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Abstract.  

Phytoplankton community composition is a key determinant of ocean biogeochemical cycles, yet its observation from 20 

autonomous platforms remains challenging. In this study, we assessed the potential of in situ multispectral excitation 

fluorescence (MXF) to discriminate phytoplankton assemblages in the Northwestern Mediterranean Sea, with a view toward 

applications on Biogeochemical-Argo (BGC-Argo) profiling floats. Laboratory measurements on ten phytoplankton strains 

confirmed that MXF ratios at 440, 470, and 532 nm provide taxon-specific signatures, especially for picocyanobacteria and 
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green algae. Field observations of phytoplankton pigments were clustered into four ecologically distinct phytoplankton 25 

communities along the seasonal cycle. A machine learning model was then trained to classify these clusters using MXF 

and additional bio-optical indices. Results show that existing BGC-Argo configurations (single-wavelength fluorescence, 

particulate backscattering and beam attenuation coefficients) reliably distinguish broad community structures such as pico- 

versus microphytoplankton dominance, but resolving finer pigment-based differences requires the added spectral 

information of MXF. The different excitation channels contributed unequally: 440 and 470 nm provided robust pigment 30 

sensitivity across communities, while 532 nm was particularly informative for detecting phycoerythrin- and chlorophyll b–

rich taxa. Overall, combining MXF with bio-optical proxies improved classification performance by integrating pigment-

specific and size-structure information, demonstrating the potential of MXF to enhance autonomous monitoring of 

phytoplankton community dynamics and their role in ocean biogeochemical cycles.  

1 Introduction 35 

Phytoplankton play a key role in global biogeochemical cycles, particularly in the carbon cycle. They fix dissolved inorganic 

carbon through photosynthesis and transfer a portion of it to higher trophic levels, initiating the biological carbon pump. This 

mechanism is pivotal in regulating the ocean's carbon storage. However, primary production, i.e., the rate at which 

phytoplankton produce organic carbon, varies significantly across different time and space scales. This variation is attributed 

to environmental changes that induce changes in phytoplankton community structure and biomass (Rousseau and Gregg, 40 

2014). Therefore, in the current context of climate change, monitoring phytoplankton dynamics on a global scale is crucial.  

The emergence of new observation platforms, such as BioGeoChemical-Argo (BGC-Argo) profiling floats equipped with 

miniaturized bio-optical sensors, offers the possibility to collect continuous vertical profiles of optical measurements that 

serve as proxies of biogeochemical variables (Biogeochemical-Argo Planning Group, 2016; Claustre et al. 2020). 

Fluorescence is a widely used proxy of chlorophyll-a (Chla) concentration, a ubiquitous pigment in phytoplankton 45 

organisms, which is in turn used as an indicator of phytoplankton biomass. Equipped with (single channel) fluorometers, 

autonomous platforms thus allow the observation of phytoplankton biomass variability across a wide range of spatial and 

temporal scales (e.g. Boss et al., 2008; Barbieux et al., 2019; Cornec et al., 2021; Bock et al., 2022).  

Information on phytoplankton biomass only is however insufficient to understand the links between phytoplankton and the 

carbon cycle. Indeed, the composition of phytoplankton communities is known to be a critical determinant of the carbon 50 

cycle since several key processes largely vary between phytoplankton size classes or phylogenetic groups, such as 

CO2 fixation through photosynthesis (Cermeño et al., 2005; Uitz et al., 2008), trophic interactions (Cushing, 1989; Finkel, 

2007), elemental cycling (Morel 2008, Litchman et al., 2015), or carbon transfer to the deep ocean (Buesseler et al., 1998; 

Guidi et al., 2009; Henson et al., 2012; Bonnet et al., 2023).  

However, the composition of phytoplankton communities cannot be measured directly from the sensors currently 55 

implemented on BGC-Argo floats. Only a few methods have been proposed so far to overcome this challenge and go beyond 
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the mere estimation of Chla biomass from bio-optical measurements of BGC-Argo floats. Specifically, Sauzède et al. (2015) 

developed a neural network algorithm using the vertical shape of the in-situ fluorescence profile as input to retrieve the 

relative contribution to the Chla of the three phytoplankton size classes (pico-, nano- and microphytoplankton). Cetinić et al. 

(2015) proposed a simple community index based on the ratio of the fluorescence signal to the particulate backscattering 60 

coefficient. Similarly, Terrats et al. (2020) used this ratio to detect coccolithophore blooms. Finally, Rembauville et al. 

(2017) developed a regional approach to estimate the stock of particulate organic carbon (POC) of bacteria and three 

phytoplankton size classes. This approach has been developed for applications to BGC-Argo floats that measure not only the 

fluorescence and particulate backscattering coefficient, but also the beam attenuation coefficient. Yet, while those methods 

provide useful information about phytoplankton community composition, they mostly rely on regional empirical 65 

relationships between phytoplankton community composition and bio-optical indices.  

Multispectral excitation fluorescence (MXF) is an alternative approach to retrieve information on the relative pigment 

composition of the phytoplankton assemblage, from which major taxa can be discriminated. MXF consists in measuring in-

situ fluorescence signals in response to excitation at different wavelengths, corresponding to the absorption peaks of 

different accessory pigments used as biomarkers of specific taxa in the phytoplankton community (e.g. Yentsch and Phinney, 70 

1985; Bricaud et al., 2004; Brewin et al., 2014). A combination of three wavebands centred around 440, 470 and 532 nm was 

previously investigated in freshwater environments (Proctor and Roesler, 2010) and in the Arabian Sea (Thibodeau et al., 

2014), providing promising results and paving the way for use in open ocean waters. The present study aims at extending the 

approach of Proctor and Roesler (2010) and assessing the potential of in-situ MXF as a proxy of phytoplankton taxonomic 

composition in view of future applications to BGC-Argo floats.  75 

Although standard BGC-Argo floats are all equipped with a single-channel fluorometer (with excitation at 470 nm) and a 

backscattering sensor (e.g. Bittig et al., 2019), part of the BGC-Argo fleet is also instrumented with additional sensors that 

may provide useful information on phytoplankton composition indicators, such as a beam transmissometer (Rembauville et 

al. 2017) or a dual-channel fluorometer with excitation at 440 and 470 nm 

(see https://vocab.nerc.ac.uk/collection/R27/current/). In this context, the present study aims to evaluate the potential of bio-80 

optical measurements from the sensors currently implemented on BGC-Argo profiling floats, either alone or in combination 

with MXF, for retrieving information on phytoplankton community composition. Hence, we designed a predictive machine 

learning model to assess the ability of MXF combined with other bio-optical observations to infer taxonomic information.  

For this purpose, we combined laboratory experiments and fieldwork conducted in the Northwestern (NW) Mediterranean 

Sea. The NW Mediterranean Sea provides a good case study because its pronounced seasonal phytoplankton biomass cycle 85 

(e.g. D’Ortenzio et al., 2005; Lavigne et al., 2015) and ecological succession (Vidussi et al. 2001; Marty et al. 2002) are 

comparable to those observed in the temperate regions of the open ocean.  

For the laboratory work, we selected ten phytoplankton strains representative of the various taxa observed along the seasonal 

succession of the NW Mediterranean Sea. We measured the MXF response of each strain under controlled conditions, 
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and measured the variability among taxa and strains. This allowed us to characterize the MXF sensor and validate the 90 

analysis of the field data.  

During our fieldwork, we collected concomitant pigment concentrations and bio-optical parameters using a sensor 

package comprising a MXF sensor, a single-channel fluorometer, a backscatterometer and a transmissometer over an annual 

cycle in the NW Mediterranean Sea. This in-situ dataset was then used to develop and test a phytoplankton community 

composition discrimination model. Ultimately, we provide recommendations for the use of MXF, alone or in combination 95 

with other bio-optical indicators, to infer the taxonomic composition of phytoplankton communities from BGC-Argo 

profiling float observations.  

2. Material & methods  

  

2.1. Laboratory work  100 

  

2.1.1. Phytoplankton strains and culture conditions  

For laboratory experiments, we selected ten phytoplankton strains provided by the Roscoff Culture Collection (RCC; 

https://roscoff-culture-collection.org/). These strains are representative of the taxonomic diversity of the main eukaryotic and 

prokaryotic phytoplankton organisms encountered in open-ocean waters, and particularly in the NW Mediterranean Sea. The 105 

selected strains include three diatom species, one pelagophyte, one dinoflagellate and five photosynthetic prokaryotes 

(three Synechococcus and two Prochlorococcus strains; Table 1).  

All strains were grown at a constant temperature of 21°C, under 50 μmol photons m-2 s-1 continuous white light provided by 

a white-blue-green LED system (Alpheus, France), and in either K+Si (Keller et al., 1987) or PCR-S11 culture medium 

(Rippka et al., 2000) for eukaryotes and prokaryotes, respectively. As fluorescence is significantly influenced by the 110 

physiology of phytoplankton cells, we used cultures in stable physiological status as assessed by a high PSII quantum yield 

(Fv/FM) using a Phyto-PAM-II fluorometer (Walz, Effeltrich, Germany). The Fv/FM parameter was calculated as (FM − 

F0)/FM (Pittera et al., 2014), where F0 is the dark-adapted basal fluorescence, FM is the maximal fluorescence associated with 

the closing of photosynthetic reaction centres, and Fv is the variable fluorescence. FM was measured after exposure to 

saturating light pulses and addition of 100 µM of the photosystem II inhibitor 3′-(3,4-dichlorophenyl)-1′,1′-dimethylurea 115 

(DCMU; Parkhill et al., 2001). The Fv/FM parameter was measured concomitantly to cell counts made using a 

Guava EasyCyte flow cytometer (Luminex Corporation, USA) all over the growth of each phytoplankton culture (Marie et 

al., 2001). The MXF protocol (see Section 2.1.2) was applied to each culture in the middle to late exponential growth phase, 
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just before the drop of the Fv/FM index. The MXF protocol was repeated three times on distinct replicate culture vessels for 

each strain (biological triplicates).  120 

 

Table 1: Name, taxonomy, pigment composition as detected by HPLC pigment analysis, and size class of the ten 

phytoplankton strains used for the laboratory experiments. Pico stands for picophytoplankton (0.2-2 µm), Nano for 

nanophytoplankton (2-20 µm) and Micro for microphytoplankton (20-200 µm); HL stands for high-light adapted; LL stands 

for low-light adapted. The pigments measured are Chlorophyll a (Chla), Fucoxanthin (Fuco), Diadinoxanthin (Diad), 125 

Diatoxanthin (Diat), 19’-HF (19'-Hexanoyloxyfucoxanthin), 19’-BF (19'-Butanoyloxyfucoxanthin), Peridinin (Peri), 

Zeaxanthin (Zea), Divinyl-chlorophyll a and b (DV-Chla, DV-Chlb), Chlorophyll c1 and c2 or c3 (Chlc1 + c2, Chlc3). 

Species name  Class  RCC strain 

number  

Other names  Main pigments  Size class  

Conticribra (Thalassiosira) weissflogii  Mediophyceae  

(diatom)  

RCC76  CCMP1336  

  

Fuco, Chlc1 + 

c2, Diad, Diat  

Micro  

Chaetoceros diadema  Mediophyceae  

(diatom)  

RCC1717  RA080513-06  

  

Fuco, Diad, Chlc1 

+ c2  

Micro  

Pelagomonas calceolata  Pelagophyceae  

  

RCC100  CCMP1214  Chlc3, Chlc1 + c2, 

19’-BF, 

Fuco, Diad, Diat  

Nano  

Scrippsiella sp.  Dinophyceae  

  

RCC3006  VFAC24-3  Chlc1 + c2, 

Peri, Diad  

Nano  

Minidiscus sp.  Mediophyceae  

(diatom)  

RCC4213  MACUMBA-

SC18  

Chlc1 + c2, 

Fuco, Diad, Diat  

Nano  

Prochlorococcus marinus (LL)  Cyanophyceae  RCC156  SS120-04/95  Zea, DV-Chlb, 

DV-Chla  

Pico  

Prochlorococcus marinus (HL)  Cyanophyceae  -  PCC 9511  Zea, DV-Chlb, 

DV-Chla  

Pico  

Synechococcus sp.  Cyanophyceae  RCC2319  MINOS11  Zea  Pico  

Synechococcus sp.  Cyanophyceae  RCC2374  A15-62  Zea  Pico  

Synechococcus sp.  Cyanophyceae  RCC2379  BOUM118  Zea  Pico  
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2.1.2. Multispectral fluorescence measurements  130 

All MXF measurements were performed using an ECO 3X1M fluorometer (Sea-Bird electronics, USA), with three 

excitation wavebands centred onto 440, 470 and 532 nm, and emission onto 695 nm, with a 10-nm bandwidth. 

To determine the fluorescence to Chla slope factor (here expressed in fluorescence per Chla unit), the MXF measurements 

were collected for each culture over a 5-point dilution series ranging from 0.1 to 10 mg Chla m-3. Each culture was dark 

acclimated for 2 h before dilution and MXF measurements. The MXF measurements were performed immediately after 135 

dilution to avoid any dilution-induced physiological stress. The ECO 3X1M sensor outputs were recorded with 

the TeraTerm® software. Each culture was diluted in a 1L glass beaker that was then placed under constant slow stirring. 

The multispectral fluorometer was placed at the centre of the beaker and the optical window was immersed 5 mm below the 

surface. Blank measurements were performed with culture media and were then subtracted from the culture measurements to 

remove any possible fluorescence signal from colour dissolved organic matter. Blank values were within a few counts of the 140 

dark reading, indicating that the measurements were not subject to optical interferences from the beaker edge or benchtop 

scattering. For each culture triplicate, on each dilution, we measured the fluorescence response during three series of one 

minute of continuous acquisition at 1 Hz, each separated by two minutes of darkness. The signal did not decrease 

significantly during acquisition, indicating that there was no quenching during the protocol application.  

2.1.3. Laboratory data processing  145 

For each of the ten selected phytoplankton strains grown in culture, the MXF measurements were processed as follows. First, 

for each dilution series, a blank value was recorded by measuring the average response of the culture medium alone and was 

then subtracted from the raw sensor output acquired for the culture as described above. The MXF measurements collected 

over the three consecutive acquisition periods were averaged to obtain a single fluorescence value, expressed in digital 

counts (DC). Finally, the dilution series was used to define a Chla-specific calibration value, expressed in units of DC (mg 150 

Chla m⁻³)⁻¹, for each of the three excitation wavelengths and each of the ten selected strains. This calibration 

value represents the coefficient of a linear regression performed between the fluorescence response at a given wavelength 

expressed in DC and the Chla concentration in mg m-3 for the entire dilution range and for each replicate of a given 

phytoplankton strain. For the sake of simplicity, the raw fluorescence signal, in DC, at an excitation wavelength λ, will be 

noted as Fλ (i.e., F440, F470, and F532 for the excitation wavelengths 440 nm, 470 nm, and 532 nm, respectively) and the Chla-155 

specific calibration value will be noted as F*λ (i.e., F*440, F*470, and F*532).  

  

2.2. Field measurements of bio-optical and biogeochemical variables  
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2.2.1. Sampling strategies  160 

Concomitant phytoplankton pigment determinations and bio-optical measurements were performed at sea every month, from 

December 2020 to October 2021 at the BOUSSOLE station (Buoy for the acquisition of long-term optical time series), a 

long-term monitoring site located at 7°54′E, 43°22′N in the Ligurian (NW Mediterranean) Sea (Antoine et al., 2008). On 

each monthly cruise (GOLBOL Melek, VELLUCCI Vincenzo, ANTOINE David (2000) 

BOUSSOLE, https://doi.org/10.18142/1), a CTD-rosette equipped with an optical sensor package was used to perform casts 165 

from the surface down to 400 m depth. The optical package included an MXF sensor (the same ECO 3X1M as used for the 

laboratory experiments), an ECO FLBB sensor and a C-Rover beam transmissometer (both Sea-Bird Scientific). The ECO 

FLBB measures the Chla fluorescence at one excitation (470 nm) and one emission (695 nm) wavelengths, as well as the 

particulate backscattering coefficient at 700 nm (bbp, see section 2.2.2). We note that among the three excitation channels of 

the ECO 3X1M (440, 470, and 532 nm), the first two (440 and 470 nm) are shared with dual-channel fluorometers (Sea-Bird 170 

Scientific ECO FLBBFL, RBR Tridente) now implemented on some BGC-Argo floats. This correspondence allows us to 

also test the potential of dual-channel fluorometers for inferring phytoplankton composition indicators in our analysis. The 

C-Rover transmissometer measures the light beam transmitted between the emitter and receptor (at 650 nm and over an 

optical path length of 25 cm), allowing the calculation of the attenuation coefficient. From this, the particulate beam 

attenuation coefficient (cp) is calculated by removing the attenuation of pure seawater. Both sensors have already been 175 

mounted on several BGC-Argo floats for different biogeochemical applications (e.g. Mignot et al., 2014; Rembauville et al., 

2017; Barbieux et al., 2022). Concomitantly, seawater was sampled from the Niskin bottles attached to the CTD-rosette at 

ten discrete depths for pigment identification and quantification by High-Performance Liquid Chromatography (HPLC).  

2.2.2 In-situ data processing  

The factory-determined dark value of the ECO FLBB sensor was validated in the laboratory using black tape to cover the 180 

optical window, then subtracted from the raw DC following BGC-Argo data management recommendations (Schmechtig et 

al., 2018a). The optical backscattering coefficient was measured during the CTD-rosette upcast, which was used for seawater 

sampling. The angular scattering coefficient (β) was recorded every second at a central angle of 124° and a wavelength of 

700 nm. To obtain the particulate angular scattering coefficient (βp), the contribution of pure seawater, dependent on 

temperature and salinity (Zhang et al., 2009), was subtracted from β. The βp coefficient was then converted into bbp following 185 

standard conversion guidelines and applying a χ factor of 1.076 (Schmechtig et al., 2018b).  

The ECO 3X1M sensor was mounted on the CTD-rosette frame, providing simultaneous MXF measurements. The same 

black tape procedure was used to subtract dark values. The raw fluorescence values, expressed as counts, were directly used 

as the fluorescence signal.  

The particulate attenuation coefficient was corrected for sensor drift and calculated from total beam transmittance as in 190 

Barnes & Antoine 2014.  
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The outliers in fluorescence, cp and bbp datasets were detected and removed using a threshold of 1.5 simple moving average 

(Δdepth = 3 m). Each profile was then smoothed using a simple moving average (Δdepth = 3 m).  

 

2.3. Determination of phytoplankton pigments  195 

For both laboratory and field samples, Chla and accessory pigments were identified and quantified by HPLC analysis. 

Briefly, seawater from discrete field samples or cultures was filtered onto glass fibre filters (GF/F Whatman 25 mm), stored 

in liquid nitrogen during cruises and then transferred at −80°C in the laboratory until further analysis at the SAPIGH HPLC 

analytical facility of the Institut de la Mer de Villefranche (IMEV; https://lov.imev-mer.fr/web/facilities/sapigh/). 

Phytoplankton pigments were extracted by sonication in 100% methanol, clarified by filtration (GF/F Whatman 25 mm), and 200 

finally separated and quantified by HPLC. More details about the HPLC analytical protocol can be found in Ras et al. 

(2008). The total chlorophyll a concentration, [Chla], is defined as the sum of chlorophyll a, divinyl-

chlorophyll a and chlorophyllid a concentrations.  

For in-situ samples, we specifically investigated the distribution of seven diagnostic pigments (DP) : peridinin (Peri), 19'-

butanoyloxyfucoxanthin (19-BF), fucoxanthin (Fuco), 19'-hexanoyloxyfucoxanthin (19-HF), alloxanthin (Allo), zeaxanthin 205 

(Zea), divinyl-chlorophyll b (DV-Chlb), and chlorophyll b (Chlb), with total chlorophyll b (TChlb) defined as the sum 

of DV-Chlb and Chlb, as well as divinyl-chlorophyll a (DV-Chla). These pigments are defined as biomarkers of major 

phytoplankton taxa and were further grouped into three phytoplankton size classes, i.e. micro- (>20 µm), nano- (2-20 µm) 

and picophytoplankton (<2 µm), according to the approach of Claustre (1994) and Vidussi et al. (2001). Following the 

equations given in Uitz et al. (2006), the DP-based method allowed the estimation of the relative contribution to the [Chla] of 210 

the three size classes. Because it relies on biomarker pigment concentrations, this approach yields an average, synthetic 

estimate of both the taxonomic and size composition of the phytoplankton communities. Although it has limits because some 

phytoplankton taxa may occasionally span over several size classes and some DP may be found in several taxa (Chase et al., 

2020), this approach has been shown to provide reliable, quantitative information for analyses at large spatial and temporal 

scales (e.g., Vidussi et al., 2001; Bricaud et al., 2004; Uitz et al., 2006; Brewin et al., 2014).  215 

  

2.4. Statistical analyses  

To explore the potential of deriving phytoplankton community composition from MXF and other bio-optical measurements, 

we employed a multi-step analytical approach. First, phytoplankton pigment data were analyzed using Correspondence 

Analysis (CA) to identify similarities in pigment composition among samples. The first three dimensions of the CA were 220 

then subjected to a Hierarchical Ascending Classification (HAC) to define distinct clusters, corresponding to typical 

phytoplankton assemblages observed in the NW Mediterranean at the BOUSSOLE site (following Kramer and Siegel, 2019; 
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Uitz et al., 2023). These clusters were subsequently used as categorical targets to evaluate the ability of MXF and bio-optical 

descriptors to infer phytoplankton composition through a Histogram Gradient Boosting (HGB) classification model.  

This clustering-based strategy offers two key advantages: (1) it transforms the prediction task from a regression to a 225 

classification problem, eliminating biomass effects and allowing the model to focus solely on taxonomic composition; and 

(2) it ensures that the model captures the most significant source of taxonomic variability in the dataset, thereby reducing the 

influence of minor variance components and mitigating the risk of overfitting.  

2.4.1. Correspondence analysis  

We used correspondence analysis (CA) to visualize the main similarities among samples based on their relative pigment 230 

concentrations. This method generates linear combinations of relative pigment contributions, creating a new 

multidimensional space where sample projections reflect their resemblance in pigment composition.  

In this transformed space, samples with similar pigment signatures are located close to each other, while those with distinct 

compositions are further apart. The first dimensions of the analysis capture the most significant variance in the dataset, 

effectively summarizing the dominant patterns in pigment distribution. By reducing data complexity, this approach provides 235 

a clearer interpretation of how different phytoplankton communities are structured based on their pigment signatures.  

We applied this statistical method for two key objectives. First, we used it to compare the pigment composition of cultured 

phytoplankton strains with that of field samples, assessing whether the selected strains accurately represent the seasonal 

phytoplankton succession at the sampled location in the NW Mediterranean Sea. This CA was performed using the seven 

DP concentrations. Field samples were projected in the transformed CA projection space, and the distance between field and 240 

laboratory samples will be discussed. Second, we conducted a CA exclusively on field samples, using the same set of 

pigments, and extracted the first three components as inputs for our clustering method described hereafter.  

2.4.2. Clustering of phytoplankton pigment data  

The pigment data from NW Mediterranean field samples, consisting of the set of pigment concentrations detailed in 

the previous section, were clustered to identify major phytoplankton assemblages along the seasonal cycle using the CA (cf. 245 

Section 2.4.1). The first three dimensions of the CA were used to quantify the resemblance in pigment composition across 

samples. A Hierarchical Ascending Classification (HAC) was then applied to these three dimensions, grouping samples 

based on their relative pigment composition rather than absolute pigment concentrations. The resulting cluster dendrogram 

was cut at a height of 20, minimising the intra-cluster variance, and yielding three initial clusters.  

Given the distinct pigment composition of prokaryotic picophytoplankton versus micro-/nanophytoplankton communities, 250 

we repeated the clustering after excluding picophytoplankton-dominated samples to refine the classification within the 

micro-/nanophytoplankton group. This second clustering step divided the micro-/nanophytoplankton samples into 

two additional clusters. In total, four distinct phytoplankton communities were identified.  
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2.4.3. Classification of phytoplankton groups based on MXF and additional bio-optical proxies  

Here we evaluated the possibility of using MXF measurements alone, or in combination with other bio-optical proxies 255 

measured by BGC-Argo floats to retrieve information on phytoplankton community composition. For this purpose, 

measurements of F440, F470, F532, bbp and cp were used as inputs of a model aiming at predicting the four different clusters 

identified with the method described in the previous section (cf. Section 2.5.2). We tested its performance using different 

sets of inputs, corresponding to either already deployed or feasible BGC-Argo sensor combinations, and varying levels of 

prediction task complexity (i.e., different number of clusters to predict).  260 

The classification of in-situ phytoplankton communities (i.e., the prediction of a categorical target variable) based on MXF 

and additional bio-optical measurements was performed using a Histogram Gradient Boosting (HGB) algorithm. This type of 

machine learning model is particularly well suited for tabular data, where each sample (row) is characterized by a consistent 

set of features (columns), and the dataset contains a relatively low number of observations (Chen and Guestrin, 2016; 

Shwartz-Ziv and Armon, 2022).  265 

The model's performance depends not only on the total number of observations but also on the distribution of observations 

across target classes (here, phytoplankton community clusters). An imbalance in class representation can bias the model 

toward the dominant class, leading to an artificial overestimation of its performance for that group while reducing accuracy 

for underrepresented classes. To mitigate this imbalance, we applied the Synthetic Minority Oversampling Technique 

(SMOTE) (Chawla et al., 2002), which generates synthetic samples for minority classes to improve classification fairness 270 

and overall model performance. In the end, each cluster was represented by 32 samples.  

Because the dataset consists of a time series of a single year of phytoplankton community succession, the phytoplankton 

biomass was strongly correlated with the community composition. Since the five different measured variables (i.e., F440, F470, 

F532, bbp, cp) are significantly correlated with phytoplankton biomass, we used biomass-specific ratios to avoid overfitting and 

highlight intrinsic optical properties. First, F440 and F532 were normalized to F470, which is the channel typically used to 275 

estimate Chla concentration from single-channel fluorometers. Second, each of the three fluorescence signals (F440, F470 and 

F532) was normalized to bbp and cp, used as particulate biomass proxies. The refractive index, representative of the 

composition of the particulate pool and estimated as a function of bbp/cp, was also used (Twardowski et al., 2001; Boss et al., 

2004).  

The hyperparameters of the model, i.e. the parameters influencing the learning process, were defined using a cross-validation 280 

grid search. In brief, the model has a learning rate of 0.05,l 400 estimators, and a maximum depth of 8. The influence of the 

different descriptors was inspected through the mean impurity index, which reflects the importance of each descriptor in the 

succession of the decision trees. The model was validated with 20 cross-validations, using a stratified shuffle split method 

with a test size of 20%, which allows one to obtain the same proportion of the four clusters in each learning and testing 

dataset with random sampling. The classification results can be categorized into four different categories: True Positive (TP) 285 

corresponding to the accurate prediction of the presence of a class of a given phytoplankton assemblage, True Negative (TN) 
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to the accurate prediction of the absence of a class, False Positive (FP) to the wrong prediction of the presence of a class, and 

False Negative (FN) to the wrong prediction of the absence of a class. The performance of the classification method was 

assessed through two different parameters, precision and recall, defined as follows:  

Precision = TP / (TP+FP) (1) 

Recall = TP / (TP+FN) (2) 

  290 

The precision can be interpreted as the fraction of positive predictions of the model that were accurate, while the recall can 

be interpreted as the fraction of positive samples that have been correctly predicted by the model. A precision or recall value 

of 1 indicates perfect classification, meaning no false positives (for precision) or false negatives (for recall). Conversely, a 

low precision value suggests a high number of false positives, whereas a low recall value indicates that many actual positive 

cases were missed by the model.  295 

The performance of the HGB classification model was tested for six different combinations of optical properties (e.g. 

F440, F470, F532, cp, and bbp) each consistent with potential future applications to BGC-Argo profiling floats (Table 

2). Ultimately, we tested the performance of the model in predicting different numbers of clusters, ranging from 4 down to 2, 

each reflecting a different level of predictive complexity.  

 300 

Table 2: List of sensor configurations tested in this study for retrieving phytoplankton community composition. For each 

configuration labelled A to F, we provide the measured variables along with examples of sensors that are available for 

integration, or already integrated, on BGC-Argo profiling floats.  

Sensor 

configuration 

F440 F470 F532 bbp cp Combination of sensors 

A X X X X X 

MXF sensor 

Backscatterometer 

Transmissometer 

B X X  X X 

Dual channel fluorometer 

Backscatterometer 

Transmissometer 

C X X X  X 
MXF sensor 

Transmissometer 

D X X  X  
Dual channel fluorometer 

Backscatterometer 
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E X X X   MXF sensor 

F  X  X X 

Single channel fluorometer 

Backscatterometer 

Transmissometer 

 

3. Results and discussion  305 

  

3.1. MXF signal in laboratory-controlled conditions  

  
After quantifying the calibrated fluorescence for each of the ten phytoplankton strains and for each excitation wavelength, 

we considered two Chla-specific fluorescence ratios F*532 / F*470 and F*440 / F*470, as described in Proctor and Roesler 310 

(2010). Both ratios varied by a factor of approximately 2 when all taxa were considered (Fig. 1). The 

three Synechococcus strains consistently showed high F*532 / F*470 ratios (1.37 +/- 0.1) and low F*440 / F*470 ratios (0.91 +/- 

0.06). By contrast, Prochlorococcus strains exhibited intermediate F*532 / F*440 and high F*440 / F*470 ratios (1.27 +/- 0.08 

and 1.22 +/- 0.07 respectively). The diatom strains showed low to intermediate values (1 +/- 0.05 for both ratios). The 

dinoflagellates strain had similar average ratios as the diatoms, but replicates were a bit more variable. Finally, 315 

the pelagophyceae strains had the lowest F*532 / F*470 and F*440 / F*470 ratios (0.71 +/- 0.02 and 0.95 +/- 0.12, respectively) 

of all taxa.  

The higher F*532 / F*470 values observed for the Synechococcus taxon may be explained by their higher fluorescence at 532 

nm, induced by the presence of phycoerythrin. Indeed, this phycobiliprotein is systematically found in open 

ocean Synechococcus and binds two chromophores, phycourobilin (λmax ~495 nm) and phycoerythrobilin (λmax ~545 nm), the 320 

latter thus being the most excited at 532 nm (Six et al., 2007; Grébert et al. 2018). Consequently, the phycourobilin-rich 

strain RCC2379 expectedly exhibited a lower average F*532 / F*470 ratio than the two other Synechococcus strains both being 

chromatic acclimaters which, in white light, exhibit a low phycourobilin to phycoerythrobilin ratio (Six et al. 

2004; Humily et al. 2013). Although the fairly high F*532 / F*470 ratio observed in Prochlorococcus are harder to explain, 

given the very low amounts of phycoerythrin present in these strains, the higher F*440 / F*470 ratio of the HL-adapted PCC 325 

9511 compared to the LL-adapted RCC156 is consistent with the much higher DV-Chla (λmax ~450 nm) to DV-

Chlb (λmax ~475 nm) ratio of the former (Moore et al. 1995). The differences in fluorescence responses among diatoms, 

dinoflagellates, pelagophyceae are also likely related to their distinct content in accessory chlorophylls, yet these differences 
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are somewhat subtle and harder to interpret in terms of fluorescence properties (Bidigare et al., 1989; Bricaud et al., 2004). 

Our results are in line with numerous previous studies that demonstrated that pigment composition influences both light 330 

absorption and fluorescence emission spectra in phytoplankton, leading to taxon-specific fluorescence signatures (Yentsch 

and Menzel, 1963; Johnsen and Sakshaug, 2007; Hu et al., 2010; MacIntyre et al., 2010; Proctor and Roesler, 2010). More 

specifically, some laboratory studies using monospecific cultures demonstrated that fluorescence spectra vary significantly 

across taxa when multiple excitation and emission wavelengths are used (Yentsch and Menzel, 1963; Johnsen and Sakshaug, 

2007; Poryvkina et al., 1994). More recent work has expanded on these findings by incorporating mixed communities, 335 

showing potential for determination of natural assemblages of phytoplankton (Hu et al., 2010; Escoffier et al., 2015). While 

Hu et al. (2010) included both monospecific and mixed cultures, as well as coastal marine samples, most of these studies 

were conducted under controlled laboratory conditions rather than in open-ocean environments.  

Only a few studies have investigated fluorescence responses in natural, mixed phytoplankton communities (Seppälä 

and Balode, 1998; Hu et al, 2010; Proctor and Roesler, 2010; Thibodeau et al. 2014). Some of these studies benefited from 340 

conditions that enhanced pigment-specific fluorescence signals, such as reversed filtration to increase pigment concentration 

(Seppälä and Balode, 1998), high resolution of fluorescence excitation/emission spectra (Seppälä and Balode, 1998; Hu et al, 

2010) or naturally high chlorophyll concentrations in bloom conditions (Proctor and Roesler, 2010). These conditions 

contrast sharply with those of the open ocean, where phytoplankton communities are more diverse, pigment concentrations 

are lower, and taxonomic differentiation based on MXF alone is more challenging.  345 

Despite this complexity, our MXF measurements on mono-specific cultures are promising and coherent with Proctor and 

Roesler (2010), who further demonstrated that intra-taxon variance in specific fluorescence ratios was lower than inter-taxon 

variance. Both studies suggest that a multispectral MXF sensor with three excitation channels (440, 470, and 532 nm) can 

provide sufficient sensitivity to distinguish taxa in controlled conditions even though natural communities consist of mixed 

assemblages of taxa with complex pigment signature, leading to less contrasted fluorescence response than for laboratory 350 

cultures. Therefore, in the following section, we investigate whether it is possible to resolve taxonomic composition from in-

situ phytoplankton fluorescence signals by analysing a year-long dataset from the NW Mediterranean Sea. Additionally, we 

assess whether combining MXF measurements with other bio-optical proxies could improve classification performance, in 

anticipation of future deployment of multispectral fluorometers on BGC-Argo profiling floats.  

 355 
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Figure 1: Scatterplot of F*440/F*470 vs. F*532/F*470 ratios for each phytoplankton strain grown in culture. The colour 

code indicates the taxon to which each strain belongs; the symbols indicate the strains, using the Roscoff Culture Collection 

code, when available (see Table 1).  

  360 

  

3.2. Phytoplankton communities in the Northwestern Mediterranean Sea  

  
Surface chlorophyll concentration at the BOUSSOLE site can reach values up to 5 mg Chla m-3 during the spring bloom and 

below 0.1 mg Chla m-3 in summer, along with seasonal changes of the phytoplankton community composition (Marty et al., 365 

2002; Antoine et al. 2020). In winter, pigment indicators of prymnesiophyte, namely 19’-HF and 19’-BF, 

are observed alongside fucoxanthin, a marker of diatoms, and alloxanthin, a marker of cryptophytes (Marty et al., 

2002; Mayot et al., 2017). During the spring phytoplankton bloom, fucoxanthin concentrations increase (Marty et al., 2002), 

which is likely related to an increase in diatoms. In summer, the mixed layer is phosphate-limited and phytoplankton 

communities are representative of stratified oligotrophic regions, with a prevalence of pigments specific to pico-370 

phytoplankton, divinyl-chlorophyll-a and zeaxanthin (Marty et al., 2008). This phytoplankton diversity is comparable to 

what is observed in temperate open-ocean regions (Vidussi et al., 2001; Marty et al., 2002; Lavigne et al., 2015; Mayot et al., 

2017).  

https://doi.org/10.5194/egusphere-2025-6418
Preprint. Discussion started: 7 January 2026
c© Author(s) 2026. CC BY 4.0 License.



15 

 

The composition of the phytoplankton communities in the field samples was analysed using a pigment-based clustering 

approach (see Section 2.4.2). The clustering allowed grouping samples with similar pigment composition and led to the 375 

discrimination of four distinct phytoplankton assemblages (clusters) over the year (Fig. 2a-d). All clusters are dominated by 

nanophytoplankton but vary significantly in the partitioning between micro- and picophytoplankton (Fig. 2e-h). The first 

cluster corresponds to winter communities as well as deep autumn communities, with a large proportion of 

picophytoplankton and a significant contribution of Chlb, a pigment typical of green microalgae, mostly flagellates 

(Bustillos-Guzmán et al., 1995). The second cluster coincides with the bloom community with a shared contribution of 380 

micro- and nanophytoplankton. This assemblage is characterized by a high fucoxanthin contribution, typically associated 

with diatoms. The third cluster is associated with summer communities located at and below the level of the deep 

chlorophyll maximum (DCM) and also exhibits a mixed composition of micro- and nanophytoplankton. Finally, the fourth 

cluster is characteristic of picophytoplankton communities in surface waters from summer to autumn, typically dominated 

by picocyanobacteria (Barlow et al., 1997).  385 

 

 

Figure 2: Distribution of the phytoplankton communities as determined from the cluster analysis applied to the field pigment 

data: (a-d) Vertical distribution of the four pigment-determined clusters indicative of the main phytoplankton 

communities encountered over an annual cycle in the northwestern Mediterranean Sea (BOUSSOLE site). The size of the 390 

dots indicates the Chla concentration, used as a proxy of the phytoplankton biomass. (e-h) Tree map of the relative pigment 
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concentration of each cluster (areas delimited by the grey lines), with the size class corresponding to the pigment taxa 

affiliation (colored).  

 

The results from the culture experiments demonstrated that phytoplankton taxa can be distinguished by MXF at the 395 

taxonomic level of the Class for eukaryotic phytoplankton (e.g., Diatoms, Dinoflagellates, Pelagophyceae) and Genus 

for picocyanobacteria (Synechococcus and Prochlorococcus). We then compared the relative accessory pigment composition 

of the in-situ clusters to that of the five laboratory characterized taxa. This analysis seeks to determine whether the field 

samples fall in the range of variability of accessory pigment composition of the culture samples.  

Similar to the field samples, a correspondence analysis (see Section 2.4.1) was applied to the pigment composition of the ten 400 

phytoplankton strains grown in the laboratory. This method allows a visualization of the different strains in a space where 

the distance between two samples reflects their relative pigment composition similarity (Fig. 3). We observe three distinct 

groups corresponding to the different taxa represented by the ten selected strains. One is composed of Diatoms 

and Pelagophyceae, while the two others correspond to Synechococcus and Prochlorococcus, respectively. This highlights a 

strong contrast in pigment composition between Synechococcus which has Zea, Prochlorococcus which has DV-Chla, DV-405 

Chlb and Zea, and the nano- and microphytoplankton taxa that share many different pigments (Jeffrey et al., 1997; Veldhuis 

et al., 2005).  

The culture results provide a reference from which the projection space is computed, on which the field samples are 

projected (Fig. 3). The field data are evenly spread in the centre of the plan, indicating that the variability in the pigment 

composition of the field samples is similar to that observed in the laboratory cultures. Moreover, the four field-based clusters 410 

are fairly well distinguished in the CA. The only exception being a few samples of cluster 1 with high CA2 values, due to the 

presence of 19’-HF, a pigment that is not found in our cultured strains. However, this pigment has a very similar absorption 

signature to other carotenoids like 19’-BF or peridinin. We thus expect that the MXF sensor is sensitive enough to 

discriminate between different phytoplankton groups (clusters) characterized by distinct pigment composition in field 

samples.  415 

In addition, we note that the in-situ samples have lower eigenvalues (i.e., absolute values on CA axes) than the laboratory 

samples indicating that the pigment variability is less contrasted in the field than in laboratory samples. This is not surprising 

because of the complexity of the pigment composition in natural samples associated with mixed phytoplankton assemblages, 

instead of single taxa in monospecific cultures. This characteristic of open-ocean samples could somewhat hamper the 

possibilities of inferring information on phytoplankton community composition from MXF measurements, a hypothesis that 420 

is tested in the next section.  
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Figure 3: Correspondence analysis of the pigment concentrations of the strains grown in culture. The pigment concentrations 

measured in the northwestern Mediterranean (BOUSSOLE site) seawater samples are represented using the same colour 425 

code as in Figure 2 and projected as supplementary observations  

3.3. Discrimination of phytoplankton taxa from in-situ MXF and additional bio-optical variables  

  
The predictive model (see Section 2.4.3) was tested using as inputs measurements from the MXF sensor alone (F440, 

F470, F532), or in combination with a backscatterometer (F440, F470, F532, bbp) and a transmissometer (F440, F470, F532, bbp, cp). 430 

Additionally, the model was also tested using measurements from a dual excitation channel fluorometer and 

backscatterometer (F440, F470, bbp), or combined with a transmissometer (F440, F470, bbp, cp) (Fig. 4 and Table A1). These two 

configurations are of particular interest as many BGC-Argo floats have been, and will continue to be, deployed with this 

specific set of sensors.  

Considering the most comprehensive configuration, A (i.e., F440, F470, F532, bbp, cp), the precision and recall scores of the HGB 435 

model are homogeneous among all four clusters with values between 60% and 85% (+/- 15%) (Fig. 4 and Table A1). These 

results based on annual sampling in the NW Mediterranean are quite robust, showing sufficient precision to demonstrate that 

MXF, when used in combination with a backscatterometer and a transmissometer, effectively allow four phytoplankton 

taxonomic groups to be distinguished. If we remove either the MXF sensor or the transmissometer, leading to measurements 

of F440, F470, bbp and cp, or F440, F470, F532 and cp (i.e., configurations B and C, respectively), we observe similar precision and 440 
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recall scores, and a marked variability between the clusters (Fig. 4 and Table A1). However, all four clusters displayed a 

mean precision of 67.25% (+/- 6.9%) and 69% (+/- 12%) for configurations B and C, respectively. When 

considering configuration D, which corresponds to a sensor load with a dual-channel fluorometer and a backscatterometer 

(i.e., F440, F470 and bbp), the scores are significantly lower with a mean precision of 62% (+/- 8.7%). The use of the MXF 

sensor only (configuration E, i.e. F440, F470 and F532) led to variable performances depending on the cluster. Thus, removing 445 

the transmissometer (cp) or the 532-nm excitation fluorescence channel (F532) seemingly induces a significant decrease in the 

general accuracy and recall scores of the model (Fig. 4). Finally, the configuration with only single-channel fluorescence 

measurements and two bio-optical indices (configuration F, i.e. F470, bbp, cp) led to lower performance for every cluster, 

except for the picophytoplankton dominated one (i.e., cluster 4; see Fig. 2). This suggests that a configuration without MXF 

performs better when the phytoplankton communities have contrasted size structures.  450 
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 455 

Figure 4. Precision and recall scores for phytoplankton community classification using different sensor package 

configurations. (A) Precision and (B) recall scores for predicting four phytoplankton clusters using various sensor 

combinations, either currently equipped on BGC-Argo profiling floats or suitable for future installations: full configuration 

(F440, F470, F532, bbp, cp); dual channel fluorescence with backscatterometer and transmissometer (F440, F470, bbp, cp); 

MXF with cp (F440, F470, F532, cp); dual channel fluorometer with backscatterometer (F440, F470, bbp); MXF only 460 

(F440, F470, F532) and single channel fluorescence with backscatterometer and transmissometer (F470, bbp, cp). 

Precision represents the fraction of positive predictions that were correct, while recall indicates the fraction of true positives 

correctly identified. Error bars reflect variability across cross-validation runs. Significance of paired t.test is indicated with 

stars (ns: p.value > 0.05 ; *: p.value <= 0.05 ; **: p.value <= 0.01 ; ***: p.value <= 0.001 ; ****: p.value <= 0.0001).  

 465 

A B C D E F 

https://doi.org/10.5194/egusphere-2025-6418
Preprint. Discussion started: 7 January 2026
c© Author(s) 2026. CC BY 4.0 License.



20 

 

Based on configuration A, which combines MXF and all bio-optical indicators, we can evaluate the predictive power of each 

descriptor. The mean importance of the descriptors in the discrimination of distinct phytoplankton clusters, as indicated by 

the impurity metrics (Fig. 5), highlights a significant role of all selected descriptors (bbp/cp, F440/F470, F440/cp, F532/F470, 

F532/bbp, F470/cp, F470/bbp, F440/bbp), and particularly of bbp/cp, F440/F470, F440/cp and F532/F440 ratios. The high importance of the 

bbp/cp ratio was expected as it has been already described as an indicator of the particle size distribution (Dall’Olmo et al., 470 

2009; Slade and Boss, 2015; Organelli et al., 2020). Interestingly, the second and fourth strongest predictive descriptors 

correspond to the fluorescence ratios from the MXF sensor (F440/F470 and F532/F470). This indicates the strong added value of 

the MXF descriptors in the predictive model, in line with our laboratory results. These results also support the findings of 

both Proctor and Roesler (2010) and Thibodeau et al. (2014) who showed that the F440/F470 and F532/F470 fluorescence ratios 

are related to the taxonomic composition of phytoplankton communities. Finally, we note that the commonly used 475 

phytoplankton community index, F470/bbp ratio (Cetinić et al., 2015; Lacour et al., 2019; Terrats et al., 2020), has a notably 

lower predictive robustness in our analysis. Therefore, the use of new sensor configurations, including a multiple excitation 

channel fluorometer and a beam attenuation transmissometer implemented on BGC-Argo floats, may have a stronger 

potential than previously described methods to detect seasonal succession of phytoplankton groups, with markedly different 

pigment composition or cell sizes (here picophytoplankton-dominated vs. microphytoplankton-dominated communities).  480 

 

 

Figure 5: Importance of the different descriptors in the classification model, expressed as the mean decrease in impurity. The 

mean decrease in impurity reflects how much each descriptor contributes to improving the purity of the splits in the decision 
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tree. A higher value indicates that the descriptor plays a more significant role in distinguishing (i.e., pigment-based 485 

clusters) in the model.  

3.4. Model tuning to predict phytoplankton communities  

  
In Section 3.3, we considered four clusters found along the annual phytoplankton succession. We now evaluate the same 

model and hyperparameters for predicting two or three clusters (instead of four), to assess whether reducing the level of 490 

predictive complexity improves the model performances under different sensor configurations. First, we reduced the number 

of clusters from four to three by merging Clusters 2 and 3, the two clusters with the smallest distance, representing mixed 

nano- and microphytoplankton-dominated communities. The main distinction between these two clusters lies in their 

dominant pigments. Cluster 2 is indeed characterized by a higher relative contribution of alloxanthin, while Cluster 3 is 

dominated by 19’-HF. The three resulting clusters correspond to the surface summer picophytoplankton community 495 

associated with large concentrations of zeaxanthin (Cluster 4), the winter and deep summer picophytoplankton community 

with Chlb and DV-Chlb (Cluster 1), and the mixed micro- and nanophytoplankton community (Clusters 2 and 3 grouped 

together). Second, we reduced the initial number of four clusters to two, by merging Cluster 1 (dominated by Chlb-

containing picophytoplankton) and Cluster 4 (dominated by zeaxanthin-containing picophytoplankton) to a 

picophytoplankton-dominated cluster essentially grouping Synechococcus, Prochlorococcus and chlorophytes. The second 500 

cluster consists of the previously merged cluster (initially Clusters 2 and 3) composed of micro- and nanophytoplankton.  

Like the approach presented in Section 3.3, we evaluated the classification model performances for different sensor 

configurations using the mean balanced recall metrics, which reflects the percentage of correctly classified samples. The 

same cross-validation method was applied to ensure consistency (Fig. 6). We first observed that a decrease in prediction 

complexity (specifically, a reduction in the number of clusters) does not consistently lead to an improvement in the 505 

classification model performance, and that the effect of such a reduction depends on the sensor configuration. When all 

sensors are included (configuration A), the model performs best in predicting 2 or 3 clusters than 4 clusters, achieving above 

75% recall. Similarly, the model using as inputs two fluorescence wavelengths, as well as the bbp and cp coefficients (i.e., 

configuration B) achieves above 75% recall when predicting 2 or 3 clusters.  

It is worth noting that the model using as inputs bio-optical measurements from sensors already implemented on some BGC-510 

Argo floats (i.e, configuration F with single-channel fluorescence, bbp and cp) demonstrates strong predictive capabilities for 

2 or 3 clusters, achieving recall values of 72% and 74%, respectively. In the two-cluster prediction scenario, one 

cluster predominantly comprises picophytoplankton, such as Synechococcus and Prochlorococcus, while the other includes a 

mix of nano- and microphytoplankton. Interestingly, previous studies have shown that the combination of F470, bbp, and 

cp effectively correlate with phytoplankton community size structure (Veldhuis et al., 2005; Brewin et al. 2011; Cetinić et al. 515 

2015; Sauzède et al. 2015; Rembauville et al. 2017, Terrats et al. 2023) supporting our findings. In the three-cluster scenario, 

the model has to distinguish between two different types of picophytoplankton communities rather than one. These 
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communities exhibit markedly different photoacclimation profiles, with deep-water communities displaying a F470/bbp ratio 

significantly distinct from that of surface communities (Bellacicco et al. 2016; Graff et al. 2016). Thus, the model 

successfully discriminates phytoplankton communities according to their average size and photoacclimation status. 520 

However, when the nano- and microphytoplankton-dominated cluster is further divided into two distinct communities based 

on varying carotenoid composition, the model performance declines markedly, resulting in a recall score of only 40%. This 

low score, compared to the high predictive performance of the other models, that all include multiple fluorescence with at 

least two wavelengths (i.e., configurations A to E), highlights the importance of MXF for pigment-based remote 

classification of phytoplankton communities.  525 

When using MXF data only (i.e., configuration E), the model recall performance drops to approximately 50%, whatever the 

number of predicted clusters. In comparison, models conFig.d with the MXF sensor and a transmissometer (i.e., 

configurations C) reach around 65% recall, regardless of the amount of cluster to be predicted. Adding the particulate 

backscattering coefficient (bbp, configuration A) slightly increases the recall score to around 75% when predicting 2 or 3 

clusters. This highlights the importance of incorporating additional bio-optical indices with MXF, such as bbp and cp, to 530 

enhance the phytoplankton group classification model. Furthermore, when the backscatterometer and transmissiometer are 

present, the MXF 532-nm fluorescence channel does not improve the model performance (configuration A and B). 

This indicates that, overall, when bio-optical sensors measuring bbp and cp can be used as inputs, only two fluorescence 

wavelengths are needed to achieve an optimal classification of phytoplankton communities.  

These findings demonstrate that meaningful phytoplankton taxonomic information can be retrieved from MXF signals. If the 535 

standard BGC-Argo configuration (i.e., configuration F) with one single-channel fluorescence and two optical indices 

(bbp and cp) shows good prediction performances for predicting two and three clusters, adding one more 

fluorescence wavelength (i.e., configurations A to E) significantly improves the performance when predicting four clusters. 

Thus, our results demonstrate that MXF is a promising avenue for remote classification of phytoplankton community 

composition.  540 

Our results also highlight that the predictive skill of individual descriptors, particularly the 532 nm fluorescence channel, 

depends on both the way clusters are defined and on the ecological context in which communities occur. When 

clusters retain a strong contribution of Chlb–containing taxa (e.g., chlorophytes) or phycoerythrin-

rich picocyanobacteria (Synechococcus), the F532/F470 ratio provides valuable information on community composition. 

However, when such groups are merged into broader assemblages, the influence of F532 diminishes and the model relies 545 

more heavily on size- or biomass-sensitive proxies such as cp and bbp. Ecologically, this reflects the fact that pigment-based 

contrasts are strongest when communities differ in accessory pigment composition, while size-structure proxies dominate 

when communities are merged across pigment gradients. From a broader perspective, this sensitivity also explains why the 

usefulness of F532 will vary geographically: in regions where Synechococcus or green flagellates are recurrent and 

occasionally abundant (e.g., coastal upwelling systems), including 532 nm excitation is expected to significantly improve 550 
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classification performance (Morel, 1997; Saito et al., 2005). In contrast, in persistently oligotrophic waters such as the 

subtropical gyres the added value of F532 is likely reduced.  

 

 

 555 

Figure 6: Values of the mean weighted recall resulting from cross-validation with different numbers of clusters and different 

sensor combinations, either currently equipped on BGC-Argo profiling floats or feasible for future deployments:  full 

configuration - A (F440, F470, F532, bbp, cp); dual-channel fluorescence with backscatterometer and transmissometer - 

configuration B (F440, F470, bbp, cp); MXF with cp - configuration C (F440, F470, F532, cp); dual-channel fluorometer 

with backscatterometer - configuration D (F440, F470, bbp); MXF only - configuration E (F440, F470, F532); and single-560 

channel fluorescence with backscatterometer and transmissometer - configuration F (F470, bbp,cp).  Significance of 

paired t.test is indicated with stars (ns: p.value > 0.05; *: p.value <= 0.05 ; **: p.value <= 0.01 ; ***: p.value <= 0.001 

; ****: p.value <= 0.0001).  

  

A B C D E F 

A B C D E F 
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4. Conclusion and perspectives  565 

Monitoring phytoplankton community composition is essential for understanding marine biogeochemical cycles, particularly 

those related to oceanic carbon dynamics. However, this remains challenging in open-ocean environments due to the 

limitations of current autonomous sensor technologies and the complex bio-optical signature of mixed phytoplankton 

assemblages. In this study, we developed and tested a machine learning (HGB) model to classify phytoplankton assemblages 

using in-situ MXF and additional bio-optical measurements. The goal was to assess the potential of MXF for taxonomic 570 

discrimination of phytoplankton communities from autonomous platforms, particularly BGC-Argo profiling floats. The HGB 

model uses MXF signals, specifically fluorescence excited at 440, 470, and 532 nm, alongside particulate backscattering 

(bbp) and beam attenuation (cp) coefficients as input features. Taxonomic information was assessed through pigment-based 

clustering of field samples collected over a full annual cycle in the NW Mediterranean Sea.  

Our primary objective was to evaluate the predictive skill of MXF measurements. Under laboratory conditions, MXF 575 

provided sufficient sensitivity to distinguish five key phytoplankton groups. When applied to field data, MXF alone had 

lower performance due to the presence of complex mixed phytoplankton assemblages, compared to monospecific cultures. 

However, combining MXF with additional bio-optical indices improved discrimination of phytoplankton communities.  

We assessed the model’s performance across different sensor configurations, reflecting realistic BGC-Argo float payloads, 

and across varying levels of classification complexity, (i.e., number of predicted pigment-based clusters). While existing 580 

sensor configurations, such as single-wavelength fluorescence with bbp and cp, performed well for simple phytoplankton 

communities (two or three clusters), full separation of more complex community types (four clusters) required the richer 

spectral information provided by MXF. Notably, MXF enabled taxonomic discrimination within micro- and 

nanophytoplankton-dominated assemblages, even when using only two fluorescence channels, 440 and 470 nm. In contrast, 

bio-optical properties such as bbp and cp, which are robust proxies for particle size and biomass, were more effective at 585 

distinguishing between communities with pronounced size differences, such as pico- versus microphytoplankton.  

Overall, our results suggest that integrating MXF into BGC-Argo platforms could significantly enhance our ability 

to monitor shifts in phytoplankton communities, particularly among groups with overlapping size distributions. This 

advancement would provide valuable insights into ecosystem dynamics and the role of phytoplankton taxonomic 

composition across broad spatial and temporal scales, enabled by the autonomous sampling capabilities of BGC-Argo floats, 590 

in open-ocean biogeochemical cycles.  

Future work should aim to generalize these findings across diverse oceanic regions and refine the predictive model to 

account for a broader variety of phytoplankton taxa. Building a standardized dataset linking phytoplankton community 

composition, from pico- to micro-size classes, to MXF and bio-optical measurements will be crucial for improving our 

understanding of phytoplankton dynamics through autonomous observations. 595 
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Appendix A 

Table A1 : Mean and standard deviation of precision and recall scores from the cross validation (repeated prediction 

of clusters from the machine learning model using randomly picked samples for training and testing). The standard 600 

deviation is indicated in parentheses. Each line corresponds to a specific combination of sensors, either currently 

deployed on BGC-Argo profiling floats or suitable for future deployments:  full configuration (F440, F470, F532, bbp, cp); 

dual channel fluorescence with backscatterometer and transmissometer (F440, F470, bbp, cp); MXF with 

backscatterometer (F440, F470, F532, bbp); dual channel fluorometer with backscatterometer (F440, F470, bbp); MXF only (F440, 

F470, F532) and single channel fluorescence with backscatterometer and transmissometer (F470, bbp, cp).  605 

 

Configuration Cluster 1 Cluster 2 Cluster 3 Cluster 4 

 Precision Recall Precision Recall Precision Recall Precision Recall 

F440 + F470 + 

F532 + bbp + cp 
A 

0.68 

(0.15) 

0.68 

(0.18) 

0.67 

(0.15) 

0.67 

(0.16) 

0.86 

(0.14) 

0.86 

(0.14) 

0.58 

(0.12) 

0.58 

(0.1) 

F440 + F470 + 

bbp + bbp 
B 0.58 (0.2) 

0.59 

(0.21) 

0.68 

(0.17) 

0.67 

(0.17) 

0.75 

(0.19) 

0.74 

(0.19) 
0.68 (0.2) 

0.66 

(0.18) 

F440 + F470 + 

F532 + cp 
C 

0.62 

(0.19) 

0.63 

(0.2) 

0.71 

(0.19) 

0.72 

(0.17) 

0.86 

(0.14) 

0.87 

(0.14) 

0.57 

(0.19) 

0.57 

(0.19) 

F440 + F470 + 

bbp 
D 

0.56  

(18) 

0.59 

(0.21) 

0.63 

(0.19) 

0.63 

(0.2) 

0.74 

(0.22) 

0.76 

(0.15) 

0.55 

(0.18) 

0.54 

(0.2) 

F440 + F470 + 

F532 
E 0.37 (0.2) 

0.37 

(0.19) 

0.81 

(0.21) 

0.83 

(0.21) 

0.51 

(0.14) 

0.51 

(0.14) 
0.65 (0.2) 

0.64 

(0.2) 

F470 + bbp + cp 
F 

0.36 

(0.26) 

0.37 

(0.16) 

0.32 

(0.26) 

0.33 

(0.25) 

0.68 

(0.22) 

0.69 

(0.21) 

0.47 

(0.19) 

0.47 

(0.17) 
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