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Abstract. Despite decades of study, predicting crevasses penetration depths remains controversial. Nye provided one of the

earliest estimates of crevasse penetration depths. Recently, a new theory, called the horizontal force balance (HFB), challenges

Nye’s model, suggesting crevasses can penetrate much deeper than predicted by Nye. Here we use a numerical model to show

that Nye’s estimate remains accurate so long as crevasses are closely spaced, but crevasses penetrate deeper as the spacing

increases. Moreover, contrary to many parameterizations of crevasses as damage in depth-integrated models, we find that5

crevasses do not increase the stress in the intact portion of the ice.

1 Introduction

When glacial ice experiences sufficient tensile stress, the ice can break, resulting in near-vertically oriented crevasses. Crevasses

are not only precursors to iceberg calving, but can also weaken the ice in shear margins and precondition ice shelves for collapse

(e.g., Walker et al., 2024; Alley et al., 2022). However, despite the key role crevasses and iceberg calving play in the dynamics10

of ice sheets and ice shelves, disagreement remains about how best to estimate key quantities, like crevasse penetration depths

(e.g., Bassis et al., 2024).

Attempts to understand crevasse patterns have underpinned some of the earliest studies of ice dynamics and fractures (e.g.,

Hopkins, 1862). However, Nye (1952) provided one of the first modern attempts to estimate crevasse depths and patterns.

Nye initially sought to estimate crevasse penetration depths using the perfect plastic approximation, but quickly generalized15

his approach to accommodate the emerging discovery that ice deforms according to a power-law creep relationship (Nye,

1952, 1955). In his revised theory, Nye assumed that ice had negligible strength and then proceeded to calculate crevasse depths

assuming that crevasses penetrate to the depth where atmospheric pressure within air-filled crevasses balances longitudinal

extensional stresses outside of crevasses (Nye, 1955). Recognizing that crevasses also modify the stress field in their vicinity,

Nye suggested that this estimate was most appropriate for closely spaced crevasses, asserting that the stress beneath surface20

crevasses would be unaffected by the presence of crevasses when crevasses are closely spaced (Nye, 1955). This assertion was

shown to be true by Weertman (1977) for an infinitely thick glacier and is often referred to as the ‘zero stress’ model despite

the fact that the stress beneath surface crevasses tips is not formally zero because of atmospheric pressure.

The Nye model has since been generalized to include closely spaced bottom crevasses in ice shelves (Jezek, 1984) and,

although subsequent numerical and theoretical calculations have demonstrated that isolated crevasses can penetrate much25

deeper than closely spaced crevasses (e.g., Weertman, 1980; Jiménez and Duddu, 2018; Zarrinderakht et al., 2022), the Nye
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model remains widely used in glaciological applications (e.g., Benn et al., 2007; Sun et al., 2017). Recently, Roger Buck

(2023) revisited the Nye zero stress model, claiming that Nye’s crevasse depth is only valid for shallow crevasses because

Nye’s estimate does not satisfy a horizontal force balance (HFB). This modification has strong implications for ice shelf

stability because although the original formulation of the HFB focused on the presence of freshwater filled basal crevasses,30

even when saltwater fills bottom crevasses, the HFB predicts that crevasses within unbuttressed ice shelves should always

penetrate the entire ice thickness. This estimate, which is independent of size or shape of crevasses, suggests that ice shelves

are fragile and should only exist under very limited circumstances—a prediction seemingly at odds with the abundance of ice

shelves that surround the Antarctic Ice Sheet. Despite the discrepancy between the fact that many ice shelves continue to exist,

the HFB has since been generalized to include depth-dependent temperatures, a finite strength of ice and applied to grounded35

glaciers (Coffey et al., 2024; Coffey and Lai, 2025; Slater and Wagner, 2025). Here we seek to better understand the conditions

when the HFB model applies by using a numerical model to analyze the penetration depths of crevasses in ice shelves. We start,

however, by reviewing the Nye and HFB models and recast both of these models into dimensionless form to better understand

compare predictions and how that the HFB model predicts that unbuttressed ice shelves should not exist.

2 Crevasse depths in the Nye zero stress and the horizontal force balance models40

For simplicity, we focus on an idealized ice shelf with uniform ice thickness H overlying an inviscid ocean with density

ρw, with vertically aligned basal and surface crevasses at regular interval w, as illustrated in Figure 1. We assume the ice

shelf undergoes uniform, depth-independent extension with far field deviatoric stress τxx. To aid the exposition and facilitate

comparison with numerical models, we consider uni-axial flow, ignoring transverse stresses. However, our formulation can

easily be generalized to include transverse deviatoric stress. Defining the height of bottom crevasses db and the depth of45

surface crevasses ds we are interested in the crevasse penetration ratio r = (ds + db)/H . Following Bassis and Ma (2015), we

start by defining the dimensionless stability number S,

S =
ρigH

(
1− ρi

ρw

)

2τxx
. (1)

Here ρice=910 kg/,3 denotes the density of ice, ρw=1020 kg/m3 the density of ocean water in which the ice shelf is submerged

and g = 9.81 m/s2 is the acceleration due to gravity. The parameter S is related to the ‘buttressing number’ Kb used by50

Roger Buck (2023) with S = 2/(1−Kb). Next, recalling that at the calving front of an isothermal ice shelf

τxx =
ρicegH

(
1− ρi

ρw

)

4
, (2)

we see that S = 2 (Kb = 0) corresponds to a freely-spreading ice shelf, S > 2 (Kb > 0) to increased buttressing, and S < 2

(Kb < 0) to a situation that occurs when stress is concentrated near sharp pinning points and along shear margins.

We can recast the Nye model for crevasse penetration ratio r in the form:55

r =
1
S , (3)
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Figure 1. Sketch of the geometry considered. We assume that arrays of surface and bottom crevasses with width w and depths ds and db are

co-aligned, initially narrow and embedded in an ice shelf with uniform thickness H . Water pressure acts as a restoring force and we apply

displacement or velocity boundary conditions along the left and right edges of the domain to impose a constant deviatoric stress τxx on the

domain.

showing that in the Nye model, the combined depth of surface and bottom crevasses penetrate about half of the ice thickness

(r = 1/2) when S = 2 and requires S = 1 for crevasses to penetrate the entire ice thickness. We can similarly express the

crevasse depth associated with the HFB (Roger Buck, 2023) in terms of the dimensionless parameter S:

r = 1−
√

1− 2
S . (4)60

from which it is evident that, unlike the Nye model, crevasses will penetrate the entire ice thickness when S = 2. This is the

fundamental conundrum of the HFB: because the dynamic boundary condition at the calving front of ice shelves requires that

S ∼ 2 near the calving front of ice shelves, in the absence of permanent buttressing, ice shelves should continually shed bergs

until floating ice ceases to exist. This result appears to be at odds with the numerous ice shelves observed today.

2.1 Numerical model65

To test the assumptions of the HFB model and compare predictions to the Nye model for a range of crevasse spacing, we

modified an existing a finite element model that solves the quasi-static conservation of momentum for a slab of ice (Berg and

Bassis, 2020). We implemented both an incompressible elastic (Young’s modulus E= 1 GPa) and incompressible power-law

viscous model (ice stiffness B= 1 Pa s1/3) to examine both linear elastic and non-Newtonian effects.

We assume shear tractions vanish along all boundaries and apply either a depth-independent horizontal displacement (for70

the elastic model) or horizontal velocity (for the viscous model) that corresponds to a constant horizontal deviatoric stress

τxx for a flat ice shelf (Figure 1). We also conducted a handful of simulations for isolated crevasses using ‘stress’ boundary

conditions, for which we set the horizontal velocity at the left-edge of the domain to zero and applied a horizontal traction

boundary condition to the right side of the domain given by σ∞xx = 2τxx−ρig(s−z), corresponding to the analytic traction for

an initially flat ice shelf.75

We also need to enforce the hydrostatic pressure boundary condition at the ice shelf base. Defining the normal to the surface

n = (nx,nz) and effective displacement u∗ = (u∗x,u∗z) where u∗ is equal to the elastic displacement u for the elastic rheology
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and u∗ = u̇∆t where ∆t is the time step for the viscous rheology, we write the normal force at the ice shelf bottom as:

σnn(x,t) =−ρwgb(x,t) + (ρw − ρi)gu∗znz. (5)

A similar traction condition holds along the top surface:80

σnn(x,t) =−ρigu∗znz, (6)

These boundary conditions are analogous to the boundary conditions applied to perturbations by Bassis and Ma (2015), but

differ slightly from ‘sea spring’ frequently used as a restoring force (Durand et al., 2009; Berg and Bassis, 2020) because

we include the buoyancy force associated with the displacement of ice by water and vice versa. We use a time step ∆t = 30

days using the method of Berg and Bassis (2020) to remove the time step dependence of the viscous problem. We tested85

our numerical implementation using a flat ice shelf to ensure that the velocity/displacement fields correspond to the analytic

solutions.

To simulate narrow cracks in the ice, we introduce triangular notches with crevasse walls initially (nearly) in contact. We

then performed simulations varying crevasse depths and calculated the horizontal effective stress σeff
xx = σxx +Pw with Pw the

hydrostatic pressure of the ocean. Evaluating the effective stress directly ahead of the crevasse for each crevasse depth, we90

interpolated to find the depth or height where the stress vanishes. For elastic problems, we also examined the stress intensity

factor using the displacement correlation method (Jiménez and Duddu, 2018) and change in elastic potential energy associated

with crevasse depths. All three methods yielded similar crevasse depths.

To examine the effect of crevasse spacing, we exploited symmetries to lower computational cost and conducted simulations

with crevasses located in the center domains extending one half of the spacing (w/2) to the left and to the right of the crevasse.95

We verified the accuracy of this method by comparing to simulations with larger domains and arrays of crevasses and further

supplemented these calculations using resolution tests to ensure numerical convergence. Typically, our simulations typically

had ∼19,000 nodes with increased node density near crevasse tips and intact regions between crevasses.

3 Results

We first examined the crevasse penetration ratio r for different values of the dimensionless stability number S (Figure 2). For100

comparison, we also show theoretical penetration ratios for (1) the Nye model (2) the HFB model and, (3) Weertman’s model

for shallow bottom crevasses, which predicts crevasses should penetration a factor of π/2 deeper than Nye’s model (Weertman,

1980). Starting with closely spaced crevasses (w = H/16), we find that our simulated crevasse depths for both the viscous and

the elastic rheologies closely track the Nye model for all values of S with both non-linear viscous and elastic rheologies

yielding comparable results (Figure 2a). The HFB model converges to the Nye limit for large S, but predicts dramatically105

deeper crevasses as S approaches 2

To test if the HFB model performs better for more widely spaced crevasses, we next examined the glaciologically plausible,

but modest spacing w = 4H . Here we see that crevasses penetrate deeper for both the viscous and elastic rheologies compared
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Figure 2. Crevasse penetration ratio by stability number S and buttressing number Kb for simulation results with crevasse spacings of (a)

H/16 and (b) 4H . Red circles in (b) show crevasse penetration results for isolated crevasses subject to a stress boundary condition instead

of a displacement boundary condition. The gray shaded region corresponds to parameters with zero or negative buttressing.

to their more closely spaced counterparts. For larger S (and correspondingly modest crevasse penetration ratios), our simu-

lations closely track the Weertman model. However, as S decreases, we see that our simulated crevasse depths deviate from110

the Weertman model and the effect of the rheology on crevasse penetration depths becomes more apparent. However, even

in this case neither elastic nor viscous simulation results are well approximated by the HFB model. As an additional test, we

also considered isolated crevasses subject to stress boundary conditions. Here we see that crevasses penetrate the entire ice

shelf thickness when S ∼ 2, consistent with the HFB model and previous numerical results (e.g., Jiménez and Duddu, 2018;

Zarrinderakht et al., 2022). However, crevasse penetration ratios diverge from the HFB model for larger S and eventually115

converge to the Weertman model as penetration ratios diminish.

To more deeply explore the effect of crevasse spacing on crevasse penetration ratios, we also calculated penetration ratios for

a suite of spacings, focusing on unbuttressed ice shelves (Figure 3). We find that, as hinted at in Figure 2, crevasse penetration

depths converge to the Nye depth as the crevasse spacing decreases and this remains true irrespective of the rheology. We further

see that crevasse penetration ratios increase as the spacing between crevasses increases, although there are some discrepancies120

between elastic and non-linear viscous models.

Overall, we find that the Nye model is remarkably accurate so long as crevasse spacing is small. To understand why, we

examined the ratio of the depth-averaged deviatoric stress in the uncrevassed portion of the ice shelf between crevasses τ̄ c
xx to

the imposed deviatoric stress τxx. We call this quantity the stress concentration and this is shown in Figure 3b. We see that,

exactly as Nye (1955) asserted, when crevasses are closely spaced crevasses, the stress in the intact portion of ice between125

crevasses is unaffected by the presence of crevasses and there is no stress concentration. This is because the influence of
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Figure 3. (a) Crevasse penetration ratio as a function of crevasse spacing for the elastic and viscous rheology for an unbuttressed ice shelf

(S = 2, Kb = 0). (b) Ratio of the depth averaged deviatoric stress between crevasses to the background deviatoric stress τxx imposed.

adjacent crevasses cancel each other out. Moreover, ever for more widely spaced crevasses (w = 4H), we find that crevasses

actually reduce the stress in the intact portion of ice. This is partly a consequence of flexural deformation associated with

bottom crevasse resulting in a compressive stress in the ice shelf in the intact region above the bottom crevasse. In fact, for

small crevasse depths, the decrease in stress is proportional to (1− r) as opposed to increased by (1− r)−1 as conventionally130

assumed in damage mechanics (e.g., Sun et al., 2017).

4 Discussion and conclusions

We conclude that Nye was right; Nye’s original theory for the depth of closely spaced crevasses is an excellent approximation

when crevasses are closely spaced. Of course, crevasses will never be evenly spaced. However, even when examining irregularly

spaced crevasses, additional numerical experiments show that the Nye model remained approximately correct. Although the135

HFB model may prove to be a useful empirical model, the conditions under which it is valid remain murky.

There are, nonetheless, questions that remain. For example, we have not addressed the stability of closely spaced crevasse

configurations. Moreover, our crevasse depth was based on the horizontal stress and not the largest principal stress. This

is because crevasse paths may no longer be vertical when the largest principal stress diverges from the horizontal stress.

Furthermore, we have treated the bottom crevasses that penetrate above the waterline cavalierly, as air filled without account140

for the fact that these pockets would be isolated from the atmosphere nor have we accounted for the turbulent flow of water

into crevasses.

We conclude by noting that, contrary to many depth-integrated models that seek to parameterize crevasses by analogy with

damage, we find that closely spaced crevasses do not amplify stresses in the intact portion of ice shelves. Instead, closely spaced

crevasses have no impact on the stress between crevasses whilst widely spaced crevasses in ice shelves actually decrease the145
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deviatoric stress in the intact portion of the ice shelf. This suggests that the way we parameterize crevasses in large-scale

numerical models may need to be re-examined.
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