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Abstract. Most emissions scenarios consistent with limiting warming to well below 2°C above pre-industrial levels rely on
carbon dioxide removal to offset residual positive emissions or achieve net-negative emissions. While carbon cycle and climate
metrics are well quantified for positive CO2 emissions, applying the same metrics under negative emissions may over- or
underestimate the effectiveness of carbon dioxide removal. This study uses an Earth system model to investigate the asymmetry
in carbon cycle feedbacks and climate response under positive and negative COz emissions. To this end, symmetric
concentration-driven simulations are initialized from a state at equilibrium with twice the preindustrial CO2 concentration and
run in biogeochemically coupled, radiatively coupled and fully coupled modes. Our results suggest that land and ocean carbon
cycle feedbacks are asymmetric. Compared to their respective magnitudes under positive emissions, the concentration-carbon
feedback is larger, whereas, the climate-carbon feedback is smaller under negative emissions. Asymmetries in land carbon
cycle feedbacks arise from the saturation of the CO: fertilization effect and asymmetric temperature and soil respiration
responses. Asymmetries in ocean carbon cycle feedbacks are driven by non-linear responses to CO2 and temperature change,
as well as asymmetric ocean circulation responses. Asymmetries in carbon cycle feedbacks propagate onto asymmetry in the
Transient Climate Response to Cumulative CO2 Emissions: a negative CO2 emission results in greater global mean temperature
change than a CO2 emission of the same magnitude. Our study highlights the need to quantify metrics under negative emissions
as reliance on metrics derived from positive emission scenarios may result in inaccurate quantification of the climate response

under net negative CO2 emissions.

1 Introduction

The potential for dangerous climate impacts due to anthropogenic CO2 emissions prompted the signing of the Paris Agreement,
which seeks to limit global warming to well below 2°C above pre-industrial levels, and pursue further efforts to limit it to
1.5°C (UNFCCC, 2015). To achieve either climate goal by 2100, substantial emissions cuts are required immediately (United
Nations Environment Programme, 2020). Emissions scenarios consistent with the Paris Agreement climate goals heavily rely
on artificial carbon dioxide removal (CDR), to not only offset difficult-to-mitigate emissions, but also achieve net-negative
emissions, that is, when the amount of CO2 removed from the atmosphere exceeds the amount of CO2 added to the atmosphere.

Examples of CDR approaches include bioenergy with carbon capture and storage (BECCS), afforestation and reforestation
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(forestation), direct air capture of CO> with carbon capture and storage (DACCS), and ocean alkalinity enhancement, among

others (Pathak et al., 2022; Smith et al., 2023).

Emissions scenarios consistent with global climate goals are designed with an assumption of symmetry, that is, removals are
applied as negative emissions that offset positive emissions, assuming symmetry in climate outcomes (Zickfeld et al., 2021).
For this assumption to be true, the carbon cycle and climate response to a positive CO2 emission needs to be of equal magnitude
and opposite sign to its response to a negative CO2 emission (Zickfeld et al., 2021). Research shows that this asymmetry does
not hold for the carbon cycle, and uncertainties exist for the temperature response, particularly with regards to the sign of the
asymmetry (Zickfeld et al., 2016; Zickfeld et al., 2021; Canadell et al., 2021; Koven et al., 2022a, Koven et al., 2022b).
Therefore, this study aims to investigate the asymmetry in carbon cycle feedbacks and the climate response under positive and
negative CO2 emissions, focusing on two research questions:

1. To what extent are global land carbon cycle feedbacks asymmetric and what are the mechanisms that drive this

asymmetry?
2. To what extent is the temperature response - as quantified through the Transient Climate Response to Cumulative

COz Emissions or Removals (TCRE/TCRR metric) - asymmetric, and what drives this asymmetry?

Carbon cycling on land and in the ocean regulates atmospheric CO2 concentration under negative emissions, as it does under
positive CO2 emissions. If negative emissions are implemented but removals remain lower than emissions (net-positive
emissions), the land and ocean carbon sinks continue to take up carbon, albeit at a lower rate (Tokarska & Zickfeld, 2015;
Jones et al., 2016; Melnikova et al. 2021; Koven et al., 2022a). Once the amount of CO2 removed from the atmosphere exceeds
the amount of CO2 added to the atmosphere (net-negative emissions), the carbon sinks are expected to weaken further and may
reverse, counteracting CDR efforts (Cao & Caldeira, 2010; Tokarska & Zickfeld, 2015; Jones et al., 2016; Melnikova et al.,
2021; Zickfeld et al., 2021; Canadell et al., 2021; Koven et al., 2022a). Under net-negative emissions, declining atmospheric
COz concentration results in a reversal of carbon sinks to sources (negative concentration-carbon feedback), whereas cooling
associated with declining atmospheric COz results in COz uptake (positive climate-carbon feedback) (Schwinger & Tjiputra,
2018; Chimuka et al., 2023). The magnitude of these feedbacks determines the extent to which land and ocean carbon cycle

responses counteract CDR, and therefore, how effective CDR will be in achieving climate goals (Chimuka et al., 2023).

Quantifying the magnitudes of carbon cycle feedbacks under net-negative emissions, however, is complicated by climate
system inertia. The “CDR-reversibility” simulation, which has been commonly used for carbon cycle feedback quantification
under negative emissions, is characterized by a CO2 concentration increase at a rate of 1% per year, followed immediately by
a ramp-down at the same rate back to preindustrial COz levels (CDR-MIP: Keller et al., 2014). Studies using these simulations
show a lagged carbon cycle response in the ramp-down phase because of climate-system inertia: carbon pools respond to both

the decreasing CO2 concentration and prior increasing COz concentration (Tokarska & Zickfeld, 2015; Zickfeld et al., 2016;
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Schwinger & Tjiputra, 2018). This lagged response results in smaller carbon pool changes, and therefore, smaller magnitudes
of feedbacks under net-negative emissions relative to positive emissions (Schwinger & Tjiputra, 2018; Chimuka et al., 2023).
Chimuka et al., (2023) proposed a novel approach to address climate system inertia and better quantify carbon cycle feedbacks
under net-negative emissions. In this approach, climate system inertia was quantified through zero emissions simulations, then
subtracted from the CDR-reversibility simulations to isolate the response to negative emissions alone. Findings showed larger
feedbacks under negative emissions in the inertia-corrected approach than in the standard approach due to the reduction of

climate system inertia effects.

Asymmetries in carbon cycle feedbacks affect the airborne or removal fraction, and thus, asymmetries in the carbon cycle and
the associated feedbacks are expected to propagate onto the temperature response. The temperature response to CO2 emissions
is commonly quantified by the Transient Climate response to Cumulative CO2 Emissions (TCRE) — the ratio of the transient
global mean warming to cumulative CO2 emissions (Matthews et al., 2009). The TCRE is approximately constant over time
and across scenarios (Matthews et al., 2009; Gillett et al., 2013; Ehlert et al., 2017; Matthews et al., 2017). Studies exploring
the TCRE show that the linear relationship still holds under negative emissions if the temperature response is corrected for
ocean thermal and carbon cycle inertia effects as quantified by the zero emissions commitment (Zickfeld et al., 2016; Koven
et al., 2022a; Koven et al., 2022b; Sanderson et al., 2025). The TCRE under net-negative emissions is also referred to as the
transient climate response to cumulative CO2 removals (TCRR) (Zickfeld et al., 2021). The magnitude of the TCRE/TCRR
asymmetry is highly uncertain (Zickfeld et al., 2016; Zickfeld et al., 2021; Canadell et al., 2021; Koven et al., 2022a, Koven
et al., 2022b). Furthermore, the sign of the temperature asymmetry varies across models, with some models exhibiting a larger
temperature response under positive emissions and others under negative emissions (Canadell et al., 2021; Koven et al., 2022a;

Sanderson et al., 2025).

This paper explores the extent to which carbon cycle feedbacks and the transient climate response to CO2 emissions and
removals are asymmetric and the mechanisms behind the asymmetry. Section 2 outlines the experimental design and climate
model simulations used as well as the frameworks used to quantify carbon cycle feedback and climate metrics. Section 3 covers
the land and ocean carbon cycle feedback and TCRE/TCRR asymmetry results, and the associated mechanisms behind the
asymmetry. Understanding the symmetry in carbon cycle feedbacks is integral for determining whether the same metrics, that

is, carbon cycle feedback parameters or the TCRE/TCRR, can be applied under both positive and negative emissions.

2 Methods
2.1 Model Description

We use the University of Victoria Earth System Climate Model (UVic ESCM, version 2.10) - a model of intermediate
complexity with a horizontal grid resolution of 1.8° (meridional) x 3.6° (zonal) (Weaver et al., 2001; Mengis et al., 2020). The
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atmosphere model is a 2D energy-moisture balance model with dynamical wind feedbacks. Atmospheric heat and freshwater
are transported through diffusion and advection (Weaver et al., 2001), based on wind velocities prescribed from monthly
climatological wind fields from NCAR/NCEP reanalysis data (Eby et al., 2013). This simplified atmosphere model is coupled
to a 19-layer 3D ocean general circulation model, including ocean inorganic and organic carbon cycle models, and based on
the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 2 (MOM2; Pacanowski, 1995). The
coupled dynamic—thermodynamic sea ice model simulates sea ice dynamics through elastic, viscous, and plastic deformation

and flow mechanisms (Weaver et al., 2001).

The land surface model, based on the Hadley Centre Met Office Surface Exchange Scheme (MOSES), simulates the terrestrial
carbon cycle and is coupled to the Top-Down Representation of Interactive Foliage and Flora including Dynamics (TRIFFID)
model which simulates vegetation and soil carbon (Meissner et al., 2003). This model version also includes a permafrost carbon
model in the soil module that simulates permafrost carbon through a diffusion-based scheme (MacDougall and Knutti, 2016).
Ocean carbon is represented by an inorganic ocean carbon model following the Ocean Carbon Model Intercomparison Protocol
(OCMIP), and an NPZD (nutrient, phytoplankton, zooplankton, detritus) model of ocean biology simulating carbon uptake by
the biological pump, accounting for phytoplankton light and iron limitations (Keller et al., 2012).

2.2 Model Simulations

The model was first integrated under a CO:z concentration twice that at preindustrial (~560 ppm) for several millennia to
achieve an equilibrium state. All other greenhouse gas and aerosol forcings, surface land conditions, and orbital parameters
were held at 1850 levels according to the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design
protocol (Eyring et al., 2016). The solar forcing was set to the 1850—1873 mean and the volcanic forcing was held at its average

over 18502014, also consistent with the CMIP6 protocol (Eyring et al., 2016).

Following the 2xCO: spin-up, two idealized symmetric concentration-driven simulations were run. Concentration-driven
simulations were chosen in order to expose the land and ocean to the same CO: concentrations, facilitating easier separation
of concentration-carbon and climate-carbon feedbacks (Gregory et al., 2009; Zickfeld et al., 2011; Schwinger et al., 2014).
Both simulations were initialized from a state of equilibrium to quantify the response to positive and negative emissions
without climate system inertia effects. In one simulation, atmospheric CO2 concentration was prescribed to increase at
1 % yr ' until three times the preindustrial CO2 concentration, and in another the atmospheric CO2 concentration was
prescribed to decline back to preindustrial levels symmetrically (figure 1(a)). In both simulations, it takes roughly 43 years to
reach three times the preindustrial CO2 concentration and preindustrial respectively. We refer to the simulation with increasing
atmospheric COz concentration as the positive emissions (PE) simulation, and the simulation with decreasing atmospheric
COz2 concentration as the negative emissions (NE) simulation. Although concentrations are symmetric in both simulations, the

diagnosed emissions differ; cumulative positive emissions are approximately 800 PgC, whereas cumulative negative emissions
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are 970 PgC (figure 1(c)). The NE simulation includes substantial levels of negative emissions that cannot yet be achieved in
the real world (Powis et al., 2023). However, this simulation is symmetric with respect to CO2 concentrations in the PE

simulation, allowing for the quantification of asymmetry in climate-carbon cycle response (figure 1(a)).

To assess the rate-dependence of the asymmetry in the climate-carbon cycle response to positive and negative emissions, we
ran additional symmetric concentration-driven simulations derived from the esm-flat10 simulations by Sanderson et al. (2024,
2025). The esm-flat10 simulations are emissions-driven simulations with a constant emissions rate of 10 PgC yr! for 100
years, reaching cumulative emissions of 1000 PgC. These simulations were designed in line with current annual CO2 emissions
rates and with the goal of diagnosing climate metrics such as the TCRE. As concentration-driven simulations are best suited
for the calculation of feedbacks (Arora et al., 2013), we modified the esm-flat10 simulation as follows: First, a fully coupled
emissions-driven esm-flat10 simulation was initialized from the an equilibrium state twice the preindustrial CO2 concentration,
then the COz concentration trajectory from that simulation was used to force a concentration-driven simulation, referred to
here as the esm-flat10-conc PE simulation (figure 1(2)). In an additional step, the COz trajectory was mirrored over the x-axis
to obtain a symmetric trajectory with declining atmospheric COa. This CO: trajectory was used to run a second simulation,
referred to as the esm-flat10-conc NE simulation (figure 1(a)). The rate-dependence was determined by comparing the
magnitude and sign of carbon cycle feedbacks and TCRE asymmetry in the 1% yr! and esm-flat10-conc simulation pairs.
Lastly, we ran all four aforementioned simulations from 2 additional equilibrium states — three times (3xCOz) and four times

(4xCO:») the preindustrial CO2 concentration — to test the sensitivity of climate-carbon cycle asymmetry to initial state.
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Figure 1: Prescribed atmospheric CO; concentration, b. diagnosed annual positive and negative CO; emissions, and c. diagnosed
cumulative positive and negative CO, emissions in the fully coupled (FULL) 1% yr! and esm-flat10-conc positive (PE) and negative
(NE) emissions simulations. Solid lines represent the positive emissions run; dashed lines represent the negative emissions run. Panel
a is calculated relative to the 2xCQ; equilibrium state.

All simulations were run in three modes, following the C4AMIP protocol for the quantification of carbon cycle feedbacks
(Friedlingstein et al., 2006; Arora et al., 2013, 2020; Jones et al., 2016):

e Fully coupled mode (FULL): the entire Earth system responds to the specified change in atmospheric

CO:z concentration or COz emissions — in this mode, the land and ocean carbon sinks are subject to changing

atmospheric COz concentration and temperature.
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e Biogeochemically coupled mode (BGC): the land and ocean carbon sinks are subject to changing atmospheric
COz concentration but not changing temperature — this is achieved by prescribing a specified time-invariant
COz concentration to the radiation module (twice the preindustrial CO2 concentration for both simulations), while
the land and ocean carbon cycle modules see an evolving atmospheric CO2 concentration.

e Radiatively coupled mode (RAD): the land and ocean carbon sinks are subject to changes in temperature but no
change in atmospheric CO:z concentration — the land and ocean carbon cycle modules see a specified time invariant
COz concentration (twice the preindustrial CO2 concentration in both simulations), while the radiation module sees
changing atmospheric CO:2 concentration.

Non-CO: forcings, including forcings due to other greenhouse gases and aerosols, were held fixed at their preindustrial values.

2.3 Metric Quantification

Asymmetry in global carbon cycle feedbacks was determined by comparing the magnitudes and signs of feedback parameters
under positive and negative emissions, evaluated at the end of the simulation. Feedback parameters were quantified following
the integrated flux-based feedback framework from Friedlingstein et al. (2006) (see section 2.3.1 below). Feedback parameters
under negative emissions were also compared to those from Chimuka et al. (2023), where they were quantified including
climate system inertia effects and then corrected for that inertia. The carbon cycle feedback parameters in the esm-flat10-conc
symmetric simulations were computed at the same atmospheric CO2 concentration change, that is, when atmospheric CO2
concentration change reached 280ppm relative to the spin-up, for ease of comparison to the feedback parameters in the 1% yr°

! simulations.

The temperature asymmetry was assessed in two ways: (1) using a framework that quantifies the TCRE and TCRR, utilizing
the Jones & Friedlingstein (2020) framework and (2) using the conventional calculation of the TCRE and TCRR metrics, in
which the TCRE was computed as the temperature change for a given amount of cumulative COz emissions, and the TCRR as
the temperature change for a given amount of cumulative COz removals. Since the simulations used are concentration-driven,
diagnosed emissions were used for the conventional calculation of the TCRE/TCRR. The Jones & Friedlingstein (2020)
framework uses the global carbon cycle feedback parameters and the transient climate sensitivity metric from the fully coupled
modes to approximate the TCRE and TCRR (see section 2.3.2 below). For validation purposes, the metrics computed from
this method were then compared to those calculated using the conventional calculation, evaluated at the end of the simulation.
The TCRE and TCRR metrics in the esm-flat10-conc simulations were computed at the same cumulative emissions and
removals as in the 1% yr! symmetric simulations. The temperature asymmetry was then determined by comparing the

magnitudes of the TCRE and TCRR metrics.
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2.3.1 Global Carbon Cycle Feedback Framework

Carbon cycle feedbacks were quantified using integrated flux-based feedback parameters (Friedlingstein et al., 2006). In the
Friedlingstein et al. (2006) feedback framework, the change in land (ocean) carbon due to both COz and climate changes is
expressed as the linear sum of the land (ocean) response to the change in the atmospheric COz concentration AC, and surface
air temperature AT:

[1] AC, = B AC, + v, AT

[2] ACy = BoAC, + yoAT

The concentration-carbon feedback parameter () quantifies the carbon cycle response to changes in CO2 concentration in
units of PgC ppm!, whereas the climate-carbon feedback parameter (y) quantifies the carbon cycle response to changes in
temperature in units of PgC °C! (Friedlingstein et al., 2006). The change in land and ocean carbon due to the increasing
atmospheric CO2 concentration alone is determined using the biogeochemically coupled simulation. In this simulation, the
land and ocean only respond to changes in CO2 concentration, and therefore, this simulation can be used to quantify the
concentration-carbon feedback (Friedlingstein et al., 2006). Warming is still observed in this simulation because the water use
efficiency of vegetation increases at higher CO2 concentrations, and changes in albedo, due to shifts in vegetation structure
and spatial distribution, result in a small warming effect (Cox et al., 2004; Boer & Arora, 2013; Arora et al., 2013). However,
this warming is considered negligible in this feedback framework (Friedlingstein et al., 2006). Assuming AT = 0 in Equations
[1] and [2], the change in land and ocean carbon is given as:

[3a] AC, = BLAC,

[4a] ACy = BoAC,

Equations [3a] and [4a] can then be rearranged to solve for the concentration-carbon feedback parameter 3 as follows:

A g,
B, = AC, [3b] B, = AC, [4b]

The change in land (ocean) carbon due to climate alone is determined using the radiatively coupled simulation. In this
simulation, the land and ocean only respond to changes in climate, and therefore, this simulation can be used to quantify the

climate-carbon feedback (Friedlingstein et al., 2006). The change in land and ocean carbon is expressed as:
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[6a] AC, = Y, AT
Equations [5a] and [6a] can then be rearranged to solve for the climate-carbon feedback parameter y as follows:

_AG,

AC
O R 1 AR ()

Yo = AT

An alternative method for quantifying the change in land (ocean) carbon due to climate change uses the fully coupled and
biogeochemically coupled simulations (Arora et al., 2013). We refer to this method as the FULL-BGC method. Here, the
change in land (ocean) carbon in the biogeochemically coupled simulation (BGC) is subtracted from that in the fully coupled
simulation (FULL) and expressed as the product of the climate-carbon feedback parameter, and the difference between the
surface air temperature changes in the two simulations:

[7a] ACFULL — ACBGC =y, (ATFULL — ATBGC)

[8a] ACEULL — ACBEC =y, (ATFULL — ATBGC)

Equations [7a] and [8a] can then be rearranged to solve for the climate-carbon feedback parameter vy as follows:

ACfULL _ ACEGC ACgULL _ ACgGC
YL = ATFULL _ pATBGC [7b] vy = ATFULL — ATBGC

[8b]
Feedback parameters were evaluated from equations [3] — [8] for the PE and NE simulations. The feedback parameters for the

PE simulation were computed at three times the preindustrial COz level (3xCO2) and those for the NE simulation were

evaluated at the time COz levels return to preindustrial.

2.3.2 Decomposition of Feedback Parameters
To better understand the processes driving the asymmetry in the concentration-carbon feedback, we used a framework that

decomposes § into vegetation and soil carbon, and the underlying processes, as described in Arora et al. (2020):

(0] 8, = ACPSC  ACPSC + ACESC [ ACPSC ANPPPSC AGPPPCC ACESC ARESC ALFBGC
b= AC, ACy ~ \ANPPBSC AGPPBSC  AC, ARBSC ALFBGC  AC,
B CUE AGPPBSC N ARESC ALFBEC
= chegA A ACA TCSOilA A—LFBGC W

The sensitivity of vegetation carbon to changes in CO2 concentration can be decomposed to a product of the residence time of

vegetation carbon Tcyega, the carbon use efficiency (CUE) — proportion of GPP that is turned into NPP — and a measure of the
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CO: fertilization effect. The sensitivity of soil carbon to changes in CO2 concentration can be decomposed to a product of the
residence time of soil carbon T s, the change in the soil respiration rate per unit change in the leaf litter flux, and the
sensitivity of the leaf litter flux to changes in COz concentration. All changes in variables were calculated relative to the 2xCO2

(twice the preindustrial COz concentration) equilibrium state.

2.3.3 TCRE Framework

The Transient Climate Response to Cumulative CO2 Emissions (TCRE) is a near-linear relationship between transient warming
and cumulative CO2 emissions (Matthews et al., 2009). According to the Jones & Friedlingstein (2020) framework, the TCRE

can be expressed as the product of the climate sensitivity parameter (o) and the cumulative airborne fraction (AF) as follows:
[10] TCRE = a (3)
where k is a constant to account for unit conversion (k = 2.12 PgC ppm!)

The cumulative airborne fraction can be expressed in a form with individual carbon cycle feedback parameters as follows:

k

[1 1] AF = m
Substituting equation [11] into [10] gives the TCRE as:

_ o
[12] TCRE = (o—

The climate sensitivity parameter (o) and AF (as calculated from equation [11]) were evaluated at three times the preindustrial
COz level (3xCOz) for PE simulation, and at the time COz levels return to preindustrial for the NE simulation, consistent with

the quantification time points for feedback parameters.

3 Results

Our results section focuses on carbon cycle feedback and TCRE asymmetry under positive and negative emissions. Sections
3.1 — 3.2 explore the carbon cycle feedback asymmetry from the 1% yr'! simulation pairs, and the rate- and state-dependence

of these results. Section 3.3 focuses on TCRE asymmetry and its rate- and state-dependence.

3.1 Physical Climate Response

The prescribed atmospheric CO2 concentration profiles are symmetric by design, with a change in CO:z concentration of ~280
ppm (figure 2(a)). However, the surface air temperature shows considerable asymmetry in the FULL and RAD modes (figure
2(b)). In both modes, the surface air temperature decreases more in the NE simulation relative to the PE simulation by
approximately 0.5°C (figure 2(b)). This occurs because of the logarithmic relationship between radiative forcing and

atmospheric COz concentration in the UVic ESCM, which leads to a greater response to declining than rising COz levels (Eby

10
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et al., 2013). The BGC mode for both simulations sees small temperature changes (figure 2(a, b)) that result from biophysical
responses to changes in COz concentration, such as changes in the evapotranspiration flux and surface albedo (Cox et al., 2004;
Boer & Arora, 2013; Arora et al., 2013. The difference between the FULL and RAD temperature responses is also due to these

biophysical responses.
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Figure 2: a. Prescribed atmospheric CO; concentration and b. surface air temperature (SAT) change in the fully coupled (FULL),
biogeochemically coupled (BGC) and radiatively coupled (RAD) positive (PE) and negative (NE) emissions simulations relative to
the 2xCO; equilibrium state.

3.2 Quantifying Carbon Cycle Feedback Asymmetry
3.2.1 Land Carbon Change Asymmetry in the FULL Mode

Despite symmetry in the atmospheric CO2 concentration profiles in Figure 2(a), the land carbon pool exhibits asymmetry for
all 3 modes (figure 3(a)). Asymmetry in carbon pools is determined by comparing the carbon change at the end of the PE and
NE simulations. If the carbon change is greater under negative (positive) emissions, then the asymmetry is positive (negative).
The FULL mode exhibits the greatest asymmetry of all 3 modes, with the land gaining 70.7 PgC under positive emissions and
losing 154 PgC under negative emissions (figure 3(a)). This results in a positive asymmetry of roughly 83 PgC. The sign of
the asymmetry is the same for both vegetation and soil carbon pools, with the vegetation carbon pool exhibiting the larger

positive asymmetry (PE: 35.3 PgC; NE: -90.5 PgC) (figure 3(c, d)).

11
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Figure 3: a. Land b. ocean c. vegetation and d. soil carbon pool changes as a function of time for the fully coupled (FULL),
biogeochemically coupled (BGC) and radiatively coupled (RAD) modes of the positive (PE) and negative (NE) emissions simulations.
Solid lines represent the PE run; dashed lines represent the NE run. Panels a - d are calculated relative to the 2xCO; equilibrium
state. The atmospheric carbon fluxes are also shown in panels e and f.
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The land carbon balance determines the change in the land carbon pool. Under positive emissions, the CO: fertilization effect
drives carbon uptake; photosynthesis is enhanced under increasing COz concentration, increasing NPP (figure 4(a)). Warming
enhances soil respiration, but the soil respiration remains lower than NPP, leading to land carbon sequestration. Under negative
emissions, NPP is consistently lower than soil respiration largely because of the asymmetry in NPP under increasing and
declining CO: concentrations (figure 4(a)). The saturation of NPP at higher atmospheric CO2 concentration results in a smaller
enhancement of NPP with increasing CO2 concentration and a larger reduction in NPP with decreasing CO2 concentration.
Soil respiration is also asymmetric: with cooling decreasing soil respiration more than warming increases soil respiration
(figure 4(a)), consistent with the asymmetric temperature response in the FULL mode (figure 2(b)). As NPP decreases faster

than soil respiration under negative emissions, the land loses COz to the atmosphere.

3.2.2 Land Carbon Change Asymmetry in the BGC Mode

Isolating the component of the land carbon response due to changes in atmospheric CO2 concentration only, our results
consistently show asymmetry in land carbon change (figure 3(a)). In the PE simulation, the land sequesters about 165 PgC,
whereas the land in the NE simulation loses 255 PgC (figure 3(a)). This results in a positive asymmetry of 90 PgC. The sign

and magnitude of the asymmetry is similar for the vegetation and soil carbon pools (figure 3(c, d)).

Similar to the FULL mode, the CO2 fertilization effect promotes carbon uptake under positive emissions (figure 4(b)).
However, NPP increases faster in the absence of significant climate change. The increase in soil respiration in the BGC mode
is mainly driven by increasing soil carbon stocks. The increase in soil respiration is, however, smaller than the increase in
NPP, promoting carbon uptake. Under negative emissions, both NPP and soil respiration decrease more than they increase
under positive emissions due to the asymmetry in the responses of NPP and soil carbon change to changes in CO2 concentration
(figure 4(b)). NPP declines faster than soil respiration, and the land releases CO: to the atmosphere.

The vegetation and soil carbon components of the response to COz (figure 4(c, d)) can be decomposed into three parts according
to Arora et al. (2020) to better understand the mechanisms driving the observed asymmetries. The asymmetry in the vegetation
component is largely driven by increased sensitivity of NPP to CO:2 concentration change and longer vegetation carbon
residence time under negative emissions (Table S1.1). In the soil component, the response of the litter flux to changes in CO2

concentration is larger under negative emissions, dominating the soil carbon asymmetry (Table S1.1).

3.2.3 Land Carbon Change Asymmetry in the RAD Mode

Through the RAD mode, which shows the land carbon response to climate change, our results show the least asymmetry of all
three modes (figure 3(a)). The land loses 90.1 PgC in the PE simulation and gains 103 PgC in the NE simulation, resulting in
a positive asymmetry of 12.9 PgC (figure 3(a)). The sign of the asymmetry in the soil carbon pool is consistent with that for

the land carbon pool, with the soil carbon pool losing 73.7 PgC under positive emissions and gaining 105.1 PgC under negative
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emissions (figure 3(d)). The asymmetry in the vegetation carbon pool, however, is small and negative (figure 3(c)) and by the

end of the simulation, the vegetation carbon pools in both simulations lose carbon (PE: -1.8PgC; NE: -16.4 PgC) (figure 3(c)).

In the absence of the COxz fertilization effect, NPP declines with warming, primarily due to an increase in plant respiration,
while soil respiration increases with warming under positive emissions. As soil respiration is greater than NPP, the land releases
CO:z into the atmosphere (figure 4(c)). Under negative emissions, NPP increases as plant respiration decreases with cooling,

whereas, soil respiration declines (figure 4(c)). NPP remains greater than soil respiration, promoting carbon sequestration.
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Figure 4: Land carbon fluxes for the three modes are shown. NPP = net primary productivity, LLF = leaf litter flux and SR = soil
respiration. Fully coupled (FULL); biogeochemically coupled (BGC); radiatively coupled (RAD). Solid lines represent the positive
(PE) emissions run; dashed lines represent the negative emissions (NE) run. Note the difference in the vertical scale of the RAD
panel (last panel).
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3.2.4 Ocean Carbon Change Asymmetry in the FULL, BGC and RAD modes

The ocean carbon pool exhibits considerable positive asymmetry in the FULL and BGC modes (figure 3(b)), losing more
carbon under negative emissions than it gains under positive emissions, consistent with previous literature (Zickfeld et al.,
2021). The magnitude of the positive asymmetry is similar for the FULL and BGC modes, whereas the RAD mode shows
small negative asymmetry (PE: -2 PgC; NE: 1.7 PgC) (figure 3(b)).

In the FULL mode, the overall response to COz and temperature changes combined results in a larger flux of CO: out of the
ocean under negative emissions than the flux into the ocean under positive emissions (figure 3(f)) (Zickfeld et al., 2021). This
asymmetric ocean carbon response is partly driven by the imbalance between atmospheric CO2 concentration and the partial
pressure of COz in the surface ocean, which results in a larger flux of COz out of the ocean under negative emissions than the
flux into the ocean under positive emissions (figure 3(f), see supplementary figure S1.1). In addition, there is a non-linear
inverse relationship between the ocean’s ability to buffer additional COz and the partial pressure of CO2 in the surface ocean
(Chapin and Eviner, 2014). With increasing partial pressure of COz in the surface ocean, the buffer capacity is expected to
decline less than it increases with decreasing partial pressure of COz. This relationship favours a greater loss of ocean carbon
under negative emissions than gain under positive emissions. Non-linearities related to ocean circulation and CO: solubility in
seawater also drive the observed ocean carbon asymmetry (Zickfeld et al., 2021). The Atlantic meridional overturning
circulation (AMOC) strengthens more under negative emissions than it weakens under positive emissions. Under positive
emissions, a weaker AMOC drives less carbon into the ocean due to weaker vertical mixing. Under negative emissions, a
stronger AMOC drives a larger flux out of the ocean as carbon is more efficiently mixed upwards and released to the
atmosphere (see supplementary figure S1.2). The combined effect of the CO2 concentration imbalance at the atmosphere-ocean
interface and the AMOC changes is partly counteracted by the effect of COz solubility changes. The response of COz solubility
to changes in ocean temperature is non-linear (Duan and Sun, 2003), that is, the solubility of COz in the surface ocean increases
more with cooling than it decreases with warming, resulting in a greater enhancement of carbon uptake capacity under negative

emissions than reduction under positive emissions.

The ocean carbon cycle response to CO2 and temperature changes is isolated in the BGC and RAD modes respectively. In the
BGC mode, the imbalance between atmospheric CO2 concentration and the partial pressure of COz in the surface ocean partly
determines the magnitude and direction of the atmosphere-ocean CO: flux. This imbalance is larger under negative emissions,
resulting in a larger flux of COz out of the ocean under negative emissions than the flux into the ocean under positive emissions
(figure 3(f), see supplementary figure S1.1). Non-linearities in buffer capacity (Chapin and Eviner, 2014) also favour greater
loss of greater loss of ocean carbon under negative emissions than gain under positive emissions from the ocean’s surface, as

in the FULL mode.
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In the RAD mode, the flux out of the ocean under positive emissions is only slightly larger than that into the ocean under
negative emissions (figure 3(f)) because of two counteracting effects. The AMOC strengthens more under negative emissions
than it weakens under positive emissions, driving a larger flux out of the ocean under negative emissions than the flux into the
ocean under positive emissions (see supplementary figure S1.2). The effect of AMOC changes is dominated slightly by the
non-linearity in the response of COz solubility to changes in ocean temperature (Duan and Sun, 2003): the solubility of CO2
in the surface ocean increases more with cooling than it decreases with warming, increasing the carbon uptake capacity of the

ocean under negative emissions more than it reduces it under positive emissions.

3.2.5 Asymmetry in carbon cycle feedback parameters

The land and ocean carbon response to atmospheric CO2 concentration gives rise to the negative concentration-carbon
feedback: increasing atmospheric COz concentration promotes land and ocean carbon uptake, acting to draw down COz from
the atmosphere, whereas declining CO2 concentration reverses both carbon sinks, releasing CO:z to the atmosphere. On the
other hand, the land and ocean carbon response to temperature change give rise to the positive land climate-carbon feedback,
in which warming causes land and ocean carbon loss, while cooling promotes carbon gain. The concentration-carbon feedback
parameter (f) is quantified from the BGC mode as the land or ocean carbon change per unit change in atmospheric CO2
concentration (units: PgC ppm™). The climate-carbon feedback ( ), computed from the RAD mode, quantifies the land or
ocean carbon change per unit change in surface air temperature (units: PgC °C™!). These feedbacks were quantified using the
carbon cycle feedback framework in Section 2.3.1 and are shown in Figure 5.

Carbon cycle feedback parameters

2 ® 1% yr'1 Positive emissions
* 1% yr'1 Negative emissions
1 i ©  esm-flat10-conc Positive emissions
: O esm-flat10-conc Negative emissions
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Figure S5: Carbon cycle feedback parameters quantified at the time the CO; concentration reaches 3xCO; (three times the
preindustrial CO; level) for positive emissions (PE) and preindustrial for negative emissions (NE), respectively for the 1% yr' and
esm-flat10-conc simulation pairs. Feedback parameters under negative emissions are positive for land or ocean carbon loss and
negative for land or ocean carbon gain, opposite to the sign convention for feedbacks under positive emissions. Note that the yo
values are scaled up by one order of magnitude and the yl values are scaled up by two orders of magnitude to plot them on the same
axis as the f8 values.
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Carbon cycle feedback parameters differ under positive and negative emissions. The land and ocean [ are larger under negative
emissions than under positive emissions. Conversely, the land and ocean y are larger under positive emissions. The asymmetry
in y is partly influenced by the asymmetric temperature response. A larger temperature change under negative emissions means
a greater denominator in the gamma calculation (Section 2.3.1), favouring a smaller y under negative emissions. This is only
slightly countered by the small positive asymmetry in the land and ocean carbon pools, which favours a larger y under negative

emissions.

3.2.6 Rate- and state-dependence of asymmetry in carbon cycle feedback parameters

The rate-dependence of carbon cycle feedback parameter asymmetry is determined by comparing feedback parameters
calculated with the 1% yr! simulations with those calculated using the esm-flat10-conc simulations. In the esm-flat10-conc
PE and NE simulations, CO2 concentrations evolve at a lower rate, reaching 3xCOz and preindustrial respectively roughly 40
years after the 1% yr! simulations (figure 1(a)). Both feedbacks are smaller at higher rates of COz change (figure 5). In addition,
the magnitude of the asymmetry exhibits rate-dependence: the higher the rate of CO2 change, the smaller the asymmetry. The
sign of the asymmetry, however, is robust. The land and ocean [ are larger under negative emissions whereas, land and ocean

y are larger under positive emissions, independent of rate.

In addition to rate-dependence, we investigated whether carbon cycle feedback parameter asymmetry is sensitive to the initial
state (figure S1.3). Using 1% yr'! PE and NE simulations initialized from 2xCO2, 3xCO> and 4xCO: equilibrium states, we
found that for land and ocean £, the magnitude of the asymmetry decreased with increasing initial CO2 concentration, while
the sign of the asymmetry showed no sensitivity to initial state. Findings for land and ocean y were more complex, with both

the magnitude and sign of the asymmetry showing no clear or consistent pattern (figure S1.3).

3.3 Quantifying TCRE asymmetry

In this section we explore how the asymmetry in carbon cycle feedbacks propagates onto asymmetry in the Transient Climate
Response to Cumulative CO2 Emissions and Removals (TCRE/TCRR) using the fully coupled modes of the 1% yr! and esm-
flat10-conc simulation pairs. We quantify this asymmetry using the Jones & Friedlingstein (2020) framework (see Section
2.3.1). For validation purposes, we compare this to the conventional TCRE/TCRR calculations ( AT/CE and AT/CR), where
AT is the surface air temperature anomaly and CE (CR) is cumulative emissions (removals). Figure 6(a) shows that the Jones
& Friedlingstein (2020) framework generally approximates the TCRE reasonably well under both positive and negative

emissions, especially towards the end of the simulation.

17



415

420

425

https://doi.org/10.5194/egusphere-2025-6405
Preprint. Discussion started: 12 January 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

(@ ()
2 40
—— Positive Emissions -
- - — Negative Emjssions 5 30
o P e (&)
UOU_I’ g 20
o 2 10
) s
o 8 o
5 E
E ® 10
3 R
& 2 .20 T~
[ 5 T~ !
8 -30 S T
a ~
-40
0 10 20 30 40 0 10 20 30 40
(©) Year d) Year
1 1
=4 =
So08 === 0.8
5 S — &
E = ~-<
g 0.6 ‘_>< 0.6
9 ; _ -
£ 1S -
[ Q -
504 20.4 ——
c e Py~
9] = P
£ o2 T 02
< 4
0 0
10 20 30 40 0 10 20 30 40
© Year 4] Year
2 0
-20
1.5 -
— -
- e —_
. <
§ P 9 -40
1 - [6)
S - g
a . s = -60
o P <
05 =
-80
0 -100
0 10 20 30 40 0 10 20 30 40
Year Year

Figure 6: a. Transient climate response to cumulative CO; emissions and removals. Solid and dashed lines — calculated from the
Jones & Friedlingstein (2020) framework for the positive (PE) and negative emissions (NE) runs respectively; dotted lines — direct
calculation (ratio of global mean temperature change to cumulative emissions or removals) b. diagnosed positive or negative
emissions c. airborne fraction for positive emissions; removal fraction for negative emissions d. climate sensitivity parameter « e.
concentration-carbon feedback parameter g f. climate-carbon feedback parameter y under positive and negative emissions. The
carbon cycle feedbacks represent the total sensitivity of the carbon pools (land plus ocean carbon) to changes in CO; concentration
and temperature.

The TCRE/TCRR exhibits asymmetry: the cooling per unit negative emission is larger than the warming per unit positive
emission (figure 6(a)). The asymmetry in the TCRE is positive, with the TCRE larger under negative emissions levels (1.63
°C EgC™") than under positive emissions (1.37 °C EgC-'), consistent with Zickfeld et al. (2021). The Jones & Friedlingstein
(2020) framework allows us to decompose the TCRE into three contributing factors - the airborne or removal fraction (AF/RF),

the climate sensitivity (), and the carbon cycle feedback parameters (5, y), (see section 2.3.2) — and quantify the asymmetry
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in each to determine the process driving TCRE asymmetry. The airborne fraction (AF) is defined as the fraction of emissions
that remain in the atmosphere, whereas, the removal fraction (RF) shows the fraction of removals that stay out of the
atmosphere. The RF and AF are initially equal, then the RF decreases at a greater rate than the AF until it is smaller by 0.11
(figure 6(c)). The asymmetry in the AF/RF is negative because diagnosed negative emissions are larger than diagnosed positive

emissions (figure 6(b)).

Climate sensitivity (a), a measure of the transient temperature response to changing CO:2 concentration, increases at a greater
rate under negative emissions, resulting in an asymmetry of 0.0017 °C ppm™! (figure 6(d)). This positive asymmetry occurs
because the surface air temperature anomaly is larger under negative emissions (figure 2(b)). Under negative emissions, a
larger AF favours a smaller TCRE in the PE simulation whereas, a larger a favours a larger TCRE. Here, the TCRE is larger
in the NE simulation (figure 6(a)), implying that « is the dominant influence on the sign of the TCRE.

The AF/RF can also be computed using « and the two carbon cycle feedback parameters 5 and y (see section 2.3.1) (Jones &
Friedlingstein, 2020). A larger [ acts to reduce AF (RF) through land and ocean carbon uptake (loss), a larger y acts to
increase AF (RF) through land and ocean carbon loss (uptake). 5 increases at a greater rate under negative emissions, and by
the end of the simulation, the asymmetry is positive, with a 8 of 1.6 PgC ppm’! in the PE simulation and 1.03 PgC ppm! in
the NE simulation (figure 6(e)). A larger 8 acts to reduce the TCRE, favouring a smaller TCRE in the NE simulation. y
decreases faster under positive emissions, and by the end of the simulation, y is 21.9 PgC °C! larger in magnitude (negative
asymmetry) (figure 6(f)). This occurs because of both larger combined land and ocean carbon loss and surface air temperature

change in the NE simulation. A larger y (in magnitude) favours a larger TCRE in the PE simulation.

3.3.1 Rate- and state-dependence of TCRE asymmetry

The TCRE asymmetry analysis was repeated with esm-flatl0-conc simulations to test the rate-dependence of TCRE
asymmetry. The magnitude and sign of the TCRE asymmetry are broadly consistent with results in the 1% yr! simulations:
the sign of the TCRE asymmetry is robust, with the magnitude exhibiting little rate-dependence (figure 7). Out of the three
contributors to TCRE asymmetry, the carbon cycle feedbacks show the greatest rate-dependence. As described in Section
3.1.6, the sign of the asymmetry in feedbacks parameters is robust, whereas the magnitude of the asymmetry in carbon cycle
feedback parameters is smaller with higher rates of CO2 change. An additional insight from Figure 7 is the relatively large
asymmetry observed in f§ compared to the asymmetry in the TCRE. According to the Jones & Friedlingstein (2020) framework
(Section 2.3.3) , the effect of § on the TCRE counteracts the combined effects of a and y. The TCRE asymmetry is, therefore,

small because of partial cancellation of asymmetry in these contributors.
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In addition to rate-dependence, we investigated the state-dependence of the TCRE (figure S1.4). The sign of the TCRE
asymmetry is state independent, while the magnitude of the asymmetry exhibits little state-dependence, decreasing with higher
initial states. Overall, the sign of the TCRE asymmetry is independent of rate and initial state. The magnitude of the asymmetry

shows little rate- and state-dependence, increasing with higher rates and decreasing with higher initial states.

Rate-dependence of climate and carbon cycle feedback metrics
2.5 q

*1% yr'1 Positive emissions

21 * 1% yr’' Negative emissions

1.5 4 :8 © Flat-10 Positive emissions
© Flat-10 Negative emissions

14
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0.
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Figure 7: Rate-dependence of climate and carbon cycle feedback metrics in the fully coupled 1% yr! and esm-flat10-conc positive
(PE) and negative emissions (NE) simulations. Metrics shown include: the transient climate response to cumulative CO; emissions
and removals (TCRE/TCRR), airborne fraction for positive emissions (AF) and removal fraction for negative emissions (RF),
climate sensitivity parameter a, concentration-carbon feedback parameter f§ and climate-carbon feedback parameter y. The carbon
cycle feedbacks represent the total sensitivity of the carbon pools (land plus ocean carbon) to changes in CO; concentration and
temperature. Vertical black lines depict the asymmetry under positive and negative emissions.

4 Discussion

Carbon cycle feedbacks under negative emissions have previously been quantified from CDR reversibility simulations (CDR-
MIP: Keller et al., 2014), in which a phase of CO2 decline (negative emissions) immediately follows a phase of COz increase
(positive emissions). In these studies, the magnitudes of both feedbacks are smaller under negative emissions because of
climate system inertia (Schwinger et al., 2018; Chimuka et al., 2023). Although other studies using preindustrial as the
reference year for quantifying feedbacks under negative emissions show that both feedbacks become larger under negative
emissions, they also show the same lagged carbon pool response (Melnikova et al., 2021; Asaadi et al., 2024). Chimuka et al.
(2023) proposed an approach to correct for climate system inertia and found a larger climate-carbon feedback and smaller
concentration-carbon feedback under negative emissions, inconsistent with our findings here. This discrepancy may arise due

to differences in simulation configuration, non-linearity and irreversible vegetation distribution changes (Chimuka et al., 2023).
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The benefit of the novel approach used in this study is that it eliminates climate system inertia by prescribing both CO»
trajectories from the same equilibrium state, allowing for a more accurate quantification of carbon cycle feedbacks under

positive and negative emissions.

The temperature response in the FULL mode, as quantified by the TCRE, is asymmetric: the TCRE is larger under negative
emissions than under positive emissions, consistent with a previous study that used simulations with symmetric emissions
trajectories (Zickfeld et al., 2021). The sign of the temperature asymmetry is generally uncertain in the literature; some models
exhibit positive asymmetry (consistent with our findings here) while others exhibit negative asymmetry (Zickfeld et al., 2016;
Canadell et al., 2021; Zickfeld et al., 2021; Koven et al., 2022). The three contributing factors to the TCRE — the airborne or
removal fraction (AF/RF), the climate sensitivity (), and the carbon cycle feedback parameters (f,y) — are also all
asymmetric. Under negative emissions, the RF is smaller than the AF, favouring a smaller TCRE under negative emissions.
However, a is larger under negative emissions, favouring a larger TCRE under negative emissions. Given that the TCRE is
larger under negative emissions, this shows that a is the more dominant influence on the sign of the TCRE than the AF/RF is.
Overall, the carbon cycle feedback asymmetry favours more carbon loss per negative emission than carbon gain per positive
emission, whereas, the temperature asymmetry favours more cooling per negative emission than warming per positive

emission, countering the carbon cycle feedback asymmetry.

In the real world, a decline in CO2 concentration is expected to follow a transient state of positive or zero emissions, rather
than an equilibrium state. In this case, carbon cycle feedbacks and the TCRE would be asymmetric with smaller metrics under
negative emissions as shown through the CDR-reversibility simulations in earlier studies (Zickfeld et al., 2016; Chimuka et
al., 2023). However, the benefit of the experimental design we propose here is that there are no climate system inertia effects
(both simulations are prescribed from the same equilibrium state), allowing for a positive and negative emissions to be applied
from equilibrium. We chose to initialize our simulations from equilibrium, with the 2xCOz equilibrium state used as default,
rather than real world conditions. Findings show that the sign of the concentration-carbon feedback is robust, with the
magnitude showing little state-dependence. (Figure S1.3). However, the magnitude and sign of the climate-carbon feedback
asymmetry both exhibit state-dependence, with neither showing a consistent pattern (Figure S1.3). Our results also suggest
that the signs of the carbon cycle feedback and TCRE asymmetries are independent of rate, with only the magnitude of the
carbon cycle feedback asymmetry exhibiting notable rate-dependence. The TCRE asymmetry exhibits little state-dependence,
and the sign of the asymmetry is robust. These findings align with previous research that carbon-cycle feedbacks exhibit state-
and scenario-dependence (Gregory et al., 2009; Boer & Arora, 2010; Zickfeld et al., 2011; Hajima et al., 2014), while the
TCRE itself remains largely invariant (Matthews et al., 2009).

The model used here (UVic ESCM) couples the climate and carbon cycles, allowing for the computation of carbon cycle

feedbacks, and can run climate model simulations at low computational cost. However, the atmospheric model is a simple
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energy-moisture balance model, and therefore, is missing several key physical feedbacks such as the cloud feedback and lapse
rate feedback, among others. Inclusion of these feedbacks would benefit our TCRE analysis by accounting for asymmetries in
the physical response that are currently missing from our results. Furthermore, the model is known to show a stronger saturation
of radiative forcing compared to other earth system models, implying that the warming trends here may be smaller compared
to other earth system models (Koven et al., 2022). The UVic ESCM also does not explicitly account for the nitrogen cycle on
land and its coupling to the carbon cycle. Under positive emissions, nitrogen limitation acts to constrain the CO: fertilization
effect, which decreases the magnitude of the concentration-carbon feedback (Friedlingstein & Prentice, 2010). Nitrogen
remineralization makes nitrogen more bioavailable, fertilizing plants, and reducing the magnitude of the positive climate-
carbon feedback (Friedlingstein & Prentice, 2010). Under negative emissions, we expect that the CO: fertilization effect would
be weakened further, causing further carbon loss due to the concentration-carbon feedback, whereas, nitrogen remineralization

would decline as surface air temperature declines, reducing carbon gain due to the climate-carbon feedback.

5 Conclusions

Using idealized simulations with symmetric changes in atmospheric COz, our results show that carbon cycle feedbacks are
asymmetric. Compared to their respective magnitudes under positive emissions, the concentration-carbon feedback parameter
is larger under negative emissions whereas, the climate-carbon feedback is smaller. The asymmetry in the concentration-carbon
feedback is related to the saturation of the CO: fertilization effect, whereas the asymmetry in the climate-carbon feedback is
partly related to asymmetric temperature and soil respiration responses. Asymmetries in ocean carbon cycle feedbacks are
driven by asymmetries in the disequilibrium in COz concentration at the atmosphere-ocean interface, asymmetric ocean
circulation responses and non-linearities in COz solubility and buffer capacity. The combined behaviour of both carbon cycle
feedbacks under negative emissions results in carbon release to the atmosphere, reducing the effectiveness of carbon dioxide
removal at decreasing COz levels. Although the magnitude of the carbon cycle feedback asymmetry exhibits rate-dependence,
the sign is robust. The state-dependence is, however, more complex. The magnitude of the concentration-carbon feedback
asymmetry is sensitive to initial state, while the sign of the asymmetry is robust. However, the magnitude and sign of the
climate-carbon feedback asymmetry shows no clear or consistent pattern. Our findings show that the TCRE is asymmetric,
that is, larger under negative emissions than under positive emissions, and that the contributing factors (airborne/removal
fraction, climate sensitivity and carbon cycle feedback metrics) are all asymmetric. Out of the three factors, the climate
sensitivity has the greatest influence on the sign of the TCRE asymmetry. The magnitude and sign of the TCRE asymmetry

show little to no rate- or state-dependence.

This study builds on previous work on the climate and carbon cycle response to positive and negative emissions, providing
insights into carbon cycle feedback and TCRE asymmetry and the associated driving mechanisms. We also propose a novel

experimental design that eliminates climate system inertia effects, allowing for more accurate quantification of carbon cycle
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feedbacks under negative emissions. Our results are more variable for the climate-carbon feedback asymmetry as compared to
the concentration-carbon feedback asymmetry. The concentration-carbon feedback depends on CO:2 concentration, which is
symmetric in our study, whereas, the climate-carbon feedback is more closely tied to the temperature response, which exhibits
asymmetry itself. Exploring climate-carbon feedback asymmetry with symmetric temperature profiles rather than symmetric
COz concentration profiles could provide a better quantification of asymmetry. In addition, the suitability of concentration-
driven simulations for TCRE quantification is still in exploration. Using pulse emissions-driven simulations, Zickfeld et al.
(2021) show evidence of compensation between the temperature and carbon cycle response, making the case for emissions-
driven simulations rather than concentration-driven runs, that inhibit part of the climate-carbon cycle response. Further
research should, therefore, focus primarily on improving quantification of TCRE asymmetry by running emissions-driven
simulations with a more comprehensive earth system model that includes the full suite of physical climate feedbacks. Lastly,
the robustness of these results should also be tested in a multi-model framework. Our work highlights the need to quantify
metrics under negative emissions as reliance on metrics derived from positive emission scenarios may result in inaccurate

quantification of the climate response under net negative CO2 emissions.

6 Code and data availability

The UVic ESCM (University of Victoria Earth System Climate Model) data will be made available at
https://doi.org/10.5281/zen0do.17957657 upon acceptance, and the model code for UVic ESCM 2.10 is available

at http://terra.seos.uvic.ca/model/2.10/.
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