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Abstract. We investigates short-term (daily-to-weekly) winter Arctic sea-ice predictability using a coupled ice—ocean model,
and focusing on how sensitive forecasts are to initial uncertainty in the location of sea ice features (e.g., leads, ridges, etc.).

In this context, two rheologies are compared: elastic—viscous—plastic (aEVP) and brittle Bingham—Maxwell (BBM). For Jan-
uary—March 1997, we conduct 10-day ensemble forecasts, initialized by applying displacement perturbations to all sea-ice

5 fields to represent initial positional errors, while keeping atmospheric forcing identical for all the ensemble members. Potential
predictability is evaluated using a “perfect model” framework and probabilistic metrics for the ice-edge position errors, lo-
cal state-variable errors (concentration, thickness, drift, deformation), and the spread of virtual drifters. Ice-edge forecasts are
found to be largely insensitive to initial positional errors for both rheologies, indicating dominance of thermodynamic forcing
rather than ice dynamics at short lead times. In contrast, BBM exhibits strong nonlinear sensitivity in pack ice: predictabil-

10 ity is limited to 1-5 days for drift and deformation and 5-10 days for concentration. The aEVP model, on the other hand,
quickly damps small-scale heterogeneities, yielding more convergent, and thus more predictable solutions. These findings have
concrete implications: the BBM model produces larger regions with high probability of intense deformation and the spread

of Lagrangian drifters up to an order of magnitude greater than in the aEVP model. Our results underscore the importance of

ensemble forecasting for quantifying risks in a highly nonlinear and weakly predictable sea-ice system.

15 1 Introduction

The demand for reliable daily-to-weekly operational forecasts of sea ice conditions in polar regions is growing. Such forecasts
are crucial for mitigating risks and ensuring safe navigation and effective response in case of a pollution event, particularly in
light of the marked rise in human activity in these areas over the last decade. The Arctic Shipping Status Report #1 (PAME,
2024) reports a 37% increase in the number of ships entering the Arctic Ocean between 2013 and 2023, while the total
20 cumulative distance sailed by vessels in the Arctic has doubled. At the same time, Tietsche et al. (2020) emphasized that
substantial gaps persist between existing operational sea ice forecast products and the level of quality and relevance required

by end-users.
In practice, an operational sea ice forecasting system is affected by numerous sources of uncertainty that limit its ability to

accurately predict the future evolution of the physical sea ice state. For a given metric, lead time, and system configuration,
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25 the upper bound of attainable forecast skill is often termed the practical predictability of that system (e.g. Korosov et al.,
2023). Uncertainty stems from three main sources: (i) the sea ice model itself, including its numerical approximations and
parameterizations; (ii) uncertainty in the external drivers of the system, specifically the atmospheric and oceanic conditions
in the case of sea ice; and (iii) uncertainty in the initial sea ice state used to start the forecast. This last source of uncertainty,
often termed initial uncertainty, arises both from the numerical approximations involved in the Data Assimilation (DA) process

30 and from the incomplete coverage and limited accuracy of available observations in space and time. Furthermore, due to the
strongly non-linear character of the equations governing the physical system, even minimizing initial errors as much as possible
does not yield a perfectly accurate forecast. Put differently, any arbitrarily small initial error will ultimately be amplified and
will degrade the forecast accuracy (e.g. Bertino et al., 2025; Reifenberg and Goessling, 2022). As a result, one can introduce
a finite predictability horizon (also called intrinsic or potential predictability), as is commonly done in weather prediction and

35 other chaotic systems (e.g. Lorenz, 1969, 1975). Potential predictability represents the theoretical upper limit of forecast skill
that could be attained if all other sources of error in the numerical model and its external forcings were eliminated.

Assessing the potential predictability of relevant sea ice metrics can inform the prioritization of future model improvements
and offer an estimate of the forecast-skill gains that might be achieved for a specific application. Predictability studies can
likewise improve our knowledge of the physical system itself and of the constraints introduced by its numerical representation.

40 In particular, existing ocean—sea-ice operational forecasting systems differ in how they numerically formulate sea-ice rheology,
that is, in how they describe the relationship between stress and strain in the ice. Bertino et al. (2025) distinguishes two main
groups: (i) the elastic-viscous—plastic (EVP) framework originating from Hibler (1979) and subsequently extended, for in-
stance, by Hunke and Dukowicz (1997); Kimmiritz et al. (2016), and (ii) the more recently introduced brittle Bingham-Maxwell
(BBM) framework (()lason et al., 2022), which builds on earlier work by Girard et al. (2011); Dansereau et al. (2017) and the

45 references therein. The BBM rheology was developed to more realistically capture the linear deformation patterns in sea ice
that are linked to the formation of ridges and leads (also referred to as Linear Kinetic Features), as well as the observed spatial
and temporal scaling characteristics of sea-ice deformation (Rampal et al., 2008, 2019, and references therein). To our knowl-
edge, however, the consequences of these different rheological frameworks for the predictability of sea-ice dynamics have not
yet been examined and will be investigated in this study.

50 Several facets of sea-ice predictability on daily to weekly timescales have already been explored in previous work. Mohammadi-
Aragh et al. (2018) derived initial estimates of a practical predictability horizon of 4-8 days for linear kinematic features,
based on EVP-based MITgcm ensemble simulations, whereas Korosov et al. (2023) identified a practical predictability limit
of roughly 3—4 days for sea-ice deformation in the BBM-based neXtSIM model. Overall, it has been demonstrated that the
primary contributor to sea-ice forecast uncertainty is the uncertainty in surface wind forcing (Mohammadi-Aragh et al., 2018;

55 Rabatel et al., 2018; Cheng et al., 2020). In these studies, wind uncertainty was represented either as Gaussian perturbations
to the wind field, correlated in space and time, or through the use of individual members of the ECMWF Ensemble Prediction
System. More specifically, Mohammadi-Aragh et al. (2018) showed that atmospheric uncertainty overwhelms initial sea-ice

errors, which in their framework were introduced solely by spatially correlated perturbations of the initial sea-ice thickness.
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Cheng et al. (2020) also found that wind uncertainty dominates over model uncertainty, the latter being incorporated by apply-
60 ing random spatial perturbations to the initial ice cohesion field.

At the same time, uncertainty in the initial conditions, although less influential than uncertainty in the surface winds, should
not be overlooked. Rabatel et al. (2018) and Cheng et al. (2020) pointed out that, at local spatial scales and for short prediction
lead times, variability in the Lagrangian motion of sea-ice drifters is likely driven not only by atmospheric forcing, but also by
inaccuracies in the initial location and orientation of the existing sea-ice fracture network. In the present study, we specifically

65 investigate how sensitive the sea-ice system is to uncertainty in the initial positions of sea-ice features such as leads, ridges,
and shear lines. The purpose is to compare how the two types of rheological formulations, EVP and BBM, respond to initial
positional uncertainties and to examine the implications of these differences for short-term sea ice forecasting.

Some recent work, such as Korosov et al. (2023) or Moro et al. (2024), has focused on practical predictability within given
operational systems and explored how improvements in data assimilation to reduce initial-condition errors can impact forecast

70 skill. In contrast, we adopt a complementary approach, examining the potential predictability of the sea-ice system: within a
“perfect-model” framework (e.g., Reifenberg and Goessling, 2022), we introduce positional perturbations at initialization into
a sea-ice model and atmospheric forcing both assumed perfect. Using an ensemble approach, we then track how these initial
positional errors develop over time and influence the forecast skill across multiple sea-ice-relevant metrics. By systematically
varying the magnitude of the initial positional uncertainty from large to small, we assess the highest achievable forecast ac-

75 curacy as a function of both lead time and initial error. This is our definition for predictability, or to put it differently, the
maximum possible skill for a given metric and lead time, under the assumption that all sources of uncertainty other than the
imposed initial positional error have been eliminated.

By construction, our framework separates out the inherent nonlinear behavior of the sea-ice system itself. Specifically, we
assume that the atmospheric forcing is perfectly known, which does not reflect operational forecasting settings where several

80 uncertainty sources interact. Our purpose is therefore not to mimic realistic operational errors, but to evaluate the maximum
level of predictability constrained solely by sea-ice dynamics, prior to accounting for its coupling with the chaotic atmosphere.

Note also that this paper focuses on a daily-to-weekly forecasting horizon, and our methodology contrasts with earlier
work that explored sea ice predictability on longer timescales (subseasonal to interannual) using fully-coupled climate models
(ocean—sea ice—atmosphere). Those previous studies evaluated predictive skill over several weeks to months and for spatially

85 integrated climate-relevant quantities, such as sea ice area, extent, and volume (e.g. Day et al., 2014; Cruz-Garcia et al., 2019),
the sea ice edge (e.g. Tietsche et al., 2014; Goessling et al., 2016; Goessling and Jung, 2018; Zampieri et al., 2018), and
seasonal drift Reifenberg and Goessling (2022). However, none of them explicitly investigates how the choice of rheology
formulation affects predictability, and their coupled atmosphere—ice—ocean modeling setups do not allow one to separate the
uncertainty associated with the chaotic atmosphere from that stemming from the inherently non-linear response of the sea ice

90 itself.

Section 2 provides a description of the model and experimental design used in the present study. An evaluation of the
modeled sea ice drift is provided in Sect. 3, and the predictability results are presented and discussed in Sect. 4. Finally,

concluding remarks are proposed in Sect. 5.
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Figure 1. Unperturbed initial states in (a) sea ice concentration and (e) the U-component of sea ice velocity at the beginning of period P2
(to: 1997-01-26) from the unperturbed reference experiment with the BBM model. Panels (b-d) and (f-h) show the difference in the initial
states of two perturbed ensemble members for concentration and the U-component of sea ice velocity, respectively. Panels (b,f), (c,g), and
(d,h) correspond to initial perturbations scaled for a standard deviation (STD) of 1 km, 10 km and 50 km, respectively. The black dashed line

defines the boundaries of the region over which the ensemble scores for the pack ice (Sect. 4.2) are computed.
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Model configuration

Ocean-sea ice model:

NEMO + SI® v4.2.2

Domain: Full Arctic region (down to about 40° N in the Atlantic)

Horizontal resolution: 1/4°

Horizontal size in grid points (z x y): 492 x 566

Number of vertical levels: 31

Sea ice rheology formulation: aEVP (Kimmritz et al., 2016) BBM (Brodeau et al., 2024)
Air-ice drag coefficient: 1.1x107* 21x1073

Atmospheric forcing

Hourly ERAS reanalyses (Hersbach et al., 2020)

Forcing dataset:

Ensemble configuration

Number of members: 20

Perturbation type: Initial positional perturbations applied to the sea ice state from reference simulation

Perturbation amplitude scaled to: STD 1 km STD 10 km STD 50 km
Hindcast periods

Period length: 10 days each

Period start dates P1:1997-01-16 — P2:1997-01-26 — P3:1997-02-05 — P4:1997-02-15

(1997-MM-DD) : P5: 1997-02-25 — P6:1997-03-07 — P7:1997-03-17 — P5:1997-03-27

Table 1. Summary of the experimental set-up. See text in Sect. 2 for more details.

2 Experimental setup
95 2.1 The coupled sea ice—ocean model

We use the SI® sea ice model (Sea Ice modelling Integrated Initiative, Vancoppenolle et al., 2023) coupled with the Boussinesq
hydrostatic ocean model NEMO (Nucleus for European Modelling of the Ocean, Madec and the NEMO-System-Team, 2024).
SI? is an Eulerian continuous thermodynamical model of sea ice that we use here with five different thickness categories. In
this model, the drift and deformation of sea ice are solely horizontal and the heat transfer is only vertical due to the scale ratio
100 between the width ((O(100-1000 km)) and the thickness of the sea ice (O(1 m)).
We use a regional configuration of SI> -NEMO covering the Arctic region, from the Bering Strait down to about 40° N in
the Atlantic Ocean (the model domain is partially shown in Fig. 1, with truncation indicated by the grid-point ticks on the x
and y-axes). The configuration is based on a horizontal resolution of 1/4° (i.e. about 10 km in the central Arctic region) and
31 vertical levels for the ocean. This regional configuration is the same as in Brodeau et al. (2024), who have implemented and
105 evaluated an elasto-brittle formulation for sea ice rheology (i.e. the BBM formulation, as described in Olason et al. (2022)) in

addition to the already existing elasto-visco-plastic formulation (aEVP, Kimmritz et al., 2016).
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We take advantage of this single modelling framework in which either the BBM or the aEVP rheology formulation can be
set to test the impact of rheology on the short-term predictability properties of the system. Hindcast experiments are thus run
both with the BBM and aEVP rheology, while all other settings are kept the same in the modelling framework, namely same

110 atmospheric forcing, same resolution, same ocean model parameters, and allows a clean comparison framework.

The main parameters and settings used in this study are summarized in Table 1. The only exception is the air-ice drag
coefficient (parameter rn_cd_i in the SI>-NEMO namelist), which we have adjusted separately in the experiments with BBM
and aEVP, as also done by Brodeau et al. (2024), to establish a fair comparison framework and ensure that both configurations
had a realistic mean drift over the period of interest. The air-ice drag parameter plays an important role in computing the

115 surface momentum fluxes based on the sea ice state and the prescribed surface atmospheric forcing. Previous studies showed
that the simulated drift of sea ice is sensitive to the way air-ice drag is set (e.g. Rampal et al., 2016; Rabatel et al., 2018;
Cheng et al., 2020), and recommended fitting its value according to an observed metric typically based on sea ice drift or
deformation. In this study, we used a drag coefficient of 2.10 x 10~3 in the BBM-based experiments and 1.10 x 10~3 with
aEVP. These values were tuned so that the mean simulated sea ice drift in the BBM and aEVP configurations—averaged over

120 January-February—March 1997 and over the pack-ice region (Fig. 1)—matches the corresponding observed mean (i.e., 5.2
km / 24 h) within £0.2 km / 24 h, which was estimated from the EUMETSAT OSI-SAF daily gridded sea ice drift product
(OSI-455, Lavergne and Down, 2023).

2.2 The set of ensemble hindcasts

Building on the work of Brodeau et al. (2024), we focus on the same 1997 winter season in January-March as their study,

125 where they implemented the BBM rheology formulation in the SI® model and thoroughly compared the resulting sea ice
scaling properties of deformation with those of the standard aEVP formulation and with the RGPS (RADARSAT Geophysical
Processor System Lagrangian trajectories) observation dataset available for that year (Kwok et al., 1998; Kwok, 2001). We
provide below some additional evaluation of the regional model on local sea ice drift as seen from a Lagrangian-drifter point
of view (Sect. 3).

130 Our predictability study aims to contrast the behaviour of BBM and aEVP models, and thus focuses on the winter months
(Janurary to March), when friction and internal forces in the sea ice—in other words, rheology—play a crucial role in how the
ice behaves, compared to later in the season when the so-called "free drift" regime may take over when the ice responds more
directly to the wind forcing as a consequence of low internal stresses within the ice (Rabatel et al., 2018).

Predictability is assessed by running a set of 10-day ensemble hindcasts with N=20 members initialized with perturbed sea

135 ice states. The number of members in the ensemble is a compromise between computational cost and the robustness of the
obtained ensemble statistics. We built on Cheng et al. (2020) who showed, in a similar context (but with a different model),
that their ensemble hindcast statistics converged when the ensemble size exceeded 20.

The ensemble hindcasts are initialized at different start dates sampled within the 1997 January-March season so that eight
consecutive, non-overlapping 10-day ensemble hindcasts are run in total over the period. These periods are labeled P1, P2,...,

140 P8 hereafter, and their start dates are summarized in Table 1. The sea-ice-ocean initial state of each of these periods is extracted
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from a single, unperturbed simulation of 3 months (hereafter the "unperturbed reference simulation") based on the BBM
rheology formulation. It is important to note that all the ensemble hindcasts run in this study, using either the BBM or the aEVP
rheology formulation, are initialized from exactly the same set of initial states taken from the BBM-based reference simulation
and subsequently perturbed. This choice ensures that the extracted initial states include a realistic level of heterogenities
145 and LKFs as it would be in an operational context where data assimilation would assimilate high-resolution observations as
envisaged by, e.g. Korosov et al. (2023) or Moro et al. (2024).
The reference simulation begins on January 1, initialized with the GLORY S12 reanalysis product (Lellouche et al., 2021) for
both ocean and sea ice states. The first ensemble hindcast run over P1 (start date on January 16) is thus started after a spinup of
15 days. Given the rapidity with which the dynamics of sea ice evolve in the BBM-based configuration, this short spinup was
150 enough for most sea ice variables, as will be shown by the results of this study. Only for sea ice thickness, we have observed in
our results some indications that the modeled thickness had not reached its equilibrium regime, even though it does not limit
our ability to draw some conclusions regarding predictability (as discussed in Sect. 4.2).
Ensemble scores are finally computed from the ensemble hindcasts to assess the predictability horizon in the BBM-based
and aEVP-based configurations. The ensemble scores are all computed from hourly-averaged model outputs unless stated
155 otherwise. For this reason, in our results, the time indication ¢, corresponds to the state of the model averaged over the first
hour of simulation (which is not strictly equivalent to the initial state, but close enough to make the approximation, except

where explicitly noted in the text).
2.3 Initial positional uncertainty

The initial states sampled from the unperturbed simulation are perturbed to initialize the ensembles with positional errors and
160 mimic possible misfits in the position of the sea ice features at initial time in an operational context. We do so by generating
maps of random displacements Ax(z,y), Ay(z,y) that are then applied to perturb consistently the initial condition of all the
sea ice variables (i.e. using the same maps of displacements for all the variables).
Compared to more standard perturbation methods, which usually apply Gaussian perturbations to the model variables in a
specific modal subspace, (Empirical Orthogonal Functions, singular vectors, bred vectors, etc.), the proposed method has the
165 originality to produce non-Gaussian perturbations of the geophysical fields through Gaussian displacement perturbations. It is
particularly relevant in the context of this study, where we aim to investigate specifically the sensitivity of the system to small
displacements in the location of sea ice structures (LKFs, leads, etc) rather than to large amplitude variations in the sea ice
fields.
In practice, we use the Lu-generator python package (Brankart and Leroux, 2025) to generate and apply these perturbations
170  to the SI® initial sea ice states (in this study, only the sea ice state is perturbed, the ocean state is left unperturbed). We generate
a set of N=20 maps for Ax(z,y) and Ay(z,y), consisting of normal isotropic random vectors with a spatial correlation scale
of 500 km (about 1/5th of the size of the Arctic basin) and a standard deviation of 1 km, 10 km, or 50 km, corresponding to the
3 amplitudes of displacement (small/medium/large) that will be used in the experiments. In practice, for better comparison, we

use the same sample of 20 displacement maps to initialize all the ensemble experiments (all start dates and all three amplitudes),
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175 with a simple rescaling of the standard deviation for each amplitude. The "small", 1-km perturbation is scaled to about 1/10th
of the size of a grid cell in our system, to represent a lower bound error, where initial sea ice features are only very slightly
displaced relative to the system resolution. On the other hand, the "medium" and "large" perturbations (10-km and 50-km
resp.) represent shifts of about 1 (resp. 5) grid cells in average. We will comment further on the amplitude of these initial
perturbations when analyzing the different ensemble scores and relate them to existing errors in the current operation systems

180 for comparison, when this information is available in the literature.

An example of the resulting perturbed initial states is shown in Fig. 1 for the concentration and the U-component of the drift,
plotting the unperturbed fields (left column) and the difference between two perturbed members (right columns). Leads, LKFs,
and patterns of positive/negative drift in the initial fields are slightly shifted and distorted between the two ensemble members,
in order to take into account some uncertainty in their exact location at initial time. This positional uncertainty is by design

185 scaled to the imposed displacements. Note that the perturbations are applied everywhere in the domain, except over land and
at and near the coast, where they are damped to zero to avoid displacing the sea ice unrealistically at the coast and over land.
The damping coefficient is set to zero at the coast and grows exponentially offshore to 1 with a characteristic distance of about
25 grid points (about 250 km).

3 Evaluation of the modeled sea ice drift

190 Before assessing the predictability of the system in its two configurations (BBM and aEVP), we first provide a brief evaluation
against available observations. The assessment of sea-ice deformation has already been carried out in Brodeau et al. (2024),
who analyzed the scaling properties of deformation in configurations very close to those used here and compared them with
the RGPS Lagrangian-trajectory dataset (Kwok et al., 1998; Kwok, 2001). In this section, we therefore limit ourselves to
checking the realism of the simulated sea-ice drift at local scales, using Lagrangian trajectories from the International Arctic

195 Buoy Programme (IABP) (2023) dataset. Although the mean sea-ice drift in both configurations—averaged over the 3-month
period and over the pack-ice region—was tuned to match the observed OSI-SAF mean (through adjustment of the air-ice drag
coefficient; see Sect. 2), this tuning does not guaranty a perfect consistency with local drift observations from an independent
data set such as the IABP data set. Overall, the goal of this brief evaluation is to verify that both configurations produce a
sufficiently-realistic and well-tuned representation of the sea-ice drift at local scales to then allow a fair comparison of their

200 predictability properties in the following sections.

We used ice buoys from the IABP data set within the study period (Jan-Mar 1997). These buoys are fixed on sea ice and
record their drifting position over time. In 1997, positions are given every 3 hours with an uncertainty of 100-300 m (Rampal,
2008). We have selected the buoys available over the eight 10-day consecutive periods P1,..., P8, rejecting those that have more
than 10% missing values over a given period. We have also rejected all the buoys for which the position at the initial time of

205 the given period is missing. Furthermore, we have filtered out a few buoys with obvious non-physical trajectories. In the end,
101 buoys were selected for Jan-Mar 1997 following our criteria, all localised in the central Arctic region, even though not

evenly distributed, with more buoys in the vicinity of the North Pole (Fig. 2).
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Figure 2. Location of the observed IABP buoys at initial time of the P1,...,P8 hindcast periods (start dates from the 16th of January to the
27th of March 1997, see Table 1). 101 IABP buoys are considered in total. The colored "x" markers highlight the initial position of the few
buoys taken as examples in the following (Figs. 4 and 13).

To compare the Eulerian model drift with the IABP Lagrangian observations, we generate virtual buoy trajectories: at initial
time of each P1,...,P8 period, virtual buoys are seeded at the positions of the real IABP buoys available and selected for this

210 given period (see their initial location in Fig. 2). The virtual buoys are then advected for 10 days based on the hourly-averaged
sea ice velocity fields using the Sitrack package (Brodeau, 2025). Thus, 10-day trajectories are produced, sampling the position
of these virtual buoys every hour. The virtual trajectories have been generated for the 8 periods and the N=20 members of the
ensemble hindcasts initialized with the 3 types of perturbation amplitudes, but only the results based on the 10-km perturbations
are shown below for the sake of brevity, as the conclusions were similar for all.

215 Figure 3 shows some statistical evaluation metrics that compare the virtual buoys seeded in the model with the observed
ones. The distance covered by the simulated buoys (Fig. 3a) is on the order of 60 km on average after 10 days, consistent
with the observed distance, although on average the simulated buoys cover a slightly longer distance than their corresponding
observed buoy (about 5 km longer after 10 days for both model configurations). Figure 3b also shows the difference in the
direction of propagation, as measured by the angle between the two lines drawn from the seeding position to the observed

220 buoy and the barycenter of the N=20 simulated buoys of each ensemble hindcast. We find an absolute error of about 20° in
the direction of propagation of the barycenters, on average, compared to the direction of the observed buoys. Interestingly,
the angle error cancels out in average for the BBM-based simulated trajectories if we consider the relative angles, while a
10° clockwise bias remains in the aEVP trajectories relative to the observations. Note that if on average the properties of the
virtual buoys remain close to the observed, there is some diversity in individual cases both in the direction of propagation and

225 in the distance covered, as illustrated by the examples in Fig. 4. The error in the position of the simulated buoys, measured as
the distance between the observed buoy and the barycenter of the virtual buoys, is shown in Fig. 3c. The distance grows with
lead time, as expected from any unperfect forecast, and on average after 10 days, it represents a mean error of about 15 km in

the position of the barycenter compared to the observed. Note that this amount of error is consistent with the error found by
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Figure 3. Temporal evolution of different properties of the simulated buoys compared to the observed IABP buoys: (a) length, i.e., the
distance covered by the buoys, (b) angle between the two lines drawn from the seeding position to, respectively, the observed buoy and
the barycentre of the N = 20 simulated buoys of each ensemble hindcast, and (c) the direct distance between the observed buoy and the
barycentre. The results of BBM and aEVP are colored blue and green, respectively, with the thick lines for the ensemble means of all the
buoys over all eight 10-day periods, while the shaded envelopes indicate the 5%-to-95% percentile ensemble distribution. In (a) the distance
covered by the observed buoys is with the black line (mean) and the hatched envelope (5%-to-95% percentile). In (b), the envelopes and solid

lines are computed considering the absolute value of the angle, while the dashed lines correspond to the mean value of the angle.

Rabatel et al. (2018); Cheng et al. (2020) from the virtual trajectories produced by their model BBM-based NeXtSIM. This

230 error appears to be slightly larger in the aEVP model (about 19 km after 10 days). Note also that from the example trajectories

10
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Figure 4. Three examples of observed IABP trajectories (black) and corresponding virtual trajectories simulated from the BBM ensemble
hindcast (blue, 20 members) and aEVP ensemble hindcast (green, 20 members) seeded at midnight on: (a) March 7th, at -154.552° E;74.886°
N (red cross in Fig. 2), (b) February 15th, at 127.952° E;86.494° N (green cross in Fig. 2), and (c) February 5th, at 139.272° E; 86.783° N
(yellow cross in Fig. 2). The observed IABP trajectories are plotted with a plain black circle every 3 hours. In case of missing values, the
circle following the gap is shown in red, with the corresponding time gap. The simulated ensemble trajectories are plotted as colored curves,
and only the final positions after 10 days are marked as plain circles. The shaded ellipses represent the 95% confidence regions of the final

positions, assuming a bivariate normal distribution.

in Fig. 4, it appears that the spread in the virtual buoy ensemble generated from the aEVP model is smaller than the spread in
the BBM ensemble. This aspect will be further documented and discussed in Sect. 4.3.
Overall, this evaluation confirms that both configurations simulate the observed drift with sufficient realism to be used in
the predictability analysis that follows. Some additional Lagrangian metrics will be presented and discussed in Sect. 4.3 to
235 illustrate the difference in the predictability properties of the two configurations.

4 Daily-to-weekly predictability of the sea ice system

‘We now investigate the daily-to-weekly predictability properties of the sea ice system with either type of rheology, focusing on
its sensitivity to initial uncertainty in the position of sea ice features. We consider here three different types of metrics or scores
to measure the dispersion of the ensemble hindcasts, and to quantify the system skill regarding those three metrics (considering

240 a "perfect model"” framework with no other sources of uncertainty than initial uncertainty, as explained in Sect. 2).
4.1 Predictability of the sea ice edge

We first focus on the predictability of the position of the sea ice edge. The sea-ice edge marks the boundary between the

ocean covered with ice and the open ocean. As such, it is a widely used proxy for sea-ice extent and its variability in climate
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and seasonal prediction studies (e.g., Tietsche et al., 2014; Goessling et al., 2016; Goessling and Jung, 2018; Zampieri et al.,

245 2018), and at shorter lead times it is a routinely-evaluated forecast product from operational sea-ice prediction systems (e.g.,
Williams et al., 2021). In this study, based on the ensemble hindcast experiments, we can compute a probabilistic version of
the Integrated Ice-Edge Error (IIEE, Goessling et al., 2016), namely the Spatial Probability Score applied to the sea ice edge
(thereafter SPS, Goessling and Jung, 2018). It is defined as:

2
SPS— / / [P[c>0.15](z,y)—P[c>0.15]ref(z,y) dedy )
z y

250 where it represents the spatial integral of the square difference between P[c > 0.15](z,y) the probability of having a concen-
tration greater than 0.15 at a given location (z,y) in the ensemble forecast, and P[c > 0.15]¢¢(z,y) the same probability but
for a given reference. We use the usual 0.15 concentration threshold to define the location of the ice edge, as in, e.g., Goessling
et al. (2016); Goessling and Jung (2018); Zampieri et al. (2018); Williams et al. (2021). The probabilities P[c > 0.15] and
Plc > 0.15],f are estimated from the discretized frequency of the event. Since we follow a perfect model approach, the refer-

255 ence is taken alternatively as a member of the ensemble and P[c > 0.15],.s takes the value of 0 or 1. P[c > 0.15] is computed
considering the 19 remaining members of the ensemble and can take a continuum of values between 0 and 1. Examples of the
corresponding probability maps are depicted in a subregion near Svalbard in Fig. 5 and will be commented on in more detail
in the following.

Our method of perturbing the initial state acts consistently on all sea ice fields and not specifically on the ice edge. An

260 example is given in Fig. 6 to illustrate how the initial perturbations of concentration, drift, thickness, etc., translate into an
ensemble spread in the position of the local sea ice edge in a subregion near Svalbard. Overall, the initial spread in the
position of the sea ice edge is consistent with the scaling of the positional displacements applied to the sea ice state: when the
perturbation is scaled to 1 km (about 1/10th of the size of the model cell), the sea ice edge shows almost no spread in its local
position (Fig. 6a). For a perturbation scaled to 10 km, the edge of the sea ice is spread locally by a few grid cells between the

265 ensemble members (Fig. 6b). In the 50 km case (Fig. 6¢), the position of the sea ice edge can differ by up to 15-20 grid cells
locally (up to 200 km).

Integrated across the entire domain, the initial spread between members, quantified by the SPS score in Fig. 7, ranges from
0.15 to 47 x10* km? depending on the initial date and ensemble members. It should be noted that the largest initial errors
we generate in the SPS in this study are of the same order of magnitude as the practical initial errors in the coupled climate

270 systems (atmosphere—ice-ocean) of the subseasonal-to-seasonal (S2S) database investigated by Zampieri et al. (2018), where
the initial error ranges between 20 and 70 x 10* km? and their climatological reference is about 55 x10* km?. In their climate-
coupled setups, the initial error in the sea ice edge is highly influenced by the initialisation strategies of the 3-D ocean (which
differ from one coupled system to another) and can lead to relatively large errors, close to (or sometimes even larger than) the
climatological reference. Regional operational sea ice forecasting systems, such as NeXtSIM-F (Williams et al., 2021) can do

275 better to initialize the sea ice edge in a single sea ice configuration forced by the operational regional ocean product TOPAZv4
(Sakov et al., 2012; Simonsen et al., 2018). For reference, the initial error in the IIEE (which is the deterministic version of the
SPS) is given to about 7-10 x 10* km? for the January-March period of year 2019 in Williams et al. (2021), which falls again in

12
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Figure 5. Example of the dispersion of the sea ice edge position (pink and red lines) in the Svalbard region in the BBM ensemble members for
period Pg and from the 50-km-scaled perturbation, at initial time ¢, and after 10 days (a,b respectively). The hourly sea ice concentration field
of the reference member is shown in the background for their respective lead time (shading in a, b). The corresponding maps of probability
P[c > 0.15], computed from the 19 members excluding the chosen reference member (whose ice edge is shown in red) are also plotted at

initial time and after 10 days (c,d resp.) to illustrate the methodology to compute the SPS metrics (see text for more details).

the range of the initial errors we have generated on the sea ice edge. Overall, we thus verify here that the approach we propose

in this paper generates initial errors in the SPS whose amplitudes range from those typically observed in current climate and

280 operational sea ice forecasting systems to very small local errors in the ice-edge position (kilometer scale, i.e., smaller than a
model grid cell). This makes us able to study the sensitivity of the sea ice system to initial errors.

The evolution of the SPS error in the ensemble forecasts is plotted as a function of lead time, for the BBM and aEVP

experiments separately (Fig. 7). Each plotted curve corresponds to the SPS score for one of the eight forecast periods, computed

by taking one member of the 20 ensemble members as the pseudo-truth (resulting in a total of 8 periods x 20 scores = 160

285 curves in each panel of Fig. 7). In all experiments, we find that the SPS error systematically decreases with time (or remains

13
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Figure 6. Initial spread of the local sea ice edge position in the Svalbard region during period Pg (1997-03-27) for an initial perturbation
scaled to a standard deviation (STD) of (a) 1 km, (b) 10 km, and (c) 50 km. The ice edge of the reference ensemble member (used here to
illustrate the method) is indicated by a thick dashed red line, while the remaining 19 members are shown as thin pink lines. The corresponding

hourly sea ice concentration field of the reference member is displayed in the background (shading).

nearly constant for the smallest initial perturbations), indicating that the ensemble members tend to converge towards a more
similar sea ice edge position within the 10-day hindcast period (illustrated in Fig. 5b). Contrary to what might be expected from
a chaotic behavior, no exponential growth of the error is observed for this metric. Instead, the initially-introduced positional
errors of the ice edge are damped with time. The largest initial errors are typically reduced by about half within ten days of
290 forecast, while the smallest perturbations—on the order of one-tenth of a model grid cell—remain nearly constant throughout
the forecast period. However, the impact of initial errors persists through the 10-day forecasts, with the large initial errors
leading to larger SPS errors after 10 days than the small initial errors. In that sense, some predictability in the position of the sea
ice edge persists until the end of the 10 days. This behavior of the ensemble members to converge toward a similar sea ice edge
position demonstrates the strong constraint exerted by the boundary conditions of the sea ice system on the ice edge position.
295 In our configuration, only the sea ice is perturbed at initialization. The atmospheric forcing remains unperturbed: the same
exact atmosphere is seen by all the ensemble members. The ocean component is also initially unperturbed but is coupled to the
perturbed sea ice. However, at its resolution (1/4°, ~10 km in the Arctic), it does not seem to respond sufficiently to the local
initial displacements of the ice-edge position to induce a growing spread of the ocean-ice solutions in the different ensemble
members. However, it is possible that a higher-resolution ocean model—with more active mesoscale turbulence—could lead
300 to a different behavior. Overall, these results indicate that the short-term evolution of the SPS in our simulations reflects
primarily the deterministic adjustment of the ice edge position to the imposed oceanic and atmospheric boundary conditions
(in common to all the ensemble members). In other words, we find that at the resolution of our system, forecast performance
on the sea ice edge position depends more strongly on the quality of the external oceanic and atmospheric conditions than on

an accurate initial position of the sea ice edge. This is also why the SPS error was found to grow with time-lag in fully coupled

14
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Figure 7. Temporal evolution of the SPS score computed over the whole Arctic, for BBM and aEVP hindcasts (a,b resp.). The plotted

curves correspond to the SPS scores computed for each of the eight forecast periods, and for each ensemble member taken alternatively as

the pseudo-truth, resulting in total in 8 Periods x 20 scores = 160 curves. The colors correspond to the three different amplitudes of initial

perturbation.

305 atmosphere-sea-ice-ocean systems initialized with perturbed atmosphere and Sea Surface Temperature (e.g. Zampieri et al.,
2018).

Finally, no significant differences are found in the predictability behavior of the SPS between the two rheologies explored in

this study (Fig. 7). It suggests that, for short-term forecasts, the evolution of the sea ice edge position is more constrained by

thermodynamic interactions with the underlying ocean and the above atmosphere than by internal dynamical processes.
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Figure 8. Temporal evolution of the CRPS metric in the BBM hincasts for the three types of initial perturbations, shown in average for
the eight periods Pi,...Ps (left column) and separately for each period (right column). The CRPS metric is computed for (a,b) sea ice
concentration, (c,d) thickness, (e,f) deformation and (g,h) velocity along the x-axis. The colors correspond to the three amplitudes of initial
perturbation. The solid line on (b, f, h) stands for the mean wind speed averaged over the same domain as the CRPS metrics (cf Fig. 1). The
colored envelopes (right column) correspond to the min-to-max of the CRPS scores computed for each member taken alternatively as the

pseudo-truth. The thin curves on panels (b) and (d) show the scores corresponding to each member taken alternatively as the pseudo-truth.
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310 4.2 Predictability in the pack ice region

In this section, we extend the analysis to the predictability of some of the main dynamical and thermodynamical properties
of the pack ice: sea ice concentration, thickness, drift, and deformation. Leads, pressure ridges, and high-deformation linear
features are manifestations of the heterogeneity of winter fields that remain a challenge to accurately forecast (e.g. Mohammadi-
Aragh et al., 2018; Korosov et al., 2023). We focus on the pack ice region as delimited in Fig. 2, excluding on purpose the
315 coastal areas and the Marginal Ice Zone (MIZ), where landfast ice and small ice floes, respectively, might behave differently
than the central pack ice with respect to predictability and would require adequate metrics. We evaluate here the forecast
accuracy using the Continuous Ranked Probability Score (CRPS; e.g., Hersbach 2000), a widely-used metric in atmospheric
and oceanic ensemble forecasting (e.g., Hersbach, 2000; Lang et al., 2024; Candille et al., 2015; Leroux et al., 2022). The
CRPS provides a spatially-integrated measure of the grid-point mismatch between a probabilistic forecast and a reference

320 value. It is defined as the expected value of A, calculated at each grid point as:

400
A= [P = Frus)ldm @
—o0
and in practice the expectation of A is approximated here by its spatial average over the region of interest (cf Fig.2). F is, at
each point in the model grid, the cumulative distribution function of the predicted physical quantity m, and F).. the reference
function to compare with. In our perfect model ensemble approach, the reference value—or pseudo-truth—is alternately taken
325 as each individual ensemble member, while the remaining 19 members are used to estimate the forecast distribution. F' is
defined as a stepwise function that increases by 1/19 at each of the 19 forecast values. F,..y is a Heaviside function that varies
from O to 1 at the value of the reference member. Thus, A can be seen as the area between the two cumulative distribution
functions, and the CRPS can be interpreted as a generalized absolute error for the ensemble forecasts, accounting for both
the bias and the spread of the ensemble and sharing the same unit as the forecasted physical quantity. Note, however, that in
330 the perfect-model context where the pseudo-truth is taken from the ensemble itself, the CRPS primarily reflects the ensemble
spread, or in other words the forecast uncertainty.

In the following, we investigate the evolution of the CRPS for sea ice concentration, thickness, drift, and deformation on
average and individually for the eight 10-day forecast periods Py,...,Ps. The purpose is to quantify the evolution of the ensemble
spread, i.e. the forecast uncertainty, in positioning accurately the heterogeneous features of the pack ice. We first investigate

335 the results based on the Elasto-Brittle (BBM) experiments, and then we contrast these results with those based on the Elasto-

Viscous (aEVP) experiments.
4.2.1 CRPS results from the brittle (BBM) model

We first focus on the concentration of sea ice, of which the evolution of CRPS is shown in Fig. 8a-b for the BBM-based
hindcasts. On average (Fig. 8a), the positional errors introduced at initial time first trigger a growth phase of the CRPS over
340 the first four days, after which a more stable phase is reached where the CRPS tends to level off. In contrast to what was

found in the previous section for the sea-ice-edge score, this behaviour is indicative of a non-linear, chaotic-like response:
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Figure 9. Sea-ice concentration and U-component of sea-ice velocity (a,e,m and c,g,0, resp.) from the BBM hindcasts initialized with the
10-km perturbation at three lead times during period P;: (a—d) initial time, (e-h) after one day, and (m—p) after ten days. Panels (b,f,n) and
(d,h,p) show, respectively, the differences in concentration and in the U-component of velocity between two perturbed ensemble members.

The black dashed line defines the boundaries of the region over which the CRPS metric is computed.

even very small initial perturbations produce a rapid error growth that eventually reaches a saturation level. This saturation
corresponds to a state in which ensemble members have become as dissimilar as possible according to the CRPS metric,
despite being forced by identical atmospheric conditions. Put differently, two ensemble members initialized with the same
345 individual leads—perturbed only slightly in their initial position—begin to diverge by first displacing the features present at t,,
and subsequently by generating new features that no longer form at exactly the same locations, even though they remain within

the same broader region shaped by the surface wind forcing (Fig. 9).
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Comparing the CRPS evolution of the three different amplitudes of initial perturbations (red, blue, and purple envelopes

corresponding to the evolution of the large, medium, and small-amplitude perturbations, respectively, in Fig. 8a-b) helps to

350 identify the lead time beyond which predictability is fully lost—that is, the point at which the three envelopes become indis-
tinguishable and the initial errors no longer influence the forecast. For concentration, we find that on average, the three curves
are not yet totally indistinguishable after 10 days, suggesting that some predictability remains at that time lag (on average). But
this mainly reflects the fact that individual forecast periods show contrasting behaviors in this regard (Fig. 8b): for instance, the
CRPS in P1 exhibits rapid error growth followed by convergence of the three envelopes after only about 5 days, while for peri-

355 ods P7 and P8, it takes longer for the envelopes to become indistinguishable, meaning that the impact of the initial error persists
throughout the 10-day forecast in these cases. Individual periods reveal different levels of sensitivity to initial errors depending
on the pre-existing states of the sea ice and the evolution of the atmospheric forcing: for a fixed amplitude of positional pertur-
bation, more heterogeneous initial fields result in a larger initial CRPS. Or in other words, positional perturbations applied to
an initially-uniform field will have little to no effect, whereas the same perturbations applied to a highly-heterogeneous field

360 result in a larger CRPS, as each displaced feature contributes to the overall mismatch quantified by the CRPS. In addition,
periods with high wind forcing or periods with calm conditions might influence differently the behavior and growth rate of the
CRPS responding to the same initial error.

However, the key point here is that we find, for all the periods and in average, that the small-amplitude initial perturbations
(purple envelopes) always induce a growth of the CRPS in the first few days, until it converges with the curves from the

365 larger-amplitude perturbations in about 5 to 10 days, as expected from a non-linear, chaotic response.

The same kind of conclusions can be drawn from the evolution of CRPS of sea ice deformation and drift (Fig. 8e-f-g-h),
where the growth phase lasts for about 4 days on average, after which the 3 curves for the 3 amplitudes of initial perturbation
become indistinguishable. Note that the individual periods also show some diversity, even though less visible than for concen-
tration: the three types of envelope have in some cases fully converged in a day or so (for example, P1 and P2) while it takes

370 about 5 days in PS5 or P6. In any case, it is striking from Fig. 8 that for deformation and drift, i.e. the physical fields resulting
from the dynamical and rheological processes in sea ice, the sensitivity to initial error is strong in this model configuration
based on the BBM rheological formulation, and predictability decreases drastically in only a few days, to be fully lost in about
5 days. This is consistent with previously-published studies that estimate the predictability horizon of LKFs to be 4-8 days by
Mohammadi-Aragh et al. (2018); Korosov et al. (2023). But importantly, we show here that this predictability limit is reached

375 in a model considered as perfect and forced by a perfect atmospheric forcing. Put differently, we demonstrate the non-linear,
chaotic behavior of the sea ice system itself (as modeled in this configuration), without the need to invoke its interaction with
the chaotic atmosphere.

The evolution of the CRPS for the thickness of sea ice (Fig. 8c-d) also confirms the growth phase of the initial small and
medium perturbations, with the CRPS curves showing signs of slow convergence, on average. However, it takes much longer

380 than for the other sea ice quantities: after 10 days, the CRPS level of the three types of initial perturbations has not converged,
and in fact the three types of envelopes are not yet overlapping (Fig. 8d), meaning that some predictability remains at that time

lag and that initial errors matter for the entire duration of the experiments. Note in Fig. 8d that the initial CRPS level of each
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period gradually increases from P1 to P5. We explain this increase by the short spinup time of only 15 days before initializing
the reference simulations from which the initial states P1-P8 are taken (see Sect. 2). It is likely too short for a realistic amount
385 of heterogenities in the thickness field to be established in the model state spinning up from the smooth GLORYS reanalysis.
From P1 to P5, the heterogenities in the initial thickness fields continue to grow in number (shown in the Appendix A, Fig. A1)
and it explains why the initial CRPS level gradually increases from P1 to P5. It should be noted that for other quantities such
as concentration, deformation, and drift, we do not see any impact of the short spinup either in the initial CRPS or in the initial
fields of the P1-P8 periods, which do not exhibit any systematic trend in their degree of heterogeneity (shown in Appendix A,
390 Figs. A1,A2). This supports a posteriori the view that a 15-day spinup is adequate to initialize the system for the predictability

analysis conducted here.
4.2.2 CRPS results in the elasto-visco-plastic (aEVP) model

‘We now contrast the above BBM hindcast results with the corresponding CRPS results from the aEVP hindcasts, shown in Fig.
10. It should be reminded here that these aEVP ensemble hindcasts are initialized by exactly the same perturbed sea ice states
395 as those for the BBM hindcasts. Those initial states are produced from the eight dates extracted from the reference BBM-based
simulation and subsequently perturbed (see Sect. 2 for details). This choice ensures that the initial states include a realistic
level of heterogenities and LKFs as would be the case in an operational system where some high-resolution observations
were assimilated (as explored, for example, by Korosov et al. (2023) or Moro et al. (2024)). It means that by construction,
the initial CRPS level is strictly equal in the aEVP and BBM hindcasts, which is verified in the panels for concentration and
400 thickness comparing Fig. 10 to Fig. 8. Note, however, that in the latter figures, the value of the CRPS at t; for deformation
and U-velocity is about five times smaller from aEVP than from BBM (note also that the y-axes have been re-scaled). This
is because, as explained in the methodology section, the score plotted at ty in these figures is based on the first model output
of the simulations, corresponding to the averaged model state over the first hour. Our results thus mean that in less than an
hour, the model state in deformation and U-velocity in the aEVP hindcasts has already changed sufficiently, and ensemble
405 members converged enough that the resulting CRPS has already decreased by a factor five compared to the first hour in
the BBM hindcasts. More generally, for all four quantities considered (concentration, thickness, deformation and U-velocity)
we find that the level of ensemble spread or forecast uncertainty, as measured by the CRPS metric, is smaller in the aEVP
ensembles than in the BBM ensembles after initial time. Contrasting with the behavior observed for the BBM hindcasts in
Fig. 8, Fig. 10 for the aEVP hindcasts reveals a clear decreasing trend of CRPS from the initial time to the end of the 10
410 days, for all four variables. This systematic decrease indicates a convergence of the model state in the ensemble members,
as opposed to the non-linear behavior of the BBM hindcasts and their initial growing phase of the CRPS. We thus document
here a contrasted sensitivity to initial positional errors depending on the rheology: unlike the BBM model, the model based on
aEVP is not sensitive to initial errors related to misplacement of surface heterogeneities, and in fact it tends to reduce the level
of heterogeneities introduced at initial time: a smoother aspect of the concentration and sea ice drift fields is already visible

415 after just 1 day in Fig. 11), and most leads and heterogeneous features have disappeared by day 10 (comparing Figs. 9 and 11)
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even though both models are started from exactly the same initial conditions and forced with the same surface wind. The fields
becoming less heterogeneous, fewer errors can accumulate in the CRPS metric, which becomes smaller with lead time.

The aEVP model is shown to be very little sensitive to the accuracy of the initial position of LKF features and much more

predictable than the BBM model. But this comes at the price of smoother and less heterogeneous sea ice fields that do not

420 sufficiently reflect its observed properties in the winter season (Olason et al., 2022; Korosov et al., 2023). The BBM model

by contrast is shown to be very sensitive to initial positional errors, and predictability is rapidely lost (in 1 to 5 days for drift

and deformation, 5 to 10 days for concentration), meaning that the accurate position of the individual features (LKFs, leads,

etc.) is not known after this lead time. This non-linear behavior is shown to arise from the nature of the rheology formulation,

isolated by the experimental design from any other known sources of forecast uncertainty such as the atmospheric forcing or

425 other uncertain parameters in the ice model. In practice, the effect of the latter will of course come and add up in the context

of an operational system.
4.2.3 Probability maps of high-deformation events

As an illustration of the difference in the behavior of the two rheologies revealed by the CRPS metrics and of what this
implies in practice, we show in Fig. 12 some example probability maps that indicate the likelihood of experiencing at least
430 one high-deformation event within 24 hours in each model cell. High-deformation events are defined as those when the hourly
deformation in a model cell exceeds a threshold set at the 95th percentile of the hourly deformation distribution during the
winter season (January-March 1997) in the pack-ice region outlined in Fig. 1. This threshold approximately corresponds,
for each rheology, to the deformation value above which the ice material enters the plastic regime in the aEVP case and the
visco-elastic regime in the BBM case. In practice, it also marks the emergence of LKFs that can affect users operating in the
435 field—for example, scientists that deploy, maintain or retrieve instruments on the ice, as during the MOSAIC campaign (Rabe
et al., 2024). In that study, the authors reported significant deformation at one of their sites drifting on the pack ice near the
North Pole in January—February 2020. In particular, they documented a large crack and subsequent pressure ridge developing
across the site that impacted their instruments (see their figure 6).
Figure 12 shows that according to the BBM model, the chance of experiencing a high-deformation event at a given location
440 during a given 24-hour period is high (probability greater than 90%, highlighted in yellow) in most parts of the central Arctic
region under moderate-strong wind conditions. In contrast, according to the aEVP model, a significant fraction of the central
Arctic exhibits a low risk of high-deformation events (probability lower than 20%, highlighted in purple), and the risk is
concentrated in narrower areas (i.e. less uncertainty in the hindcasts of smoother deformation fields). This example highlights
that, in some cases, lower predictability can nevertheless yield more informative assessments of the local risk of deformation
445 events.

4.3 Predictability of Lagrangian trajectories

In this section, we complement the previous CRPS analysis, which evaluated the model skills in an Eulerian framework, by

now considering predictability from a Lagrangian perspective. We showed in the previous section that, at the grid-cell level,
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Figure 10. Same as Fig. 8 but for the CRPS metric from the aEVP hindcasts initialized with the 10-km perturbation.

the drift of sea ice becomes fully decorrelated between the ensemble members within a few days (1-5 days) in the BBM

450 model, while in the aEVP configuration the members of the ensemble tend to converge towards a more similar and spatially
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Figure 11. Same as Fig. 9 but from the aEVP hindcasts initialized with the 10-km perturbation.

smooth solution. Here, we document how these contrasting behaviors translate into the divergence of Lagrangian trajectories
computed from the simulated sea-ice drift fields of the two configurations. Such Lagrangian metrics might be more meaningful
in an operational context of search-and-rescue, for example. They also allow us to relate our approach more directly to the
studies of Rabatel et al. (2018); Cheng et al. (2020).

455 ‘We make use of the virtual buoys generated from all the ensemble hindcasts (i.e. the eight time periods and three perturbation
amplitudes) with the two model configurations, as described in Sect. 3. An example of these virtual buoy trajectories is given
in Fig. 13 and some statistics on the 101 ensembles of trajectories are provided in Fig. 14. More specifically, the figure displays
the temporal evolution of the ensemble spread, measured by the area of the ellipse defined by the 95% confidence contour of the

distribution (assumed to be bivariate normal). Note that the range of the y-axis is ten times larger in Fig. 14a than in Fig. 14b.
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Figure 12. Maps illustrating the likelihood of experiencing at least one high-deformation event within 24 hours (here plotted for the first
day of period P; as an illustration) in each model cell in the BBM and aEVP ensemble experiments (a,b resp.) intialized with STD = 50
km positional perturbations. The high-deformation events are defined as those when the hourly deformation in a model grid cell exceeds a
threshold set at the 95th percentile of the hourly deformation distribution over the winter season in the pack-ice region (see text for details).

Panel (c) shows the difference in probability between panels (a) and (b).

460 The spread between the virtual buoys grows with lead time for both BBM and aEVP models, as expected from passive tracers
advected by velocity fields that themselves differ. Lagrangian trajectories accumulate differences at every time step because
they are advected by distinct velocity fields in each ensemble member. Even in the case where the velocity fields of different
ensemble members become more similar with lead time and the level of heterogeneity decreases (aEVP case), the Lagrangian

trajectories still diverge because they integrate past differences along their paths. However, the statistics in Fig. 14 confirm
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Figure 13. Example of virtual buoy trajectories simulated from the BBM and aEVP ensemble hindcasts (a,b, respectively) from an seeding
on 7th March 1997 at midnight at -154.552° E and 74.886° N (red cross in Fig. 2). The coloured circles highlight the final positions after 10
days and the shaded ellipses represent the 95% confidence regions of the final positions, assuming a bivariate normal distribution. The colors

correspond to the rheology and amplitude of the initial perturbation of the experiments.

465 what is already apparent from the example cases (Figs. 4 and 13): the spread of the virtual buoys grows significantly larger in
the BBM configuration than in aEVP. After 10 days, the ellipse area is on average around 90 km? in the ensembles initialized
with the larger perturbations (STD 50 km) and about 60 km? in the ensemble initialized with the smaller perturbations (STD
1 and 10 km). By contrast, the virtual buoys from the aEVP hindcasts have on average spread roughly an order of magnitude
less: about 10 km? with the largest initial perturbation, while below 1 km? with the smaller initial perturbations. For reference,

470 the dispersion found after 10 days in previous studies focused on the uncertainty caused by the surface wind or by some
model parameters is approximately 800 km? and 200 km?, respectively, in Cheng et al. (2020) (defined by the 99% confidence
ellipse in their case) and 190 km? in Rabatel et al. (2018) from the wind uncertainty (scaled to a variance three times as small
as in Cheng et al. (2020)). Our results thus confirm previous work that initial uncertainty has quantitatively less impact on
the spread of Lagrangian trajectories than uncertainty in the wind forcing (at least when its variance is scaled as in Rabatel

475 et al. (2018) and Cheng et al. (2020)). However, we also find that in the BBM configuration the effect of initial positional
uncertainty on buoy dispersion is roughly an order of magnitude larger than in the aEVP configuration, making it comparable
in magnitude to wind- and model-induced uncertainty. This implies that initial-condition uncertainty—when interacting with a
highly sensitive rheology such as BBM—constitutes a non-negligible source of trajectory spread. In operational contexts such
as search-and-rescue, where all sources of uncertainty accumulate along Lagrangian paths, this contribution may thus have

480 important practical implications.
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Figure 14. Temporal evolution of the spread of the virtual buoys from the BBM and aEVP ensemble hindcasts (a,b, resp.), as measured by
the area of the ellipse defined by the 95% confidence contour of the distribution (assumed to be bivariate normal). The colors correspond to
the rheology and amplitude of the initial perturbation of the experiment. The thick lines show the ensemble mean of all the buoys over all the
eight 10-day periods, while the shaded envelopes indicate the 5%-t0-95% percentile ensemble distribution. Panel (a) uses a y-axis range 10

times larger (area in km?) than panel (b).

5 Summary and concluding remarks

Our study proposes an ensemble framework based on the SI3+NEMO sea ice ocean model with a horizontal resolution of 1/4°
(~10 km in the central Arctic) to investigate the predictability of the sea ice system on daily-to-weekly timescales, focusing
on the sensitivity to initial uncertainty in the position of the sea ice features. We compare this sensitivity for two model

485 configurations based on different formulations of sea ice rheology: the elastic—viscous—plastic (aEVP) formulation (Kimmritz
et al., 2016) and the more recently developed brittle Bingham-Maxwell (BBM) formulation (Olason et al., 2022). We examine
the implications of these contrasting sensitivities for short-term winter sea-ice forecasting. Our experimental design isolates
the response of the coupled ice—ocean system to initial positional uncertainty alone, deliberately excluding the additional
uncertainty introduced through coupling with the atmosphere.

490 Our approach is based on 10-day ensemble hindcasts of N=20 members over eight non-overlapping time periods between the
16th of January and the 5th of April, 1997. Those ensemble hindcasts are initialized with perturbed initial states where Gaussian
perturbation displacements Ax(z,y), Ay(z,y) in x and y directions are generated and applied consistently to all the sea ice

variables, resulting in non-Gaussian perturbations of those variables to mimic mispositioned and distorted sea ice features
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(leads, LKFs, etc) that can arise at initialization in an operational system. The perturbations are scaled to different amplitudes

495 of displacement (STD of 1, 10, and 50 km). In our approach, only the initial sea ice state is perturbed (the ocean is not), and
exactly the same perturbed states are used to initialize the ensemble hindcasts with the BBM and aEVP rheology. A brief
evaluation of the modeled sea ice drift against available Lagrangian sea ice IABP drifters confirmed that both configurations-
BBM and aEVP-adequately reproduce the observed drift and provide an appropriate framework for comparing their sensitivity
to initial conditions.

500 For the purpose of this study, we focus solely on initial errors as a source of uncertainty, excluding other significant and
already documented sources of uncertainty such as surface wind forcing. Here, we consider the model and surface forcing as
perfect and unperturbed for all members of the ensemble. We then assess potential predictability by measuring the response
of the system, for a given evaluation metric, to small initial perturbations (misplacements of the order of 1/10th of a grid cell
) as compared to larger errors (misplacements of tens of grid cells ). We consider that the system has fully lost its potential

505 predictability when the initial perturbations no longer have an impact on the level of divergence of the ensemble solutions. In
practice, this happens at the lead time when the ensemble members initialized with slightly perturbed conditions have become
as spread as when initialized with large perturbations.

This approach is applied to several commonly-used metrics, each highlighting a different aspect of the sea-ice hindcasts: (i)
the Spatial Probability Score (SPS), a probabilistic integrated measure of local positional errors of the ice edge; (ii) the Con-

510 tinuous Ranked Probability Score (CRPS) for concentration, thickness, drift, and deformation, which provides a generalized
absolute-error metric for ensemble forecasts, integrated over the pack-ice region; and (iii) Lagrangian metrics quantifying the
spread of virtual sea-ice drifter trajectories generated from the ensemble simulations.

Our analysis first shows that short-term forecasts of the sea-ice edge do not show a non-linear, chaotic-like response to
small positional uncertainties. Instead, initial errors tend to decay, reflecting a strong constraint from the imposed atmospheric

515 forcing and the ocean’s state. After 10 days, the forecasts still retain a memory of the initial error amplitude, while the ensem-
ble members tend to converge toward a more similar ice-edge position. We found that this behavior is largely independent of
rheology, indicating that ice-edge predictability in our system is primarily controlled by thermodynamic forcing rather than
internal ice dynamics. In that regard, improving operational forecasts of the sea-ice edge is unlikely to be achieved through a
changed rheology or through more accurate assimilation of its observed initial position alone, but rather through better initial-

520 ization of the underlying ocean and more realistic atmospheric forcing—at least at the present model resolution. However, at
higher resolution, a more turbulent ocean circulation that includes better-resolved mesoscale features may introduce additional
nonlinearity in the coupled ice—ocean response, potentially increasing the sensitivity to initial position errors.

However, the CRPS metric for concentration, deformation, and drift display a strong non-linear, chaotic-like sensitivity to
initial positional errors when using the BBM-based model. For these quantities, predictability rapidly degrades, and the CRPS

525 evolution forgets about the initial perturbations after only a few days: five to ten days for concentration, one to five days for
deformation and drift, and longer than 10 days for thickness. This intrinsic limit arises even under perfect atmospheric forcing,
demonstrating that the sea-ice dynamics themselves can set a short predictability horizon for LKFs and dynamical features,

before its interaction with the chaotic atmosphere.
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In contrast, the system based on the aEVP rheology exhibits little sensitivity to positional errors: heterogeneities are quickly

530 smoothed out, the ensemble members converge, and the CRPS metric decreases with lead time. Although this implies higher

potential predictability, it reflects a loss of dynamical variability and a weaker representation of the observed sea-ice hetero-
geneity.

Note that in operational systems aiming to take into account all major sources of uncertainty, the surface wind forcing uncer-
tainty should be considered as well and would introduce its own constraints on the predictability limits of the system (known to

535 be one to two weeks in the atmosphere; e.g., Lorenz 1969). Surface wind uncertainty could be approached as in previous studies
using a perturbation method (Cheng et al., 2020), using ensemble atmospheric analyses or forecasts Mohammadi-Aragh et al.
(2018), or even coupling the sea-ice model to an atmosphere or atmospheric boundary-layer model, which would relax the
current assumption of prescribed unidirectional atmospheric forcing and allow atmosphere—ice feedbacks to shape the forecast
uncertainty more realistically. Noteworthy, the modelling framework used here is fully adequate to include, in possible future

540 work, several additional sources of uncertainty to initial conditions, including wind forcing or other model parameters, and to
compare, in a single framework, their respective impacts.

In practical applications, these potential predictability limits we highlighted lead the two types of rheology to produce
very different levels of uncertainty in both the local probability of high-deformation events and the dispersion of Lagrangian
trajectories. The BBM configuration generates strong, weakly predictable heterogeneities in the deformation fields, which

545 translate into a high probability of encountering at least one intense deformation event (LKF formation) within 24 hours over
large areas of the central Arctic. By contrast, the aEVP configuration produces much smoother deformation fields, leading to
narrow zones of elevated risk surrounded by broad regions where the likelihood of such events remains low. Similarly, virtual-
buoy experiments show that initial uncertainties in the sea ice Eulerian fields amplify rapidly under BBM dynamics—resulting
in one order-of-magnitude larger Lagrangian spread than in aEVP after 10 days—whereas the aEVP system largely damps

550 these initial differences.

The differences in the predictability behavior we have documented in this study are not merely academic, they also directly
matter for practical applications, such as field operations or search-and-rescue response, where understanding uncertainty is
often as important as the forecast itself (e.g. Tietsche et al., 2020). A system that strongly amplifies small initial errors (as
documented here for BBM) may offer lower deterministic predictability yet provides more realistic—and therefore more use-

555 ful—information about the range of plausible trajectories or the local likelihood of severe deformation. Conversely, a system
that smooths heterogeneity (as in aEVP) may appear more predictable and also easier to handle for technical operational pur-
poses (e.g. Data Assimilation), but it risks underestimating extreme outcomes. Such contrasts reinforce the value of ensemble
forecasting for sea ice: in a highly nonlinear and only weakly predictable medium, ensembles provide not only an estimate of

the forecast state but also a quantification of the risk associated with user-relevant events.
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560 Code and data availability. The entire dataset of ensemble hindcasts represents 13 TB and is available upon request (stephanie.leroux @
datlas.fr). The Lagrangian trajectories produced from the ensemble hindcasts represent 133 MB and are published on Zenodo (Fiol et al.,
2025). The present work is based on several open-source packages (see text): the Lu simulator (Brankart and Leroux, 2025) https://github.
com/cmems-arcticbliss/lu-simulator, Sitrack (Brodeau, 2025) https://github.com/brodeau/sitrack, ENSDAM https://github.com/brankart/ensdam.
All the scripts used for the present paper (analyses and plots) are also made available on Zenodo: Fiol (2025).
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Appendix A: Initial states of periods P1 to P8

580 This Appendix section provides two supplementary figures illustrating the initial states of the eight periods P,...,Pg in terms
of sea ice thickness (Fig. A1) and concentration (Fig. A2).
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Figure Al. Sea ice thickness maps at initial time (to) of each period P1,...,Ps from the reference (unperturbed) experiment (see Sect. 2 for
more details). The black dashed line defines the boundaries of the region over which the CRPS metric is computed in Sect. 4.2.
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Figure A2. Sea ice concentration maps at initial time (to) of each period P1,...,Ps from the reference (unperturbed) experiment (see Sect. 2

for more details). The black dashed line defines the boundaries of the region over which the CRPS metric is computed in Sect. 4.2.
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