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Abstract.

Phytoplankton community composition is a key determinant of ocean biogeochemical cycles, yet its observation from
autonomous platforms remains challenging. In this study, we assessed the potential of in situ multispectral excitation
fluorescence (MXF) to discriminate phytoplankton assemblages in the Northwestern Mediterranean Sea, with a view toward
applications on Biogeochemical-Argo (BGC-Argo) profiling floats. Laboratory measurements on ten phytoplankton strains

confirmed that MXF ratios at 440, 470, and 532 nm provide taxon-specific signatures, especially for picocyanobacteria and
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green algae. Field observations of phytoplankton pigments were clustered into four ecologically distinct phytoplankton
communities along the seasonal cycle. A machine learning model was then trained to classify these clusters using MXF
and additional bio-optical indices. Results show that existing BGC-Argo configurations (single-wavelength fluorescence,
particulate backscattering and beam attenuation coefficients) reliably distinguish broad community structures such as pico-
versus microphytoplankton dominance, but resolving finer pigment-based differences requires the added spectral
information of MXF. The different excitation channels contributed unequally: 440 and 470 nm provided robust pigment
sensitivity across communities, while 532 nm was particularly informative for detecting phycoerythrin- and chlorophyll b—
rich taxa. Overall, combining MXF with bio-optical proxies improved classification performance by integrating pigment-
specific and size-structure information, demonstrating the potential of MXF to enhance autonomous monitoring of

phytoplankton community dynamics and their role in ocean biogeochemical cycles.

1 Introduction

Phytoplankton play a key role in global biogeochemical cycles, particularly in the carbon cycle. They fix dissolved inorganic
carbon through photosynthesis and transfer a portion of it to higher trophic levels, initiating the biological carbon pump. This
mechanism is pivotal in regulating the ocean's carbon storage. However, primary production, i.e., the rate at which
phytoplankton produce organic carbon, varies significantly across different time and space scales. This variation is attributed
to environmental changes that induce changes in phytoplankton community structure and biomass (Rousseau and Gregg,
2014). Therefore, in the current context of climate change, monitoring phytoplankton dynamics on a global scale is crucial.
The emergence of new observation platforms, such as BioGeoChemical-Argo (BGC-Argo) profiling floats equipped with
miniaturized bio-optical sensors, offers the possibility to collect continuous vertical profiles of optical measurements that
serve as proxies of biogeochemical variables (Biogeochemical-Argo Planning Group, 2016; Claustre et al. 2020).
Fluorescence is a widely used proxy of chlorophyll-a (Chla) concentration, a ubiquitous pigment in phytoplankton
organisms, which is in turn used as an indicator of phytoplankton biomass. Equipped with (single channel) fluorometers,
autonomous platforms thus allow the observation of phytoplankton biomass variability across a wide range of spatial and
temporal scales (e.g. Boss et al., 2008; Barbieux et al., 2019; Cornec et al., 2021; Bock et al., 2022).

Information on phytoplankton biomass only is however insufficient to understand the links between phytoplankton and the
carbon cycle. Indeed, the composition of phytoplankton communities is known to be a critical determinant of the carbon
cycle since several key processes largely vary between phytoplankton size classes or phylogenetic groups, such as
CO: fixation through photosynthesis (Cermefio et al., 2005; Uitz et al., 2008), trophic interactions (Cushing, 1989; Finkel,
2007), elemental cycling (Morel 2008, Litchman et al., 2015), or carbon transfer to the deep ocean (Buesseler et al., 1998;
Guidi et al., 2009; Henson et al., 2012; Bonnet et al., 2023).

However, the composition of phytoplankton communities cannot be measured directly from the sensors currently

implemented on BGC-Argo floats. Only a few methods have been proposed so far to overcome this challenge and go beyond
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the mere estimation of Chla biomass from bio-optical measurements of BGC-Argo floats. Specifically, Sauzéde et al. (2015)
developed a neural network algorithm using the vertical shape of the in-situ fluorescence profile as input to retrieve the
relative contribution to the Chla of the three phytoplankton size classes (pico-, nano- and microphytoplankton). Cetini¢ et al.
(2015) proposed a simple community index based on the ratio of the fluorescence signal to the particulate backscattering
coefficient. Similarly, Terrats et al. (2020) used this ratio to detect coccolithophore blooms. Finally, Rembauville et al.
(2017) developed a regional approach to estimate the stock of particulate organic carbon (POC) of bacteria and three
phytoplankton size classes. This approach has been developed for applications to BGC-Argo floats that measure not only the
fluorescence and particulate backscattering coefficient, but also the beam attenuation coefficient. Yet, while those methods
provide useful information about phytoplankton community composition, they mostly rely on regional empirical
relationships between phytoplankton community composition and bio-optical indices.

Multispectral excitation fluorescence (MXF) is an alternative approach to retrieve information on the relative pigment
composition of the phytoplankton assemblage, from which major taxa can be discriminated. MXF consists in measuring in-
situ fluorescence signals in response to excitation at different wavelengths, corresponding to the absorption peaks of
different accessory pigments used as biomarkers of specific taxa in the phytoplankton community (e.g. Yentsch and Phinney,
1985; Bricaud et al., 2004; Brewin et al., 2014). A combination of three wavebands centred around 440, 470 and 532 nm was
previously investigated in freshwater environments (Proctor and Roesler, 2010) and in the Arabian Sea (Thibodeau et al.,
2014), providing promising results and paving the way for use in open ocean waters. The present study aims at extending the
approach of Proctor and Roesler (2010) and assessing the potential of in-situ MXF as a proxy of phytoplankton taxonomic
composition in view of future applications to BGC-Argo floats.

Although standard BGC-Argo floats are all equipped with a single-channel fluorometer (with excitation at 470 nm) and a
backscattering sensor (e.g. Bittig et al., 2019), part of the BGC-Argo fleet is also instrumented with additional sensors that
may provide useful information on phytoplankton composition indicators, such as a beam transmissometer (Rembauville et
al. 2017) or a dual-channel fluorometer with excitation at 440 and 470 nm
(see https://vocab.nerc.ac.uk/collection/R27/current/). In this context, the present study aims to evaluate the potential of bio-
optical measurements from the sensors currently implemented on BGC-Argo profiling floats, either alone or in combination
with MXF, for retrieving information on phytoplankton community composition. Hence, we designed a predictive machine
learning model to assess the ability of MXF combined with other bio-optical observations to infer taxonomic information.
For this purpose, we combined laboratory experiments and fieldwork conducted in the Northwestern (NW) Mediterranean
Sea. The NW Mediterranean Sea provides a good case study because its pronounced seasonal phytoplankton biomass cycle
(e.g. D’Ortenzio et al., 2005; Lavigne et al., 2015) and ecological succession (Vidussi et al. 2001; Marty et al. 2002) are
comparable to those observed in the temperate regions of the open ocean.

For the laboratory work, we selected ten phytoplankton strains representative of the various taxa observed along the seasonal

succession of the NW Mediterranean Sea. We measured the MXF response of each strain under controlled conditions,
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and measured the variability among taxa and strains. This allowed us to characterize the MXF sensor and validate the
analysis of the field data.

During our fieldwork, we collected concomitant pigment concentrations and bio-optical parameters using a sensor
package comprising a MXF sensor, a single-channel fluorometer, a backscatterometer and a transmissometer over an annual
cycle in the NW Mediterranean Sea. This in-situ dataset was then used to develop and test a phytoplankton community
composition discrimination model. Ultimately, we provide recommendations for the use of MXF, alone or in combination
with other bio-optical indicators, to infer the taxonomic composition of phytoplankton communities from BGC-Argo
profiling float observations.

2. Material & methods
2.1. Laboratory work

2.1.1. Phytoplankton strains and culture conditions

For laboratory experiments, we selected ten phytoplankton strains provided by the Roscoff Culture Collection (RCC;
https://roscoff-culture-collection.org/). These strains are representative of the taxonomic diversity of the main eukaryotic and
prokaryotic phytoplankton organisms encountered in open-ocean waters, and particularly in the NW Mediterranean Sea. The
selected strains include three diatom species, one pelagophyte, one dinoflagellate and five photosynthetic prokaryotes
(three Synechococcus and two Prochlorococcus strains; Table 1).

All strains were grown at a constant temperature of 21°C, under 50 umol photons m2 s continuous white light provided by
a white-blue-green LED system (Alpheus, France), and in either K+Si (Keller et al., 1987) or PCR-S11 culture medium
(Rippka et al., 2000) for eukaryotes and prokaryotes, respectively. As fluorescence is significantly influenced by the
physiology of phytoplankton cells, we used cultures in stable physiological status as assessed by a high PSII quantum yield
(FW/Fm) using a Phyto-PAM-I1I fluorometer (Walz, Effeltrich, Germany). The F./Fm parameter was calculated as (Fm—
Fo)/Fm (Pittera et al., 2014), where Fo is the dark-adapted basal fluorescence, Fu is the maximal fluorescence associated with
the closing of photosynthetic reaction centres, and Fyis the variable fluorescence. Fm was measured after exposure to
saturating light pulses and addition of 100 uM of the photosystem II inhibitor 3’-(3,4-dichlorophenyl)-1',1’-dimethylurea
(DCMU; Parkhill et al., 2001). The F./Fm parameter was measured concomitantly to cell counts made using a
Guava EasyCyte flow cytometer (Luminex Corporation, USA) all over the growth of each phytoplankton culture (Marie et

al., 2001). The MXF protocol (see Section 2.1.2) was applied to each culture in the middle to late exponential growth phase,
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just before the drop of the Fu/Fm index. The MXF protocol was repeated three times on distinct replicate culture vessels for

each strain (biological triplicates).

Table 1: Name, taxonomy, pigment composition as detected by HPLC pigment analysis, and size class of the ten
phytoplankton strains used for the laboratory experiments. Pico stands for picophytoplankton (0.2-2 pm), Nano for
nanophytoplankton (2-20 um) and Micro for microphytoplankton (20-200 pm); HL stands for high-light adapted; LL stands
for low-light adapted. The pigments measured are Chlorophyll a (Chla), Fucoxanthin (Fuco), Diadinoxanthin (Diad),
Diatoxanthin (Diat), 19’-HF (19'-Hexanoyloxyfucoxanthin), 19°-BF (19'-Butanoyloxyfucoxanthin), Peridinin (Peri),
Zeaxanthin (Zea), Divinyl-chlorophyll a and b (DV-Chla, DV-Chlib), Chlorophyll c1 and ¢2 or ¢3 (Chlcl + c2, Chic3).

Species name Class RCC  strain|Other names |Main pigments [Size class
number
Conticribra (Thalassiosira) weissflogii [Mediophyceae RCC76 CCMP1336 Fuco, Chlcl +Micro
(diatom) c2, Diad, Diat
Chaetoceros diadema Mediophyceae RCC1717 RA080513-06 ([Fuco, Diad, Chlcl|Micro
(diatom) + c2
Pelagomonas calceolata Pelagophyceae RCC100 CCMP1214 Chlc3, Chicl + c2,Nano
19°-BF,
Fuco, Diad, Diat
Scrippsiella sp. Dinophyceae RCC3006 VFAC24-3 Chlcl + c2/Nano
Peri, Diad
Minidiscus sp. Mediophyceae RCC4213 MACUMBA- [Chlcl + c2,|Nano
(diatom) SC18 Fuco, Diad, Diat
Prochlorococcus marinus (LL) Cyanophyceae RCC156 SS120-04/95 Zea, DV-Chlb, Pico
DV-Chla
Prochlorococcus marinus (HL) Cyanophyceae - PCC 9511 Zea, DV-Chlb, Pico
DV-Chla
Synechococcus sp. Cyanophyceae RCC2319 MINOS11 Zea Pico
Synechococcus sp. Cyanophyceae RCC2374 A15-62 Zea Pico
Synechococcus sp. Cyanophyceae RCC2379 BOUM118 Zea Pico
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2.1.2. Multispectral fluorescence measurements

All MXF measurements were performed using an ECO 3X1M fluorometer (Sea-Bird electronics, USA), with three
excitation wavebands centred onto 440, 470 and 532 nm, and emission onto 695 nm, with a 10-nm bandwidth.
To determine the fluorescence to Chla slope factor (here expressed in fluorescence per Chla unit), the MXF measurements
were collected for each culture over a 5-point dilution series ranging from 0.1 to 10 mg Chlam=. Each culture was dark
acclimated for 2 h before dilution and MXF measurements. The MXF measurements were performed immediately after
dilution to avoid any dilution-induced physiological stress. The ECO 3X1M sensor outputs were recorded with
the TeraTerm® software. Each culture was diluted in a 1L glass beaker that was then placed under constant slow stirring.
The multispectral fluorometer was placed at the centre of the beaker and the optical window was immersed 5 mm below the
surface. Blank measurements were performed with culture media and were then subtracted from the culture measurements to
remove any possible fluorescence signal from colour dissolved organic matter. Blank values were within a few counts of the
dark reading, indicating that the measurements were not subject to optical interferences from the beaker edge or benchtop
scattering. For each culture triplicate, on each dilution, we measured the fluorescence response during three series of one
minute of continuous acquisition at 1 Hz, each separated by two minutes of darkness. The signal did not decrease

significantly during acquisition, indicating that there was no quenching during the protocol application.

2.1.3. Laboratory data processing

For each of the ten selected phytoplankton strains grown in culture, the MXF measurements were processed as follows. First,
for each dilution series, a blank value was recorded by measuring the average response of the culture medium alone and was
then subtracted from the raw sensor output acquired for the culture as described above. The MXF measurements collected
over the three consecutive acquisition periods were averaged to obtain a single fluorescence value, expressed in digital
counts (DC). Finally, the dilution series was used to define a Chla-specific calibration value, expressed in units of DC (mg
Chla m™)"', for each of the three excitation wavelengths and each of the ten selected strains. This calibration
value represents the coefficient of a linear regression performed between the fluorescence response at a given wavelength
expressed in DC and the Chla concentration in mg m for the entire dilution range and for each replicate of a given
phytoplankton strain. For the sake of simplicity, the raw fluorescence signal, in DC, at an excitation wavelength A, will be
noted as F,. (i.e., Faao, Fa70, and Fss, for the excitation wavelengths 440 nm, 470 nm, and 532 nm, respectively) and the Chla-

specific calibration value will be noted as F*, (i.e., F*140, F*470, and F*s32).

2.2. Field measurements of bio-optical and biogeochemical variables
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2.2.1. Sampling strategies

Concomitant phytoplankton pigment determinations and bio-optical measurements were performed at sea every month, from
December 2020 to October 2021 at the BOUSSOLE station (Buoy for the acquisition of long-term optical time series), a
long-term monitoring site located at 7°54'E, 43°22'N in the Ligurian (NW Mediterranean) Sea (Antoine et al., 2008). On
each monthly cruise (GOLBOL Melek, VELLUCCI Vincenzo, ANTOINE David (2000)
BOUSSOLE, https://doi.org/10.18142/1), a CTD-rosette equipped with an optical sensor package was used to perform casts
from the surface down to 400 m depth. The optical package included an MXF sensor (the same ECO 3X1M as used for the
laboratory experiments), an ECO FLBB sensor and a C-Rover beam transmissometer (both Sea-Bird Scientific). The ECO
FLBB measures the Chla fluorescence at one excitation (470 nm) and one emission (695 nm) wavelengths, as well as the
particulate backscattering coefficient at 700 nm (bpp, See section 2.2.2). We note that among the three excitation channels of
the ECO 3X1M (440, 470, and 532 nm), the first two (440 and 470 nm) are shared with dual-channel fluorometers (Sea-Bird
Scientific ECO FLBBFL, RBR Tridente) now implemented on some BGC-Argo floats. This correspondence allows us to
also test the potential of dual-channel fluorometers for inferring phytoplankton composition indicators in our analysis. The
C-Rover transmissometer measures the light beam transmitted between the emitter and receptor (at 650 nm and over an
optical path length of 25 cm), allowing the calculation of the attenuation coefficient. From this, the particulate beam
attenuation coefficient (cp) is calculated by removing the attenuation of pure seawater. Both sensors have already been
mounted on several BGC-Argo floats for different biogeochemical applications (e.g. Mignot et al., 2014; Rembauville et al.,
2017; Barbieux et al., 2022). Concomitantly, seawater was sampled from the Niskin bottles attached to the CTD-rosette at

ten discrete depths for pigment identification and quantification by High-Performance Liquid Chromatography (HPLC).

2.2.2 In-situ data processing

The factory-determined dark value of the ECO FLBB sensor was validated in the laboratory using black tape to cover the
optical window, then subtracted from the raw DC following BGC-Argo data management recommendations (Schmechtig et
al., 2018a). The optical backscattering coefficient was measured during the CTD-rosette upcast, which was used for seawater
sampling. The angular scattering coefficient (B) was recorded every second at a central angle of 124° and a wavelength of
700 nm. To obtain the particulate angular scattering coefficient (Bp), the contribution of pure seawater, dependent on
temperature and salinity (Zhang et al., 2009), was subtracted from B. The B, coefficient was then converted into by, following
standard conversion guidelines and applying a y factor of 1.076 (Schmechtig et al., 2018b).

The ECO 3X1M sensor was mounted on the CTD-rosette frame, providing simultaneous MXF measurements. The same
black tape procedure was used to subtract dark values. The raw fluorescence values, expressed as counts, were directly used
as the fluorescence signal.

The particulate attenuation coefficient was corrected for sensor drift and calculated from total beam transmittance as in
Barnes & Antoine 2014.
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The outliers in fluorescence, ¢, and by, datasets were detected and removed using a threshold of 1.5 simple moving average

(Adepth = 3 m). Each profile was then smoothed using a simple moving average (Adepth =3 m).

2.3. Determination of phytoplankton pigments

For both laboratory and field samples, Chla and accessory pigments were identified and quantified by HPLC analysis.
Briefly, seawater from discrete field samples or cultures was filtered onto glass fibre filters (GF/F Whatman 25 mm), stored
in liquid nitrogen during cruises and then transferred at —80°C in the laboratory until further analysis at the SAPIGH HPLC
analytical facility of the Institutde la Mer de Villefranche (IMEV; https://lov.imev-mer.fr/iweb/facilities/sapigh/).
Phytoplankton pigments were extracted by sonication in 100% methanol, clarified by filtration (GF/F Whatman 25 mm), and
finally separated and quantified by HPLC. More details about the HPLC analytical protocol can be found in Ras et al.
(2008). The total chlorophyll a concentration, [Chla], is defined as the sum of chlorophylla, divinyl-
chlorophyll a and chlorophyllid a concentrations.

For in-situ samples, we specifically investigated the distribution of seven diagnostic pigments (DP) : peridinin (Peri), 19'-
butanoyloxyfucoxanthin (19-BF), fucoxanthin (Fuco), 19'-hexanoyloxyfucoxanthin (19-HF), alloxanthin (Allo), zeaxanthin
(Zea), divinyl-chlorophyll b (DV-Chlb), and chlorophyll b (Chlb), with total chlorophyll b (TChlb) defined as the sum
of DV-Chlb and Chlb, as well as divinyl-chlorophyll a (DV-Chla). These pigments are defined as biomarkers of major
phytoplankton taxa and were further grouped into three phytoplankton size classes, i.e. micro- (>20 um), nano- (2-20 um)
and picophytoplankton (<2 um), according to the approach of Claustre (1994) and Vidussi et al. (2001). Following the
equations given in Uitz et al. (2006), the DP-based method allowed the estimation of the relative contribution to the [Chla] of
the three size classes. Because it relies on biomarker pigment concentrations, this approach yields an average, synthetic
estimate of both the taxonomic and size composition of the phytoplankton communities. Although it has limits because some
phytoplankton taxa may occasionally span over several size classes and some DP may be found in several taxa (Chase et al.,
2020), this approach has been shown to provide reliable, quantitative information for analyses at large spatial and temporal
scales (e.g., Vidussi et al., 2001; Bricaud et al., 2004; Uitz et al., 2006; Brewin et al., 2014).

2.4. Statistical analyses

To explore the potential of deriving phytoplankton community composition from MXF and other bio-optical measurements,
we employed a multi-step analytical approach. First, phytoplankton pigment data were analyzed using Correspondence
Analysis (CA) to identify similarities in pigment composition among samples. The first three dimensions of the CA were
then subjected to a Hierarchical Ascending Classification (HAC) to define distinct clusters, corresponding to typical
phytoplankton assemblages observed in the NW Mediterranean at the BOUSSOLE site (following Kramer and Siegel, 2019;
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Uitz et al., 2023). These clusters were subsequently used as categorical targets to evaluate the ability of MXF and bio-optical
descriptors to infer phytoplankton composition through a Histogram Gradient Boosting (HGB) classification model.

This clustering-based strategy offers two key advantages: (1) it transforms the prediction task from a regression to a
classification problem, eliminating biomass effects and allowing the model to focus solely on taxonomic composition; and
(2) it ensures that the model captures the most significant source of taxonomic variability in the dataset, thereby reducing the

influence of minor variance components and mitigating the risk of overfitting.

2.4.1. Correspondence analysis

We used correspondence analysis (CA) to visualize the main similarities among samples based on their relative pigment
concentrations. This method generates linear combinations of relative pigment contributions, creating a new
multidimensional space where sample projections reflect their resemblance in pigment composition.

In this transformed space, samples with similar pigment signatures are located close to each other, while those with distinct
compositions are further apart. The first dimensions of the analysis capture the most significant variance in the dataset,
effectively summarizing the dominant patterns in pigment distribution. By reducing data complexity, this approach provides
a clearer interpretation of how different phytoplankton communities are structured based on their pigment signatures.

We applied this statistical method for two key objectives. First, we used it to compare the pigment composition of cultured
phytoplankton strains with that of field samples, assessing whether the selected strains accurately represent the seasonal
phytoplankton succession at the sampled location in the NW Mediterranean Sea. This CA was performed using the seven
DP concentrations. Field samples were projected in the transformed CA projection space, and the distance between field and
laboratory samples will be discussed. Second, we conducted a CA exclusively on field samples, using the same set of

pigments, and extracted the first three components as inputs for our clustering method described hereafter.

2.4.2. Clustering of phytoplankton pigment data

The pigment data from NW Mediterranean field samples, consisting of the set of pigment concentrations detailed in
the previous section, were clustered to identify major phytoplankton assemblages along the seasonal cycle using the CA (cf.
Section 2.4.1). The first three dimensions of the CA were used to quantify the resemblance in pigment composition across
samples. A Hierarchical Ascending Classification (HAC) was then applied to these three dimensions, grouping samples
based on their relative pigment composition rather than absolute pigment concentrations. The resulting cluster dendrogram
was cut at a height of 20, minimising the intra-cluster variance, and yielding three initial clusters.

Given the distinct pigment composition of prokaryotic picophytoplankton versus micro-/nanophytoplankton communities,
we repeated the clustering after excluding picophytoplankton-dominated samples to refine the classification within the
micro-/nanophytoplankton group. This second clustering step divided the micro-/nanophytoplankton samples into

two additional clusters. In total, four distinct phytoplankton communities were identified.
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2.4.3. Classification of phytoplankton groups based on MXF and additional bio-optical proxies

Here we evaluated the possibility of using MXF measurements alone, or in combination with other bio-optical proxies
measured by BGC-Argo floats to retrieve information on phytoplankton community composition. For this purpose,
measurements of Fao, Fazo, Fss2, bop and ¢, were used as inputs of a model aiming at predicting the four different clusters
identified with the method described in the previous section (cf. Section 2.5.2). We tested its performance using different
sets of inputs, corresponding to either already deployed or feasible BGC-Argo sensor combinations, and varying levels of
prediction task complexity (i.e., different number of clusters to predict).

The classification of in-situ phytoplankton communities (i.e., the prediction of a categorical target variable) based on MXF
and additional bio-optical measurements was performed using a Histogram Gradient Boosting (HGB) algorithm. This type of
machine learning model is particularly well suited for tabular data, where each sample (row) is characterized by a consistent
set of features (columns), and the dataset contains a relatively low number of observations (Chen and Guestrin, 2016;
Shwartz-Ziv and Armon, 2022).

The model's performance depends not only on the total number of observations but also on the distribution of observations
across target classes (here, phytoplankton community clusters). An imbalance in class representation can bias the model
toward the dominant class, leading to an artificial overestimation of its performance for that group while reducing accuracy
for underrepresented classes. To mitigate this imbalance, we applied the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002), which generates synthetic samples for minority classes to improve classification fairness
and overall model performance. In the end, each cluster was represented by 32 samples.

Because the dataset consists of a time series of a single year of phytoplankton community succession, the phytoplankton
biomass was strongly correlated with the community composition. Since the five different measured variables (i.e., F a0, Fa7o,
Fss2, bop, Cp) are significantly correlated with phytoplankton biomass, we used biomass-specific ratios to avoid overfitting and
highlight intrinsic optical properties. First, Fap and Fsz were normalized to Fazo, which is the channel typically used to
estimate Chla concentration from single-channel fluorometers. Second, each of the three fluorescence signals (Fao, Fa7o and
Fss2) was normalized to by and c,, used as particulate biomass proxies. The refractive index, representative of the
composition of the particulate pool and estimated as a function of byy/c,, was also used (Twardowski et al., 2001; Boss et al.,
2004).

The hyperparameters of the model, i.e. the parameters influencing the learning process, were defined using a cross-validation
grid search. In brief, the model has a learning rate of 0.05,1 400 estimators, and a maximum depth of 8. The influence of the
different descriptors was inspected through the mean impurity index, which reflects the importance of each descriptor in the
succession of the decision trees. The model was validated with 20 cross-validations, using a stratified shuffle split method
with a test size of 20%, which allows one to obtain the same proportion of the four clusters in each learning and testing
dataset with random sampling. The classification results can be categorized into four different categories: True Positive (TP)

corresponding to the accurate prediction of the presence of a class of a given phytoplankton assemblage, True Negative (TN)
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to the accurate prediction of the absence of a class, False Positive (FP) to the wrong prediction of the presence of a class, and
False Negative (FN) to the wrong prediction of the absence of a class. The performance of the classification method was
assessed through two different parameters, precision and recall, defined as follows:
Precision = TP / (TP+FP) (1)
Recall = TP / (TP+FN) (2)

The precision can be interpreted as the fraction of positive predictions of the model that were accurate, while the recall can
be interpreted as the fraction of positive samples that have been correctly predicted by the model. A precision or recall value
of 1 indicates perfect classification, meaning no false positives (for precision) or false negatives (for recall). Conversely, a
low precision value suggests a high number of false positives, whereas a low recall value indicates that many actual positive
cases were missed by the model.

The performance of the HGB classification model was tested for six different combinations of optical properties (e.g.
Faao, Fa70, Fsa2, Cp, and  byy) each consistent with potential future applications to BGC-Argo profiling floats (Table
2). Ultimately, we tested the performance of the model in predicting different numbers of clusters, ranging from 4 down to 2,

each reflecting a different level of predictive complexity.

Table 2: List of sensor configurations tested in this study for retrieving phytoplankton community composition. For each
configuration labelled A to F, we provide the measured variables along with examples of sensors that are available for

integration, or already integrated, on BGC-Argo profiling floats.

Sensor F440 F470 F532 (o Co Combination of sensors

configuration

MXF sensor
A X X X X X Backscatterometer

Transmissometer

Dual channel fluorometer
B X X X X Backscatterometer

Transmissometer

MXF sensor
C X X X X )
Transmissometer
Dual channel fluorometer
D X X X

Backscatterometer
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E X X X MXF sensor

Single channel fluorometer
F X X X Backscatterometer

Transmissometer

3. Results and discussion

3.1. MXF signal in laboratory-controlled conditions

After quantifying the calibrated fluorescence for each of the ten phytoplankton strains and for each excitation wavelength,
we considered two Chla-specific fluorescence ratios F*s3» / F*sz0oand F*i0/ F*a70, as described in Proctor and Roesler
(2010). Both ratios varied by a factor of approximately 2 when all taxa were considered (Fig. 1). The
three Synechococcus strains consistently showed high F*s3, / F*470 ratios (1.37 +/- 0.1) and low F*440 / F*470 ratios (0.91 +/-
0.06). By contrast, Prochlorococcus strains exhibited intermediate F*ss» / F*a40 and high F*as / F*470 ratios (1.27 +/- 0.08
and 1.22 +/- 0.07 respectively). The diatom strains showed low to intermediate values (1 +/- 0.05 for both ratios). The
dinoflagellates strain had similar average ratios as the diatoms, but replicates were a bit more variable. Finally,
the pelagophyceae strains had the lowest F*s3; / F*470 and F*a40 / F*470 ratios (0.71 +/- 0.02 and 0.95 +/- 0.12, respectively)
of all taxa.

The higher F*s3» / F*470 values observed for the Synechococcus taxon may be explained by their higher fluorescence at 532
nm, induced by the presence of phycoerythrin. Indeed, this phycobiliprotein is systematically found in open
ocean Synechococcus and binds two chromophores, phycourobilin (Amax ~495 nm) and phycoerythrobilin (Amax ~545 nm), the
latter thus being the most excited at 532 nm (Six et al., 2007; Grébert et al. 2018). Consequently, the phycourobilin-rich
strain RCC2379 expectedly exhibited a lower average F*s32 / F*a7o ratio than the two other Synechococcus strains both being
chromatic acclimaters which, in white light, exhibita low phycourobilin to phycoerythrobilin ratio (Six et al.
2004; Humily et al. 2013). Although the fairly high F*s32 / F*70 ratio observed in Prochlorococcus are harder to explain,
given the very low amounts of phycoerythrin present in these strains, the higher F*440 / F*410 ratio of the HL-adapted PCC
9511 compared to the LL-adapted RCC156 is consistent with the much higher DV-Chla (Amax ~450 nm) to DV-
Chlb (Amax ~475 nm) ratio of the former (Moore et al. 1995). The differences in fluorescence responses among diatoms,

dinoflagellates, pelagophyceae are also likely related to their distinct content in accessory chlorophylls, yet these differences
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are somewhat subtle and harder to interpret in terms of fluorescence properties (Bidigare et al., 1989; Bricaud et al., 2004).
Our results are in line with numerous previous studies that demonstrated that pigment composition influences both light
absorption and fluorescence emission spectra in phytoplankton, leading to taxon-specific fluorescence signatures (Yentsch
and Menzel, 1963; Johnsen and Sakshaug, 2007; Hu et al., 2010; Maclntyre et al., 2010; Proctor and Roesler, 2010). More
specifically, some laboratory studies using monospecific cultures demonstrated that fluorescence spectra vary significantly
across taxa when multiple excitation and emission wavelengths are used (Yentsch and Menzel, 1963; Johnsen and Sakshaug,
2007; Poryvkina et al., 1994). More recent work has expanded on these findings by incorporating mixed communities,
showing potential for determination of natural assemblages of phytoplankton (Hu et al., 2010; Escoffier et al., 2015). While
Hu et al. (2010) included both monospecific and mixed cultures, as well as coastal marine samples, most of these studies
were conducted under controlled laboratory conditions rather than in open-ocean environments.

Only a few studies have investigated fluorescence responses in natural, mixed phytoplankton communities (Seppéld
and Balode, 1998; Hu et al, 2010; Proctor and Roesler, 2010; Thibodeau et al. 2014). Some of these studies benefited from
conditions that enhanced pigment-specific fluorescence signals, such as reversed filtration to increase pigment concentration
(Seppélé and Balode, 1998), high resolution of fluorescence excitation/emission spectra (Seppélé and Balode, 1998; Hu et al,
2010) or naturally high chlorophyll concentrations in bloom conditions (Proctor and Roesler, 2010). These conditions
contrast sharply with those of the open ocean, where phytoplankton communities are more diverse, pigment concentrations
are lower, and taxonomic differentiation based on MXF alone is more challenging.

Despite this complexity, our MXF measurements on mono-specific cultures are promising and coherent with Proctor and
Roesler (2010), who further demonstrated that intra-taxon variance in specific fluorescence ratios was lower than inter-taxon
variance. Both studies suggest that a multispectral MXF sensor with three excitation channels (440, 470, and 532 nm) can
provide sufficient sensitivity to distinguish taxa in controlled conditions even though natural communities consist of mixed
assemblages of taxa with complex pigment signature, leading to less contrasted fluorescence response than for laboratory
cultures. Therefore, in the following section, we investigate whether it is possible to resolve taxonomic composition from in-
situ phytoplankton fluorescence signals by analysing a year-long dataset from the NW Mediterranean Sea. Additionally, we
assess whether combining MXF measurements with other bio-optical proxies could improve classification performance, in

anticipation of future deployment of multispectral fluorometers on BGC-Argo profiling floats.
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Figure 1: Scatterplot of F*440/F*470 vs. F*532/F*470 ratios for each phytoplankton strain grown in culture. The colour

code indicates the taxon to which each strain belongs; the symbols indicate the strains, using the Roscoff Culture Collection
code, when available (see Table 1).

3.2. Phytoplankton communities in the Northwestern Mediterranean Sea

Surface chlorophyll concentration at the BOUSSOLE site can reach values up to 5 mg Chla m- during the spring bloom and
below 0.1 mg Chla m3in summer, along with seasonal changes of the phytoplankton community composition (Marty et al.,
2002; Antoine et al. 2020). In winter, pigment indicators of prymnesiophyte, namely 19’-HF and 19’-BF,
are observed alongside fucoxanthin, a marker of diatoms, and alloxanthin, a marker of cryptophytes (Marty et al.,
2002; Mayot et al., 2017). During the spring phytoplankton bloom, fucoxanthin concentrations increase (Marty et al., 2002),
which is likely related to an increase in diatoms. In summer, the mixed layer is phosphate-limited and phytoplankton
communities are representative of stratified oligotrophic regions, with a prevalence of pigments specific to pico-
phytoplankton, divinyl-chlorophyll-a and zeaxanthin (Marty et al., 2008). This phytoplankton diversity is comparable to
what is observed in temperate open-ocean regions (Vidussi et al., 2001; Marty et al., 2002; Lavigne et al., 2015; Mayot et al.,
2017).
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The composition of the phytoplankton communities in the field samples was analysed using a pigment-based clustering
approach (see Section 2.4.2). The clustering allowed grouping samples with similar pigment composition and led to the
discrimination of four distinct phytoplankton assemblages (clusters) over the year (Fig. 2a-d). All clusters are dominated by
nanophytoplankton but vary significantly in the partitioning between micro- and picophytoplankton (Fig. 2e-h). The first
cluster corresponds to winter communities as well as deep autumn communities, with a large proportion of
picophytoplankton and a significant contribution of Chlb, a pigment typical of green microalgae, mostly flagellates
(Bustillos-Guzman et al., 1995). The second cluster coincides with the bloom community with a shared contribution of
micro- and nanophytoplankton. This assemblage is characterized by a high fucoxanthin contribution, typically associated
with diatoms. The third cluster is associated with summer communities located at and below the level of the deep
chlorophyll maximum (DCM) and also exhibits a mixed composition of micro- and nanophytoplankton. Finally, the fourth
cluster is characteristic of picophytoplankton communities in surface waters from summer to autumn, typically dominated
by picocyanobacteria (Barlow et al., 1997).

Cluster 1 . Cluster 2 ¢ Cluster 3 g Cluster 4
XY ] o ® ] ) o| T e eocee
° e ' ‘ © o ocee
204@ e@ o | | 4 e0ce
E P° ® @ o ‘ i @ Dee
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o - o : ) e o 00 3
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Figure 2: Distribution of the phytoplankton communities as determined from the cluster analysis applied to the field pigment
data: (a-d) Vertical distribution of the four pigment-determined clusters indicative of the main phytoplankton
communities encountered over an annual cycle in the northwestern Mediterranean Sea (BOUSSOLE site). The size of the
dots indicates the Chla concentration, used as a proxy of the phytoplankton biomass. (e-h) Tree map of the relative pigment
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concentration of each cluster (areas delimited by the grey lines), with the size class corresponding to the pigment taxa
affiliation (colored).

The results from the culture experiments demonstrated that phytoplankton taxa can be distinguished by MXF at the
taxonomic level of the Class for eukaryotic phytoplankton (e.g., Diatoms, Dinoflagellates, Pelagophyceae) and Genus
for picocyanobacteria (Synechococcus and Prochlorococcus). We then compared the relative accessory pigment composition
of the in-situ clusters to that of the five laboratory characterized taxa. This analysis seeks to determine whether the field
samples fall in the range of variability of accessory pigment composition of the culture samples.

Similar to the field samples, a correspondence analysis (see Section 2.4.1) was applied to the pigment composition of the ten
phytoplankton strains grown in the laboratory. This method allows a visualization of the different strains in a space where
the distance between two samples reflects their relative pigment composition similarity (Fig. 3). We observe three distinct
groups corresponding to the different taxa represented by the ten selected strains. One is composed of Diatoms
and Pelagophyceae, while the two others correspond to Synechococcus and Prochlorococcus, respectively. This highlights a
strong contrast in pigment composition between Synechococcus which has Zea, Prochlorococcus which has DV-Chla, DV-
Chlb and Zea, and the nano- and microphytoplankton taxa that share many different pigments (Jeffrey et al., 1997; Veldhuis
et al., 2005).

The culture results provide a reference from which the projection space is computed, on which the field samples are
projected (Fig. 3). The field data are evenly spread in the centre of the plan, indicating that the variability in the pigment
composition of the field samples is similar to that observed in the laboratory cultures. Moreover, the four field-based clusters
are fairly well distinguished in the CA. The only exception being a few samples of cluster 1 with high CA2 values, due to the
presence of 19°-HF, a pigment that is not found in our cultured strains. However, this pigment has a very similar absorption
signature to other carotenoids like 19°-BF or peridinin. We thus expect that the MXF sensor is sensitive enough to
discriminate between different phytoplankton groups (clusters) characterized by distinct pigment composition in field
samples.

In addition, we note that the in-situ samples have lower eigenvalues (i.e., absolute values on CA axes) than the laboratory
samples indicating that the pigment variability is less contrasted in the field than in laboratory samples. This is not surprising
because of the complexity of the pigment composition in natural samples associated with mixed phytoplankton assemblages,
instead of single taxa in monospecific cultures. This characteristic of open-ocean samples could somewhat hamper the
possibilities of inferring information on phytoplankton community composition from MXF measurements, a hypothesis that

is tested in the next section.
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Figure 3: Correspondence analysis of the pigment concentrations of the strains grown in culture. The pigment concentrations
measured in the northwestern Mediterranean (BOUSSOLE site) seawater samples are represented using the same colour

code as in Figure 2 and projected as supplementary observations

3.3. Discrimination of phytoplankton taxa from in-situ MXF and additional bio-optical variables

The predictive model (see Section 2.4.3) was tested using as inputs measurements from the MXF sensor alone (Faao,
F470, Fs32), or in combination with a backscatterometer (Faso, Fa7o0, Fs32, bop) and a transmissometer (Faso, Fazo, Fsa2, bpp, Cp).
Additionally, the model was also tested using measurements from a dual excitation channel fluorometer and
backscatterometer (Faso, Fazo, bop), Or combined with a transmissometer (Faao, Fa70, bop, Cp) (Fig. 4 and Table Al). These two
configurations are of particular interest as many BGC-Argo floats have been, and will continue to be, deployed with this
specific set of sensors.

Considering the most comprehensive configuration, A (i.e., Faao, Fa7o, Fsa2, bup, Cp), the precision and recall scores of the HGB
model are homogeneous among all four clusters with values between 60% and 85% (+/- 15%) (Fig. 4 and Table Al). These
results based on annual sampling in the NW Mediterranean are quite robust, showing sufficient precision to demonstrate that
MXF, when used in combination with a backscatterometer and a transmissometer, effectively allow four phytoplankton
taxonomic groups to be distinguished. If we remove either the MXF sensor or the transmissometer, leading to measurements

of Faao, Fazo, bopand cp, or Faso, Faro, Fs32 and cp, (i.e., configurations B and C, respectively), we observe similar precision and
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recall scores, and a marked variability between the clusters (Fig. 4 and Table Al). However, all four clusters displayed a
mean precision of 67.25% (+/- 6.9%) and 69% (+/- 12%) for configurations B and C, respectively. When
considering configuration D, which corresponds to a sensor load with a dual-channel fluorometer and a backscatterometer
(i.e., Faso, Fa70 and byp), the scores are significantly lower with a mean precision of 62% (+/- 8.7%). The use of the MXF
445  sensor only (configuration E, i.e. Faso, Fazoand Fs3o) led to variable performances depending on the cluster. Thus, removing
the transmissometer (cp) or the 532-nm excitation fluorescence channel (Fss2) seemingly induces a significant decrease in the
general accuracy and recall scores of the model (Fig. 4). Finally, the configuration with only single-channel fluorescence
measurements and two bio-optical indices (configuration F, i.e. Faz, bpp, Cp) led to lower performance for every cluster,
except for the picophytoplankton dominated one (i.e., cluster 4; see Fig. 2). This suggests that a configuration without MXF

450 performs better when the phytoplankton communities have contrasted size structures.
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Figure 4. Precision and recall scores for phytoplankton community classification using different sensor package
configurations. (A) Precision and (B) recall scores for predicting four phytoplankton clusters using various sensor
combinations, either currently equipped on BGC-Argo profiling floats or suitable for future installations: full configuration
(F440, F470, F532, bbp, cp); dual channel fluorescence with backscatterometer and transmissometer (F440, F470, bbp, cp);
460 MXF with cp (F440, FA70, F532, cp); dual channel fluorometer with backscatterometer (F440, F470, bbp); MXF only
(F440, F470, F532) and single channel fluorescence with backscatterometer and transmissometer (F470, bbp, cp).
Precision represents the fraction of positive predictions that were correct, while recall indicates the fraction of true positives
correctly identified. Error bars reflect variability across cross-validation runs. Significance of paired t.test is indicated with
stars (ns: p.value > 0.05 ; *: p.value <= 0.05 ; **: p.value <= 0.01 ; ***; p.value <= 0.001 ; ****: p.value <= 0.0001).
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O

Based on configuration A, which combines MXF and all bio-optical indicators, we can evaluate the predictive power of each
descriptor. The mean importance of the descriptors in the discrimination of distinct phytoplankton clusters, as indicated by
the impurity metrics (Fig. 5), highlights a significant role of all selected descriptors (bue/Cp, Faso/Fazo, FasolCp, FssolFaro,
Fs32/bop, Fa70/Cp, Fazo/bup, Faso/bpp), and particularly of bup/Cp, Faso/Faz0, Faso/Co and Fssa/Faso ratios. The high importance of the
bp/C, ratio was expected as it has been already described as an indicator of the particle size distribution (Dall’Olmo et al.,
2009; Slade and Boss, 2015; Organelli et al., 2020). Interestingly, the second and fourth strongest predictive descriptors
correspond to the fluorescence ratios from the MXF sensor (Faso/Fa70 and Fsz2/Fazo). This indicates the strong added value of
the MXF descriptors in the predictive model, in line with our laboratory results. These results also support the findings of
both Proctor and Roesler (2010) and Thibodeau et al. (2014) who showed that the Faso/Fa70 and Fss2/Fazo fluorescence ratios
are related to the taxonomic composition of phytoplankton communities. Finally, we note that the commonly used
phytoplankton community indeX, Fazo/bpp ratio (Cetini¢ et al., 2015; Lacour et al., 2019; Terrats et al., 2020), has a notably
lower predictive robustness in our analysis. Therefore, the use of new sensor configurations, including a multiple excitation
channel fluorometer and a beam attenuation transmissometer implemented on BGC-Argo floats, may have a stronger
potential than previously described methods to detect seasonal succession of phytoplankton groups, with markedly different

pigment composition or cell sizes (here picophytoplankton-dominated vs. microphytoplankton-dominated communities).
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Figure 5: Importance of the different descriptors in the classification model, expressed as the mean decrease in impurity. The

mean decrease in impurity reflects how much each descriptor contributes to improving the purity of the splits in the decision
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tree. A higher value indicates that the descriptor plays a more significant role in distinguishing (i.e., pigment-based
clusters) in the model.

3.4. Model tuning to predict phytoplankton communities

In Section 3.3, we considered four clusters found along the annual phytoplankton succession. We now evaluate the same
model and hyperparameters for predicting two or three clusters (instead of four), to assess whether reducing the level of
predictive complexity improves the model performances under different sensor configurations. First, we reduced the number
of clusters from four to three by merging Clusters 2 and 3, the two clusters with the smallest distance, representing mixed
nano- and microphytoplankton-dominated communities. The main distinction between these two clusters lies in their
dominant pigments. Cluster 2 is indeed characterized by a higher relative contribution of alloxanthin, while Cluster 3 is
dominated by 19’-HF. The three resulting clusters correspond to the surface summer picophytoplankton community
associated with large concentrations of zeaxanthin (Cluster 4), the winter and deep summer picophytoplankton community
with Chlb and DV-Chlb (Cluster 1), and the mixed micro- and nanophytoplankton community (Clusters 2 and 3 grouped
together). Second, we reduced the initial number of four clusters to two, by merging Cluster 1 (dominated by Chib-
containing picophytoplankton) and Cluster 4 (dominated by zeaxanthin-containing picophytoplankton) to a
picophytoplankton-dominated cluster essentially grouping Synechococcus, Prochlorococcus and chlorophytes. The second
cluster consists of the previously merged cluster (initially Clusters 2 and 3) composed of micro- and nanophytoplankton.
Like the approach presented in Section 3.3, we evaluated the classification model performances for different sensor
configurations using the mean balanced recall metrics, which reflects the percentage of correctly classified samples. The
same cross-validation method was applied to ensure consistency (Fig. 6). We first observed that a decrease in prediction
complexity (specifically, a reduction in the number of clusters) does not consistently lead to an improvement in the
classification model performance, and that the effect of such a reduction depends on the sensor configuration. When all
sensors are included (configuration A), the model performs best in predicting 2 or 3 clusters than 4 clusters, achieving above
75% recall. Similarly, the model using as inputs two fluorescence wavelengths, as well as the by, and ¢, coefficients (i.e.,
configuration B) achieves above 75% recall when predicting 2 or 3 clusters.

It is worth noting that the model using as inputs bio-optical measurements from sensors already implemented on some BGC-
Argo floats (i.e, configuration F with single-channel fluorescence, by, and cp) demonstrates strong predictive capabilities for
2 or 3 clusters, achieving recall values of 72% and 74%, respectively. In the two-cluster prediction scenario, one
cluster predominantly comprises picophytoplankton, such as Synechococcus and Prochlorococcus, while the other includes a
mix of nano- and microphytoplankton. Interestingly, previous studies have shown that the combination of Fazo, byp, and
cp effectively correlate with phytoplankton community size structure (Veldhuis et al., 2005; Brewin et al. 2011; Cetini¢ et al.
2015; Sauzede et al. 2015; Rembauville et al. 2017, Terrats et al. 2023) supporting our findings. In the three-cluster scenario,

the model has to distinguish between two different types of picophytoplankton communities rather than one. These
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communities exhibit markedly different photoacclimation profiles, with deep-water communities displaying a Fazo/byp ratio
significantly distinct from that of surface communities (Bellacicco et al. 2016; Graff et al. 2016). Thus, the model
successfully discriminates phytoplankton communities according to their average size and photoacclimation status.
However, when the nano- and microphytoplankton-dominated cluster is further divided into two distinct communities based
on varying carotenoid composition, the model performance declines markedly, resulting in a recall score of only 40%. This
low score, compared to the high predictive performance of the other models, that all include multiple fluorescence with at
least two wavelengths (i.e., configurations A to E), highlights the importance of MXF for pigment-based remote
classification of phytoplankton communities.

When using MXF data only (i.e., configuration E), the model recall performance drops to approximately 50%, whatever the
number of predicted clusters. In comparison, models conFig.d with the MXF sensor and a transmissometer (i.e.,
configurations C) reach around 65% recall, regardless of the amount of cluster to be predicted. Adding the particulate
backscattering coefficient (by,, configuration A) slightly increases the recall score to around 75% when predicting 2 or 3
clusters. This highlights the importance of incorporating additional bio-optical indices with MXF, such as by and cp, to
enhance the phytoplankton group classification model. Furthermore, when the backscatterometer and transmissiometer are
present, the MXF 532-nm fluorescence channel does not improve the model performance (configuration A and B).
This indicates that, overall, when bio-optical sensors measuring by, and ¢, can be used as inputs, only two fluorescence
wavelengths are needed to achieve an optimal classification of phytoplankton communities.

These findings demonstrate that meaningful phytoplankton taxonomic information can be retrieved from MXF signals. If the
standard BGC-Argo configuration (i.e., configuration F) with one single-channel fluorescence and two optical indices
(bwpand cp) shows good prediction performances for predicting two and three clusters, adding one more
fluorescence wavelength (i.e., configurations A to E) significantly improves the performance when predicting four clusters.
Thus, our results demonstrate that MXF is a promising avenue for remote classification of phytoplankton community
composition.

Our results also highlight that the predictive skill of individual descriptors, particularly the 532 nm fluorescence channel,
depends on both the way clusters are defined and on the ecological context in which communities occur. When
clustersretaina  strong  contribution of  Chlb—containing taxa  (e.g.,  chlorophytes) or  phycoerythrin-
rich picocyanobacteria (Synechococcus), the Fssa/Fazoratio provides valuable information on community composition.
However, when such groups are merged into broader assemblages, the influence of Fss diminishes and the model relies
more heavily on size- or biomass-sensitive proxies such as ¢, and by,. Ecologically, this reflects the fact that pigment-based
contrasts are strongest when communities differ in accessory pigment composition, while size-structure proxies dominate
when communities are merged across pigment gradients. From a broader perspective, this sensitivity also explains why the
usefulness of Fs3 will vary geographically: in regions where Synechococcus or green flagellates are recurrent and

occasionally abundant (e.g., coastal upwelling systems), including 532 nm excitation is expected to significantly improve
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classification performance (Morel, 1997; Saito et al., 2005). In contrast, in persistently oligotrophic waters such as the

subtropical gyres the added value of Fs3; is likely reduced.
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Figure 6: Values of the mean weighted recall resulting from cross-validation with different numbers of clusters and different

sensor combinations, either currently equipped on BGC-Argo profiling floats or feasible for future deployments: full
configuration - A (F440, F470, F532, bbp, cp); dual-channel fluorescence with backscatterometer and transmissometer -
configuration B (F440, FA470, bbp, cp); MXF with cp - configuration C (F440, F470, F532, cp); dual-channel fluorometer

560 with backscatterometer - configuration D (F440, F470, bbp); MXF only - configuration E (F440, F470, F532); and single-
channel fluorescence with backscatterometer and transmissometer - configuration F (F470, bbp,cp). Significance of
paired t.test is indicated with stars (ns: p.value > 0.05; *: p.value <= 0.05 ; **: p.value <= 0.01 ; ***: p.value <= 0.001
; ****: p.value <= 0.0001).
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4. Conclusion and perspectives

Monitoring phytoplankton community composition is essential for understanding marine biogeochemical cycles, particularly
those related to oceanic carbon dynamics. However, this remains challenging in open-ocean environments due to the
limitations of current autonomous sensor technologies and the complex bio-optical signature of mixed phytoplankton
assemblages. In this study, we developed and tested a machine learning (HGB) model to classify phytoplankton assemblages
using in-situ MXF and additional bio-optical measurements. The goal was to assess the potential of MXF for taxonomic
discrimination of phytoplankton communities from autonomous platforms, particularly BGC-Argo profiling floats. The HGB
model uses MXF signals, specifically fluorescence excited at 440, 470, and 532 nm, alongside particulate backscattering
(bwp) and beam attenuation (cp) coefficients as input features. Taxonomic information was assessed through pigment-based
clustering of field samples collected over a full annual cycle in the NW Mediterranean Sea.

Our primary objective was to evaluate the predictive skill of MXF measurements. Under laboratory conditions, MXF
provided sufficient sensitivity to distinguish five key phytoplankton groups. When applied to field data, MXF alone had
lower performance due to the presence of complex mixed phytoplankton assemblages, compared to monospecific cultures.
However, combining MXF with additional bio-optical indices improved discrimination of phytoplankton communities.

We assessed the model’s performance across different sensor configurations, reflecting realistic BGC-Argo float payloads,
and across varying levels of classification complexity, (i.e., number of predicted pigment-based clusters). While existing
sensor configurations, such as single-wavelength fluorescence with by and cp, performed well for simple phytoplankton
communities (two or three clusters), full separation of more complex community types (four clusters) required the richer
spectral information provided by MXF. Notably, MXF enabled taxonomic discrimination within micro- and
nanophytoplankton-dominated assemblages, even when using only two fluorescence channels, 440 and 470 nm. In contrast,
bio-optical properties such as by, and c,, which are robust proxies for particle size and biomass, were more effective at
distinguishing between communities with pronounced size differences, such as pico- versus microphytoplankton.

Overall, our results suggest that integrating MXF into BGC-Argo platforms could significantly enhance our ability
to monitor shifts in phytoplankton communities, particularly among groups with overlapping size distributions. This
advancement would provide valuable insights into ecosystem dynamics and the role of phytoplankton taxonomic
composition across broad spatial and temporal scales, enabled by the autonomous sampling capabilities of BGC-Argo floats,
in open-ocean biogeochemical cycles.

Future work should aim to generalize these findings across diverse oceanic regions and refine the predictive model to
account for a broader variety of phytoplankton taxa. Building a standardized dataset linking phytoplankton community
composition, from pico- to micro-size classes, to MXF and bio-optical measurements will be crucial for improving our

understanding of phytoplankton dynamics through autonomous observations.
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Appendix A

Table Al : Mean and standard deviation of precision and recall scores from the cross validation (repeated prediction
of clusters from the machine learning model using randomly picked samples for training and testing). The standard
deviation is indicated in parentheses. Each line corresponds to a specific combination of sensors, either currently
deployed on BGC-Argo profiling floats or suitable for future deployments: full configuration (Fuo, Feo, Fsz, Do, Cy);
dual channel fluorescence with backscatterometer and transmissometer (Fuo, Fuo, bo, C); MXF  with
backscatterometer (Fuwo, Fan, Fs2, byp); dual channel fluorometer with backscatterometer (Fuo, Fio, bs); MXF only (Fu,
Fuo, Fs2) @and single channel fluorescence with backscatterometer and transmissometer (F o, Do, Cp).

Cluster 1 Cluster 2 Cluster 3

Configuration Cluster 4

Precision Recall Precision Recall Precision Recall Precision Recall

Faso + Fao + 068 0.68 067 067 086 086 058 058
Fow + bop + C, (0.15) (0.18) (0.15) (0.16) (0.14) (0.14) (0.12)  (0.1)
Fawo + Fano + 059 0.68 067 0.75

0.58 (0.2) 8 (0.2)

Boy + iy (0.21) (0.17) (0.17) (0.19) (0.19) (0.18)

Fuo + Faro + 062 063 071 072 086 087 057 057

Fez + G, (0.19) (0.2) (0.19) (0.17) (0.14) (0.14) (0.19) (0.19)

Fuaso + Faro + 056 059 063 063 074 076 055 054

Do (18) (0.21) (0.19) (0.2) (0.22) (0.15) (0.18) (0.2)

Fawo + Fano + 037 081 083 051 0.64
0.37 (0.2) 0.65 (0.2)

Fsa (0.19) (0.21) (0.21) (0.14) (0.14) (0.2)

036 037 032 033 068 069 047 047

Furo + bop + C, (0.26) (0.16) (0.26) (0.25) (0.22) (0.21) (0.19) (0.17)
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