approaches to estimate Emaz and oy First, we estimate k.o, and o, from HiDEM data. Therefore, we sample
kmaz for each ridge with k,,,,, > 4h; to exclude small and underdeveloped ridges at ¢ = 2 h. The mean and standard deviation
of this dataset corresponds to k4, as shown in Figure 6, and o, respectively. While k.. increases with h; (4.7m, 8.1 m
and 13.4m for h; = 0.5, 1.0 and 2.0 m), the values for oy, are relatively similar to each other (1.2m, 1.5m and 1.4 m for h;
= 0.5, 1.0 and 2.0 m). Second, we calculate k4, based on the upper limit for the HI8O redistribution k;;,,, = 2+/H,h; with
H, = 25, shown as the blue dotted line in Figure 6, and use the mean of o} from HiDEM data. The tuning parameter o was
chosen ad hoc (aw =0.25,0.55 and 0.5 for h; =0.5,1.0 and 2.0 m, respectively). Thus, both versions of the redistribution of
ridged ice n 4 (h) and ny (k) are shown together with g4 (k) and gy (h) yielded by HIDEM in Figure 8.

Overall, the shape of n(h) is consistent with the results from HiDEM. Estimating Epmaz and oy from HiDEM results in a
closer fit than using the HI80 approach. The different phases of n(h) (Equation 1) successfully reproduce the plateau towards
thinner ice as well as the bump towards thicker ice. Estimations of k,,,,, based on HIDEM data only show very small differences
in the location of the peak in g(h) for h; =0.5m and 1.0 m, calculated from the whole observation area. For h; = 2.0 m, ks
is 1.83 m smaller than the location of the peak, as the distribution skews slightly towards smaller k,,,,, indicating that the
median of k,,., could have been the more appropriate value for constructing Equation 1 (Figure 6).

Additionally, calculating Emm based on kj;,,, (HI80) overestimates the location of the peak, and thus the thick ice, for
h; = 0.5m and 1.0 m, highlighting that this calculation method might not be suitable for estimating &, (Figure 8). Contrary
t0 kymax based on HISO, k4. derived from HiDEM seems to follow a linear relationship with h; at ¢ = 2 h. It should be noted
that k;;,,, was derived to estimate the overall upper limit of the distribution and not a mean distribution of maximum keel depths.
Thus, while the derived function to describe ridged ice n(h) captures the ITD from HiDEM, for larger-scale applications, it is

important to select the input variables carefully.

4 Discussion
4.1 Ridge shapes and ITD

Field observations have shown, that the shapes of ridges show large variability with a triangular shapes often assumed for
first-year ridges and a trapezoidal shapes for multi-year ridges (Timco and Burden, 1997; Strub-Klein and Sudom, 2012). We
also observe variety of shapes and dimensions of the ridges yielding from HiDEM simulations, demonstrating the strength of
DEM in explicitly resolving ice failure and ridging processes (Figure 3). Ridges in HIDEM appear as clearly localized with a
significantly increased thickness compared to the surrounding, undeformed ice (Figure 2).

Number of ridges within our 6 km x 6 km domain decreased with increasing h; in our HIDEM simulations (Figure 2).
This observation is intuitive, as the characteristic length, Lo o< h3/4 for a beam or plate on an elastic foundation (Hetenyi,
1946). L is related to the failure length of such a beam or plate under bending; for a given area of ice cover, thin ice is
expected to fail more frequently than thick ice. L¢ is often used to assess the length scale for ice failure (Sanderson, 1988;

Hopkins, 1998; Amundrud et al., 2004). Analogously, field observations analyzed by Uusinoka et al. (2025a) suggest that thin
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ice yields spatially more frequent deformation features than thick ice, whereas the deformation features with thick ice are more
prominent. Both of these observations align with those related to the ridging in HIDEM simulations.

Commonly used ridging functions do not capture the ITD of the deformed ice cover produced by HIDEM (Figure 4). This
discrepancy is due to the ridges of trapezoidal shape, which yield a bump in the ITD around the thickness h representing the
keel depth. Previous two-dimensional DEM simulations on the formation of individual ridges similarly yielded trapezoidal
ridge shapes that had a similar effect on the ITD (Hopkins, 1996, 1998). Our findings, importantly, extend these results by
confirming that trapezoidal ridges have a significant effect on the ITD for a deformed ice cover, which contain multiple ridges.
While the relative number of trapezoidal ridges increases with h;, their influence on the ITD is significant for the thinnest ice
tested here as well. Thus, even with the ice cover thinning due to climate warming and simultaneously the number of ridging
events increasing (Krumpen et al., 2025), ridging schemes should account for various ridge shapes.

ITDs are generally formulated based on observations on the distribution of ridge keels (Melling and Riedel, 1996; Amundrud
et al., 2004; Yu et al., 2004; Metzger et al., 2021), the distribution of sails via surface elevation (Petty et al., 2016), via electro-
magnetic measurements of the whole ice thickness (Haas et al., 2009) or by using a combination of these methods (Haas et al.,
2008). These studies led to ITDs with a long tail representing ridges, which is often described by a negative exponential function
(Amundrud et al., 2004; von Albedyll et al., 2021). This differs from the shape of the ITDs here. All of the aforementioned
observations are conducted over larger areas with more variations in the ice conditions, for example thickness and ice motion,
than the here used observation area. Additionally, they reflect ice deformation that has occurred in multiple stages over longer
periods. Hopkins (1996) suggested that the negative exponential form stems from thickness contributions of multiple ridges
in various stages of development superposed; the negative exponential form may consist of several bumps combined into one
curve. In von Albedyll et al. (2021), an ITD calculated over fast ice contains a bump between 3.0 m and 3.5 m and a bump
around 2.5 m with a plateau leading up to it. Assuming that fast ice has a more uniform thermodynamically-grown thickness,
this observation supports our observation of an ITD containing a bump to describe ridges.

To date, the only link between ridge shapes to negative-exponential tail of the ITD is based on the assumption that an
average ridge has a cusp shape (Amundrud et al., 2004). This average ridge shape has been observed by Metzger et al. (2021)
analyzing underwater keel measurements. They argue, that the cusp shape is a result of shearing. The assumption on such shape

contradicts current understanding of how ridges form as demonstrated by direct field observations and numerical simulations.
4.2 Ridging processes and ITD

The derivation of the proposed distribution of ridged ice n(h) (Equation 1) leaves two main questions to be addressed for its
implementation into a continuum sea-ice model: (1) how do Emaz, 0% and a depend on the deformation history of a grid cell or
can they be assumed constant and (2) what is the process scale to calculate volume of deformed ice V;? Once these questions
are answered, n(h) could replace the ridging function +y(h;, k) in redistribution schemes. Overall, they relate to open questions
regarding the understanding of ridging processes and are explored next.

Current ridging functions, like that of H80, assume a global limit for the ridge depth, k;;,,, and ignore a potential development

of the maximum depth of each ridge k,,,,, during deformation. While we observe variation between the individual ridge depths
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yielded by HiDEM, the mean of the maximum keel depths £, ., reaches a constant value, as the ridges start growing in width
and transfer towards trapezoidal shape (Figures 3 and 6). Additionally, o) shows no significant variation with h; and can
be assumed constant. Thus, we propose using a Emas that increases linearly with h;. Nevertheless, a more sophisticated
implementation of k4, could depend on the available forcing during a deformation event, as proposed by a folding rate of the
ITD proportional to the deformation rate (von Albedyll et al., 2021) and the available ice (Amundrud et al., 2004).

Most observations have focused on finding k;;,, instead of distribution of k4, via Epaz and oj. Thus, using Emaz instead
of kj;,, within our ridging function accounts for the fact that several ridges may not reach k;;,,,, due to either the surrounding
ice thermodynamically having thickened since the ridge building, the keel melting, or all available ice having been incorporated
into the ridge (Amundrud et al., 2004). Based on observations, Amundrud et al. (2004) found a ki;,,, of 204/h; with is equal to
Hibler (1980) with a H* = 100. This limit is significantly higher than the HI80 k;;,, calculated with H* = 25, as used in this
study and in ICEPACK. Further, HI8O k;;,, is a close upper bound to the observed distribution of %, in HIDEM (Figure 6).

Deriving a relationship for o depends on, for example, the number of ridges in a grid cell or the severity of ice deformation.
Our results suggest that a relationship for & must account for the ice thickness, but a could also be connected to the large-scale
ice strength or to the severity of deformations. Values or functions for o could be determined by comparing results from a
sea-ice model utilizing the suggested scheme with observations or by using results from DEM simulations with diverse forcing
scenarios and varying initial ITDs.

The calculation period of the volume of deformed ice V;; needs to have a defined start and end point within the redistribution
scheme. Deformation events, and thus ridging, seem to have a temporal scale of several hours (von Albedyll et al., 2022),
which would indicate calculating V,; over the scale of a deformation event. Instead of using the length of a deformation event
as the period over which V,; accumulates, the period may also be limited by the consolidation time of the formed ridges, as the
initial consolidation occurs over a period varying from hours to days, depending on the initial ice thickness and surrounding
conditions (Maus, 2025). Therefore, for example, the model developed by Salganik et al. (2020) could be used. However, it is
unclear whether ridges grow only during a single deformation event or whether subsequent events continue to grow the same
ridges rather than establish new ones.

The following examples highlight how the implementation of n(h) and its requirements may benefit other areas of sea-ice
dynamics within continuum sea-ice models. First, the split of g(h) into d(h) and u(h) consequently requires a reformulation of
the participation function a(h) (Equation B3 in Appendix B) to only allow undeformed ice to get deformed, a(h) = b(h)u(h).
This reformulation improves the physical meaning of the function, as it accounts for ridges only consisting of broken-off
ice blocks from the surrounding level ice (Strub-Klein and Sudom, 2012; Kulyakhtin and Hgyland, 2014). Second, having a
separate distribution for deformed ice via d(h) allows us to account for macroporosity in ridges, with, for example, either a
mean macroporosity or parameterizations like the one proposed by Maus (2025). Currently, redistribution functions do not
account for macroporosity within ridges, except for the scheme proposed in Roberts et al. (2019). Third, ridge-grounding
schemes could be directly connected to results from redistribution, as Dupont et al. (2022) argued that high fractions of likely
undeformed thin ice within g(h) influenced their calculation of the maximum keel depth and thus the grounding of ridges.

These ridges are important for the representation of land fast ice (e.g. Mahoney et al., 2007).
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With the split of g(h), it is possible to create ice categories suitable for both thermodynamics and redistribution of ice.
Currently used ranges better resolve thinner ice with, for example, the lower bounds of the ice categories for ICEPACK
(original setting) are 0, 0.64, 1.39, 2.47, and 4.57 m (Hunke et al., 2024). These ranges highlight that current implementations
of the ITD focus on the representation of thin ice, as it has a stronger effect on thermodynamics, whereas a significant fraction
of ridged ice falls within a single ice category.

Overall, the spatial comparison of HIDEM and neXtSIM and the comparison of the ITDs yielded by them implies that only
increasing the spatial resolution of continuum models, within the limits of their practical use, is not sufficient to improve the
representation of ridges as localized features within the ice cover. This observation aligns with results from a comparative
study by Hutter et al. (2022). In their case, the limit was related to the tendency of high-resolution continuum simulations to
produce leads rather than ridges. Further limits to the applicability of continuum models in high-resolution modeling are set
by the minimum domain size for observing scale invariance and multifractal behavior of sea ice (Uusinoka et al., 2025a, b).
Thus, representing ridging even in high-resolution continuum models will require suitable sub-grid parametrizations of ridging
as well as the connection of ridging to the large-scale ice strength. To this end, as also demonstrated here, DEM models are a

suitable tool to complement continuum models in detailed investigations on sea-ice deformation.

5 Conclusions

We conducted high-resolution simulations to study how the ridge shape influences the ice thickness distribution (ITD) by using
a three-dimensional discrete element model, HIDEM, which enabled us to simulate ice failure and ridge-formation processes
explicitly. Further, we compared these results to those from neXtSIM, a continuum model representing the ice thickness by the
mean thickness, and to two commonly employed redistribution schemes in sea-ice models using ITD, with the ridging function
based on Hibler (1980) (HI80) and Lipscomb et al. (2007) (LI0O7). From our results and discussions, we can summarize the

following conclusions:

— The ITD from the DEM simulations shows a significantly different shape compared to the ITD from the other three
models, because HIDEM forms trapezoidal-shaped ridges, which the others do not (Figure 4). The trapezoidal-shaped

ridges cause a pronounced bump towards the thicker ice categories (Figure 4).

— Implementing an ITD with a sub-grid parametrization of ridging seems to be beneficial for the representation of thick ice,
as shown by the comparison of ITDs stemming from neXtSIM, using a mean thickness, and the redistribution schemes
(HI80 and LI07) (Figure 5).

— We present an analytical redistribution function that captures the triangular and trapezoidal ridge shapes. The main pa-
rameters in this function are the mean maximum keel depth and its standard deviation, and a tuning parameter governing

the fraction of trapezoidal to triangular ridges (Equation 1 and Figure 8).

While the discrete-element-method simulations in this paper described a fairly simple deformation scenario, they still yield a

deformed ice field with diverse of ridge shapes and sizes. Thus, an interesting next steps would be to study the effects of more
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complex forcing, to investigate ITDs related to shear-ridge formation, or start the simulations with an already deformed and

partially healed ice cover.

Code and data availability. The HIDEM code used here is a beta-version and not yet publicly available, while an older released version
of the code is available at Todd (2018). neXtSIM is available at https://github.com/nansencenter/nextsim, while the exact version used for
these experiments is archived at https://doi.org/10.5281/zenodo.17974261. The implementation of the sea-ice redistribution model and the

analytical function and the simulation results can be requested from Marek Muchow.

Appendix A: Processing of HIDEM data

The standard simulation output of HIDEM contains information on a particle level, which needs to be transformed into gridded
data to be comparable between HIDEM simulations and with neXtSIM. Particle level means, that at every output timestep we
know the location of each individual particle, but, for example, not the extent of a ridge consisting of several particles.

The gridded HiDEM data contains the ice thickness h as well as keel depth and sail height. To create the gridded data, the
simulation domain is divided into a regular grid with the spacing dx depending on the initial ice thickness h;, being the diameter
of each particle, dx = 4h;. The ice thickness within each grid cell is calculated based on the minimum and maximum location
of the centroid of each particle: h = 2,4, + 0.5h; — Zpmin — 0.5h;. Similarly, the keel depth and sail height are calculated, but
with respect to the water level. Here, these calculations result in gridded data with a spatial resolution of 2 m to 8 m.

It is important to note, that the ice thickness calculated in areas with deformation contains the void space, macroporosity,
between ice blocks in the ridges. This characteristic makes HIDEM the only model in this study to consider macroporosity,

compared to neXtSIM and both redistribution models.

Appendix B: Sea-ice redistribution theory

Originally, the sea-ice redistribution was introduced by Thorndike et al. (1975) and then further developed by Lipscomb et al.
(2007) to enhance model stability and improve agreement between modeled and observed ice thickness distributions.
In our case, the redistribution function ¥ only needs to be applicable for convergence. Thus, it can be described by the

ridging mode w,- and the strain rate magnitude |€|:
U =w,(h,q)lé|. (B1)

Similar to von Albedyll et al. (2022), we use the area change A as a proxy for |é| as we know how much area is added per
time step dt to the system (A = 2Lwvdt with L the length of the observation area in y-direction and v the ice velocity) and thus,

needs to ridge to be comparable to the other simulations.
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The ridging mode w,. is a function of the participation function a(h), describing which ice gets ridged per thickness category

h, and the distribution of ridged ice n(h), and can be written as:

w, = M (B2)

N serves as a normalization factor for area conversation. The participation function is thus a function of g(h), the original ITD:

a(h) = b(k)g(h). (B3)

Here, we use the weighing function b(h) introduced by Lipscomb et al. (2007), which is a smooth approximation of b(h)
originally formulated by Thorndike et al. (1975).
eG(h)/a”

T (1ot (B4)

with the empirical parameter a* = 0.05 and the cumulative thickness distribution function G(h). Thus, b(h) allows all ice to
participate in ridging, but favors the thin ice present. We only use one participation function, as the focus of this study lies on
ridging.

Additionally, n(h) depends on a(h) and the ridging function ~y(h;, h)

n(h) = [ a(hi)y(hi,h)dh;, (BS)
/

where h; describes the initial thickness before ridging.
For v(h;,h) we implemented two different functions, which each are based on different redistribution approaches. Based on
the geometrical assumption, that the cross-section of a ridge is roughly triangular, Hibler (1980) (HI80) proposed a uniform

distribution:

sy, 2hi <h <2VH.;

0, otherwise

v(hish) = (B6)
with the empirical thickness H,. Thus, redistribution is only allowed between 2h; (rafting) and a limit depth for ridges k;;.,, =
2+/ H,h;. Later, Lipscomb et al. (2007) (LI07) developed an exponential function of ~y

—(h=hmin)

Yo€ n/hi B h Z hmn
v(hi,h) = ' (B7)

0, otherwise

with -y being a normalization factor and y a tunable parameter influencing the folding scale. The minimum thickness of ice

participating in ridging R yp, is defined as Ry = min(2h;, h; 4 hrage) With hpag being 1 m.
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