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Abstract. Ridges significantly increase the sea-ice thickness compared to the level ice surrounding them. In continuum sea-ice

models, this increase is either represented by an increase in mean ice thickness or by changes in the ice thickness distribution

(ITD). The implementation of ITDs requires a sub-grid parametrization of ridging by using a redistribution scheme. In contrast,

the discrete element method (DEM) enables explicit simulations of ridge formation process, including ice fragmentation into

rubble and its subsequent redistribution to ridges. Here, we use a DEM model to simulate ridging across a sea ice domain5

of size 6km× 6km. The DEM simulations yield deformed ice cover with ridges of varying shapes, namely triangular and

trapezoidal ridges; the trapezoidal ridges notably affect the ITD of the deformed ice cover by creating a bump in the ITD

towards thicker ice. We find that the ITD of the deformed ice field from DEM simulations differs from those from the continuum

model, that uses only mean thickness, and from two commonly used ridging functions within redistribution schemes used as

sub-grid parametrizations. Further, we show how to formulate an analytical redistribution function that captures the effect of10

various ridge shapes and discuss when it could replace existing ridging schemes. Our results demonstrate that an improved

representation of ridging is needed within continuum models to resolve ridges both with their depth and shape within the ITD,

especially in high spatial resolutions. Additionally, we formulate open questions in need of answers to allow implementation

of our new distribution of ridged ice into continuum models, which connect to the ridging process itself.

1 Introduction

Ridges present localized discontinuities in the sea-ice cover by significantly increasing the ice thickness locally. They are

formed due to convergent sea-ice motion creating deformation and failure of the ice. Consequently, ice blocks pile on top of

the ice and under the water, respectively forming the ridge sail and keel, and thus, thickening the ice. Overall, ridging has

a higher influence on the ice volume via the thickness compared to the ice area (Mårtensson et al., 2012). For example, up20

to 36 % of the ice volume was covered by thick ridges during MOSAiC from fall 2019 to late summer 2020 (von Albedyll

et al., 2022). In turn, ridges also influence the sea-ice motion and deformation: The sail and keel influence the atmosphere and
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ocean drag, respectively, and the presence of ridges influences the large-scale ice-strength (Tuhkuri and Lensu, 2002; Martin

et al., 2016; Tsamados et al., 2014; Brenner et al., 2021). Further, Krumpen et al. (2025) observed a rise in the annual number

of ridging events due to an increase in first-year-ice fraction, indicating that ridging may become increasingly frequent and25

important in the future.

Despite their importance, the amount of thick and ridged ice is generally underestimated by conventional continuum sea-ice

models (Johnson et al., 2012). Additionally, Bouchat et al. (2022) highlights that when comparing convergence from several

models to satellite observations, only models running at a much higher resolution than the observed fields (10 km) were

able to reproduce the observed convergence. As ridging requires convergent ice motion, the models may produce less ridges30

than expected. Further, Lipscomb et al. (2007) raised several questions regarding the assumptions of currently used ridging

parametrizations, for example the shape of participation and redistribution function, which still remain open.

The representation of ridges in continuum models becomes even more important when they are adapted for high spatial and

temporal resolutions, for example, for regional case studies, route planning, and operational forecast simulations (Blockley

et al., 2020; Bouchat et al., 2022; Hutter et al., 2022; Williams et al., 2021). Especially for operational forecast simulations, the35

need for an accurate representation of ridges is emphasized, since ridged ice is one of the most common ice conditions where

ships require ice-breaker assistance and where winter navigation accidents occur (Valdez Banda et al., 2015; Liu et al., 2024).

Continuum sea-ice models describe ridging as a sub-grid process. They describe the ice thickness either by using a two-level

approach (Hibler, 1979) that only includes an open-water fraction and a mean ice thickness (e.g., neXtSIM (Ólason et al.,

2022)) or with a multi-category thickness (e.g., CICE (Lipscomb et al., 2007; Hunke et al., 2010)). In the first case, ridging40

increases the mean ice thickness, whereas in the latter one, ridging is described by sea-ice redistribution functions and the

ice thickness distribution (ITD). The redistribution functions include a participation function that governs which part of the

ice deforms and a ridging function that determines to which thickness category the deformed ice belongs. The two common

ridging functions are either based on Hibler (1980), assuming triangular ridges and linear redistribution of ice, or Lipscomb

et al. (2007), assuming an exponential distribution of smaller ridges compared to deeper ridges.45

In order to represent ridging more detailed than is possible in continuum models, we simulate ridging by using a discrete

element method (DEM) model in this study, since it allows for detailed simulations of ridge formation processes (Hopkins,

1994, 1998; Muchow and Polojärvi, 2024). In DEM simulations of ridge formation processes, the intact sea ice is modeled

by using particles connected by beams, which may fail and form ice blocks. Then, the ridging is simulated explicitly, includ-

ing ice rubble formation and ice rubble accumulation. The code we use is the Helsinki Discrete Element Model (HiDEM)50

(Åström, 2006), which has demonstrated its capability to simulate sea-ice dynamics and fragmentation in three dimensions

over kilometer-scale domains at meter-scale resolution (Åström and Polojärvi, 2024; Åström et al., 2024). Three dimensional

modeling is required for realistic simulations including ridging (Muchow and Polojärvi, 2024).

The results presented here give insight into the ridge shapes as well as their influence on the ITD of a deformed ice field.

Our high-resolution DEM simulations yield deformed ice covers with ridges of varying shapes, which we classify as triangular55

and trapezoidal ridges. Once classified, the influence of the trapezoidal ridges on the ITD becomes evident. Notably, the effect

of varying ridge shapes on ITD has not been included into any ice redistribution scheme, even if ridges occur in nature with
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varying shapes (Timco and Burden, 1997; Strub-Klein and Sudom, 2012). Consequently, the ITD stemming from our DEM

simulations is different to ITDs created by commonly used sub-grid parametrizations in continuum models, namely both

ridging functions developed by Hibler (1980) (HI80) and Lipscomb et al. (2007) (LI07). Further, we also demonstrate that the60

ITD yielding from DEM simulations also differ from those generated by continuum sea-ice models, here namely the neXt-

generation Sea Ice Model (neXtSIM), where ice thickness within each grid cell is represented by its mean value only (Ólason

et al., 2022). Thus, both conventional approaches representing ridges within continuum sea-ice models fail to represent ridges

with a significant increase in ice thickness and their shape. These differences imply that only increasing the spatial resolution of

continuum sea-ice models, within the limits of their practical application, is not sufficient to improve their skill in representing65

ridges as localized features within the ice cover. Further, we develop an analytical description of the distribution of ridged ice,

which successfully incorporates the effect of ridge shapes, and discuss when and how the function introduced could be used

in ridging schemes. On a more general level, our work demonstrates the potential of high-resolution sea-ice modeling using

DEM and its complementary role relative to conventional large-scale sea-ice models.

In what follows, Section 2 first describes the general setup of our numerical experiments, followed by a description of70

HiDEM and neXtSIM models used and sea-ice redistribution model implemented to account for sub-grid parameterizations

of ridging. Section 3 presents our results, including a general description of the deformed ice fields yielded by different ap-

proaches. This section further shows how to derive an analytical description for the distribution of ridged ice with a notion on

ridge shapes. Section 4 first discusses the influence of ridge shapes to the ITD as well as the differences in the ITD observed

from HiDEM to field observations and second how ridging processes connect to the ITD. This section also includes open75

questions regarding how to implement the derived distribution of ridged ice in redistribution schemes.

2 Methods

Figure 1 describes the simulation setup with the main parameters summarized by Table 1. The simulations mimicked displacement-

driven bi-axial compression tests, with constant velocities prescribed on the boundaries with constant y. Motion across the

boundaries at x = 0 km and x = 6 km was restricted to prevent ice from drifting out of the domain. The domain size, 6×6 km2,80

was chosen large enough to fit several ridges while keeping the wall clock times for the simulations moderate. In addition, the

chosen domain size was large enough to fit several grid cells of a high-resolution continuum sea-ice model.

All simulations start with a uniform ice thickness, but a non-uniform distribution of ice strength, as described below. The

ice cover is then compressed over a period of two hours leading to average nominal strain of about 25 %. Simulations are

conducted with three different initial ice thicknesses hi = 0.5 m, 1.0m and 2.0 m. This hi range spans from thin ice up to the85

maximum thickness reached through thermodynamic growth (Maykut and Untersteiner, 1971).

2.1 HiDEM

The Helsinki Discrete Element Model (HiDEM) describes the intact sea ice by using spherical particles connected by Euler-

Bernoulli beams (Åström, 2006). The motion of the particles is described by Newton’s laws, with external forces applied to
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Figure 1. Description of the HiDEM simulation setup to also illustrate the overall simulation setup. The 6×6km2 observation area was split

into a 10m×10m grid shown in the closeup to implement the inhomogeneity of the ice with each grid cell having a random beam probability

between 0.4 and 1.0. A constant sea-ice velocity was applied so that level ice drifted into the observation area through the boundaries at y = 0

km and y = 6 km, while ice drift across the boundaries indicated by dashed lines at x = 0 km and x = 6 km was restricted.

them being due to elastic and inelastic contacts, buoyancy, gravity, drag, and friction. As the particles move, the beams deform.90

Upon reaching a predefined failure criterion, the beams fail, leading to ice failure and ice fragments of various sizes. More

information on the version of HiDEM used can be found in Åström et al. (2024).

The simulated ice field was 6×8.2 km2 and had the ice with y < 0 km and y > 6 km constrained to move in the y-direction

with velocities of 0.15 m/s and −0.15 m/s, respectively (Figure 1). Thus, undeformed ice was pushed with constant velocity

into the observation area of 6× 6 km2. We randomly removed beams bonding the particles to mimic the inhomogeneity of95

the ice cover and to create variation between the simulation runs with same hi. This was done by splitting the ice initially

within the observation area into a 10 m× 10 m grid, where each grid cell had its particle pairs linked by beams with a random

probability between 0.4 and 1.0. Outside of the observation area, the beam probability was 0.8.

We conducted three simulations for hi = 2.0 m, two for hi = 1.0 m and one for hi = 0.5 m. The number of repeated sim-

ulations varied because we set the particle diameter equal to the ice thickness, meaning that the simulations with thinner ice100

required more particles than those with thick ice and, thus, came with higher computational cost. (The ice cover in the simu-

lation with hi = 0.5 m had about 200 · 106 particles.) While the locations of the individual ridges showed variability between

the runs with the same hi, the resulting ITDs were practically identical. Nevertheless, the ITDs presented below are averaged

across the simulations with same hi. The output from the simulations was postprocessed into a gridded output with a resolution

of 4hi to describe the ice thickness (see Appendix A).105
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Table 1. Main parameters of the HiDEM and neXtSIM simulations.

General Setup Value Unit

Initial ice thickness hi 0.5, 1.0, 2.0 m

Ice Velocity 0.15 ms−1

Simulation time t 2 h

Observation area 6× 6 km2

neXtSIM

Spatial resolution 100 m

Gridded spatial resolution 50 m

Temporal resolution 30 min

HiDEM

Gridded spatial resolution 4hi m

Temporal resolution 10 min

2.2 neXtSIM

The neXt-generation Sea Ice Model (neXtSIM) was chosen as the continuum model, where the sea-ice cover is described with

a brittle Bingham-Maxwell rheology on a triangular, Lagrangian grid (Ólason et al., 2022). According to the comparison of

several high-resolution models, neXtSIM fulfills the requirements to reproduce realistic linear kinematic features, which are

bands of high deformation and thus, can be related to ridging (Hutter et al., 2022). The sea-ice thickness, and changes due to110

deformation, are represented via a mean thickness. During the simulations, the standard stand-alone variables, as presented in

Ólason et al. (2022), are used and the sea-ice thermodynamics are turned off.

To adapt neXtSIM to the idealized setup, ice gets generated at the boundaries, where the velocity is applied. Thus, throughout

the whole simulation, ice with the initial ice thickness gets added into the simulation. To introduce variability between the

simulations as well as a non-uniform ice strength, the cohesion is varied randomly in space between a maximum value and half115

of that maximum value. To account for variability, neXtSIM simulations are repeated five times.

Compared to the standard setting, the time step and resolution are significantly increased. The main model time step, control-

ling the advection, is 1 s, with 240 sub-cycles used to solve the dynamics yielding in a dynamical time step of 1/240≈ 0.004 s.

The spatial resolution of the simulation was 100 m for the triangular Lagrangian grid, resulting in gridded output with a spatial

resolution of 50 m.120

2.3 Sea-ice redistribution model

To complement the results from neXtSIM, we also use a simple sea-ice redistribution model describing the sub-grid parametriza-

tion of ridging within continuum models utilizing an ice thickness distribution (ITD). Thus, the ITD is given by g(h) separating

5
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the ice within a grid cell in categories based on the ice thickness h and represents the amount of ice area and volume within

each of these categories. Between each time step, the ice gets redistributed based on different redistribution schemes, consisting125

of a participation function and a ridging function.

Our sea-ice redistribution model is based on the implementation of the mechanical redistribution in ICEPACK (Hunke et al.,

2024) and adapted to simulate sea-ice redistribution as a stand-alone model with two different ridging functions commonly

implemented in large-scale sea-ice models. Thus, the ridging function is either based on Hibler (1980) (HI80), assuming a

linear redistribution of ice based on the assumption of triangular ridges, or on Lipscomb et al. (2007) (LI07), assuming an130

exponential distribution of more smaller ridges compared to deeper ridges. Overall, the theory of the redistribution based on

Thorndike et al. (1975) and Lipscomb et al. (2007) and explained in more detail in the Appendix B.

At the start of the simulation, all sea ice is within one ice category describing the initial thickness hi as given in Table 1.

During each time step, we add the theoretical amount of ice area ∆ to the ice thickness distribution g(h) into the category of

hi. After that, we call the redistribution function Ψ. To ridge the whole amount of ∆, we need to apply Ψ several times until135

the sum of A(h) is again 6km×6km, as the ice area within HiDEM and neXtSIM is constant due to confinement. If Ψ is only

applied once, the resulting A(h) is bigger than 6km× 6km as the amount of ice participating in the deformation is calculated

from g(h) by the weighting function b(h) (Appendix B, Equation B4) and the resulting A(h) is also influenced by assumptions

of the ridging functions. Additionally, our implementation assumes the ice concentration to be 100 % instead of calculating

opening/closing rates as well as additional advection. We used regularly spaced ice categories with lower boundaries ranging140

from 0.0 to 20 m with a spacing of 0.5 m, which covers the range of observed sea-ice thickness in our simulations. We used the

redistribution model with a time step of 5 min to calculate g(h) after 2 h.

Both ridging functions, HI80 and LI07, contain tunable parameters. For HI80, the main tunable parameter is the empirical

thickness H∗, which often ranges between 25, as used, for example, in ICEPACK, and 100, as proposed by Hibler (1980).

H∗ directly influences the maximum depth of ridges 2
√

H∗hi, which is the upper limit of the ridging function γ(hi,h). For145

LI07, e-folding scale of γ(hi,h) depends on the tunable parameter µ influencing the depth of ridges as well as the amount of

smaller ridges present. For our initial simulations, H∗ and µ are set according to the standard settings of ICEPACK (Hunke

et al., 2024), H∗ = 25m and µ = 3 m1/2, both representing ice of about the same strength (Lipscomb et al., 2007). Further, we

conduct simulations where we vary H∗ to 50 m and 100 m, to include the value Hibler (1980) proposed, and µ to 4 m1/2 and

6 m1/2, to include similar simulations with LI07.150

3 Results and analysis

3.1 Comparison of model results

Figure 2 illustrates the final deformed ice covers and differing ridge patterns in HiDEM and neXtSIM simulations. The ridges

in HiDEM are mainly perpendicular to the direction of compression, whereas neXtSIM yields a dominant X-shaped ridge

pattern accompanied by smaller ridges, consistent with the Mohr-Coulomb failure criterion implemented within its rheology.155

Nevertheless, thoroughly investigating the difference in spatial distribution between both would need simulations with more

6
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Figure 2. Ice thickness normalized by the initial thickness hi for each hi (0.5 m, 1 m and 2 m) and each model (HiDEM and neXtSIM) at the

end of the simulations (t = 2 h). The domain size is 6×6 km2. The arrows in the bottom left corner indicate the coordinate system, with the

convergent velocity applied in y-direction.

diverse forcing scenarios and, thus, is a task for further studies. Omitting the distribution of ridges, both HiDEM and neXtSIM

contain ridges as localized features embedded in an undeformed ice. The ridges in HiDEM are more strongly localized, while

ridges in neXtSIM appear more smudged over several grid cells. Furthermore, the ridges are significantly shallower in neXtSIM

than in HiDEM. Additionally, the number of ridges yielded by HiDEM increases with decreasing hi.160

To further investigate the ridges within HiDEM, we studied their cross-sectional shape. Therefore, we identified ridges with

a thickness of > 3hi along five transects at y = 1.0,2.0,3.0,4.0 and 5.0 km at the end of the simulation and manually classified

7
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Figure 3. Ridge profiles are presented at the end of HiDEM simulations (t = 2 h) at five different cross-sections along the y-direction of

the observation area for all hi. The ridge profiles were manually classified into trapezoidal, triangular and mixed shape as indicated by the

legend colors. The shape was only defined for ridges of depth > 3hi. The histograms in the bottom row show the contribution of each ridge

type to the distribution of deformed ice per ice thickness categories h. Here, the distribution of deformed ice is given regarding the relative

area coverage of each h. Note, that the ranged of the axis for the ridge profile plots differs for each hi.

the shape of their cross section into trapezoidal, triangular and mixed as Figure 3 shows. The mixed shape includes ridges very

likely switching from triangular to trapezoidal shape as their shape is more round than triangular ridges, while not having an

established plateau. The histograms in the bottom row of Figure 3 show how the ice within the ridges of each shape contributes165

to the area covered by each ice thickness, and thus to the volume. While most of the ridges stemming from ice of hi = 0.5 m

and 1.0 m are triangular (46 % and 39 %, respectively), the trapezoidal ridges (22 % and 33 %, respectively) are large in size and

consequently contribute more to the overall deformed ice both in area and volume. Similarly, for simulations with hi = 2.0 m,

about half of the ridges are rather large trapezoidal ridges, with the other half being small and of mixed shape; again, the

trapezoidal ridges dominate the amount of deformed ice. Overall, the frequency of trapezoidal ridges increases with hi.170

Figure 4 shows the ice thickness distributions (ITD) calculated from the final deformed ice cover as presented in Figure 2.

The ITD associated with HiDEM is bell curve-shaped, with its peak at ice thickness h, indicating the regime with the most

of the deformed ice. This peak is around h≈ 6hi, indicating a linear relationship between the h with most of the deformed

ice volume and hi. The histograms of Figure 3 indicate that this bump is connected to the ice in trapezoidal ridges, while the

plateau between hi and the start of the bump is influenced by the ice in the triangular ridges.175

Figure 4 also presents the final ITD for neXtSIM as well as those calculated by the sea-ice redistribution models with HI80

and LI07 ridging functions. For both neXtSIM and LI07, the ITD features the largest amount of deformed ice close to hi, with
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Figure 4. The ice thickness distribution (ITD) after t = 2h for HiDEM, neXtSIM and the results of the redistribution function utilizing two

different ridging functions, LI07 and HI80 (Section 2.3). The dotted vertical line represents the upper 99th percentile P99. The ice categories

are equally spaced categories form 0 to 20 m with a bin width of 0.5 m. The results of neXtSIM and HiDEM show the mean ITD and mean

percentile across all simulations.

a gradual decrease towards thicker ice. This decrease is significantly faster for neXtSIM compared to LI07, with the upper 99th

percentile for neXtSIM being less than half of the 99th percentile for LI07 (dotted lines in Figure 4). HI80 is, on the other hand,

based on the assumption that the ridges are triangular, that the ice gets uniformly redistributed between the thickness of rafting180

and a set maximum ridge thickness (Appendix B). Consequently, the shape of the ITD is that of a flat line. Thus, neXtSIM and
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Figure 5. Development of the 99th percentile is P99 of the ice thickness h within HiDEM, neXtSIM, LI07 and HI80 for each initial ice

thickness hi.

both redistribution functions, LI07 and HI80 create an ITD differing from that given by HiDEM resulting from both triangular

and trapezoidal ridges.

Both HI80 and LI07 feature tunable parameters. As described in Section 2.3, we conducted sensitivity simulations within

commonly used ranges of these parameters. For HI80, a lower H∗ reduces the depth of ridges, and for, LI07 a smaller µ185

reduces the depth of ridges and results in more smaller ridges. Nevertheless, these tunable parameters do not influence the

general shape of the ITD.

While the shape of the ITDs showed significant differences, the development of the upper 99th percentile P99 of the ice

thicknesses within the ITD align reasonably well between the sub-grid parametrizations and HiDEM simulations, as Figure 5

illustrates. The magnitude and development of P99 for HiDEM is nearly identical to that for HI80 and LI07 for hi = 0.5 m and190

1.0 m. For hi = 2.0 m, P99 for HiDEM simulated ice field is about 2hi higher than P99 given by HI80 and LI07. Additionally,

the development of HiDEMs P99 shows a plateau, resulting from the increase in width of the trapezoidal ridges, which had

an approximately equal depth (Figure 3). Simultaneously, Figure 3 also shows that neXtSIM significantly underestimates the

depth of deformed ice. Thus, the comparison of P99 demonstrated that including a sub-grid parametrization of ridging benefits

the representation of deformed ice compared to a two-level approach which only includes the mean ice thickness, as shown by195

neXtSIM.
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Figure 6. Evolution of the distribution of maximum keep depths kmax within HiDEM given as a violin plot for each time step for all three

initial thicknesses hi. Therefore, ridges were identified along five different cross sections along the x-direction of the observation area, if

kmax ≥ 3hi. The mean of kmax, k̄max, is given as solid line. The upper limi of the keel depths klim, as calculated by Hibler (1980) (HI80),

is given as a dotted constant blue line.

3.2 Distribution of ridged ice n(h)

Here, we introduce a new function describing the distribution of ridged ice n(h), based on the influence of the ridge shape on

the ITD (Figure 3). Conceptually, this function accounts for triangular ridges, similar to Hibler (1980), but extends it to include

trapezoidal ridges. Thus, one input parameter of n(h) is based on the maximum depth of ridges kmax. Figure 6 presents the200

evolution of the distribution of kmax in HiDEM as well as the mean of kmax given as k̄max. At t = 2h, k̄max is approximately

constant for hi = 0.5 m and hi = 2.0 m and the distribution of kmax seems to only show minor changes for hi = 1.0 m. To

simplify this derivation, we treated the entire simulation time t = 2h as a single time step, which allowed us to treat k̄max as a

constant.

First, we propose splitting the ITD g(h) = d(h) + u(h) with an ITD for deformed ice d(h) and undeformed u(h), meaning205

thermodynamically grown ice. Thus, during redistribution ice will be removed from u(h) and added to d(h) based on the newly

calculated n(h). This split has already proven to be useful to analyze sub-grid processes by Flato and Hibler (1995), as d(h)

offers detailed information on the properties of the ridges within one grid cell.
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Figure 7. Sketch illustrating the the derivation of the distribution of ridged ice n(h) including the contribution of the triangular and trape-

zoidal ridges in red and blue shading, respectively. n(h) contains of three parts: Part I is influenced by triangular ridges only and Part III by

trapezoidal ones, while Part II describes the transition between them. All input parameters of n(h) are annotated as well: atri, atra, k̄max

and σk.

To describe the ridged ice n(h), the function is split into three different parts describing different ridge shapes as illustrated

in Figure 7. First, the plateau of Part I, having a value atri, describes the contribution of triangular ridges. Part III describes the210

trapezoidal ridges using a Gaussian curve with the maximum value atra. Part II describes the transition between the two and

comprises of a linear function decreasing from atri to zero, as well as the same Gaussian curve as Part III. Thus,

n(h) =





atri, Part I

atri

(
1 + k̄max−2σk

1.5σk

)
− atri

1.5σk
h+ Part II

atra exp(− (h−k̄max)2

2σ2
k

),

atra exp(− (h−k̄max)2

2σ2
k

), Part III

(1)

where σk is the standard deviation of kmax. Part I is calculated for h between hi ≤ h < k̄max− 2σ. The upper boundary of

Part I also defines the lower boundary of the Gaussian function influencing Parts II and III. Thus, this boundary is set so that215

most of the Gaussian function is included in n(h), as everything above the lower 2σk limit accounts for around 97 % of a

normal distribution. Part II is then calculated between k̄max− 2σ ≤ h < k̄max− 0.5σ, where the upper boundary was chosen

ad hoc so that the transition between Part I and Part III is smooth. The factors in front of σk in Equation 1 are a consequence

of integration between those boundaries. Here, we calculate n(h) first based on the sea-ice area nA(h) and then calculate the

distribution of ridged ice for the volume as nV (h) = nA(h)h as continuum models typically feature g(h) both for the sea-ice220

area and volume.
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Figure 8. Results of the distribution of ridged ice n(h) (Equation 1) compared against the HiDEMs ITD after t =2 h, with the deformed ice

d(h) being highlighted by the shading for 3hi ≤ h. n(h) was calculated either with k̄max and σk calculated based on HiDEM data (solid

line) or with k̄max based on Hibler (1979) and σk being a mean value (dashed line).

To calculate Equation 1, we rely on the ITD describing the distribution of the deformed-ice area dA(h). From dA(h), we

calculate the sum of deformed area Ad from
∑

h d(h) as the area under nA(h) must be equal to Ad. Additionally, we define

that α = Atri/Atra, where α is a tuning parameter, and thus Ad = Atri(1+1/α). Overall, α regulates the relationship between

triangular to trapezoidal ridges, and thus, a higher α results in a more pronounced "bump", signaling more trapezoidal ridges.225

Nevertheless, α > 0, as also trapezoidal ridges contribute to the plateau of n(h). Then, atri can be calculated based on Atri,

calculated based on the integral over the constant part of nA(h) and the decreasing linear function:

Ad = atri

(
k̄max−hini− 1.25σk

)(
1 +

1
α

)
. (2)

To calculate atra, we calculate Atra based on the integral of an arbitrary Gaussian function being
∫∞
−∞ exp(−1(x + b)2)dx =

√
π/a . Including α, atra can be calculated based on atri:230

atra =
atri

α

(
k̄max−hini− 1.25σk

σk

√
2π

)
. (3)

Apart from the tuning parameter α, the input parameters of nA(h) depend on Ad, which is known during the simulation, and

k̄max and σk, which could also be derived from ridge observations.
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We used two approaches to estimate k̄max and σk. First, we estimate k̄max and σk from HiDEM data. Therefore, we sample

kmax for each ridge with kmax ≥ 4hi to exclude small and underdeveloped ridges at t = 2 h. The mean and standard deviation235

of this dataset corresponds to k̄max, as shown in Figure 6, and σk, respectively. While k̄max increases with hi (4.7 m, 8.1 m

and 13.4 m for hi = 0.5, 1.0 and 2.0 m), the values for σk are relatively similar to each other (1.2 m, 1.5 m and 1.4 m for hi

= 0.5, 1.0 and 2.0 m). Second, we calculate k̄max based on the upper limit for the HI80 redistribution klim = 2
√

H∗hi with

H∗ = 25, shown as the blue dotted line in Figure 6, and use the mean of σk from HiDEM data. The tuning parameter α was

chosen ad hoc (α = 0.25,0.55 and 0.5 for hi = 0.5,1.0 and 2.0 m, respectively). Thus, both versions of the redistribution of240

ridged ice nA(h) and nV (h) are shown together with gA(h) and gV (h) yielded by HiDEM in Figure 8.

Overall, the shape of n(h) is consistent with the results from HiDEM. Estimating k̄max and σk from HiDEM results in a

closer fit than using the HI80 approach. The different phases of n(h) (Equation 1) successfully reproduce the plateau towards

thinner ice as well as the bump towards thicker ice. Estimations of k̄max based on HiDEM data only show very small differences

in the location of the peak in g(h) for hi =0.5 m and 1.0 m, calculated from the whole observation area. For hi = 2.0 m, k̄max245

is 1.83 m smaller than the location of the peak, as the distribution skews slightly towards smaller kmax, indicating that the

median of kmax could have been the more appropriate value for constructing Equation 1 (Figure 6).

Additionally, calculating k̄max based on klim (HI80) overestimates the location of the peak, and thus the thick ice, for

hi = 0.5 m and 1.0 m, highlighting that this calculation method might not be suitable for estimating k̄max (Figure 8). Contrary

to kmax based on HI80, k̄max derived from HiDEM seems to follow a linear relationship with hi at t = 2 h. It should be noted250

that klim was derived to estimate the overall upper limit of the distribution and not a mean distribution of maximum keel depths.

Thus, while the derived function to describe ridged ice n(h) captures the ITD from HiDEM, for larger-scale applications, it is

important to select the input variables carefully.

4 Discussion

4.1 Ridge shapes and ITD255

Field observations have shown, that the shapes of ridges show large variability with a triangular shapes often assumed for

first-year ridges and a trapezoidal shapes for multi-year ridges (Timco and Burden, 1997; Strub-Klein and Sudom, 2012). We

also observe variety of shapes and dimensions of the ridges yielding from HiDEM simulations, demonstrating the strength of

DEM in explicitly resolving ice failure and ridging processes (Figure 3). Ridges in HiDEM appear as clearly localized with a

significantly increased thickness compared to the surrounding, undeformed ice (Figure 2).260

Number of ridges within our 6 km× 6 km domain decreased with increasing hi in our HiDEM simulations (Figure 2).

This observation is intuitive, as the characteristic length, LC ∝ h3/4, for a beam or plate on an elastic foundation (Hetenyi,

1946). LC is related to the failure length of such a beam or plate under bending; for a given area of ice cover, thin ice is

expected to fail more frequently than thick ice. LC is often used to assess the length scale for ice failure (Sanderson, 1988;

Hopkins, 1998; Amundrud et al., 2004). Analogously, field observations analyzed by Uusinoka et al. (2025a) suggest that thin265
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ice yields spatially more frequent deformation features than thick ice, whereas the deformation features with thick ice are more

prominent. Both of these observations align with those related to the ridging in HiDEM simulations.

Commonly used ridging functions do not capture the ITD of the deformed ice cover produced by HiDEM (Figure 4). This

discrepancy is due to the ridges of trapezoidal shape, which yield a bump in the ITD around the thickness h representing the

keel depth. Previous two-dimensional DEM simulations on the formation of individual ridges similarly yielded trapezoidal270

ridge shapes that had a similar effect on the ITD (Hopkins, 1996, 1998). Our findings, importantly, extend these results by

confirming that trapezoidal ridges have a significant effect on the ITD for a deformed ice cover, which contain multiple ridges.

While the relative number of trapezoidal ridges increases with hi, their influence on the ITD is significant for the thinnest ice

tested here as well. Thus, even with the ice cover thinning due to climate warming and simultaneously the number of ridging

events increasing (Krumpen et al., 2025), ridging schemes should account for various ridge shapes.275

ITDs are generally formulated based on observations on the distribution of ridge keels (Melling and Riedel, 1996; Amundrud

et al., 2004; Yu et al., 2004; Metzger et al., 2021), the distribution of sails via surface elevation (Petty et al., 2016), via electro-

magnetic measurements of the whole ice thickness (Haas et al., 2009) or by using a combination of these methods (Haas et al.,

2008). These studies led to ITDs with a long tail representing ridges, which is often described by a negative exponential function

(Amundrud et al., 2004; von Albedyll et al., 2021). This differs from the shape of the ITDs here. All of the aforementioned280

observations are conducted over larger areas with more variations in the ice conditions, for example thickness and ice motion,

than the here used observation area. Additionally, they reflect ice deformation that has occurred in multiple stages over longer

periods. Hopkins (1996) suggested that the negative exponential form stems from thickness contributions of multiple ridges

in various stages of development superposed; the negative exponential form may consist of several bumps combined into one

curve. In von Albedyll et al. (2021), an ITD calculated over fast ice contains a bump between 3.0 m and 3.5 m and a bump285

around 2.5 m with a plateau leading up to it. Assuming that fast ice has a more uniform thermodynamically-grown thickness,

this observation supports our observation of an ITD containing a bump to describe ridges.

To date, the only link between ridge shapes to negative-exponential tail of the ITD is based on the assumption that an

average ridge has a cusp shape (Amundrud et al., 2004). This average ridge shape has been observed by Metzger et al. (2021)

analyzing underwater keel measurements. They argue, that the cusp shape is a result of shearing. The assumption on such shape290

contradicts current understanding of how ridges form as demonstrated by direct field observations and numerical simulations.

4.2 Ridging processes and ITD

The derivation of the proposed distribution of ridged ice n(h) (Equation 1) leaves two main questions to be addressed for its

implementation into a continuum sea-ice model: (1) how do k̄max, σk and α depend on the deformation history of a grid cell or

can they be assumed constant and (2) what is the process scale to calculate volume of deformed ice Vd? Once these questions295

are answered, n(h) could replace the ridging function γ(hi,h) in redistribution schemes. Overall, they relate to open questions

regarding the understanding of ridging processes and are explored next.

Current ridging functions, like that of H80, assume a global limit for the ridge depth, klim, and ignore a potential development

of the maximum depth of each ridge kmax during deformation. While we observe variation between the individual ridge depths
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yielded by HiDEM, the mean of the maximum keel depths k̄max reaches a constant value, as the ridges start growing in width300

and transfer towards trapezoidal shape (Figures 3 and 6). Additionally, σk shows no significant variation with hi and can

be assumed constant. Thus, we propose using a k̄max that increases linearly with hi. Nevertheless, a more sophisticated

implementation of k̄max could depend on the available forcing during a deformation event, as proposed by a folding rate of the

ITD proportional to the deformation rate (von Albedyll et al., 2021) and the available ice (Amundrud et al., 2004).

Most observations have focused on finding klim instead of distribution of kmax via k̄max and σk. Thus, using k̄max instead305

of klim within our ridging function accounts for the fact that several ridges may not reach klim, due to either the surrounding

ice thermodynamically having thickened since the ridge building, the keel melting, or all available ice having been incorporated

into the ridge (Amundrud et al., 2004). Based on observations, Amundrud et al. (2004) found a klim of 20
√

hi with is equal to

Hibler (1980) with a H∗ = 100. This limit is significantly higher than the HI80 klim calculated with H∗ = 25, as used in this

study and in ICEPACK. Further, HI80 klim is a close upper bound to the observed distribution of kmax in HiDEM (Figure 6).310

Deriving a relationship for α depends on, for example, the number of ridges in a grid cell or the severity of ice deformation.

Our results suggest that a relationship for α must account for the ice thickness, but α could also be connected to the large-scale

ice strength or to the severity of deformations. Values or functions for α could be determined by comparing results from a

sea-ice model utilizing the suggested scheme with observations or by using results from DEM simulations with diverse forcing

scenarios and varying initial ITDs.315

The calculation period of the volume of deformed ice Vd needs to have a defined start and end point within the redistribution

scheme. Deformation events, and thus ridging, seem to have a temporal scale of several hours (von Albedyll et al., 2022),

which would indicate calculating Vd over the scale of a deformation event. Instead of using the length of a deformation event

as the period over which Vd accumulates, the period may also be limited by the consolidation time of the formed ridges, as the

initial consolidation occurs over a period varying from hours to days, depending on the initial ice thickness and surrounding320

conditions (Maus, 2025). Therefore, for example, the model developed by Salganik et al. (2020) could be used. However, it is

unclear whether ridges grow only during a single deformation event or whether subsequent events continue to grow the same

ridges rather than establish new ones.

The following examples highlight how the implementation of n(h) and its requirements may benefit other areas of sea-ice

dynamics within continuum sea-ice models. First, the split of g(h) into d(h) and u(h) consequently requires a reformulation of325

the participation function a(h) (Equation B3 in Appendix B) to only allow undeformed ice to get deformed, a(h) = b(h)u(h).

This reformulation improves the physical meaning of the function, as it accounts for ridges only consisting of broken-off

ice blocks from the surrounding level ice (Strub-Klein and Sudom, 2012; Kulyakhtin and Høyland, 2014). Second, having a

separate distribution for deformed ice via d(h) allows us to account for macroporosity in ridges, with, for example, either a

mean macroporosity or parameterizations like the one proposed by Maus (2025). Currently, redistribution functions do not330

account for macroporosity within ridges, except for the scheme proposed in Roberts et al. (2019). Third, ridge-grounding

schemes could be directly connected to results from redistribution, as Dupont et al. (2022) argued that high fractions of likely

undeformed thin ice within g(h) influenced their calculation of the maximum keel depth and thus the grounding of ridges.

These ridges are important for the representation of land fast ice (e.g. Mahoney et al., 2007).
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With the split of g(h), it is possible to create ice categories suitable for both thermodynamics and redistribution of ice.335

Currently used ranges better resolve thinner ice with, for example, the lower bounds of the ice categories for ICEPACK

(original setting) are 0, 0.64, 1.39, 2.47, and 4.57 m (Hunke et al., 2024). These ranges highlight that current implementations

of the ITD focus on the representation of thin ice, as it has a stronger effect on thermodynamics, whereas a significant fraction

of ridged ice falls within a single ice category.

Overall, the spatial comparison of HiDEM and neXtSIM and the comparison of the ITDs yielded by them implies that only340

increasing the spatial resolution of continuum models, within the limits of their practical use, is not sufficient to improve the

representation of ridges as localized features within the ice cover. This observation aligns with results from a comparative

study by Hutter et al. (2022). In their case, the limit was related to the tendency of high-resolution continuum simulations to

produce leads rather than ridges. Further limits to the applicability of continuum models in high-resolution modeling are set

by the minimum domain size for observing scale invariance and multifractal behavior of sea ice (Uusinoka et al., 2025a, b).345

Thus, representing ridging even in high-resolution continuum models will require suitable sub-grid parametrizations of ridging

as well as the connection of ridging to the large-scale ice strength. To this end, as also demonstrated here, DEM models are a

suitable tool to complement continuum models in detailed investigations on sea-ice deformation.

5 Conclusions

We conducted high-resolution simulations to study how the ridge shape influences the ice thickness distribution (ITD) by using350

a three-dimensional discrete element model, HiDEM, which enabled us to simulate ice failure and ridge-formation processes

explicitly. Further, we compared these results to those from neXtSIM, a continuum model representing the ice thickness by the

mean thickness, and to two commonly employed redistribution schemes in sea-ice models using ITD, with the ridging function

based on Hibler (1980) (HI80) and Lipscomb et al. (2007) (LI07). From our results and discussions, we can summarize the

following conclusions:355

– The ITD from the DEM simulations shows a significantly different shape compared to the ITD from the other three

models, because HiDEM forms trapezoidal-shaped ridges, which the others do not (Figure 4). The trapezoidal-shaped

ridges cause a pronounced bump towards the thicker ice categories (Figure 4).

– Implementing an ITD with a sub-grid parametrization of ridging seems to be beneficial for the representation of thick ice,

as shown by the comparison of ITDs stemming from neXtSIM, using a mean thickness, and the redistribution schemes360

(HI80 and LI07) (Figure 5).

– We present an analytical redistribution function that captures the triangular and trapezoidal ridge shapes. The main pa-

rameters in this function are the mean maximum keel depth and its standard deviation, and a tuning parameter governing

the fraction of trapezoidal to triangular ridges (Equation 1 and Figure 8).

While the discrete-element-method simulations in this paper described a fairly simple deformation scenario, they still yield a365

deformed ice field with diverse of ridge shapes and sizes. Thus, an interesting next steps would be to study the effects of more
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complex forcing, to investigate ITDs related to shear-ridge formation, or start the simulations with an already deformed and

partially healed ice cover.

Code and data availability. The HiDEM code used here is a beta-version and not yet publicly available, while an older released version

of the code is available at Todd (2018). neXtSIM is available at https://github.com/nansencenter/nextsim, while the exact version used for370

these experiments is archived at https://doi.org/10.5281/zenodo.17974261. The implementation of the sea-ice redistribution model and the

analytical function and the simulation results can be requested from Marek Muchow.

Appendix A: Processing of HiDEM data

The standard simulation output of HiDEM contains information on a particle level, which needs to be transformed into gridded

data to be comparable between HiDEM simulations and with neXtSIM. Particle level means, that at every output timestep we375

know the location of each individual particle, but, for example, not the extent of a ridge consisting of several particles.

The gridded HiDEM data contains the ice thickness h as well as keel depth and sail height. To create the gridded data, the

simulation domain is divided into a regular grid with the spacing dx depending on the initial ice thickness hi, being the diameter

of each particle, dx = 4hi. The ice thickness within each grid cell is calculated based on the minimum and maximum location

of the centroid of each particle: h = zmax + 0.5hi− zmin− 0.5hi. Similarly, the keel depth and sail height are calculated, but380

with respect to the water level. Here, these calculations result in gridded data with a spatial resolution of 2 m to 8 m.

It is important to note, that the ice thickness calculated in areas with deformation contains the void space, macroporosity,

between ice blocks in the ridges. This characteristic makes HiDEM the only model in this study to consider macroporosity,

compared to neXtSIM and both redistribution models.

Appendix B: Sea-ice redistribution theory385

Originally, the sea-ice redistribution was introduced by Thorndike et al. (1975) and then further developed by Lipscomb et al.

(2007) to enhance model stability and improve agreement between modeled and observed ice thickness distributions.

In our case, the redistribution function Ψ only needs to be applicable for convergence. Thus, it can be described by the

ridging mode wr and the strain rate magnitude |ϵ̇|:

Ψ = wr(h,g)|ϵ̇|. (B1)

Similar to von Albedyll et al. (2022), we use the area change ∆ as a proxy for |ϵ̇| as we know how much area is added per390

time step dt to the system (∆ = 2Lvdt with L the length of the observation area in y-direction and v the ice velocity) and thus,

needs to ridge to be comparable to the other simulations.
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The ridging mode wr is a function of the participation function a(h), describing which ice gets ridged per thickness category

h, and the distribution of ridged ice n(h), and can be written as:

wr =
−a(h) +n(h)

N
(B2)

N serves as a normalization factor for area conversation. The participation function is thus a function of g(h), the original ITD:395

a(h) = b(h)g(h). (B3)

Here, we use the weighing function b(h) introduced by Lipscomb et al. (2007), which is a smooth approximation of b(h)

originally formulated by Thorndike et al. (1975).

b(h) =
eG(h)/a∗

a∗ · (1− e−1/a∗)
(B4)

with the empirical parameter a∗ = 0.05 and the cumulative thickness distribution function G(h). Thus, b(h) allows all ice to

participate in ridging, but favors the thin ice present. We only use one participation function, as the focus of this study lies on400

ridging.

Additionally, n(h) depends on a(h) and the ridging function γ(hi,h)

n(h) =

∞∫

0

a(hi)γ(hi,h)dhi, (B5)

where hi describes the initial thickness before ridging.

For γ(hi,h) we implemented two different functions, which each are based on different redistribution approaches. Based on

the geometrical assumption, that the cross-section of a ridge is roughly triangular, Hibler (1980) (HI80) proposed a uniform405

distribution:

γ(hi,h) =





1
2(H∗−hi)

, 2hi ≤ h≤ 2
√

H∗hi

0, otherwise
(B6)

with the empirical thickness H∗. Thus, redistribution is only allowed between 2hi (rafting) and a limit depth for ridges klim =

2
√

H∗hi. Later, Lipscomb et al. (2007) (LI07) developed an exponential function of γ

γ(hi,h) =





γ0e
−(h−hmin)

µ
√

hi , h≥ hmin

0, otherwise
(B7)

with γ0 being a normalization factor and µ a tunable parameter influencing the folding scale. The minimum thickness of ice

participating in ridging hmin is defined as hmin = min(2hi,hi + hraft) with hraft being 1 m.410
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