

1 **Diagnostic and Recovery Method for Boot Failure in
2 PC/104Based Geophysical Resistivity Instruments Following
3 CMOS Configuration Loss: On the ABEM Terrameter SAS-
4 1000/4000 Using the PFM-540I Platform**

5
6 **Gideon Fosu Dwamena¹, Benjamin Ekow Mensah²**

7 ¹ *Graduate School of Nuclear and Allied Sciences, University Of Ghana, Ghana*

8 ² *Ghana Atomic Energy Commission, Engineering Services Centre, Accra, Ghana,*

9
10 *Correspondence to: Gideon Fosu Dwamena (gfdwamena@st.ug.edu.gh)*

11 Boot failures in embedded geophysical instruments frequently arise from the loss of CMOS-retained BIOS parameters,
12 a condition well documented in legacy computing systems that depend on fixed hardware configurations. The ABEM
13 Terrameter SAS-1000/4000 relies on a PC/104 controller (PFM-540I), CompactFlash (CF) storage, and specialized
14 BIOS settings to load its internal firmware. When the CMOS battery depletes, the BIOS reverts to factory defaults that
15 are incompatible with the Terrameter's required hardware profile, resulting in complete boot failure and a black LCD
16 screen. This paper describes a full diagnostic and recovery procedure involving external VGA/PS-2 interfacing, jumper
17 validation, CMOS clearing and manual BIOS reconstruction. The restored system achieved 100% boot success,
18 persistent CF detection and stable BIOS retention across multiple test cycles. The findings provide a validated
19 engineering method for maintaining legacy PC/104-based scientific instruments vulnerable to CMOS configuration
20 loss.

21 **1. Introduction**

22 Many geophysical resistivity systems particularly legacy instruments still widely used in field environments depend
23 on PC/104 embedded computers that integrate CompactFlash storage, Award BIOS firmware and jumper-configurable
24 hardware functions. The ABEM Terrameter SAS-1000/4000 is built around the PFM-540I controller, a low-power x86
25 module whose boot sequence critically depends on CMOS-retained BIOS settings. As shown in prior studies on
26 embedded system reliability, CMOS depletion often results in BIOS reversion to incompatible defaults, disrupting IDE
27 timing, disabling embedded peripherals and causing storage misidentification.

28 In the Terrameter platform, the firmware is stored entirely on a CompactFlash disk attached through a PC/104 IDE
29 interface. Loss of BIOS parameters therefore prevents CF enumeration, halting the entire boot chain before instrument
30 software loads. Because the LCD panel relies on higher level firmware routines rather than BIOS text output, the
31 Terrameter provides no visual diagnostic cues during BIOS failure a behaviour consistent with other measurement
32 devices using embedded LCD modules.

33 In the case analyzed here, the instrument became non-functional immediately after CMOS battery replacement.
34 Diagnosis required physical extraction of the PFM-540I board and attachment of an external VGA monitor and PS/2
35 keyboard via custom-fabricated cables, reflecting typical constraints in sealed laboratory and field grade geophysical
36 systems.

37

38

Figure 1: The SAS 1000 Terrometer with Dark screen

39

40

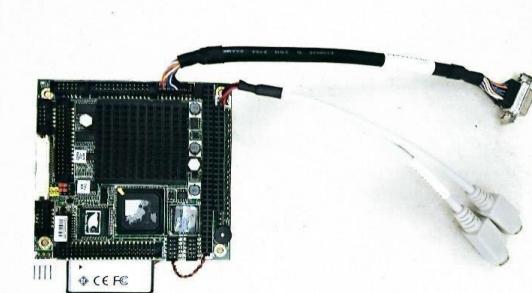
Figure 2: The Module-PFM-540I in the SAS 1000 Terrometer

41 **2. Problem statement**

42 Following replacement of the CMOS battery, the Terrameter SAS-1000/4000 failed to initialize. Although the
43 device powered on and the LCD contrast circuit behaved normally, the display remained black an expected result when
44 the firmware cannot load, as documented in embedded measurement platforms where LCD controllers depend on
45 system software rather than BIOS routines.

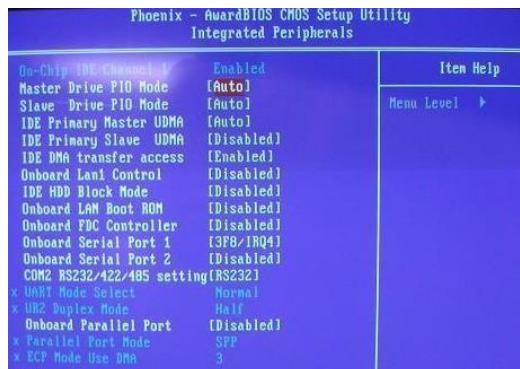
46 Once external VGA access was established, POST messages revealed that the BIOS identified no primary IDE
47 device, reporting “Primary IDE Master: None”. This mirrored failure modes seen in CompactFlash-based industrial
48 controllers when BIOS defaults disable necessary PIO/UDMA timing or alter master/slave selection modes. Without
49 CF detection, the Terrameter firmware which executes entirely from the disk could not initialize.

50 Compounding the issue, two essential hardware jumpers, JP1 (CF master/slave selection) and JP3 (CMOS reset /
51 LCD clock polarity), influence system behavior at boot. Literature on embedded PC/104 modules emphasizes that
52 jumper dependent states can interact with BIOS timing and storage detection, creating multi-factor boot failures when
53 CMOS data is corrupted.


54 **3. Methodology**

55 The diagnostic procedure followed established embedded system recovery methods emphasizing hardware
56 inspection, CMOS clearing, external interfacing and BIOS reconstruction. The PFM-540I board was removed from
57 the Terrameter enclosure to expose its PC/104 headers. Custom VGA and PS-2 adapters were fabricated to interface
58 with its non-standard pinouts, enabling access to BIOS configuration an approach consistent with repair procedures
59 for sealed industrial instruments.

60 Once powered on a benchtop supply, the board was inspected for jumper integrity. JP1's orientation confirmed
61 proper CF master configuration, while JP3 was cycled into its CMOS reset position for several seconds and returned
62 to the normal position. This process cleared corrupted CMOS data, as recommended in maintenance guidelines for
63 PC/104 and industrial x86 systems.


64 Following CMOS reset, BIOS settings were reconstructed. Primary IDE detection was set to "Auto", boot priority
65 was configured to HDD-0, IDE prefetch and UDMA modes were enabled, USB boot paths were disabled and the
66 onboard video configuration was restored. These configurations align with known requirements for embedded CFboot
67 systems, which rely on tightly paired BIOS parameters and device timings.

68

69 **Figure 3: Module-PFM-540I connected to a customized PS-2 and VGA cable**

70

71

72 **Figure 4: Shows Integrated Peripherals setting on the BIOS legacy**

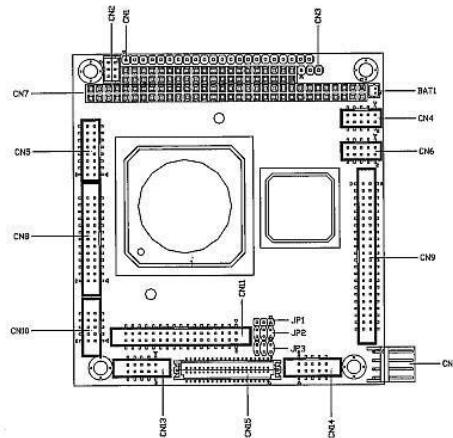
73

74 Experiments were performed under controlled laboratory conditions using the extracted controller board, a regulated
75 benchtop supply and an external VGA display. A CompactFlash reader verified CF disk integrity, consistent with
76 verification practices for removable embedded media. A magnifying lamp facilitated jumper inspection for mechanical
77 or oxidation faults, reflecting best practices in diagnosing aging instrumentation hardware.

78

Testing Proceeded in three stages

79


(1) Documentation of the initial fault condition, including POST behavior and CF detection patterns;

80

(2) Execution of the recovery process, including jumper manipulation and BOIS reprogramming;

81

(3) Validation through repeated cold boots and multi day retention tests, consistent with embedded system stability
82 assessment protocols.

83
84 **Figure 5: Label component of the PFM-540I Module. Adapted from Advantech Co., Ltd. (2017), PCM-3355 PC/104 single**
85 **board computer startup manual.**

86
87 **Table 1. List of connectors for PFM-540I and their functions**

Label	Function
CN1	Front Panel Connector
CN2	PS2 Keyboard/Mouse Connector
CN3	Option Power Connector
CN4	USB Connector
CN5	VGA Display Connector
CN6	USB Connector
CN7	PC104 Connector
CN8	LPT Port Connector
CN9	IDE Connector
CN10	COM1 Connector
CN11	Floppy Connector
CN12	Power Connector
JP1	CFD Master/Slave Selection
JP2	RS-232 Ring/5V Selection

JP3

LCD Clock Selection and
Clear COMS

88

89

90 **4. Results**

91 Prior to recovery, the BIOS consistently failed to detect the CompactFlash disk, matching known symptoms of
92 CMOS related IDE timing failure in embedded systems. After jumper validation, CMOS clearing and BIOS
93 reconstruction, CF detection succeeded on every attempt. The boot success rate increased from zero to full restoration,
94 and the Terrameter firmware initialized properly each time.

95 Fifteen cold-boot cycles conducted across multiple days showed complete retention of BIOS settings, confirming
96 battery integrity and stable CMOS behaviour. Similar multi-cycle validation is widely used to evaluate BIOS
97 persistence in industrial x86 hardware. The Terrameter LCD previously black displayed its normal main menu
98 immediately upon firmware initialization.

99

100

101 **Figure 6: The Resistivity meter with functioning LCD display after the restoration**

102

103

104 **5. Discussion**

105 The findings demonstrate that the boot failure resulted entirely from BIOS parameter loss rather than hardware
106 degradation. As documented in the broader literature, CF-based embedded systems can become non-functional when
107 IDE timing, DMA modes or boot device parameters revert to defaults incompatible with their intended operating
108 environment. The tight coupling between CF firmware, BIOS configuration and jumper-controlled hardware states in
109 the Terrameter makes CMOS depletion particularly disruptive.

110 The use of external VGA and keyboard access proved essential, aligning with recommendations for diagnosing
111 embedded PC/104 systems lacking exposed debugging interfaces. The successful recovery reinforces the importance
112 of preserving BIOS documentation for legacy scientific instruments and highlights the operational risk posed by
113 CMOS battery depletion in field-deployed equipment.

114 **6. Conclusion**

115 This paper presented a diagnostic and recovery procedure for addressing CMOS-induced boot failure in the ABEM
116 Terrameter SAS-1000/4000. Through systematic hardware inspection, CMOS clearing, BIOS restoration and
117 multicycle verification, full system functionality was restored. The methodology is practical, reproducible and

118 applicable to a wide range of PC/104-based instruments that rely on CompactFlash-boot architectures and
119 CMOSretained firmware configuration.

120 **APPENDIX A**

121

122 Figure A1: Close-up view of the PFM-540I PC/104-plus platform interface showcasing the industrial-grade Transcend
123 128 MB CompactFlash (CF) card used for system boot and data storage.

124 The image illustrates the integration of the **Transcend Industrial 128 MB CompactFlash card** into the onboard CF
125 socket of the **PFM-540I platform**. In the context of the ABEM Terrameter SAS-1000/4000, this storage medium acts
126 as the primary IDE-compatible drive. During a CMOS configuration loss, the BIOS often reverts to default settings
127 that may fail to recognize the specific geometry or boot priority of this CF card, leading to the boot failures analyzed
128 in this study. This figure highlights the hardware dependency of the diagnostic recovery method, emphasizing the
129 importance of the physical connection between the industrial flash memory and the embedded PC/104 architecture.
130 The sticker on the CF socket indicates quality control/date tracking, which is essential for identifying the hardware
131 revision of the geophysical instrument.

132 **Authors contribution**

133 G.F.D. conceptualized the study, performed the diagnostics and recovery experiments, and prepared the original
134 manuscript draft.
135 B.E.M. contributed to the experimental design, supervised the technical analysis, and reviewed and edited the
136 manuscript.
137 All authors discussed the results and approved the final manuscript.

138 **Acknowledgement**

140 We would like to acknowledge the National nuclear research Institute at the Ghana Atomic Energy Commission
141 and The National Data centre at GAEC. All photographs included in the figures were taken by G.F.D. during laboratory
142 diagnostics and recovery of the instrument.

143 REFERENCES

144 PC/104 Consortium. (2015). PC/104 embedded system specification (Version 2.6). PC/104 Consortium.
https://pc104.org/wp-content/uploads/2015/02/PC104_Spec_v2_6.pdf

145 CompactFlash Association. (2004). CF+ and CompactFlash specification (Revision 3.0). CompactFlash Association.
<https://rumkin.com/reference/aquapad/cfspc3-0.pdf>

146 Phoenix Technologies Ltd. (2000). PhoenixBIOS™ 4.0 user's manual. Phoenix Technologies.
https://bitsavers.informatik.uni-stuttgart.de/pdf/phoenix/PhoenixBIOS_4.0_Users_Manual_2000.pdf Grupp,

147 L. M., Caulfield, A. M., Coburn, J., Swanson, S., Yaakobi, E., Siegel, P. H., & Wolf, J. K. (2009). Characterizing
148 flash memory: Anomalies, observations, and applications. Proceedings of the IEEE/ACM International
149 Symposium on Microarchitecture, 24–33.
https://yaakobi.net.technion.ac.il/files/2015/04/5_Flash_Characterization_MICRO09.pdf Meza, J., Wu, Q., Kumar,
150 S., & Mutlu, O. (2015).
151 A large-scale study of flash memory failures in the field. ACM SIGMETRICS Performance Evaluation Review,
152 43(1), 177–190. <https://doi.org/10.1145/2745844.2745848> Koopman, P. (2007).
153 Reliability, safety, and security in embedded systems. Carnegie Mellon University Technical Report.
https://users.ece.cmu.edu/~koopman/pubs/koopman07_dependability_everyday_embedded_abs.pdf

154 Siemens AG. (2020). SIMATIC IPC677D industrial PC: Operating instructions. Siemens Industrial Automation.
https://support.industry.siemens.com/cs/attachments/87514045/ipc677d_operating_instructions_enUS_enUS.pdf

155 Advantech Co., Ltd. (2017). PCM-3355 PC/104 single board computer: Startup manual. Advantech.
https://advdownload.advantech.com/productfile/Downloadfile2/1-6B60KJ/PCM3355_startup_manual_ed.1.pdf

156 Phoenix Technologies Ltd. (2014). BIOS startup firmware increases system reliability and improves device security
157 (White paper). Phoenix Technologies.
https://www2.advantech.com/embcore/promotions/whitepaper/Phoenix%20Technologies-BIOS_Startup_Firmware_Increases_System_Reliability_and_Improves_Device_Security.pdf

158 Grattan, K. T. V. (1994).
159 Measurement: System of scales and units. In L. Finkelstein & K. T. V. Grattan (Eds.), Concise encyclopedia of
160 measurement and instrumentation (pp. 209–214). Pergamon Press.

161